Compare commits

..

1 Commits

Author SHA1 Message Date
Dhruv Nair
e90eb9de70 update 2026-02-17 11:21:51 +01:00
18 changed files with 126 additions and 459 deletions

View File

@@ -266,10 +266,6 @@ class _HubKernelConfig:
function_attr: str
revision: str | None = None
kernel_fn: Callable | None = None
wrapped_forward_attr: str | None = None
wrapped_backward_attr: str | None = None
wrapped_forward_fn: Callable | None = None
wrapped_backward_fn: Callable | None = None
# Registry for hub-based attention kernels
@@ -284,11 +280,7 @@ _HUB_KERNELS_REGISTRY: dict["AttentionBackendName", _HubKernelConfig] = {
# revision="fake-ops-return-probs",
),
AttentionBackendName.FLASH_HUB: _HubKernelConfig(
repo_id="kernels-community/flash-attn2",
function_attr="flash_attn_func",
revision=None,
wrapped_forward_attr="flash_attn_interface._wrapped_flash_attn_forward",
wrapped_backward_attr="flash_attn_interface._wrapped_flash_attn_backward",
repo_id="kernels-community/flash-attn2", function_attr="flash_attn_func", revision=None
),
AttentionBackendName.FLASH_VARLEN_HUB: _HubKernelConfig(
repo_id="kernels-community/flash-attn2", function_attr="flash_attn_varlen_func", revision=None
@@ -613,39 +605,22 @@ def _flex_attention_causal_mask_mod(batch_idx, head_idx, q_idx, kv_idx):
# ===== Helpers for downloading kernels =====
def _resolve_kernel_attr(module, attr_path: str):
target = module
for attr in attr_path.split("."):
if not hasattr(target, attr):
raise AttributeError(f"Kernel module '{module.__name__}' does not define attribute path '{attr_path}'.")
target = getattr(target, attr)
return target
def _maybe_download_kernel_for_backend(backend: AttentionBackendName) -> None:
if backend not in _HUB_KERNELS_REGISTRY:
return
config = _HUB_KERNELS_REGISTRY[backend]
needs_kernel = config.kernel_fn is None
needs_wrapped_forward = config.wrapped_forward_attr is not None and config.wrapped_forward_fn is None
needs_wrapped_backward = config.wrapped_backward_attr is not None and config.wrapped_backward_fn is None
if not (needs_kernel or needs_wrapped_forward or needs_wrapped_backward):
if config.kernel_fn is not None:
return
try:
from kernels import get_kernel
kernel_module = get_kernel(config.repo_id, revision=config.revision)
if needs_kernel:
config.kernel_fn = _resolve_kernel_attr(kernel_module, config.function_attr)
kernel_func = getattr(kernel_module, config.function_attr)
if needs_wrapped_forward:
config.wrapped_forward_fn = _resolve_kernel_attr(kernel_module, config.wrapped_forward_attr)
if needs_wrapped_backward:
config.wrapped_backward_fn = _resolve_kernel_attr(kernel_module, config.wrapped_backward_attr)
# Cache the downloaded kernel function in the config object
config.kernel_fn = kernel_func
except Exception as e:
logger.error(f"An error occurred while fetching kernel '{config.repo_id}' from the Hub: {e}")
@@ -1096,231 +1071,6 @@ def _flash_attention_backward_op(
return grad_query, grad_key, grad_value
def _flash_attention_hub_forward_op(
ctx: torch.autograd.function.FunctionCtx,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attn_mask: torch.Tensor | None = None,
dropout_p: float = 0.0,
is_causal: bool = False,
scale: float | None = None,
enable_gqa: bool = False,
return_lse: bool = False,
_save_ctx: bool = True,
_parallel_config: "ParallelConfig" | None = None,
):
if attn_mask is not None:
raise ValueError("`attn_mask` is not yet supported for flash-attn hub kernels.")
if enable_gqa:
raise ValueError("`enable_gqa` is not yet supported for flash-attn hub kernels.")
config = _HUB_KERNELS_REGISTRY[AttentionBackendName.FLASH_HUB]
wrapped_forward_fn = config.wrapped_forward_fn
wrapped_backward_fn = config.wrapped_backward_fn
if wrapped_forward_fn is None or wrapped_backward_fn is None:
raise RuntimeError(
"Flash attention hub kernels must expose `_wrapped_flash_attn_forward` and `_wrapped_flash_attn_backward` "
"for context parallel execution."
)
if scale is None:
scale = query.shape[-1] ** (-0.5)
window_size = (-1, -1)
softcap = 0.0
alibi_slopes = None
deterministic = False
grad_enabled = any(x.requires_grad for x in (query, key, value))
if grad_enabled or (_parallel_config is not None and _parallel_config.context_parallel_config._world_size > 1):
dropout_p = dropout_p if dropout_p > 0 else 1e-30
with torch.set_grad_enabled(grad_enabled):
out, lse, S_dmask, rng_state = wrapped_forward_fn(
query,
key,
value,
dropout_p,
scale,
is_causal,
window_size[0],
window_size[1],
softcap,
alibi_slopes,
return_lse,
)
lse = lse.permute(0, 2, 1).contiguous()
if _save_ctx:
ctx.save_for_backward(query, key, value, out, lse, rng_state)
ctx.dropout_p = dropout_p
ctx.scale = scale
ctx.is_causal = is_causal
ctx.window_size = window_size
ctx.softcap = softcap
ctx.alibi_slopes = alibi_slopes
ctx.deterministic = deterministic
return (out, lse) if return_lse else out
def _flash_attention_hub_backward_op(
ctx: torch.autograd.function.FunctionCtx,
grad_out: torch.Tensor,
*args,
**kwargs,
):
config = _HUB_KERNELS_REGISTRY[AttentionBackendName.FLASH_HUB]
wrapped_backward_fn = config.wrapped_backward_fn
if wrapped_backward_fn is None:
raise RuntimeError(
"Flash attention hub kernels must expose `_wrapped_flash_attn_backward` for context parallel execution."
)
query, key, value, out, lse, rng_state = ctx.saved_tensors
grad_query, grad_key, grad_value = torch.empty_like(query), torch.empty_like(key), torch.empty_like(value)
_ = wrapped_backward_fn(
grad_out,
query,
key,
value,
out,
lse,
grad_query,
grad_key,
grad_value,
ctx.dropout_p,
ctx.scale,
ctx.is_causal,
ctx.window_size[0],
ctx.window_size[1],
ctx.softcap,
ctx.alibi_slopes,
ctx.deterministic,
rng_state,
)
grad_query = grad_query[..., : grad_out.shape[-1]]
grad_key = grad_key[..., : grad_out.shape[-1]]
grad_value = grad_value[..., : grad_out.shape[-1]]
return grad_query, grad_key, grad_value
def _flash_attention_3_hub_forward_op(
ctx: torch.autograd.function.FunctionCtx,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attn_mask: torch.Tensor | None = None,
dropout_p: float = 0.0,
is_causal: bool = False,
scale: float | None = None,
enable_gqa: bool = False,
return_lse: bool = False,
_save_ctx: bool = True,
_parallel_config: "ParallelConfig" | None = None,
*,
window_size: tuple[int, int] = (-1, -1),
softcap: float = 0.0,
num_splits: int = 1,
pack_gqa: bool | None = None,
deterministic: bool = False,
sm_margin: int = 0,
):
if attn_mask is not None:
raise ValueError("`attn_mask` is not yet supported for flash-attn 3 hub kernels.")
if dropout_p != 0.0:
raise ValueError("`dropout_p` is not yet supported for flash-attn 3 hub kernels.")
if enable_gqa:
raise ValueError("`enable_gqa` is not yet supported for flash-attn 3 hub kernels.")
func = _HUB_KERNELS_REGISTRY[AttentionBackendName._FLASH_3_HUB].kernel_fn
out = func(
q=query,
k=key,
v=value,
softmax_scale=scale,
causal=is_causal,
qv=None,
q_descale=None,
k_descale=None,
v_descale=None,
window_size=window_size,
softcap=softcap,
num_splits=num_splits,
pack_gqa=pack_gqa,
deterministic=deterministic,
sm_margin=sm_margin,
return_attn_probs=return_lse,
)
lse = None
if return_lse:
out, lse = out
lse = lse.permute(0, 2, 1).contiguous()
if _save_ctx:
ctx.save_for_backward(query, key, value)
ctx.scale = scale
ctx.is_causal = is_causal
ctx._hub_kernel = func
return (out, lse) if return_lse else out
def _flash_attention_3_hub_backward_op(
ctx: torch.autograd.function.FunctionCtx,
grad_out: torch.Tensor,
*args,
window_size: tuple[int, int] = (-1, -1),
softcap: float = 0.0,
num_splits: int = 1,
pack_gqa: bool | None = None,
deterministic: bool = False,
sm_margin: int = 0,
):
query, key, value = ctx.saved_tensors
kernel_fn = ctx._hub_kernel
with torch.enable_grad():
query_r = query.detach().requires_grad_(True)
key_r = key.detach().requires_grad_(True)
value_r = value.detach().requires_grad_(True)
out = kernel_fn(
q=query_r,
k=key_r,
v=value_r,
softmax_scale=ctx.scale,
causal=ctx.is_causal,
qv=None,
q_descale=None,
k_descale=None,
v_descale=None,
window_size=window_size,
softcap=softcap,
num_splits=num_splits,
pack_gqa=pack_gqa,
deterministic=deterministic,
sm_margin=sm_margin,
return_attn_probs=False,
)
if isinstance(out, tuple):
out = out[0]
grad_query, grad_key, grad_value = torch.autograd.grad(
out,
(query_r, key_r, value_r),
grad_out,
retain_graph=False,
allow_unused=False,
)
return grad_query, grad_key, grad_value
def _sage_attention_forward_op(
ctx: torch.autograd.function.FunctionCtx,
query: torch.Tensor,
@@ -1359,46 +1109,6 @@ def _sage_attention_forward_op(
return (out, lse) if return_lse else out
def _sage_attention_hub_forward_op(
ctx: torch.autograd.function.FunctionCtx,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attn_mask: torch.Tensor | None = None,
dropout_p: float = 0.0,
is_causal: bool = False,
scale: float | None = None,
enable_gqa: bool = False,
return_lse: bool = False,
_save_ctx: bool = True,
_parallel_config: "ParallelConfig" | None = None,
):
if attn_mask is not None:
raise ValueError("`attn_mask` is not yet supported for Sage attention.")
if dropout_p > 0.0:
raise ValueError("`dropout_p` is not yet supported for Sage attention.")
if enable_gqa:
raise ValueError("`enable_gqa` is not yet supported for Sage attention.")
func = _HUB_KERNELS_REGISTRY[AttentionBackendName.SAGE_HUB].kernel_fn
out = func(
q=query,
k=key,
v=value,
tensor_layout="NHD",
is_causal=is_causal,
sm_scale=scale,
return_lse=return_lse,
)
lse = None
if return_lse:
out, lse, *_ = out
lse = lse.permute(0, 2, 1).contiguous()
return (out, lse) if return_lse else out
def _sage_attention_backward_op(
ctx: torch.autograd.function.FunctionCtx,
grad_out: torch.Tensor,
@@ -1407,26 +1117,6 @@ def _sage_attention_backward_op(
raise NotImplementedError("Backward pass is not implemented for Sage attention.")
def _maybe_modify_attn_mask_npu(query: torch.Tensor, key: torch.Tensor, attn_mask: torch.Tensor | None = None):
# Skip Attention Mask if all values are 1, `None` mask can speedup the computation
if attn_mask is not None and torch.all(attn_mask != 0):
attn_mask = None
# Reshape Attention Mask: [batch_size, seq_len_k] -> [batch_size, 1, sqe_len_q, seq_len_k]
# https://www.hiascend.com/document/detail/zh/Pytorch/730/apiref/torchnpuCustomsapi/docs/context/torch_npu-npu_fusion_attention.md
if (
attn_mask is not None
and attn_mask.ndim == 2
and attn_mask.shape[0] == query.shape[0]
and attn_mask.shape[1] == key.shape[1]
):
B, Sq, Skv = attn_mask.shape[0], query.shape[1], key.shape[1]
attn_mask = ~attn_mask.to(torch.bool)
attn_mask = attn_mask.unsqueeze(1).expand(B, Sq, Skv).unsqueeze(1).contiguous()
return attn_mask
def _npu_attention_forward_op(
ctx: torch.autograd.function.FunctionCtx,
query: torch.Tensor,
@@ -1444,14 +1134,11 @@ def _npu_attention_forward_op(
if return_lse:
raise ValueError("NPU attention backend does not support setting `return_lse=True`.")
attn_mask = _maybe_modify_attn_mask_npu(query, key, attn_mask)
out = npu_fusion_attention(
query,
key,
value,
query.size(2), # num_heads
atten_mask=attn_mask,
input_layout="BSND",
pse=None,
scale=1.0 / math.sqrt(query.shape[-1]) if scale is None else scale,
@@ -2255,7 +1942,7 @@ def _flash_attention(
@_AttentionBackendRegistry.register(
AttentionBackendName.FLASH_HUB,
constraints=[_check_device, _check_qkv_dtype_bf16_or_fp16, _check_shape],
supports_context_parallel=True,
supports_context_parallel=False,
)
def _flash_attention_hub(
query: torch.Tensor,
@@ -2273,35 +1960,17 @@ def _flash_attention_hub(
raise ValueError("`attn_mask` is not supported for flash-attn 2.")
func = _HUB_KERNELS_REGISTRY[AttentionBackendName.FLASH_HUB].kernel_fn
if _parallel_config is None:
out = func(
q=query,
k=key,
v=value,
dropout_p=dropout_p,
softmax_scale=scale,
causal=is_causal,
return_attn_probs=return_lse,
)
if return_lse:
out, lse, *_ = out
else:
out = _templated_context_parallel_attention(
query,
key,
value,
None,
dropout_p,
is_causal,
scale,
False,
return_lse,
forward_op=_flash_attention_hub_forward_op,
backward_op=_flash_attention_hub_backward_op,
_parallel_config=_parallel_config,
)
if return_lse:
out, lse = out
out = func(
q=query,
k=key,
v=value,
dropout_p=dropout_p,
softmax_scale=scale,
causal=is_causal,
return_attn_probs=return_lse,
)
if return_lse:
out, lse, *_ = out
return (out, lse) if return_lse else out
@@ -2448,7 +2117,7 @@ def _flash_attention_3(
@_AttentionBackendRegistry.register(
AttentionBackendName._FLASH_3_HUB,
constraints=[_check_device, _check_qkv_dtype_bf16_or_fp16, _check_shape],
supports_context_parallel=True,
supports_context_parallel=False,
)
def _flash_attention_3_hub(
query: torch.Tensor,
@@ -2463,68 +2132,33 @@ def _flash_attention_3_hub(
return_attn_probs: bool = False,
_parallel_config: "ParallelConfig" | None = None,
) -> torch.Tensor:
if _parallel_config:
raise NotImplementedError(f"{AttentionBackendName._FLASH_3_HUB.value} is not implemented for parallelism yet.")
if attn_mask is not None:
raise ValueError("`attn_mask` is not supported for flash-attn 3.")
func = _HUB_KERNELS_REGISTRY[AttentionBackendName._FLASH_3_HUB].kernel_fn
if _parallel_config is None:
out = func(
q=query,
k=key,
v=value,
softmax_scale=scale,
causal=is_causal,
qv=None,
q_descale=None,
k_descale=None,
v_descale=None,
window_size=window_size,
softcap=softcap,
num_splits=1,
pack_gqa=None,
deterministic=deterministic,
sm_margin=0,
return_attn_probs=return_attn_probs,
)
return (out[0], out[1]) if return_attn_probs else out
forward_op = functools.partial(
_flash_attention_3_hub_forward_op,
out = func(
q=query,
k=key,
v=value,
softmax_scale=scale,
causal=is_causal,
qv=None,
q_descale=None,
k_descale=None,
v_descale=None,
window_size=window_size,
softcap=softcap,
num_splits=1,
pack_gqa=None,
deterministic=deterministic,
sm_margin=0,
return_attn_probs=return_attn_probs,
)
backward_op = functools.partial(
_flash_attention_3_hub_backward_op,
window_size=window_size,
softcap=softcap,
num_splits=1,
pack_gqa=None,
deterministic=deterministic,
sm_margin=0,
)
out = _templated_context_parallel_attention(
query,
key,
value,
None,
0.0,
is_causal,
scale,
False,
return_attn_probs,
forward_op=forward_op,
backward_op=backward_op,
_parallel_config=_parallel_config,
)
if return_attn_probs:
out, lse = out
return out, lse
return out
# When `return_attn_probs` is True, the above returns a tuple of
# actual outputs and lse.
return (out[0], out[1]) if return_attn_probs else out
@_AttentionBackendRegistry.register(
@@ -3034,17 +2668,16 @@ def _native_npu_attention(
return_lse: bool = False,
_parallel_config: "ParallelConfig" | None = None,
) -> torch.Tensor:
if attn_mask is not None:
raise ValueError("`attn_mask` is not supported for NPU attention")
if return_lse:
raise ValueError("NPU attention backend does not support setting `return_lse=True`.")
if _parallel_config is None:
attn_mask = _maybe_modify_attn_mask_npu(query, key, attn_mask)
out = npu_fusion_attention(
query,
key,
value,
query.size(2), # num_heads
atten_mask=attn_mask,
input_layout="BSND",
pse=None,
scale=1.0 / math.sqrt(query.shape[-1]) if scale is None else scale,
@@ -3059,7 +2692,7 @@ def _native_npu_attention(
query,
key,
value,
attn_mask,
None,
dropout_p,
None,
scale,
@@ -3156,7 +2789,7 @@ def _sage_attention(
@_AttentionBackendRegistry.register(
AttentionBackendName.SAGE_HUB,
constraints=[_check_device_cuda, _check_qkv_dtype_bf16_or_fp16, _check_shape],
supports_context_parallel=True,
supports_context_parallel=False,
)
def _sage_attention_hub(
query: torch.Tensor,
@@ -3184,23 +2817,6 @@ def _sage_attention_hub(
)
if return_lse:
out, lse, *_ = out
else:
out = _templated_context_parallel_attention(
query,
key,
value,
None,
0.0,
is_causal,
scale,
False,
return_lse,
forward_op=_sage_attention_hub_forward_op,
backward_op=_sage_attention_backward_op,
_parallel_config=_parallel_config,
)
if return_lse:
out, lse = out
return (out, lse) if return_lse else out

View File

@@ -164,11 +164,7 @@ def compute_text_seq_len_from_mask(
position_ids = torch.arange(text_seq_len, device=encoder_hidden_states.device, dtype=torch.long)
active_positions = torch.where(encoder_hidden_states_mask, position_ids, position_ids.new_zeros(()))
has_active = encoder_hidden_states_mask.any(dim=1)
per_sample_len = torch.where(
has_active,
active_positions.max(dim=1).values + 1,
torch.as_tensor(text_seq_len, device=encoder_hidden_states.device),
)
per_sample_len = torch.where(has_active, active_positions.max(dim=1).values + 1, torch.as_tensor(text_seq_len))
return text_seq_len, per_sample_len, encoder_hidden_states_mask

View File

@@ -18,7 +18,7 @@ import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
from diffusers import AutoencoderKLCogVideoX, CogVideoXPipeline, CogVideoXTransformer3DModel, DDIMScheduler
@@ -117,7 +117,9 @@ class CogVideoXPipelineFastTests(
torch.manual_seed(0)
scheduler = DDIMScheduler()
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
config.tie_word_embeddings = False
text_encoder = T5EncoderModel(config)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
components = {

View File

@@ -19,7 +19,7 @@ import unittest
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
from transformers import AutoConfig, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
from diffusers import (
AutoencoderKL,
@@ -97,7 +97,9 @@ class FluxControlNetPipelineFastTests(unittest.TestCase, PipelineTesterMixin, Fl
text_encoder = CLIPTextModel(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
config.tie_word_embeddings = False
text_encoder_2 = T5EncoderModel(config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = T5TokenizerFast.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -18,7 +18,14 @@ import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel
from transformers import (
AutoConfig,
AutoTokenizer,
CLIPTextConfig,
CLIPTextModelWithProjection,
CLIPTokenizer,
T5EncoderModel,
)
from diffusers import (
AutoencoderKL,
@@ -117,7 +124,9 @@ class StableDiffusion3ControlNetPipelineFastTests(unittest.TestCase, PipelineTes
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
config.tie_word_embeddings = False
text_encoder_3 = T5EncoderModel(config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

View File

@@ -3,7 +3,7 @@ import unittest
import numpy as np
import torch
from PIL import Image
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, FluxControlPipeline, FluxTransformer2DModel
@@ -53,7 +53,9 @@ class FluxControlPipelineFastTests(unittest.TestCase, PipelineTesterMixin):
text_encoder = CLIPTextModel(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
config.tie_word_embeddings = False
text_encoder_2 = T5EncoderModel(config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -3,7 +3,7 @@ import unittest
import numpy as np
import torch
from PIL import Image
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from diffusers import (
AutoencoderKL,
@@ -57,7 +57,9 @@ class FluxControlImg2ImgPipelineFastTests(unittest.TestCase, PipelineTesterMixin
text_encoder = CLIPTextModel(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
config.tie_word_embeddings = False
text_encoder_2 = T5EncoderModel(config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -3,7 +3,7 @@ import unittest
import numpy as np
import torch
from PIL import Image
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from diffusers import (
AutoencoderKL,
@@ -58,7 +58,9 @@ class FluxControlInpaintPipelineFastTests(unittest.TestCase, PipelineTesterMixin
text_encoder = CLIPTextModel(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
config.tie_word_embeddings = False
text_encoder_2 = T5EncoderModel(config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -3,7 +3,7 @@ import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, FluxFillPipeline, FluxTransformer2DModel
@@ -58,7 +58,9 @@ class FluxFillPipelineFastTests(unittest.TestCase, PipelineTesterMixin):
text_encoder = CLIPTextModel(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
config.tie_word_embeddings = False
text_encoder_2 = T5EncoderModel(config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -3,7 +3,7 @@ import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, FluxImg2ImgPipeline, FluxTransformer2DModel
@@ -55,7 +55,9 @@ class FluxImg2ImgPipelineFastTests(unittest.TestCase, PipelineTesterMixin, FluxI
text_encoder = CLIPTextModel(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
config.tie_word_embeddings = False
text_encoder_2 = T5EncoderModel(config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -3,7 +3,7 @@ import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, FluxInpaintPipeline, FluxTransformer2DModel
@@ -55,7 +55,9 @@ class FluxInpaintPipelineFastTests(unittest.TestCase, PipelineTesterMixin, FluxI
text_encoder = CLIPTextModel(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
config.tie_word_embeddings = False
text_encoder_2 = T5EncoderModel(config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -3,7 +3,7 @@ import unittest
import numpy as np
import PIL.Image
import torch
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from diffusers import (
AutoencoderKL,
@@ -79,7 +79,9 @@ class FluxKontextPipelineFastTests(
text_encoder = CLIPTextModel(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
config.tie_word_embeddings = False
text_encoder_2 = T5EncoderModel(config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -3,7 +3,7 @@ import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from diffusers import (
AutoencoderKL,
@@ -79,7 +79,9 @@ class FluxKontextInpaintPipelineFastTests(
text_encoder = CLIPTextModel(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
config.tie_word_embeddings = False
text_encoder_2 = T5EncoderModel(config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -18,6 +18,7 @@ import unittest
import numpy as np
import torch
from transformers import (
AutoConfig,
AutoTokenizer,
CLIPTextConfig,
CLIPTextModelWithProjection,
@@ -94,7 +95,9 @@ class HiDreamImagePipelineFastTests(PipelineTesterMixin, unittest.TestCase):
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
config.tie_word_embeddings = False
text_encoder_3 = T5EncoderModel(config)
torch.manual_seed(0)
text_encoder_4 = LlamaForCausalLM.from_pretrained("hf-internal-testing/tiny-random-LlamaForCausalLM")

View File

@@ -19,7 +19,7 @@ import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, BertModel, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, BertModel, T5EncoderModel
from diffusers import AutoencoderKL, DDPMScheduler, HunyuanDiT2DModel, HunyuanDiTPipeline
@@ -74,7 +74,10 @@ class HunyuanDiTPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
scheduler = DDPMScheduler()
text_encoder = BertModel.from_pretrained("hf-internal-testing/tiny-random-BertModel")
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel")
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
config.tie_word_embeddings = False
text_encoder_2 = T5EncoderModel(config)
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
components = {

View File

@@ -17,7 +17,7 @@ import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
from diffusers import AutoencoderKLLTXVideo, FlowMatchEulerDiscreteScheduler, LTXPipeline, LTXVideoTransformer3DModel
@@ -88,7 +88,9 @@ class LTXPipelineFastTests(PipelineTesterMixin, FirstBlockCacheTesterMixin, unit
torch.manual_seed(0)
scheduler = FlowMatchEulerDiscreteScheduler()
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
config.tie_word_embeddings = False
text_encoder = T5EncoderModel(config)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
components = {

View File

@@ -4,7 +4,14 @@ import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel
from transformers import (
AutoConfig,
AutoTokenizer,
CLIPTextConfig,
CLIPTextModelWithProjection,
CLIPTokenizer,
T5EncoderModel,
)
from diffusers import (
AutoencoderKL,
@@ -73,7 +80,10 @@ class StableDiffusion3Img2ImgPipelineFastTests(PipelineLatentTesterMixin, unitte
torch.manual_seed(0)
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
config.tie_word_embeddings = False
text_encoder_3 = T5EncoderModel(config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

View File

@@ -18,7 +18,7 @@ import unittest
import numpy as np
import torch
from PIL import Image
from transformers import AutoTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
from diffusers import AutoencoderKLWan, UniPCMultistepScheduler, WanImageToVideoPipeline, WanTransformer3DModel
@@ -64,7 +64,11 @@ class Wan22ImageToVideoPipelineFastTests(PipelineTesterMixin, unittest.TestCase)
torch.manual_seed(0)
scheduler = UniPCMultistepScheduler(prediction_type="flow_prediction", use_flow_sigmas=True, flow_shift=3.0)
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
config.tie_word_embeddings = False
text_encoder = T5EncoderModel(config)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)
@@ -248,7 +252,11 @@ class Wan225BImageToVideoPipelineFastTests(PipelineTesterMixin, unittest.TestCas
torch.manual_seed(0)
scheduler = UniPCMultistepScheduler(prediction_type="flow_prediction", use_flow_sigmas=True, flow_shift=3.0)
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
config.tie_word_embeddings = False
text_encoder = T5EncoderModel(config)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)