mirror of
https://github.com/huggingface/diffusers.git
synced 2026-02-17 00:06:20 +08:00
Compare commits
2 Commits
enable-cp-
...
deprecate-
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
36c0d78b8b | ||
|
|
66f6f8b926 |
@@ -625,8 +625,7 @@
|
||||
title: Image-to-image
|
||||
- local: api/pipelines/stable_diffusion/inpaint
|
||||
title: Inpainting
|
||||
- local: api/pipelines/stable_diffusion/k_diffusion
|
||||
title: K-Diffusion
|
||||
|
||||
- local: api/pipelines/stable_diffusion/latent_upscale
|
||||
title: Latent upscaler
|
||||
- local: api/pipelines/stable_diffusion/ldm3d_diffusion
|
||||
|
||||
@@ -1,30 +0,0 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
> [!WARNING]
|
||||
> This pipeline is deprecated but it can still be used. However, we won't test the pipeline anymore and won't accept any changes to it. If you run into any issues, reinstall the last Diffusers version that supported this model.
|
||||
|
||||
# K-Diffusion
|
||||
|
||||
[k-diffusion](https://github.com/crowsonkb/k-diffusion) is a popular library created by [Katherine Crowson](https://github.com/crowsonkb/). We provide `StableDiffusionKDiffusionPipeline` and `StableDiffusionXLKDiffusionPipeline` that allow you to run Stable DIffusion with samplers from k-diffusion.
|
||||
|
||||
Note that most the samplers from k-diffusion are implemented in Diffusers and we recommend using existing schedulers. You can find a mapping between k-diffusion samplers and schedulers in Diffusers [here](https://huggingface.co/docs/diffusers/api/schedulers/overview)
|
||||
|
||||
|
||||
## StableDiffusionKDiffusionPipeline
|
||||
|
||||
[[autodoc]] StableDiffusionKDiffusionPipeline
|
||||
|
||||
|
||||
## StableDiffusionXLKDiffusionPipeline
|
||||
|
||||
[[autodoc]] StableDiffusionXLKDiffusionPipeline
|
||||
2
setup.py
2
setup.py
@@ -111,7 +111,6 @@ _deps = [
|
||||
"jax>=0.4.1",
|
||||
"jaxlib>=0.4.1",
|
||||
"Jinja2",
|
||||
"k-diffusion==0.0.12",
|
||||
"torchsde",
|
||||
"note_seq",
|
||||
"librosa",
|
||||
@@ -226,7 +225,6 @@ extras["test"] = deps_list(
|
||||
"datasets",
|
||||
"Jinja2",
|
||||
"invisible-watermark",
|
||||
"k-diffusion",
|
||||
"librosa",
|
||||
"parameterized",
|
||||
"pytest",
|
||||
|
||||
@@ -10,7 +10,6 @@ from .utils import (
|
||||
is_bitsandbytes_available,
|
||||
is_flax_available,
|
||||
is_gguf_available,
|
||||
is_k_diffusion_available,
|
||||
is_librosa_available,
|
||||
is_note_seq_available,
|
||||
is_nvidia_modelopt_available,
|
||||
@@ -50,8 +49,6 @@ _import_structure = {
|
||||
"is_flax_available",
|
||||
"is_inflect_available",
|
||||
"is_invisible_watermark_available",
|
||||
"is_k_diffusion_available",
|
||||
"is_k_diffusion_version",
|
||||
"is_librosa_available",
|
||||
"is_note_seq_available",
|
||||
"is_onnx_available",
|
||||
@@ -731,19 +728,6 @@ except OptionalDependencyNotAvailable:
|
||||
else:
|
||||
_import_structure["pipelines"].extend(["ConsisIDPipeline"])
|
||||
|
||||
try:
|
||||
if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()):
|
||||
raise OptionalDependencyNotAvailable()
|
||||
except OptionalDependencyNotAvailable:
|
||||
from .utils import dummy_torch_and_transformers_and_k_diffusion_objects # noqa F403
|
||||
|
||||
_import_structure["utils.dummy_torch_and_transformers_and_k_diffusion_objects"] = [
|
||||
name for name in dir(dummy_torch_and_transformers_and_k_diffusion_objects) if not name.startswith("_")
|
||||
]
|
||||
|
||||
else:
|
||||
_import_structure["pipelines"].extend(["StableDiffusionKDiffusionPipeline", "StableDiffusionXLKDiffusionPipeline"])
|
||||
|
||||
try:
|
||||
if not (is_torch_available() and is_transformers_available() and is_sentencepiece_available()):
|
||||
raise OptionalDependencyNotAvailable()
|
||||
@@ -1469,14 +1453,6 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
ZImagePipeline,
|
||||
)
|
||||
|
||||
try:
|
||||
if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()):
|
||||
raise OptionalDependencyNotAvailable()
|
||||
except OptionalDependencyNotAvailable:
|
||||
from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403
|
||||
else:
|
||||
from .pipelines import StableDiffusionKDiffusionPipeline, StableDiffusionXLKDiffusionPipeline
|
||||
|
||||
try:
|
||||
if not (is_torch_available() and is_transformers_available() and is_sentencepiece_available()):
|
||||
raise OptionalDependencyNotAvailable()
|
||||
|
||||
@@ -18,7 +18,6 @@ deps = {
|
||||
"jax": "jax>=0.4.1",
|
||||
"jaxlib": "jaxlib>=0.4.1",
|
||||
"Jinja2": "Jinja2",
|
||||
"k-diffusion": "k-diffusion==0.0.12",
|
||||
"torchsde": "torchsde",
|
||||
"note_seq": "note_seq",
|
||||
"librosa": "librosa",
|
||||
|
||||
@@ -266,10 +266,6 @@ class _HubKernelConfig:
|
||||
function_attr: str
|
||||
revision: str | None = None
|
||||
kernel_fn: Callable | None = None
|
||||
wrapped_forward_attr: str | None = None
|
||||
wrapped_backward_attr: str | None = None
|
||||
wrapped_forward_fn: Callable | None = None
|
||||
wrapped_backward_fn: Callable | None = None
|
||||
|
||||
|
||||
# Registry for hub-based attention kernels
|
||||
@@ -284,11 +280,7 @@ _HUB_KERNELS_REGISTRY: dict["AttentionBackendName", _HubKernelConfig] = {
|
||||
# revision="fake-ops-return-probs",
|
||||
),
|
||||
AttentionBackendName.FLASH_HUB: _HubKernelConfig(
|
||||
repo_id="kernels-community/flash-attn2",
|
||||
function_attr="flash_attn_func",
|
||||
revision=None,
|
||||
wrapped_forward_attr="flash_attn_interface._wrapped_flash_attn_forward",
|
||||
wrapped_backward_attr="flash_attn_interface._wrapped_flash_attn_backward",
|
||||
repo_id="kernels-community/flash-attn2", function_attr="flash_attn_func", revision=None
|
||||
),
|
||||
AttentionBackendName.FLASH_VARLEN_HUB: _HubKernelConfig(
|
||||
repo_id="kernels-community/flash-attn2", function_attr="flash_attn_varlen_func", revision=None
|
||||
@@ -613,39 +605,22 @@ def _flex_attention_causal_mask_mod(batch_idx, head_idx, q_idx, kv_idx):
|
||||
|
||||
|
||||
# ===== Helpers for downloading kernels =====
|
||||
def _resolve_kernel_attr(module, attr_path: str):
|
||||
target = module
|
||||
for attr in attr_path.split("."):
|
||||
if not hasattr(target, attr):
|
||||
raise AttributeError(f"Kernel module '{module.__name__}' does not define attribute path '{attr_path}'.")
|
||||
target = getattr(target, attr)
|
||||
return target
|
||||
|
||||
|
||||
def _maybe_download_kernel_for_backend(backend: AttentionBackendName) -> None:
|
||||
if backend not in _HUB_KERNELS_REGISTRY:
|
||||
return
|
||||
config = _HUB_KERNELS_REGISTRY[backend]
|
||||
|
||||
needs_kernel = config.kernel_fn is None
|
||||
needs_wrapped_forward = config.wrapped_forward_attr is not None and config.wrapped_forward_fn is None
|
||||
needs_wrapped_backward = config.wrapped_backward_attr is not None and config.wrapped_backward_fn is None
|
||||
|
||||
if not (needs_kernel or needs_wrapped_forward or needs_wrapped_backward):
|
||||
if config.kernel_fn is not None:
|
||||
return
|
||||
|
||||
try:
|
||||
from kernels import get_kernel
|
||||
|
||||
kernel_module = get_kernel(config.repo_id, revision=config.revision)
|
||||
if needs_kernel:
|
||||
config.kernel_fn = _resolve_kernel_attr(kernel_module, config.function_attr)
|
||||
kernel_func = getattr(kernel_module, config.function_attr)
|
||||
|
||||
if needs_wrapped_forward:
|
||||
config.wrapped_forward_fn = _resolve_kernel_attr(kernel_module, config.wrapped_forward_attr)
|
||||
|
||||
if needs_wrapped_backward:
|
||||
config.wrapped_backward_fn = _resolve_kernel_attr(kernel_module, config.wrapped_backward_attr)
|
||||
# Cache the downloaded kernel function in the config object
|
||||
config.kernel_fn = kernel_func
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"An error occurred while fetching kernel '{config.repo_id}' from the Hub: {e}")
|
||||
@@ -1096,231 +1071,6 @@ def _flash_attention_backward_op(
|
||||
return grad_query, grad_key, grad_value
|
||||
|
||||
|
||||
def _flash_attention_hub_forward_op(
|
||||
ctx: torch.autograd.function.FunctionCtx,
|
||||
query: torch.Tensor,
|
||||
key: torch.Tensor,
|
||||
value: torch.Tensor,
|
||||
attn_mask: torch.Tensor | None = None,
|
||||
dropout_p: float = 0.0,
|
||||
is_causal: bool = False,
|
||||
scale: float | None = None,
|
||||
enable_gqa: bool = False,
|
||||
return_lse: bool = False,
|
||||
_save_ctx: bool = True,
|
||||
_parallel_config: "ParallelConfig" | None = None,
|
||||
):
|
||||
if attn_mask is not None:
|
||||
raise ValueError("`attn_mask` is not yet supported for flash-attn hub kernels.")
|
||||
if enable_gqa:
|
||||
raise ValueError("`enable_gqa` is not yet supported for flash-attn hub kernels.")
|
||||
|
||||
config = _HUB_KERNELS_REGISTRY[AttentionBackendName.FLASH_HUB]
|
||||
wrapped_forward_fn = config.wrapped_forward_fn
|
||||
wrapped_backward_fn = config.wrapped_backward_fn
|
||||
if wrapped_forward_fn is None or wrapped_backward_fn is None:
|
||||
raise RuntimeError(
|
||||
"Flash attention hub kernels must expose `_wrapped_flash_attn_forward` and `_wrapped_flash_attn_backward` "
|
||||
"for context parallel execution."
|
||||
)
|
||||
|
||||
if scale is None:
|
||||
scale = query.shape[-1] ** (-0.5)
|
||||
|
||||
window_size = (-1, -1)
|
||||
softcap = 0.0
|
||||
alibi_slopes = None
|
||||
deterministic = False
|
||||
grad_enabled = any(x.requires_grad for x in (query, key, value))
|
||||
|
||||
if grad_enabled or (_parallel_config is not None and _parallel_config.context_parallel_config._world_size > 1):
|
||||
dropout_p = dropout_p if dropout_p > 0 else 1e-30
|
||||
|
||||
with torch.set_grad_enabled(grad_enabled):
|
||||
out, lse, S_dmask, rng_state = wrapped_forward_fn(
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
dropout_p,
|
||||
scale,
|
||||
is_causal,
|
||||
window_size[0],
|
||||
window_size[1],
|
||||
softcap,
|
||||
alibi_slopes,
|
||||
return_lse,
|
||||
)
|
||||
lse = lse.permute(0, 2, 1).contiguous()
|
||||
|
||||
if _save_ctx:
|
||||
ctx.save_for_backward(query, key, value, out, lse, rng_state)
|
||||
ctx.dropout_p = dropout_p
|
||||
ctx.scale = scale
|
||||
ctx.is_causal = is_causal
|
||||
ctx.window_size = window_size
|
||||
ctx.softcap = softcap
|
||||
ctx.alibi_slopes = alibi_slopes
|
||||
ctx.deterministic = deterministic
|
||||
|
||||
return (out, lse) if return_lse else out
|
||||
|
||||
|
||||
def _flash_attention_hub_backward_op(
|
||||
ctx: torch.autograd.function.FunctionCtx,
|
||||
grad_out: torch.Tensor,
|
||||
*args,
|
||||
**kwargs,
|
||||
):
|
||||
config = _HUB_KERNELS_REGISTRY[AttentionBackendName.FLASH_HUB]
|
||||
wrapped_backward_fn = config.wrapped_backward_fn
|
||||
if wrapped_backward_fn is None:
|
||||
raise RuntimeError(
|
||||
"Flash attention hub kernels must expose `_wrapped_flash_attn_backward` for context parallel execution."
|
||||
)
|
||||
|
||||
query, key, value, out, lse, rng_state = ctx.saved_tensors
|
||||
grad_query, grad_key, grad_value = torch.empty_like(query), torch.empty_like(key), torch.empty_like(value)
|
||||
|
||||
_ = wrapped_backward_fn(
|
||||
grad_out,
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
out,
|
||||
lse,
|
||||
grad_query,
|
||||
grad_key,
|
||||
grad_value,
|
||||
ctx.dropout_p,
|
||||
ctx.scale,
|
||||
ctx.is_causal,
|
||||
ctx.window_size[0],
|
||||
ctx.window_size[1],
|
||||
ctx.softcap,
|
||||
ctx.alibi_slopes,
|
||||
ctx.deterministic,
|
||||
rng_state,
|
||||
)
|
||||
|
||||
grad_query = grad_query[..., : grad_out.shape[-1]]
|
||||
grad_key = grad_key[..., : grad_out.shape[-1]]
|
||||
grad_value = grad_value[..., : grad_out.shape[-1]]
|
||||
|
||||
return grad_query, grad_key, grad_value
|
||||
|
||||
|
||||
def _flash_attention_3_hub_forward_op(
|
||||
ctx: torch.autograd.function.FunctionCtx,
|
||||
query: torch.Tensor,
|
||||
key: torch.Tensor,
|
||||
value: torch.Tensor,
|
||||
attn_mask: torch.Tensor | None = None,
|
||||
dropout_p: float = 0.0,
|
||||
is_causal: bool = False,
|
||||
scale: float | None = None,
|
||||
enable_gqa: bool = False,
|
||||
return_lse: bool = False,
|
||||
_save_ctx: bool = True,
|
||||
_parallel_config: "ParallelConfig" | None = None,
|
||||
*,
|
||||
window_size: tuple[int, int] = (-1, -1),
|
||||
softcap: float = 0.0,
|
||||
num_splits: int = 1,
|
||||
pack_gqa: bool | None = None,
|
||||
deterministic: bool = False,
|
||||
sm_margin: int = 0,
|
||||
):
|
||||
if attn_mask is not None:
|
||||
raise ValueError("`attn_mask` is not yet supported for flash-attn 3 hub kernels.")
|
||||
if dropout_p != 0.0:
|
||||
raise ValueError("`dropout_p` is not yet supported for flash-attn 3 hub kernels.")
|
||||
if enable_gqa:
|
||||
raise ValueError("`enable_gqa` is not yet supported for flash-attn 3 hub kernels.")
|
||||
|
||||
func = _HUB_KERNELS_REGISTRY[AttentionBackendName._FLASH_3_HUB].kernel_fn
|
||||
out = func(
|
||||
q=query,
|
||||
k=key,
|
||||
v=value,
|
||||
softmax_scale=scale,
|
||||
causal=is_causal,
|
||||
qv=None,
|
||||
q_descale=None,
|
||||
k_descale=None,
|
||||
v_descale=None,
|
||||
window_size=window_size,
|
||||
softcap=softcap,
|
||||
num_splits=num_splits,
|
||||
pack_gqa=pack_gqa,
|
||||
deterministic=deterministic,
|
||||
sm_margin=sm_margin,
|
||||
return_attn_probs=return_lse,
|
||||
)
|
||||
|
||||
lse = None
|
||||
if return_lse:
|
||||
out, lse = out
|
||||
lse = lse.permute(0, 2, 1).contiguous()
|
||||
|
||||
if _save_ctx:
|
||||
ctx.save_for_backward(query, key, value)
|
||||
ctx.scale = scale
|
||||
ctx.is_causal = is_causal
|
||||
ctx._hub_kernel = func
|
||||
|
||||
return (out, lse) if return_lse else out
|
||||
|
||||
|
||||
def _flash_attention_3_hub_backward_op(
|
||||
ctx: torch.autograd.function.FunctionCtx,
|
||||
grad_out: torch.Tensor,
|
||||
*args,
|
||||
window_size: tuple[int, int] = (-1, -1),
|
||||
softcap: float = 0.0,
|
||||
num_splits: int = 1,
|
||||
pack_gqa: bool | None = None,
|
||||
deterministic: bool = False,
|
||||
sm_margin: int = 0,
|
||||
):
|
||||
query, key, value = ctx.saved_tensors
|
||||
kernel_fn = ctx._hub_kernel
|
||||
with torch.enable_grad():
|
||||
query_r = query.detach().requires_grad_(True)
|
||||
key_r = key.detach().requires_grad_(True)
|
||||
value_r = value.detach().requires_grad_(True)
|
||||
|
||||
out = kernel_fn(
|
||||
q=query_r,
|
||||
k=key_r,
|
||||
v=value_r,
|
||||
softmax_scale=ctx.scale,
|
||||
causal=ctx.is_causal,
|
||||
qv=None,
|
||||
q_descale=None,
|
||||
k_descale=None,
|
||||
v_descale=None,
|
||||
window_size=window_size,
|
||||
softcap=softcap,
|
||||
num_splits=num_splits,
|
||||
pack_gqa=pack_gqa,
|
||||
deterministic=deterministic,
|
||||
sm_margin=sm_margin,
|
||||
return_attn_probs=False,
|
||||
)
|
||||
if isinstance(out, tuple):
|
||||
out = out[0]
|
||||
|
||||
grad_query, grad_key, grad_value = torch.autograd.grad(
|
||||
out,
|
||||
(query_r, key_r, value_r),
|
||||
grad_out,
|
||||
retain_graph=False,
|
||||
allow_unused=False,
|
||||
)
|
||||
|
||||
return grad_query, grad_key, grad_value
|
||||
|
||||
|
||||
def _sage_attention_forward_op(
|
||||
ctx: torch.autograd.function.FunctionCtx,
|
||||
query: torch.Tensor,
|
||||
@@ -1359,46 +1109,6 @@ def _sage_attention_forward_op(
|
||||
return (out, lse) if return_lse else out
|
||||
|
||||
|
||||
def _sage_attention_hub_forward_op(
|
||||
ctx: torch.autograd.function.FunctionCtx,
|
||||
query: torch.Tensor,
|
||||
key: torch.Tensor,
|
||||
value: torch.Tensor,
|
||||
attn_mask: torch.Tensor | None = None,
|
||||
dropout_p: float = 0.0,
|
||||
is_causal: bool = False,
|
||||
scale: float | None = None,
|
||||
enable_gqa: bool = False,
|
||||
return_lse: bool = False,
|
||||
_save_ctx: bool = True,
|
||||
_parallel_config: "ParallelConfig" | None = None,
|
||||
):
|
||||
if attn_mask is not None:
|
||||
raise ValueError("`attn_mask` is not yet supported for Sage attention.")
|
||||
if dropout_p > 0.0:
|
||||
raise ValueError("`dropout_p` is not yet supported for Sage attention.")
|
||||
if enable_gqa:
|
||||
raise ValueError("`enable_gqa` is not yet supported for Sage attention.")
|
||||
|
||||
func = _HUB_KERNELS_REGISTRY[AttentionBackendName.SAGE_HUB].kernel_fn
|
||||
out = func(
|
||||
q=query,
|
||||
k=key,
|
||||
v=value,
|
||||
tensor_layout="NHD",
|
||||
is_causal=is_causal,
|
||||
sm_scale=scale,
|
||||
return_lse=return_lse,
|
||||
)
|
||||
|
||||
lse = None
|
||||
if return_lse:
|
||||
out, lse, *_ = out
|
||||
lse = lse.permute(0, 2, 1).contiguous()
|
||||
|
||||
return (out, lse) if return_lse else out
|
||||
|
||||
|
||||
def _sage_attention_backward_op(
|
||||
ctx: torch.autograd.function.FunctionCtx,
|
||||
grad_out: torch.Tensor,
|
||||
@@ -2232,7 +1942,7 @@ def _flash_attention(
|
||||
@_AttentionBackendRegistry.register(
|
||||
AttentionBackendName.FLASH_HUB,
|
||||
constraints=[_check_device, _check_qkv_dtype_bf16_or_fp16, _check_shape],
|
||||
supports_context_parallel=True,
|
||||
supports_context_parallel=False,
|
||||
)
|
||||
def _flash_attention_hub(
|
||||
query: torch.Tensor,
|
||||
@@ -2250,35 +1960,17 @@ def _flash_attention_hub(
|
||||
raise ValueError("`attn_mask` is not supported for flash-attn 2.")
|
||||
|
||||
func = _HUB_KERNELS_REGISTRY[AttentionBackendName.FLASH_HUB].kernel_fn
|
||||
if _parallel_config is None:
|
||||
out = func(
|
||||
q=query,
|
||||
k=key,
|
||||
v=value,
|
||||
dropout_p=dropout_p,
|
||||
softmax_scale=scale,
|
||||
causal=is_causal,
|
||||
return_attn_probs=return_lse,
|
||||
)
|
||||
if return_lse:
|
||||
out, lse, *_ = out
|
||||
else:
|
||||
out = _templated_context_parallel_attention(
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
None,
|
||||
dropout_p,
|
||||
is_causal,
|
||||
scale,
|
||||
False,
|
||||
return_lse,
|
||||
forward_op=_flash_attention_hub_forward_op,
|
||||
backward_op=_flash_attention_hub_backward_op,
|
||||
_parallel_config=_parallel_config,
|
||||
)
|
||||
if return_lse:
|
||||
out, lse = out
|
||||
out = func(
|
||||
q=query,
|
||||
k=key,
|
||||
v=value,
|
||||
dropout_p=dropout_p,
|
||||
softmax_scale=scale,
|
||||
causal=is_causal,
|
||||
return_attn_probs=return_lse,
|
||||
)
|
||||
if return_lse:
|
||||
out, lse, *_ = out
|
||||
|
||||
return (out, lse) if return_lse else out
|
||||
|
||||
@@ -2425,7 +2117,7 @@ def _flash_attention_3(
|
||||
@_AttentionBackendRegistry.register(
|
||||
AttentionBackendName._FLASH_3_HUB,
|
||||
constraints=[_check_device, _check_qkv_dtype_bf16_or_fp16, _check_shape],
|
||||
supports_context_parallel=True,
|
||||
supports_context_parallel=False,
|
||||
)
|
||||
def _flash_attention_3_hub(
|
||||
query: torch.Tensor,
|
||||
@@ -2440,68 +2132,33 @@ def _flash_attention_3_hub(
|
||||
return_attn_probs: bool = False,
|
||||
_parallel_config: "ParallelConfig" | None = None,
|
||||
) -> torch.Tensor:
|
||||
if _parallel_config:
|
||||
raise NotImplementedError(f"{AttentionBackendName._FLASH_3_HUB.value} is not implemented for parallelism yet.")
|
||||
if attn_mask is not None:
|
||||
raise ValueError("`attn_mask` is not supported for flash-attn 3.")
|
||||
|
||||
func = _HUB_KERNELS_REGISTRY[AttentionBackendName._FLASH_3_HUB].kernel_fn
|
||||
if _parallel_config is None:
|
||||
out = func(
|
||||
q=query,
|
||||
k=key,
|
||||
v=value,
|
||||
softmax_scale=scale,
|
||||
causal=is_causal,
|
||||
qv=None,
|
||||
q_descale=None,
|
||||
k_descale=None,
|
||||
v_descale=None,
|
||||
window_size=window_size,
|
||||
softcap=softcap,
|
||||
num_splits=1,
|
||||
pack_gqa=None,
|
||||
deterministic=deterministic,
|
||||
sm_margin=0,
|
||||
return_attn_probs=return_attn_probs,
|
||||
)
|
||||
return (out[0], out[1]) if return_attn_probs else out
|
||||
|
||||
forward_op = functools.partial(
|
||||
_flash_attention_3_hub_forward_op,
|
||||
out = func(
|
||||
q=query,
|
||||
k=key,
|
||||
v=value,
|
||||
softmax_scale=scale,
|
||||
causal=is_causal,
|
||||
qv=None,
|
||||
q_descale=None,
|
||||
k_descale=None,
|
||||
v_descale=None,
|
||||
window_size=window_size,
|
||||
softcap=softcap,
|
||||
num_splits=1,
|
||||
pack_gqa=None,
|
||||
deterministic=deterministic,
|
||||
sm_margin=0,
|
||||
return_attn_probs=return_attn_probs,
|
||||
)
|
||||
backward_op = functools.partial(
|
||||
_flash_attention_3_hub_backward_op,
|
||||
window_size=window_size,
|
||||
softcap=softcap,
|
||||
num_splits=1,
|
||||
pack_gqa=None,
|
||||
deterministic=deterministic,
|
||||
sm_margin=0,
|
||||
)
|
||||
out = _templated_context_parallel_attention(
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
None,
|
||||
0.0,
|
||||
is_causal,
|
||||
scale,
|
||||
False,
|
||||
return_attn_probs,
|
||||
forward_op=forward_op,
|
||||
backward_op=backward_op,
|
||||
_parallel_config=_parallel_config,
|
||||
)
|
||||
if return_attn_probs:
|
||||
out, lse = out
|
||||
return out, lse
|
||||
|
||||
return out
|
||||
# When `return_attn_probs` is True, the above returns a tuple of
|
||||
# actual outputs and lse.
|
||||
return (out[0], out[1]) if return_attn_probs else out
|
||||
|
||||
|
||||
@_AttentionBackendRegistry.register(
|
||||
@@ -3132,7 +2789,7 @@ def _sage_attention(
|
||||
@_AttentionBackendRegistry.register(
|
||||
AttentionBackendName.SAGE_HUB,
|
||||
constraints=[_check_device_cuda, _check_qkv_dtype_bf16_or_fp16, _check_shape],
|
||||
supports_context_parallel=True,
|
||||
supports_context_parallel=False,
|
||||
)
|
||||
def _sage_attention_hub(
|
||||
query: torch.Tensor,
|
||||
@@ -3160,23 +2817,6 @@ def _sage_attention_hub(
|
||||
)
|
||||
if return_lse:
|
||||
out, lse, *_ = out
|
||||
else:
|
||||
out = _templated_context_parallel_attention(
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
None,
|
||||
0.0,
|
||||
is_causal,
|
||||
scale,
|
||||
False,
|
||||
return_lse,
|
||||
forward_op=_sage_attention_hub_forward_op,
|
||||
backward_op=_sage_attention_backward_op,
|
||||
_parallel_config=_parallel_config,
|
||||
)
|
||||
if return_lse:
|
||||
out, lse = out
|
||||
|
||||
return (out, lse) if return_lse else out
|
||||
|
||||
|
||||
@@ -6,7 +6,6 @@ from ..utils import (
|
||||
_LazyModule,
|
||||
get_objects_from_module,
|
||||
is_flax_available,
|
||||
is_k_diffusion_available,
|
||||
is_librosa_available,
|
||||
is_note_seq_available,
|
||||
is_onnx_available,
|
||||
@@ -466,21 +465,6 @@ else:
|
||||
]
|
||||
)
|
||||
|
||||
try:
|
||||
if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()):
|
||||
raise OptionalDependencyNotAvailable()
|
||||
except OptionalDependencyNotAvailable:
|
||||
from ..utils import (
|
||||
dummy_torch_and_transformers_and_k_diffusion_objects,
|
||||
)
|
||||
|
||||
_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_and_k_diffusion_objects))
|
||||
else:
|
||||
_import_structure["stable_diffusion_k_diffusion"] = [
|
||||
"StableDiffusionKDiffusionPipeline",
|
||||
"StableDiffusionXLKDiffusionPipeline",
|
||||
]
|
||||
|
||||
try:
|
||||
if not (is_torch_available() and is_transformers_available() and is_sentencepiece_available()):
|
||||
raise OptionalDependencyNotAvailable()
|
||||
@@ -901,17 +885,6 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
StableDiffusionOnnxPipeline,
|
||||
)
|
||||
|
||||
try:
|
||||
if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()):
|
||||
raise OptionalDependencyNotAvailable()
|
||||
except OptionalDependencyNotAvailable:
|
||||
from ..utils.dummy_torch_and_transformers_and_k_diffusion_objects import *
|
||||
else:
|
||||
from .stable_diffusion_k_diffusion import (
|
||||
StableDiffusionKDiffusionPipeline,
|
||||
StableDiffusionXLKDiffusionPipeline,
|
||||
)
|
||||
|
||||
try:
|
||||
if not (is_torch_available() and is_transformers_available() and is_sentencepiece_available()):
|
||||
raise OptionalDependencyNotAvailable()
|
||||
|
||||
@@ -144,7 +144,6 @@ class SemanticStableDiffusionPipeline(DeprecatedPipelineMixin, DiffusionPipeline
|
||||
extra_step_kwargs["generator"] = generator
|
||||
return extra_step_kwargs
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion_k_diffusion.pipeline_stable_diffusion_k_diffusion.StableDiffusionKDiffusionPipeline.check_inputs
|
||||
def check_inputs(
|
||||
self,
|
||||
prompt,
|
||||
|
||||
@@ -6,8 +6,6 @@ from ...utils import (
|
||||
_LazyModule,
|
||||
get_objects_from_module,
|
||||
is_flax_available,
|
||||
is_k_diffusion_available,
|
||||
is_k_diffusion_version,
|
||||
is_onnx_available,
|
||||
is_torch_available,
|
||||
is_transformers_available,
|
||||
|
||||
@@ -1,62 +0,0 @@
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from ...utils import (
|
||||
DIFFUSERS_SLOW_IMPORT,
|
||||
OptionalDependencyNotAvailable,
|
||||
_LazyModule,
|
||||
get_objects_from_module,
|
||||
is_k_diffusion_available,
|
||||
is_k_diffusion_version,
|
||||
is_torch_available,
|
||||
is_transformers_available,
|
||||
)
|
||||
|
||||
|
||||
_dummy_objects = {}
|
||||
_import_structure = {}
|
||||
|
||||
|
||||
try:
|
||||
if not (
|
||||
is_transformers_available()
|
||||
and is_torch_available()
|
||||
and is_k_diffusion_available()
|
||||
and is_k_diffusion_version(">=", "0.0.12")
|
||||
):
|
||||
raise OptionalDependencyNotAvailable()
|
||||
except OptionalDependencyNotAvailable:
|
||||
from ...utils import dummy_torch_and_transformers_and_k_diffusion_objects # noqa F403
|
||||
|
||||
_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_and_k_diffusion_objects))
|
||||
else:
|
||||
_import_structure["pipeline_stable_diffusion_k_diffusion"] = ["StableDiffusionKDiffusionPipeline"]
|
||||
_import_structure["pipeline_stable_diffusion_xl_k_diffusion"] = ["StableDiffusionXLKDiffusionPipeline"]
|
||||
|
||||
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
try:
|
||||
if not (
|
||||
is_transformers_available()
|
||||
and is_torch_available()
|
||||
and is_k_diffusion_available()
|
||||
and is_k_diffusion_version(">=", "0.0.12")
|
||||
):
|
||||
raise OptionalDependencyNotAvailable()
|
||||
|
||||
except OptionalDependencyNotAvailable:
|
||||
from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import *
|
||||
else:
|
||||
from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline
|
||||
from .pipeline_stable_diffusion_xl_k_diffusion import StableDiffusionXLKDiffusionPipeline
|
||||
|
||||
else:
|
||||
import sys
|
||||
|
||||
sys.modules[__name__] = _LazyModule(
|
||||
__name__,
|
||||
globals()["__file__"],
|
||||
_import_structure,
|
||||
module_spec=__spec__,
|
||||
)
|
||||
|
||||
for name, value in _dummy_objects.items():
|
||||
setattr(sys.modules[__name__], name, value)
|
||||
@@ -1,689 +0,0 @@
|
||||
# Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import importlib
|
||||
import inspect
|
||||
from typing import Callable
|
||||
|
||||
import torch
|
||||
from k_diffusion.external import CompVisDenoiser, CompVisVDenoiser
|
||||
from k_diffusion.sampling import BrownianTreeNoiseSampler, get_sigmas_karras
|
||||
from transformers import (
|
||||
CLIPImageProcessor,
|
||||
CLIPTextModel,
|
||||
CLIPTokenizer,
|
||||
CLIPTokenizerFast,
|
||||
)
|
||||
|
||||
from ...image_processor import VaeImageProcessor
|
||||
from ...loaders import (
|
||||
StableDiffusionLoraLoaderMixin,
|
||||
TextualInversionLoaderMixin,
|
||||
)
|
||||
from ...models import AutoencoderKL, UNet2DConditionModel
|
||||
from ...models.lora import adjust_lora_scale_text_encoder
|
||||
from ...schedulers import KarrasDiffusionSchedulers, LMSDiscreteScheduler
|
||||
from ...utils import (
|
||||
USE_PEFT_BACKEND,
|
||||
deprecate,
|
||||
logging,
|
||||
scale_lora_layers,
|
||||
unscale_lora_layers,
|
||||
)
|
||||
from ...utils.torch_utils import randn_tensor
|
||||
from ..pipeline_utils import DeprecatedPipelineMixin, DiffusionPipeline, StableDiffusionMixin
|
||||
from ..stable_diffusion import StableDiffusionPipelineOutput, StableDiffusionSafetyChecker
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
|
||||
class ModelWrapper:
|
||||
def __init__(self, model, alphas_cumprod):
|
||||
self.model = model
|
||||
self.alphas_cumprod = alphas_cumprod
|
||||
|
||||
def apply_model(self, *args, **kwargs):
|
||||
if len(args) == 3:
|
||||
encoder_hidden_states = args[-1]
|
||||
args = args[:2]
|
||||
if kwargs.get("cond", None) is not None:
|
||||
encoder_hidden_states = kwargs.pop("cond")
|
||||
return self.model(*args, encoder_hidden_states=encoder_hidden_states, **kwargs).sample
|
||||
|
||||
|
||||
class StableDiffusionKDiffusionPipeline(
|
||||
DeprecatedPipelineMixin,
|
||||
DiffusionPipeline,
|
||||
StableDiffusionMixin,
|
||||
TextualInversionLoaderMixin,
|
||||
StableDiffusionLoraLoaderMixin,
|
||||
):
|
||||
r"""
|
||||
Pipeline for text-to-image generation using Stable Diffusion.
|
||||
|
||||
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
||||
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
||||
|
||||
The pipeline also inherits the following loading methods:
|
||||
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
||||
- [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
||||
- [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
||||
|
||||
> [!WARNING] > This is an experimental pipeline and is likely to change in the future.
|
||||
|
||||
Args:
|
||||
vae ([`AutoencoderKL`]):
|
||||
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
||||
text_encoder ([`CLIPTextModel`]):
|
||||
Frozen text-encoder. Stable Diffusion uses the text portion of
|
||||
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
||||
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
||||
tokenizer (`CLIPTokenizer`):
|
||||
Tokenizer of class
|
||||
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
||||
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
||||
scheduler ([`SchedulerMixin`]):
|
||||
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
||||
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
||||
safety_checker ([`StableDiffusionSafetyChecker`]):
|
||||
Classification module that estimates whether generated images could be considered offensive or harmful.
|
||||
Please, refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for
|
||||
details.
|
||||
feature_extractor ([`CLIPImageProcessor`]):
|
||||
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
||||
"""
|
||||
|
||||
_last_supported_version = "0.33.1"
|
||||
|
||||
model_cpu_offload_seq = "text_encoder->unet->vae"
|
||||
_optional_components = ["safety_checker", "feature_extractor"]
|
||||
_exclude_from_cpu_offload = ["safety_checker"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vae: AutoencoderKL,
|
||||
text_encoder: CLIPTextModel,
|
||||
tokenizer: CLIPTokenizer | CLIPTokenizerFast,
|
||||
unet: UNet2DConditionModel,
|
||||
scheduler: KarrasDiffusionSchedulers,
|
||||
safety_checker: StableDiffusionSafetyChecker,
|
||||
feature_extractor: CLIPImageProcessor,
|
||||
requires_safety_checker: bool = True,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
logger.info(
|
||||
f"{self.__class__} is an experimental pipeline and is likely to change in the future. We recommend to use"
|
||||
" this pipeline for fast experimentation / iteration if needed, but advice to rely on existing pipelines"
|
||||
" as defined in https://huggingface.co/docs/diffusers/api/schedulers#implemented-schedulers for"
|
||||
" production settings."
|
||||
)
|
||||
|
||||
# get correct sigmas from LMS
|
||||
scheduler = LMSDiscreteScheduler.from_config(scheduler.config)
|
||||
self.register_modules(
|
||||
vae=vae,
|
||||
text_encoder=text_encoder,
|
||||
tokenizer=tokenizer,
|
||||
unet=unet,
|
||||
scheduler=scheduler,
|
||||
safety_checker=safety_checker,
|
||||
feature_extractor=feature_extractor,
|
||||
)
|
||||
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
||||
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
|
||||
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
||||
|
||||
model = ModelWrapper(unet, scheduler.alphas_cumprod)
|
||||
if scheduler.config.prediction_type == "v_prediction":
|
||||
self.k_diffusion_model = CompVisVDenoiser(model)
|
||||
else:
|
||||
self.k_diffusion_model = CompVisDenoiser(model)
|
||||
|
||||
def set_scheduler(self, scheduler_type: str):
|
||||
library = importlib.import_module("k_diffusion")
|
||||
sampling = getattr(library, "sampling")
|
||||
try:
|
||||
self.sampler = getattr(sampling, scheduler_type)
|
||||
except Exception:
|
||||
valid_samplers = []
|
||||
for s in dir(sampling):
|
||||
if "sample_" in s:
|
||||
valid_samplers.append(s)
|
||||
|
||||
raise ValueError(f"Invalid scheduler type {scheduler_type}. Please choose one of {valid_samplers}.")
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
|
||||
def _encode_prompt(
|
||||
self,
|
||||
prompt,
|
||||
device,
|
||||
num_images_per_prompt,
|
||||
do_classifier_free_guidance,
|
||||
negative_prompt=None,
|
||||
prompt_embeds: torch.Tensor | None = None,
|
||||
negative_prompt_embeds: torch.Tensor | None = None,
|
||||
lora_scale: float | None = None,
|
||||
**kwargs,
|
||||
):
|
||||
deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple."
|
||||
deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)
|
||||
|
||||
prompt_embeds_tuple = self.encode_prompt(
|
||||
prompt=prompt,
|
||||
device=device,
|
||||
num_images_per_prompt=num_images_per_prompt,
|
||||
do_classifier_free_guidance=do_classifier_free_guidance,
|
||||
negative_prompt=negative_prompt,
|
||||
prompt_embeds=prompt_embeds,
|
||||
negative_prompt_embeds=negative_prompt_embeds,
|
||||
lora_scale=lora_scale,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
# concatenate for backwards comp
|
||||
prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]])
|
||||
|
||||
return prompt_embeds
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt
|
||||
def encode_prompt(
|
||||
self,
|
||||
prompt,
|
||||
device,
|
||||
num_images_per_prompt,
|
||||
do_classifier_free_guidance,
|
||||
negative_prompt=None,
|
||||
prompt_embeds: torch.Tensor | None = None,
|
||||
negative_prompt_embeds: torch.Tensor | None = None,
|
||||
lora_scale: float | None = None,
|
||||
clip_skip: int | None = None,
|
||||
):
|
||||
r"""
|
||||
Encodes the prompt into text encoder hidden states.
|
||||
|
||||
Args:
|
||||
prompt (`str` or `list[str]`, *optional*):
|
||||
prompt to be encoded
|
||||
device: (`torch.device`):
|
||||
torch device
|
||||
num_images_per_prompt (`int`):
|
||||
number of images that should be generated per prompt
|
||||
do_classifier_free_guidance (`bool`):
|
||||
whether to use classifier free guidance or not
|
||||
negative_prompt (`str` or `list[str]`, *optional*):
|
||||
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
||||
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
||||
less than `1`).
|
||||
prompt_embeds (`torch.Tensor`, *optional*):
|
||||
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
||||
provided, text embeddings will be generated from `prompt` input argument.
|
||||
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
||||
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
||||
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
||||
argument.
|
||||
lora_scale (`float`, *optional*):
|
||||
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
||||
clip_skip (`int`, *optional*):
|
||||
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
||||
the output of the pre-final layer will be used for computing the prompt embeddings.
|
||||
"""
|
||||
# set lora scale so that monkey patched LoRA
|
||||
# function of text encoder can correctly access it
|
||||
if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
|
||||
self._lora_scale = lora_scale
|
||||
|
||||
# dynamically adjust the LoRA scale
|
||||
if not USE_PEFT_BACKEND:
|
||||
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
|
||||
else:
|
||||
scale_lora_layers(self.text_encoder, lora_scale)
|
||||
|
||||
if prompt is not None and isinstance(prompt, str):
|
||||
batch_size = 1
|
||||
elif prompt is not None and isinstance(prompt, list):
|
||||
batch_size = len(prompt)
|
||||
else:
|
||||
batch_size = prompt_embeds.shape[0]
|
||||
|
||||
if prompt_embeds is None:
|
||||
# textual inversion: process multi-vector tokens if necessary
|
||||
if isinstance(self, TextualInversionLoaderMixin):
|
||||
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
|
||||
|
||||
text_inputs = self.tokenizer(
|
||||
prompt,
|
||||
padding="max_length",
|
||||
max_length=self.tokenizer.model_max_length,
|
||||
truncation=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
text_input_ids = text_inputs.input_ids
|
||||
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
||||
|
||||
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
||||
text_input_ids, untruncated_ids
|
||||
):
|
||||
removed_text = self.tokenizer.batch_decode(
|
||||
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
||||
)
|
||||
logger.warning(
|
||||
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
||||
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
||||
)
|
||||
|
||||
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
||||
attention_mask = text_inputs.attention_mask.to(device)
|
||||
else:
|
||||
attention_mask = None
|
||||
|
||||
if clip_skip is None:
|
||||
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
|
||||
prompt_embeds = prompt_embeds[0]
|
||||
else:
|
||||
prompt_embeds = self.text_encoder(
|
||||
text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
|
||||
)
|
||||
# Access the `hidden_states` first, that contains a tuple of
|
||||
# all the hidden states from the encoder layers. Then index into
|
||||
# the tuple to access the hidden states from the desired layer.
|
||||
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
|
||||
# We also need to apply the final LayerNorm here to not mess with the
|
||||
# representations. The `last_hidden_states` that we typically use for
|
||||
# obtaining the final prompt representations passes through the LayerNorm
|
||||
# layer.
|
||||
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
|
||||
|
||||
if self.text_encoder is not None:
|
||||
prompt_embeds_dtype = self.text_encoder.dtype
|
||||
elif self.unet is not None:
|
||||
prompt_embeds_dtype = self.unet.dtype
|
||||
else:
|
||||
prompt_embeds_dtype = prompt_embeds.dtype
|
||||
|
||||
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
||||
|
||||
bs_embed, seq_len, _ = prompt_embeds.shape
|
||||
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
||||
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
||||
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
||||
|
||||
# get unconditional embeddings for classifier free guidance
|
||||
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
||||
uncond_tokens: list[str]
|
||||
if negative_prompt is None:
|
||||
uncond_tokens = [""] * batch_size
|
||||
elif prompt is not None and type(prompt) is not type(negative_prompt):
|
||||
raise TypeError(
|
||||
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
||||
f" {type(prompt)}."
|
||||
)
|
||||
elif isinstance(negative_prompt, str):
|
||||
uncond_tokens = [negative_prompt]
|
||||
elif batch_size != len(negative_prompt):
|
||||
raise ValueError(
|
||||
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
||||
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
||||
" the batch size of `prompt`."
|
||||
)
|
||||
else:
|
||||
uncond_tokens = negative_prompt
|
||||
|
||||
# textual inversion: process multi-vector tokens if necessary
|
||||
if isinstance(self, TextualInversionLoaderMixin):
|
||||
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
|
||||
|
||||
max_length = prompt_embeds.shape[1]
|
||||
uncond_input = self.tokenizer(
|
||||
uncond_tokens,
|
||||
padding="max_length",
|
||||
max_length=max_length,
|
||||
truncation=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
|
||||
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
||||
attention_mask = uncond_input.attention_mask.to(device)
|
||||
else:
|
||||
attention_mask = None
|
||||
|
||||
negative_prompt_embeds = self.text_encoder(
|
||||
uncond_input.input_ids.to(device),
|
||||
attention_mask=attention_mask,
|
||||
)
|
||||
negative_prompt_embeds = negative_prompt_embeds[0]
|
||||
|
||||
if do_classifier_free_guidance:
|
||||
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
||||
seq_len = negative_prompt_embeds.shape[1]
|
||||
|
||||
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
||||
|
||||
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
||||
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
||||
|
||||
if self.text_encoder is not None:
|
||||
if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
|
||||
# Retrieve the original scale by scaling back the LoRA layers
|
||||
unscale_lora_layers(self.text_encoder, lora_scale)
|
||||
|
||||
return prompt_embeds, negative_prompt_embeds
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
|
||||
def run_safety_checker(self, image, device, dtype):
|
||||
if self.safety_checker is None:
|
||||
has_nsfw_concept = None
|
||||
else:
|
||||
if torch.is_tensor(image):
|
||||
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
|
||||
else:
|
||||
feature_extractor_input = self.image_processor.numpy_to_pil(image)
|
||||
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
|
||||
image, has_nsfw_concept = self.safety_checker(
|
||||
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
||||
)
|
||||
return image, has_nsfw_concept
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
|
||||
def decode_latents(self, latents):
|
||||
deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
|
||||
deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)
|
||||
|
||||
latents = 1 / self.vae.config.scaling_factor * latents
|
||||
image = self.vae.decode(latents, return_dict=False)[0]
|
||||
image = (image / 2 + 0.5).clamp(0, 1)
|
||||
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
||||
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
||||
return image
|
||||
|
||||
def check_inputs(
|
||||
self,
|
||||
prompt,
|
||||
height,
|
||||
width,
|
||||
callback_steps,
|
||||
negative_prompt=None,
|
||||
prompt_embeds=None,
|
||||
negative_prompt_embeds=None,
|
||||
callback_on_step_end_tensor_inputs=None,
|
||||
):
|
||||
if height % 8 != 0 or width % 8 != 0:
|
||||
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
||||
|
||||
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
|
||||
raise ValueError(
|
||||
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
||||
f" {type(callback_steps)}."
|
||||
)
|
||||
if callback_on_step_end_tensor_inputs is not None and not all(
|
||||
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
||||
):
|
||||
raise ValueError(
|
||||
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
||||
)
|
||||
|
||||
if prompt is not None and prompt_embeds is not None:
|
||||
raise ValueError(
|
||||
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
||||
" only forward one of the two."
|
||||
)
|
||||
elif prompt is None and prompt_embeds is None:
|
||||
raise ValueError(
|
||||
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
||||
)
|
||||
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
||||
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
||||
|
||||
if negative_prompt is not None and negative_prompt_embeds is not None:
|
||||
raise ValueError(
|
||||
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
||||
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
||||
)
|
||||
|
||||
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
||||
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
||||
raise ValueError(
|
||||
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
||||
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
||||
f" {negative_prompt_embeds.shape}."
|
||||
)
|
||||
|
||||
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
||||
shape = (
|
||||
batch_size,
|
||||
num_channels_latents,
|
||||
int(height) // self.vae_scale_factor,
|
||||
int(width) // self.vae_scale_factor,
|
||||
)
|
||||
if latents is None:
|
||||
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
||||
else:
|
||||
if latents.shape != shape:
|
||||
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
|
||||
latents = latents.to(device)
|
||||
|
||||
# scale the initial noise by the standard deviation required by the scheduler
|
||||
return latents
|
||||
|
||||
@torch.no_grad()
|
||||
def __call__(
|
||||
self,
|
||||
prompt: str | list[str] = None,
|
||||
height: int | None = None,
|
||||
width: int | None = None,
|
||||
num_inference_steps: int = 50,
|
||||
guidance_scale: float = 7.5,
|
||||
negative_prompt: str | list[str] | None = None,
|
||||
num_images_per_prompt: int | None = 1,
|
||||
eta: float = 0.0,
|
||||
generator: torch.Generator | list[torch.Generator] | None = None,
|
||||
latents: torch.Tensor | None = None,
|
||||
prompt_embeds: torch.Tensor | None = None,
|
||||
negative_prompt_embeds: torch.Tensor | None = None,
|
||||
output_type: str | None = "pil",
|
||||
return_dict: bool = True,
|
||||
callback: Callable[[int, int, torch.Tensor], None] | None = None,
|
||||
callback_steps: int = 1,
|
||||
use_karras_sigmas: bool | None = False,
|
||||
noise_sampler_seed: int | None = None,
|
||||
clip_skip: int = None,
|
||||
):
|
||||
r"""
|
||||
Function invoked when calling the pipeline for generation.
|
||||
|
||||
Args:
|
||||
prompt (`str` or `list[str]`, *optional*):
|
||||
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
||||
instead.
|
||||
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
||||
The height in pixels of the generated image.
|
||||
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
||||
The width in pixels of the generated image.
|
||||
num_inference_steps (`int`, *optional*, defaults to 50):
|
||||
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
||||
expense of slower inference.
|
||||
guidance_scale (`float`, *optional*, defaults to 7.5):
|
||||
Guidance scale as defined in [Classifier-Free Diffusion
|
||||
Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2.
|
||||
of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting
|
||||
`guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to
|
||||
the text `prompt`, usually at the expense of lower image quality.
|
||||
negative_prompt (`str` or `list[str]`, *optional*):
|
||||
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
||||
`negative_prompt_embeds`. instead. Ignored when not using guidance (i.e., ignored if `guidance_scale`
|
||||
is less than `1`).
|
||||
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
||||
The number of images to generate per prompt.
|
||||
eta (`float`, *optional*, defaults to 0.0):
|
||||
Corresponds to parameter eta (η) in the DDIM paper: https://huggingface.co/papers/2010.02502. Only
|
||||
applies to [`schedulers.DDIMScheduler`], will be ignored for others.
|
||||
generator (`torch.Generator`, *optional*):
|
||||
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
||||
to make generation deterministic.
|
||||
latents (`torch.Tensor`, *optional*):
|
||||
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
||||
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
||||
tensor will be generated by sampling using the supplied random `generator`.
|
||||
prompt_embeds (`torch.Tensor`, *optional*):
|
||||
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
||||
provided, text embeddings will be generated from `prompt` input argument.
|
||||
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
||||
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
||||
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
||||
argument.
|
||||
output_type (`str`, *optional*, defaults to `"pil"`):
|
||||
The output format of the generate image. Choose between
|
||||
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
||||
plain tuple.
|
||||
callback (`Callable`, *optional*):
|
||||
A function that will be called every `callback_steps` steps during inference. The function will be
|
||||
called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
|
||||
callback_steps (`int`, *optional*, defaults to 1):
|
||||
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
||||
called at every step.
|
||||
use_karras_sigmas (`bool`, *optional*, defaults to `False`):
|
||||
Use karras sigmas. For example, specifying `sample_dpmpp_2m` to `set_scheduler` will be equivalent to
|
||||
`DPM++2M` in stable-diffusion-webui. On top of that, setting this option to True will make it `DPM++2M
|
||||
Karras`.
|
||||
noise_sampler_seed (`int`, *optional*, defaults to `None`):
|
||||
The random seed to use for the noise sampler. If `None`, a random seed will be generated.
|
||||
clip_skip (`int`, *optional*):
|
||||
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
||||
the output of the pre-final layer will be used for computing the prompt embeddings.
|
||||
Returns:
|
||||
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
||||
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
||||
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
||||
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
||||
(nsfw) content, according to the `safety_checker`.
|
||||
"""
|
||||
# 0. Default height and width to unet
|
||||
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
||||
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
||||
|
||||
# 1. Check inputs. Raise error if not correct
|
||||
self.check_inputs(
|
||||
prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds
|
||||
)
|
||||
|
||||
# 2. Define call parameters
|
||||
if prompt is not None and isinstance(prompt, str):
|
||||
batch_size = 1
|
||||
elif prompt is not None and isinstance(prompt, list):
|
||||
batch_size = len(prompt)
|
||||
else:
|
||||
batch_size = prompt_embeds.shape[0]
|
||||
|
||||
device = self._execution_device
|
||||
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
||||
# of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
|
||||
# corresponds to doing no classifier free guidance.
|
||||
do_classifier_free_guidance = True
|
||||
if guidance_scale <= 1.0:
|
||||
raise ValueError("has to use guidance_scale")
|
||||
|
||||
# 3. Encode input prompt
|
||||
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
||||
prompt,
|
||||
device,
|
||||
num_images_per_prompt,
|
||||
do_classifier_free_guidance,
|
||||
negative_prompt,
|
||||
prompt_embeds=prompt_embeds,
|
||||
negative_prompt_embeds=negative_prompt_embeds,
|
||||
clip_skip=clip_skip,
|
||||
)
|
||||
# For classifier free guidance, we need to do two forward passes.
|
||||
# Here we concatenate the unconditional and text embeddings into a single batch
|
||||
# to avoid doing two forward passes
|
||||
if do_classifier_free_guidance:
|
||||
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
||||
|
||||
# 4. Prepare timesteps
|
||||
self.scheduler.set_timesteps(num_inference_steps, device=prompt_embeds.device)
|
||||
|
||||
# 5. Prepare sigmas
|
||||
if use_karras_sigmas:
|
||||
sigma_min: float = self.k_diffusion_model.sigmas[0].item()
|
||||
sigma_max: float = self.k_diffusion_model.sigmas[-1].item()
|
||||
sigmas = get_sigmas_karras(n=num_inference_steps, sigma_min=sigma_min, sigma_max=sigma_max)
|
||||
else:
|
||||
sigmas = self.scheduler.sigmas
|
||||
sigmas = sigmas.to(device)
|
||||
sigmas = sigmas.to(prompt_embeds.dtype)
|
||||
|
||||
# 6. Prepare latent variables
|
||||
num_channels_latents = self.unet.config.in_channels
|
||||
latents = self.prepare_latents(
|
||||
batch_size * num_images_per_prompt,
|
||||
num_channels_latents,
|
||||
height,
|
||||
width,
|
||||
prompt_embeds.dtype,
|
||||
device,
|
||||
generator,
|
||||
latents,
|
||||
)
|
||||
latents = latents * sigmas[0]
|
||||
self.k_diffusion_model.sigmas = self.k_diffusion_model.sigmas.to(latents.device)
|
||||
self.k_diffusion_model.log_sigmas = self.k_diffusion_model.log_sigmas.to(latents.device)
|
||||
|
||||
# 7. Define model function
|
||||
def model_fn(x, t):
|
||||
latent_model_input = torch.cat([x] * 2)
|
||||
t = torch.cat([t] * 2)
|
||||
|
||||
noise_pred = self.k_diffusion_model(latent_model_input, t, cond=prompt_embeds)
|
||||
|
||||
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
||||
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
||||
return noise_pred
|
||||
|
||||
# 8. Run k-diffusion solver
|
||||
sampler_kwargs = {}
|
||||
|
||||
if "noise_sampler" in inspect.signature(self.sampler).parameters:
|
||||
min_sigma, max_sigma = sigmas[sigmas > 0].min(), sigmas.max()
|
||||
noise_sampler = BrownianTreeNoiseSampler(latents, min_sigma, max_sigma, noise_sampler_seed)
|
||||
sampler_kwargs["noise_sampler"] = noise_sampler
|
||||
|
||||
if "generator" in inspect.signature(self.sampler).parameters:
|
||||
sampler_kwargs["generator"] = generator
|
||||
|
||||
latents = self.sampler(model_fn, latents, sigmas, **sampler_kwargs)
|
||||
|
||||
if not output_type == "latent":
|
||||
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
||||
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
||||
else:
|
||||
image = latents
|
||||
has_nsfw_concept = None
|
||||
|
||||
if has_nsfw_concept is None:
|
||||
do_denormalize = [True] * image.shape[0]
|
||||
else:
|
||||
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
||||
|
||||
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
||||
|
||||
# Offload all models
|
||||
self.maybe_free_model_hooks()
|
||||
|
||||
if not return_dict:
|
||||
return (image, has_nsfw_concept)
|
||||
|
||||
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
||||
@@ -1,888 +0,0 @@
|
||||
# Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import importlib
|
||||
import inspect
|
||||
|
||||
import torch
|
||||
from k_diffusion.external import CompVisDenoiser, CompVisVDenoiser
|
||||
from k_diffusion.sampling import BrownianTreeNoiseSampler, get_sigmas_karras
|
||||
from transformers import (
|
||||
CLIPTextModel,
|
||||
CLIPTextModelWithProjection,
|
||||
CLIPTokenizer,
|
||||
)
|
||||
|
||||
from ...image_processor import VaeImageProcessor
|
||||
from ...loaders import (
|
||||
FromSingleFileMixin,
|
||||
IPAdapterMixin,
|
||||
StableDiffusionXLLoraLoaderMixin,
|
||||
TextualInversionLoaderMixin,
|
||||
)
|
||||
from ...models import AutoencoderKL, UNet2DConditionModel
|
||||
from ...models.lora import adjust_lora_scale_text_encoder
|
||||
from ...schedulers import KarrasDiffusionSchedulers, LMSDiscreteScheduler
|
||||
from ...utils import (
|
||||
USE_PEFT_BACKEND,
|
||||
deprecate,
|
||||
logging,
|
||||
replace_example_docstring,
|
||||
scale_lora_layers,
|
||||
unscale_lora_layers,
|
||||
)
|
||||
from ...utils.torch_utils import randn_tensor
|
||||
from ..pipeline_utils import DeprecatedPipelineMixin, DiffusionPipeline, StableDiffusionMixin
|
||||
from ..stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
EXAMPLE_DOC_STRING = """
|
||||
Examples:
|
||||
```py
|
||||
>>> import torch
|
||||
>>> from diffusers import StableDiffusionXLKDiffusionPipeline
|
||||
|
||||
>>> pipe = StableDiffusionXLKDiffusionPipeline.from_pretrained(
|
||||
... "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
|
||||
... )
|
||||
>>> pipe = pipe.to("cuda")
|
||||
>>> pipe.set_scheduler("sample_dpmpp_2m_sde")
|
||||
|
||||
>>> prompt = "a photo of an astronaut riding a horse on mars"
|
||||
>>> image = pipe(prompt).images[0]
|
||||
```
|
||||
"""
|
||||
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion_k_diffusion.pipeline_stable_diffusion_k_diffusion.ModelWrapper
|
||||
class ModelWrapper:
|
||||
def __init__(self, model, alphas_cumprod):
|
||||
self.model = model
|
||||
self.alphas_cumprod = alphas_cumprod
|
||||
|
||||
def apply_model(self, *args, **kwargs):
|
||||
if len(args) == 3:
|
||||
encoder_hidden_states = args[-1]
|
||||
args = args[:2]
|
||||
if kwargs.get("cond", None) is not None:
|
||||
encoder_hidden_states = kwargs.pop("cond")
|
||||
return self.model(*args, encoder_hidden_states=encoder_hidden_states, **kwargs).sample
|
||||
|
||||
|
||||
class StableDiffusionXLKDiffusionPipeline(
|
||||
DeprecatedPipelineMixin,
|
||||
DiffusionPipeline,
|
||||
StableDiffusionMixin,
|
||||
FromSingleFileMixin,
|
||||
StableDiffusionXLLoraLoaderMixin,
|
||||
TextualInversionLoaderMixin,
|
||||
IPAdapterMixin,
|
||||
):
|
||||
_last_supported_version = "0.33.1"
|
||||
|
||||
r"""
|
||||
Pipeline for text-to-image generation using Stable Diffusion XL and k-diffusion.
|
||||
|
||||
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
||||
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
||||
|
||||
The pipeline also inherits the following loading methods:
|
||||
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
||||
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
||||
- [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
||||
- [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
||||
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
||||
|
||||
Args:
|
||||
vae ([`AutoencoderKL`]):
|
||||
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
||||
text_encoder ([`CLIPTextModel`]):
|
||||
Frozen text-encoder. Stable Diffusion XL uses the text portion of
|
||||
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
||||
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
||||
text_encoder_2 ([` CLIPTextModelWithProjection`]):
|
||||
Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of
|
||||
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
|
||||
specifically the
|
||||
[laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
|
||||
variant.
|
||||
tokenizer (`CLIPTokenizer`):
|
||||
Tokenizer of class
|
||||
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
||||
tokenizer_2 (`CLIPTokenizer`):
|
||||
Second Tokenizer of class
|
||||
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
||||
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
||||
scheduler ([`SchedulerMixin`]):
|
||||
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
||||
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
||||
force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
|
||||
Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of
|
||||
`stabilityai/stable-diffusion-xl-base-1-0`.
|
||||
"""
|
||||
|
||||
model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae"
|
||||
_optional_components = [
|
||||
"tokenizer",
|
||||
"tokenizer_2",
|
||||
"text_encoder",
|
||||
"text_encoder_2",
|
||||
"feature_extractor",
|
||||
]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vae: AutoencoderKL,
|
||||
text_encoder: CLIPTextModel,
|
||||
text_encoder_2: CLIPTextModelWithProjection,
|
||||
tokenizer: CLIPTokenizer,
|
||||
tokenizer_2: CLIPTokenizer,
|
||||
unet: UNet2DConditionModel,
|
||||
scheduler: KarrasDiffusionSchedulers,
|
||||
force_zeros_for_empty_prompt: bool = True,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
# get correct sigmas from LMS
|
||||
scheduler = LMSDiscreteScheduler.from_config(scheduler.config)
|
||||
self.register_modules(
|
||||
vae=vae,
|
||||
text_encoder=text_encoder,
|
||||
text_encoder_2=text_encoder_2,
|
||||
tokenizer=tokenizer,
|
||||
tokenizer_2=tokenizer_2,
|
||||
unet=unet,
|
||||
scheduler=scheduler,
|
||||
)
|
||||
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
|
||||
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
|
||||
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
||||
|
||||
self.default_sample_size = (
|
||||
self.unet.config.sample_size
|
||||
if hasattr(self, "unet") and self.unet is not None and hasattr(self.unet.config, "sample_size")
|
||||
else 128
|
||||
)
|
||||
|
||||
model = ModelWrapper(unet, scheduler.alphas_cumprod)
|
||||
if scheduler.config.prediction_type == "v_prediction":
|
||||
self.k_diffusion_model = CompVisVDenoiser(model)
|
||||
else:
|
||||
self.k_diffusion_model = CompVisDenoiser(model)
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion_k_diffusion.pipeline_stable_diffusion_k_diffusion.StableDiffusionKDiffusionPipeline.set_scheduler
|
||||
def set_scheduler(self, scheduler_type: str):
|
||||
library = importlib.import_module("k_diffusion")
|
||||
sampling = getattr(library, "sampling")
|
||||
try:
|
||||
self.sampler = getattr(sampling, scheduler_type)
|
||||
except Exception:
|
||||
valid_samplers = []
|
||||
for s in dir(sampling):
|
||||
if "sample_" in s:
|
||||
valid_samplers.append(s)
|
||||
|
||||
raise ValueError(f"Invalid scheduler type {scheduler_type}. Please choose one of {valid_samplers}.")
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt
|
||||
def encode_prompt(
|
||||
self,
|
||||
prompt: str,
|
||||
prompt_2: str | None = None,
|
||||
device: torch.device | None = None,
|
||||
num_images_per_prompt: int = 1,
|
||||
do_classifier_free_guidance: bool = True,
|
||||
negative_prompt: str | None = None,
|
||||
negative_prompt_2: str | None = None,
|
||||
prompt_embeds: torch.Tensor | None = None,
|
||||
negative_prompt_embeds: torch.Tensor | None = None,
|
||||
pooled_prompt_embeds: torch.Tensor | None = None,
|
||||
negative_pooled_prompt_embeds: torch.Tensor | None = None,
|
||||
lora_scale: float | None = None,
|
||||
clip_skip: int | None = None,
|
||||
):
|
||||
r"""
|
||||
Encodes the prompt into text encoder hidden states.
|
||||
|
||||
Args:
|
||||
prompt (`str` or `list[str]`, *optional*):
|
||||
prompt to be encoded
|
||||
prompt_2 (`str` or `list[str]`, *optional*):
|
||||
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
||||
used in both text-encoders
|
||||
device: (`torch.device`):
|
||||
torch device
|
||||
num_images_per_prompt (`int`):
|
||||
number of images that should be generated per prompt
|
||||
do_classifier_free_guidance (`bool`):
|
||||
whether to use classifier free guidance or not
|
||||
negative_prompt (`str` or `list[str]`, *optional*):
|
||||
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
||||
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
||||
less than `1`).
|
||||
negative_prompt_2 (`str` or `list[str]`, *optional*):
|
||||
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
||||
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
||||
prompt_embeds (`torch.Tensor`, *optional*):
|
||||
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
||||
provided, text embeddings will be generated from `prompt` input argument.
|
||||
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
||||
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
||||
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
||||
argument.
|
||||
pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
||||
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
||||
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
||||
negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
||||
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
||||
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
||||
input argument.
|
||||
lora_scale (`float`, *optional*):
|
||||
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
||||
clip_skip (`int`, *optional*):
|
||||
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
||||
the output of the pre-final layer will be used for computing the prompt embeddings.
|
||||
"""
|
||||
device = device or self._execution_device
|
||||
|
||||
# set lora scale so that monkey patched LoRA
|
||||
# function of text encoder can correctly access it
|
||||
if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
|
||||
self._lora_scale = lora_scale
|
||||
|
||||
# dynamically adjust the LoRA scale
|
||||
if self.text_encoder is not None:
|
||||
if not USE_PEFT_BACKEND:
|
||||
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
|
||||
else:
|
||||
scale_lora_layers(self.text_encoder, lora_scale)
|
||||
|
||||
if self.text_encoder_2 is not None:
|
||||
if not USE_PEFT_BACKEND:
|
||||
adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale)
|
||||
else:
|
||||
scale_lora_layers(self.text_encoder_2, lora_scale)
|
||||
|
||||
prompt = [prompt] if isinstance(prompt, str) else prompt
|
||||
|
||||
if prompt is not None:
|
||||
batch_size = len(prompt)
|
||||
else:
|
||||
batch_size = prompt_embeds.shape[0]
|
||||
|
||||
# Define tokenizers and text encoders
|
||||
tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
|
||||
text_encoders = (
|
||||
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
|
||||
)
|
||||
|
||||
if prompt_embeds is None:
|
||||
prompt_2 = prompt_2 or prompt
|
||||
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
||||
|
||||
# textual inversion: process multi-vector tokens if necessary
|
||||
prompt_embeds_list = []
|
||||
prompts = [prompt, prompt_2]
|
||||
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
|
||||
if isinstance(self, TextualInversionLoaderMixin):
|
||||
prompt = self.maybe_convert_prompt(prompt, tokenizer)
|
||||
|
||||
text_inputs = tokenizer(
|
||||
prompt,
|
||||
padding="max_length",
|
||||
max_length=tokenizer.model_max_length,
|
||||
truncation=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
|
||||
text_input_ids = text_inputs.input_ids
|
||||
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
||||
|
||||
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
||||
text_input_ids, untruncated_ids
|
||||
):
|
||||
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
|
||||
logger.warning(
|
||||
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
||||
f" {tokenizer.model_max_length} tokens: {removed_text}"
|
||||
)
|
||||
|
||||
prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
|
||||
|
||||
# We are only ALWAYS interested in the pooled output of the final text encoder
|
||||
if pooled_prompt_embeds is None and prompt_embeds[0].ndim == 2:
|
||||
pooled_prompt_embeds = prompt_embeds[0]
|
||||
|
||||
if clip_skip is None:
|
||||
prompt_embeds = prompt_embeds.hidden_states[-2]
|
||||
else:
|
||||
# "2" because SDXL always indexes from the penultimate layer.
|
||||
prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
|
||||
|
||||
prompt_embeds_list.append(prompt_embeds)
|
||||
|
||||
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
|
||||
|
||||
# get unconditional embeddings for classifier free guidance
|
||||
zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
|
||||
if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
|
||||
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
|
||||
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
|
||||
elif do_classifier_free_guidance and negative_prompt_embeds is None:
|
||||
negative_prompt = negative_prompt or ""
|
||||
negative_prompt_2 = negative_prompt_2 or negative_prompt
|
||||
|
||||
# normalize str to list
|
||||
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
|
||||
negative_prompt_2 = (
|
||||
batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
|
||||
)
|
||||
|
||||
uncond_tokens: list[str]
|
||||
if prompt is not None and type(prompt) is not type(negative_prompt):
|
||||
raise TypeError(
|
||||
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
||||
f" {type(prompt)}."
|
||||
)
|
||||
elif batch_size != len(negative_prompt):
|
||||
raise ValueError(
|
||||
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
||||
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
||||
" the batch size of `prompt`."
|
||||
)
|
||||
else:
|
||||
uncond_tokens = [negative_prompt, negative_prompt_2]
|
||||
|
||||
negative_prompt_embeds_list = []
|
||||
for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
|
||||
if isinstance(self, TextualInversionLoaderMixin):
|
||||
negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)
|
||||
|
||||
max_length = prompt_embeds.shape[1]
|
||||
uncond_input = tokenizer(
|
||||
negative_prompt,
|
||||
padding="max_length",
|
||||
max_length=max_length,
|
||||
truncation=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
|
||||
negative_prompt_embeds = text_encoder(
|
||||
uncond_input.input_ids.to(device),
|
||||
output_hidden_states=True,
|
||||
)
|
||||
|
||||
# We are only ALWAYS interested in the pooled output of the final text encoder
|
||||
if negative_pooled_prompt_embeds is None and negative_prompt_embeds[0].ndim == 2:
|
||||
negative_pooled_prompt_embeds = negative_prompt_embeds[0]
|
||||
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
|
||||
|
||||
negative_prompt_embeds_list.append(negative_prompt_embeds)
|
||||
|
||||
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
|
||||
|
||||
if self.text_encoder_2 is not None:
|
||||
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
||||
else:
|
||||
prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device)
|
||||
|
||||
bs_embed, seq_len, _ = prompt_embeds.shape
|
||||
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
||||
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
||||
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
||||
|
||||
if do_classifier_free_guidance:
|
||||
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
||||
seq_len = negative_prompt_embeds.shape[1]
|
||||
|
||||
if self.text_encoder_2 is not None:
|
||||
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
||||
else:
|
||||
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device)
|
||||
|
||||
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
||||
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
||||
|
||||
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
||||
bs_embed * num_images_per_prompt, -1
|
||||
)
|
||||
if do_classifier_free_guidance:
|
||||
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
||||
bs_embed * num_images_per_prompt, -1
|
||||
)
|
||||
|
||||
if self.text_encoder is not None:
|
||||
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
|
||||
# Retrieve the original scale by scaling back the LoRA layers
|
||||
unscale_lora_layers(self.text_encoder, lora_scale)
|
||||
|
||||
if self.text_encoder_2 is not None:
|
||||
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
|
||||
# Retrieve the original scale by scaling back the LoRA layers
|
||||
unscale_lora_layers(self.text_encoder_2, lora_scale)
|
||||
|
||||
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
||||
|
||||
def check_inputs(
|
||||
self,
|
||||
prompt,
|
||||
prompt_2,
|
||||
height,
|
||||
width,
|
||||
negative_prompt=None,
|
||||
negative_prompt_2=None,
|
||||
prompt_embeds=None,
|
||||
negative_prompt_embeds=None,
|
||||
pooled_prompt_embeds=None,
|
||||
negative_pooled_prompt_embeds=None,
|
||||
):
|
||||
if height % 8 != 0 or width % 8 != 0:
|
||||
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
||||
|
||||
if prompt is not None and prompt_embeds is not None:
|
||||
raise ValueError(
|
||||
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
||||
" only forward one of the two."
|
||||
)
|
||||
elif prompt_2 is not None and prompt_embeds is not None:
|
||||
raise ValueError(
|
||||
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
||||
" only forward one of the two."
|
||||
)
|
||||
elif prompt is None and prompt_embeds is None:
|
||||
raise ValueError(
|
||||
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
||||
)
|
||||
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
||||
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
||||
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
|
||||
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
|
||||
|
||||
if negative_prompt is not None and negative_prompt_embeds is not None:
|
||||
raise ValueError(
|
||||
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
||||
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
||||
)
|
||||
elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
|
||||
raise ValueError(
|
||||
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
|
||||
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
||||
)
|
||||
|
||||
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
||||
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
||||
raise ValueError(
|
||||
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
||||
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
||||
f" {negative_prompt_embeds.shape}."
|
||||
)
|
||||
|
||||
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
||||
raise ValueError(
|
||||
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
||||
)
|
||||
|
||||
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
|
||||
raise ValueError(
|
||||
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
|
||||
)
|
||||
|
||||
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
||||
shape = (
|
||||
batch_size,
|
||||
num_channels_latents,
|
||||
int(height) // self.vae_scale_factor,
|
||||
int(width) // self.vae_scale_factor,
|
||||
)
|
||||
if isinstance(generator, list) and len(generator) != batch_size:
|
||||
raise ValueError(
|
||||
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
||||
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
||||
)
|
||||
if latents is None:
|
||||
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
||||
else:
|
||||
latents = latents.to(device)
|
||||
|
||||
return latents
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline._get_add_time_ids
|
||||
def _get_add_time_ids(
|
||||
self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None
|
||||
):
|
||||
add_time_ids = list(original_size + crops_coords_top_left + target_size)
|
||||
|
||||
passed_add_embed_dim = (
|
||||
self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim
|
||||
)
|
||||
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
|
||||
|
||||
if expected_add_embed_dim != passed_add_embed_dim:
|
||||
raise ValueError(
|
||||
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
|
||||
)
|
||||
|
||||
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
|
||||
return add_time_ids
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.upcast_vae
|
||||
def upcast_vae(self):
|
||||
deprecate(
|
||||
"upcast_vae",
|
||||
"1.0.0",
|
||||
"`upcast_vae` is deprecated. Please use `pipe.vae.to(torch.float32)`. For more details, please refer to: https://github.com/huggingface/diffusers/pull/12619#issue-3606633695.",
|
||||
)
|
||||
self.vae.to(dtype=torch.float32)
|
||||
|
||||
@property
|
||||
def guidance_scale(self):
|
||||
return self._guidance_scale
|
||||
|
||||
@property
|
||||
def clip_skip(self):
|
||||
return self._clip_skip
|
||||
|
||||
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
||||
# of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
|
||||
# corresponds to doing no classifier free guidance.
|
||||
@property
|
||||
def do_classifier_free_guidance(self):
|
||||
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
|
||||
|
||||
@torch.no_grad()
|
||||
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
||||
def __call__(
|
||||
self,
|
||||
prompt: str | list[str] = None,
|
||||
prompt_2: str | list[str] | None = None,
|
||||
height: int | None = None,
|
||||
width: int | None = None,
|
||||
num_inference_steps: int = 50,
|
||||
guidance_scale: float = 5.0,
|
||||
negative_prompt: str | list[str] | None = None,
|
||||
negative_prompt_2: str | list[str] | None = None,
|
||||
num_images_per_prompt: int | None = 1,
|
||||
generator: torch.Generator | list[torch.Generator] | None = None,
|
||||
latents: torch.Tensor | None = None,
|
||||
prompt_embeds: torch.Tensor | None = None,
|
||||
negative_prompt_embeds: torch.Tensor | None = None,
|
||||
pooled_prompt_embeds: torch.Tensor | None = None,
|
||||
negative_pooled_prompt_embeds: torch.Tensor | None = None,
|
||||
output_type: str | None = "pil",
|
||||
return_dict: bool = True,
|
||||
original_size: tuple[int, int] | None = None,
|
||||
crops_coords_top_left: tuple[int, int] = (0, 0),
|
||||
target_size: tuple[int, int] | None = None,
|
||||
negative_original_size: tuple[int, int] | None = None,
|
||||
negative_crops_coords_top_left: tuple[int, int] = (0, 0),
|
||||
negative_target_size: tuple[int, int] | None = None,
|
||||
use_karras_sigmas: bool | None = False,
|
||||
noise_sampler_seed: int | None = None,
|
||||
clip_skip: int | None = None,
|
||||
):
|
||||
r"""
|
||||
Function invoked when calling the pipeline for generation.
|
||||
|
||||
Args:
|
||||
prompt (`str` or `list[str]`, *optional*):
|
||||
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
||||
instead.
|
||||
prompt_2 (`str` or `list[str]`, *optional*):
|
||||
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
||||
used in both text-encoders
|
||||
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
||||
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
||||
Anything below 512 pixels won't work well for
|
||||
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
||||
and checkpoints that are not specifically fine-tuned on low resolutions.
|
||||
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
||||
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
||||
Anything below 512 pixels won't work well for
|
||||
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
||||
and checkpoints that are not specifically fine-tuned on low resolutions.
|
||||
num_inference_steps (`int`, *optional*, defaults to 50):
|
||||
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
||||
expense of slower inference.
|
||||
guidance_scale (`float`, *optional*, defaults to 5.0):
|
||||
Guidance scale as defined in [Classifier-Free Diffusion
|
||||
Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2.
|
||||
of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting
|
||||
`guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to
|
||||
the text `prompt`, usually at the expense of lower image quality.
|
||||
negative_prompt (`str` or `list[str]`, *optional*):
|
||||
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
||||
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
||||
less than `1`).
|
||||
negative_prompt_2 (`str` or `list[str]`, *optional*):
|
||||
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
||||
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
||||
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
||||
The number of images to generate per prompt.
|
||||
generator (`torch.Generator` or `list[torch.Generator]`, *optional*):
|
||||
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
||||
to make generation deterministic.
|
||||
latents (`torch.Tensor`, *optional*):
|
||||
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
||||
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
||||
tensor will be generated by sampling using the supplied random `generator`.
|
||||
prompt_embeds (`torch.Tensor`, *optional*):
|
||||
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
||||
provided, text embeddings will be generated from `prompt` input argument.
|
||||
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
||||
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
||||
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
||||
argument.
|
||||
pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
||||
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
||||
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
||||
negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
||||
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
||||
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
||||
input argument.
|
||||
output_type (`str`, *optional*, defaults to `"pil"`):
|
||||
The output format of the generate image. Choose between
|
||||
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
|
||||
of a plain tuple.
|
||||
original_size (`tuple[int]`, *optional*, defaults to (1024, 1024)):
|
||||
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
|
||||
`original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
|
||||
explained in section 2.2 of
|
||||
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
||||
crops_coords_top_left (`tuple[int]`, *optional*, defaults to (0, 0)):
|
||||
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
|
||||
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
|
||||
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
|
||||
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
||||
target_size (`tuple[int]`, *optional*, defaults to (1024, 1024)):
|
||||
For most cases, `target_size` should be set to the desired height and width of the generated image. If
|
||||
not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
|
||||
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
||||
negative_original_size (`tuple[int]`, *optional*, defaults to (1024, 1024)):
|
||||
To negatively condition the generation process based on a specific image resolution. Part of SDXL's
|
||||
micro-conditioning as explained in section 2.2 of
|
||||
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
||||
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
||||
negative_crops_coords_top_left (`tuple[int]`, *optional*, defaults to (0, 0)):
|
||||
To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
|
||||
micro-conditioning as explained in section 2.2 of
|
||||
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
||||
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
||||
negative_target_size (`tuple[int]`, *optional*, defaults to (1024, 1024)):
|
||||
To negatively condition the generation process based on a target image resolution. It should be as same
|
||||
as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
|
||||
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
||||
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
||||
|
||||
Examples:
|
||||
|
||||
Returns:
|
||||
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`:
|
||||
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
|
||||
`tuple`. When returning a tuple, the first element is a list with the generated images.
|
||||
"""
|
||||
|
||||
# 0. Default height and width to unet
|
||||
height = height or self.default_sample_size * self.vae_scale_factor
|
||||
width = width or self.default_sample_size * self.vae_scale_factor
|
||||
|
||||
original_size = original_size or (height, width)
|
||||
target_size = target_size or (height, width)
|
||||
|
||||
# 1. Check inputs. Raise error if not correct
|
||||
self.check_inputs(
|
||||
prompt,
|
||||
prompt_2,
|
||||
height,
|
||||
width,
|
||||
negative_prompt,
|
||||
negative_prompt_2,
|
||||
prompt_embeds,
|
||||
negative_prompt_embeds,
|
||||
pooled_prompt_embeds,
|
||||
negative_pooled_prompt_embeds,
|
||||
)
|
||||
|
||||
if guidance_scale <= 1.0:
|
||||
raise ValueError("has to use guidance_scale")
|
||||
|
||||
self._guidance_scale = guidance_scale
|
||||
self._clip_skip = clip_skip
|
||||
|
||||
# 2. Define call parameters
|
||||
if prompt is not None and isinstance(prompt, str):
|
||||
batch_size = 1
|
||||
elif prompt is not None and isinstance(prompt, list):
|
||||
batch_size = len(prompt)
|
||||
else:
|
||||
batch_size = prompt_embeds.shape[0]
|
||||
|
||||
device = self._execution_device
|
||||
|
||||
# 3. Encode input prompt
|
||||
lora_scale = None
|
||||
|
||||
(
|
||||
prompt_embeds,
|
||||
negative_prompt_embeds,
|
||||
pooled_prompt_embeds,
|
||||
negative_pooled_prompt_embeds,
|
||||
) = self.encode_prompt(
|
||||
prompt=prompt,
|
||||
prompt_2=prompt_2,
|
||||
device=device,
|
||||
num_images_per_prompt=num_images_per_prompt,
|
||||
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
||||
negative_prompt=negative_prompt,
|
||||
negative_prompt_2=negative_prompt_2,
|
||||
prompt_embeds=prompt_embeds,
|
||||
negative_prompt_embeds=negative_prompt_embeds,
|
||||
pooled_prompt_embeds=pooled_prompt_embeds,
|
||||
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
||||
lora_scale=lora_scale,
|
||||
clip_skip=self.clip_skip,
|
||||
)
|
||||
|
||||
# 4. Prepare timesteps
|
||||
self.scheduler.set_timesteps(num_inference_steps, device=prompt_embeds.device)
|
||||
|
||||
# 5. Prepare sigmas
|
||||
if use_karras_sigmas:
|
||||
sigma_min: float = self.k_diffusion_model.sigmas[0].item()
|
||||
sigma_max: float = self.k_diffusion_model.sigmas[-1].item()
|
||||
sigmas = get_sigmas_karras(n=num_inference_steps, sigma_min=sigma_min, sigma_max=sigma_max)
|
||||
else:
|
||||
sigmas = self.scheduler.sigmas
|
||||
sigmas = sigmas.to(dtype=prompt_embeds.dtype, device=device)
|
||||
|
||||
# 6. Prepare latent variables
|
||||
num_channels_latents = self.unet.config.in_channels
|
||||
latents = self.prepare_latents(
|
||||
batch_size * num_images_per_prompt,
|
||||
num_channels_latents,
|
||||
height,
|
||||
width,
|
||||
prompt_embeds.dtype,
|
||||
device,
|
||||
generator,
|
||||
latents,
|
||||
)
|
||||
latents = latents * sigmas[0]
|
||||
|
||||
self.k_diffusion_model.sigmas = self.k_diffusion_model.sigmas.to(latents.device)
|
||||
self.k_diffusion_model.log_sigmas = self.k_diffusion_model.log_sigmas.to(latents.device)
|
||||
|
||||
# 7. Prepare added time ids & embeddings
|
||||
add_text_embeds = pooled_prompt_embeds
|
||||
if self.text_encoder_2 is None:
|
||||
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
|
||||
else:
|
||||
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
|
||||
|
||||
add_time_ids = self._get_add_time_ids(
|
||||
original_size,
|
||||
crops_coords_top_left,
|
||||
target_size,
|
||||
dtype=prompt_embeds.dtype,
|
||||
text_encoder_projection_dim=text_encoder_projection_dim,
|
||||
)
|
||||
if negative_original_size is not None and negative_target_size is not None:
|
||||
negative_add_time_ids = self._get_add_time_ids(
|
||||
negative_original_size,
|
||||
negative_crops_coords_top_left,
|
||||
negative_target_size,
|
||||
dtype=prompt_embeds.dtype,
|
||||
text_encoder_projection_dim=text_encoder_projection_dim,
|
||||
)
|
||||
else:
|
||||
negative_add_time_ids = add_time_ids
|
||||
|
||||
if self.do_classifier_free_guidance:
|
||||
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
||||
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
||||
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
|
||||
|
||||
prompt_embeds = prompt_embeds.to(device)
|
||||
add_text_embeds = add_text_embeds.to(device)
|
||||
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
|
||||
|
||||
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
||||
|
||||
# 8. Optionally get Guidance Scale Embedding
|
||||
timestep_cond = None
|
||||
if self.unet.config.time_cond_proj_dim is not None:
|
||||
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
|
||||
timestep_cond = self.get_guidance_scale_embedding(
|
||||
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
|
||||
).to(device=device, dtype=latents.dtype)
|
||||
|
||||
# 9. Define model function
|
||||
def model_fn(x, t):
|
||||
latent_model_input = torch.cat([x] * 2)
|
||||
t = torch.cat([t] * 2)
|
||||
|
||||
noise_pred = self.k_diffusion_model(
|
||||
latent_model_input,
|
||||
t,
|
||||
cond=prompt_embeds,
|
||||
timestep_cond=timestep_cond,
|
||||
added_cond_kwargs=added_cond_kwargs,
|
||||
)
|
||||
|
||||
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
||||
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
||||
return noise_pred
|
||||
|
||||
# 10. Run k-diffusion solver
|
||||
sampler_kwargs = {}
|
||||
|
||||
if "noise_sampler" in inspect.signature(self.sampler).parameters:
|
||||
min_sigma, max_sigma = sigmas[sigmas > 0].min(), sigmas.max()
|
||||
noise_sampler = BrownianTreeNoiseSampler(latents, min_sigma, max_sigma, noise_sampler_seed)
|
||||
sampler_kwargs["noise_sampler"] = noise_sampler
|
||||
|
||||
if "generator" in inspect.signature(self.sampler).parameters:
|
||||
sampler_kwargs["generator"] = generator
|
||||
|
||||
latents = self.sampler(model_fn, latents, sigmas, **sampler_kwargs)
|
||||
|
||||
if not output_type == "latent":
|
||||
# make sure the VAE is in float32 mode, as it overflows in float16
|
||||
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
||||
|
||||
if needs_upcasting:
|
||||
self.upcast_vae()
|
||||
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
||||
|
||||
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
||||
|
||||
# cast back to fp16 if needed
|
||||
if needs_upcasting:
|
||||
self.vae.to(dtype=torch.float16)
|
||||
else:
|
||||
image = latents
|
||||
|
||||
if not output_type == "latent":
|
||||
image = self.image_processor.postprocess(image, output_type=output_type)
|
||||
|
||||
# Offload all models
|
||||
self.maybe_free_model_hooks()
|
||||
|
||||
if not return_dict:
|
||||
return (image,)
|
||||
|
||||
return StableDiffusionXLPipelineOutput(images=image)
|
||||
@@ -374,7 +374,6 @@ class StableDiffusionPipelineSafe(DeprecatedPipelineMixin, DiffusionPipeline, St
|
||||
extra_step_kwargs["generator"] = generator
|
||||
return extra_step_kwargs
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion_k_diffusion.pipeline_stable_diffusion_k_diffusion.StableDiffusionKDiffusionPipeline.check_inputs
|
||||
def check_inputs(
|
||||
self,
|
||||
prompt,
|
||||
|
||||
@@ -494,7 +494,6 @@ class StableDiffusionSAGPipeline(
|
||||
extra_step_kwargs["generator"] = generator
|
||||
return extra_step_kwargs
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion_k_diffusion.pipeline_stable_diffusion_k_diffusion.StableDiffusionKDiffusionPipeline.check_inputs
|
||||
def check_inputs(
|
||||
self,
|
||||
prompt,
|
||||
|
||||
@@ -368,7 +368,6 @@ class TextToVideoSDPipeline(
|
||||
extra_step_kwargs["generator"] = generator
|
||||
return extra_step_kwargs
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion_k_diffusion.pipeline_stable_diffusion_k_diffusion.StableDiffusionKDiffusionPipeline.check_inputs
|
||||
def check_inputs(
|
||||
self,
|
||||
prompt,
|
||||
|
||||
@@ -466,7 +466,6 @@ class TextToVideoZeroPipeline(
|
||||
|
||||
return latents.clone().detach()
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion_k_diffusion.pipeline_stable_diffusion_k_diffusion.StableDiffusionKDiffusionPipeline.check_inputs
|
||||
def check_inputs(
|
||||
self,
|
||||
prompt,
|
||||
|
||||
@@ -85,8 +85,6 @@ from .import_utils import (
|
||||
is_hpu_available,
|
||||
is_inflect_available,
|
||||
is_invisible_watermark_available,
|
||||
is_k_diffusion_available,
|
||||
is_k_diffusion_version,
|
||||
is_kernels_available,
|
||||
is_kornia_available,
|
||||
is_librosa_available,
|
||||
|
||||
@@ -1,32 +0,0 @@
|
||||
# This file is autogenerated by the command `make fix-copies`, do not edit.
|
||||
from ..utils import DummyObject, requires_backends
|
||||
|
||||
|
||||
class StableDiffusionKDiffusionPipeline(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers", "k_diffusion"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch", "transformers", "k_diffusion"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers", "k_diffusion"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers", "k_diffusion"])
|
||||
|
||||
|
||||
class StableDiffusionXLKDiffusionPipeline(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers", "k_diffusion"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch", "transformers", "k_diffusion"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers", "k_diffusion"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers", "k_diffusion"])
|
||||
@@ -198,7 +198,7 @@ _hf_hub_available, _hf_hub_version = _is_package_available("huggingface_hub")
|
||||
_kernels_available, _kernels_version = _is_package_available("kernels")
|
||||
_inflect_available, _inflect_version = _is_package_available("inflect")
|
||||
_unidecode_available, _unidecode_version = _is_package_available("unidecode")
|
||||
_k_diffusion_available, _k_diffusion_version = _is_package_available("k_diffusion")
|
||||
|
||||
_note_seq_available, _note_seq_version = _is_package_available("note_seq")
|
||||
_wandb_available, _wandb_version = _is_package_available("wandb")
|
||||
_tensorboard_available, _tensorboard_version = _is_package_available("tensorboard")
|
||||
@@ -293,10 +293,6 @@ def is_kernels_available():
|
||||
return _kernels_available
|
||||
|
||||
|
||||
def is_k_diffusion_available():
|
||||
return _k_diffusion_available
|
||||
|
||||
|
||||
def is_note_seq_available():
|
||||
return _note_seq_available
|
||||
|
||||
@@ -479,12 +475,6 @@ UNIDECODE_IMPORT_ERROR = """
|
||||
Unidecode`
|
||||
"""
|
||||
|
||||
# docstyle-ignore
|
||||
K_DIFFUSION_IMPORT_ERROR = """
|
||||
{0} requires the k-diffusion library but it was not found in your environment. You can install it with pip: `pip
|
||||
install k-diffusion`
|
||||
"""
|
||||
|
||||
# docstyle-ignore
|
||||
NOTE_SEQ_IMPORT_ERROR = """
|
||||
{0} requires the note-seq library but it was not found in your environment. You can install it with pip: `pip
|
||||
@@ -601,7 +591,6 @@ BACKENDS_MAPPING = OrderedDict(
|
||||
("transformers", (is_transformers_available, TRANSFORMERS_IMPORT_ERROR)),
|
||||
("unidecode", (is_unidecode_available, UNIDECODE_IMPORT_ERROR)),
|
||||
("librosa", (is_librosa_available, LIBROSA_IMPORT_ERROR)),
|
||||
("k_diffusion", (is_k_diffusion_available, K_DIFFUSION_IMPORT_ERROR)),
|
||||
("note_seq", (is_note_seq_available, NOTE_SEQ_IMPORT_ERROR)),
|
||||
("wandb", (is_wandb_available, WANDB_IMPORT_ERROR)),
|
||||
("tensorboard", (is_tensorboard_available, TENSORBOARD_IMPORT_ERROR)),
|
||||
@@ -830,22 +819,6 @@ def is_torchao_version(operation: str, version: str):
|
||||
return compare_versions(parse(_torchao_version), operation, version)
|
||||
|
||||
|
||||
@cache
|
||||
def is_k_diffusion_version(operation: str, version: str):
|
||||
"""
|
||||
Compares the current k-diffusion version to a given reference with an operation.
|
||||
|
||||
Args:
|
||||
operation (`str`):
|
||||
A string representation of an operator, such as `">"` or `"<="`
|
||||
version (`str`):
|
||||
A version string
|
||||
"""
|
||||
if not _k_diffusion_available:
|
||||
return False
|
||||
return compare_versions(parse(_k_diffusion_version), operation, version)
|
||||
|
||||
|
||||
@cache
|
||||
def is_optimum_quanto_version(operation: str, version: str):
|
||||
"""
|
||||
|
||||
Reference in New Issue
Block a user