mirror of
https://github.com/huggingface/diffusers.git
synced 2026-02-19 01:09:01 +08:00
Compare commits
1 Commits
enable-cp-
...
transforme
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
e90eb9de70 |
@@ -18,7 +18,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKLCogVideoX, CogVideoXPipeline, CogVideoXTransformer3DModel, DDIMScheduler
|
||||
|
||||
@@ -117,7 +117,9 @@ class CogVideoXPipelineFastTests(
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = DDIMScheduler()
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config.tie_word_embeddings = False
|
||||
text_encoder = T5EncoderModel(config)
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
components = {
|
||||
|
||||
@@ -19,7 +19,7 @@ import unittest
|
||||
import numpy as np
|
||||
import torch
|
||||
from huggingface_hub import hf_hub_download
|
||||
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
|
||||
from transformers import AutoConfig, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
@@ -97,7 +97,9 @@ class FluxControlNetPipelineFastTests(unittest.TestCase, PipelineTesterMixin, Fl
|
||||
text_encoder = CLIPTextModel(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config.tie_word_embeddings = False
|
||||
text_encoder_2 = T5EncoderModel(config)
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = T5TokenizerFast.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
@@ -18,7 +18,14 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel
|
||||
from transformers import (
|
||||
AutoConfig,
|
||||
AutoTokenizer,
|
||||
CLIPTextConfig,
|
||||
CLIPTextModelWithProjection,
|
||||
CLIPTokenizer,
|
||||
T5EncoderModel,
|
||||
)
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
@@ -117,7 +124,9 @@ class StableDiffusion3ControlNetPipelineFastTests(unittest.TestCase, PipelineTes
|
||||
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config.tie_word_embeddings = False
|
||||
text_encoder_3 = T5EncoderModel(config)
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
|
||||
@@ -3,7 +3,7 @@ import unittest
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, FluxControlPipeline, FluxTransformer2DModel
|
||||
|
||||
@@ -53,7 +53,9 @@ class FluxControlPipelineFastTests(unittest.TestCase, PipelineTesterMixin):
|
||||
text_encoder = CLIPTextModel(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config.tie_word_embeddings = False
|
||||
text_encoder_2 = T5EncoderModel(config)
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
@@ -3,7 +3,7 @@ import unittest
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
@@ -57,7 +57,9 @@ class FluxControlImg2ImgPipelineFastTests(unittest.TestCase, PipelineTesterMixin
|
||||
text_encoder = CLIPTextModel(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config.tie_word_embeddings = False
|
||||
text_encoder_2 = T5EncoderModel(config)
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
@@ -3,7 +3,7 @@ import unittest
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
@@ -58,7 +58,9 @@ class FluxControlInpaintPipelineFastTests(unittest.TestCase, PipelineTesterMixin
|
||||
text_encoder = CLIPTextModel(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config.tie_word_embeddings = False
|
||||
text_encoder_2 = T5EncoderModel(config)
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
@@ -3,7 +3,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, FluxFillPipeline, FluxTransformer2DModel
|
||||
|
||||
@@ -58,7 +58,9 @@ class FluxFillPipelineFastTests(unittest.TestCase, PipelineTesterMixin):
|
||||
text_encoder = CLIPTextModel(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config.tie_word_embeddings = False
|
||||
text_encoder_2 = T5EncoderModel(config)
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
@@ -3,7 +3,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, FluxImg2ImgPipeline, FluxTransformer2DModel
|
||||
|
||||
@@ -55,7 +55,9 @@ class FluxImg2ImgPipelineFastTests(unittest.TestCase, PipelineTesterMixin, FluxI
|
||||
text_encoder = CLIPTextModel(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config.tie_word_embeddings = False
|
||||
text_encoder_2 = T5EncoderModel(config)
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
@@ -3,7 +3,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, FluxInpaintPipeline, FluxTransformer2DModel
|
||||
|
||||
@@ -55,7 +55,9 @@ class FluxInpaintPipelineFastTests(unittest.TestCase, PipelineTesterMixin, FluxI
|
||||
text_encoder = CLIPTextModel(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config.tie_word_embeddings = False
|
||||
text_encoder_2 = T5EncoderModel(config)
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
@@ -3,7 +3,7 @@ import unittest
|
||||
import numpy as np
|
||||
import PIL.Image
|
||||
import torch
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
@@ -79,7 +79,9 @@ class FluxKontextPipelineFastTests(
|
||||
text_encoder = CLIPTextModel(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config.tie_word_embeddings = False
|
||||
text_encoder_2 = T5EncoderModel(config)
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
@@ -3,7 +3,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
@@ -79,7 +79,9 @@ class FluxKontextInpaintPipelineFastTests(
|
||||
text_encoder = CLIPTextModel(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config.tie_word_embeddings = False
|
||||
text_encoder_2 = T5EncoderModel(config)
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
@@ -18,6 +18,7 @@ import unittest
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import (
|
||||
AutoConfig,
|
||||
AutoTokenizer,
|
||||
CLIPTextConfig,
|
||||
CLIPTextModelWithProjection,
|
||||
@@ -94,7 +95,9 @@ class HiDreamImagePipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config.tie_word_embeddings = False
|
||||
text_encoder_3 = T5EncoderModel(config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
text_encoder_4 = LlamaForCausalLM.from_pretrained("hf-internal-testing/tiny-random-LlamaForCausalLM")
|
||||
|
||||
@@ -19,7 +19,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, BertModel, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, BertModel, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKL, DDPMScheduler, HunyuanDiT2DModel, HunyuanDiTPipeline
|
||||
|
||||
@@ -74,7 +74,10 @@ class HunyuanDiTPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
scheduler = DDPMScheduler()
|
||||
text_encoder = BertModel.from_pretrained("hf-internal-testing/tiny-random-BertModel")
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel")
|
||||
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
torch.manual_seed(0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config.tie_word_embeddings = False
|
||||
text_encoder_2 = T5EncoderModel(config)
|
||||
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
components = {
|
||||
|
||||
@@ -17,7 +17,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKLLTXVideo, FlowMatchEulerDiscreteScheduler, LTXPipeline, LTXVideoTransformer3DModel
|
||||
|
||||
@@ -88,7 +88,9 @@ class LTXPipelineFastTests(PipelineTesterMixin, FirstBlockCacheTesterMixin, unit
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = FlowMatchEulerDiscreteScheduler()
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config.tie_word_embeddings = False
|
||||
text_encoder = T5EncoderModel(config)
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
components = {
|
||||
|
||||
@@ -4,7 +4,14 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel
|
||||
from transformers import (
|
||||
AutoConfig,
|
||||
AutoTokenizer,
|
||||
CLIPTextConfig,
|
||||
CLIPTextModelWithProjection,
|
||||
CLIPTokenizer,
|
||||
T5EncoderModel,
|
||||
)
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
@@ -73,7 +80,10 @@ class StableDiffusion3Img2ImgPipelineFastTests(PipelineLatentTesterMixin, unitte
|
||||
torch.manual_seed(0)
|
||||
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)
|
||||
|
||||
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
torch.manual_seed(0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config.tie_word_embeddings = False
|
||||
text_encoder_3 = T5EncoderModel(config)
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
|
||||
@@ -18,7 +18,7 @@ import unittest
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKLWan, UniPCMultistepScheduler, WanImageToVideoPipeline, WanTransformer3DModel
|
||||
|
||||
@@ -64,7 +64,11 @@ class Wan22ImageToVideoPipelineFastTests(PipelineTesterMixin, unittest.TestCase)
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = UniPCMultistepScheduler(prediction_type="flow_prediction", use_flow_sigmas=True, flow_shift=3.0)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
torch.manual_seed(0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config.tie_word_embeddings = False
|
||||
text_encoder = T5EncoderModel(config)
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
torch.manual_seed(0)
|
||||
@@ -248,7 +252,11 @@ class Wan225BImageToVideoPipelineFastTests(PipelineTesterMixin, unittest.TestCas
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = UniPCMultistepScheduler(prediction_type="flow_prediction", use_flow_sigmas=True, flow_shift=3.0)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
torch.manual_seed(0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config.tie_word_embeddings = False
|
||||
text_encoder = T5EncoderModel(config)
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
torch.manual_seed(0)
|
||||
|
||||
Reference in New Issue
Block a user