Compare commits

..

1 Commits

Author SHA1 Message Date
DN6
9c1c6e6e22 update 2026-02-08 13:41:12 +05:30
31 changed files with 1160 additions and 1492 deletions

View File

@@ -106,6 +106,8 @@ video, audio = pipe(
output_type="np",
return_dict=False,
)
video = (video * 255).round().astype("uint8")
video = torch.from_numpy(video)
encode_video(
video[0],
@@ -183,6 +185,8 @@ video, audio = pipe(
output_type="np",
return_dict=False,
)
video = (video * 255).round().astype("uint8")
video = torch.from_numpy(video)
encode_video(
video[0],

View File

@@ -12,85 +12,179 @@ specific language governing permissions and limitations under the License.
# ComponentsManager
The [`ComponentsManager`] is a model registry and management system for Modular Diffusers. It adds and tracks models, stores useful metadata (model size, device placement, adapters), and supports offloading.
The [`ComponentsManager`] is a model registry and management system for Modular Diffusers. It adds and tracks models, stores useful metadata (model size, device placement, adapters), prevents duplicate model instances, and supports offloading.
This guide will show you how to use [`ComponentsManager`] to manage components and device memory.
## Connect to a pipeline
## Add a component
Create a [`ComponentsManager`] and pass it to a [`ModularPipeline`] with either [`~ModularPipeline.from_pretrained`] or [`~ModularPipelineBlocks.init_pipeline`].
The [`ComponentsManager`] should be created alongside a [`ModularPipeline`] in either [`~ModularPipeline.from_pretrained`] or [`~ModularPipelineBlocks.init_pipeline`].
> [!TIP]
> The `collection` parameter is optional but makes it easier to organize and manage components.
<hfoptions id="create">
<hfoption id="from_pretrained">
```py
from diffusers import ModularPipeline, ComponentsManager
import torch
manager = ComponentsManager()
pipe = ModularPipeline.from_pretrained("Tongyi-MAI/Z-Image-Turbo", components_manager=manager)
pipe.load_components(torch_dtype=torch.bfloat16)
comp = ComponentsManager()
pipe = ModularPipeline.from_pretrained("YiYiXu/modular-demo-auto", components_manager=comp, collection="test1")
```
</hfoption>
<hfoption id="init_pipeline">
```py
from diffusers import ModularPipelineBlocks, ComponentsManager
import torch
manager = ComponentsManager()
blocks = ModularPipelineBlocks.from_pretrained("diffusers/Florence2-image-Annotator", trust_remote_code=True)
pipe= blocks.init_pipeline(components_manager=manager)
pipe.load_components(torch_dtype=torch.bfloat16)
from diffusers import ComponentsManager
from diffusers.modular_pipelines import SequentialPipelineBlocks
from diffusers.modular_pipelines.stable_diffusion_xl import TEXT2IMAGE_BLOCKS
t2i_blocks = SequentialPipelineBlocks.from_blocks_dict(TEXT2IMAGE_BLOCKS)
modular_repo_id = "YiYiXu/modular-loader-t2i-0704"
components = ComponentsManager()
t2i_pipeline = t2i_blocks.init_pipeline(modular_repo_id, components_manager=components)
```
</hfoption>
</hfoptions>
Components loaded by the pipeline are automatically registered in the manager. You can inspect them right away.
## Inspect components
Print the [`ComponentsManager`] to see all registered components, including their class, device placement, dtype, memory size, and load ID.
The output below corresponds to the `from_pretrained` example above.
Components are only loaded and registered when using [`~ModularPipeline.load_components`] or [`~ModularPipeline.load_components`]. The example below uses [`~ModularPipeline.load_components`] to create a second pipeline that reuses all the components from the first one, and assigns it to a different collection
```py
Components:
=============================================================================================================================
Models:
-----------------------------------------------------------------------------------------------------------------------------
Name_ID | Class | Device: act(exec) | Dtype | Size (GB) | Load ID
-----------------------------------------------------------------------------------------------------------------------------
text_encoder_140458257514752 | Qwen3Model | cpu | torch.bfloat16 | 7.49 | Tongyi-MAI/Z-Image-Turbo|text_encoder|null|null
vae_140458257515376 | AutoencoderKL | cpu | torch.bfloat16 | 0.16 | Tongyi-MAI/Z-Image-Turbo|vae|null|null
transformer_140458257515616 | ZImageTransformer2DModel | cpu | torch.bfloat16 | 11.46 | Tongyi-MAI/Z-Image-Turbo|transformer|null|null
-----------------------------------------------------------------------------------------------------------------------------
Other Components:
-----------------------------------------------------------------------------------------------------------------------------
ID | Class | Collection
-----------------------------------------------------------------------------------------------------------------------------
scheduler_140461023555264 | FlowMatchEulerDiscreteScheduler | N/A
tokenizer_140458256346432 | Qwen2Tokenizer | N/A
-----------------------------------------------------------------------------------------------------------------------------
pipe.load_components()
pipe2 = ModularPipeline.from_pretrained("YiYiXu/modular-demo-auto", components_manager=comp, collection="test2")
```
The table shows models (with device, dtype, and memory info) separately from other components like schedulers and tokenizers. If any models have LoRA adapters, IP-Adapters, or quantization applied, that information is displayed in an additional section at the bottom.
Use the [`~ModularPipeline.null_component_names`] property to identify any components that need to be loaded, retrieve them with [`~ComponentsManager.get_components_by_names`], and then call [`~ModularPipeline.update_components`] to add the missing components.
```py
pipe2.null_component_names
['text_encoder', 'text_encoder_2', 'tokenizer', 'tokenizer_2', 'image_encoder', 'unet', 'vae', 'scheduler', 'controlnet']
comp_dict = comp.get_components_by_names(names=pipe2.null_component_names)
pipe2.update_components(**comp_dict)
```
To add individual components, use the [`~ComponentsManager.add`] method. This registers a component with a unique id.
```py
from diffusers import AutoModel
text_encoder = AutoModel.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="text_encoder")
component_id = comp.add("text_encoder", text_encoder)
comp
```
Use [`~ComponentsManager.remove`] to remove a component using their id.
```py
comp.remove("text_encoder_139917733042864")
```
## Retrieve a component
The [`ComponentsManager`] provides several methods to retrieve registered components.
### get_one
The [`~ComponentsManager.get_one`] method returns a single component and supports pattern matching for the `name` parameter. If multiple components match, [`~ComponentsManager.get_one`] returns an error.
| Pattern | Example | Description |
|-------------|----------------------------------|-------------------------------------------|
| exact | `comp.get_one(name="unet")` | exact name match |
| wildcard | `comp.get_one(name="unet*")` | names starting with "unet" |
| exclusion | `comp.get_one(name="!unet")` | exclude components named "unet" |
| or | `comp.get_one(name="unet&#124;vae")` | name is "unet" or "vae" |
[`~ComponentsManager.get_one`] also filters components by the `collection` argument or `load_id` argument.
```py
comp.get_one(name="unet", collection="sdxl")
```
### get_components_by_names
The [`~ComponentsManager.get_components_by_names`] method accepts a list of names and returns a dictionary mapping names to components. This is especially useful with [`ModularPipeline`] since they provide lists of required component names and the returned dictionary can be passed directly to [`~ModularPipeline.update_components`].
```py
component_dict = comp.get_components_by_names(names=["text_encoder", "unet", "vae"])
{"text_encoder": component1, "unet": component2, "vae": component3}
```
## Duplicate detection
It is recommended to load model components with [`ComponentSpec`] to assign components with a unique id that encodes their loading parameters. This allows [`ComponentsManager`] to automatically detect and prevent duplicate model instances even when different objects represent the same underlying checkpoint.
```py
from diffusers import ComponentSpec, ComponentsManager
from transformers import CLIPTextModel
comp = ComponentsManager()
# Create ComponentSpec for the first text encoder
spec = ComponentSpec(name="text_encoder", repo="stabilityai/stable-diffusion-xl-base-1.0", subfolder="text_encoder", type_hint=AutoModel)
# Create ComponentSpec for a duplicate text encoder (it is same checkpoint, from the same repo/subfolder)
spec_duplicated = ComponentSpec(name="text_encoder_duplicated", repo="stabilityai/stable-diffusion-xl-base-1.0", subfolder="text_encoder", type_hint=CLIPTextModel)
# Load and add both components - the manager will detect they're the same model
comp.add("text_encoder", spec.load())
comp.add("text_encoder_duplicated", spec_duplicated.load())
```
This returns a warning with instructions for removing the duplicate.
```py
ComponentsManager: adding component 'text_encoder_duplicated_139917580682672', but it has duplicate load_id 'stabilityai/stable-diffusion-xl-base-1.0|text_encoder|null|null' with existing components: text_encoder_139918506246832. To remove a duplicate, call `components_manager.remove('<component_id>')`.
'text_encoder_duplicated_139917580682672'
```
You could also add a component without using [`ComponentSpec`] and duplicate detection still works in most cases even if you're adding the same component under a different name.
However, [`ComponentManager`] can't detect duplicates when you load the same component into different objects. In this case, you should load a model with [`ComponentSpec`].
```py
text_encoder_2 = AutoModel.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="text_encoder")
comp.add("text_encoder", text_encoder_2)
'text_encoder_139917732983664'
```
## Collections
Collections are labels assigned to components for better organization and management. Add a component to a collection with the `collection` argument in [`~ComponentsManager.add`].
Only one component per name is allowed in each collection. Adding a second component with the same name automatically removes the first component.
```py
from diffusers import ComponentSpec, ComponentsManager
comp = ComponentsManager()
# Create ComponentSpec for the first UNet
spec = ComponentSpec(name="unet", repo="stabilityai/stable-diffusion-xl-base-1.0", subfolder="unet", type_hint=AutoModel)
# Create ComponentSpec for a different UNet
spec2 = ComponentSpec(name="unet", repo="RunDiffusion/Juggernaut-XL-v9", subfolder="unet", type_hint=AutoModel, variant="fp16")
# Add both UNets to the same collection - the second one will replace the first
comp.add("unet", spec.load(), collection="sdxl")
comp.add("unet", spec2.load(), collection="sdxl")
```
This makes it convenient to work with node-based systems because you can:
- Mark all models as loaded from one node with the `collection` label.
- Automatically replace models when new checkpoints are loaded under the same name.
- Batch delete all models in a collection when a node is removed.
## Offloading
The [`~ComponentsManager.enable_auto_cpu_offload`] method is a global offloading strategy that works across all models regardless of which pipeline is using them. Once enabled, you don't need to worry about device placement if you add or remove components.
```py
manager.enable_auto_cpu_offload(device="cuda")
comp.enable_auto_cpu_offload(device="cuda")
```
All models begin on the CPU and [`ComponentsManager`] moves them to the appropriate device right before they're needed, and moves other models back to the CPU when GPU memory is low.
Call [`~ComponentsManager.disable_auto_cpu_offload`] to disable offloading.
```py
manager.disable_auto_cpu_offload()
```
You can set your own rules for which models to offload first.

View File

@@ -417,7 +417,6 @@ else:
"Flux2AutoBlocks",
"Flux2KleinAutoBlocks",
"Flux2KleinBaseAutoBlocks",
"Flux2KleinBaseModularPipeline",
"Flux2KleinModularPipeline",
"Flux2ModularPipeline",
"FluxAutoBlocks",
@@ -434,13 +433,8 @@ else:
"QwenImageModularPipeline",
"StableDiffusionXLAutoBlocks",
"StableDiffusionXLModularPipeline",
"Wan22Blocks",
"Wan22Image2VideoBlocks",
"Wan22Image2VideoModularPipeline",
"Wan22ModularPipeline",
"WanBlocks",
"WanImage2VideoAutoBlocks",
"WanImage2VideoModularPipeline",
"Wan22AutoBlocks",
"WanAutoBlocks",
"WanModularPipeline",
"ZImageAutoBlocks",
"ZImageModularPipeline",
@@ -1162,7 +1156,6 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
Flux2AutoBlocks,
Flux2KleinAutoBlocks,
Flux2KleinBaseAutoBlocks,
Flux2KleinBaseModularPipeline,
Flux2KleinModularPipeline,
Flux2ModularPipeline,
FluxAutoBlocks,
@@ -1179,13 +1172,8 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
QwenImageModularPipeline,
StableDiffusionXLAutoBlocks,
StableDiffusionXLModularPipeline,
Wan22Blocks,
Wan22Image2VideoBlocks,
Wan22Image2VideoModularPipeline,
Wan22ModularPipeline,
WanBlocks,
WanImage2VideoAutoBlocks,
WanImage2VideoModularPipeline,
Wan22AutoBlocks,
WanAutoBlocks,
WanModularPipeline,
ZImageAutoBlocks,
ZImageModularPipeline,

View File

@@ -264,10 +264,6 @@ class _HubKernelConfig:
function_attr: str
revision: Optional[str] = None
kernel_fn: Optional[Callable] = None
wrapped_forward_attr: Optional[str] = None
wrapped_backward_attr: Optional[str] = None
wrapped_forward_fn: Optional[Callable] = None
wrapped_backward_fn: Optional[Callable] = None
# Registry for hub-based attention kernels
@@ -282,11 +278,7 @@ _HUB_KERNELS_REGISTRY: Dict["AttentionBackendName", _HubKernelConfig] = {
# revision="fake-ops-return-probs",
),
AttentionBackendName.FLASH_HUB: _HubKernelConfig(
repo_id="kernels-community/flash-attn2",
function_attr="flash_attn_func",
revision=None,
wrapped_forward_attr="flash_attn_interface._wrapped_flash_attn_forward",
wrapped_backward_attr="flash_attn_interface._wrapped_flash_attn_backward",
repo_id="kernels-community/flash-attn2", function_attr="flash_attn_func", revision=None
),
AttentionBackendName.FLASH_VARLEN_HUB: _HubKernelConfig(
repo_id="kernels-community/flash-attn2", function_attr="flash_attn_varlen_func", revision=None
@@ -611,39 +603,22 @@ def _flex_attention_causal_mask_mod(batch_idx, head_idx, q_idx, kv_idx):
# ===== Helpers for downloading kernels =====
def _resolve_kernel_attr(module, attr_path: str):
target = module
for attr in attr_path.split("."):
if not hasattr(target, attr):
raise AttributeError(f"Kernel module '{module.__name__}' does not define attribute path '{attr_path}'.")
target = getattr(target, attr)
return target
def _maybe_download_kernel_for_backend(backend: AttentionBackendName) -> None:
if backend not in _HUB_KERNELS_REGISTRY:
return
config = _HUB_KERNELS_REGISTRY[backend]
needs_kernel = config.kernel_fn is None
needs_wrapped_forward = config.wrapped_forward_attr is not None and config.wrapped_forward_fn is None
needs_wrapped_backward = config.wrapped_backward_attr is not None and config.wrapped_backward_fn is None
if not (needs_kernel or needs_wrapped_forward or needs_wrapped_backward):
if config.kernel_fn is not None:
return
try:
from kernels import get_kernel
kernel_module = get_kernel(config.repo_id, revision=config.revision)
if needs_kernel:
config.kernel_fn = _resolve_kernel_attr(kernel_module, config.function_attr)
kernel_func = getattr(kernel_module, config.function_attr)
if needs_wrapped_forward:
config.wrapped_forward_fn = _resolve_kernel_attr(kernel_module, config.wrapped_forward_attr)
if needs_wrapped_backward:
config.wrapped_backward_fn = _resolve_kernel_attr(kernel_module, config.wrapped_backward_attr)
# Cache the downloaded kernel function in the config object
config.kernel_fn = kernel_func
except Exception as e:
logger.error(f"An error occurred while fetching kernel '{config.repo_id}' from the Hub: {e}")
@@ -1094,231 +1069,6 @@ def _flash_attention_backward_op(
return grad_query, grad_key, grad_value
def _flash_attention_hub_forward_op(
ctx: torch.autograd.function.FunctionCtx,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
dropout_p: float = 0.0,
is_causal: bool = False,
scale: Optional[float] = None,
enable_gqa: bool = False,
return_lse: bool = False,
_save_ctx: bool = True,
_parallel_config: Optional["ParallelConfig"] = None,
):
if attn_mask is not None:
raise ValueError("`attn_mask` is not yet supported for flash-attn hub kernels.")
if enable_gqa:
raise ValueError("`enable_gqa` is not yet supported for flash-attn hub kernels.")
config = _HUB_KERNELS_REGISTRY[AttentionBackendName.FLASH_HUB]
wrapped_forward_fn = config.wrapped_forward_fn
wrapped_backward_fn = config.wrapped_backward_fn
if wrapped_forward_fn is None or wrapped_backward_fn is None:
raise RuntimeError(
"Flash attention hub kernels must expose `_wrapped_flash_attn_forward` and `_wrapped_flash_attn_backward` "
"for context parallel execution."
)
if scale is None:
scale = query.shape[-1] ** (-0.5)
window_size = (-1, -1)
softcap = 0.0
alibi_slopes = None
deterministic = False
grad_enabled = any(x.requires_grad for x in (query, key, value))
if grad_enabled or (_parallel_config is not None and _parallel_config.context_parallel_config._world_size > 1):
dropout_p = dropout_p if dropout_p > 0 else 1e-30
with torch.set_grad_enabled(grad_enabled):
out, lse, S_dmask, rng_state = wrapped_forward_fn(
query,
key,
value,
dropout_p,
scale,
is_causal,
window_size[0],
window_size[1],
softcap,
alibi_slopes,
return_lse,
)
lse = lse.permute(0, 2, 1).contiguous()
if _save_ctx:
ctx.save_for_backward(query, key, value, out, lse, rng_state)
ctx.dropout_p = dropout_p
ctx.scale = scale
ctx.is_causal = is_causal
ctx.window_size = window_size
ctx.softcap = softcap
ctx.alibi_slopes = alibi_slopes
ctx.deterministic = deterministic
return (out, lse) if return_lse else out
def _flash_attention_hub_backward_op(
ctx: torch.autograd.function.FunctionCtx,
grad_out: torch.Tensor,
*args,
**kwargs,
):
config = _HUB_KERNELS_REGISTRY[AttentionBackendName.FLASH_HUB]
wrapped_backward_fn = config.wrapped_backward_fn
if wrapped_backward_fn is None:
raise RuntimeError(
"Flash attention hub kernels must expose `_wrapped_flash_attn_backward` for context parallel execution."
)
query, key, value, out, lse, rng_state = ctx.saved_tensors
grad_query, grad_key, grad_value = torch.empty_like(query), torch.empty_like(key), torch.empty_like(value)
_ = wrapped_backward_fn(
grad_out,
query,
key,
value,
out,
lse,
grad_query,
grad_key,
grad_value,
ctx.dropout_p,
ctx.scale,
ctx.is_causal,
ctx.window_size[0],
ctx.window_size[1],
ctx.softcap,
ctx.alibi_slopes,
ctx.deterministic,
rng_state,
)
grad_query = grad_query[..., : grad_out.shape[-1]]
grad_key = grad_key[..., : grad_out.shape[-1]]
grad_value = grad_value[..., : grad_out.shape[-1]]
return grad_query, grad_key, grad_value
def _flash_attention_3_hub_forward_op(
ctx: torch.autograd.function.FunctionCtx,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
dropout_p: float = 0.0,
is_causal: bool = False,
scale: Optional[float] = None,
enable_gqa: bool = False,
return_lse: bool = False,
_save_ctx: bool = True,
_parallel_config: Optional["ParallelConfig"] = None,
*,
window_size: Tuple[int, int] = (-1, -1),
softcap: float = 0.0,
num_splits: int = 1,
pack_gqa: Optional[bool] = None,
deterministic: bool = False,
sm_margin: int = 0,
):
if attn_mask is not None:
raise ValueError("`attn_mask` is not yet supported for flash-attn 3 hub kernels.")
if dropout_p != 0.0:
raise ValueError("`dropout_p` is not yet supported for flash-attn 3 hub kernels.")
if enable_gqa:
raise ValueError("`enable_gqa` is not yet supported for flash-attn 3 hub kernels.")
func = _HUB_KERNELS_REGISTRY[AttentionBackendName._FLASH_3_HUB].kernel_fn
out = func(
q=query,
k=key,
v=value,
softmax_scale=scale,
causal=is_causal,
qv=None,
q_descale=None,
k_descale=None,
v_descale=None,
window_size=window_size,
softcap=softcap,
num_splits=num_splits,
pack_gqa=pack_gqa,
deterministic=deterministic,
sm_margin=sm_margin,
return_attn_probs=return_lse,
)
lse = None
if return_lse:
out, lse = out
lse = lse.permute(0, 2, 1).contiguous()
if _save_ctx:
ctx.save_for_backward(query, key, value)
ctx.scale = scale
ctx.is_causal = is_causal
ctx._hub_kernel = func
return (out, lse) if return_lse else out
def _flash_attention_3_hub_backward_op(
ctx: torch.autograd.function.FunctionCtx,
grad_out: torch.Tensor,
*args,
window_size: Tuple[int, int] = (-1, -1),
softcap: float = 0.0,
num_splits: int = 1,
pack_gqa: Optional[bool] = None,
deterministic: bool = False,
sm_margin: int = 0,
):
query, key, value = ctx.saved_tensors
kernel_fn = ctx._hub_kernel
with torch.enable_grad():
query_r = query.detach().requires_grad_(True)
key_r = key.detach().requires_grad_(True)
value_r = value.detach().requires_grad_(True)
out = kernel_fn(
q=query_r,
k=key_r,
v=value_r,
softmax_scale=ctx.scale,
causal=ctx.is_causal,
qv=None,
q_descale=None,
k_descale=None,
v_descale=None,
window_size=window_size,
softcap=softcap,
num_splits=num_splits,
pack_gqa=pack_gqa,
deterministic=deterministic,
sm_margin=sm_margin,
return_attn_probs=False,
)
if isinstance(out, tuple):
out = out[0]
grad_query, grad_key, grad_value = torch.autograd.grad(
out,
(query_r, key_r, value_r),
grad_out,
retain_graph=False,
allow_unused=False,
)
return grad_query, grad_key, grad_value
def _sage_attention_forward_op(
ctx: torch.autograd.function.FunctionCtx,
query: torch.Tensor,
@@ -1357,46 +1107,6 @@ def _sage_attention_forward_op(
return (out, lse) if return_lse else out
def _sage_attention_hub_forward_op(
ctx: torch.autograd.function.FunctionCtx,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
dropout_p: float = 0.0,
is_causal: bool = False,
scale: Optional[float] = None,
enable_gqa: bool = False,
return_lse: bool = False,
_save_ctx: bool = True,
_parallel_config: Optional["ParallelConfig"] = None,
):
if attn_mask is not None:
raise ValueError("`attn_mask` is not yet supported for Sage attention.")
if dropout_p > 0.0:
raise ValueError("`dropout_p` is not yet supported for Sage attention.")
if enable_gqa:
raise ValueError("`enable_gqa` is not yet supported for Sage attention.")
func = _HUB_KERNELS_REGISTRY[AttentionBackendName.SAGE_HUB].kernel_fn
out = func(
q=query,
k=key,
v=value,
tensor_layout="NHD",
is_causal=is_causal,
sm_scale=scale,
return_lse=return_lse,
)
lse = None
if return_lse:
out, lse, *_ = out
lse = lse.permute(0, 2, 1).contiguous()
return (out, lse) if return_lse else out
def _sage_attention_backward_op(
ctx: torch.autograd.function.FunctionCtx,
grad_out: torch.Tensor,
@@ -2230,7 +1940,7 @@ def _flash_attention(
@_AttentionBackendRegistry.register(
AttentionBackendName.FLASH_HUB,
constraints=[_check_device, _check_qkv_dtype_bf16_or_fp16, _check_shape],
supports_context_parallel=True,
supports_context_parallel=False,
)
def _flash_attention_hub(
query: torch.Tensor,
@@ -2248,35 +1958,17 @@ def _flash_attention_hub(
raise ValueError("`attn_mask` is not supported for flash-attn 2.")
func = _HUB_KERNELS_REGISTRY[AttentionBackendName.FLASH_HUB].kernel_fn
if _parallel_config is None:
out = func(
q=query,
k=key,
v=value,
dropout_p=dropout_p,
softmax_scale=scale,
causal=is_causal,
return_attn_probs=return_lse,
)
if return_lse:
out, lse, *_ = out
else:
out = _templated_context_parallel_attention(
query,
key,
value,
None,
dropout_p,
is_causal,
scale,
False,
return_lse,
forward_op=_flash_attention_hub_forward_op,
backward_op=_flash_attention_hub_backward_op,
_parallel_config=_parallel_config,
)
if return_lse:
out, lse = out
out = func(
q=query,
k=key,
v=value,
dropout_p=dropout_p,
softmax_scale=scale,
causal=is_causal,
return_attn_probs=return_lse,
)
if return_lse:
out, lse, *_ = out
return (out, lse) if return_lse else out
@@ -2423,7 +2115,7 @@ def _flash_attention_3(
@_AttentionBackendRegistry.register(
AttentionBackendName._FLASH_3_HUB,
constraints=[_check_device, _check_qkv_dtype_bf16_or_fp16, _check_shape],
supports_context_parallel=True,
supports_context_parallel=False,
)
def _flash_attention_3_hub(
query: torch.Tensor,
@@ -2438,68 +2130,33 @@ def _flash_attention_3_hub(
return_attn_probs: bool = False,
_parallel_config: Optional["ParallelConfig"] = None,
) -> torch.Tensor:
if _parallel_config:
raise NotImplementedError(f"{AttentionBackendName._FLASH_3_HUB.value} is not implemented for parallelism yet.")
if attn_mask is not None:
raise ValueError("`attn_mask` is not supported for flash-attn 3.")
func = _HUB_KERNELS_REGISTRY[AttentionBackendName._FLASH_3_HUB].kernel_fn
if _parallel_config is None:
out = func(
q=query,
k=key,
v=value,
softmax_scale=scale,
causal=is_causal,
qv=None,
q_descale=None,
k_descale=None,
v_descale=None,
window_size=window_size,
softcap=softcap,
num_splits=1,
pack_gqa=None,
deterministic=deterministic,
sm_margin=0,
return_attn_probs=return_attn_probs,
)
return (out[0], out[1]) if return_attn_probs else out
forward_op = functools.partial(
_flash_attention_3_hub_forward_op,
out = func(
q=query,
k=key,
v=value,
softmax_scale=scale,
causal=is_causal,
qv=None,
q_descale=None,
k_descale=None,
v_descale=None,
window_size=window_size,
softcap=softcap,
num_splits=1,
pack_gqa=None,
deterministic=deterministic,
sm_margin=0,
return_attn_probs=return_attn_probs,
)
backward_op = functools.partial(
_flash_attention_3_hub_backward_op,
window_size=window_size,
softcap=softcap,
num_splits=1,
pack_gqa=None,
deterministic=deterministic,
sm_margin=0,
)
out = _templated_context_parallel_attention(
query,
key,
value,
None,
0.0,
is_causal,
scale,
False,
return_attn_probs,
forward_op=forward_op,
backward_op=backward_op,
_parallel_config=_parallel_config,
)
if return_attn_probs:
out, lse = out
return out, lse
return out
# When `return_attn_probs` is True, the above returns a tuple of
# actual outputs and lse.
return (out[0], out[1]) if return_attn_probs else out
@_AttentionBackendRegistry.register(
@@ -3130,7 +2787,7 @@ def _sage_attention(
@_AttentionBackendRegistry.register(
AttentionBackendName.SAGE_HUB,
constraints=[_check_device_cuda, _check_qkv_dtype_bf16_or_fp16, _check_shape],
supports_context_parallel=True,
supports_context_parallel=False,
)
def _sage_attention_hub(
query: torch.Tensor,
@@ -3158,23 +2815,6 @@ def _sage_attention_hub(
)
if return_lse:
out, lse, *_ = out
else:
out = _templated_context_parallel_attention(
query,
key,
value,
None,
0.0,
is_causal,
scale,
False,
return_lse,
forward_op=_sage_attention_hub_forward_op,
backward_op=_sage_attention_backward_op,
_parallel_config=_parallel_config,
)
if return_lse:
out, lse = out
return (out, lse) if return_lse else out

View File

@@ -31,10 +31,132 @@ class AutoModel(ConfigMixin):
def __init__(self, *args, **kwargs):
raise EnvironmentError(
f"{self.__class__.__name__} is designed to be instantiated "
f"using the `{self.__class__.__name__}.from_pretrained(pretrained_model_name_or_path)` or "
f"using the `{self.__class__.__name__}.from_pretrained(pretrained_model_name_or_path)`, "
f"`{self.__class__.__name__}.from_config(config)`, or "
f"`{self.__class__.__name__}.from_pipe(pipeline)` methods."
)
@classmethod
def from_config(
cls, pretrained_model_name_or_path_or_dict: Optional[Union[str, os.PathLike, dict]] = None, **kwargs
):
r"""
Instantiate a model from a config dictionary or a pretrained model configuration file with random weights (no
pretrained weights are loaded).
Parameters:
pretrained_model_name_or_path_or_dict (`str`, `os.PathLike`, or `dict`):
Can be either:
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model
configuration hosted on the Hub.
- A path to a *directory* (for example `./my_model_directory`) containing a model configuration
file.
- A config dictionary.
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model configuration, overriding the cached version if
it exists.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint.
local_files_only(`bool`, *optional*, defaults to `False`):
Whether to only load local model configuration files or not.
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use.
trust_remote_code (`bool`, *optional*, defaults to `False`):
Whether to trust remote code.
subfolder (`str`, *optional*, defaults to `""`):
The subfolder location of a model file within a larger model repository on the Hub or locally.
Returns:
A model object instantiated from the config with random weights.
Example:
```py
from diffusers import AutoModel
model = AutoModel.from_config("stable-diffusion-v1-5/stable-diffusion-v1-5", subfolder="unet")
```
"""
subfolder = kwargs.pop("subfolder", None)
trust_remote_code = kwargs.pop("trust_remote_code", False)
hub_kwargs_names = [
"cache_dir",
"force_download",
"local_files_only",
"proxies",
"revision",
"token",
]
hub_kwargs = {name: kwargs.pop(name, None) for name in hub_kwargs_names}
if pretrained_model_name_or_path_or_dict is None:
raise ValueError(
"Please provide a `pretrained_model_name_or_path_or_dict` as the first positional argument."
)
if isinstance(pretrained_model_name_or_path_or_dict, (str, os.PathLike)):
pretrained_model_name_or_path = pretrained_model_name_or_path_or_dict
cls.config_name = "config.json"
config = cls.load_config(pretrained_model_name_or_path, subfolder=subfolder, **hub_kwargs)
else:
config = pretrained_model_name_or_path_or_dict
pretrained_model_name_or_path = config.get("_name_or_path")
library = None
orig_class_name = None
if "_class_name" in config:
orig_class_name = config["_class_name"]
library = "diffusers"
elif "model_type" in config:
orig_class_name = "AutoModel"
library = "transformers"
else:
raise ValueError(
f"Couldn't find a model class associated with the config: {config}. Make sure the config "
"contains a `_class_name` or `model_type` key."
)
has_remote_code = "auto_map" in config and cls.__name__ in config["auto_map"]
trust_remote_code = resolve_trust_remote_code(
trust_remote_code, pretrained_model_name_or_path, has_remote_code
)
if has_remote_code and trust_remote_code:
class_ref = config["auto_map"][cls.__name__]
module_file, class_name = class_ref.split(".")
module_file = module_file + ".py"
model_cls = get_class_from_dynamic_module(
pretrained_model_name_or_path,
subfolder=subfolder,
module_file=module_file,
class_name=class_name,
**hub_kwargs,
)
else:
from ..pipelines.pipeline_loading_utils import ALL_IMPORTABLE_CLASSES, get_class_obj_and_candidates
model_cls, _ = get_class_obj_and_candidates(
library_name=library,
class_name=orig_class_name,
importable_classes=ALL_IMPORTABLE_CLASSES,
pipelines=None,
is_pipeline_module=False,
)
if model_cls is None:
raise ValueError(f"AutoModel can't find a model linked to {orig_class_name}.")
return model_cls.from_config(config, **kwargs)
@classmethod
@validate_hf_hub_args
def from_pretrained(cls, pretrained_model_or_path: Optional[Union[str, os.PathLike]] = None, **kwargs):

View File

@@ -45,16 +45,7 @@ else:
"InsertableDict",
]
_import_structure["stable_diffusion_xl"] = ["StableDiffusionXLAutoBlocks", "StableDiffusionXLModularPipeline"]
_import_structure["wan"] = [
"WanBlocks",
"Wan22Blocks",
"WanImage2VideoAutoBlocks",
"Wan22Image2VideoBlocks",
"WanModularPipeline",
"Wan22ModularPipeline",
"WanImage2VideoModularPipeline",
"Wan22Image2VideoModularPipeline",
]
_import_structure["wan"] = ["WanAutoBlocks", "Wan22AutoBlocks", "WanModularPipeline"]
_import_structure["flux"] = [
"FluxAutoBlocks",
"FluxModularPipeline",
@@ -67,7 +58,6 @@ else:
"Flux2KleinBaseAutoBlocks",
"Flux2ModularPipeline",
"Flux2KleinModularPipeline",
"Flux2KleinBaseModularPipeline",
]
_import_structure["qwenimage"] = [
"QwenImageAutoBlocks",
@@ -98,7 +88,6 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
Flux2AutoBlocks,
Flux2KleinAutoBlocks,
Flux2KleinBaseAutoBlocks,
Flux2KleinBaseModularPipeline,
Flux2KleinModularPipeline,
Flux2ModularPipeline,
)
@@ -123,16 +112,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
QwenImageModularPipeline,
)
from .stable_diffusion_xl import StableDiffusionXLAutoBlocks, StableDiffusionXLModularPipeline
from .wan import (
Wan22Blocks,
Wan22Image2VideoBlocks,
Wan22Image2VideoModularPipeline,
Wan22ModularPipeline,
WanBlocks,
WanImage2VideoAutoBlocks,
WanImage2VideoModularPipeline,
WanModularPipeline,
)
from .wan import Wan22AutoBlocks, WanAutoBlocks, WanModularPipeline
from .z_image import ZImageAutoBlocks, ZImageModularPipeline
else:
import sys

View File

@@ -55,11 +55,7 @@ else:
"Flux2VaeEncoderSequentialStep",
]
_import_structure["modular_blocks_flux2_klein"] = ["Flux2KleinAutoBlocks", "Flux2KleinBaseAutoBlocks"]
_import_structure["modular_pipeline"] = [
"Flux2ModularPipeline",
"Flux2KleinModularPipeline",
"Flux2KleinBaseModularPipeline",
]
_import_structure["modular_pipeline"] = ["Flux2ModularPipeline", "Flux2KleinModularPipeline"]
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
try:
@@ -105,7 +101,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
Flux2KleinAutoBlocks,
Flux2KleinBaseAutoBlocks,
)
from .modular_pipeline import Flux2KleinBaseModularPipeline, Flux2KleinModularPipeline, Flux2ModularPipeline
from .modular_pipeline import Flux2KleinModularPipeline, Flux2ModularPipeline
else:
import sys

View File

@@ -13,6 +13,8 @@
# limitations under the License.
from typing import Any, Dict, Optional
from ...loaders import Flux2LoraLoaderMixin
from ...utils import logging
from ..modular_pipeline import ModularPipeline
@@ -57,36 +59,47 @@ class Flux2ModularPipeline(ModularPipeline, Flux2LoraLoaderMixin):
return num_channels_latents
class Flux2KleinModularPipeline(Flux2ModularPipeline):
class Flux2KleinModularPipeline(ModularPipeline, Flux2LoraLoaderMixin):
"""
A ModularPipeline for Flux2-Klein (distilled model).
> [!WARNING] > This is an experimental feature and is likely to change in the future.
"""
default_blocks_name = "Flux2KleinAutoBlocks"
@property
def requires_unconditional_embeds(self):
if hasattr(self.config, "is_distilled") and self.config.is_distilled:
return False
requires_unconditional_embeds = False
if hasattr(self, "guider") and self.guider is not None:
requires_unconditional_embeds = self.guider._enabled and self.guider.num_conditions > 1
return requires_unconditional_embeds
class Flux2KleinBaseModularPipeline(Flux2ModularPipeline):
"""
A ModularPipeline for Flux2-Klein (base model).
A ModularPipeline for Flux2-Klein.
> [!WARNING] > This is an experimental feature and is likely to change in the future.
"""
default_blocks_name = "Flux2KleinBaseAutoBlocks"
def get_default_blocks_name(self, config_dict: Optional[Dict[str, Any]]) -> Optional[str]:
if config_dict is not None and "is_distilled" in config_dict and config_dict["is_distilled"]:
return "Flux2KleinAutoBlocks"
else:
return "Flux2KleinBaseAutoBlocks"
@property
def default_height(self):
return self.default_sample_size * self.vae_scale_factor
@property
def default_width(self):
return self.default_sample_size * self.vae_scale_factor
@property
def default_sample_size(self):
return 128
@property
def vae_scale_factor(self):
vae_scale_factor = 8
if getattr(self, "vae", None) is not None:
vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
return vae_scale_factor
@property
def num_channels_latents(self):
num_channels_latents = 32
if getattr(self, "transformer", None):
num_channels_latents = self.transformer.config.in_channels // 4
return num_channels_latents
@property
def requires_unconditional_embeds(self):
if hasattr(self.config, "is_distilled") and self.config.is_distilled:

View File

@@ -156,12 +156,6 @@ MELLON_PARAM_TEMPLATES = {
"display": "slider",
"required_block_params": ["layers"],
},
"output_type": {
"label": "Output Type",
"type": "dropdown",
"default": "np",
"options": ["np", "pil", "pt"],
},
# ControlNet
"controlnet_conditioning_scale": {
"label": "Controlnet Conditioning Scale",

View File

@@ -54,61 +54,19 @@ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
# map regular pipeline to modular pipeline class name
def _create_default_map_fn(pipeline_class_name: str):
"""Create a mapping function that always returns the same pipeline class."""
def _map_fn(config_dict=None):
return pipeline_class_name
return _map_fn
def _flux2_klein_map_fn(config_dict=None):
if config_dict is None:
return "Flux2KleinModularPipeline"
if "is_distilled" in config_dict and config_dict["is_distilled"]:
return "Flux2KleinModularPipeline"
else:
return "Flux2KleinBaseModularPipeline"
def _wan_map_fn(config_dict=None):
if config_dict is None:
return "WanModularPipeline"
if "boundary_ratio" in config_dict and config_dict["boundary_ratio"] is not None:
return "Wan22ModularPipeline"
else:
return "WanModularPipeline"
def _wan_i2v_map_fn(config_dict=None):
if config_dict is None:
return "WanImage2VideoModularPipeline"
if "boundary_ratio" in config_dict and config_dict["boundary_ratio"] is not None:
return "Wan22Image2VideoModularPipeline"
else:
return "WanImage2VideoModularPipeline"
MODULAR_PIPELINE_MAPPING = OrderedDict(
[
("stable-diffusion-xl", _create_default_map_fn("StableDiffusionXLModularPipeline")),
("wan", _wan_map_fn),
("wan-i2v", _wan_i2v_map_fn),
("flux", _create_default_map_fn("FluxModularPipeline")),
("flux-kontext", _create_default_map_fn("FluxKontextModularPipeline")),
("flux2", _create_default_map_fn("Flux2ModularPipeline")),
("flux2-klein", _flux2_klein_map_fn),
("qwenimage", _create_default_map_fn("QwenImageModularPipeline")),
("qwenimage-edit", _create_default_map_fn("QwenImageEditModularPipeline")),
("qwenimage-edit-plus", _create_default_map_fn("QwenImageEditPlusModularPipeline")),
("qwenimage-layered", _create_default_map_fn("QwenImageLayeredModularPipeline")),
("z-image", _create_default_map_fn("ZImageModularPipeline")),
("stable-diffusion-xl", "StableDiffusionXLModularPipeline"),
("wan", "WanModularPipeline"),
("flux", "FluxModularPipeline"),
("flux-kontext", "FluxKontextModularPipeline"),
("flux2", "Flux2ModularPipeline"),
("flux2-klein", "Flux2KleinModularPipeline"),
("qwenimage", "QwenImageModularPipeline"),
("qwenimage-edit", "QwenImageEditModularPipeline"),
("qwenimage-edit-plus", "QwenImageEditPlusModularPipeline"),
("qwenimage-layered", "QwenImageLayeredModularPipeline"),
("z-image", "ZImageModularPipeline"),
]
)
@@ -410,8 +368,7 @@ class ModularPipelineBlocks(ConfigMixin, PushToHubMixin):
"""
create a ModularPipeline, optionally accept pretrained_model_name_or_path to load from hub.
"""
map_fn = MODULAR_PIPELINE_MAPPING.get(self.model_name, _create_default_map_fn("ModularPipeline"))
pipeline_class_name = map_fn()
pipeline_class_name = MODULAR_PIPELINE_MAPPING.get(self.model_name, ModularPipeline.__name__)
diffusers_module = importlib.import_module("diffusers")
pipeline_class = getattr(diffusers_module, pipeline_class_name)
@@ -1590,7 +1547,7 @@ class ModularPipeline(ConfigMixin, PushToHubMixin):
if modular_config_dict is not None:
blocks_class_name = modular_config_dict.get("_blocks_class_name")
else:
blocks_class_name = self.default_blocks_name
blocks_class_name = self.get_default_blocks_name(config_dict)
if blocks_class_name is not None:
diffusers_module = importlib.import_module("diffusers")
blocks_class = getattr(diffusers_module, blocks_class_name)
@@ -1598,11 +1555,11 @@ class ModularPipeline(ConfigMixin, PushToHubMixin):
else:
logger.warning(f"`blocks` is `None`, no default blocks class found for {self.__class__.__name__}")
self._blocks = blocks
self.blocks = blocks
self._components_manager = components_manager
self._collection = collection
self._component_specs = {spec.name: deepcopy(spec) for spec in self._blocks.expected_components}
self._config_specs = {spec.name: deepcopy(spec) for spec in self._blocks.expected_configs}
self._component_specs = {spec.name: deepcopy(spec) for spec in self.blocks.expected_components}
self._config_specs = {spec.name: deepcopy(spec) for spec in self.blocks.expected_configs}
# update component_specs and config_specs based on modular_model_index.json
if modular_config_dict is not None:
@@ -1649,9 +1606,7 @@ class ModularPipeline(ConfigMixin, PushToHubMixin):
for name, config_spec in self._config_specs.items():
default_configs[name] = config_spec.default
self.register_to_config(**default_configs)
self.register_to_config(
_blocks_class_name=self._blocks.__class__.__name__ if self._blocks is not None else None
)
self.register_to_config(_blocks_class_name=self.blocks.__class__.__name__ if self.blocks is not None else None)
@property
def default_call_parameters(self) -> Dict[str, Any]:
@@ -1660,10 +1615,13 @@ class ModularPipeline(ConfigMixin, PushToHubMixin):
- Dictionary mapping input names to their default values
"""
params = {}
for input_param in self._blocks.inputs:
for input_param in self.blocks.inputs:
params[input_param.name] = input_param.default
return params
def get_default_blocks_name(self, config_dict: Optional[Dict[str, Any]]) -> Optional[str]:
return self.default_blocks_name
@classmethod
def _load_pipeline_config(
cls,
@@ -1759,8 +1717,7 @@ class ModularPipeline(ConfigMixin, PushToHubMixin):
logger.debug(" try to determine the modular pipeline class from model_index.json")
standard_pipeline_class = _get_pipeline_class(cls, config=config_dict)
model_name = _get_model(standard_pipeline_class.__name__)
map_fn = MODULAR_PIPELINE_MAPPING.get(model_name, _create_default_map_fn("ModularPipeline"))
pipeline_class_name = map_fn(config_dict)
pipeline_class_name = MODULAR_PIPELINE_MAPPING.get(model_name, ModularPipeline.__name__)
diffusers_module = importlib.import_module("diffusers")
pipeline_class = getattr(diffusers_module, pipeline_class_name)
else:
@@ -1831,15 +1788,7 @@ class ModularPipeline(ConfigMixin, PushToHubMixin):
Returns:
- The docstring of the pipeline blocks
"""
return self._blocks.doc
@property
def blocks(self) -> ModularPipelineBlocks:
"""
Returns:
- A copy of the pipeline blocks
"""
return deepcopy(self._blocks)
return self.blocks.doc
def register_components(self, **kwargs):
"""
@@ -2575,7 +2524,7 @@ class ModularPipeline(ConfigMixin, PushToHubMixin):
)
def set_progress_bar_config(self, **kwargs):
for sub_block_name, sub_block in self._blocks.sub_blocks.items():
for sub_block_name, sub_block in self.blocks.sub_blocks.items():
if hasattr(sub_block, "set_progress_bar_config"):
sub_block.set_progress_bar_config(**kwargs)
@@ -2629,7 +2578,7 @@ class ModularPipeline(ConfigMixin, PushToHubMixin):
# Add inputs to state, using defaults if not provided in the kwargs or the state
# if same input already in the state, will override it if provided in the kwargs
for expected_input_param in self._blocks.inputs:
for expected_input_param in self.blocks.inputs:
name = expected_input_param.name
default = expected_input_param.default
kwargs_type = expected_input_param.kwargs_type
@@ -2648,9 +2597,9 @@ class ModularPipeline(ConfigMixin, PushToHubMixin):
# Run the pipeline
with torch.no_grad():
try:
_, state = self._blocks(self, state)
_, state = self.blocks(self, state)
except Exception:
error_msg = f"Error in block: ({self._blocks.__class__.__name__}):\n"
error_msg = f"Error in block: ({self.blocks.__class__.__name__}):\n"
logger.error(error_msg)
raise

View File

@@ -21,16 +21,16 @@ except OptionalDependencyNotAvailable:
_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
else:
_import_structure["modular_blocks_wan"] = ["WanBlocks"]
_import_structure["modular_blocks_wan22"] = ["Wan22Blocks"]
_import_structure["modular_blocks_wan22_i2v"] = ["Wan22Image2VideoBlocks"]
_import_structure["modular_blocks_wan_i2v"] = ["WanImage2VideoAutoBlocks"]
_import_structure["modular_pipeline"] = [
"Wan22Image2VideoModularPipeline",
"Wan22ModularPipeline",
"WanImage2VideoModularPipeline",
"WanModularPipeline",
_import_structure["decoders"] = ["WanImageVaeDecoderStep"]
_import_structure["encoders"] = ["WanTextEncoderStep"]
_import_structure["modular_blocks"] = [
"ALL_BLOCKS",
"Wan22AutoBlocks",
"WanAutoBlocks",
"WanAutoImageEncoderStep",
"WanAutoVaeImageEncoderStep",
]
_import_structure["modular_pipeline"] = ["WanModularPipeline"]
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
try:
@@ -39,16 +39,16 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .modular_blocks_wan import WanBlocks
from .modular_blocks_wan22 import Wan22Blocks
from .modular_blocks_wan22_i2v import Wan22Image2VideoBlocks
from .modular_blocks_wan_i2v import WanImage2VideoAutoBlocks
from .modular_pipeline import (
Wan22Image2VideoModularPipeline,
Wan22ModularPipeline,
WanImage2VideoModularPipeline,
WanModularPipeline,
from .decoders import WanImageVaeDecoderStep
from .encoders import WanTextEncoderStep
from .modular_blocks import (
ALL_BLOCKS,
Wan22AutoBlocks,
WanAutoBlocks,
WanAutoImageEncoderStep,
WanAutoVaeImageEncoderStep,
)
from .modular_pipeline import WanModularPipeline
else:
import sys

View File

@@ -280,7 +280,7 @@ class WanAdditionalInputsStep(ModularPipelineBlocks):
def __init__(
self,
image_latent_inputs: List[str] = ["image_condition_latents"],
image_latent_inputs: List[str] = ["first_frame_latents"],
additional_batch_inputs: List[str] = [],
):
"""Initialize a configurable step that standardizes the inputs for the denoising step. It:\n"
@@ -294,16 +294,20 @@ class WanAdditionalInputsStep(ModularPipelineBlocks):
Args:
image_latent_inputs (List[str], optional): Names of image latent tensors to process.
In additional to adjust batch size of these inputs, they will be used to determine height/width. Can be
a single string or list of strings. Defaults to ["image_condition_latents"].
a single string or list of strings. Defaults to ["first_frame_latents"].
additional_batch_inputs (List[str], optional):
Names of additional conditional input tensors to expand batch size. These tensors will only have their
batch dimensions adjusted to match the final batch size. Can be a single string or list of strings.
Defaults to [].
Examples:
# Configure to process image_condition_latents (default behavior) WanAdditionalInputsStep() # Configure to
process image latents and additional batch inputs WanAdditionalInputsStep(
image_latent_inputs=["image_condition_latents"], additional_batch_inputs=["image_embeds"]
# Configure to process first_frame_latents (default behavior) WanAdditionalInputsStep()
# Configure to process multiple image latent inputs
WanAdditionalInputsStep(image_latent_inputs=["first_frame_latents", "last_frame_latents"])
# Configure to process image latents and additional batch inputs WanAdditionalInputsStep(
image_latent_inputs=["first_frame_latents"], additional_batch_inputs=["image_embeds"]
)
"""
if not isinstance(image_latent_inputs, list):
@@ -553,3 +557,81 @@ class WanPrepareLatentsStep(ModularPipelineBlocks):
self.set_block_state(state, block_state)
return components, state
class WanPrepareFirstFrameLatentsStep(ModularPipelineBlocks):
model_name = "wan"
@property
def description(self) -> str:
return "step that prepares the masked first frame latents and add it to the latent condition"
@property
def inputs(self) -> List[InputParam]:
return [
InputParam("first_frame_latents", type_hint=Optional[torch.Tensor]),
InputParam("num_frames", type_hint=int),
]
def __call__(self, components: WanModularPipeline, state: PipelineState) -> PipelineState:
block_state = self.get_block_state(state)
batch_size, _, _, latent_height, latent_width = block_state.first_frame_latents.shape
mask_lat_size = torch.ones(batch_size, 1, block_state.num_frames, latent_height, latent_width)
mask_lat_size[:, :, list(range(1, block_state.num_frames))] = 0
first_frame_mask = mask_lat_size[:, :, 0:1]
first_frame_mask = torch.repeat_interleave(
first_frame_mask, dim=2, repeats=components.vae_scale_factor_temporal
)
mask_lat_size = torch.concat([first_frame_mask, mask_lat_size[:, :, 1:, :]], dim=2)
mask_lat_size = mask_lat_size.view(
batch_size, -1, components.vae_scale_factor_temporal, latent_height, latent_width
)
mask_lat_size = mask_lat_size.transpose(1, 2)
mask_lat_size = mask_lat_size.to(block_state.first_frame_latents.device)
block_state.first_frame_latents = torch.concat([mask_lat_size, block_state.first_frame_latents], dim=1)
self.set_block_state(state, block_state)
return components, state
class WanPrepareFirstLastFrameLatentsStep(ModularPipelineBlocks):
model_name = "wan"
@property
def description(self) -> str:
return "step that prepares the masked latents with first and last frames and add it to the latent condition"
@property
def inputs(self) -> List[InputParam]:
return [
InputParam("first_last_frame_latents", type_hint=Optional[torch.Tensor]),
InputParam("num_frames", type_hint=int),
]
def __call__(self, components: WanModularPipeline, state: PipelineState) -> PipelineState:
block_state = self.get_block_state(state)
batch_size, _, _, latent_height, latent_width = block_state.first_last_frame_latents.shape
mask_lat_size = torch.ones(batch_size, 1, block_state.num_frames, latent_height, latent_width)
mask_lat_size[:, :, list(range(1, block_state.num_frames - 1))] = 0
first_frame_mask = mask_lat_size[:, :, 0:1]
first_frame_mask = torch.repeat_interleave(
first_frame_mask, dim=2, repeats=components.vae_scale_factor_temporal
)
mask_lat_size = torch.concat([first_frame_mask, mask_lat_size[:, :, 1:, :]], dim=2)
mask_lat_size = mask_lat_size.view(
batch_size, -1, components.vae_scale_factor_temporal, latent_height, latent_width
)
mask_lat_size = mask_lat_size.transpose(1, 2)
mask_lat_size = mask_lat_size.to(block_state.first_last_frame_latents.device)
block_state.first_last_frame_latents = torch.concat(
[mask_lat_size, block_state.first_last_frame_latents], dim=1
)
self.set_block_state(state, block_state)
return components, state

View File

@@ -29,7 +29,7 @@ from ..modular_pipeline_utils import ComponentSpec, InputParam, OutputParam
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class WanVaeDecoderStep(ModularPipelineBlocks):
class WanImageVaeDecoderStep(ModularPipelineBlocks):
model_name = "wan"
@property
@@ -56,10 +56,7 @@ class WanVaeDecoderStep(ModularPipelineBlocks):
required=True,
type_hint=torch.Tensor,
description="The denoised latents from the denoising step",
),
InputParam(
"output_type", default="np", type_hint=str, description="The output type of the decoded videos"
),
)
]
@property
@@ -90,8 +87,7 @@ class WanVaeDecoderStep(ModularPipelineBlocks):
latents = latents.to(vae_dtype)
block_state.videos = components.vae.decode(latents, return_dict=False)[0]
output_type = getattr(block_state, "output_type", "np")
block_state.videos = components.video_processor.postprocess_video(block_state.videos, output_type=output_type)
block_state.videos = components.video_processor.postprocess_video(block_state.videos, output_type="np")
self.set_block_state(state, block_state)

View File

@@ -89,10 +89,52 @@ class WanImage2VideoLoopBeforeDenoiser(ModularPipelineBlocks):
description="The initial latents to use for the denoising process. Can be generated in prepare_latent step.",
),
InputParam(
"image_condition_latents",
"first_frame_latents",
required=True,
type_hint=torch.Tensor,
description="The image condition latents to use for the denoising process. Can be generated in prepare_first_frame_latents/prepare_first_last_frame_latents step.",
description="The first frame latents to use for the denoising process. Can be generated in prepare_first_frame_latents step.",
),
InputParam(
"dtype",
required=True,
type_hint=torch.dtype,
description="The dtype of the model inputs. Can be generated in input step.",
),
]
@torch.no_grad()
def __call__(self, components: WanModularPipeline, block_state: BlockState, i: int, t: torch.Tensor):
block_state.latent_model_input = torch.cat([block_state.latents, block_state.first_frame_latents], dim=1).to(
block_state.dtype
)
return components, block_state
class WanFLF2VLoopBeforeDenoiser(ModularPipelineBlocks):
model_name = "wan"
@property
def description(self) -> str:
return (
"step within the denoising loop that prepares the latent input for the denoiser. "
"This block should be used to compose the `sub_blocks` attribute of a `LoopSequentialPipelineBlocks` "
"object (e.g. `WanDenoiseLoopWrapper`)"
)
@property
def inputs(self) -> List[InputParam]:
return [
InputParam(
"latents",
required=True,
type_hint=torch.Tensor,
description="The initial latents to use for the denoising process. Can be generated in prepare_latent step.",
),
InputParam(
"first_last_frame_latents",
required=True,
type_hint=torch.Tensor,
description="The first and last frame latents to use for the denoising process. Can be generated in prepare_first_last_frame_latents step.",
),
InputParam(
"dtype",
@@ -105,7 +147,7 @@ class WanImage2VideoLoopBeforeDenoiser(ModularPipelineBlocks):
@torch.no_grad()
def __call__(self, components: WanModularPipeline, block_state: BlockState, i: int, t: torch.Tensor):
block_state.latent_model_input = torch.cat(
[block_state.latents, block_state.image_condition_latents], dim=1
[block_state.latents, block_state.first_last_frame_latents], dim=1
).to(block_state.dtype)
return components, block_state
@@ -542,3 +584,29 @@ class Wan22Image2VideoDenoiseStep(WanDenoiseLoopWrapper):
" - `WanLoopAfterDenoiser`\n"
"This block supports image-to-video tasks for Wan2.2."
)
class WanFLF2VDenoiseStep(WanDenoiseLoopWrapper):
block_classes = [
WanFLF2VLoopBeforeDenoiser,
WanLoopDenoiser(
guider_input_fields={
"encoder_hidden_states": ("prompt_embeds", "negative_prompt_embeds"),
"encoder_hidden_states_image": "image_embeds",
}
),
WanLoopAfterDenoiser,
]
block_names = ["before_denoiser", "denoiser", "after_denoiser"]
@property
def description(self) -> str:
return (
"Denoise step that iteratively denoise the latents. \n"
"Its loop logic is defined in `WanDenoiseLoopWrapper.__call__` method \n"
"At each iteration, it runs blocks defined in `sub_blocks` sequentially:\n"
" - `WanFLF2VLoopBeforeDenoiser`\n"
" - `WanLoopDenoiser`\n"
" - `WanLoopAfterDenoiser`\n"
"This block supports FLF2V tasks for wan2.1."
)

View File

@@ -468,7 +468,7 @@ class WanFirstLastFrameImageEncoderStep(ModularPipelineBlocks):
return components, state
class WanVaeEncoderStep(ModularPipelineBlocks):
class WanVaeImageEncoderStep(ModularPipelineBlocks):
model_name = "wan"
@property
@@ -493,7 +493,7 @@ class WanVaeEncoderStep(ModularPipelineBlocks):
InputParam("resized_image", type_hint=PIL.Image.Image, required=True),
InputParam("height"),
InputParam("width"),
InputParam("num_frames", type_hint=int, default=81),
InputParam("num_frames"),
InputParam("generator"),
]
@@ -564,51 +564,7 @@ class WanVaeEncoderStep(ModularPipelineBlocks):
return components, state
class WanPrepareFirstFrameLatentsStep(ModularPipelineBlocks):
model_name = "wan"
@property
def description(self) -> str:
return "step that prepares the masked first frame latents and add it to the latent condition"
@property
def inputs(self) -> List[InputParam]:
return [
InputParam("first_frame_latents", type_hint=Optional[torch.Tensor]),
InputParam("num_frames", required=True),
]
@property
def intermediate_outputs(self) -> List[OutputParam]:
return [
OutputParam("image_condition_latents", type_hint=Optional[torch.Tensor]),
]
def __call__(self, components: WanModularPipeline, state: PipelineState) -> PipelineState:
block_state = self.get_block_state(state)
batch_size, _, _, latent_height, latent_width = block_state.first_frame_latents.shape
mask_lat_size = torch.ones(batch_size, 1, block_state.num_frames, latent_height, latent_width)
mask_lat_size[:, :, list(range(1, block_state.num_frames))] = 0
first_frame_mask = mask_lat_size[:, :, 0:1]
first_frame_mask = torch.repeat_interleave(
first_frame_mask, dim=2, repeats=components.vae_scale_factor_temporal
)
mask_lat_size = torch.concat([first_frame_mask, mask_lat_size[:, :, 1:, :]], dim=2)
mask_lat_size = mask_lat_size.view(
batch_size, -1, components.vae_scale_factor_temporal, latent_height, latent_width
)
mask_lat_size = mask_lat_size.transpose(1, 2)
mask_lat_size = mask_lat_size.to(block_state.first_frame_latents.device)
block_state.image_condition_latents = torch.concat([mask_lat_size, block_state.first_frame_latents], dim=1)
self.set_block_state(state, block_state)
return components, state
class WanFirstLastFrameVaeEncoderStep(ModularPipelineBlocks):
class WanFirstLastFrameVaeImageEncoderStep(ModularPipelineBlocks):
model_name = "wan"
@property
@@ -634,7 +590,7 @@ class WanFirstLastFrameVaeEncoderStep(ModularPipelineBlocks):
InputParam("resized_last_image", type_hint=PIL.Image.Image, required=True),
InputParam("height"),
InputParam("width"),
InputParam("num_frames", type_hint=int, default=81),
InputParam("num_frames"),
InputParam("generator"),
]
@@ -711,49 +667,3 @@ class WanFirstLastFrameVaeEncoderStep(ModularPipelineBlocks):
self.set_block_state(state, block_state)
return components, state
class WanPrepareFirstLastFrameLatentsStep(ModularPipelineBlocks):
model_name = "wan"
@property
def description(self) -> str:
return "step that prepares the masked latents with first and last frames and add it to the latent condition"
@property
def inputs(self) -> List[InputParam]:
return [
InputParam("first_last_frame_latents", type_hint=Optional[torch.Tensor]),
InputParam("num_frames", type_hint=int, required=True),
]
@property
def intermediate_outputs(self) -> List[OutputParam]:
return [
OutputParam("image_condition_latents", type_hint=Optional[torch.Tensor]),
]
def __call__(self, components: WanModularPipeline, state: PipelineState) -> PipelineState:
block_state = self.get_block_state(state)
batch_size, _, _, latent_height, latent_width = block_state.first_last_frame_latents.shape
mask_lat_size = torch.ones(batch_size, 1, block_state.num_frames, latent_height, latent_width)
mask_lat_size[:, :, list(range(1, block_state.num_frames - 1))] = 0
first_frame_mask = mask_lat_size[:, :, 0:1]
first_frame_mask = torch.repeat_interleave(
first_frame_mask, dim=2, repeats=components.vae_scale_factor_temporal
)
mask_lat_size = torch.concat([first_frame_mask, mask_lat_size[:, :, 1:, :]], dim=2)
mask_lat_size = mask_lat_size.view(
batch_size, -1, components.vae_scale_factor_temporal, latent_height, latent_width
)
mask_lat_size = mask_lat_size.transpose(1, 2)
mask_lat_size = mask_lat_size.to(block_state.first_last_frame_latents.device)
block_state.image_condition_latents = torch.concat(
[mask_lat_size, block_state.first_last_frame_latents], dim=1
)
self.set_block_state(state, block_state)
return components, state

View File

@@ -0,0 +1,474 @@
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ...utils import logging
from ..modular_pipeline import AutoPipelineBlocks, SequentialPipelineBlocks
from ..modular_pipeline_utils import InsertableDict
from .before_denoise import (
WanAdditionalInputsStep,
WanPrepareFirstFrameLatentsStep,
WanPrepareFirstLastFrameLatentsStep,
WanPrepareLatentsStep,
WanSetTimestepsStep,
WanTextInputStep,
)
from .decoders import WanImageVaeDecoderStep
from .denoise import (
Wan22DenoiseStep,
Wan22Image2VideoDenoiseStep,
WanDenoiseStep,
WanFLF2VDenoiseStep,
WanImage2VideoDenoiseStep,
)
from .encoders import (
WanFirstLastFrameImageEncoderStep,
WanFirstLastFrameVaeImageEncoderStep,
WanImageCropResizeStep,
WanImageEncoderStep,
WanImageResizeStep,
WanTextEncoderStep,
WanVaeImageEncoderStep,
)
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
# wan2.1
# wan2.1: text2vid
class WanCoreDenoiseStep(SequentialPipelineBlocks):
block_classes = [
WanTextInputStep,
WanSetTimestepsStep,
WanPrepareLatentsStep,
WanDenoiseStep,
]
block_names = ["input", "set_timesteps", "prepare_latents", "denoise"]
@property
def description(self):
return (
"denoise block that takes encoded conditions and runs the denoising process.\n"
+ "This is a sequential pipeline blocks:\n"
+ " - `WanTextInputStep` is used to adjust the batch size of the model inputs\n"
+ " - `WanSetTimestepsStep` is used to set the timesteps\n"
+ " - `WanPrepareLatentsStep` is used to prepare the latents\n"
+ " - `WanDenoiseStep` is used to denoise the latents\n"
)
# wan2.1: image2video
## image encoder
class WanImage2VideoImageEncoderStep(SequentialPipelineBlocks):
model_name = "wan"
block_classes = [WanImageResizeStep, WanImageEncoderStep]
block_names = ["image_resize", "image_encoder"]
@property
def description(self):
return "Image2Video Image Encoder step that resize the image and encode the image to generate the image embeddings"
## vae encoder
class WanImage2VideoVaeImageEncoderStep(SequentialPipelineBlocks):
model_name = "wan"
block_classes = [WanImageResizeStep, WanVaeImageEncoderStep]
block_names = ["image_resize", "vae_encoder"]
@property
def description(self):
return "Image2Video Vae Image Encoder step that resize the image and encode the first frame image to its latent representation"
## denoise
class WanImage2VideoCoreDenoiseStep(SequentialPipelineBlocks):
block_classes = [
WanTextInputStep,
WanAdditionalInputsStep(image_latent_inputs=["first_frame_latents"]),
WanSetTimestepsStep,
WanPrepareLatentsStep,
WanPrepareFirstFrameLatentsStep,
WanImage2VideoDenoiseStep,
]
block_names = [
"input",
"additional_inputs",
"set_timesteps",
"prepare_latents",
"prepare_first_frame_latents",
"denoise",
]
@property
def description(self):
return (
"denoise block that takes encoded text and image latent conditions and runs the denoising process.\n"
+ "This is a sequential pipeline blocks:\n"
+ " - `WanTextInputStep` is used to adjust the batch size of the model inputs\n"
+ " - `WanAdditionalInputsStep` is used to adjust the batch size of the latent conditions\n"
+ " - `WanSetTimestepsStep` is used to set the timesteps\n"
+ " - `WanPrepareLatentsStep` is used to prepare the latents\n"
+ " - `WanPrepareFirstFrameLatentsStep` is used to prepare the first frame latent conditions\n"
+ " - `WanImage2VideoDenoiseStep` is used to denoise the latents\n"
)
# wan2.1: FLF2v
## image encoder
class WanFLF2VImageEncoderStep(SequentialPipelineBlocks):
model_name = "wan"
block_classes = [WanImageResizeStep, WanImageCropResizeStep, WanFirstLastFrameImageEncoderStep]
block_names = ["image_resize", "last_image_resize", "image_encoder"]
@property
def description(self):
return "FLF2V Image Encoder step that resize and encode and encode the first and last frame images to generate the image embeddings"
## vae encoder
class WanFLF2VVaeImageEncoderStep(SequentialPipelineBlocks):
model_name = "wan"
block_classes = [WanImageResizeStep, WanImageCropResizeStep, WanFirstLastFrameVaeImageEncoderStep]
block_names = ["image_resize", "last_image_resize", "vae_encoder"]
@property
def description(self):
return "FLF2V Vae Image Encoder step that resize and encode and encode the first and last frame images to generate the latent conditions"
## denoise
class WanFLF2VCoreDenoiseStep(SequentialPipelineBlocks):
block_classes = [
WanTextInputStep,
WanAdditionalInputsStep(image_latent_inputs=["first_last_frame_latents"]),
WanSetTimestepsStep,
WanPrepareLatentsStep,
WanPrepareFirstLastFrameLatentsStep,
WanFLF2VDenoiseStep,
]
block_names = [
"input",
"additional_inputs",
"set_timesteps",
"prepare_latents",
"prepare_first_last_frame_latents",
"denoise",
]
@property
def description(self):
return (
"denoise block that takes encoded text and image latent conditions and runs the denoising process.\n"
+ "This is a sequential pipeline blocks:\n"
+ " - `WanTextInputStep` is used to adjust the batch size of the model inputs\n"
+ " - `WanAdditionalInputsStep` is used to adjust the batch size of the latent conditions\n"
+ " - `WanSetTimestepsStep` is used to set the timesteps\n"
+ " - `WanPrepareLatentsStep` is used to prepare the latents\n"
+ " - `WanPrepareFirstLastFrameLatentsStep` is used to prepare the latent conditions\n"
+ " - `WanImage2VideoDenoiseStep` is used to denoise the latents\n"
)
# wan2.1: auto blocks
## image encoder
class WanAutoImageEncoderStep(AutoPipelineBlocks):
block_classes = [WanFLF2VImageEncoderStep, WanImage2VideoImageEncoderStep]
block_names = ["flf2v_image_encoder", "image2video_image_encoder"]
block_trigger_inputs = ["last_image", "image"]
@property
def description(self):
return (
"Image Encoder step that encode the image to generate the image embeddings"
+ "This is an auto pipeline block that works for image2video tasks."
+ " - `WanFLF2VImageEncoderStep` (flf2v) is used when `last_image` is provided."
+ " - `WanImage2VideoImageEncoderStep` (image2video) is used when `image` is provided."
+ " - if `last_image` or `image` is not provided, step will be skipped."
)
## vae encoder
class WanAutoVaeImageEncoderStep(AutoPipelineBlocks):
block_classes = [WanFLF2VVaeImageEncoderStep, WanImage2VideoVaeImageEncoderStep]
block_names = ["flf2v_vae_encoder", "image2video_vae_encoder"]
block_trigger_inputs = ["last_image", "image"]
@property
def description(self):
return (
"Vae Image Encoder step that encode the image to generate the image latents"
+ "This is an auto pipeline block that works for image2video tasks."
+ " - `WanFLF2VVaeImageEncoderStep` (flf2v) is used when `last_image` is provided."
+ " - `WanImage2VideoVaeImageEncoderStep` (image2video) is used when `image` is provided."
+ " - if `last_image` or `image` is not provided, step will be skipped."
)
## denoise
class WanAutoDenoiseStep(AutoPipelineBlocks):
block_classes = [
WanFLF2VCoreDenoiseStep,
WanImage2VideoCoreDenoiseStep,
WanCoreDenoiseStep,
]
block_names = ["flf2v", "image2video", "text2video"]
block_trigger_inputs = ["first_last_frame_latents", "first_frame_latents", None]
@property
def description(self) -> str:
return (
"Denoise step that iteratively denoise the latents. "
"This is a auto pipeline block that works for text2video and image2video tasks."
" - `WanCoreDenoiseStep` (text2video) for text2vid tasks."
" - `WanCoreImage2VideoCoreDenoiseStep` (image2video) for image2video tasks."
+ " - if `first_frame_latents` is provided, `WanCoreImage2VideoDenoiseStep` will be used.\n"
+ " - if `first_frame_latents` is not provided, `WanCoreDenoiseStep` will be used.\n"
)
# auto pipeline blocks
class WanAutoBlocks(SequentialPipelineBlocks):
block_classes = [
WanTextEncoderStep,
WanAutoImageEncoderStep,
WanAutoVaeImageEncoderStep,
WanAutoDenoiseStep,
WanImageVaeDecoderStep,
]
block_names = [
"text_encoder",
"image_encoder",
"vae_encoder",
"denoise",
"decode",
]
@property
def description(self):
return (
"Auto Modular pipeline for text-to-video using Wan.\n"
+ "- for text-to-video generation, all you need to provide is `prompt`"
)
# wan22
# wan2.2: text2vid
## denoise
class Wan22CoreDenoiseStep(SequentialPipelineBlocks):
block_classes = [
WanTextInputStep,
WanSetTimestepsStep,
WanPrepareLatentsStep,
Wan22DenoiseStep,
]
block_names = ["input", "set_timesteps", "prepare_latents", "denoise"]
@property
def description(self):
return (
"denoise block that takes encoded conditions and runs the denoising process.\n"
+ "This is a sequential pipeline blocks:\n"
+ " - `WanTextInputStep` is used to adjust the batch size of the model inputs\n"
+ " - `WanSetTimestepsStep` is used to set the timesteps\n"
+ " - `WanPrepareLatentsStep` is used to prepare the latents\n"
+ " - `Wan22DenoiseStep` is used to denoise the latents in wan2.2\n"
)
# wan2.2: image2video
## denoise
class Wan22Image2VideoCoreDenoiseStep(SequentialPipelineBlocks):
block_classes = [
WanTextInputStep,
WanAdditionalInputsStep(image_latent_inputs=["first_frame_latents"]),
WanSetTimestepsStep,
WanPrepareLatentsStep,
WanPrepareFirstFrameLatentsStep,
Wan22Image2VideoDenoiseStep,
]
block_names = [
"input",
"additional_inputs",
"set_timesteps",
"prepare_latents",
"prepare_first_frame_latents",
"denoise",
]
@property
def description(self):
return (
"denoise block that takes encoded text and image latent conditions and runs the denoising process.\n"
+ "This is a sequential pipeline blocks:\n"
+ " - `WanTextInputStep` is used to adjust the batch size of the model inputs\n"
+ " - `WanAdditionalInputsStep` is used to adjust the batch size of the latent conditions\n"
+ " - `WanSetTimestepsStep` is used to set the timesteps\n"
+ " - `WanPrepareLatentsStep` is used to prepare the latents\n"
+ " - `WanPrepareFirstFrameLatentsStep` is used to prepare the first frame latent conditions\n"
+ " - `Wan22Image2VideoDenoiseStep` is used to denoise the latents in wan2.2\n"
)
class Wan22AutoDenoiseStep(AutoPipelineBlocks):
block_classes = [
Wan22Image2VideoCoreDenoiseStep,
Wan22CoreDenoiseStep,
]
block_names = ["image2video", "text2video"]
block_trigger_inputs = ["first_frame_latents", None]
@property
def description(self) -> str:
return (
"Denoise step that iteratively denoise the latents. "
"This is a auto pipeline block that works for text2video and image2video tasks."
" - `Wan22Image2VideoCoreDenoiseStep` (image2video) for image2video tasks."
" - `Wan22CoreDenoiseStep` (text2video) for text2vid tasks."
+ " - if `first_frame_latents` is provided, `Wan22Image2VideoCoreDenoiseStep` will be used.\n"
+ " - if `first_frame_latents` is not provided, `Wan22CoreDenoiseStep` will be used.\n"
)
class Wan22AutoBlocks(SequentialPipelineBlocks):
block_classes = [
WanTextEncoderStep,
WanAutoVaeImageEncoderStep,
Wan22AutoDenoiseStep,
WanImageVaeDecoderStep,
]
block_names = [
"text_encoder",
"vae_encoder",
"denoise",
"decode",
]
@property
def description(self):
return (
"Auto Modular pipeline for text-to-video using Wan2.2.\n"
+ "- for text-to-video generation, all you need to provide is `prompt`"
)
# presets for wan2.1 and wan2.2
# YiYi Notes: should we move these to doc?
# wan2.1
TEXT2VIDEO_BLOCKS = InsertableDict(
[
("text_encoder", WanTextEncoderStep),
("input", WanTextInputStep),
("set_timesteps", WanSetTimestepsStep),
("prepare_latents", WanPrepareLatentsStep),
("denoise", WanDenoiseStep),
("decode", WanImageVaeDecoderStep),
]
)
IMAGE2VIDEO_BLOCKS = InsertableDict(
[
("image_resize", WanImageResizeStep),
("image_encoder", WanImage2VideoImageEncoderStep),
("vae_encoder", WanImage2VideoVaeImageEncoderStep),
("input", WanTextInputStep),
("additional_inputs", WanAdditionalInputsStep(image_latent_inputs=["first_frame_latents"])),
("set_timesteps", WanSetTimestepsStep),
("prepare_latents", WanPrepareLatentsStep),
("prepare_first_frame_latents", WanPrepareFirstFrameLatentsStep),
("denoise", WanImage2VideoDenoiseStep),
("decode", WanImageVaeDecoderStep),
]
)
FLF2V_BLOCKS = InsertableDict(
[
("image_resize", WanImageResizeStep),
("last_image_resize", WanImageCropResizeStep),
("image_encoder", WanFLF2VImageEncoderStep),
("vae_encoder", WanFLF2VVaeImageEncoderStep),
("input", WanTextInputStep),
("additional_inputs", WanAdditionalInputsStep(image_latent_inputs=["first_last_frame_latents"])),
("set_timesteps", WanSetTimestepsStep),
("prepare_latents", WanPrepareLatentsStep),
("prepare_first_last_frame_latents", WanPrepareFirstLastFrameLatentsStep),
("denoise", WanFLF2VDenoiseStep),
("decode", WanImageVaeDecoderStep),
]
)
AUTO_BLOCKS = InsertableDict(
[
("text_encoder", WanTextEncoderStep),
("image_encoder", WanAutoImageEncoderStep),
("vae_encoder", WanAutoVaeImageEncoderStep),
("denoise", WanAutoDenoiseStep),
("decode", WanImageVaeDecoderStep),
]
)
# wan2.2 presets
TEXT2VIDEO_BLOCKS_WAN22 = InsertableDict(
[
("text_encoder", WanTextEncoderStep),
("input", WanTextInputStep),
("set_timesteps", WanSetTimestepsStep),
("prepare_latents", WanPrepareLatentsStep),
("denoise", Wan22DenoiseStep),
("decode", WanImageVaeDecoderStep),
]
)
IMAGE2VIDEO_BLOCKS_WAN22 = InsertableDict(
[
("image_resize", WanImageResizeStep),
("vae_encoder", WanImage2VideoVaeImageEncoderStep),
("input", WanTextInputStep),
("set_timesteps", WanSetTimestepsStep),
("prepare_latents", WanPrepareLatentsStep),
("denoise", Wan22DenoiseStep),
("decode", WanImageVaeDecoderStep),
]
)
AUTO_BLOCKS_WAN22 = InsertableDict(
[
("text_encoder", WanTextEncoderStep),
("vae_encoder", WanAutoVaeImageEncoderStep),
("denoise", Wan22AutoDenoiseStep),
("decode", WanImageVaeDecoderStep),
]
)
# presets all blocks (wan and wan22)
ALL_BLOCKS = {
"wan2.1": {
"text2video": TEXT2VIDEO_BLOCKS,
"image2video": IMAGE2VIDEO_BLOCKS,
"flf2v": FLF2V_BLOCKS,
"auto": AUTO_BLOCKS,
},
"wan2.2": {
"text2video": TEXT2VIDEO_BLOCKS_WAN22,
"image2video": IMAGE2VIDEO_BLOCKS_WAN22,
"auto": AUTO_BLOCKS_WAN22,
},
}

View File

@@ -1,83 +0,0 @@
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ...utils import logging
from ..modular_pipeline import SequentialPipelineBlocks
from .before_denoise import (
WanPrepareLatentsStep,
WanSetTimestepsStep,
WanTextInputStep,
)
from .decoders import WanVaeDecoderStep
from .denoise import (
WanDenoiseStep,
)
from .encoders import (
WanTextEncoderStep,
)
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
# ====================
# 1. DENOISE
# ====================
# inputs(text) -> set_timesteps -> prepare_latents -> denoise
class WanCoreDenoiseStep(SequentialPipelineBlocks):
model_name = "wan"
block_classes = [
WanTextInputStep,
WanSetTimestepsStep,
WanPrepareLatentsStep,
WanDenoiseStep,
]
block_names = ["input", "set_timesteps", "prepare_latents", "denoise"]
@property
def description(self):
return (
"denoise block that takes encoded conditions and runs the denoising process.\n"
+ "This is a sequential pipeline blocks:\n"
+ " - `WanTextInputStep` is used to adjust the batch size of the model inputs\n"
+ " - `WanSetTimestepsStep` is used to set the timesteps\n"
+ " - `WanPrepareLatentsStep` is used to prepare the latents\n"
+ " - `WanDenoiseStep` is used to denoise the latents\n"
)
# ====================
# 2. BLOCKS (Wan2.1 text2video)
# ====================
class WanBlocks(SequentialPipelineBlocks):
model_name = "wan"
block_classes = [
WanTextEncoderStep,
WanCoreDenoiseStep,
WanVaeDecoderStep,
]
block_names = ["text_encoder", "denoise", "decode"]
@property
def description(self):
return (
"Modular pipeline blocks for Wan2.1.\n"
+ "- `WanTextEncoderStep` is used to encode the text\n"
+ "- `WanCoreDenoiseStep` is used to denoise the latents\n"
+ "- `WanVaeDecoderStep` is used to decode the latents to images"
)

View File

@@ -1,88 +0,0 @@
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ...utils import logging
from ..modular_pipeline import SequentialPipelineBlocks
from .before_denoise import (
WanPrepareLatentsStep,
WanSetTimestepsStep,
WanTextInputStep,
)
from .decoders import WanVaeDecoderStep
from .denoise import (
Wan22DenoiseStep,
)
from .encoders import (
WanTextEncoderStep,
)
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
# ====================
# 1. DENOISE
# ====================
# inputs(text) -> set_timesteps -> prepare_latents -> denoise
class Wan22CoreDenoiseStep(SequentialPipelineBlocks):
model_name = "wan"
block_classes = [
WanTextInputStep,
WanSetTimestepsStep,
WanPrepareLatentsStep,
Wan22DenoiseStep,
]
block_names = ["input", "set_timesteps", "prepare_latents", "denoise"]
@property
def description(self):
return (
"denoise block that takes encoded conditions and runs the denoising process.\n"
+ "This is a sequential pipeline blocks:\n"
+ " - `WanTextInputStep` is used to adjust the batch size of the model inputs\n"
+ " - `WanSetTimestepsStep` is used to set the timesteps\n"
+ " - `WanPrepareLatentsStep` is used to prepare the latents\n"
+ " - `Wan22DenoiseStep` is used to denoise the latents in wan2.2\n"
)
# ====================
# 2. BLOCKS (Wan2.2 text2video)
# ====================
class Wan22Blocks(SequentialPipelineBlocks):
model_name = "wan"
block_classes = [
WanTextEncoderStep,
Wan22CoreDenoiseStep,
WanVaeDecoderStep,
]
block_names = [
"text_encoder",
"denoise",
"decode",
]
@property
def description(self):
return (
"Modular pipeline for text-to-video using Wan2.2.\n"
+ " - `WanTextEncoderStep` encodes the text\n"
+ " - `Wan22CoreDenoiseStep` denoes the latents\n"
+ " - `WanVaeDecoderStep` decodes the latents to video frames\n"
)

View File

@@ -1,117 +0,0 @@
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ...utils import logging
from ..modular_pipeline import SequentialPipelineBlocks
from .before_denoise import (
WanAdditionalInputsStep,
WanPrepareLatentsStep,
WanSetTimestepsStep,
WanTextInputStep,
)
from .decoders import WanVaeDecoderStep
from .denoise import (
Wan22Image2VideoDenoiseStep,
)
from .encoders import (
WanImageResizeStep,
WanPrepareFirstFrameLatentsStep,
WanTextEncoderStep,
WanVaeEncoderStep,
)
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
# ====================
# 1. VAE ENCODER
# ====================
class WanImage2VideoVaeEncoderStep(SequentialPipelineBlocks):
model_name = "wan-i2v"
block_classes = [WanImageResizeStep, WanVaeEncoderStep, WanPrepareFirstFrameLatentsStep]
block_names = ["image_resize", "vae_encoder", "prepare_first_frame_latents"]
@property
def description(self):
return "Image2Video Vae Image Encoder step that resize the image and encode the first frame image to its latent representation"
# ====================
# 2. DENOISE
# ====================
# inputs (text + image_condition_latents) -> set_timesteps -> prepare_latents -> denoise (latents)
class Wan22Image2VideoCoreDenoiseStep(SequentialPipelineBlocks):
model_name = "wan-i2v"
block_classes = [
WanTextInputStep,
WanAdditionalInputsStep(image_latent_inputs=["image_condition_latents"]),
WanSetTimestepsStep,
WanPrepareLatentsStep,
Wan22Image2VideoDenoiseStep,
]
block_names = [
"input",
"additional_inputs",
"set_timesteps",
"prepare_latents",
"denoise",
]
@property
def description(self):
return (
"denoise block that takes encoded text and image latent conditions and runs the denoising process.\n"
+ "This is a sequential pipeline blocks:\n"
+ " - `WanTextInputStep` is used to adjust the batch size of the model inputs\n"
+ " - `WanAdditionalInputsStep` is used to adjust the batch size of the latent conditions\n"
+ " - `WanSetTimestepsStep` is used to set the timesteps\n"
+ " - `WanPrepareLatentsStep` is used to prepare the latents\n"
+ " - `Wan22Image2VideoDenoiseStep` is used to denoise the latents in wan2.2\n"
)
# ====================
# 3. BLOCKS (Wan2.2 Image2Video)
# ====================
class Wan22Image2VideoBlocks(SequentialPipelineBlocks):
model_name = "wan-i2v"
block_classes = [
WanTextEncoderStep,
WanImage2VideoVaeEncoderStep,
Wan22Image2VideoCoreDenoiseStep,
WanVaeDecoderStep,
]
block_names = [
"text_encoder",
"vae_encoder",
"denoise",
"decode",
]
@property
def description(self):
return (
"Modular pipeline for image-to-video using Wan2.2.\n"
+ " - `WanTextEncoderStep` encodes the text\n"
+ " - `WanImage2VideoVaeEncoderStep` encodes the image\n"
+ " - `Wan22Image2VideoCoreDenoiseStep` denoes the latents\n"
+ " - `WanVaeDecoderStep` decodes the latents to video frames\n"
)

View File

@@ -1,203 +0,0 @@
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ...utils import logging
from ..modular_pipeline import AutoPipelineBlocks, SequentialPipelineBlocks
from .before_denoise import (
WanAdditionalInputsStep,
WanPrepareLatentsStep,
WanSetTimestepsStep,
WanTextInputStep,
)
from .decoders import WanVaeDecoderStep
from .denoise import (
WanImage2VideoDenoiseStep,
)
from .encoders import (
WanFirstLastFrameImageEncoderStep,
WanFirstLastFrameVaeEncoderStep,
WanImageCropResizeStep,
WanImageEncoderStep,
WanImageResizeStep,
WanPrepareFirstFrameLatentsStep,
WanPrepareFirstLastFrameLatentsStep,
WanTextEncoderStep,
WanVaeEncoderStep,
)
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
# ====================
# 1. IMAGE ENCODER
# ====================
# wan2.1 I2V (first frame only)
class WanImage2VideoImageEncoderStep(SequentialPipelineBlocks):
model_name = "wan-i2v"
block_classes = [WanImageResizeStep, WanImageEncoderStep]
block_names = ["image_resize", "image_encoder"]
@property
def description(self):
return "Image2Video Image Encoder step that resize the image and encode the image to generate the image embeddings"
# wan2.1 FLF2V (first and last frame)
class WanFLF2VImageEncoderStep(SequentialPipelineBlocks):
model_name = "wan-i2v"
block_classes = [WanImageResizeStep, WanImageCropResizeStep, WanFirstLastFrameImageEncoderStep]
block_names = ["image_resize", "last_image_resize", "image_encoder"]
@property
def description(self):
return "FLF2V Image Encoder step that resize and encode and encode the first and last frame images to generate the image embeddings"
# wan2.1 Auto Image Encoder
class WanAutoImageEncoderStep(AutoPipelineBlocks):
block_classes = [WanFLF2VImageEncoderStep, WanImage2VideoImageEncoderStep]
block_names = ["flf2v_image_encoder", "image2video_image_encoder"]
block_trigger_inputs = ["last_image", "image"]
model_name = "wan-i2v"
@property
def description(self):
return (
"Image Encoder step that encode the image to generate the image embeddings"
+ "This is an auto pipeline block that works for image2video tasks."
+ " - `WanFLF2VImageEncoderStep` (flf2v) is used when `last_image` is provided."
+ " - `WanImage2VideoImageEncoderStep` (image2video) is used when `image` is provided."
+ " - if `last_image` or `image` is not provided, step will be skipped."
)
# ====================
# 2. VAE ENCODER
# ====================
# wan2.1 I2V (first frame only)
class WanImage2VideoVaeEncoderStep(SequentialPipelineBlocks):
model_name = "wan-i2v"
block_classes = [WanImageResizeStep, WanVaeEncoderStep, WanPrepareFirstFrameLatentsStep]
block_names = ["image_resize", "vae_encoder", "prepare_first_frame_latents"]
@property
def description(self):
return "Image2Video Vae Image Encoder step that resize the image and encode the first frame image to its latent representation"
# wan2.1 FLF2V (first and last frame)
class WanFLF2VVaeEncoderStep(SequentialPipelineBlocks):
model_name = "wan-i2v"
block_classes = [
WanImageResizeStep,
WanImageCropResizeStep,
WanFirstLastFrameVaeEncoderStep,
WanPrepareFirstLastFrameLatentsStep,
]
block_names = ["image_resize", "last_image_resize", "vae_encoder", "prepare_first_last_frame_latents"]
@property
def description(self):
return "FLF2V Vae Image Encoder step that resize and encode and encode the first and last frame images to generate the latent conditions"
# wan2.1 Auto Vae Encoder
class WanAutoVaeEncoderStep(AutoPipelineBlocks):
model_name = "wan-i2v"
block_classes = [WanFLF2VVaeEncoderStep, WanImage2VideoVaeEncoderStep]
block_names = ["flf2v_vae_encoder", "image2video_vae_encoder"]
block_trigger_inputs = ["last_image", "image"]
@property
def description(self):
return (
"Vae Image Encoder step that encode the image to generate the image latents"
+ "This is an auto pipeline block that works for image2video tasks."
+ " - `WanFLF2VVaeEncoderStep` (flf2v) is used when `last_image` is provided."
+ " - `WanImage2VideoVaeEncoderStep` (image2video) is used when `image` is provided."
+ " - if `last_image` or `image` is not provided, step will be skipped."
)
# ====================
# 3. DENOISE (inputs -> set_timesteps -> prepare_latents -> denoise)
# ====================
# wan2.1 I2V core denoise (support both I2V and FLF2V)
# inputs (text + image_condition_latents) -> set_timesteps -> prepare_latents -> denoise (latents)
class WanImage2VideoCoreDenoiseStep(SequentialPipelineBlocks):
model_name = "wan-i2v"
block_classes = [
WanTextInputStep,
WanAdditionalInputsStep(image_latent_inputs=["image_condition_latents"]),
WanSetTimestepsStep,
WanPrepareLatentsStep,
WanImage2VideoDenoiseStep,
]
block_names = [
"input",
"additional_inputs",
"set_timesteps",
"prepare_latents",
"denoise",
]
@property
def description(self):
return (
"denoise block that takes encoded text and image latent conditions and runs the denoising process.\n"
+ "This is a sequential pipeline blocks:\n"
+ " - `WanTextInputStep` is used to adjust the batch size of the model inputs\n"
+ " - `WanAdditionalInputsStep` is used to adjust the batch size of the latent conditions\n"
+ " - `WanSetTimestepsStep` is used to set the timesteps\n"
+ " - `WanPrepareLatentsStep` is used to prepare the latents\n"
+ " - `WanImage2VideoDenoiseStep` is used to denoise the latents\n"
)
# ====================
# 4. BLOCKS (Wan2.1 Image2Video)
# ====================
# wan2.1 Image2Video Auto Blocks
class WanImage2VideoAutoBlocks(SequentialPipelineBlocks):
model_name = "wan-i2v"
block_classes = [
WanTextEncoderStep,
WanAutoImageEncoderStep,
WanAutoVaeEncoderStep,
WanImage2VideoCoreDenoiseStep,
WanVaeDecoderStep,
]
block_names = [
"text_encoder",
"image_encoder",
"vae_encoder",
"denoise",
"decode",
]
@property
def description(self):
return (
"Auto Modular pipeline for image-to-video using Wan.\n"
+ "- for I2V workflow, all you need to provide is `image`"
+ "- for FLF2V workflow, all you need to provide is `last_image` and `image`"
)

View File

@@ -13,6 +13,8 @@
# limitations under the License.
from typing import Any, Dict, Optional
from ...loaders import WanLoraLoaderMixin
from ...pipelines.pipeline_utils import StableDiffusionMixin
from ...utils import logging
@@ -28,12 +30,19 @@ class WanModularPipeline(
WanLoraLoaderMixin,
):
"""
A ModularPipeline for Wan2.1 text2video.
A ModularPipeline for Wan.
> [!WARNING] > This is an experimental feature and is likely to change in the future.
"""
default_blocks_name = "WanBlocks"
default_blocks_name = "WanAutoBlocks"
# override the default_blocks_name in base class, which is just return self.default_blocks_name
def get_default_blocks_name(self, config_dict: Optional[Dict[str, Any]]) -> Optional[str]:
if config_dict is not None and "boundary_ratio" in config_dict and config_dict["boundary_ratio"] is not None:
return "Wan22AutoBlocks"
else:
return "WanAutoBlocks"
@property
def default_height(self):
@@ -109,33 +118,3 @@ class WanModularPipeline(
if hasattr(self, "scheduler") and self.scheduler is not None:
num_train_timesteps = self.scheduler.config.num_train_timesteps
return num_train_timesteps
class WanImage2VideoModularPipeline(WanModularPipeline):
"""
A ModularPipeline for Wan2.1 image2video (both I2V and FLF2V).
> [!WARNING] > This is an experimental feature and is likely to change in the future.
"""
default_blocks_name = "WanImage2VideoAutoBlocks"
class Wan22ModularPipeline(WanModularPipeline):
"""
A ModularPipeline for Wan2.2 text2video.
> [!WARNING] > This is an experimental feature and is likely to change in the future.
"""
default_blocks_name = "Wan22Blocks"
class Wan22Image2VideoModularPipeline(Wan22ModularPipeline):
"""
A ModularPipeline for Wan2.2 image2video.
> [!WARNING] > This is an experimental feature and is likely to change in the future.
"""
default_blocks_name = "Wan22Image2VideoBlocks"

View File

@@ -248,7 +248,7 @@ AUTO_TEXT2VIDEO_PIPELINES_MAPPING = OrderedDict(
AUTO_IMAGE2VIDEO_PIPELINES_MAPPING = OrderedDict(
[
("wan-i2v", WanImageToVideoPipeline),
("wan", WanImageToVideoPipeline),
]
)

View File

@@ -13,20 +13,12 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from collections.abc import Iterator
from fractions import Fraction
from itertools import chain
from typing import List, Optional, Union
from typing import Optional
import numpy as np
import PIL.Image
import torch
from tqdm import tqdm
from ...utils import get_logger, is_av_available
logger = get_logger(__name__) # pylint: disable=invalid-name
from ...utils import is_av_available
_CAN_USE_AV = is_av_available()
@@ -109,59 +101,11 @@ def _write_audio(
def encode_video(
video: Union[List[PIL.Image.Image], np.ndarray, torch.Tensor, Iterator[torch.Tensor]],
fps: int,
audio: Optional[torch.Tensor],
audio_sample_rate: Optional[int],
output_path: str,
video_chunks_number: int = 1,
video: torch.Tensor, fps: int, audio: Optional[torch.Tensor], audio_sample_rate: Optional[int], output_path: str
) -> None:
"""
Encodes a video with audio using the PyAV library. Based on code from the original LTX-2 repo:
https://github.com/Lightricks/LTX-2/blob/4f410820b198e05074a1e92de793e3b59e9ab5a0/packages/ltx-pipelines/src/ltx_pipelines/utils/media_io.py#L182
video_np = video.cpu().numpy()
Args:
video (`List[PIL.Image.Image]` or `np.ndarray` or `torch.Tensor`):
A video tensor of shape [frames, height, width, channels] with integer pixel values in [0, 255]. If the
input is a `np.ndarray`, it is expected to be a float array with values in [0, 1] (which is what pipelines
usually return with `output_type="np"`).
fps (`int`)
The frames per second (FPS) of the encoded video.
audio (`torch.Tensor`, *optional*):
An audio waveform of shape [audio_channels, samples].
audio_sample_rate: (`int`, *optional*):
The sampling rate of the audio waveform. For LTX 2, this is typically 24000 (24 kHz).
output_path (`str`):
The path to save the encoded video to.
video_chunks_number (`int`, *optional*, defaults to `1`):
The number of chunks to split the video into for encoding. Each chunk will be encoded separately. The
number of chunks to use often depends on the tiling config for the video VAE.
"""
if isinstance(video, list) and isinstance(video[0], PIL.Image.Image):
# Pipeline output_type="pil"; assumes each image is in "RGB" mode
video_frames = [np.array(frame) for frame in video]
video = np.stack(video_frames, axis=0)
video = torch.from_numpy(video)
elif isinstance(video, np.ndarray):
# Pipeline output_type="np"
is_denormalized = np.logical_and(np.zeros_like(video) <= video, video <= np.ones_like(video))
if np.all(is_denormalized):
video = (video * 255).round().astype("uint8")
else:
logger.warning(
"Supplied `numpy.ndarray` does not have values in [0, 1]. The values will be assumed to be pixel "
"values in [0, ..., 255] and will be used as is."
)
video = torch.from_numpy(video)
if isinstance(video, torch.Tensor):
# Split into video_chunks_number along the frame dimension
video = torch.tensor_split(video, video_chunks_number, dim=0)
video = iter(video)
first_chunk = next(video)
_, height, width, _ = first_chunk.shape
_, height, width, _ = video_np.shape
container = av.open(output_path, mode="w")
stream = container.add_stream("libx264", rate=int(fps))
@@ -175,12 +119,10 @@ def encode_video(
audio_stream = _prepare_audio_stream(container, audio_sample_rate)
for video_chunk in tqdm(chain([first_chunk], video), total=video_chunks_number, desc="Encoding video chunks"):
video_chunk_cpu = video_chunk.to("cpu").numpy()
for frame_array in video_chunk_cpu:
frame = av.VideoFrame.from_ndarray(frame_array, format="rgb24")
for packet in stream.encode(frame):
container.mux(packet)
for frame_array in video_np:
frame = av.VideoFrame.from_ndarray(frame_array, format="rgb24")
for packet in stream.encode(frame):
container.mux(packet)
# Flush encoder
for packet in stream.encode():

View File

@@ -69,6 +69,8 @@ EXAMPLE_DOC_STRING = """
... output_type="np",
... return_dict=False,
... )
>>> video = (video * 255).round().astype("uint8")
>>> video = torch.from_numpy(video)
>>> encode_video(
... video[0],

View File

@@ -75,6 +75,8 @@ EXAMPLE_DOC_STRING = """
... output_type="np",
... return_dict=False,
... )
>>> video = (video * 255).round().astype("uint8")
>>> video = torch.from_numpy(video)
>>> encode_video(
... video[0],

View File

@@ -76,6 +76,8 @@ EXAMPLE_DOC_STRING = """
... output_type="np",
... return_dict=False,
... )[0]
>>> video = (video * 255).round().astype("uint8")
>>> video = torch.from_numpy(video)
>>> encode_video(
... video[0],

View File

@@ -635,12 +635,10 @@ class ZImageControlNetPipeline(DiffusionPipeline, FromSingleFileMixin):
latent_model_input = latents_typed.repeat(2, 1, 1, 1)
prompt_embeds_model_input = prompt_embeds + negative_prompt_embeds
timestep_model_input = timestep.repeat(2)
control_image_input = control_image.repeat(2, 1, 1, 1, 1)
else:
latent_model_input = latents.to(self.transformer.dtype)
prompt_embeds_model_input = prompt_embeds
timestep_model_input = timestep
control_image_input = control_image
latent_model_input = latent_model_input.unsqueeze(2)
latent_model_input_list = list(latent_model_input.unbind(dim=0))
@@ -649,7 +647,7 @@ class ZImageControlNetPipeline(DiffusionPipeline, FromSingleFileMixin):
latent_model_input_list,
timestep_model_input,
prompt_embeds_model_input,
control_image_input,
control_image,
conditioning_scale=controlnet_conditioning_scale,
)

View File

@@ -657,12 +657,10 @@ class ZImageControlNetInpaintPipeline(DiffusionPipeline, FromSingleFileMixin):
latent_model_input = latents_typed.repeat(2, 1, 1, 1)
prompt_embeds_model_input = prompt_embeds + negative_prompt_embeds
timestep_model_input = timestep.repeat(2)
control_image_input = control_image.repeat(2, 1, 1, 1, 1)
else:
latent_model_input = latents.to(self.transformer.dtype)
prompt_embeds_model_input = prompt_embeds
timestep_model_input = timestep
control_image_input = control_image
latent_model_input = latent_model_input.unsqueeze(2)
latent_model_input_list = list(latent_model_input.unbind(dim=0))
@@ -671,7 +669,7 @@ class ZImageControlNetInpaintPipeline(DiffusionPipeline, FromSingleFileMixin):
latent_model_input_list,
timestep_model_input,
prompt_embeds_model_input,
control_image_input,
control_image,
conditioning_scale=controlnet_conditioning_scale,
)

View File

@@ -14,7 +14,7 @@
import math
from dataclasses import dataclass
from typing import Callable, List, Literal, Optional, Tuple, Union
from typing import List, Literal, Optional, Tuple, Union
import numpy as np
import torch
@@ -51,14 +51,7 @@ class DPMSolverSDESchedulerOutput(BaseOutput):
class BatchedBrownianTree:
"""A wrapper around torchsde.BrownianTree that enables batches of entropy."""
def __init__(
self,
x: torch.Tensor,
t0: float,
t1: float,
seed: Optional[Union[int, List[int]]] = None,
**kwargs,
):
def __init__(self, x, t0, t1, seed=None, **kwargs):
t0, t1, self.sign = self.sort(t0, t1)
w0 = kwargs.get("w0", torch.zeros_like(x))
if seed is None:
@@ -86,23 +79,10 @@ class BatchedBrownianTree:
]
@staticmethod
def sort(a: float, b: float) -> Tuple[float, float, float]:
"""
Sorts two float values and returns them along with a sign indicating if they were swapped.
def sort(a, b):
return (a, b, 1) if a < b else (b, a, -1)
Args:
a (`float`):
The first value.
b (`float`):
The second value.
Returns:
`Tuple[float, float, float]`:
A tuple containing the sorted values (min, max) and a sign (1.0 if a < b, -1.0 otherwise).
"""
return (a, b, 1.0) if a < b else (b, a, -1.0)
def __call__(self, t0: float, t1: float) -> torch.Tensor:
def __call__(self, t0, t1):
t0, t1, sign = self.sort(t0, t1)
w = torch.stack([tree(t0, t1) for tree in self.trees]) * (self.sign * sign)
return w if self.batched else w[0]
@@ -112,29 +92,23 @@ class BrownianTreeNoiseSampler:
"""A noise sampler backed by a torchsde.BrownianTree.
Args:
x (`torch.Tensor`): The tensor whose shape, device and dtype is used to generate random samples.
sigma_min (`float`): The low end of the valid interval.
sigma_max (`float`): The high end of the valid interval.
seed (`int` or `List[int]`): The random seed. If a list of seeds is
x (Tensor): The tensor whose shape, device and dtype to use to generate
random samples.
sigma_min (float): The low end of the valid interval.
sigma_max (float): The high end of the valid interval.
seed (int or List[int]): The random seed. If a list of seeds is
supplied instead of a single integer, then the noise sampler will use one BrownianTree per batch item, each
with its own seed.
transform (`callable`): A function that maps sigma to the sampler's
transform (callable): A function that maps sigma to the sampler's
internal timestep.
"""
def __init__(
self,
x: torch.Tensor,
sigma_min: float,
sigma_max: float,
seed: Optional[Union[int, List[int]]] = None,
transform: Callable[[float], float] = lambda x: x,
):
def __init__(self, x, sigma_min, sigma_max, seed=None, transform=lambda x: x):
self.transform = transform
t0, t1 = self.transform(torch.as_tensor(sigma_min)), self.transform(torch.as_tensor(sigma_max))
self.tree = BatchedBrownianTree(x, t0, t1, seed)
def __call__(self, sigma: float, sigma_next: float) -> torch.Tensor:
def __call__(self, sigma, sigma_next):
t0, t1 = self.transform(torch.as_tensor(sigma)), self.transform(torch.as_tensor(sigma_next))
return self.tree(t0, t1) / (t1 - t0).abs().sqrt()
@@ -242,28 +216,19 @@ class DPMSolverSDEScheduler(SchedulerMixin, ConfigMixin):
num_train_timesteps: int = 1000,
beta_start: float = 0.00085, # sensible defaults
beta_end: float = 0.012,
beta_schedule: Literal["linear", "scaled_linear", "squaredcos_cap_v2"] = "linear",
beta_schedule: str = "linear",
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
prediction_type: Literal["epsilon", "sample", "v_prediction"] = "epsilon",
prediction_type: str = "epsilon",
use_karras_sigmas: Optional[bool] = False,
use_exponential_sigmas: Optional[bool] = False,
use_beta_sigmas: Optional[bool] = False,
noise_sampler_seed: Optional[int] = None,
timestep_spacing: Literal["linspace", "leading", "trailing"] = "linspace",
timestep_spacing: str = "linspace",
steps_offset: int = 0,
):
if self.config.use_beta_sigmas and not is_scipy_available():
raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
if (
sum(
[
self.config.use_beta_sigmas,
self.config.use_exponential_sigmas,
self.config.use_karras_sigmas,
]
)
> 1
):
if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
raise ValueError(
"Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
)
@@ -273,15 +238,7 @@ class DPMSolverSDEScheduler(SchedulerMixin, ConfigMixin):
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
self.betas = (
torch.linspace(
beta_start**0.5,
beta_end**0.5,
num_train_timesteps,
dtype=torch.float32,
)
** 2
)
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
self.betas = betas_for_alpha_bar(num_train_timesteps)
@@ -348,7 +305,7 @@ class DPMSolverSDEScheduler(SchedulerMixin, ConfigMixin):
self._step_index = self._begin_index
@property
def init_noise_sigma(self) -> torch.Tensor:
def init_noise_sigma(self):
# standard deviation of the initial noise distribution
if self.config.timestep_spacing in ["linspace", "trailing"]:
return self.sigmas.max()
@@ -356,21 +313,21 @@ class DPMSolverSDEScheduler(SchedulerMixin, ConfigMixin):
return (self.sigmas.max() ** 2 + 1) ** 0.5
@property
def step_index(self) -> Union[int, None]:
def step_index(self):
"""
The index counter for current timestep. It will increase 1 after each scheduler step.
"""
return self._step_index
@property
def begin_index(self) -> Union[int, None]:
def begin_index(self):
"""
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
"""
return self._begin_index
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
def set_begin_index(self, begin_index: int = 0) -> None:
def set_begin_index(self, begin_index: int = 0):
"""
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
@@ -412,7 +369,7 @@ class DPMSolverSDEScheduler(SchedulerMixin, ConfigMixin):
num_inference_steps: int,
device: Union[str, torch.device] = None,
num_train_timesteps: Optional[int] = None,
) -> None:
):
"""
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
@@ -421,8 +378,6 @@ class DPMSolverSDEScheduler(SchedulerMixin, ConfigMixin):
The number of diffusion steps used when generating samples with a pre-trained model.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
num_train_timesteps (`int`, *optional*):
The number of train timesteps. If `None`, uses `self.config.num_train_timesteps`.
"""
self.num_inference_steps = num_inference_steps
@@ -488,7 +443,7 @@ class DPMSolverSDEScheduler(SchedulerMixin, ConfigMixin):
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
self.noise_sampler = None
def _second_order_timesteps(self, sigmas: np.ndarray, log_sigmas: np.ndarray) -> np.ndarray:
def _second_order_timesteps(self, sigmas, log_sigmas):
def sigma_fn(_t):
return np.exp(-_t)
@@ -504,7 +459,7 @@ class DPMSolverSDEScheduler(SchedulerMixin, ConfigMixin):
return timesteps
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
def _sigma_to_t(self, sigma: np.ndarray, log_sigmas: np.ndarray) -> np.ndarray:
def _sigma_to_t(self, sigma, log_sigmas):
"""
Convert sigma values to corresponding timestep values through interpolation.
@@ -649,14 +604,14 @@ class DPMSolverSDEScheduler(SchedulerMixin, ConfigMixin):
return sigmas
@property
def state_in_first_order(self) -> bool:
def state_in_first_order(self):
return self.sample is None
def step(
self,
model_output: torch.Tensor,
model_output: Union[torch.Tensor, np.ndarray],
timestep: Union[float, torch.Tensor],
sample: torch.Tensor,
sample: Union[torch.Tensor, np.ndarray],
return_dict: bool = True,
s_noise: float = 1.0,
) -> Union[DPMSolverSDESchedulerOutput, Tuple]:
@@ -665,11 +620,11 @@ class DPMSolverSDEScheduler(SchedulerMixin, ConfigMixin):
process from the learned model outputs (most often the predicted noise).
Args:
model_output (`torch.Tensor`):
model_output (`torch.Tensor` or `np.ndarray`):
The direct output from learned diffusion model.
timestep (`float` or `torch.Tensor`):
The current discrete timestep in the diffusion chain.
sample (`torch.Tensor`):
sample (`torch.Tensor` or `np.ndarray`):
A current instance of a sample created by the diffusion process.
return_dict (`bool`):
Whether or not to return a [`~schedulers.scheduling_dpmsolver_sde.DPMSolverSDESchedulerOutput`] or
@@ -688,9 +643,7 @@ class DPMSolverSDEScheduler(SchedulerMixin, ConfigMixin):
# Create a noise sampler if it hasn't been created yet
if self.noise_sampler is None:
min_sigma, max_sigma = self.sigmas[self.sigmas > 0].min(), self.sigmas.max()
self.noise_sampler = BrownianTreeNoiseSampler(
sample, min_sigma.item(), max_sigma.item(), self.noise_sampler_seed
)
self.noise_sampler = BrownianTreeNoiseSampler(sample, min_sigma, max_sigma, self.noise_sampler_seed)
# Define functions to compute sigma and t from each other
def sigma_fn(_t: torch.Tensor) -> torch.Tensor:
@@ -741,10 +694,7 @@ class DPMSolverSDEScheduler(SchedulerMixin, ConfigMixin):
sigma_from = sigma_fn(t)
sigma_to = sigma_fn(t_next)
sigma_up = min(
sigma_to,
(sigma_to**2 * (sigma_from**2 - sigma_to**2) / sigma_from**2) ** 0.5,
)
sigma_up = min(sigma_to, (sigma_to**2 * (sigma_from**2 - sigma_to**2) / sigma_from**2) ** 0.5)
sigma_down = (sigma_to**2 - sigma_up**2) ** 0.5
ancestral_t = t_fn(sigma_down)
prev_sample = (sigma_fn(ancestral_t) / sigma_fn(t)) * sample - (
@@ -821,5 +771,5 @@ class DPMSolverSDEScheduler(SchedulerMixin, ConfigMixin):
noisy_samples = original_samples + noise * sigma
return noisy_samples
def __len__(self) -> int:
def __len__(self):
return self.config.num_train_timesteps

View File

@@ -47,21 +47,6 @@ class Flux2KleinBaseAutoBlocks(metaclass=DummyObject):
requires_backends(cls, ["torch", "transformers"])
class Flux2KleinBaseModularPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
class Flux2KleinModularPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
@@ -302,7 +287,7 @@ class StableDiffusionXLModularPipeline(metaclass=DummyObject):
requires_backends(cls, ["torch", "transformers"])
class Wan22Blocks(metaclass=DummyObject):
class Wan22AutoBlocks(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
@@ -317,82 +302,7 @@ class Wan22Blocks(metaclass=DummyObject):
requires_backends(cls, ["torch", "transformers"])
class Wan22Image2VideoBlocks(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
class Wan22Image2VideoModularPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
class Wan22ModularPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
class WanBlocks(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
class WanImage2VideoAutoBlocks(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
class WanImage2VideoModularPipeline(metaclass=DummyObject):
class WanAutoBlocks(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):

View File

@@ -1,5 +1,5 @@
import unittest
from unittest.mock import patch
from unittest.mock import MagicMock, patch
from transformers import CLIPTextModel, LongformerModel
@@ -30,3 +30,69 @@ class TestAutoModel(unittest.TestCase):
def test_load_from_model_index(self):
model = AutoModel.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="text_encoder")
assert isinstance(model, CLIPTextModel)
class TestAutoModelFromConfig(unittest.TestCase):
@patch(
"diffusers.pipelines.pipeline_loading_utils.get_class_obj_and_candidates",
return_value=(MagicMock(), None),
)
def test_from_config_with_dict_diffusers_class(self, mock_get_class):
config = {"_class_name": "UNet2DConditionModel", "sample_size": 64}
mock_model = MagicMock()
mock_get_class.return_value[0].from_config.return_value = mock_model
result = AutoModel.from_config(config)
mock_get_class.assert_called_once_with(
library_name="diffusers",
class_name="UNet2DConditionModel",
importable_classes=unittest.mock.ANY,
pipelines=None,
is_pipeline_module=False,
)
mock_get_class.return_value[0].from_config.assert_called_once_with(config)
assert result is mock_model
@patch(
"diffusers.pipelines.pipeline_loading_utils.get_class_obj_and_candidates",
return_value=(MagicMock(), None),
)
@patch("diffusers.models.AutoModel.load_config", return_value={"_class_name": "UNet2DConditionModel"})
def test_from_config_with_string_path(self, mock_load_config, mock_get_class):
mock_model = MagicMock()
mock_get_class.return_value[0].from_config.return_value = mock_model
result = AutoModel.from_config("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="unet")
mock_load_config.assert_called_once()
assert result is mock_model
def test_from_config_raises_on_missing_class_info(self):
config = {"some_key": "some_value"}
with self.assertRaises(ValueError, msg="Couldn't find a model class"):
AutoModel.from_config(config)
@patch(
"diffusers.pipelines.pipeline_loading_utils.get_class_obj_and_candidates",
return_value=(MagicMock(), None),
)
def test_from_config_with_model_type_routes_to_transformers(self, mock_get_class):
config = {"model_type": "clip_text_model"}
mock_model = MagicMock()
mock_get_class.return_value[0].from_config.return_value = mock_model
result = AutoModel.from_config(config)
mock_get_class.assert_called_once_with(
library_name="transformers",
class_name="AutoModel",
importable_classes=unittest.mock.ANY,
pipelines=None,
is_pipeline_module=False,
)
assert result is mock_model
def test_from_config_raises_on_none(self):
with self.assertRaises(ValueError, msg="Please provide a `pretrained_model_name_or_path_or_dict`"):
AutoModel.from_config(None)