Compare commits

..

2 Commits

Author SHA1 Message Date
David El Malih
03af690b60 docs: improve docstring scheduling_dpmsolver_multistep_inverse.py (#13083)
Improve docstring scheduling dpmsolver multistep inverse
2026-02-04 09:21:57 -08:00
Sayak Paul
90818e82b3 [docs] Fix syntax error in quantization configuration (#13076)
Fix syntax error in quantization configuration
2026-02-04 08:31:03 -08:00
14 changed files with 181 additions and 223 deletions

View File

@@ -66,7 +66,7 @@ from diffusers import DiffusionPipeline, PipelineQuantizationConfig, TorchAoConf
from torchao.quantization import Int4WeightOnlyConfig
pipeline_quant_config = PipelineQuantizationConfig(
quant_mapping={"transformer": TorchAoConfig(Int4WeightOnlyConfig(group_size=128)))}
quant_mapping={"transformer": TorchAoConfig(Int4WeightOnlyConfig(group_size=128))}
)
pipeline = DiffusionPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",

View File

@@ -545,7 +545,9 @@ class CosineDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
def index_for_timestep(
self, timestep: Union[int, torch.Tensor], schedule_timesteps: Optional[torch.Tensor] = None
self,
timestep: Union[int, torch.Tensor],
schedule_timesteps: Optional[torch.Tensor] = None,
) -> int:
"""
Find the index for a given timestep in the schedule.

View File

@@ -867,7 +867,9 @@ class DEISMultistepScheduler(SchedulerMixin, ConfigMixin):
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
def index_for_timestep(
self, timestep: Union[int, torch.Tensor], schedule_timesteps: Optional[torch.Tensor] = None
self,
timestep: Union[int, torch.Tensor],
schedule_timesteps: Optional[torch.Tensor] = None,
) -> int:
"""
Find the index for a given timestep in the schedule.

View File

@@ -245,13 +245,26 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
):
if self.config.use_beta_sigmas and not is_scipy_available():
raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
if (
sum(
[
self.config.use_beta_sigmas,
self.config.use_exponential_sigmas,
self.config.use_karras_sigmas,
]
)
> 1
):
raise ValueError(
"Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
)
if algorithm_type in ["dpmsolver", "sde-dpmsolver"]:
deprecation_message = f"algorithm_type {algorithm_type} is deprecated and will be removed in a future version. Choose from `dpmsolver++` or `sde-dpmsolver++` instead"
deprecate("algorithm_types dpmsolver and sde-dpmsolver", "1.0.0", deprecation_message)
deprecate(
"algorithm_types dpmsolver and sde-dpmsolver",
"1.0.0",
deprecation_message,
)
if trained_betas is not None:
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
@@ -259,7 +272,15 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
self.betas = (
torch.linspace(
beta_start**0.5,
beta_end**0.5,
num_train_timesteps,
dtype=torch.float32,
)
** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
self.betas = betas_for_alpha_bar(num_train_timesteps)
@@ -287,7 +308,12 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
self.init_noise_sigma = 1.0
# settings for DPM-Solver
if algorithm_type not in ["dpmsolver", "dpmsolver++", "sde-dpmsolver", "sde-dpmsolver++"]:
if algorithm_type not in [
"dpmsolver",
"dpmsolver++",
"sde-dpmsolver",
"sde-dpmsolver++",
]:
if algorithm_type == "deis":
self.register_to_config(algorithm_type="dpmsolver++")
else:
@@ -724,7 +750,7 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
self,
model_output: torch.Tensor,
*args,
sample: torch.Tensor = None,
sample: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor:
"""
@@ -738,7 +764,7 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
Args:
model_output (`torch.Tensor`):
The direct output from the learned diffusion model.
sample (`torch.Tensor`):
sample (`torch.Tensor`, *optional*):
A current instance of a sample created by the diffusion process.
Returns:
@@ -822,7 +848,7 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
self,
model_output: torch.Tensor,
*args,
sample: torch.Tensor = None,
sample: Optional[torch.Tensor] = None,
noise: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor:
@@ -832,8 +858,10 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
Args:
model_output (`torch.Tensor`):
The direct output from the learned diffusion model.
sample (`torch.Tensor`):
sample (`torch.Tensor`, *optional*):
A current instance of a sample created by the diffusion process.
noise (`torch.Tensor`, *optional*):
The noise tensor.
Returns:
`torch.Tensor`:
@@ -860,7 +888,10 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
"Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
)
sigma_t, sigma_s = self.sigmas[self.step_index + 1], self.sigmas[self.step_index]
sigma_t, sigma_s = (
self.sigmas[self.step_index + 1],
self.sigmas[self.step_index],
)
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
alpha_s, sigma_s = self._sigma_to_alpha_sigma_t(sigma_s)
lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
@@ -891,7 +922,7 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
self,
model_output_list: List[torch.Tensor],
*args,
sample: torch.Tensor = None,
sample: Optional[torch.Tensor] = None,
noise: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor:
@@ -901,7 +932,7 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
Args:
model_output_list (`List[torch.Tensor]`):
The direct outputs from learned diffusion model at current and latter timesteps.
sample (`torch.Tensor`):
sample (`torch.Tensor`, *optional*):
A current instance of a sample created by the diffusion process.
Returns:
@@ -1014,7 +1045,7 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
self,
model_output_list: List[torch.Tensor],
*args,
sample: torch.Tensor = None,
sample: Optional[torch.Tensor] = None,
noise: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor:
@@ -1024,8 +1055,10 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
Args:
model_output_list (`List[torch.Tensor]`):
The direct outputs from learned diffusion model at current and latter timesteps.
sample (`torch.Tensor`):
sample (`torch.Tensor`, *optional*):
A current instance of a sample created by diffusion process.
noise (`torch.Tensor`, *optional*):
The noise tensor.
Returns:
`torch.Tensor`:
@@ -1106,7 +1139,9 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
return x_t
def index_for_timestep(
self, timestep: Union[int, torch.Tensor], schedule_timesteps: Optional[torch.Tensor] = None
self,
timestep: Union[int, torch.Tensor],
schedule_timesteps: Optional[torch.Tensor] = None,
) -> int:
"""
Find the index for a given timestep in the schedule.
@@ -1216,7 +1251,10 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
sample = sample.to(torch.float32)
if self.config.algorithm_type in ["sde-dpmsolver", "sde-dpmsolver++"] and variance_noise is None:
noise = randn_tensor(
model_output.shape, generator=generator, device=model_output.device, dtype=torch.float32
model_output.shape,
generator=generator,
device=model_output.device,
dtype=torch.float32,
)
elif self.config.algorithm_type in ["sde-dpmsolver", "sde-dpmsolver++"]:
noise = variance_noise.to(device=model_output.device, dtype=torch.float32)

View File

@@ -141,6 +141,10 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
use_beta_sigmas (`bool`, *optional*, defaults to `False`):
Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to [Beta
Sampling is All You Need](https://huggingface.co/papers/2407.12173) for more information.
use_flow_sigmas (`bool`, *optional*, defaults to `False`):
Whether to use flow sigmas for step sizes in the noise schedule during the sampling process.
flow_shift (`float`, *optional*, defaults to 1.0):
The flow shift factor. Valid only when `use_flow_sigmas=True`.
lambda_min_clipped (`float`, defaults to `-inf`):
Clipping threshold for the minimum value of `lambda(t)` for numerical stability. This is critical for the
cosine (`squaredcos_cap_v2`) noise schedule.
@@ -163,15 +167,15 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
num_train_timesteps: int = 1000,
beta_start: float = 0.0001,
beta_end: float = 0.02,
beta_schedule: str = "linear",
beta_schedule: Literal["linear", "scaled_linear", "squaredcos_cap_v2"] = "linear",
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
solver_order: int = 2,
prediction_type: str = "epsilon",
prediction_type: Literal["epsilon", "sample", "v_prediction", "flow_prediction"] = "epsilon",
thresholding: bool = False,
dynamic_thresholding_ratio: float = 0.995,
sample_max_value: float = 1.0,
algorithm_type: str = "dpmsolver++",
solver_type: str = "midpoint",
algorithm_type: Literal["dpmsolver", "dpmsolver++", "sde-dpmsolver", "sde-dpmsolver++"] = "dpmsolver++",
solver_type: Literal["midpoint", "heun"] = "midpoint",
lower_order_final: bool = True,
euler_at_final: bool = False,
use_karras_sigmas: Optional[bool] = False,
@@ -180,19 +184,32 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
use_flow_sigmas: Optional[bool] = False,
flow_shift: Optional[float] = 1.0,
lambda_min_clipped: float = -float("inf"),
variance_type: Optional[str] = None,
timestep_spacing: str = "linspace",
variance_type: Optional[Literal["learned", "learned_range"]] = None,
timestep_spacing: Literal["linspace", "leading", "trailing"] = "linspace",
steps_offset: int = 0,
):
if self.config.use_beta_sigmas and not is_scipy_available():
raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
if (
sum(
[
self.config.use_beta_sigmas,
self.config.use_exponential_sigmas,
self.config.use_karras_sigmas,
]
)
> 1
):
raise ValueError(
"Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
)
if algorithm_type in ["dpmsolver", "sde-dpmsolver"]:
deprecation_message = f"algorithm_type {algorithm_type} is deprecated and will be removed in a future version. Choose from `dpmsolver++` or `sde-dpmsolver++` instead"
deprecate("algorithm_types dpmsolver and sde-dpmsolver", "1.0.0", deprecation_message)
deprecate(
"algorithm_types dpmsolver and sde-dpmsolver",
"1.0.0",
deprecation_message,
)
if trained_betas is not None:
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
@@ -200,7 +217,15 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
self.betas = (
torch.linspace(
beta_start**0.5,
beta_end**0.5,
num_train_timesteps,
dtype=torch.float32,
)
** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
self.betas = betas_for_alpha_bar(num_train_timesteps)
@@ -219,7 +244,12 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
self.init_noise_sigma = 1.0
# settings for DPM-Solver
if algorithm_type not in ["dpmsolver", "dpmsolver++", "sde-dpmsolver", "sde-dpmsolver++"]:
if algorithm_type not in [
"dpmsolver",
"dpmsolver++",
"sde-dpmsolver",
"sde-dpmsolver++",
]:
if algorithm_type == "deis":
self.register_to_config(algorithm_type="dpmsolver++")
else:
@@ -250,7 +280,11 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
"""
return self._step_index
def set_timesteps(self, num_inference_steps: int = None, device: Union[str, torch.device] = None):
def set_timesteps(
self,
num_inference_steps: Optional[int] = None,
device: Optional[Union[str, torch.device]] = None,
):
"""
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
@@ -382,7 +416,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
return sample
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
def _sigma_to_t(self, sigma, log_sigmas):
def _sigma_to_t(self, sigma: np.ndarray, log_sigmas: np.ndarray) -> np.ndarray:
"""
Convert sigma values to corresponding timestep values through interpolation.
@@ -419,7 +453,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
return t
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._sigma_to_alpha_sigma_t
def _sigma_to_alpha_sigma_t(self, sigma):
def _sigma_to_alpha_sigma_t(self, sigma: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Convert sigma values to alpha_t and sigma_t values.
@@ -441,7 +475,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
return alpha_t, sigma_t
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
"""
Construct the noise schedule as proposed in [Elucidating the Design Space of Diffusion-Based Generative
Models](https://huggingface.co/papers/2206.00364).
@@ -567,7 +601,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
self,
model_output: torch.Tensor,
*args,
sample: torch.Tensor = None,
sample: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor:
"""
@@ -581,7 +615,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
Args:
model_output (`torch.Tensor`):
The direct output from the learned diffusion model.
sample (`torch.Tensor`):
sample (`torch.Tensor`, *optional*):
A current instance of a sample created by the diffusion process.
Returns:
@@ -666,7 +700,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
self,
model_output: torch.Tensor,
*args,
sample: torch.Tensor = None,
sample: Optional[torch.Tensor] = None,
noise: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor:
@@ -676,8 +710,10 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
Args:
model_output (`torch.Tensor`):
The direct output from the learned diffusion model.
sample (`torch.Tensor`):
sample (`torch.Tensor`, *optional*):
A current instance of a sample created by the diffusion process.
noise (`torch.Tensor`, *optional*):
The noise tensor.
Returns:
`torch.Tensor`:
@@ -704,7 +740,10 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
"Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
)
sigma_t, sigma_s = self.sigmas[self.step_index + 1], self.sigmas[self.step_index]
sigma_t, sigma_s = (
self.sigmas[self.step_index + 1],
self.sigmas[self.step_index],
)
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
alpha_s, sigma_s = self._sigma_to_alpha_sigma_t(sigma_s)
lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
@@ -736,7 +775,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
self,
model_output_list: List[torch.Tensor],
*args,
sample: torch.Tensor = None,
sample: Optional[torch.Tensor] = None,
noise: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor:
@@ -746,7 +785,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
Args:
model_output_list (`List[torch.Tensor]`):
The direct outputs from learned diffusion model at current and latter timesteps.
sample (`torch.Tensor`):
sample (`torch.Tensor`, *optional*):
A current instance of a sample created by the diffusion process.
Returns:
@@ -860,7 +899,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
self,
model_output_list: List[torch.Tensor],
*args,
sample: torch.Tensor = None,
sample: Optional[torch.Tensor] = None,
noise: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor:
@@ -870,8 +909,10 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
Args:
model_output_list (`List[torch.Tensor]`):
The direct outputs from learned diffusion model at current and latter timesteps.
sample (`torch.Tensor`):
sample (`torch.Tensor`, *optional*):
A current instance of a sample created by diffusion process.
noise (`torch.Tensor`, *optional*):
The noise tensor.
Returns:
`torch.Tensor`:
@@ -951,7 +992,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
)
return x_t
def _init_step_index(self, timestep):
def _init_step_index(self, timestep: Union[int, torch.Tensor]):
if isinstance(timestep, torch.Tensor):
timestep = timestep.to(self.timesteps.device)
@@ -975,7 +1016,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
model_output: torch.Tensor,
timestep: Union[int, torch.Tensor],
sample: torch.Tensor,
generator=None,
generator: Optional[torch.Generator] = None,
variance_noise: Optional[torch.Tensor] = None,
return_dict: bool = True,
) -> Union[SchedulerOutput, Tuple]:
@@ -1027,7 +1068,10 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
if self.config.algorithm_type in ["sde-dpmsolver", "sde-dpmsolver++"] and variance_noise is None:
noise = randn_tensor(
model_output.shape, generator=generator, device=model_output.device, dtype=model_output.dtype
model_output.shape,
generator=generator,
device=model_output.device,
dtype=model_output.dtype,
)
elif self.config.algorithm_type in ["sde-dpmsolver", "sde-dpmsolver++"]:
noise = variance_noise
@@ -1074,6 +1118,21 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
noise: torch.Tensor,
timesteps: torch.IntTensor,
) -> torch.Tensor:
"""
Add noise to the clean `original_samples` using the scheduler's equivalent function.
Args:
original_samples (`torch.Tensor`):
The original samples to add noise to.
noise (`torch.Tensor`):
The noise tensor.
timesteps (`torch.IntTensor`):
The timesteps at which to add noise.
Returns:
`torch.Tensor`:
The noisy samples.
"""
# Make sure sigmas and timesteps have the same device and dtype as original_samples
sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
@@ -1103,5 +1162,5 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
noisy_samples = alpha_t * original_samples + sigma_t * noise
return noisy_samples
def __len__(self):
def __len__(self) -> int:
return self.config.num_train_timesteps

View File

@@ -1120,7 +1120,9 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
def index_for_timestep(
self, timestep: Union[int, torch.Tensor], schedule_timesteps: Optional[torch.Tensor] = None
self,
timestep: Union[int, torch.Tensor],
schedule_timesteps: Optional[torch.Tensor] = None,
) -> int:
"""
Find the index for a given timestep in the schedule.

View File

@@ -662,7 +662,9 @@ class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
def index_for_timestep(
self, timestep: Union[int, torch.Tensor], schedule_timesteps: Optional[torch.Tensor] = None
self,
timestep: Union[int, torch.Tensor],
schedule_timesteps: Optional[torch.Tensor] = None,
) -> int:
"""
Find the index for a given timestep in the schedule.

View File

@@ -1122,7 +1122,9 @@ class SASolverScheduler(SchedulerMixin, ConfigMixin):
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
def index_for_timestep(
self, timestep: Union[int, torch.Tensor], schedule_timesteps: Optional[torch.Tensor] = None
self,
timestep: Union[int, torch.Tensor],
schedule_timesteps: Optional[torch.Tensor] = None,
) -> int:
"""
Find the index for a given timestep in the schedule.

View File

@@ -1083,7 +1083,9 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
def index_for_timestep(
self, timestep: Union[int, torch.Tensor], schedule_timesteps: Optional[torch.Tensor] = None
self,
timestep: Union[int, torch.Tensor],
schedule_timesteps: Optional[torch.Tensor] = None,
) -> int:
"""
Find the index for a given timestep in the schedule.

View File

@@ -2,7 +2,6 @@ import gc
import tempfile
from typing import Callable, Union
import numpy as np
import pytest
import torch
@@ -38,9 +37,6 @@ class ModularPipelineTesterMixin:
optional_params = frozenset(["num_inference_steps", "num_images_per_prompt", "latents", "output_type"])
# this is modular specific: generator needs to be a intermediate input because it's mutable
intermediate_params = frozenset(["generator"])
# Output type for the pipeline (e.g., "images" for image pipelines, "videos" for video pipelines)
# Subclasses can override this to change the expected output type
output_type = "images"
def get_generator(self, seed=0):
generator = torch.Generator("cpu").manual_seed(seed)
@@ -121,30 +117,6 @@ class ModularPipelineTesterMixin:
pipeline.set_progress_bar_config(disable=None)
return pipeline
def _convert_output_to_tensor(self, output):
if isinstance(output, torch.Tensor):
return output
elif isinstance(output, list):
# For video outputs (list of numpy arrays)
if len(output) > 0 and isinstance(output[0], np.ndarray):
return torch.from_numpy(output[0])
# For batched video outputs
return torch.stack([torch.from_numpy(item) for item in output])
elif isinstance(output, np.ndarray):
return torch.from_numpy(output)
else:
raise TypeError(f"Unsupported output type: {type(output)}")
def _get_batch_size_from_output(self, output):
if isinstance(output, torch.Tensor):
return output.shape[0]
elif isinstance(output, list):
return len(output)
elif isinstance(output, np.ndarray):
return output.shape[0]
else:
raise TypeError(f"Unsupported output type: {type(output)}")
def test_pipeline_call_signature(self):
pipe = self.get_pipeline()
input_parameters = pipe.blocks.input_names
@@ -191,7 +163,7 @@ class ModularPipelineTesterMixin:
logger.setLevel(level=diffusers.logging.WARNING)
for batch_size, batched_input in zip(batch_sizes, batched_inputs):
output = pipe(**batched_input, output=self.output_type)
output = pipe(**batched_input, output="images")
assert len(output) == batch_size, "Output is different from expected batch size"
def test_inference_batch_single_identical(
@@ -225,27 +197,12 @@ class ModularPipelineTesterMixin:
if "batch_size" in inputs:
batched_inputs["batch_size"] = batch_size
output = pipe(**inputs, output=self.output_type)
output_batch = pipe(**batched_inputs, output=self.output_type)
output = pipe(**inputs, output="images")
output_batch = pipe(**batched_inputs, output="images")
assert self._get_batch_size_from_output(output_batch) == batch_size
assert output_batch.shape[0] == batch_size
# Convert outputs to tensors for comparison
if isinstance(output, list) and isinstance(output_batch, list):
# Both are lists - compare first elements
if isinstance(output[0], np.ndarray):
output_tensor = torch.from_numpy(output[0])
output_batch_tensor = torch.from_numpy(output_batch[0])
else:
output_tensor = output[0]
output_batch_tensor = output_batch[0]
else:
output_tensor = self._convert_output_to_tensor(output)
output_batch_tensor = self._convert_output_to_tensor(output_batch)
if output_batch_tensor.shape[0] == batch_size and output_tensor.shape[0] == 1:
output_batch_tensor = output_batch_tensor[0:1]
max_diff = torch.abs(output_batch_tensor - output_tensor).max()
max_diff = torch.abs(output_batch[0] - output[0]).max()
assert max_diff < expected_max_diff, "Batch inference results different from single inference results"
@require_accelerator
@@ -260,31 +217,19 @@ class ModularPipelineTesterMixin:
# Reset generator in case it is used inside dummy inputs
if "generator" in inputs:
inputs["generator"] = self.get_generator(0)
output = pipe(**inputs, output=self.output_type)
output = pipe(**inputs, output="images")
fp16_inputs = self.get_dummy_inputs()
# Reset generator in case it is used inside dummy inputs
if "generator" in fp16_inputs:
fp16_inputs["generator"] = self.get_generator(0)
output_fp16 = pipe_fp16(**fp16_inputs, output=self.output_type)
output_fp16 = pipe_fp16(**fp16_inputs, output="images")
# Convert outputs to tensors for comparison
output_tensor = self._convert_output_to_tensor(output).float().cpu()
output_fp16_tensor = self._convert_output_to_tensor(output_fp16).float().cpu()
output = output.cpu()
output_fp16 = output_fp16.cpu()
# Check for NaNs in outputs (can happen with tiny models in FP16)
if torch.isnan(output_tensor).any() or torch.isnan(output_fp16_tensor).any():
pytest.skip("FP16 inference produces NaN values - this is a known issue with tiny models")
max_diff = numpy_cosine_similarity_distance(
output_tensor.flatten().numpy(), output_fp16_tensor.flatten().numpy()
)
# Check if cosine similarity is NaN (which can happen if vectors are zero or very small)
if torch.isnan(torch.tensor(max_diff)):
pytest.skip("Cosine similarity is NaN - outputs may be too small for reliable comparison")
assert max_diff < expected_max_diff, f"FP16 inference is different from FP32 inference (max_diff: {max_diff})"
max_diff = numpy_cosine_similarity_distance(output.flatten(), output_fp16.flatten())
assert max_diff < expected_max_diff, "FP16 inference is different from FP32 inference"
@require_accelerator
def test_to_device(self):
@@ -306,17 +251,15 @@ class ModularPipelineTesterMixin:
def test_inference_is_not_nan_cpu(self):
pipe = self.get_pipeline().to("cpu")
output = pipe(**self.get_dummy_inputs(), output=self.output_type)
output_tensor = self._convert_output_to_tensor(output)
assert torch.isnan(output_tensor).sum() == 0, "CPU Inference returns NaN"
output = pipe(**self.get_dummy_inputs(), output="images")
assert torch.isnan(output).sum() == 0, "CPU Inference returns NaN"
@require_accelerator
def test_inference_is_not_nan(self):
pipe = self.get_pipeline().to(torch_device)
output = pipe(**self.get_dummy_inputs(), output=self.output_type)
output_tensor = self._convert_output_to_tensor(output)
assert torch.isnan(output_tensor).sum() == 0, "Accelerator Inference returns NaN"
output = pipe(**self.get_dummy_inputs(), output="images")
assert torch.isnan(output).sum() == 0, "Accelerator Inference returns NaN"
def test_num_images_per_prompt(self):
pipe = self.get_pipeline().to(torch_device)
@@ -335,9 +278,9 @@ class ModularPipelineTesterMixin:
if key in self.batch_params:
inputs[key] = batch_size * [inputs[key]]
images = pipe(**inputs, num_images_per_prompt=num_images_per_prompt, output=self.output_type)
images = pipe(**inputs, num_images_per_prompt=num_images_per_prompt, output="images")
assert self._get_batch_size_from_output(images) == batch_size * num_images_per_prompt
assert images.shape[0] == batch_size * num_images_per_prompt
@require_accelerator
def test_components_auto_cpu_offload_inference_consistent(self):
@@ -350,10 +293,9 @@ class ModularPipelineTesterMixin:
image_slices = []
for pipe in [base_pipe, offload_pipe]:
inputs = self.get_dummy_inputs()
image = pipe(**inputs, output=self.output_type)
image = pipe(**inputs, output="images")
image_tensor = self._convert_output_to_tensor(image)
image_slices.append(image_tensor[0, -3:, -3:, -1].flatten())
image_slices.append(image[0, -3:, -3:, -1].flatten())
assert torch.abs(image_slices[0] - image_slices[1]).max() < 1e-3
@@ -373,10 +315,9 @@ class ModularPipelineTesterMixin:
image_slices = []
for pipe in pipes:
inputs = self.get_dummy_inputs()
image = pipe(**inputs, output=self.output_type)
image = pipe(**inputs, output="images")
image_tensor = self._convert_output_to_tensor(image)
image_slices.append(image_tensor[0, -3:, -3:, -1].flatten())
image_slices.append(image[0, -3:, -3:, -1].flatten())
assert torch.abs(image_slices[0] - image_slices[1]).max() < 1e-3
@@ -390,13 +331,13 @@ class ModularGuiderTesterMixin:
pipe.update_components(guider=guider)
inputs = self.get_dummy_inputs()
out_no_cfg = pipe(**inputs, output=self.output_type)
out_no_cfg = pipe(**inputs, output="images")
# forward pass with CFG applied
guider = ClassifierFreeGuidance(guidance_scale=7.5)
pipe.update_components(guider=guider)
inputs = self.get_dummy_inputs()
out_cfg = pipe(**inputs, output=self.output_type)
out_cfg = pipe(**inputs, output="images")
assert out_cfg.shape == out_no_cfg.shape
max_diff = torch.abs(out_cfg - out_no_cfg).max()

View File

@@ -1,48 +0,0 @@
# coding=utf-8
# Copyright 2025 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pytest
from diffusers.modular_pipelines import WanAutoBlocks, WanModularPipeline
from ..test_modular_pipelines_common import ModularPipelineTesterMixin
class TestWanModularPipelineFast(ModularPipelineTesterMixin):
pipeline_class = WanModularPipeline
pipeline_blocks_class = WanAutoBlocks
pretrained_model_name_or_path = "hf-internal-testing/tiny-wan-modular-pipe"
params = frozenset(["prompt", "height", "width", "num_frames"])
batch_params = frozenset(["prompt"])
optional_params = frozenset(["num_inference_steps", "num_videos_per_prompt", "latents"])
output_type = "videos"
def get_dummy_inputs(self, seed=0):
generator = self.get_generator(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"height": 16,
"width": 16,
"num_frames": 9,
"max_sequence_length": 16,
}
return inputs
@pytest.mark.skip(reason="num_videos_per_prompt")
def test_num_images_per_prompt(self):
pass

View File

@@ -1,44 +0,0 @@
# coding=utf-8
# Copyright 2025 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from diffusers.modular_pipelines import ZImageAutoBlocks, ZImageModularPipeline
from ..test_modular_pipelines_common import ModularPipelineTesterMixin
class TestZImageModularPipelineFast(ModularPipelineTesterMixin):
pipeline_class = ZImageModularPipeline
pipeline_blocks_class = ZImageAutoBlocks
pretrained_model_name_or_path = "hf-internal-testing/tiny-zimage-modular-pipe"
params = frozenset(["prompt", "height", "width"])
batch_params = frozenset(["prompt"])
def get_dummy_inputs(self, seed=0):
generator = self.get_generator(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"height": 32,
"width": 32,
"max_sequence_length": 16,
"output_type": "pt",
}
return inputs
def test_inference_batch_single_identical(self):
super().test_inference_batch_single_identical(expected_max_diff=5e-3)