Compare commits

..

4 Commits

Author SHA1 Message Date
RuoyiDu
f6b6a7181e Add z-image-omni-base implementation (#12857)
* Add z-image-omni-base implementation

* Merged into one transformer for Z-Image.

* Fix bugs for controlnet after merging the main branch new feature.

* Fix for auto_pipeline, Add Styling.

* Refactor noise handling and modulation

- Add select_per_token function for per-token value selection
- Separate adaptive modulation logic
- Cleanify t_noisy/clean variable naming
- Move image_noise_mask handler from forward to pipeline

* Styling & Formatting.

* Rewrite code with more non-forward func & clean forward.

1.Change to one forward with shorter code with omni code (None).
2.Split out non-forward funcs: _build_unified_sequence, _prepare_sequence, patchify, pad.

* Styling & Formatting.

* Manual check fix-copies in controlnet, Add select_per_token, _patchify_image, _pad_with_ids; Styling.

* Add Import in pipeline __init__.py.

---------

Co-authored-by: Jerry Qilong Wu <xinglong.wql@alibaba-inc.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2025-12-23 23:45:35 -10:00
Alvaro Bartolome
52766e6a69 Use T5Tokenizer instead of MT5Tokenizer (removed in Transformers v5.0+) (#12877)
Use `T5Tokenizer` instead of `MT5Tokenizer`

Given that the `MT5Tokenizer` in `transformers` is just a "re-export" of
`T5Tokenizer` as per
https://github.com/huggingface/transformers/blob/v4.57.3/src/transformers/models/mt5/tokenization_mt5.py
)on latest available stable Transformers i.e., v4.57.3), this commit
updates the imports to point to `T5Tokenizer` instead, so that those
still work with Transformers v5.0.0rc0 onwards.
2025-12-23 06:57:41 -10:00
Miguel Martin
973a077c6a Cosmos Predict2.5 14b Conversion (#12863)
14b conversion
2025-12-22 08:02:06 -10:00
Alvaro Bartolome
0c4f6c9cff Add OvisImagePipeline in AUTO_TEXT2IMAGE_PIPELINES_MAPPING (#12876) 2025-12-22 07:14:03 -10:00
15 changed files with 1588 additions and 358 deletions

View File

@@ -21,8 +21,8 @@ from transformers import (
BertModel,
BertTokenizer,
CLIPImageProcessor,
MT5Tokenizer,
T5EncoderModel,
T5Tokenizer,
)
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
@@ -260,7 +260,7 @@ class HunyuanDiTDifferentialImg2ImgPipeline(DiffusionPipeline):
The HunyuanDiT model designed by Tencent Hunyuan.
text_encoder_2 (`T5EncoderModel`):
The mT5 embedder. Specifically, it is 't5-v1_1-xxl'.
tokenizer_2 (`MT5Tokenizer`):
tokenizer_2 (`T5Tokenizer`):
The tokenizer for the mT5 embedder.
scheduler ([`DDPMScheduler`]):
A scheduler to be used in combination with HunyuanDiT to denoise the encoded image latents.
@@ -295,7 +295,7 @@ class HunyuanDiTDifferentialImg2ImgPipeline(DiffusionPipeline):
feature_extractor: CLIPImageProcessor,
requires_safety_checker: bool = True,
text_encoder_2=T5EncoderModel,
tokenizer_2=MT5Tokenizer,
tokenizer_2=T5Tokenizer,
):
super().__init__()

View File

@@ -29,13 +29,52 @@ hf download nvidia/Cosmos-Predict2.5-2B
Convert checkpoint
```bash
# pre-trained
transformer_ckpt_path=~/.cache/huggingface/hub/models--nvidia--Cosmos-Predict2.5-2B/snapshots/865baf084d4c9e850eac59a021277d5a9b9e8b63/base/pre-trained/d20b7120-df3e-4911-919d-db6e08bad31c_ema_bf16.pt
python scripts/convert_cosmos_to_diffusers.py \
--transformer_type Cosmos-2.5-Predict-Base-2B \
--transformer_ckpt_path $transformer_ckpt_path \
--vae_type wan2.1 \
--output_path converted/cosmos-p2.5-base-2b \
--output_path converted/2b/d20b7120-df3e-4911-919d-db6e08bad31c \
--save_pipeline
# post-trained
transformer_ckpt_path=~/.cache/huggingface/hub/models--nvidia--Cosmos-Predict2.5-2B/snapshots/865baf084d4c9e850eac59a021277d5a9b9e8b63/base/post-trained/81edfebe-bd6a-4039-8c1d-737df1a790bf_ema_bf16.pt
python scripts/convert_cosmos_to_diffusers.py \
--transformer_type Cosmos-2.5-Predict-Base-2B \
--transformer_ckpt_path $transformer_ckpt_path \
--vae_type wan2.1 \
--output_path converted/2b/81edfebe-bd6a-4039-8c1d-737df1a790bf \
--save_pipeline
```
## 14B
```bash
hf download nvidia/Cosmos-Predict2.5-14B
```
```bash
# pre-trained
transformer_ckpt_path=~/.cache/huggingface/hub/models--nvidia--Cosmos-Predict2.5-14B/snapshots/71ebf3e8af30ecfe440bf0481115975fcc052b46/base/pre-trained/54937b8c-29de-4f04-862c-e67b04ec41e8_ema_bf16.pt
python scripts/convert_cosmos_to_diffusers.py \
--transformer_type Cosmos-2.5-Predict-Base-14B \
--transformer_ckpt_path $transformer_ckpt_path \
--vae_type wan2.1 \
--output_path converted/14b/54937b8c-29de-4f04-862c-e67b04ec41e8/ \
--save_pipeline
# post-trained
transformer_ckpt_path=~/.cache/huggingface/hub/models--nvidia--Cosmos-Predict2.5-14B/snapshots/71ebf3e8af30ecfe440bf0481115975fcc052b46/base/post-trained/e21d2a49-4747-44c8-ba44-9f6f9243715f_ema_bf16.pt
python scripts/convert_cosmos_to_diffusers.py \
--transformer_type Cosmos-2.5-Predict-Base-14B \
--transformer_ckpt_path $transformer_ckpt_path \
--vae_type wan2.1 \
--output_path converted/14b/e21d2a49-4747-44c8-ba44-9f6f9243715f/ \
--save_pipeline
```
@@ -298,6 +337,25 @@ TRANSFORMER_CONFIGS = {
"crossattn_proj_in_channels": 100352,
"encoder_hidden_states_channels": 1024,
},
"Cosmos-2.5-Predict-Base-14B": {
"in_channels": 16 + 1,
"out_channels": 16,
"num_attention_heads": 40,
"attention_head_dim": 128,
"num_layers": 36,
"mlp_ratio": 4.0,
"text_embed_dim": 1024,
"adaln_lora_dim": 256,
"max_size": (128, 240, 240),
"patch_size": (1, 2, 2),
"rope_scale": (1.0, 3.0, 3.0),
"concat_padding_mask": True,
# NOTE: source config has pos_emb_learnable: 'True' - but params are missing
"extra_pos_embed_type": None,
"use_crossattn_projection": True,
"crossattn_proj_in_channels": 100352,
"encoder_hidden_states_channels": 1024,
},
}
VAE_KEYS_RENAME_DICT = {

View File

@@ -675,6 +675,7 @@ else:
"ZImageControlNetInpaintPipeline",
"ZImageControlNetPipeline",
"ZImageImg2ImgPipeline",
"ZImageOmniPipeline",
"ZImagePipeline",
]
)
@@ -1386,6 +1387,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
ZImageControlNetInpaintPipeline,
ZImageControlNetPipeline,
ZImageImg2ImgPipeline,
ZImageOmniPipeline,
ZImagePipeline,
)

View File

@@ -13,7 +13,7 @@
# limitations under the License.
import math
from typing import List, Literal, Optional
from typing import List, Literal, Optional, Tuple
import torch
import torch.nn as nn
@@ -170,6 +170,21 @@ class FeedForward(nn.Module):
return self.w2(self._forward_silu_gating(self.w1(x), self.w3(x)))
# Copied from diffusers.models.transformers.transformer_z_image.select_per_token
def select_per_token(
value_noisy: torch.Tensor,
value_clean: torch.Tensor,
noise_mask: torch.Tensor,
seq_len: int,
) -> torch.Tensor:
noise_mask_expanded = noise_mask.unsqueeze(-1) # (batch, seq_len, 1)
return torch.where(
noise_mask_expanded == 1,
value_noisy.unsqueeze(1).expand(-1, seq_len, -1),
value_clean.unsqueeze(1).expand(-1, seq_len, -1),
)
@maybe_allow_in_graph
# Copied from diffusers.models.transformers.transformer_z_image.ZImageTransformerBlock
class ZImageTransformerBlock(nn.Module):
@@ -220,12 +235,37 @@ class ZImageTransformerBlock(nn.Module):
attn_mask: torch.Tensor,
freqs_cis: torch.Tensor,
adaln_input: Optional[torch.Tensor] = None,
noise_mask: Optional[torch.Tensor] = None,
adaln_noisy: Optional[torch.Tensor] = None,
adaln_clean: Optional[torch.Tensor] = None,
):
if self.modulation:
assert adaln_input is not None
scale_msa, gate_msa, scale_mlp, gate_mlp = self.adaLN_modulation(adaln_input).unsqueeze(1).chunk(4, dim=2)
gate_msa, gate_mlp = gate_msa.tanh(), gate_mlp.tanh()
scale_msa, scale_mlp = 1.0 + scale_msa, 1.0 + scale_mlp
seq_len = x.shape[1]
if noise_mask is not None:
# Per-token modulation: different modulation for noisy/clean tokens
mod_noisy = self.adaLN_modulation(adaln_noisy)
mod_clean = self.adaLN_modulation(adaln_clean)
scale_msa_noisy, gate_msa_noisy, scale_mlp_noisy, gate_mlp_noisy = mod_noisy.chunk(4, dim=1)
scale_msa_clean, gate_msa_clean, scale_mlp_clean, gate_mlp_clean = mod_clean.chunk(4, dim=1)
gate_msa_noisy, gate_mlp_noisy = gate_msa_noisy.tanh(), gate_mlp_noisy.tanh()
gate_msa_clean, gate_mlp_clean = gate_msa_clean.tanh(), gate_mlp_clean.tanh()
scale_msa_noisy, scale_mlp_noisy = 1.0 + scale_msa_noisy, 1.0 + scale_mlp_noisy
scale_msa_clean, scale_mlp_clean = 1.0 + scale_msa_clean, 1.0 + scale_mlp_clean
scale_msa = select_per_token(scale_msa_noisy, scale_msa_clean, noise_mask, seq_len)
scale_mlp = select_per_token(scale_mlp_noisy, scale_mlp_clean, noise_mask, seq_len)
gate_msa = select_per_token(gate_msa_noisy, gate_msa_clean, noise_mask, seq_len)
gate_mlp = select_per_token(gate_mlp_noisy, gate_mlp_clean, noise_mask, seq_len)
else:
# Global modulation: same modulation for all tokens (avoid double select)
mod = self.adaLN_modulation(adaln_input)
scale_msa, gate_msa, scale_mlp, gate_mlp = mod.unsqueeze(1).chunk(4, dim=2)
gate_msa, gate_mlp = gate_msa.tanh(), gate_mlp.tanh()
scale_msa, scale_mlp = 1.0 + scale_msa, 1.0 + scale_mlp
# Attention block
attn_out = self.attention(
@@ -493,112 +533,93 @@ class ZImageControlNetModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOrigi
def create_coordinate_grid(size, start=None, device=None):
if start is None:
start = (0 for _ in size)
axes = [torch.arange(x0, x0 + span, dtype=torch.int32, device=device) for x0, span in zip(start, size)]
grids = torch.meshgrid(axes, indexing="ij")
return torch.stack(grids, dim=-1)
# Copied from diffusers.models.transformers.transformer_z_image.ZImageTransformer2DModel._patchify_image
def _patchify_image(self, image: torch.Tensor, patch_size: int, f_patch_size: int):
"""Patchify a single image tensor: (C, F, H, W) -> (num_patches, patch_dim)."""
pH, pW, pF = patch_size, patch_size, f_patch_size
C, F, H, W = image.size()
F_tokens, H_tokens, W_tokens = F // pF, H // pH, W // pW
image = image.view(C, F_tokens, pF, H_tokens, pH, W_tokens, pW)
image = image.permute(1, 3, 5, 2, 4, 6, 0).reshape(F_tokens * H_tokens * W_tokens, pF * pH * pW * C)
return image, (F, H, W), (F_tokens, H_tokens, W_tokens)
# Copied from diffusers.models.transformers.transformer_z_image.ZImageTransformer2DModel._pad_with_ids
def _pad_with_ids(
self,
feat: torch.Tensor,
pos_grid_size: Tuple,
pos_start: Tuple,
device: torch.device,
noise_mask_val: Optional[int] = None,
):
"""Pad feature to SEQ_MULTI_OF, create position IDs and pad mask."""
ori_len = len(feat)
pad_len = (-ori_len) % SEQ_MULTI_OF
total_len = ori_len + pad_len
# Pos IDs
ori_pos_ids = self.create_coordinate_grid(size=pos_grid_size, start=pos_start, device=device).flatten(0, 2)
if pad_len > 0:
pad_pos_ids = (
self.create_coordinate_grid(size=(1, 1, 1), start=(0, 0, 0), device=device)
.flatten(0, 2)
.repeat(pad_len, 1)
)
pos_ids = torch.cat([ori_pos_ids, pad_pos_ids], dim=0)
padded_feat = torch.cat([feat, feat[-1:].repeat(pad_len, 1)], dim=0)
pad_mask = torch.cat(
[
torch.zeros(ori_len, dtype=torch.bool, device=device),
torch.ones(pad_len, dtype=torch.bool, device=device),
]
)
else:
pos_ids = ori_pos_ids
padded_feat = feat
pad_mask = torch.zeros(ori_len, dtype=torch.bool, device=device)
noise_mask = [noise_mask_val] * total_len if noise_mask_val is not None else None # token level
return padded_feat, pos_ids, pad_mask, total_len, noise_mask
# Copied from diffusers.models.transformers.transformer_z_image.ZImageTransformer2DModel.patchify_and_embed
def patchify_and_embed(
self,
all_image: List[torch.Tensor],
all_cap_feats: List[torch.Tensor],
patch_size: int,
f_patch_size: int,
self, all_image: List[torch.Tensor], all_cap_feats: List[torch.Tensor], patch_size: int, f_patch_size: int
):
pH = pW = patch_size
pF = f_patch_size
"""Patchify for basic mode: single image per batch item."""
device = all_image[0].device
all_img_out, all_img_size, all_img_pos_ids, all_img_pad_mask = [], [], [], []
all_cap_out, all_cap_pos_ids, all_cap_pad_mask = [], [], []
all_image_out = []
all_image_size = []
all_image_pos_ids = []
all_image_pad_mask = []
all_cap_pos_ids = []
all_cap_pad_mask = []
all_cap_feats_out = []
for i, (image, cap_feat) in enumerate(zip(all_image, all_cap_feats)):
### Process Caption
cap_ori_len = len(cap_feat)
cap_padding_len = (-cap_ori_len) % SEQ_MULTI_OF
# padded position ids
cap_padded_pos_ids = self.create_coordinate_grid(
size=(cap_ori_len + cap_padding_len, 1, 1),
start=(1, 0, 0),
device=device,
).flatten(0, 2)
all_cap_pos_ids.append(cap_padded_pos_ids)
# pad mask
cap_pad_mask = torch.cat(
[
torch.zeros((cap_ori_len,), dtype=torch.bool, device=device),
torch.ones((cap_padding_len,), dtype=torch.bool, device=device),
],
dim=0,
)
all_cap_pad_mask.append(
cap_pad_mask if cap_padding_len > 0 else torch.zeros((cap_ori_len,), dtype=torch.bool, device=device)
for image, cap_feat in zip(all_image, all_cap_feats):
# Caption
cap_out, cap_pos_ids, cap_pad_mask, cap_len, _ = self._pad_with_ids(
cap_feat, (len(cap_feat) + (-len(cap_feat)) % SEQ_MULTI_OF, 1, 1), (1, 0, 0), device
)
all_cap_out.append(cap_out)
all_cap_pos_ids.append(cap_pos_ids)
all_cap_pad_mask.append(cap_pad_mask)
# padded feature
cap_padded_feat = torch.cat([cap_feat, cap_feat[-1:].repeat(cap_padding_len, 1)], dim=0)
all_cap_feats_out.append(cap_padded_feat)
### Process Image
C, F, H, W = image.size()
all_image_size.append((F, H, W))
F_tokens, H_tokens, W_tokens = F // pF, H // pH, W // pW
image = image.view(C, F_tokens, pF, H_tokens, pH, W_tokens, pW)
# "c f pf h ph w pw -> (f h w) (pf ph pw c)"
image = image.permute(1, 3, 5, 2, 4, 6, 0).reshape(F_tokens * H_tokens * W_tokens, pF * pH * pW * C)
image_ori_len = len(image)
image_padding_len = (-image_ori_len) % SEQ_MULTI_OF
image_ori_pos_ids = self.create_coordinate_grid(
size=(F_tokens, H_tokens, W_tokens),
start=(cap_ori_len + cap_padding_len + 1, 0, 0),
device=device,
).flatten(0, 2)
image_padded_pos_ids = torch.cat(
[
image_ori_pos_ids,
self.create_coordinate_grid(size=(1, 1, 1), start=(0, 0, 0), device=device)
.flatten(0, 2)
.repeat(image_padding_len, 1),
],
dim=0,
# Image
img_patches, size, (F_t, H_t, W_t) = self._patchify_image(image, patch_size, f_patch_size)
img_out, img_pos_ids, img_pad_mask, _, _ = self._pad_with_ids(
img_patches, (F_t, H_t, W_t), (cap_len + 1, 0, 0), device
)
all_image_pos_ids.append(image_padded_pos_ids if image_padding_len > 0 else image_ori_pos_ids)
# pad mask
image_pad_mask = torch.cat(
[
torch.zeros((image_ori_len,), dtype=torch.bool, device=device),
torch.ones((image_padding_len,), dtype=torch.bool, device=device),
],
dim=0,
)
all_image_pad_mask.append(
image_pad_mask
if image_padding_len > 0
else torch.zeros((image_ori_len,), dtype=torch.bool, device=device)
)
# padded feature
image_padded_feat = torch.cat(
[image, image[-1:].repeat(image_padding_len, 1)],
dim=0,
)
all_image_out.append(image_padded_feat if image_padding_len > 0 else image)
all_img_out.append(img_out)
all_img_size.append(size)
all_img_pos_ids.append(img_pos_ids)
all_img_pad_mask.append(img_pad_mask)
return (
all_image_out,
all_cap_feats_out,
all_image_size,
all_image_pos_ids,
all_img_out,
all_cap_out,
all_img_size,
all_img_pos_ids,
all_cap_pos_ids,
all_image_pad_mask,
all_img_pad_mask,
all_cap_pad_mask,
)

View File

@@ -13,7 +13,7 @@
# limitations under the License.
import math
from typing import Dict, List, Optional, Tuple
from typing import Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
@@ -32,6 +32,7 @@ from ..modeling_outputs import Transformer2DModelOutput
ADALN_EMBED_DIM = 256
SEQ_MULTI_OF = 32
X_PAD_DIM = 64
class TimestepEmbedder(nn.Module):
@@ -152,6 +153,20 @@ class ZSingleStreamAttnProcessor:
return output
def select_per_token(
value_noisy: torch.Tensor,
value_clean: torch.Tensor,
noise_mask: torch.Tensor,
seq_len: int,
) -> torch.Tensor:
noise_mask_expanded = noise_mask.unsqueeze(-1) # (batch, seq_len, 1)
return torch.where(
noise_mask_expanded == 1,
value_noisy.unsqueeze(1).expand(-1, seq_len, -1),
value_clean.unsqueeze(1).expand(-1, seq_len, -1),
)
class FeedForward(nn.Module):
def __init__(self, dim: int, hidden_dim: int):
super().__init__()
@@ -215,12 +230,37 @@ class ZImageTransformerBlock(nn.Module):
attn_mask: torch.Tensor,
freqs_cis: torch.Tensor,
adaln_input: Optional[torch.Tensor] = None,
noise_mask: Optional[torch.Tensor] = None,
adaln_noisy: Optional[torch.Tensor] = None,
adaln_clean: Optional[torch.Tensor] = None,
):
if self.modulation:
assert adaln_input is not None
scale_msa, gate_msa, scale_mlp, gate_mlp = self.adaLN_modulation(adaln_input).unsqueeze(1).chunk(4, dim=2)
gate_msa, gate_mlp = gate_msa.tanh(), gate_mlp.tanh()
scale_msa, scale_mlp = 1.0 + scale_msa, 1.0 + scale_mlp
seq_len = x.shape[1]
if noise_mask is not None:
# Per-token modulation: different modulation for noisy/clean tokens
mod_noisy = self.adaLN_modulation(adaln_noisy)
mod_clean = self.adaLN_modulation(adaln_clean)
scale_msa_noisy, gate_msa_noisy, scale_mlp_noisy, gate_mlp_noisy = mod_noisy.chunk(4, dim=1)
scale_msa_clean, gate_msa_clean, scale_mlp_clean, gate_mlp_clean = mod_clean.chunk(4, dim=1)
gate_msa_noisy, gate_mlp_noisy = gate_msa_noisy.tanh(), gate_mlp_noisy.tanh()
gate_msa_clean, gate_mlp_clean = gate_msa_clean.tanh(), gate_mlp_clean.tanh()
scale_msa_noisy, scale_mlp_noisy = 1.0 + scale_msa_noisy, 1.0 + scale_mlp_noisy
scale_msa_clean, scale_mlp_clean = 1.0 + scale_msa_clean, 1.0 + scale_mlp_clean
scale_msa = select_per_token(scale_msa_noisy, scale_msa_clean, noise_mask, seq_len)
scale_mlp = select_per_token(scale_mlp_noisy, scale_mlp_clean, noise_mask, seq_len)
gate_msa = select_per_token(gate_msa_noisy, gate_msa_clean, noise_mask, seq_len)
gate_mlp = select_per_token(gate_mlp_noisy, gate_mlp_clean, noise_mask, seq_len)
else:
# Global modulation: same modulation for all tokens (avoid double select)
mod = self.adaLN_modulation(adaln_input)
scale_msa, gate_msa, scale_mlp, gate_mlp = mod.unsqueeze(1).chunk(4, dim=2)
gate_msa, gate_mlp = gate_msa.tanh(), gate_mlp.tanh()
scale_msa, scale_mlp = 1.0 + scale_msa, 1.0 + scale_mlp
# Attention block
attn_out = self.attention(
@@ -252,9 +292,21 @@ class FinalLayer(nn.Module):
nn.Linear(min(hidden_size, ADALN_EMBED_DIM), hidden_size, bias=True),
)
def forward(self, x, c):
scale = 1.0 + self.adaLN_modulation(c)
x = self.norm_final(x) * scale.unsqueeze(1)
def forward(self, x, c=None, noise_mask=None, c_noisy=None, c_clean=None):
seq_len = x.shape[1]
if noise_mask is not None:
# Per-token modulation
scale_noisy = 1.0 + self.adaLN_modulation(c_noisy)
scale_clean = 1.0 + self.adaLN_modulation(c_clean)
scale = select_per_token(scale_noisy, scale_clean, noise_mask, seq_len)
else:
# Original global modulation
assert c is not None, "Either c or (c_noisy, c_clean) must be provided"
scale = 1.0 + self.adaLN_modulation(c)
scale = scale.unsqueeze(1)
x = self.norm_final(x) * scale
x = self.linear(x)
return x
@@ -325,6 +377,7 @@ class ZImageTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOr
norm_eps=1e-5,
qk_norm=True,
cap_feat_dim=2560,
siglip_feat_dim=None, # Optional: set to enable SigLIP support for Omni
rope_theta=256.0,
t_scale=1000.0,
axes_dims=[32, 48, 48],
@@ -386,6 +439,31 @@ class ZImageTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOr
self.t_embedder = TimestepEmbedder(min(dim, ADALN_EMBED_DIM), mid_size=1024)
self.cap_embedder = nn.Sequential(RMSNorm(cap_feat_dim, eps=norm_eps), nn.Linear(cap_feat_dim, dim, bias=True))
# Optional SigLIP components (for Omni variant)
if siglip_feat_dim is not None:
self.siglip_embedder = nn.Sequential(
RMSNorm(siglip_feat_dim, eps=norm_eps), nn.Linear(siglip_feat_dim, dim, bias=True)
)
self.siglip_refiner = nn.ModuleList(
[
ZImageTransformerBlock(
2000 + layer_id,
dim,
n_heads,
n_kv_heads,
norm_eps,
qk_norm,
modulation=False,
)
for layer_id in range(n_refiner_layers)
]
)
self.siglip_pad_token = nn.Parameter(torch.empty((1, dim)))
else:
self.siglip_embedder = None
self.siglip_refiner = None
self.siglip_pad_token = None
self.x_pad_token = nn.Parameter(torch.empty((1, dim)))
self.cap_pad_token = nn.Parameter(torch.empty((1, dim)))
@@ -402,259 +480,561 @@ class ZImageTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOr
self.rope_embedder = RopeEmbedder(theta=rope_theta, axes_dims=axes_dims, axes_lens=axes_lens)
def unpatchify(self, x: List[torch.Tensor], size: List[Tuple], patch_size, f_patch_size) -> List[torch.Tensor]:
def unpatchify(
self,
x: List[torch.Tensor],
size: List[Tuple],
patch_size,
f_patch_size,
x_pos_offsets: Optional[List[Tuple[int, int]]] = None,
) -> List[torch.Tensor]:
pH = pW = patch_size
pF = f_patch_size
bsz = len(x)
assert len(size) == bsz
for i in range(bsz):
F, H, W = size[i]
ori_len = (F // pF) * (H // pH) * (W // pW)
# "f h w pf ph pw c -> c (f pf) (h ph) (w pw)"
x[i] = (
x[i][:ori_len]
.view(F // pF, H // pH, W // pW, pF, pH, pW, self.out_channels)
.permute(6, 0, 3, 1, 4, 2, 5)
.reshape(self.out_channels, F, H, W)
)
return x
if x_pos_offsets is not None:
# Omni: extract target image from unified sequence (cond_images + target)
result = []
for i in range(bsz):
unified_x = x[i][x_pos_offsets[i][0] : x_pos_offsets[i][1]]
cu_len = 0
x_item = None
for j in range(len(size[i])):
if size[i][j] is None:
ori_len = 0
pad_len = SEQ_MULTI_OF
cu_len += pad_len + ori_len
else:
F, H, W = size[i][j]
ori_len = (F // pF) * (H // pH) * (W // pW)
pad_len = (-ori_len) % SEQ_MULTI_OF
x_item = (
unified_x[cu_len : cu_len + ori_len]
.view(F // pF, H // pH, W // pW, pF, pH, pW, self.out_channels)
.permute(6, 0, 3, 1, 4, 2, 5)
.reshape(self.out_channels, F, H, W)
)
cu_len += ori_len + pad_len
result.append(x_item) # Return only the last (target) image
return result
else:
# Original mode: simple unpatchify
for i in range(bsz):
F, H, W = size[i]
ori_len = (F // pF) * (H // pH) * (W // pW)
# "f h w pf ph pw c -> c (f pf) (h ph) (w pw)"
x[i] = (
x[i][:ori_len]
.view(F // pF, H // pH, W // pW, pF, pH, pW, self.out_channels)
.permute(6, 0, 3, 1, 4, 2, 5)
.reshape(self.out_channels, F, H, W)
)
return x
@staticmethod
def create_coordinate_grid(size, start=None, device=None):
if start is None:
start = (0 for _ in size)
axes = [torch.arange(x0, x0 + span, dtype=torch.int32, device=device) for x0, span in zip(start, size)]
grids = torch.meshgrid(axes, indexing="ij")
return torch.stack(grids, dim=-1)
def patchify_and_embed(
def _patchify_image(self, image: torch.Tensor, patch_size: int, f_patch_size: int):
"""Patchify a single image tensor: (C, F, H, W) -> (num_patches, patch_dim)."""
pH, pW, pF = patch_size, patch_size, f_patch_size
C, F, H, W = image.size()
F_tokens, H_tokens, W_tokens = F // pF, H // pH, W // pW
image = image.view(C, F_tokens, pF, H_tokens, pH, W_tokens, pW)
image = image.permute(1, 3, 5, 2, 4, 6, 0).reshape(F_tokens * H_tokens * W_tokens, pF * pH * pW * C)
return image, (F, H, W), (F_tokens, H_tokens, W_tokens)
def _pad_with_ids(
self,
all_image: List[torch.Tensor],
all_cap_feats: List[torch.Tensor],
patch_size: int,
f_patch_size: int,
feat: torch.Tensor,
pos_grid_size: Tuple,
pos_start: Tuple,
device: torch.device,
noise_mask_val: Optional[int] = None,
):
pH = pW = patch_size
pF = f_patch_size
"""Pad feature to SEQ_MULTI_OF, create position IDs and pad mask."""
ori_len = len(feat)
pad_len = (-ori_len) % SEQ_MULTI_OF
total_len = ori_len + pad_len
# Pos IDs
ori_pos_ids = self.create_coordinate_grid(size=pos_grid_size, start=pos_start, device=device).flatten(0, 2)
if pad_len > 0:
pad_pos_ids = (
self.create_coordinate_grid(size=(1, 1, 1), start=(0, 0, 0), device=device)
.flatten(0, 2)
.repeat(pad_len, 1)
)
pos_ids = torch.cat([ori_pos_ids, pad_pos_ids], dim=0)
padded_feat = torch.cat([feat, feat[-1:].repeat(pad_len, 1)], dim=0)
pad_mask = torch.cat(
[
torch.zeros(ori_len, dtype=torch.bool, device=device),
torch.ones(pad_len, dtype=torch.bool, device=device),
]
)
else:
pos_ids = ori_pos_ids
padded_feat = feat
pad_mask = torch.zeros(ori_len, dtype=torch.bool, device=device)
noise_mask = [noise_mask_val] * total_len if noise_mask_val is not None else None # token level
return padded_feat, pos_ids, pad_mask, total_len, noise_mask
def patchify_and_embed(
self, all_image: List[torch.Tensor], all_cap_feats: List[torch.Tensor], patch_size: int, f_patch_size: int
):
"""Patchify for basic mode: single image per batch item."""
device = all_image[0].device
all_img_out, all_img_size, all_img_pos_ids, all_img_pad_mask = [], [], [], []
all_cap_out, all_cap_pos_ids, all_cap_pad_mask = [], [], []
all_image_out = []
all_image_size = []
all_image_pos_ids = []
all_image_pad_mask = []
all_cap_pos_ids = []
all_cap_pad_mask = []
all_cap_feats_out = []
for i, (image, cap_feat) in enumerate(zip(all_image, all_cap_feats)):
### Process Caption
cap_ori_len = len(cap_feat)
cap_padding_len = (-cap_ori_len) % SEQ_MULTI_OF
# padded position ids
cap_padded_pos_ids = self.create_coordinate_grid(
size=(cap_ori_len + cap_padding_len, 1, 1),
start=(1, 0, 0),
device=device,
).flatten(0, 2)
all_cap_pos_ids.append(cap_padded_pos_ids)
# pad mask
cap_pad_mask = torch.cat(
[
torch.zeros((cap_ori_len,), dtype=torch.bool, device=device),
torch.ones((cap_padding_len,), dtype=torch.bool, device=device),
],
dim=0,
)
all_cap_pad_mask.append(
cap_pad_mask if cap_padding_len > 0 else torch.zeros((cap_ori_len,), dtype=torch.bool, device=device)
for image, cap_feat in zip(all_image, all_cap_feats):
# Caption
cap_out, cap_pos_ids, cap_pad_mask, cap_len, _ = self._pad_with_ids(
cap_feat, (len(cap_feat) + (-len(cap_feat)) % SEQ_MULTI_OF, 1, 1), (1, 0, 0), device
)
all_cap_out.append(cap_out)
all_cap_pos_ids.append(cap_pos_ids)
all_cap_pad_mask.append(cap_pad_mask)
# padded feature
cap_padded_feat = torch.cat([cap_feat, cap_feat[-1:].repeat(cap_padding_len, 1)], dim=0)
all_cap_feats_out.append(cap_padded_feat)
### Process Image
C, F, H, W = image.size()
all_image_size.append((F, H, W))
F_tokens, H_tokens, W_tokens = F // pF, H // pH, W // pW
image = image.view(C, F_tokens, pF, H_tokens, pH, W_tokens, pW)
# "c f pf h ph w pw -> (f h w) (pf ph pw c)"
image = image.permute(1, 3, 5, 2, 4, 6, 0).reshape(F_tokens * H_tokens * W_tokens, pF * pH * pW * C)
image_ori_len = len(image)
image_padding_len = (-image_ori_len) % SEQ_MULTI_OF
image_ori_pos_ids = self.create_coordinate_grid(
size=(F_tokens, H_tokens, W_tokens),
start=(cap_ori_len + cap_padding_len + 1, 0, 0),
device=device,
).flatten(0, 2)
image_padded_pos_ids = torch.cat(
[
image_ori_pos_ids,
self.create_coordinate_grid(size=(1, 1, 1), start=(0, 0, 0), device=device)
.flatten(0, 2)
.repeat(image_padding_len, 1),
],
dim=0,
# Image
img_patches, size, (F_t, H_t, W_t) = self._patchify_image(image, patch_size, f_patch_size)
img_out, img_pos_ids, img_pad_mask, _, _ = self._pad_with_ids(
img_patches, (F_t, H_t, W_t), (cap_len + 1, 0, 0), device
)
all_image_pos_ids.append(image_padded_pos_ids if image_padding_len > 0 else image_ori_pos_ids)
# pad mask
image_pad_mask = torch.cat(
[
torch.zeros((image_ori_len,), dtype=torch.bool, device=device),
torch.ones((image_padding_len,), dtype=torch.bool, device=device),
],
dim=0,
)
all_image_pad_mask.append(
image_pad_mask
if image_padding_len > 0
else torch.zeros((image_ori_len,), dtype=torch.bool, device=device)
)
# padded feature
image_padded_feat = torch.cat(
[image, image[-1:].repeat(image_padding_len, 1)],
dim=0,
)
all_image_out.append(image_padded_feat if image_padding_len > 0 else image)
all_img_out.append(img_out)
all_img_size.append(size)
all_img_pos_ids.append(img_pos_ids)
all_img_pad_mask.append(img_pad_mask)
return (
all_image_out,
all_cap_feats_out,
all_image_size,
all_image_pos_ids,
all_img_out,
all_cap_out,
all_img_size,
all_img_pos_ids,
all_cap_pos_ids,
all_image_pad_mask,
all_img_pad_mask,
all_cap_pad_mask,
)
def forward(
def patchify_and_embed_omni(
self,
x: List[torch.Tensor],
t,
cap_feats: List[torch.Tensor],
controlnet_block_samples: Optional[Dict[int, torch.Tensor]] = None,
patch_size=2,
f_patch_size=1,
return_dict: bool = True,
all_x: List[List[torch.Tensor]],
all_cap_feats: List[List[torch.Tensor]],
all_siglip_feats: List[List[torch.Tensor]],
patch_size: int,
f_patch_size: int,
images_noise_mask: List[List[int]],
):
assert patch_size in self.all_patch_size
assert f_patch_size in self.all_f_patch_size
"""Patchify for omni mode: multiple images per batch item with noise masks."""
bsz = len(all_x)
device = all_x[0][-1].device
dtype = all_x[0][-1].dtype
bsz = len(x)
device = x[0].device
t = t * self.t_scale
t = self.t_embedder(t)
all_x_out, all_x_size, all_x_pos_ids, all_x_pad_mask, all_x_len, all_x_noise_mask = [], [], [], [], [], []
all_cap_out, all_cap_pos_ids, all_cap_pad_mask, all_cap_len, all_cap_noise_mask = [], [], [], [], []
all_sig_out, all_sig_pos_ids, all_sig_pad_mask, all_sig_len, all_sig_noise_mask = [], [], [], [], []
(
x,
cap_feats,
x_size,
x_pos_ids,
cap_pos_ids,
x_inner_pad_mask,
cap_inner_pad_mask,
) = self.patchify_and_embed(x, cap_feats, patch_size, f_patch_size)
for i in range(bsz):
num_images = len(all_x[i])
cap_feats_list, cap_pos_list, cap_mask_list, cap_lens, cap_noise = [], [], [], [], []
cap_end_pos = []
cap_cu_len = 1
# x embed & refine
x_item_seqlens = [len(_) for _ in x]
assert all(_ % SEQ_MULTI_OF == 0 for _ in x_item_seqlens)
x_max_item_seqlen = max(x_item_seqlens)
# Process captions
for j, cap_item in enumerate(all_cap_feats[i]):
noise_val = images_noise_mask[i][j] if j < len(images_noise_mask[i]) else 1
cap_out, cap_pos, cap_mask, cap_len, cap_nm = self._pad_with_ids(
cap_item,
(len(cap_item) + (-len(cap_item)) % SEQ_MULTI_OF, 1, 1),
(cap_cu_len, 0, 0),
device,
noise_val,
)
cap_feats_list.append(cap_out)
cap_pos_list.append(cap_pos)
cap_mask_list.append(cap_mask)
cap_lens.append(cap_len)
cap_noise.extend(cap_nm)
cap_cu_len += len(cap_item)
cap_end_pos.append(cap_cu_len)
cap_cu_len += 2 # for image vae and siglip tokens
x = torch.cat(x, dim=0)
x = self.all_x_embedder[f"{patch_size}-{f_patch_size}"](x)
all_cap_out.append(torch.cat(cap_feats_list, dim=0))
all_cap_pos_ids.append(torch.cat(cap_pos_list, dim=0))
all_cap_pad_mask.append(torch.cat(cap_mask_list, dim=0))
all_cap_len.append(cap_lens)
all_cap_noise_mask.append(cap_noise)
# Match t_embedder output dtype to x for layerwise casting compatibility
adaln_input = t.type_as(x)
x[torch.cat(x_inner_pad_mask)] = self.x_pad_token
x = list(x.split(x_item_seqlens, dim=0))
x_freqs_cis = list(self.rope_embedder(torch.cat(x_pos_ids, dim=0)).split([len(_) for _ in x_pos_ids], dim=0))
# Process images
x_feats_list, x_pos_list, x_mask_list, x_lens, x_size, x_noise = [], [], [], [], [], []
for j, x_item in enumerate(all_x[i]):
noise_val = images_noise_mask[i][j]
if x_item is not None:
x_patches, size, (F_t, H_t, W_t) = self._patchify_image(x_item, patch_size, f_patch_size)
x_out, x_pos, x_mask, x_len, x_nm = self._pad_with_ids(
x_patches, (F_t, H_t, W_t), (cap_end_pos[j], 0, 0), device, noise_val
)
x_size.append(size)
else:
x_len = SEQ_MULTI_OF
x_out = torch.zeros((x_len, X_PAD_DIM), dtype=dtype, device=device)
x_pos = self.create_coordinate_grid((1, 1, 1), (0, 0, 0), device).flatten(0, 2).repeat(x_len, 1)
x_mask = torch.ones(x_len, dtype=torch.bool, device=device)
x_nm = [noise_val] * x_len
x_size.append(None)
x_feats_list.append(x_out)
x_pos_list.append(x_pos)
x_mask_list.append(x_mask)
x_lens.append(x_len)
x_noise.extend(x_nm)
x = pad_sequence(x, batch_first=True, padding_value=0.0)
x_freqs_cis = pad_sequence(x_freqs_cis, batch_first=True, padding_value=0.0)
# Clarify the length matches to satisfy Dynamo due to "Symbolic Shape Inference" to avoid compilation errors
x_freqs_cis = x_freqs_cis[:, : x.shape[1]]
all_x_out.append(torch.cat(x_feats_list, dim=0))
all_x_pos_ids.append(torch.cat(x_pos_list, dim=0))
all_x_pad_mask.append(torch.cat(x_mask_list, dim=0))
all_x_size.append(x_size)
all_x_len.append(x_lens)
all_x_noise_mask.append(x_noise)
x_attn_mask = torch.zeros((bsz, x_max_item_seqlen), dtype=torch.bool, device=device)
for i, seq_len in enumerate(x_item_seqlens):
x_attn_mask[i, :seq_len] = 1
# Process siglip
if all_siglip_feats[i] is None:
all_sig_len.append([0] * num_images)
all_sig_out.append(None)
else:
sig_feats_list, sig_pos_list, sig_mask_list, sig_lens, sig_noise = [], [], [], [], []
for j, sig_item in enumerate(all_siglip_feats[i]):
noise_val = images_noise_mask[i][j]
if sig_item is not None:
sig_H, sig_W, sig_C = sig_item.size()
sig_flat = sig_item.permute(2, 0, 1).reshape(sig_H * sig_W, sig_C)
sig_out, sig_pos, sig_mask, sig_len, sig_nm = self._pad_with_ids(
sig_flat, (1, sig_H, sig_W), (cap_end_pos[j] + 1, 0, 0), device, noise_val
)
# Scale position IDs to match x resolution
if x_size[j] is not None:
sig_pos = sig_pos.float()
sig_pos[..., 1] = sig_pos[..., 1] / max(sig_H - 1, 1) * (x_size[j][1] - 1)
sig_pos[..., 2] = sig_pos[..., 2] / max(sig_W - 1, 1) * (x_size[j][2] - 1)
sig_pos = sig_pos.to(torch.int32)
else:
sig_len = SEQ_MULTI_OF
sig_out = torch.zeros((sig_len, self.config.siglip_feat_dim), dtype=dtype, device=device)
sig_pos = (
self.create_coordinate_grid((1, 1, 1), (0, 0, 0), device).flatten(0, 2).repeat(sig_len, 1)
)
sig_mask = torch.ones(sig_len, dtype=torch.bool, device=device)
sig_nm = [noise_val] * sig_len
sig_feats_list.append(sig_out)
sig_pos_list.append(sig_pos)
sig_mask_list.append(sig_mask)
sig_lens.append(sig_len)
sig_noise.extend(sig_nm)
if torch.is_grad_enabled() and self.gradient_checkpointing:
for layer in self.noise_refiner:
x = self._gradient_checkpointing_func(layer, x, x_attn_mask, x_freqs_cis, adaln_input)
else:
for layer in self.noise_refiner:
x = layer(x, x_attn_mask, x_freqs_cis, adaln_input)
all_sig_out.append(torch.cat(sig_feats_list, dim=0))
all_sig_pos_ids.append(torch.cat(sig_pos_list, dim=0))
all_sig_pad_mask.append(torch.cat(sig_mask_list, dim=0))
all_sig_len.append(sig_lens)
all_sig_noise_mask.append(sig_noise)
# cap embed & refine
cap_item_seqlens = [len(_) for _ in cap_feats]
cap_max_item_seqlen = max(cap_item_seqlens)
# Compute x position offsets
all_x_pos_offsets = [(sum(all_cap_len[i]), sum(all_cap_len[i]) + sum(all_x_len[i])) for i in range(bsz)]
cap_feats = torch.cat(cap_feats, dim=0)
cap_feats = self.cap_embedder(cap_feats)
cap_feats[torch.cat(cap_inner_pad_mask)] = self.cap_pad_token
cap_feats = list(cap_feats.split(cap_item_seqlens, dim=0))
cap_freqs_cis = list(
self.rope_embedder(torch.cat(cap_pos_ids, dim=0)).split([len(_) for _ in cap_pos_ids], dim=0)
return (
all_x_out,
all_cap_out,
all_sig_out,
all_x_size,
all_x_pos_ids,
all_cap_pos_ids,
all_sig_pos_ids,
all_x_pad_mask,
all_cap_pad_mask,
all_sig_pad_mask,
all_x_pos_offsets,
all_x_noise_mask,
all_cap_noise_mask,
all_sig_noise_mask,
)
cap_feats = pad_sequence(cap_feats, batch_first=True, padding_value=0.0)
cap_freqs_cis = pad_sequence(cap_freqs_cis, batch_first=True, padding_value=0.0)
# Clarify the length matches to satisfy Dynamo due to "Symbolic Shape Inference" to avoid compilation errors
cap_freqs_cis = cap_freqs_cis[:, : cap_feats.shape[1]]
def _prepare_sequence(
self,
feats: List[torch.Tensor],
pos_ids: List[torch.Tensor],
inner_pad_mask: List[torch.Tensor],
pad_token: torch.nn.Parameter,
noise_mask: Optional[List[List[int]]] = None,
device: torch.device = None,
):
"""Prepare sequence: apply pad token, RoPE embed, pad to batch, create attention mask."""
item_seqlens = [len(f) for f in feats]
max_seqlen = max(item_seqlens)
bsz = len(feats)
cap_attn_mask = torch.zeros((bsz, cap_max_item_seqlen), dtype=torch.bool, device=device)
for i, seq_len in enumerate(cap_item_seqlens):
cap_attn_mask[i, :seq_len] = 1
# Pad token
feats_cat = torch.cat(feats, dim=0)
feats_cat[torch.cat(inner_pad_mask)] = pad_token
feats = list(feats_cat.split(item_seqlens, dim=0))
if torch.is_grad_enabled() and self.gradient_checkpointing:
for layer in self.context_refiner:
cap_feats = self._gradient_checkpointing_func(layer, cap_feats, cap_attn_mask, cap_freqs_cis)
else:
for layer in self.context_refiner:
cap_feats = layer(cap_feats, cap_attn_mask, cap_freqs_cis)
# RoPE
freqs_cis = list(self.rope_embedder(torch.cat(pos_ids, dim=0)).split([len(p) for p in pos_ids], dim=0))
# unified
# Pad to batch
feats = pad_sequence(feats, batch_first=True, padding_value=0.0)
freqs_cis = pad_sequence(freqs_cis, batch_first=True, padding_value=0.0)[:, : feats.shape[1]]
# Attention mask
attn_mask = torch.zeros((bsz, max_seqlen), dtype=torch.bool, device=device)
for i, seq_len in enumerate(item_seqlens):
attn_mask[i, :seq_len] = 1
# Noise mask
noise_mask_tensor = None
if noise_mask is not None:
noise_mask_tensor = pad_sequence(
[torch.tensor(m, dtype=torch.long, device=device) for m in noise_mask],
batch_first=True,
padding_value=0,
)[:, : feats.shape[1]]
return feats, freqs_cis, attn_mask, item_seqlens, noise_mask_tensor
def _build_unified_sequence(
self,
x: torch.Tensor,
x_freqs: torch.Tensor,
x_seqlens: List[int],
x_noise_mask: Optional[List[List[int]]],
cap: torch.Tensor,
cap_freqs: torch.Tensor,
cap_seqlens: List[int],
cap_noise_mask: Optional[List[List[int]]],
siglip: Optional[torch.Tensor],
siglip_freqs: Optional[torch.Tensor],
siglip_seqlens: Optional[List[int]],
siglip_noise_mask: Optional[List[List[int]]],
omni_mode: bool,
device: torch.device,
):
"""Build unified sequence: x, cap, and optionally siglip.
Basic mode order: [x, cap]; Omni mode order: [cap, x, siglip]
"""
bsz = len(x_seqlens)
unified = []
unified_freqs_cis = []
unified_freqs = []
unified_noise_mask = []
for i in range(bsz):
x_len = x_item_seqlens[i]
cap_len = cap_item_seqlens[i]
unified.append(torch.cat([x[i][:x_len], cap_feats[i][:cap_len]]))
unified_freqs_cis.append(torch.cat([x_freqs_cis[i][:x_len], cap_freqs_cis[i][:cap_len]]))
unified_item_seqlens = [a + b for a, b in zip(cap_item_seqlens, x_item_seqlens)]
assert unified_item_seqlens == [len(_) for _ in unified]
unified_max_item_seqlen = max(unified_item_seqlens)
x_len, cap_len = x_seqlens[i], cap_seqlens[i]
unified = pad_sequence(unified, batch_first=True, padding_value=0.0)
unified_freqs_cis = pad_sequence(unified_freqs_cis, batch_first=True, padding_value=0.0)
unified_attn_mask = torch.zeros((bsz, unified_max_item_seqlen), dtype=torch.bool, device=device)
for i, seq_len in enumerate(unified_item_seqlens):
unified_attn_mask[i, :seq_len] = 1
if omni_mode:
# Omni: [cap, x, siglip]
if siglip is not None and siglip_seqlens is not None:
sig_len = siglip_seqlens[i]
unified.append(torch.cat([cap[i][:cap_len], x[i][:x_len], siglip[i][:sig_len]]))
unified_freqs.append(
torch.cat([cap_freqs[i][:cap_len], x_freqs[i][:x_len], siglip_freqs[i][:sig_len]])
)
unified_noise_mask.append(
torch.tensor(
cap_noise_mask[i] + x_noise_mask[i] + siglip_noise_mask[i], dtype=torch.long, device=device
)
)
else:
unified.append(torch.cat([cap[i][:cap_len], x[i][:x_len]]))
unified_freqs.append(torch.cat([cap_freqs[i][:cap_len], x_freqs[i][:x_len]]))
unified_noise_mask.append(
torch.tensor(cap_noise_mask[i] + x_noise_mask[i], dtype=torch.long, device=device)
)
else:
# Basic: [x, cap]
unified.append(torch.cat([x[i][:x_len], cap[i][:cap_len]]))
unified_freqs.append(torch.cat([x_freqs[i][:x_len], cap_freqs[i][:cap_len]]))
if torch.is_grad_enabled() and self.gradient_checkpointing:
for layer_idx, layer in enumerate(self.layers):
unified = self._gradient_checkpointing_func(
layer, unified, unified_attn_mask, unified_freqs_cis, adaln_input
)
if controlnet_block_samples is not None:
if layer_idx in controlnet_block_samples:
unified = unified + controlnet_block_samples[layer_idx]
# Compute unified seqlens
if omni_mode:
if siglip is not None and siglip_seqlens is not None:
unified_seqlens = [a + b + c for a, b, c in zip(cap_seqlens, x_seqlens, siglip_seqlens)]
else:
unified_seqlens = [a + b for a, b in zip(cap_seqlens, x_seqlens)]
else:
for layer_idx, layer in enumerate(self.layers):
unified = layer(unified, unified_attn_mask, unified_freqs_cis, adaln_input)
if controlnet_block_samples is not None:
if layer_idx in controlnet_block_samples:
unified = unified + controlnet_block_samples[layer_idx]
unified_seqlens = [a + b for a, b in zip(x_seqlens, cap_seqlens)]
unified = self.all_final_layer[f"{patch_size}-{f_patch_size}"](unified, adaln_input)
unified = list(unified.unbind(dim=0))
x = self.unpatchify(unified, x_size, patch_size, f_patch_size)
max_seqlen = max(unified_seqlens)
if not return_dict:
return (x,)
# Pad to batch
unified = pad_sequence(unified, batch_first=True, padding_value=0.0)
unified_freqs = pad_sequence(unified_freqs, batch_first=True, padding_value=0.0)
return Transformer2DModelOutput(sample=x)
# Attention mask
attn_mask = torch.zeros((bsz, max_seqlen), dtype=torch.bool, device=device)
for i, seq_len in enumerate(unified_seqlens):
attn_mask[i, :seq_len] = 1
# Noise mask
noise_mask_tensor = None
if omni_mode:
noise_mask_tensor = pad_sequence(unified_noise_mask, batch_first=True, padding_value=0)[
:, : unified.shape[1]
]
return unified, unified_freqs, attn_mask, noise_mask_tensor
def forward(
self,
x: Union[List[torch.Tensor], List[List[torch.Tensor]]],
t,
cap_feats: Union[List[torch.Tensor], List[List[torch.Tensor]]],
return_dict: bool = True,
controlnet_block_samples: Optional[Dict[int, torch.Tensor]] = None,
siglip_feats: Optional[List[List[torch.Tensor]]] = None,
image_noise_mask: Optional[List[List[int]]] = None,
patch_size: int = 2,
f_patch_size: int = 1,
):
"""
Flow: patchify -> t_embed -> x_embed -> x_refine -> cap_embed -> cap_refine
-> [siglip_embed -> siglip_refine] -> build_unified -> main_layers -> final_layer -> unpatchify
"""
assert patch_size in self.all_patch_size and f_patch_size in self.all_f_patch_size
omni_mode = isinstance(x[0], list)
device = x[0][-1].device if omni_mode else x[0].device
if omni_mode:
# Dual embeddings: noisy (t) and clean (t=1)
t_noisy = self.t_embedder(t * self.t_scale).type_as(x[0][-1])
t_clean = self.t_embedder(torch.ones_like(t) * self.t_scale).type_as(x[0][-1])
adaln_input = None
else:
# Single embedding for all tokens
adaln_input = self.t_embedder(t * self.t_scale).type_as(x[0])
t_noisy = t_clean = None
# Patchify
if omni_mode:
(
x,
cap_feats,
siglip_feats,
x_size,
x_pos_ids,
cap_pos_ids,
siglip_pos_ids,
x_pad_mask,
cap_pad_mask,
siglip_pad_mask,
x_pos_offsets,
x_noise_mask,
cap_noise_mask,
siglip_noise_mask,
) = self.patchify_and_embed_omni(x, cap_feats, siglip_feats, patch_size, f_patch_size, image_noise_mask)
else:
(
x,
cap_feats,
x_size,
x_pos_ids,
cap_pos_ids,
x_pad_mask,
cap_pad_mask,
) = self.patchify_and_embed(x, cap_feats, patch_size, f_patch_size)
x_pos_offsets = x_noise_mask = cap_noise_mask = siglip_noise_mask = None
# X embed & refine
x_seqlens = [len(xi) for xi in x]
x = self.all_x_embedder[f"{patch_size}-{f_patch_size}"](torch.cat(x, dim=0)) # embed
x, x_freqs, x_mask, _, x_noise_tensor = self._prepare_sequence(
list(x.split(x_seqlens, dim=0)), x_pos_ids, x_pad_mask, self.x_pad_token, x_noise_mask, device
)
for layer in self.noise_refiner:
x = (
self._gradient_checkpointing_func(
layer, x, x_mask, x_freqs, adaln_input, x_noise_tensor, t_noisy, t_clean
)
if torch.is_grad_enabled() and self.gradient_checkpointing
else layer(x, x_mask, x_freqs, adaln_input, x_noise_tensor, t_noisy, t_clean)
)
# Cap embed & refine
cap_seqlens = [len(ci) for ci in cap_feats]
cap_feats = self.cap_embedder(torch.cat(cap_feats, dim=0)) # embed
cap_feats, cap_freqs, cap_mask, _, _ = self._prepare_sequence(
list(cap_feats.split(cap_seqlens, dim=0)), cap_pos_ids, cap_pad_mask, self.cap_pad_token, None, device
)
for layer in self.context_refiner:
cap_feats = (
self._gradient_checkpointing_func(layer, cap_feats, cap_mask, cap_freqs)
if torch.is_grad_enabled() and self.gradient_checkpointing
else layer(cap_feats, cap_mask, cap_freqs)
)
# Siglip embed & refine
siglip_seqlens = siglip_freqs = None
if omni_mode and siglip_feats[0] is not None and self.siglip_embedder is not None:
siglip_seqlens = [len(si) for si in siglip_feats]
siglip_feats = self.siglip_embedder(torch.cat(siglip_feats, dim=0)) # embed
siglip_feats, siglip_freqs, siglip_mask, _, _ = self._prepare_sequence(
list(siglip_feats.split(siglip_seqlens, dim=0)),
siglip_pos_ids,
siglip_pad_mask,
self.siglip_pad_token,
None,
device,
)
for layer in self.siglip_refiner:
siglip_feats = (
self._gradient_checkpointing_func(layer, siglip_feats, siglip_mask, siglip_freqs)
if torch.is_grad_enabled() and self.gradient_checkpointing
else layer(siglip_feats, siglip_mask, siglip_freqs)
)
# Unified sequence
unified, unified_freqs, unified_mask, unified_noise_tensor = self._build_unified_sequence(
x,
x_freqs,
x_seqlens,
x_noise_mask,
cap_feats,
cap_freqs,
cap_seqlens,
cap_noise_mask,
siglip_feats,
siglip_freqs,
siglip_seqlens,
siglip_noise_mask,
omni_mode,
device,
)
# Main transformer layers
for layer_idx, layer in enumerate(self.layers):
unified = (
self._gradient_checkpointing_func(
layer, unified, unified_mask, unified_freqs, adaln_input, unified_noise_tensor, t_noisy, t_clean
)
if torch.is_grad_enabled() and self.gradient_checkpointing
else layer(unified, unified_mask, unified_freqs, adaln_input, unified_noise_tensor, t_noisy, t_clean)
)
if controlnet_block_samples is not None and layer_idx in controlnet_block_samples:
unified = unified + controlnet_block_samples[layer_idx]
unified = (
self.all_final_layer[f"{patch_size}-{f_patch_size}"](
unified, noise_mask=unified_noise_tensor, c_noisy=t_noisy, c_clean=t_clean
)
if omni_mode
else self.all_final_layer[f"{patch_size}-{f_patch_size}"](unified, c=adaln_input)
)
# Unpatchify
x = self.unpatchify(list(unified.unbind(dim=0)), x_size, patch_size, f_patch_size, x_pos_offsets)
return (x,) if not return_dict else Transformer2DModelOutput(sample=x)

View File

@@ -411,6 +411,7 @@ else:
"ZImagePipeline",
"ZImageControlNetPipeline",
"ZImageControlNetInpaintPipeline",
"ZImageOmniPipeline",
]
_import_structure["skyreels_v2"] = [
"SkyReelsV2DiffusionForcingPipeline",
@@ -856,6 +857,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
ZImageControlNetInpaintPipeline,
ZImageControlNetPipeline,
ZImageImg2ImgPipeline,
ZImageOmniPipeline,
ZImagePipeline,
)

View File

@@ -73,6 +73,7 @@ from .kandinsky3 import Kandinsky3Img2ImgPipeline, Kandinsky3Pipeline
from .latent_consistency_models import LatentConsistencyModelImg2ImgPipeline, LatentConsistencyModelPipeline
from .lumina import LuminaPipeline
from .lumina2 import Lumina2Pipeline
from .ovis_image import OvisImagePipeline
from .pag import (
HunyuanDiTPAGPipeline,
PixArtSigmaPAGPipeline,
@@ -119,7 +120,13 @@ from .stable_diffusion_xl import (
)
from .wan import WanImageToVideoPipeline, WanPipeline, WanVideoToVideoPipeline
from .wuerstchen import WuerstchenCombinedPipeline, WuerstchenDecoderPipeline
from .z_image import ZImageImg2ImgPipeline, ZImagePipeline
from .z_image import (
ZImageControlNetInpaintPipeline,
ZImageControlNetPipeline,
ZImageImg2ImgPipeline,
ZImageOmniPipeline,
ZImagePipeline,
)
AUTO_TEXT2IMAGE_PIPELINES_MAPPING = OrderedDict(
@@ -164,6 +171,10 @@ AUTO_TEXT2IMAGE_PIPELINES_MAPPING = OrderedDict(
("qwenimage", QwenImagePipeline),
("qwenimage-controlnet", QwenImageControlNetPipeline),
("z-image", ZImagePipeline),
("z-image-controlnet", ZImageControlNetPipeline),
("z-image-controlnet-inpaint", ZImageControlNetInpaintPipeline),
("z-image-omni", ZImageOmniPipeline),
("ovis", OvisImagePipeline),
]
)

View File

@@ -17,7 +17,7 @@ from typing import Callable, Dict, List, Optional, Tuple, Union
import numpy as np
import torch
from transformers import BertModel, BertTokenizer, CLIPImageProcessor, MT5Tokenizer, T5EncoderModel
from transformers import BertModel, BertTokenizer, CLIPImageProcessor, T5EncoderModel, T5Tokenizer
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
@@ -185,7 +185,7 @@ class HunyuanDiTControlNetPipeline(DiffusionPipeline):
The HunyuanDiT model designed by Tencent Hunyuan.
text_encoder_2 (`T5EncoderModel`):
The mT5 embedder. Specifically, it is 't5-v1_1-xxl'.
tokenizer_2 (`MT5Tokenizer`):
tokenizer_2 (`T5Tokenizer`):
The tokenizer for the mT5 embedder.
scheduler ([`DDPMScheduler`]):
A scheduler to be used in combination with HunyuanDiT to denoise the encoded image latents.
@@ -229,7 +229,7 @@ class HunyuanDiTControlNetPipeline(DiffusionPipeline):
HunyuanDiT2DMultiControlNetModel,
],
text_encoder_2: Optional[T5EncoderModel] = None,
tokenizer_2: Optional[MT5Tokenizer] = None,
tokenizer_2: Optional[T5Tokenizer] = None,
requires_safety_checker: bool = True,
):
super().__init__()

View File

@@ -133,7 +133,7 @@ EXAMPLE_DOC_STRING = """
... num_frames=93,
... generator=torch.Generator().manual_seed(1),
... ).frames[0]
>>> # export_to_video(video, "image2world.mp4", fps=16)
>>> export_to_video(video, "image2world.mp4", fps=16)
>>> # Video2World: condition on an input clip and predict a 93-frame world video.
>>> prompt = (

View File

@@ -17,7 +17,7 @@ from typing import Callable, Dict, List, Optional, Tuple, Union
import numpy as np
import torch
from transformers import BertModel, BertTokenizer, CLIPImageProcessor, MT5Tokenizer, T5EncoderModel
from transformers import BertModel, BertTokenizer, CLIPImageProcessor, T5EncoderModel, T5Tokenizer
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
@@ -169,7 +169,7 @@ class HunyuanDiTPipeline(DiffusionPipeline):
The HunyuanDiT model designed by Tencent Hunyuan.
text_encoder_2 (`T5EncoderModel`):
The mT5 embedder. Specifically, it is 't5-v1_1-xxl'.
tokenizer_2 (`MT5Tokenizer`):
tokenizer_2 (`T5Tokenizer`):
The tokenizer for the mT5 embedder.
scheduler ([`DDPMScheduler`]):
A scheduler to be used in combination with HunyuanDiT to denoise the encoded image latents.
@@ -204,7 +204,7 @@ class HunyuanDiTPipeline(DiffusionPipeline):
feature_extractor: CLIPImageProcessor,
requires_safety_checker: bool = True,
text_encoder_2: Optional[T5EncoderModel] = None,
tokenizer_2: Optional[MT5Tokenizer] = None,
tokenizer_2: Optional[T5Tokenizer] = None,
):
super().__init__()

View File

@@ -17,7 +17,7 @@ from typing import Callable, Dict, List, Optional, Tuple, Union
import numpy as np
import torch
from transformers import BertModel, BertTokenizer, CLIPImageProcessor, MT5Tokenizer, T5EncoderModel
from transformers import BertModel, BertTokenizer, CLIPImageProcessor, T5EncoderModel, T5Tokenizer
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
@@ -173,7 +173,7 @@ class HunyuanDiTPAGPipeline(DiffusionPipeline, PAGMixin):
The HunyuanDiT model designed by Tencent Hunyuan.
text_encoder_2 (`T5EncoderModel`):
The mT5 embedder. Specifically, it is 't5-v1_1-xxl'.
tokenizer_2 (`MT5Tokenizer`):
tokenizer_2 (`T5Tokenizer`):
The tokenizer for the mT5 embedder.
scheduler ([`DDPMScheduler`]):
A scheduler to be used in combination with HunyuanDiT to denoise the encoded image latents.
@@ -208,7 +208,7 @@ class HunyuanDiTPAGPipeline(DiffusionPipeline, PAGMixin):
feature_extractor: Optional[CLIPImageProcessor] = None,
requires_safety_checker: bool = True,
text_encoder_2: Optional[T5EncoderModel] = None,
tokenizer_2: Optional[MT5Tokenizer] = None,
tokenizer_2: Optional[T5Tokenizer] = None,
pag_applied_layers: Union[str, List[str]] = "blocks.1", # "blocks.16.attn1", "blocks.16", "16", 16
):
super().__init__()

View File

@@ -26,6 +26,7 @@ else:
_import_structure["pipeline_z_image_controlnet"] = ["ZImageControlNetPipeline"]
_import_structure["pipeline_z_image_controlnet_inpaint"] = ["ZImageControlNetInpaintPipeline"]
_import_structure["pipeline_z_image_img2img"] = ["ZImageImg2ImgPipeline"]
_import_structure["pipeline_z_image_omni"] = ["ZImageOmniPipeline"]
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
@@ -41,7 +42,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
from .pipeline_z_image_controlnet import ZImageControlNetPipeline
from .pipeline_z_image_controlnet_inpaint import ZImageControlNetInpaintPipeline
from .pipeline_z_image_img2img import ZImageImg2ImgPipeline
from .pipeline_z_image_omni import ZImageOmniPipeline
else:
import sys

View File

@@ -0,0 +1,742 @@
# Copyright 2025 Alibaba Z-Image Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
from typing import Any, Callable, Dict, List, Optional, Union
import PIL
import torch
from transformers import AutoTokenizer, PreTrainedModel, Siglip2ImageProcessorFast, Siglip2VisionModel
from ...loaders import FromSingleFileMixin, ZImageLoraLoaderMixin
from ...models.autoencoders import AutoencoderKL
from ...models.transformers import ZImageTransformer2DModel
from ...pipelines.pipeline_utils import DiffusionPipeline
from ...schedulers import FlowMatchEulerDiscreteScheduler
from ...utils import logging, replace_example_docstring
from ...utils.torch_utils import randn_tensor
from ..flux2.image_processor import Flux2ImageProcessor
from .pipeline_output import ZImagePipelineOutput
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import torch
>>> from diffusers import ZImageOmniPipeline
>>> pipe = ZImageOmniPipeline.from_pretrained("Z-a-o/Z-Image-Turbo", torch_dtype=torch.bfloat16)
>>> pipe.to("cuda")
>>> # Optionally, set the attention backend to flash-attn 2 or 3, default is SDPA in PyTorch.
>>> # (1) Use flash attention 2
>>> # pipe.transformer.set_attention_backend("flash")
>>> # (2) Use flash attention 3
>>> # pipe.transformer.set_attention_backend("_flash_3")
>>> prompt = "一幅为名为“造相「Z-IMAGE-TURBO」”的项目设计的创意海报。画面巧妙地将文字概念视觉化一辆复古蒸汽小火车化身为巨大的拉链头正拉开厚厚的冬日积雪展露出一个生机盎然的春天。"
>>> image = pipe(
... prompt,
... height=1024,
... width=1024,
... num_inference_steps=9,
... guidance_scale=0.0,
... generator=torch.Generator("cuda").manual_seed(42),
... ).images[0]
>>> image.save("zimage.png")
```
"""
# Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
def calculate_shift(
image_seq_len,
base_seq_len: int = 256,
max_seq_len: int = 4096,
base_shift: float = 0.5,
max_shift: float = 1.15,
):
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
b = base_shift - m * base_seq_len
mu = image_seq_len * m + b
return mu
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(
scheduler,
num_inference_steps: Optional[int] = None,
device: Optional[Union[str, torch.device]] = None,
timesteps: Optional[List[int]] = None,
sigmas: Optional[List[float]] = None,
**kwargs,
):
r"""
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
Args:
scheduler (`SchedulerMixin`):
The scheduler to get timesteps from.
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
must be `None`.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
timesteps (`List[int]`, *optional*):
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
`num_inference_steps` and `sigmas` must be `None`.
sigmas (`List[float]`, *optional*):
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
`num_inference_steps` and `timesteps` must be `None`.
Returns:
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
second element is the number of inference steps.
"""
if timesteps is not None and sigmas is not None:
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
if timesteps is not None:
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accepts_timesteps:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" timestep schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
elif sigmas is not None:
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accept_sigmas:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" sigmas schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
else:
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
timesteps = scheduler.timesteps
return timesteps, num_inference_steps
class ZImageOmniPipeline(DiffusionPipeline, ZImageLoraLoaderMixin, FromSingleFileMixin):
model_cpu_offload_seq = "text_encoder->transformer->vae"
_optional_components = []
_callback_tensor_inputs = ["latents", "prompt_embeds"]
def __init__(
self,
scheduler: FlowMatchEulerDiscreteScheduler,
vae: AutoencoderKL,
text_encoder: PreTrainedModel,
tokenizer: AutoTokenizer,
transformer: ZImageTransformer2DModel,
siglip: Siglip2VisionModel,
siglip_processor: Siglip2ImageProcessorFast,
):
super().__init__()
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
scheduler=scheduler,
transformer=transformer,
siglip=siglip,
siglip_processor=siglip_processor,
)
self.vae_scale_factor = (
2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
)
# self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
self.image_processor = Flux2ImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
def encode_prompt(
self,
prompt: Union[str, List[str]],
device: Optional[torch.device] = None,
do_classifier_free_guidance: bool = True,
negative_prompt: Optional[Union[str, List[str]]] = None,
prompt_embeds: Optional[List[torch.FloatTensor]] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
max_sequence_length: int = 512,
num_condition_images: int = 0,
):
prompt = [prompt] if isinstance(prompt, str) else prompt
prompt_embeds = self._encode_prompt(
prompt=prompt,
device=device,
prompt_embeds=prompt_embeds,
max_sequence_length=max_sequence_length,
num_condition_images=num_condition_images,
)
if do_classifier_free_guidance:
if negative_prompt is None:
negative_prompt = ["" for _ in prompt]
else:
negative_prompt = [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
assert len(prompt) == len(negative_prompt)
negative_prompt_embeds = self._encode_prompt(
prompt=negative_prompt,
device=device,
prompt_embeds=negative_prompt_embeds,
max_sequence_length=max_sequence_length,
num_condition_images=num_condition_images,
)
else:
negative_prompt_embeds = []
return prompt_embeds, negative_prompt_embeds
def _encode_prompt(
self,
prompt: Union[str, List[str]],
device: Optional[torch.device] = None,
prompt_embeds: Optional[List[torch.FloatTensor]] = None,
max_sequence_length: int = 512,
num_condition_images: int = 0,
) -> List[torch.FloatTensor]:
device = device or self._execution_device
if prompt_embeds is not None:
return prompt_embeds
if isinstance(prompt, str):
prompt = [prompt]
for i, prompt_item in enumerate(prompt):
if num_condition_images == 0:
prompt[i] = ["<|im_start|>user\n" + prompt_item + "<|im_end|>\n<|im_start|>assistant\n"]
elif num_condition_images > 0:
prompt_list = ["<|im_start|>user\n<|vision_start|>"]
prompt_list += ["<|vision_end|><|vision_start|>"] * (num_condition_images - 1)
prompt_list += ["<|vision_end|>" + prompt_item + "<|im_end|>\n<|im_start|>assistant\n<|vision_start|>"]
prompt_list += ["<|vision_end|><|im_end|>"]
prompt[i] = prompt_list
flattened_prompt = []
prompt_list_lengths = []
for i in range(len(prompt)):
prompt_list_lengths.append(len(prompt[i]))
flattened_prompt.extend(prompt[i])
text_inputs = self.tokenizer(
flattened_prompt,
padding="max_length",
max_length=max_sequence_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids.to(device)
prompt_masks = text_inputs.attention_mask.to(device).bool()
prompt_embeds = self.text_encoder(
input_ids=text_input_ids,
attention_mask=prompt_masks,
output_hidden_states=True,
).hidden_states[-2]
embeddings_list = []
start_idx = 0
for i in range(len(prompt_list_lengths)):
batch_embeddings = []
end_idx = start_idx + prompt_list_lengths[i]
for j in range(start_idx, end_idx):
batch_embeddings.append(prompt_embeds[j][prompt_masks[j]])
embeddings_list.append(batch_embeddings)
start_idx = end_idx
return embeddings_list
def prepare_latents(
self,
batch_size,
num_channels_latents,
height,
width,
dtype,
device,
generator,
latents=None,
):
height = 2 * (int(height) // (self.vae_scale_factor * 2))
width = 2 * (int(width) // (self.vae_scale_factor * 2))
shape = (batch_size, num_channels_latents, height, width)
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
if latents.shape != shape:
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
latents = latents.to(device)
return latents
def prepare_image_latents(
self,
images: List[torch.Tensor],
batch_size,
device,
dtype,
):
image_latents = []
for image in images:
image = image.to(device=device, dtype=dtype)
image_latent = (
self.vae.encode(image.bfloat16()).latent_dist.mode()[0] - self.vae.config.shift_factor
) * self.vae.config.scaling_factor
image_latent = image_latent.unsqueeze(1).to(dtype)
image_latents.append(image_latent) # (16, 128, 128)
# image_latents = [image_latents] * batch_size
image_latents = [image_latents.copy() for _ in range(batch_size)]
return image_latents
def prepare_siglip_embeds(
self,
images: List[torch.Tensor],
batch_size,
device,
dtype,
):
siglip_embeds = []
for image in images:
siglip_inputs = self.siglip_processor(images=[image], return_tensors="pt").to(device)
shape = siglip_inputs.spatial_shapes[0]
hidden_state = self.siglip(**siglip_inputs).last_hidden_state
B, N, C = hidden_state.shape
hidden_state = hidden_state[:, : shape[0] * shape[1]]
hidden_state = hidden_state.view(shape[0], shape[1], C)
siglip_embeds.append(hidden_state.to(dtype))
# siglip_embeds = [siglip_embeds] * batch_size
siglip_embeds = [siglip_embeds.copy() for _ in range(batch_size)]
return siglip_embeds
@property
def guidance_scale(self):
return self._guidance_scale
@property
def do_classifier_free_guidance(self):
return self._guidance_scale > 1
@property
def joint_attention_kwargs(self):
return self._joint_attention_kwargs
@property
def num_timesteps(self):
return self._num_timesteps
@property
def interrupt(self):
return self._interrupt
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
image: Optional[Union[List[PIL.Image.Image], PIL.Image.Image]] = None,
prompt: Union[str, List[str]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
sigmas: Optional[List[float]] = None,
guidance_scale: float = 5.0,
cfg_normalization: bool = False,
cfg_truncation: float = 1.0,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[List[torch.FloatTensor]] = None,
negative_prompt_embeds: Optional[List[torch.FloatTensor]] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
max_sequence_length: int = 512,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
`Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list
or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a
list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image
latents as `image`, but if passing latents directly it is not encoded again.
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
height (`int`, *optional*, defaults to 1024):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to 1024):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
sigmas (`List[float]`, *optional*):
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
will be used.
guidance_scale (`float`, *optional*, defaults to 5.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
cfg_normalization (`bool`, *optional*, defaults to False):
Whether to apply configuration normalization.
cfg_truncation (`float`, *optional*, defaults to 1.0):
The truncation value for configuration.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will be generated by sampling using the supplied random `generator`.
prompt_embeds (`List[torch.FloatTensor]`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`List[torch.FloatTensor]`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.ZImagePipelineOutput`] instead of a plain
tuple.
joint_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
callback_on_step_end (`Callable`, *optional*):
A function that calls at the end of each denoising steps during the inference. The function is called
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
`callback_on_step_end_tensor_inputs`.
callback_on_step_end_tensor_inputs (`List`, *optional*):
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
`._callback_tensor_inputs` attribute of your pipeline class.
max_sequence_length (`int`, *optional*, defaults to 512):
Maximum sequence length to use with the `prompt`.
Examples:
Returns:
[`~pipelines.z_image.ZImagePipelineOutput`] or `tuple`: [`~pipelines.z_image.ZImagePipelineOutput`] if
`return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the
generated images.
"""
if image is not None and not isinstance(image, list):
image = [image]
num_condition_images = len(image) if image is not None else 0
device = self._execution_device
self._guidance_scale = guidance_scale
self._joint_attention_kwargs = joint_attention_kwargs
self._interrupt = False
self._cfg_normalization = cfg_normalization
self._cfg_truncation = cfg_truncation
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = len(prompt_embeds)
# If prompt_embeds is provided and prompt is None, skip encoding
if prompt_embeds is not None and prompt is None:
if self.do_classifier_free_guidance and negative_prompt_embeds is None:
raise ValueError(
"When `prompt_embeds` is provided without `prompt`, "
"`negative_prompt_embeds` must also be provided for classifier-free guidance."
)
else:
(
prompt_embeds,
negative_prompt_embeds,
) = self.encode_prompt(
prompt=prompt,
negative_prompt=negative_prompt,
do_classifier_free_guidance=self.do_classifier_free_guidance,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
device=device,
max_sequence_length=max_sequence_length,
num_condition_images=num_condition_images,
)
# 3. Process condition images. Copied from diffusers.pipelines.flux2.pipeline_flux2
condition_images = []
resized_images = []
if image is not None:
for img in image:
self.image_processor.check_image_input(img)
for img in image:
image_width, image_height = img.size
if image_width * image_height > 1024 * 1024:
if height is not None and width is not None:
img = self.image_processor._resize_to_target_area(img, height * width)
else:
img = self.image_processor._resize_to_target_area(img, 1024 * 1024)
image_width, image_height = img.size
resized_images.append(img)
multiple_of = self.vae_scale_factor * 2
image_width = (image_width // multiple_of) * multiple_of
image_height = (image_height // multiple_of) * multiple_of
img = self.image_processor.preprocess(img, height=image_height, width=image_width, resize_mode="crop")
condition_images.append(img)
if len(condition_images) > 0:
height = height or image_height
width = width or image_width
else:
height = height or 1024
width = width or 1024
vae_scale = self.vae_scale_factor * 2
if height % vae_scale != 0:
raise ValueError(
f"Height must be divisible by {vae_scale} (got {height}). "
f"Please adjust the height to a multiple of {vae_scale}."
)
if width % vae_scale != 0:
raise ValueError(
f"Width must be divisible by {vae_scale} (got {width}). "
f"Please adjust the width to a multiple of {vae_scale}."
)
# 4. Prepare latent variables
num_channels_latents = self.transformer.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
torch.float32,
device,
generator,
latents,
)
condition_latents = self.prepare_image_latents(
images=condition_images,
batch_size=batch_size * num_images_per_prompt,
device=device,
dtype=torch.float32,
)
condition_latents = [[lat.to(self.transformer.dtype) for lat in lats] for lats in condition_latents]
if self.do_classifier_free_guidance:
negative_condition_latents = [[lat.clone() for lat in batch] for batch in condition_latents]
condition_siglip_embeds = self.prepare_siglip_embeds(
images=resized_images,
batch_size=batch_size * num_images_per_prompt,
device=device,
dtype=torch.float32,
)
condition_siglip_embeds = [[se.to(self.transformer.dtype) for se in sels] for sels in condition_siglip_embeds]
if self.do_classifier_free_guidance:
negative_condition_siglip_embeds = [[se.clone() for se in batch] for batch in condition_siglip_embeds]
# Repeat prompt_embeds for num_images_per_prompt
if num_images_per_prompt > 1:
prompt_embeds = [pe for pe in prompt_embeds for _ in range(num_images_per_prompt)]
if self.do_classifier_free_guidance and negative_prompt_embeds:
negative_prompt_embeds = [npe for npe in negative_prompt_embeds for _ in range(num_images_per_prompt)]
condition_siglip_embeds = [None if sels == [] else sels + [None] for sels in condition_siglip_embeds]
negative_condition_siglip_embeds = [
None if sels == [] else sels + [None] for sels in negative_condition_siglip_embeds
]
actual_batch_size = batch_size * num_images_per_prompt
image_seq_len = (latents.shape[2] // 2) * (latents.shape[3] // 2)
# 5. Prepare timesteps
mu = calculate_shift(
image_seq_len,
self.scheduler.config.get("base_image_seq_len", 256),
self.scheduler.config.get("max_image_seq_len", 4096),
self.scheduler.config.get("base_shift", 0.5),
self.scheduler.config.get("max_shift", 1.15),
)
self.scheduler.sigma_min = 0.0
scheduler_kwargs = {"mu": mu}
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler,
num_inference_steps,
device,
sigmas=sigmas,
**scheduler_kwargs,
)
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
self._num_timesteps = len(timesteps)
# 6. Denoising loop
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timestep = t.expand(latents.shape[0])
timestep = (1000 - timestep) / 1000
# Normalized time for time-aware config (0 at start, 1 at end)
t_norm = timestep[0].item()
# Handle cfg truncation
current_guidance_scale = self.guidance_scale
if (
self.do_classifier_free_guidance
and self._cfg_truncation is not None
and float(self._cfg_truncation) <= 1
):
if t_norm > self._cfg_truncation:
current_guidance_scale = 0.0
# Run CFG only if configured AND scale is non-zero
apply_cfg = self.do_classifier_free_guidance and current_guidance_scale > 0
if apply_cfg:
latents_typed = latents.to(self.transformer.dtype)
latent_model_input = latents_typed.repeat(2, 1, 1, 1)
prompt_embeds_model_input = prompt_embeds + negative_prompt_embeds
condition_latents_model_input = condition_latents + negative_condition_latents
condition_siglip_embeds_model_input = condition_siglip_embeds + negative_condition_siglip_embeds
timestep_model_input = timestep.repeat(2)
else:
latent_model_input = latents.to(self.transformer.dtype)
prompt_embeds_model_input = prompt_embeds
condition_latents_model_input = condition_latents
condition_siglip_embeds_model_input = condition_siglip_embeds
timestep_model_input = timestep
latent_model_input = latent_model_input.unsqueeze(2)
latent_model_input_list = list(latent_model_input.unbind(dim=0))
# Combine condition latents with target latent
current_batch_size = len(latent_model_input_list)
x_combined = [
condition_latents_model_input[i] + [latent_model_input_list[i]] for i in range(current_batch_size)
]
# Create noise mask: 0 for condition images (clean), 1 for target image (noisy)
image_noise_mask = [
[0] * len(condition_latents_model_input[i]) + [1] for i in range(current_batch_size)
]
model_out_list = self.transformer(
x=x_combined,
t=timestep_model_input,
cap_feats=prompt_embeds_model_input,
siglip_feats=condition_siglip_embeds_model_input,
image_noise_mask=image_noise_mask,
return_dict=False,
)[0]
if apply_cfg:
# Perform CFG
pos_out = model_out_list[:actual_batch_size]
neg_out = model_out_list[actual_batch_size:]
noise_pred = []
for j in range(actual_batch_size):
pos = pos_out[j].float()
neg = neg_out[j].float()
pred = pos + current_guidance_scale * (pos - neg)
# Renormalization
if self._cfg_normalization and float(self._cfg_normalization) > 0.0:
ori_pos_norm = torch.linalg.vector_norm(pos)
new_pos_norm = torch.linalg.vector_norm(pred)
max_new_norm = ori_pos_norm * float(self._cfg_normalization)
if new_pos_norm > max_new_norm:
pred = pred * (max_new_norm / new_pos_norm)
noise_pred.append(pred)
noise_pred = torch.stack(noise_pred, dim=0)
else:
noise_pred = torch.stack([t.float() for t in model_out_list], dim=0)
noise_pred = noise_pred.squeeze(2)
noise_pred = -noise_pred
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred.to(torch.float32), t, latents, return_dict=False)[0]
assert latents.dtype == torch.float32
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if output_type == "latent":
image = latents
else:
latents = latents.to(self.vae.dtype)
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
image = self.vae.decode(latents, return_dict=False)[0]
image = self.image_processor.postprocess(image, output_type=output_type)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image,)
return ZImagePipelineOutput(images=image)

View File

@@ -3917,6 +3917,21 @@ class ZImageImg2ImgPipeline(metaclass=DummyObject):
requires_backends(cls, ["torch", "transformers"])
class ZImageOmniPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
class ZImagePipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]

View File

@@ -671,46 +671,44 @@ class TorchAoSerializationTest(unittest.TestCase):
class TorchAoCompileTest(QuantCompileTests, unittest.TestCase):
@property
def quantization_config(self):
from torchao.quantization import Int8WeightOnlyConfig
return PipelineQuantizationConfig(
quant_mapping={
"transformer": TorchAoConfig(Int8WeightOnlyConfig()),
"transformer": TorchAoConfig(quant_type="int8_weight_only"),
},
)
# @unittest.skip(
# "Changing the device of AQT tensor with module._apply (called from doing module.to() in accelerate) does not work "
# "when compiling."
# )
# def test_torch_compile_with_cpu_offload(self):
# # RuntimeError: _apply(): Couldn't swap Linear.weight
# super().test_torch_compile_with_cpu_offload()
@unittest.skip(
"Changing the device of AQT tensor with module._apply (called from doing module.to() in accelerate) does not work "
"when compiling."
)
def test_torch_compile_with_cpu_offload(self):
# RuntimeError: _apply(): Couldn't swap Linear.weight
super().test_torch_compile_with_cpu_offload()
# @parameterized.expand([False, True])
# @unittest.skip(
# """
# For `use_stream=False`:
# - Changing the device of AQT tensor, with `param.data = param.data.to(device)` as done in group offloading implementation
# is unsupported in TorchAO. When compiling, FakeTensor device mismatch causes failure.
# For `use_stream=True`:
# Using non-default stream requires ability to pin tensors. AQT does not seem to support this yet in TorchAO.
# """
# )
# def test_torch_compile_with_group_offload_leaf(self, use_stream):
# # For use_stream=False:
# # If we run group offloading without compilation, we will see:
# # RuntimeError: Attempted to set the storage of a tensor on device "cpu" to a storage on different device "cuda:0". This is no longer allowed; the devices must match.
# # When running with compilation, the error ends up being different:
# # Dynamo failed to run FX node with fake tensors: call_function <built-in function linear>(*(FakeTensor(..., device='cuda:0', size=(s0, 256), dtype=torch.bfloat16), AffineQuantizedTensor(tensor_impl=PlainAQTTensorImpl(data=FakeTensor(..., size=(1536, 256), dtype=torch.int8)... , scale=FakeTensor(..., size=(1536,), dtype=torch.bfloat16)... , zero_point=FakeTensor(..., size=(1536,), dtype=torch.int64)... , _layout=PlainLayout()), block_size=(1, 256), shape=torch.Size([1536, 256]), device=cpu, dtype=torch.bfloat16, requires_grad=False), Parameter(FakeTensor(..., device='cuda:0', size=(1536,), dtype=torch.bfloat16,
# # requires_grad=True))), **{}): got RuntimeError('Unhandled FakeTensor Device Propagation for aten.mm.default, found two different devices cuda:0, cpu')
# # Looks like something that will have to be looked into upstream.
# # for linear layers, weight.tensor_impl shows cuda... but:
# # weight.tensor_impl.{data,scale,zero_point}.device will be cpu
@parameterized.expand([False, True])
@unittest.skip(
"""
For `use_stream=False`:
- Changing the device of AQT tensor, with `param.data = param.data.to(device)` as done in group offloading implementation
is unsupported in TorchAO. When compiling, FakeTensor device mismatch causes failure.
For `use_stream=True`:
Using non-default stream requires ability to pin tensors. AQT does not seem to support this yet in TorchAO.
"""
)
def test_torch_compile_with_group_offload_leaf(self, use_stream):
# For use_stream=False:
# If we run group offloading without compilation, we will see:
# RuntimeError: Attempted to set the storage of a tensor on device "cpu" to a storage on different device "cuda:0". This is no longer allowed; the devices must match.
# When running with compilation, the error ends up being different:
# Dynamo failed to run FX node with fake tensors: call_function <built-in function linear>(*(FakeTensor(..., device='cuda:0', size=(s0, 256), dtype=torch.bfloat16), AffineQuantizedTensor(tensor_impl=PlainAQTTensorImpl(data=FakeTensor(..., size=(1536, 256), dtype=torch.int8)... , scale=FakeTensor(..., size=(1536,), dtype=torch.bfloat16)... , zero_point=FakeTensor(..., size=(1536,), dtype=torch.int64)... , _layout=PlainLayout()), block_size=(1, 256), shape=torch.Size([1536, 256]), device=cpu, dtype=torch.bfloat16, requires_grad=False), Parameter(FakeTensor(..., device='cuda:0', size=(1536,), dtype=torch.bfloat16,
# requires_grad=True))), **{}): got RuntimeError('Unhandled FakeTensor Device Propagation for aten.mm.default, found two different devices cuda:0, cpu')
# Looks like something that will have to be looked into upstream.
# for linear layers, weight.tensor_impl shows cuda... but:
# weight.tensor_impl.{data,scale,zero_point}.device will be cpu
# # For use_stream=True:
# # NotImplementedError: AffineQuantizedTensor dispatch: attempting to run unimplemented operator/function: func=<OpOverload(op='aten.is_pinned', overload='default')>, types=(<class 'torchao.dtypes.affine_quantized_tensor.AffineQuantizedTensor'>,), arg_types=(<class 'torchao.dtypes.affine_quantized_tensor.AffineQuantizedTensor'>,), kwarg_types={}
# super()._test_torch_compile_with_group_offload_leaf(use_stream=use_stream)
# For use_stream=True:
# NotImplementedError: AffineQuantizedTensor dispatch: attempting to run unimplemented operator/function: func=<OpOverload(op='aten.is_pinned', overload='default')>, types=(<class 'torchao.dtypes.affine_quantized_tensor.AffineQuantizedTensor'>,), arg_types=(<class 'torchao.dtypes.affine_quantized_tensor.AffineQuantizedTensor'>,), kwarg_types={}
super()._test_torch_compile_with_group_offload_leaf(use_stream=use_stream)
# Slices for these tests have been obtained on our aws-g6e-xlarge-plus runners