mirror of
https://github.com/huggingface/diffusers.git
synced 2026-02-06 02:45:11 +08:00
Compare commits
1 Commits
wan-modula
...
main
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
99e2cfff27 |
@@ -53,6 +53,41 @@ image = pipe(
|
||||
image.save("zimage_img2img.png")
|
||||
```
|
||||
|
||||
## Inpainting
|
||||
|
||||
Use [`ZImageInpaintPipeline`] to inpaint specific regions of an image based on a text prompt and mask.
|
||||
|
||||
```python
|
||||
import torch
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
from diffusers import ZImageInpaintPipeline
|
||||
from diffusers.utils import load_image
|
||||
|
||||
pipe = ZImageInpaintPipeline.from_pretrained("Tongyi-MAI/Z-Image-Turbo", torch_dtype=torch.bfloat16)
|
||||
pipe.to("cuda")
|
||||
|
||||
url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
|
||||
init_image = load_image(url).resize((1024, 1024))
|
||||
|
||||
# Create a mask (white = inpaint, black = preserve)
|
||||
mask = np.zeros((1024, 1024), dtype=np.uint8)
|
||||
mask[256:768, 256:768] = 255 # Inpaint center region
|
||||
mask_image = Image.fromarray(mask)
|
||||
|
||||
prompt = "A beautiful lake with mountains in the background"
|
||||
image = pipe(
|
||||
prompt,
|
||||
image=init_image,
|
||||
mask_image=mask_image,
|
||||
strength=1.0,
|
||||
num_inference_steps=9,
|
||||
guidance_scale=0.0,
|
||||
generator=torch.Generator("cuda").manual_seed(42),
|
||||
).images[0]
|
||||
image.save("zimage_inpaint.png")
|
||||
```
|
||||
|
||||
## ZImagePipeline
|
||||
|
||||
[[autodoc]] ZImagePipeline
|
||||
@@ -64,3 +99,9 @@ image.save("zimage_img2img.png")
|
||||
[[autodoc]] ZImageImg2ImgPipeline
|
||||
- all
|
||||
- __call__
|
||||
|
||||
## ZImageInpaintPipeline
|
||||
|
||||
[[autodoc]] ZImageInpaintPipeline
|
||||
- all
|
||||
- __call__
|
||||
|
||||
@@ -696,6 +696,7 @@ else:
|
||||
"ZImageControlNetInpaintPipeline",
|
||||
"ZImageControlNetPipeline",
|
||||
"ZImageImg2ImgPipeline",
|
||||
"ZImageInpaintPipeline",
|
||||
"ZImageOmniPipeline",
|
||||
"ZImagePipeline",
|
||||
]
|
||||
@@ -1428,6 +1429,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
ZImageControlNetInpaintPipeline,
|
||||
ZImageControlNetPipeline,
|
||||
ZImageImg2ImgPipeline,
|
||||
ZImageInpaintPipeline,
|
||||
ZImageOmniPipeline,
|
||||
ZImagePipeline,
|
||||
)
|
||||
|
||||
@@ -410,11 +410,12 @@ else:
|
||||
"Kandinsky5I2IPipeline",
|
||||
]
|
||||
_import_structure["z_image"] = [
|
||||
"ZImageImg2ImgPipeline",
|
||||
"ZImagePipeline",
|
||||
"ZImageControlNetPipeline",
|
||||
"ZImageControlNetInpaintPipeline",
|
||||
"ZImageControlNetPipeline",
|
||||
"ZImageImg2ImgPipeline",
|
||||
"ZImageInpaintPipeline",
|
||||
"ZImageOmniPipeline",
|
||||
"ZImagePipeline",
|
||||
]
|
||||
_import_structure["skyreels_v2"] = [
|
||||
"SkyReelsV2DiffusionForcingPipeline",
|
||||
@@ -870,6 +871,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
ZImageControlNetInpaintPipeline,
|
||||
ZImageControlNetPipeline,
|
||||
ZImageImg2ImgPipeline,
|
||||
ZImageInpaintPipeline,
|
||||
ZImageOmniPipeline,
|
||||
ZImagePipeline,
|
||||
)
|
||||
|
||||
@@ -127,6 +127,7 @@ from .z_image import (
|
||||
ZImageControlNetInpaintPipeline,
|
||||
ZImageControlNetPipeline,
|
||||
ZImageImg2ImgPipeline,
|
||||
ZImageInpaintPipeline,
|
||||
ZImageOmniPipeline,
|
||||
ZImagePipeline,
|
||||
)
|
||||
@@ -235,6 +236,7 @@ AUTO_INPAINT_PIPELINES_MAPPING = OrderedDict(
|
||||
("stable-diffusion-pag", StableDiffusionPAGInpaintPipeline),
|
||||
("qwenimage", QwenImageInpaintPipeline),
|
||||
("qwenimage-edit", QwenImageEditInpaintPipeline),
|
||||
("z-image", ZImageInpaintPipeline),
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
@@ -26,6 +26,7 @@ else:
|
||||
_import_structure["pipeline_z_image_controlnet"] = ["ZImageControlNetPipeline"]
|
||||
_import_structure["pipeline_z_image_controlnet_inpaint"] = ["ZImageControlNetInpaintPipeline"]
|
||||
_import_structure["pipeline_z_image_img2img"] = ["ZImageImg2ImgPipeline"]
|
||||
_import_structure["pipeline_z_image_inpaint"] = ["ZImageInpaintPipeline"]
|
||||
_import_structure["pipeline_z_image_omni"] = ["ZImageOmniPipeline"]
|
||||
|
||||
|
||||
@@ -42,6 +43,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
from .pipeline_z_image_controlnet import ZImageControlNetPipeline
|
||||
from .pipeline_z_image_controlnet_inpaint import ZImageControlNetInpaintPipeline
|
||||
from .pipeline_z_image_img2img import ZImageImg2ImgPipeline
|
||||
from .pipeline_z_image_inpaint import ZImageInpaintPipeline
|
||||
from .pipeline_z_image_omni import ZImageOmniPipeline
|
||||
else:
|
||||
import sys
|
||||
|
||||
932
src/diffusers/pipelines/z_image/pipeline_z_image_inpaint.py
Normal file
932
src/diffusers/pipelines/z_image/pipeline_z_image_inpaint.py
Normal file
@@ -0,0 +1,932 @@
|
||||
# Copyright 2025 Alibaba Z-Image Team and The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import inspect
|
||||
from typing import Any, Callable, Dict, List, Optional, Union
|
||||
|
||||
import torch
|
||||
from transformers import AutoTokenizer, PreTrainedModel
|
||||
|
||||
from ...image_processor import PipelineImageInput, VaeImageProcessor
|
||||
from ...loaders import FromSingleFileMixin, ZImageLoraLoaderMixin
|
||||
from ...models.autoencoders import AutoencoderKL
|
||||
from ...models.transformers import ZImageTransformer2DModel
|
||||
from ...pipelines.pipeline_utils import DiffusionPipeline
|
||||
from ...schedulers import FlowMatchEulerDiscreteScheduler
|
||||
from ...utils import is_torch_xla_available, logging, replace_example_docstring
|
||||
from ...utils.torch_utils import randn_tensor
|
||||
from .pipeline_output import ZImagePipelineOutput
|
||||
|
||||
|
||||
if is_torch_xla_available():
|
||||
import torch_xla.core.xla_model as xm
|
||||
|
||||
XLA_AVAILABLE = True
|
||||
else:
|
||||
XLA_AVAILABLE = False
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
EXAMPLE_DOC_STRING = """
|
||||
Examples:
|
||||
```py
|
||||
>>> import torch
|
||||
>>> from diffusers import ZImageInpaintPipeline
|
||||
>>> from diffusers.utils import load_image
|
||||
|
||||
>>> pipe = ZImageInpaintPipeline.from_pretrained("Tongyi-MAI/Z-Image-Turbo", torch_dtype=torch.bfloat16)
|
||||
>>> pipe.to("cuda")
|
||||
|
||||
>>> url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
|
||||
>>> init_image = load_image(url).resize((1024, 1024))
|
||||
|
||||
>>> # Create a mask (white = inpaint, black = preserve)
|
||||
>>> import numpy as np
|
||||
>>> from PIL import Image
|
||||
|
||||
>>> mask = np.zeros((1024, 1024), dtype=np.uint8)
|
||||
>>> mask[256:768, 256:768] = 255 # Inpaint center region
|
||||
>>> mask_image = Image.fromarray(mask)
|
||||
|
||||
>>> prompt = "A beautiful lake with mountains in the background"
|
||||
>>> image = pipe(
|
||||
... prompt,
|
||||
... image=init_image,
|
||||
... mask_image=mask_image,
|
||||
... strength=1.0,
|
||||
... num_inference_steps=9,
|
||||
... guidance_scale=0.0,
|
||||
... generator=torch.Generator("cuda").manual_seed(42),
|
||||
... ).images[0]
|
||||
>>> image.save("zimage_inpaint.png")
|
||||
```
|
||||
"""
|
||||
|
||||
|
||||
# Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
|
||||
def calculate_shift(
|
||||
image_seq_len,
|
||||
base_seq_len: int = 256,
|
||||
max_seq_len: int = 4096,
|
||||
base_shift: float = 0.5,
|
||||
max_shift: float = 1.15,
|
||||
):
|
||||
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
|
||||
b = base_shift - m * base_seq_len
|
||||
mu = image_seq_len * m + b
|
||||
return mu
|
||||
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
||||
def retrieve_latents(
|
||||
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
||||
):
|
||||
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
||||
return encoder_output.latent_dist.sample(generator)
|
||||
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
||||
return encoder_output.latent_dist.mode()
|
||||
elif hasattr(encoder_output, "latents"):
|
||||
return encoder_output.latents
|
||||
else:
|
||||
raise AttributeError("Could not access latents of provided encoder_output")
|
||||
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
||||
def retrieve_timesteps(
|
||||
scheduler,
|
||||
num_inference_steps: Optional[int] = None,
|
||||
device: Optional[Union[str, torch.device]] = None,
|
||||
timesteps: Optional[List[int]] = None,
|
||||
sigmas: Optional[List[float]] = None,
|
||||
**kwargs,
|
||||
):
|
||||
r"""
|
||||
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
||||
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
||||
|
||||
Args:
|
||||
scheduler (`SchedulerMixin`):
|
||||
The scheduler to get timesteps from.
|
||||
num_inference_steps (`int`):
|
||||
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
||||
must be `None`.
|
||||
device (`str` or `torch.device`, *optional*):
|
||||
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
||||
timesteps (`List[int]`, *optional*):
|
||||
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
||||
`num_inference_steps` and `sigmas` must be `None`.
|
||||
sigmas (`List[float]`, *optional*):
|
||||
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
||||
`num_inference_steps` and `timesteps` must be `None`.
|
||||
|
||||
Returns:
|
||||
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
||||
second element is the number of inference steps.
|
||||
"""
|
||||
if timesteps is not None and sigmas is not None:
|
||||
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
||||
if timesteps is not None:
|
||||
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
||||
if not accepts_timesteps:
|
||||
raise ValueError(
|
||||
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
||||
f" timestep schedules. Please check whether you are using the correct scheduler."
|
||||
)
|
||||
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
||||
timesteps = scheduler.timesteps
|
||||
num_inference_steps = len(timesteps)
|
||||
elif sigmas is not None:
|
||||
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
||||
if not accept_sigmas:
|
||||
raise ValueError(
|
||||
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
||||
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
||||
)
|
||||
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
||||
timesteps = scheduler.timesteps
|
||||
num_inference_steps = len(timesteps)
|
||||
else:
|
||||
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
||||
timesteps = scheduler.timesteps
|
||||
return timesteps, num_inference_steps
|
||||
|
||||
|
||||
class ZImageInpaintPipeline(DiffusionPipeline, ZImageLoraLoaderMixin, FromSingleFileMixin):
|
||||
r"""
|
||||
The ZImage pipeline for inpainting.
|
||||
|
||||
Args:
|
||||
scheduler ([`FlowMatchEulerDiscreteScheduler`]):
|
||||
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
|
||||
vae ([`AutoencoderKL`]):
|
||||
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
||||
text_encoder ([`PreTrainedModel`]):
|
||||
A text encoder model to encode text prompts.
|
||||
tokenizer ([`AutoTokenizer`]):
|
||||
A tokenizer to tokenize text prompts.
|
||||
transformer ([`ZImageTransformer2DModel`]):
|
||||
A ZImage transformer model to denoise the encoded image latents.
|
||||
"""
|
||||
|
||||
model_cpu_offload_seq = "text_encoder->transformer->vae"
|
||||
_optional_components = []
|
||||
_callback_tensor_inputs = ["latents", "prompt_embeds", "mask", "masked_image_latents"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
scheduler: FlowMatchEulerDiscreteScheduler,
|
||||
vae: AutoencoderKL,
|
||||
text_encoder: PreTrainedModel,
|
||||
tokenizer: AutoTokenizer,
|
||||
transformer: ZImageTransformer2DModel,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.register_modules(
|
||||
vae=vae,
|
||||
text_encoder=text_encoder,
|
||||
tokenizer=tokenizer,
|
||||
scheduler=scheduler,
|
||||
transformer=transformer,
|
||||
)
|
||||
self.vae_scale_factor = (
|
||||
2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
|
||||
)
|
||||
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
|
||||
self.mask_processor = VaeImageProcessor(
|
||||
vae_scale_factor=self.vae_scale_factor * 2,
|
||||
do_normalize=False,
|
||||
do_binarize=True,
|
||||
do_convert_grayscale=True,
|
||||
)
|
||||
|
||||
# Copied from diffusers.pipelines.z_image.pipeline_z_image.ZImagePipeline.encode_prompt
|
||||
def encode_prompt(
|
||||
self,
|
||||
prompt: Union[str, List[str]],
|
||||
device: Optional[torch.device] = None,
|
||||
do_classifier_free_guidance: bool = True,
|
||||
negative_prompt: Optional[Union[str, List[str]]] = None,
|
||||
prompt_embeds: Optional[List[torch.FloatTensor]] = None,
|
||||
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
max_sequence_length: int = 512,
|
||||
):
|
||||
prompt = [prompt] if isinstance(prompt, str) else prompt
|
||||
prompt_embeds = self._encode_prompt(
|
||||
prompt=prompt,
|
||||
device=device,
|
||||
prompt_embeds=prompt_embeds,
|
||||
max_sequence_length=max_sequence_length,
|
||||
)
|
||||
|
||||
if do_classifier_free_guidance:
|
||||
if negative_prompt is None:
|
||||
negative_prompt = ["" for _ in prompt]
|
||||
else:
|
||||
negative_prompt = [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
|
||||
assert len(prompt) == len(negative_prompt)
|
||||
negative_prompt_embeds = self._encode_prompt(
|
||||
prompt=negative_prompt,
|
||||
device=device,
|
||||
prompt_embeds=negative_prompt_embeds,
|
||||
max_sequence_length=max_sequence_length,
|
||||
)
|
||||
else:
|
||||
negative_prompt_embeds = []
|
||||
return prompt_embeds, negative_prompt_embeds
|
||||
|
||||
# Copied from diffusers.pipelines.z_image.pipeline_z_image.ZImagePipeline._encode_prompt
|
||||
def _encode_prompt(
|
||||
self,
|
||||
prompt: Union[str, List[str]],
|
||||
device: Optional[torch.device] = None,
|
||||
prompt_embeds: Optional[List[torch.FloatTensor]] = None,
|
||||
max_sequence_length: int = 512,
|
||||
) -> List[torch.FloatTensor]:
|
||||
device = device or self._execution_device
|
||||
|
||||
if prompt_embeds is not None:
|
||||
return prompt_embeds
|
||||
|
||||
if isinstance(prompt, str):
|
||||
prompt = [prompt]
|
||||
|
||||
for i, prompt_item in enumerate(prompt):
|
||||
messages = [
|
||||
{"role": "user", "content": prompt_item},
|
||||
]
|
||||
prompt_item = self.tokenizer.apply_chat_template(
|
||||
messages,
|
||||
tokenize=False,
|
||||
add_generation_prompt=True,
|
||||
enable_thinking=True,
|
||||
)
|
||||
prompt[i] = prompt_item
|
||||
|
||||
text_inputs = self.tokenizer(
|
||||
prompt,
|
||||
padding="max_length",
|
||||
max_length=max_sequence_length,
|
||||
truncation=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
|
||||
text_input_ids = text_inputs.input_ids.to(device)
|
||||
prompt_masks = text_inputs.attention_mask.to(device).bool()
|
||||
|
||||
prompt_embeds = self.text_encoder(
|
||||
input_ids=text_input_ids,
|
||||
attention_mask=prompt_masks,
|
||||
output_hidden_states=True,
|
||||
).hidden_states[-2]
|
||||
|
||||
embeddings_list = []
|
||||
|
||||
for i in range(len(prompt_embeds)):
|
||||
embeddings_list.append(prompt_embeds[i][prompt_masks[i]])
|
||||
|
||||
return embeddings_list
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_img2img.StableDiffusion3Img2ImgPipeline.get_timesteps
|
||||
def get_timesteps(self, num_inference_steps, strength, device):
|
||||
# get the original timestep using init_timestep
|
||||
init_timestep = min(num_inference_steps * strength, num_inference_steps)
|
||||
|
||||
t_start = int(max(num_inference_steps - init_timestep, 0))
|
||||
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
|
||||
if hasattr(self.scheduler, "set_begin_index"):
|
||||
self.scheduler.set_begin_index(t_start * self.scheduler.order)
|
||||
|
||||
return timesteps, num_inference_steps - t_start
|
||||
|
||||
def prepare_mask_latents(
|
||||
self,
|
||||
mask,
|
||||
masked_image,
|
||||
batch_size,
|
||||
height,
|
||||
width,
|
||||
dtype,
|
||||
device,
|
||||
generator,
|
||||
):
|
||||
"""Prepare mask and masked image latents for inpainting.
|
||||
|
||||
Args:
|
||||
mask: Binary mask tensor where 1 = inpaint region, 0 = preserve region.
|
||||
masked_image: Original image with masked regions zeroed out.
|
||||
batch_size: Number of images to generate.
|
||||
height: Output image height.
|
||||
width: Output image width.
|
||||
dtype: Data type for the tensors.
|
||||
device: Device to place tensors on.
|
||||
generator: Random generator for reproducibility.
|
||||
|
||||
Returns:
|
||||
Tuple of (mask, masked_image_latents) prepared for the denoising loop.
|
||||
"""
|
||||
# Calculate latent dimensions
|
||||
latent_height = 2 * (int(height) // (self.vae_scale_factor * 2))
|
||||
latent_width = 2 * (int(width) // (self.vae_scale_factor * 2))
|
||||
|
||||
# Resize mask to latent dimensions
|
||||
mask = torch.nn.functional.interpolate(mask, size=(latent_height, latent_width), mode="nearest")
|
||||
mask = mask.to(device=device, dtype=dtype)
|
||||
|
||||
# Encode masked image to latents
|
||||
masked_image = masked_image.to(device=device, dtype=dtype)
|
||||
if isinstance(generator, list):
|
||||
masked_image_latents = [
|
||||
retrieve_latents(self.vae.encode(masked_image[i : i + 1]), generator=generator[i])
|
||||
for i in range(masked_image.shape[0])
|
||||
]
|
||||
masked_image_latents = torch.cat(masked_image_latents, dim=0)
|
||||
else:
|
||||
masked_image_latents = retrieve_latents(self.vae.encode(masked_image), generator=generator)
|
||||
|
||||
# Apply VAE scaling
|
||||
masked_image_latents = (masked_image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
|
||||
|
||||
# Expand for batch size
|
||||
if mask.shape[0] < batch_size:
|
||||
if not batch_size % mask.shape[0] == 0:
|
||||
raise ValueError(
|
||||
"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
|
||||
f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
|
||||
" of masks that you pass is divisible by the total requested batch size."
|
||||
)
|
||||
mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
|
||||
if masked_image_latents.shape[0] < batch_size:
|
||||
if not batch_size % masked_image_latents.shape[0] == 0:
|
||||
raise ValueError(
|
||||
"The passed images and the required batch size don't match. Images are supposed to be duplicated"
|
||||
f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
|
||||
" Make sure the number of images that you pass is divisible by the total requested batch size."
|
||||
)
|
||||
masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1)
|
||||
|
||||
return mask, masked_image_latents
|
||||
|
||||
def prepare_latents(
|
||||
self,
|
||||
image,
|
||||
timestep,
|
||||
batch_size,
|
||||
num_channels_latents,
|
||||
height,
|
||||
width,
|
||||
dtype,
|
||||
device,
|
||||
generator,
|
||||
latents=None,
|
||||
):
|
||||
"""Prepare latents for inpainting, returning noise and image_latents for blending.
|
||||
|
||||
Returns:
|
||||
Tuple of (latents, noise, image_latents) where:
|
||||
- latents: Noised image latents for denoising
|
||||
- noise: The noise tensor used for blending
|
||||
- image_latents: Clean image latents for blending
|
||||
"""
|
||||
height = 2 * (int(height) // (self.vae_scale_factor * 2))
|
||||
width = 2 * (int(width) // (self.vae_scale_factor * 2))
|
||||
|
||||
shape = (batch_size, num_channels_latents, height, width)
|
||||
|
||||
if latents is not None:
|
||||
# Generate noise for blending even if latents are provided
|
||||
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
||||
# Encode image for blending
|
||||
image = image.to(device=device, dtype=dtype)
|
||||
if isinstance(generator, list):
|
||||
image_latents = [
|
||||
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
|
||||
for i in range(image.shape[0])
|
||||
]
|
||||
image_latents = torch.cat(image_latents, dim=0)
|
||||
else:
|
||||
image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
|
||||
image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
|
||||
if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
|
||||
image_latents = torch.cat([image_latents] * (batch_size // image_latents.shape[0]), dim=0)
|
||||
return latents.to(device=device, dtype=dtype), noise, image_latents
|
||||
|
||||
# Encode the input image
|
||||
image = image.to(device=device, dtype=dtype)
|
||||
if image.shape[1] != num_channels_latents:
|
||||
if isinstance(generator, list):
|
||||
image_latents = [
|
||||
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
|
||||
for i in range(image.shape[0])
|
||||
]
|
||||
image_latents = torch.cat(image_latents, dim=0)
|
||||
else:
|
||||
image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
|
||||
|
||||
# Apply scaling (inverse of decoding: decode does latents/scaling_factor + shift_factor)
|
||||
image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
|
||||
else:
|
||||
image_latents = image
|
||||
|
||||
# Handle batch size expansion
|
||||
if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
|
||||
additional_image_per_prompt = batch_size // image_latents.shape[0]
|
||||
image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0)
|
||||
elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
|
||||
raise ValueError(
|
||||
f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
|
||||
)
|
||||
|
||||
# Generate noise for both initial noising and later blending
|
||||
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
||||
|
||||
# Add noise using flow matching scale_noise
|
||||
latents = self.scheduler.scale_noise(image_latents, timestep, noise)
|
||||
|
||||
return latents, noise, image_latents
|
||||
|
||||
@property
|
||||
def guidance_scale(self):
|
||||
return self._guidance_scale
|
||||
|
||||
@property
|
||||
def do_classifier_free_guidance(self):
|
||||
return self._guidance_scale > 1
|
||||
|
||||
@property
|
||||
def joint_attention_kwargs(self):
|
||||
return self._joint_attention_kwargs
|
||||
|
||||
@property
|
||||
def num_timesteps(self):
|
||||
return self._num_timesteps
|
||||
|
||||
@property
|
||||
def interrupt(self):
|
||||
return self._interrupt
|
||||
|
||||
def check_inputs(
|
||||
self,
|
||||
prompt,
|
||||
image,
|
||||
mask_image,
|
||||
strength,
|
||||
height,
|
||||
width,
|
||||
output_type,
|
||||
negative_prompt=None,
|
||||
prompt_embeds=None,
|
||||
negative_prompt_embeds=None,
|
||||
callback_on_step_end_tensor_inputs=None,
|
||||
):
|
||||
if strength < 0 or strength > 1:
|
||||
raise ValueError(f"The value of strength should be in [0.0, 1.0] but is {strength}")
|
||||
|
||||
if callback_on_step_end_tensor_inputs is not None and not all(
|
||||
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
||||
):
|
||||
raise ValueError(
|
||||
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
||||
)
|
||||
|
||||
if prompt is not None and prompt_embeds is not None:
|
||||
raise ValueError(
|
||||
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
||||
" only forward one of the two."
|
||||
)
|
||||
elif prompt is None and prompt_embeds is None:
|
||||
raise ValueError(
|
||||
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
||||
)
|
||||
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
||||
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
||||
|
||||
if negative_prompt is not None and negative_prompt_embeds is not None:
|
||||
raise ValueError(
|
||||
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
||||
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
||||
)
|
||||
|
||||
if image is None:
|
||||
raise ValueError("`image` input cannot be undefined for inpainting.")
|
||||
|
||||
if mask_image is None:
|
||||
raise ValueError("`mask_image` input cannot be undefined for inpainting.")
|
||||
|
||||
if output_type not in ["latent", "pil", "np", "pt"]:
|
||||
raise ValueError(f"`output_type` must be one of 'latent', 'pil', 'np', or 'pt', but got {output_type}")
|
||||
|
||||
@torch.no_grad()
|
||||
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
||||
def __call__(
|
||||
self,
|
||||
prompt: Union[str, List[str]] = None,
|
||||
image: PipelineImageInput = None,
|
||||
mask_image: PipelineImageInput = None,
|
||||
masked_image_latents: Optional[torch.FloatTensor] = None,
|
||||
strength: float = 1.0,
|
||||
height: Optional[int] = None,
|
||||
width: Optional[int] = None,
|
||||
num_inference_steps: int = 50,
|
||||
sigmas: Optional[List[float]] = None,
|
||||
guidance_scale: float = 5.0,
|
||||
cfg_normalization: bool = False,
|
||||
cfg_truncation: float = 1.0,
|
||||
negative_prompt: Optional[Union[str, List[str]]] = None,
|
||||
num_images_per_prompt: Optional[int] = 1,
|
||||
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
||||
latents: Optional[torch.FloatTensor] = None,
|
||||
prompt_embeds: Optional[List[torch.FloatTensor]] = None,
|
||||
negative_prompt_embeds: Optional[List[torch.FloatTensor]] = None,
|
||||
output_type: Optional[str] = "pil",
|
||||
return_dict: bool = True,
|
||||
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
||||
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
||||
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
||||
max_sequence_length: int = 512,
|
||||
):
|
||||
r"""
|
||||
Function invoked when calling the pipeline for inpainting.
|
||||
|
||||
Args:
|
||||
prompt (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
||||
instead.
|
||||
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
|
||||
`Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
|
||||
numpy array and pytorch tensor, the expected value range is between `[0, 1]`. If it's a tensor or a
|
||||
list of tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or
|
||||
a list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)`.
|
||||
mask_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
|
||||
`Image`, numpy array or tensor representing a mask image for inpainting. White pixels (value 1) in the
|
||||
mask will be inpainted, black pixels (value 0) will be preserved from the original image.
|
||||
masked_image_latents (`torch.FloatTensor`, *optional*):
|
||||
Pre-encoded masked image latents. If provided, the masked image encoding step will be skipped.
|
||||
strength (`float`, *optional*, defaults to 1.0):
|
||||
Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
|
||||
starting point and more noise is added the higher the `strength`. The number of denoising steps depends
|
||||
on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
|
||||
process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
|
||||
essentially ignores `image` in the masked region.
|
||||
height (`int`, *optional*, defaults to 1024):
|
||||
The height in pixels of the generated image. If not provided, uses the input image height.
|
||||
width (`int`, *optional*, defaults to 1024):
|
||||
The width in pixels of the generated image. If not provided, uses the input image width.
|
||||
num_inference_steps (`int`, *optional*, defaults to 50):
|
||||
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
||||
expense of slower inference.
|
||||
sigmas (`List[float]`, *optional*):
|
||||
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
||||
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
||||
will be used.
|
||||
guidance_scale (`float`, *optional*, defaults to 5.0):
|
||||
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
||||
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
||||
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
||||
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
||||
usually at the expense of lower image quality.
|
||||
cfg_normalization (`bool`, *optional*, defaults to False):
|
||||
Whether to apply configuration normalization.
|
||||
cfg_truncation (`float`, *optional*, defaults to 1.0):
|
||||
The truncation value for configuration.
|
||||
negative_prompt (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
||||
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
||||
less than `1`).
|
||||
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
||||
The number of images to generate per prompt.
|
||||
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
||||
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
||||
to make generation deterministic.
|
||||
latents (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
||||
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
||||
tensor will be generated by sampling using the supplied random `generator`.
|
||||
prompt_embeds (`List[torch.FloatTensor]`, *optional*):
|
||||
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
||||
provided, text embeddings will be generated from `prompt` input argument.
|
||||
negative_prompt_embeds (`List[torch.FloatTensor]`, *optional*):
|
||||
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
||||
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
||||
argument.
|
||||
output_type (`str`, *optional*, defaults to `"pil"`):
|
||||
The output format of the generate image. Choose between
|
||||
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to return a [`~pipelines.stable_diffusion.ZImagePipelineOutput`] instead of a plain
|
||||
tuple.
|
||||
joint_attention_kwargs (`dict`, *optional*):
|
||||
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
||||
`self.processor` in
|
||||
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
||||
callback_on_step_end (`Callable`, *optional*):
|
||||
A function that calls at the end of each denoising steps during the inference. The function is called
|
||||
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
||||
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
||||
`callback_on_step_end_tensor_inputs`.
|
||||
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
||||
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
||||
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
||||
`._callback_tensor_inputs` attribute of your pipeline class.
|
||||
max_sequence_length (`int`, *optional*, defaults to 512):
|
||||
Maximum sequence length to use with the `prompt`.
|
||||
|
||||
Examples:
|
||||
|
||||
Returns:
|
||||
[`~pipelines.z_image.ZImagePipelineOutput`] or `tuple`: [`~pipelines.z_image.ZImagePipelineOutput`] if
|
||||
`return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the
|
||||
generated images.
|
||||
"""
|
||||
# 1. Check inputs
|
||||
self.check_inputs(
|
||||
prompt=prompt,
|
||||
image=image,
|
||||
mask_image=mask_image,
|
||||
strength=strength,
|
||||
height=height,
|
||||
width=width,
|
||||
output_type=output_type,
|
||||
negative_prompt=negative_prompt,
|
||||
prompt_embeds=prompt_embeds,
|
||||
negative_prompt_embeds=negative_prompt_embeds,
|
||||
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
||||
)
|
||||
|
||||
# 2. Preprocess image and mask
|
||||
init_image = self.image_processor.preprocess(image)
|
||||
init_image = init_image.to(dtype=torch.float32)
|
||||
|
||||
# Get dimensions from the preprocessed image if not specified
|
||||
if height is None:
|
||||
height = init_image.shape[-2]
|
||||
if width is None:
|
||||
width = init_image.shape[-1]
|
||||
|
||||
vae_scale = self.vae_scale_factor * 2
|
||||
if height % vae_scale != 0:
|
||||
raise ValueError(
|
||||
f"Height must be divisible by {vae_scale} (got {height}). "
|
||||
f"Please adjust the height to a multiple of {vae_scale}."
|
||||
)
|
||||
if width % vae_scale != 0:
|
||||
raise ValueError(
|
||||
f"Width must be divisible by {vae_scale} (got {width}). "
|
||||
f"Please adjust the width to a multiple of {vae_scale}."
|
||||
)
|
||||
|
||||
# Preprocess mask
|
||||
mask = self.mask_processor.preprocess(mask_image, height=height, width=width)
|
||||
|
||||
device = self._execution_device
|
||||
|
||||
self._guidance_scale = guidance_scale
|
||||
self._joint_attention_kwargs = joint_attention_kwargs
|
||||
self._interrupt = False
|
||||
self._cfg_normalization = cfg_normalization
|
||||
self._cfg_truncation = cfg_truncation
|
||||
|
||||
# 3. Define call parameters
|
||||
if prompt is not None and isinstance(prompt, str):
|
||||
batch_size = 1
|
||||
elif prompt is not None and isinstance(prompt, list):
|
||||
batch_size = len(prompt)
|
||||
else:
|
||||
batch_size = len(prompt_embeds)
|
||||
|
||||
# If prompt_embeds is provided and prompt is None, skip encoding
|
||||
if prompt_embeds is not None and prompt is None:
|
||||
if self.do_classifier_free_guidance and negative_prompt_embeds is None:
|
||||
raise ValueError(
|
||||
"When `prompt_embeds` is provided without `prompt`, "
|
||||
"`negative_prompt_embeds` must also be provided for classifier-free guidance."
|
||||
)
|
||||
else:
|
||||
(
|
||||
prompt_embeds,
|
||||
negative_prompt_embeds,
|
||||
) = self.encode_prompt(
|
||||
prompt=prompt,
|
||||
negative_prompt=negative_prompt,
|
||||
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
||||
prompt_embeds=prompt_embeds,
|
||||
negative_prompt_embeds=negative_prompt_embeds,
|
||||
device=device,
|
||||
max_sequence_length=max_sequence_length,
|
||||
)
|
||||
|
||||
# 4. Prepare latent variables
|
||||
num_channels_latents = self.transformer.in_channels
|
||||
|
||||
# Repeat prompt_embeds for num_images_per_prompt
|
||||
if num_images_per_prompt > 1:
|
||||
prompt_embeds = [pe for pe in prompt_embeds for _ in range(num_images_per_prompt)]
|
||||
if self.do_classifier_free_guidance and negative_prompt_embeds:
|
||||
negative_prompt_embeds = [npe for npe in negative_prompt_embeds for _ in range(num_images_per_prompt)]
|
||||
|
||||
actual_batch_size = batch_size * num_images_per_prompt
|
||||
|
||||
# Calculate latent dimensions for image_seq_len
|
||||
latent_height = 2 * (int(height) // (self.vae_scale_factor * 2))
|
||||
latent_width = 2 * (int(width) // (self.vae_scale_factor * 2))
|
||||
image_seq_len = (latent_height // 2) * (latent_width // 2)
|
||||
|
||||
# 5. Prepare timesteps
|
||||
mu = calculate_shift(
|
||||
image_seq_len,
|
||||
self.scheduler.config.get("base_image_seq_len", 256),
|
||||
self.scheduler.config.get("max_image_seq_len", 4096),
|
||||
self.scheduler.config.get("base_shift", 0.5),
|
||||
self.scheduler.config.get("max_shift", 1.15),
|
||||
)
|
||||
self.scheduler.sigma_min = 0.0
|
||||
scheduler_kwargs = {"mu": mu}
|
||||
timesteps, num_inference_steps = retrieve_timesteps(
|
||||
self.scheduler,
|
||||
num_inference_steps,
|
||||
device,
|
||||
sigmas=sigmas,
|
||||
**scheduler_kwargs,
|
||||
)
|
||||
|
||||
# 6. Adjust timesteps based on strength
|
||||
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
|
||||
if num_inference_steps < 1:
|
||||
raise ValueError(
|
||||
f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline "
|
||||
f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline."
|
||||
)
|
||||
latent_timestep = timesteps[:1].repeat(actual_batch_size)
|
||||
|
||||
# 7. Prepare latents from image (returns noise and image_latents for blending)
|
||||
latents, noise, image_latents = self.prepare_latents(
|
||||
init_image,
|
||||
latent_timestep,
|
||||
actual_batch_size,
|
||||
num_channels_latents,
|
||||
height,
|
||||
width,
|
||||
prompt_embeds[0].dtype,
|
||||
device,
|
||||
generator,
|
||||
latents,
|
||||
)
|
||||
|
||||
# 8. Prepare mask and masked image latents
|
||||
# Create masked image: preserve only unmasked regions (mask=0)
|
||||
if masked_image_latents is None:
|
||||
masked_image = init_image * (mask < 0.5)
|
||||
else:
|
||||
masked_image = None # Will use provided masked_image_latents
|
||||
|
||||
mask, masked_image_latents = self.prepare_mask_latents(
|
||||
mask,
|
||||
masked_image if masked_image is not None else init_image,
|
||||
actual_batch_size,
|
||||
height,
|
||||
width,
|
||||
prompt_embeds[0].dtype,
|
||||
device,
|
||||
generator,
|
||||
)
|
||||
|
||||
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
||||
self._num_timesteps = len(timesteps)
|
||||
|
||||
# 9. Denoising loop
|
||||
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
||||
for i, t in enumerate(timesteps):
|
||||
if self.interrupt:
|
||||
continue
|
||||
|
||||
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
||||
timestep = t.expand(latents.shape[0])
|
||||
timestep = (1000 - timestep) / 1000
|
||||
# Normalized time for time-aware config (0 at start, 1 at end)
|
||||
t_norm = timestep[0].item()
|
||||
|
||||
# Handle cfg truncation
|
||||
current_guidance_scale = self.guidance_scale
|
||||
if (
|
||||
self.do_classifier_free_guidance
|
||||
and self._cfg_truncation is not None
|
||||
and float(self._cfg_truncation) <= 1
|
||||
):
|
||||
if t_norm > self._cfg_truncation:
|
||||
current_guidance_scale = 0.0
|
||||
|
||||
# Run CFG only if configured AND scale is non-zero
|
||||
apply_cfg = self.do_classifier_free_guidance and current_guidance_scale > 0
|
||||
|
||||
if apply_cfg:
|
||||
latents_typed = latents.to(self.transformer.dtype)
|
||||
latent_model_input = latents_typed.repeat(2, 1, 1, 1)
|
||||
prompt_embeds_model_input = prompt_embeds + negative_prompt_embeds
|
||||
timestep_model_input = timestep.repeat(2)
|
||||
else:
|
||||
latent_model_input = latents.to(self.transformer.dtype)
|
||||
prompt_embeds_model_input = prompt_embeds
|
||||
timestep_model_input = timestep
|
||||
|
||||
latent_model_input = latent_model_input.unsqueeze(2)
|
||||
latent_model_input_list = list(latent_model_input.unbind(dim=0))
|
||||
|
||||
model_out_list = self.transformer(
|
||||
latent_model_input_list,
|
||||
timestep_model_input,
|
||||
prompt_embeds_model_input,
|
||||
)[0]
|
||||
|
||||
if apply_cfg:
|
||||
# Perform CFG
|
||||
pos_out = model_out_list[:actual_batch_size]
|
||||
neg_out = model_out_list[actual_batch_size:]
|
||||
|
||||
noise_pred = []
|
||||
for j in range(actual_batch_size):
|
||||
pos = pos_out[j].float()
|
||||
neg = neg_out[j].float()
|
||||
|
||||
pred = pos + current_guidance_scale * (pos - neg)
|
||||
|
||||
# Renormalization
|
||||
if self._cfg_normalization and float(self._cfg_normalization) > 0.0:
|
||||
ori_pos_norm = torch.linalg.vector_norm(pos)
|
||||
new_pos_norm = torch.linalg.vector_norm(pred)
|
||||
max_new_norm = ori_pos_norm * float(self._cfg_normalization)
|
||||
if new_pos_norm > max_new_norm:
|
||||
pred = pred * (max_new_norm / new_pos_norm)
|
||||
|
||||
noise_pred.append(pred)
|
||||
|
||||
noise_pred = torch.stack(noise_pred, dim=0)
|
||||
else:
|
||||
noise_pred = torch.stack([t.float() for t in model_out_list], dim=0)
|
||||
|
||||
noise_pred = noise_pred.squeeze(2)
|
||||
noise_pred = -noise_pred
|
||||
|
||||
# compute the previous noisy sample x_t -> x_t-1
|
||||
latents = self.scheduler.step(noise_pred.to(torch.float32), t, latents, return_dict=False)[0]
|
||||
assert latents.dtype == torch.float32
|
||||
|
||||
# Inpainting blend: combine denoised latents with original image latents
|
||||
init_latents_proper = image_latents
|
||||
|
||||
# Re-scale original latents to current noise level for proper blending
|
||||
if i < len(timesteps) - 1:
|
||||
noise_timestep = timesteps[i + 1]
|
||||
init_latents_proper = self.scheduler.scale_noise(
|
||||
init_latents_proper, torch.tensor([noise_timestep]), noise
|
||||
)
|
||||
|
||||
# Blend: mask=1 for inpaint region (use denoised), mask=0 for preserve region (use original)
|
||||
latents = (1 - mask) * init_latents_proper + mask * latents
|
||||
|
||||
if callback_on_step_end is not None:
|
||||
callback_kwargs = {}
|
||||
for k in callback_on_step_end_tensor_inputs:
|
||||
callback_kwargs[k] = locals()[k]
|
||||
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
||||
|
||||
latents = callback_outputs.pop("latents", latents)
|
||||
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
||||
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
||||
mask = callback_outputs.pop("mask", mask)
|
||||
masked_image_latents = callback_outputs.pop("masked_image_latents", masked_image_latents)
|
||||
|
||||
# call the callback, if provided
|
||||
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
||||
progress_bar.update()
|
||||
|
||||
if XLA_AVAILABLE:
|
||||
xm.mark_step()
|
||||
|
||||
if output_type == "latent":
|
||||
image = latents
|
||||
|
||||
else:
|
||||
latents = latents.to(self.vae.dtype)
|
||||
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
||||
|
||||
image = self.vae.decode(latents, return_dict=False)[0]
|
||||
image = self.image_processor.postprocess(image, output_type=output_type)
|
||||
|
||||
# Offload all models
|
||||
self.maybe_free_model_hooks()
|
||||
|
||||
if not return_dict:
|
||||
return (image,)
|
||||
|
||||
return ZImagePipelineOutput(images=image)
|
||||
@@ -4112,6 +4112,21 @@ class ZImageImg2ImgPipeline(metaclass=DummyObject):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class ZImageInpaintPipeline(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class ZImageOmniPipeline(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
|
||||
396
tests/pipelines/z_image/test_z_image_inpaint.py
Normal file
396
tests/pipelines/z_image/test_z_image_inpaint.py
Normal file
@@ -0,0 +1,396 @@
|
||||
# Copyright 2025 Alibaba Z-Image Team and The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import gc
|
||||
import os
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import Qwen2Tokenizer, Qwen3Config, Qwen3Model
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
FlowMatchEulerDiscreteScheduler,
|
||||
ZImageInpaintPipeline,
|
||||
ZImageTransformer2DModel,
|
||||
)
|
||||
from diffusers.utils.testing_utils import floats_tensor
|
||||
|
||||
from ...testing_utils import torch_device
|
||||
from ..pipeline_params import (
|
||||
IMAGE_TO_IMAGE_IMAGE_PARAMS,
|
||||
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
|
||||
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
|
||||
)
|
||||
from ..test_pipelines_common import PipelineTesterMixin, to_np
|
||||
|
||||
|
||||
# Z-Image requires torch.use_deterministic_algorithms(False) due to complex64 RoPE operations
|
||||
# Cannot use enable_full_determinism() which sets it to True
|
||||
# Note: Z-Image does not support FP16 inference due to complex64 RoPE embeddings
|
||||
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
|
||||
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":16:8"
|
||||
torch.use_deterministic_algorithms(False)
|
||||
torch.backends.cudnn.deterministic = True
|
||||
torch.backends.cudnn.benchmark = False
|
||||
if hasattr(torch.backends, "cuda"):
|
||||
torch.backends.cuda.matmul.allow_tf32 = False
|
||||
|
||||
|
||||
class ZImageInpaintPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
pipeline_class = ZImageInpaintPipeline
|
||||
params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"cross_attention_kwargs"}
|
||||
batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
|
||||
image_params = frozenset(["image", "mask_image"])
|
||||
image_latents_params = IMAGE_TO_IMAGE_IMAGE_PARAMS
|
||||
required_optional_params = frozenset(
|
||||
[
|
||||
"num_inference_steps",
|
||||
"strength",
|
||||
"generator",
|
||||
"latents",
|
||||
"return_dict",
|
||||
"callback_on_step_end",
|
||||
"callback_on_step_end_tensor_inputs",
|
||||
]
|
||||
)
|
||||
supports_dduf = False
|
||||
test_xformers_attention = False
|
||||
test_layerwise_casting = True
|
||||
test_group_offloading = True
|
||||
|
||||
def setUp(self):
|
||||
gc.collect()
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.synchronize()
|
||||
torch.manual_seed(0)
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.manual_seed_all(0)
|
||||
|
||||
def tearDown(self):
|
||||
super().tearDown()
|
||||
gc.collect()
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.synchronize()
|
||||
torch.manual_seed(0)
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.manual_seed_all(0)
|
||||
|
||||
def get_dummy_components(self):
|
||||
torch.manual_seed(0)
|
||||
transformer = ZImageTransformer2DModel(
|
||||
all_patch_size=(2,),
|
||||
all_f_patch_size=(1,),
|
||||
in_channels=16,
|
||||
dim=32,
|
||||
n_layers=2,
|
||||
n_refiner_layers=1,
|
||||
n_heads=2,
|
||||
n_kv_heads=2,
|
||||
norm_eps=1e-5,
|
||||
qk_norm=True,
|
||||
cap_feat_dim=16,
|
||||
rope_theta=256.0,
|
||||
t_scale=1000.0,
|
||||
axes_dims=[8, 4, 4],
|
||||
axes_lens=[256, 32, 32],
|
||||
)
|
||||
# `x_pad_token` and `cap_pad_token` are initialized with `torch.empty` which contains
|
||||
# uninitialized memory. Set them to known values for deterministic test behavior.
|
||||
with torch.no_grad():
|
||||
transformer.x_pad_token.copy_(torch.ones_like(transformer.x_pad_token.data))
|
||||
transformer.cap_pad_token.copy_(torch.ones_like(transformer.cap_pad_token.data))
|
||||
|
||||
torch.manual_seed(0)
|
||||
vae = AutoencoderKL(
|
||||
in_channels=3,
|
||||
out_channels=3,
|
||||
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
|
||||
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
|
||||
block_out_channels=[32, 64],
|
||||
layers_per_block=1,
|
||||
latent_channels=16,
|
||||
norm_num_groups=32,
|
||||
sample_size=32,
|
||||
scaling_factor=0.3611,
|
||||
shift_factor=0.1159,
|
||||
)
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = FlowMatchEulerDiscreteScheduler()
|
||||
|
||||
torch.manual_seed(0)
|
||||
config = Qwen3Config(
|
||||
hidden_size=16,
|
||||
intermediate_size=16,
|
||||
num_hidden_layers=2,
|
||||
num_attention_heads=2,
|
||||
num_key_value_heads=2,
|
||||
vocab_size=151936,
|
||||
max_position_embeddings=512,
|
||||
)
|
||||
text_encoder = Qwen3Model(config)
|
||||
tokenizer = Qwen2Tokenizer.from_pretrained("hf-internal-testing/tiny-random-Qwen2VLForConditionalGeneration")
|
||||
|
||||
components = {
|
||||
"transformer": transformer,
|
||||
"vae": vae,
|
||||
"scheduler": scheduler,
|
||||
"text_encoder": text_encoder,
|
||||
"tokenizer": tokenizer,
|
||||
}
|
||||
return components
|
||||
|
||||
def get_dummy_inputs(self, device, seed=0):
|
||||
import random
|
||||
|
||||
if str(device).startswith("mps"):
|
||||
generator = torch.manual_seed(seed)
|
||||
else:
|
||||
generator = torch.Generator(device=device).manual_seed(seed)
|
||||
|
||||
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
|
||||
# Create mask: 1 = inpaint region, 0 = preserve region
|
||||
mask_image = torch.zeros((1, 1, 32, 32), device=device)
|
||||
mask_image[:, :, 8:24, 8:24] = 1.0 # Inpaint center region
|
||||
|
||||
inputs = {
|
||||
"prompt": "dance monkey",
|
||||
"negative_prompt": "bad quality",
|
||||
"image": image,
|
||||
"mask_image": mask_image,
|
||||
"strength": 1.0,
|
||||
"generator": generator,
|
||||
"num_inference_steps": 2,
|
||||
"guidance_scale": 3.0,
|
||||
"cfg_normalization": False,
|
||||
"cfg_truncation": 1.0,
|
||||
"height": 32,
|
||||
"width": 32,
|
||||
"max_sequence_length": 16,
|
||||
"output_type": "np",
|
||||
}
|
||||
|
||||
return inputs
|
||||
|
||||
def test_inference(self):
|
||||
device = "cpu"
|
||||
|
||||
components = self.get_dummy_components()
|
||||
pipe = self.pipeline_class(**components)
|
||||
pipe.to(device)
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
inputs = self.get_dummy_inputs(device)
|
||||
image = pipe(**inputs).images
|
||||
generated_image = image[0]
|
||||
self.assertEqual(generated_image.shape, (32, 32, 3))
|
||||
|
||||
def test_inference_batch_single_identical(self):
|
||||
gc.collect()
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.synchronize()
|
||||
torch.manual_seed(0)
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.manual_seed_all(0)
|
||||
self._test_inference_batch_single_identical(batch_size=3, expected_max_diff=1e-1)
|
||||
|
||||
def test_num_images_per_prompt(self):
|
||||
import inspect
|
||||
|
||||
sig = inspect.signature(self.pipeline_class.__call__)
|
||||
|
||||
if "num_images_per_prompt" not in sig.parameters:
|
||||
return
|
||||
|
||||
components = self.get_dummy_components()
|
||||
pipe = self.pipeline_class(**components)
|
||||
pipe = pipe.to(torch_device)
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
batch_sizes = [1, 2]
|
||||
num_images_per_prompts = [1, 2]
|
||||
|
||||
for batch_size in batch_sizes:
|
||||
for num_images_per_prompt in num_images_per_prompts:
|
||||
inputs = self.get_dummy_inputs(torch_device)
|
||||
|
||||
for key in inputs.keys():
|
||||
if key in self.batch_params:
|
||||
inputs[key] = batch_size * [inputs[key]]
|
||||
|
||||
images = pipe(**inputs, num_images_per_prompt=num_images_per_prompt)[0]
|
||||
|
||||
assert images.shape[0] == batch_size * num_images_per_prompt
|
||||
|
||||
del pipe
|
||||
gc.collect()
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.synchronize()
|
||||
|
||||
def test_attention_slicing_forward_pass(
|
||||
self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-3
|
||||
):
|
||||
if not self.test_attention_slicing:
|
||||
return
|
||||
|
||||
components = self.get_dummy_components()
|
||||
pipe = self.pipeline_class(**components)
|
||||
for component in pipe.components.values():
|
||||
if hasattr(component, "set_default_attn_processor"):
|
||||
component.set_default_attn_processor()
|
||||
pipe.to(torch_device)
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
generator_device = "cpu"
|
||||
inputs = self.get_dummy_inputs(generator_device)
|
||||
output_without_slicing = pipe(**inputs)[0]
|
||||
|
||||
pipe.enable_attention_slicing(slice_size=1)
|
||||
inputs = self.get_dummy_inputs(generator_device)
|
||||
output_with_slicing1 = pipe(**inputs)[0]
|
||||
|
||||
pipe.enable_attention_slicing(slice_size=2)
|
||||
inputs = self.get_dummy_inputs(generator_device)
|
||||
output_with_slicing2 = pipe(**inputs)[0]
|
||||
|
||||
if test_max_difference:
|
||||
max_diff1 = np.abs(to_np(output_with_slicing1) - to_np(output_without_slicing)).max()
|
||||
max_diff2 = np.abs(to_np(output_with_slicing2) - to_np(output_without_slicing)).max()
|
||||
self.assertLess(
|
||||
max(max_diff1, max_diff2),
|
||||
expected_max_diff,
|
||||
"Attention slicing should not affect the inference results",
|
||||
)
|
||||
|
||||
def test_vae_tiling(self, expected_diff_max: float = 0.7):
|
||||
import random
|
||||
|
||||
generator_device = "cpu"
|
||||
components = self.get_dummy_components()
|
||||
|
||||
pipe = self.pipeline_class(**components)
|
||||
pipe.to("cpu")
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
# Without tiling
|
||||
inputs = self.get_dummy_inputs(generator_device)
|
||||
inputs["height"] = inputs["width"] = 128
|
||||
# Generate a larger image for the input
|
||||
inputs["image"] = floats_tensor((1, 3, 128, 128), rng=random.Random(0)).to("cpu")
|
||||
# Generate a larger mask for the input
|
||||
mask = torch.zeros((1, 1, 128, 128), device="cpu")
|
||||
mask[:, :, 32:96, 32:96] = 1.0
|
||||
inputs["mask_image"] = mask
|
||||
output_without_tiling = pipe(**inputs)[0]
|
||||
|
||||
# With tiling (standard AutoencoderKL doesn't accept parameters)
|
||||
pipe.vae.enable_tiling()
|
||||
inputs = self.get_dummy_inputs(generator_device)
|
||||
inputs["height"] = inputs["width"] = 128
|
||||
inputs["image"] = floats_tensor((1, 3, 128, 128), rng=random.Random(0)).to("cpu")
|
||||
inputs["mask_image"] = mask
|
||||
output_with_tiling = pipe(**inputs)[0]
|
||||
|
||||
self.assertLess(
|
||||
(to_np(output_without_tiling) - to_np(output_with_tiling)).max(),
|
||||
expected_diff_max,
|
||||
"VAE tiling should not affect the inference results",
|
||||
)
|
||||
|
||||
def test_pipeline_with_accelerator_device_map(self, expected_max_difference=1e-3):
|
||||
# Z-Image RoPE embeddings (complex64) have slightly higher numerical tolerance
|
||||
# Inpainting mask blending adds additional numerical variance
|
||||
super().test_pipeline_with_accelerator_device_map(expected_max_difference=expected_max_difference)
|
||||
|
||||
def test_group_offloading_inference(self):
|
||||
# Block-level offloading conflicts with RoPE cache. Pipeline-level offloading (tested separately) works fine.
|
||||
self.skipTest("Using test_pipeline_level_group_offloading_inference instead")
|
||||
|
||||
def test_save_load_float16(self, expected_max_diff=1e-2):
|
||||
# Z-Image does not support FP16 due to complex64 RoPE embeddings
|
||||
self.skipTest("Z-Image does not support FP16 inference")
|
||||
|
||||
def test_float16_inference(self, expected_max_diff=5e-2):
|
||||
# Z-Image does not support FP16 due to complex64 RoPE embeddings
|
||||
self.skipTest("Z-Image does not support FP16 inference")
|
||||
|
||||
def test_strength_parameter(self):
|
||||
"""Test that strength parameter affects the output correctly."""
|
||||
device = "cpu"
|
||||
components = self.get_dummy_components()
|
||||
pipe = self.pipeline_class(**components)
|
||||
pipe.to(device)
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
# Test with different strength values
|
||||
inputs_low_strength = self.get_dummy_inputs(device)
|
||||
inputs_low_strength["strength"] = 0.2
|
||||
|
||||
inputs_high_strength = self.get_dummy_inputs(device)
|
||||
inputs_high_strength["strength"] = 0.8
|
||||
|
||||
# Both should complete without errors
|
||||
output_low = pipe(**inputs_low_strength).images[0]
|
||||
output_high = pipe(**inputs_high_strength).images[0]
|
||||
|
||||
# Outputs should be different (different amount of transformation)
|
||||
self.assertFalse(np.allclose(output_low, output_high, atol=1e-3))
|
||||
|
||||
def test_invalid_strength(self):
|
||||
"""Test that invalid strength values raise appropriate errors."""
|
||||
device = "cpu"
|
||||
components = self.get_dummy_components()
|
||||
pipe = self.pipeline_class(**components)
|
||||
pipe.to(device)
|
||||
|
||||
inputs = self.get_dummy_inputs(device)
|
||||
|
||||
# Test strength < 0
|
||||
inputs["strength"] = -0.1
|
||||
with self.assertRaises(ValueError):
|
||||
pipe(**inputs)
|
||||
|
||||
# Test strength > 1
|
||||
inputs["strength"] = 1.5
|
||||
with self.assertRaises(ValueError):
|
||||
pipe(**inputs)
|
||||
|
||||
def test_mask_inpainting(self):
|
||||
"""Test that the mask properly controls which regions are inpainted."""
|
||||
device = "cpu"
|
||||
components = self.get_dummy_components()
|
||||
pipe = self.pipeline_class(**components)
|
||||
pipe.to(device)
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
# Generate with full mask (inpaint everything)
|
||||
inputs_full = self.get_dummy_inputs(device)
|
||||
inputs_full["mask_image"] = torch.ones((1, 1, 32, 32), device=device)
|
||||
|
||||
# Generate with no mask (preserve everything)
|
||||
inputs_none = self.get_dummy_inputs(device)
|
||||
inputs_none["mask_image"] = torch.zeros((1, 1, 32, 32), device=device)
|
||||
|
||||
# Both should complete without errors
|
||||
output_full = pipe(**inputs_full).images[0]
|
||||
output_none = pipe(**inputs_none).images[0]
|
||||
|
||||
# Outputs should be different (full inpaint vs preserve)
|
||||
self.assertFalse(np.allclose(output_full, output_none, atol=1e-3))
|
||||
Reference in New Issue
Block a user