Compare commits

..

12 Commits

Author SHA1 Message Date
Álvaro Somoza
a80b19218b Support Flux Klein peft (fal) lora format (#13169)
peft (fal) lora format
2026-02-21 10:31:18 +05:30
Animesh Jain
01de02e8b4 [gguf][torch.compile time] Convert to plain tensor earlier in dequantize_gguf_tensor (#13166)
[gguf] Convert to plain tensor earlier in dequantize_gguf_tensor

Once dequantize_gguf_tensor fetches the quant_type attributed from the
GGUFParamter tensor subclass, there is no further need of running the
actual dequantize operations on the Tensor subclass, we can just convert
to plain tensor right away.

This not only makes PyTorch eager faster, but reduces torch.compile
tracer compile time from 36 seconds to 10 seconds, because there is lot
less code to trace now.
2026-02-20 09:31:52 +05:30
Dhruv Nair
db2d7e7bc4 [CI] Fix new LoRAHotswap tests (#13163)
update

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2026-02-20 09:01:20 +05:30
Sayak Paul
f8d3db9ca7 remove deps related to test from ci (#13164) 2026-02-20 08:35:35 +05:30
Sayak Paul
99daaa802d [core] Enable CP for kernels-based attention backends (#12812)
* up

* up

* up

* up

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2026-02-19 18:16:50 +05:30
dg845
fe78a7b7c6 Fix ftfy import for PRX Pipeline (#13154)
* Guard ftfy import with is_ftfy_available

* Remove xfail for PRX pipeline tests as they appear to work on transformers>4.57.1

* make style and make quality
2026-02-18 20:44:33 -08:00
dg845
53e1d0e458 [CI] Revert setuptools CI Fix as the Failing Pipelines are Deprecated (#13149)
* Pin setuptools version for dependencies which explicitly depend on pkg_resources

* Revert setuptools pin as k-diffusion pipelines are now deprecated

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2026-02-18 20:34:00 -08:00
dxqb
a577ec36df Flux2: Tensor tuples can cause issues for checkpointing (#12777)
* split tensors inside the transformer blocks to avoid checkpointing issues

* clean up, fix type hints

* fix merge error

* Apply style fixes

---------

Co-authored-by: s <you@example.com>
Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2026-02-18 17:03:22 -08:00
Steven Liu
6875490c3b [docs] add docs for qwenimagelayered (#13158)
* add example

* feedback
2026-02-18 11:02:15 -08:00
David El Malih
64734b2115 docs: improve docstring scheduling_flow_match_lcm.py (#13160)
Improve docstring scheduling flow match lcm
2026-02-18 10:52:02 -08:00
Dhruv Nair
f81e653197 [CI] Add ftfy as a test dependency (#13155)
* update

* update

* update

* update

* update

* update
2026-02-18 22:51:10 +05:30
zhangtao0408
bcbbded7c3 [Bug] Fix QwenImageEditPlus Series on NPU (#13017)
* [Bug Fix][Qwen-Image-Edit] Fix Qwen-Image-Edit series on NPU

* Enhance NPU attention handling by converting attention mask to boolean and refining mask checks.

* Refine attention mask handling in NPU attention function to improve validation and conversion logic.

* Clean Code

* Refine attention mask processing in NPU attention functions to enhance performance and validation.

* Remove item() ops on npu fa backend.

* Reuse NPU attention mask by `_maybe_modify_attn_mask_npu`

* Apply style fixes

* Update src/diffusers/models/attention_dispatch.py

---------

Co-authored-by: zhangtao <zhangtao529@huawei.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2026-02-17 09:10:40 +05:30
24 changed files with 1454 additions and 1040 deletions

View File

@@ -199,11 +199,6 @@ jobs:
- name: Install dependencies
run: |
# Install pkgs which depend on setuptools<81 for pkg_resources first with no build isolation
uv pip install pip==25.2 setuptools==80.10.2
uv pip install --no-build-isolation k-diffusion==0.0.12
uv pip install --upgrade pip setuptools
# Install the rest as normal
uv pip install -e ".[quality]"
uv pip install peft@git+https://github.com/huggingface/peft.git
uv pip uninstall accelerate && uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git

View File

@@ -126,11 +126,6 @@ jobs:
- name: Install dependencies
run: |
# Install pkgs which depend on setuptools<81 for pkg_resources first with no build isolation
uv pip install pip==25.2 setuptools==80.10.2
uv pip install --no-build-isolation k-diffusion==0.0.12
uv pip install --upgrade pip setuptools
# Install the rest as normal
uv pip install -e ".[quality]"
uv pip install peft@git+https://github.com/huggingface/peft.git
uv pip uninstall accelerate && uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git

View File

@@ -41,7 +41,7 @@ jobs:
shell: arch -arch arm64 bash {0}
run: |
${CONDA_RUN} python -m pip install --upgrade pip uv
${CONDA_RUN} python -m uv pip install -e ".[quality,test]"
${CONDA_RUN} python -m uv pip install -e ".[quality]"
${CONDA_RUN} python -m uv pip install torch torchvision torchaudio
${CONDA_RUN} python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate.git
${CONDA_RUN} python -m uv pip install transformers --upgrade

View File

@@ -29,7 +29,7 @@ Qwen-Image comes in the following variants:
| Qwen-Image-Edit Plus | [Qwen/Qwen-Image-Edit-2509](https://huggingface.co/Qwen/Qwen-Image-Edit-2509) |
> [!TIP]
> [Caching](../../optimization/cache) may also speed up inference by storing and reusing intermediate outputs.
> See the [Caching](../../optimization/cache) guide to speed up inference by storing and reusing intermediate outputs.
## LoRA for faster inference
@@ -190,6 +190,12 @@ For detailed benchmark scripts and results, see [this gist](https://gist.github.
- all
- __call__
## QwenImageLayeredPipeline
[[autodoc]] QwenImageLayeredPipeline
- all
- __call__
## QwenImagePipelineOutput
[[autodoc]] pipelines.qwenimage.pipeline_output.QwenImagePipelineOutput

View File

@@ -101,6 +101,7 @@ _deps = [
"datasets",
"filelock",
"flax>=0.4.1",
"ftfy",
"hf-doc-builder>=0.3.0",
"httpx<1.0.0",
"huggingface-hub>=0.34.0,<2.0",
@@ -221,12 +222,14 @@ extras["docs"] = deps_list("hf-doc-builder")
extras["training"] = deps_list("accelerate", "datasets", "protobuf", "tensorboard", "Jinja2", "peft", "timm")
extras["test"] = deps_list(
"compel",
"ftfy",
"GitPython",
"datasets",
"Jinja2",
"invisible-watermark",
"librosa",
"parameterized",
"protobuf",
"pytest",
"pytest-timeout",
"pytest-xdist",
@@ -235,6 +238,7 @@ extras["test"] = deps_list(
"sentencepiece",
"scipy",
"tiktoken",
"torchsde",
"torchvision",
"transformers",
"phonemizer",

View File

@@ -8,6 +8,7 @@ deps = {
"datasets": "datasets",
"filelock": "filelock",
"flax": "flax>=0.4.1",
"ftfy": "ftfy",
"hf-doc-builder": "hf-doc-builder>=0.3.0",
"httpx": "httpx<1.0.0",
"huggingface-hub": "huggingface-hub>=0.34.0,<2.0",

View File

@@ -5472,6 +5472,10 @@ class Flux2LoraLoaderMixin(LoraBaseMixin):
logger.warning(warn_msg)
state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}
is_peft_format = any(k.startswith("base_model.model.") for k in state_dict)
if is_peft_format:
state_dict = {k.replace("base_model.model.", "diffusion_model."): v for k, v in state_dict.items()}
is_ai_toolkit = any(k.startswith("diffusion_model.") for k in state_dict)
if is_ai_toolkit:
state_dict = _convert_non_diffusers_flux2_lora_to_diffusers(state_dict)

View File

@@ -266,6 +266,10 @@ class _HubKernelConfig:
function_attr: str
revision: str | None = None
kernel_fn: Callable | None = None
wrapped_forward_attr: str | None = None
wrapped_backward_attr: str | None = None
wrapped_forward_fn: Callable | None = None
wrapped_backward_fn: Callable | None = None
# Registry for hub-based attention kernels
@@ -280,7 +284,11 @@ _HUB_KERNELS_REGISTRY: dict["AttentionBackendName", _HubKernelConfig] = {
# revision="fake-ops-return-probs",
),
AttentionBackendName.FLASH_HUB: _HubKernelConfig(
repo_id="kernels-community/flash-attn2", function_attr="flash_attn_func", revision=None
repo_id="kernels-community/flash-attn2",
function_attr="flash_attn_func",
revision=None,
wrapped_forward_attr="flash_attn_interface._wrapped_flash_attn_forward",
wrapped_backward_attr="flash_attn_interface._wrapped_flash_attn_backward",
),
AttentionBackendName.FLASH_VARLEN_HUB: _HubKernelConfig(
repo_id="kernels-community/flash-attn2", function_attr="flash_attn_varlen_func", revision=None
@@ -605,22 +613,39 @@ def _flex_attention_causal_mask_mod(batch_idx, head_idx, q_idx, kv_idx):
# ===== Helpers for downloading kernels =====
def _resolve_kernel_attr(module, attr_path: str):
target = module
for attr in attr_path.split("."):
if not hasattr(target, attr):
raise AttributeError(f"Kernel module '{module.__name__}' does not define attribute path '{attr_path}'.")
target = getattr(target, attr)
return target
def _maybe_download_kernel_for_backend(backend: AttentionBackendName) -> None:
if backend not in _HUB_KERNELS_REGISTRY:
return
config = _HUB_KERNELS_REGISTRY[backend]
if config.kernel_fn is not None:
needs_kernel = config.kernel_fn is None
needs_wrapped_forward = config.wrapped_forward_attr is not None and config.wrapped_forward_fn is None
needs_wrapped_backward = config.wrapped_backward_attr is not None and config.wrapped_backward_fn is None
if not (needs_kernel or needs_wrapped_forward or needs_wrapped_backward):
return
try:
from kernels import get_kernel
kernel_module = get_kernel(config.repo_id, revision=config.revision)
kernel_func = getattr(kernel_module, config.function_attr)
if needs_kernel:
config.kernel_fn = _resolve_kernel_attr(kernel_module, config.function_attr)
# Cache the downloaded kernel function in the config object
config.kernel_fn = kernel_func
if needs_wrapped_forward:
config.wrapped_forward_fn = _resolve_kernel_attr(kernel_module, config.wrapped_forward_attr)
if needs_wrapped_backward:
config.wrapped_backward_fn = _resolve_kernel_attr(kernel_module, config.wrapped_backward_attr)
except Exception as e:
logger.error(f"An error occurred while fetching kernel '{config.repo_id}' from the Hub: {e}")
@@ -1071,6 +1096,237 @@ def _flash_attention_backward_op(
return grad_query, grad_key, grad_value
def _flash_attention_hub_forward_op(
ctx: torch.autograd.function.FunctionCtx,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attn_mask: torch.Tensor | None = None,
dropout_p: float = 0.0,
is_causal: bool = False,
scale: float | None = None,
enable_gqa: bool = False,
return_lse: bool = False,
_save_ctx: bool = True,
_parallel_config: "ParallelConfig" | None = None,
):
if attn_mask is not None:
raise ValueError("`attn_mask` is not yet supported for flash-attn hub kernels.")
if enable_gqa:
raise ValueError("`enable_gqa` is not yet supported for flash-attn hub kernels.")
config = _HUB_KERNELS_REGISTRY[AttentionBackendName.FLASH_HUB]
wrapped_forward_fn = config.wrapped_forward_fn
wrapped_backward_fn = config.wrapped_backward_fn
if wrapped_forward_fn is None or wrapped_backward_fn is None:
raise RuntimeError(
"Flash attention hub kernels must expose `_wrapped_flash_attn_forward` and `_wrapped_flash_attn_backward` "
"for context parallel execution."
)
if scale is None:
scale = query.shape[-1] ** (-0.5)
window_size = (-1, -1)
softcap = 0.0
alibi_slopes = None
deterministic = False
grad_enabled = any(x.requires_grad for x in (query, key, value))
if grad_enabled or (_parallel_config is not None and _parallel_config.context_parallel_config._world_size > 1):
dropout_p = dropout_p if dropout_p > 0 else 1e-30
with torch.set_grad_enabled(grad_enabled):
out, lse, S_dmask, rng_state = wrapped_forward_fn(
query,
key,
value,
dropout_p,
scale,
is_causal,
window_size[0],
window_size[1],
softcap,
alibi_slopes,
return_lse,
)
lse = lse.permute(0, 2, 1).contiguous()
if _save_ctx:
ctx.save_for_backward(query, key, value, out, lse, rng_state)
ctx.dropout_p = dropout_p
ctx.scale = scale
ctx.is_causal = is_causal
ctx.window_size = window_size
ctx.softcap = softcap
ctx.alibi_slopes = alibi_slopes
ctx.deterministic = deterministic
return (out, lse) if return_lse else out
def _flash_attention_hub_backward_op(
ctx: torch.autograd.function.FunctionCtx,
grad_out: torch.Tensor,
*args,
**kwargs,
):
config = _HUB_KERNELS_REGISTRY[AttentionBackendName.FLASH_HUB]
wrapped_backward_fn = config.wrapped_backward_fn
if wrapped_backward_fn is None:
raise RuntimeError(
"Flash attention hub kernels must expose `_wrapped_flash_attn_backward` for context parallel execution."
)
query, key, value, out, lse, rng_state = ctx.saved_tensors
grad_query, grad_key, grad_value = torch.empty_like(query), torch.empty_like(key), torch.empty_like(value)
_ = wrapped_backward_fn(
grad_out,
query,
key,
value,
out,
lse,
grad_query,
grad_key,
grad_value,
ctx.dropout_p,
ctx.scale,
ctx.is_causal,
ctx.window_size[0],
ctx.window_size[1],
ctx.softcap,
ctx.alibi_slopes,
ctx.deterministic,
rng_state,
)
grad_query = grad_query[..., : grad_out.shape[-1]]
grad_key = grad_key[..., : grad_out.shape[-1]]
grad_value = grad_value[..., : grad_out.shape[-1]]
return grad_query, grad_key, grad_value
def _flash_attention_3_hub_forward_op(
ctx: torch.autograd.function.FunctionCtx,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attn_mask: torch.Tensor | None = None,
dropout_p: float = 0.0,
is_causal: bool = False,
scale: float | None = None,
enable_gqa: bool = False,
return_lse: bool = False,
_save_ctx: bool = True,
_parallel_config: "ParallelConfig" | None = None,
*,
window_size: tuple[int, int] = (-1, -1),
softcap: float = 0.0,
num_splits: int = 1,
pack_gqa: bool | None = None,
deterministic: bool = False,
sm_margin: int = 0,
):
if attn_mask is not None:
raise ValueError("`attn_mask` is not yet supported for flash-attn 3 hub kernels.")
if dropout_p != 0.0:
raise ValueError("`dropout_p` is not yet supported for flash-attn 3 hub kernels.")
if enable_gqa:
raise ValueError("`enable_gqa` is not yet supported for flash-attn 3 hub kernels.")
func = _HUB_KERNELS_REGISTRY[AttentionBackendName._FLASH_3_HUB].kernel_fn
out = func(
q=query,
k=key,
v=value,
softmax_scale=scale,
causal=is_causal,
qv=None,
q_descale=None,
k_descale=None,
v_descale=None,
window_size=window_size,
softcap=softcap,
num_splits=num_splits,
pack_gqa=pack_gqa,
deterministic=deterministic,
sm_margin=sm_margin,
return_attn_probs=return_lse,
)
lse = None
if return_lse:
out, lse = out
lse = lse.permute(0, 2, 1).contiguous()
if _save_ctx:
ctx.save_for_backward(query, key, value)
ctx.scale = scale
ctx.is_causal = is_causal
ctx._hub_kernel = func
return (out, lse) if return_lse else out
def _flash_attention_3_hub_backward_op(
ctx: torch.autograd.function.FunctionCtx,
grad_out: torch.Tensor,
*args,
window_size: tuple[int, int] = (-1, -1),
softcap: float = 0.0,
num_splits: int = 1,
pack_gqa: bool | None = None,
deterministic: bool = False,
sm_margin: int = 0,
):
query, key, value = ctx.saved_tensors
kernel_fn = ctx._hub_kernel
# NOTE: Unlike the FA2 hub kernel, the FA3 hub kernel does not expose separate wrapped forward/backward
# primitives (no `wrapped_forward_attr`/`wrapped_backward_attr` in its `_HubKernelConfig`). We
# therefore rerun the forward pass under `torch.enable_grad()` and differentiate through it with
# `torch.autograd.grad()`. This is a second forward pass during backward; it can be avoided once
# the FA3 hub exposes a dedicated fused backward kernel (analogous to `_wrapped_flash_attn_backward`
# in the FA2 hub), at which point this can be refactored to match `_flash_attention_hub_backward_op`.
with torch.enable_grad():
query_r = query.detach().requires_grad_(True)
key_r = key.detach().requires_grad_(True)
value_r = value.detach().requires_grad_(True)
out = kernel_fn(
q=query_r,
k=key_r,
v=value_r,
softmax_scale=ctx.scale,
causal=ctx.is_causal,
qv=None,
q_descale=None,
k_descale=None,
v_descale=None,
window_size=window_size,
softcap=softcap,
num_splits=num_splits,
pack_gqa=pack_gqa,
deterministic=deterministic,
sm_margin=sm_margin,
return_attn_probs=False,
)
if isinstance(out, tuple):
out = out[0]
grad_query, grad_key, grad_value = torch.autograd.grad(
out,
(query_r, key_r, value_r),
grad_out,
retain_graph=False,
allow_unused=False,
)
return grad_query, grad_key, grad_value
def _sage_attention_forward_op(
ctx: torch.autograd.function.FunctionCtx,
query: torch.Tensor,
@@ -1109,6 +1365,46 @@ def _sage_attention_forward_op(
return (out, lse) if return_lse else out
def _sage_attention_hub_forward_op(
ctx: torch.autograd.function.FunctionCtx,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attn_mask: torch.Tensor | None = None,
dropout_p: float = 0.0,
is_causal: bool = False,
scale: float | None = None,
enable_gqa: bool = False,
return_lse: bool = False,
_save_ctx: bool = True,
_parallel_config: "ParallelConfig" | None = None,
):
if attn_mask is not None:
raise ValueError("`attn_mask` is not yet supported for Sage attention.")
if dropout_p > 0.0:
raise ValueError("`dropout_p` is not yet supported for Sage attention.")
if enable_gqa:
raise ValueError("`enable_gqa` is not yet supported for Sage attention.")
func = _HUB_KERNELS_REGISTRY[AttentionBackendName.SAGE_HUB].kernel_fn
out = func(
q=query,
k=key,
v=value,
tensor_layout="NHD",
is_causal=is_causal,
sm_scale=scale,
return_lse=return_lse,
)
lse = None
if return_lse:
out, lse, *_ = out
lse = lse.permute(0, 2, 1).contiguous()
return (out, lse) if return_lse else out
def _sage_attention_backward_op(
ctx: torch.autograd.function.FunctionCtx,
grad_out: torch.Tensor,
@@ -1117,6 +1413,26 @@ def _sage_attention_backward_op(
raise NotImplementedError("Backward pass is not implemented for Sage attention.")
def _maybe_modify_attn_mask_npu(query: torch.Tensor, key: torch.Tensor, attn_mask: torch.Tensor | None = None):
# Skip Attention Mask if all values are 1, `None` mask can speedup the computation
if attn_mask is not None and torch.all(attn_mask != 0):
attn_mask = None
# Reshape Attention Mask: [batch_size, seq_len_k] -> [batch_size, 1, sqe_len_q, seq_len_k]
# https://www.hiascend.com/document/detail/zh/Pytorch/730/apiref/torchnpuCustomsapi/docs/context/torch_npu-npu_fusion_attention.md
if (
attn_mask is not None
and attn_mask.ndim == 2
and attn_mask.shape[0] == query.shape[0]
and attn_mask.shape[1] == key.shape[1]
):
B, Sq, Skv = attn_mask.shape[0], query.shape[1], key.shape[1]
attn_mask = ~attn_mask.to(torch.bool)
attn_mask = attn_mask.unsqueeze(1).expand(B, Sq, Skv).unsqueeze(1).contiguous()
return attn_mask
def _npu_attention_forward_op(
ctx: torch.autograd.function.FunctionCtx,
query: torch.Tensor,
@@ -1134,11 +1450,14 @@ def _npu_attention_forward_op(
if return_lse:
raise ValueError("NPU attention backend does not support setting `return_lse=True`.")
attn_mask = _maybe_modify_attn_mask_npu(query, key, attn_mask)
out = npu_fusion_attention(
query,
key,
value,
query.size(2), # num_heads
atten_mask=attn_mask,
input_layout="BSND",
pse=None,
scale=1.0 / math.sqrt(query.shape[-1]) if scale is None else scale,
@@ -1942,7 +2261,7 @@ def _flash_attention(
@_AttentionBackendRegistry.register(
AttentionBackendName.FLASH_HUB,
constraints=[_check_device, _check_qkv_dtype_bf16_or_fp16, _check_shape],
supports_context_parallel=False,
supports_context_parallel=True,
)
def _flash_attention_hub(
query: torch.Tensor,
@@ -1960,17 +2279,35 @@ def _flash_attention_hub(
raise ValueError("`attn_mask` is not supported for flash-attn 2.")
func = _HUB_KERNELS_REGISTRY[AttentionBackendName.FLASH_HUB].kernel_fn
out = func(
q=query,
k=key,
v=value,
dropout_p=dropout_p,
softmax_scale=scale,
causal=is_causal,
return_attn_probs=return_lse,
)
if return_lse:
out, lse, *_ = out
if _parallel_config is None:
out = func(
q=query,
k=key,
v=value,
dropout_p=dropout_p,
softmax_scale=scale,
causal=is_causal,
return_attn_probs=return_lse,
)
if return_lse:
out, lse, *_ = out
else:
out = _templated_context_parallel_attention(
query,
key,
value,
None,
dropout_p,
is_causal,
scale,
False,
return_lse,
forward_op=_flash_attention_hub_forward_op,
backward_op=_flash_attention_hub_backward_op,
_parallel_config=_parallel_config,
)
if return_lse:
out, lse = out
return (out, lse) if return_lse else out
@@ -2117,7 +2454,7 @@ def _flash_attention_3(
@_AttentionBackendRegistry.register(
AttentionBackendName._FLASH_3_HUB,
constraints=[_check_device, _check_qkv_dtype_bf16_or_fp16, _check_shape],
supports_context_parallel=False,
supports_context_parallel=True,
)
def _flash_attention_3_hub(
query: torch.Tensor,
@@ -2132,33 +2469,68 @@ def _flash_attention_3_hub(
return_attn_probs: bool = False,
_parallel_config: "ParallelConfig" | None = None,
) -> torch.Tensor:
if _parallel_config:
raise NotImplementedError(f"{AttentionBackendName._FLASH_3_HUB.value} is not implemented for parallelism yet.")
if attn_mask is not None:
raise ValueError("`attn_mask` is not supported for flash-attn 3.")
func = _HUB_KERNELS_REGISTRY[AttentionBackendName._FLASH_3_HUB].kernel_fn
out = func(
q=query,
k=key,
v=value,
softmax_scale=scale,
causal=is_causal,
qv=None,
q_descale=None,
k_descale=None,
v_descale=None,
if _parallel_config is None:
out = func(
q=query,
k=key,
v=value,
softmax_scale=scale,
causal=is_causal,
qv=None,
q_descale=None,
k_descale=None,
v_descale=None,
window_size=window_size,
softcap=softcap,
num_splits=1,
pack_gqa=None,
deterministic=deterministic,
sm_margin=0,
return_attn_probs=return_attn_probs,
)
return (out[0], out[1]) if return_attn_probs else out
forward_op = functools.partial(
_flash_attention_3_hub_forward_op,
window_size=window_size,
softcap=softcap,
num_splits=1,
pack_gqa=None,
deterministic=deterministic,
sm_margin=0,
return_attn_probs=return_attn_probs,
)
# When `return_attn_probs` is True, the above returns a tuple of
# actual outputs and lse.
return (out[0], out[1]) if return_attn_probs else out
backward_op = functools.partial(
_flash_attention_3_hub_backward_op,
window_size=window_size,
softcap=softcap,
num_splits=1,
pack_gqa=None,
deterministic=deterministic,
sm_margin=0,
)
out = _templated_context_parallel_attention(
query,
key,
value,
None,
0.0,
is_causal,
scale,
False,
return_attn_probs,
forward_op=forward_op,
backward_op=backward_op,
_parallel_config=_parallel_config,
)
if return_attn_probs:
out, lse = out
return out, lse
return out
@_AttentionBackendRegistry.register(
@@ -2668,16 +3040,17 @@ def _native_npu_attention(
return_lse: bool = False,
_parallel_config: "ParallelConfig" | None = None,
) -> torch.Tensor:
if attn_mask is not None:
raise ValueError("`attn_mask` is not supported for NPU attention")
if return_lse:
raise ValueError("NPU attention backend does not support setting `return_lse=True`.")
if _parallel_config is None:
attn_mask = _maybe_modify_attn_mask_npu(query, key, attn_mask)
out = npu_fusion_attention(
query,
key,
value,
query.size(2), # num_heads
atten_mask=attn_mask,
input_layout="BSND",
pse=None,
scale=1.0 / math.sqrt(query.shape[-1]) if scale is None else scale,
@@ -2692,7 +3065,7 @@ def _native_npu_attention(
query,
key,
value,
None,
attn_mask,
dropout_p,
None,
scale,
@@ -2789,7 +3162,7 @@ def _sage_attention(
@_AttentionBackendRegistry.register(
AttentionBackendName.SAGE_HUB,
constraints=[_check_device_cuda, _check_qkv_dtype_bf16_or_fp16, _check_shape],
supports_context_parallel=False,
supports_context_parallel=True,
)
def _sage_attention_hub(
query: torch.Tensor,
@@ -2817,6 +3190,23 @@ def _sage_attention_hub(
)
if return_lse:
out, lse, *_ = out
else:
out = _templated_context_parallel_attention(
query,
key,
value,
None,
0.0,
is_causal,
scale,
False,
return_lse,
forward_op=_sage_attention_hub_forward_op,
backward_op=_sage_attention_backward_op,
_parallel_config=_parallel_config,
)
if return_lse:
out, lse = out
return (out, lse) if return_lse else out

View File

@@ -424,7 +424,7 @@ class Flux2SingleTransformerBlock(nn.Module):
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor | None,
temb_mod_params: tuple[torch.Tensor, torch.Tensor, torch.Tensor],
temb_mod: torch.Tensor,
image_rotary_emb: tuple[torch.Tensor, torch.Tensor] | None = None,
joint_attention_kwargs: dict[str, Any] | None = None,
split_hidden_states: bool = False,
@@ -436,7 +436,7 @@ class Flux2SingleTransformerBlock(nn.Module):
text_seq_len = encoder_hidden_states.shape[1]
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
mod_shift, mod_scale, mod_gate = temb_mod_params
mod_shift, mod_scale, mod_gate = Flux2Modulation.split(temb_mod, 1)[0]
norm_hidden_states = self.norm(hidden_states)
norm_hidden_states = (1 + mod_scale) * norm_hidden_states + mod_shift
@@ -498,16 +498,18 @@ class Flux2TransformerBlock(nn.Module):
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
temb_mod_params_img: tuple[tuple[torch.Tensor, torch.Tensor, torch.Tensor], ...],
temb_mod_params_txt: tuple[tuple[torch.Tensor, torch.Tensor, torch.Tensor], ...],
temb_mod_img: torch.Tensor,
temb_mod_txt: torch.Tensor,
image_rotary_emb: tuple[torch.Tensor, torch.Tensor] | None = None,
joint_attention_kwargs: dict[str, Any] | None = None,
) -> tuple[torch.Tensor, torch.Tensor]:
joint_attention_kwargs = joint_attention_kwargs or {}
# Modulation parameters shape: [1, 1, self.dim]
(shift_msa, scale_msa, gate_msa), (shift_mlp, scale_mlp, gate_mlp) = temb_mod_params_img
(c_shift_msa, c_scale_msa, c_gate_msa), (c_shift_mlp, c_scale_mlp, c_gate_mlp) = temb_mod_params_txt
(shift_msa, scale_msa, gate_msa), (shift_mlp, scale_mlp, gate_mlp) = Flux2Modulation.split(temb_mod_img, 2)
(c_shift_msa, c_scale_msa, c_gate_msa), (c_shift_mlp, c_scale_mlp, c_gate_mlp) = Flux2Modulation.split(
temb_mod_txt, 2
)
# Img stream
norm_hidden_states = self.norm1(hidden_states)
@@ -627,15 +629,19 @@ class Flux2Modulation(nn.Module):
self.linear = nn.Linear(dim, dim * 3 * self.mod_param_sets, bias=bias)
self.act_fn = nn.SiLU()
def forward(self, temb: torch.Tensor) -> tuple[tuple[torch.Tensor, torch.Tensor, torch.Tensor], ...]:
def forward(self, temb: torch.Tensor) -> torch.Tensor:
mod = self.act_fn(temb)
mod = self.linear(mod)
return mod
@staticmethod
# split inside the transformer blocks, to avoid passing tuples into checkpoints https://github.com/huggingface/diffusers/issues/12776
def split(mod: torch.Tensor, mod_param_sets: int) -> tuple[tuple[torch.Tensor, torch.Tensor, torch.Tensor], ...]:
if mod.ndim == 2:
mod = mod.unsqueeze(1)
mod_params = torch.chunk(mod, 3 * self.mod_param_sets, dim=-1)
mod_params = torch.chunk(mod, 3 * mod_param_sets, dim=-1)
# Return tuple of 3-tuples of modulation params shift/scale/gate
return tuple(mod_params[3 * i : 3 * (i + 1)] for i in range(self.mod_param_sets))
return tuple(mod_params[3 * i : 3 * (i + 1)] for i in range(mod_param_sets))
class Flux2Transformer2DModel(
@@ -824,7 +830,7 @@ class Flux2Transformer2DModel(
double_stream_mod_img = self.double_stream_modulation_img(temb)
double_stream_mod_txt = self.double_stream_modulation_txt(temb)
single_stream_mod = self.single_stream_modulation(temb)[0]
single_stream_mod = self.single_stream_modulation(temb)
# 2. Input projection for image (hidden_states) and conditioning text (encoder_hidden_states)
hidden_states = self.x_embedder(hidden_states)
@@ -861,8 +867,8 @@ class Flux2Transformer2DModel(
encoder_hidden_states, hidden_states = block(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
temb_mod_params_img=double_stream_mod_img,
temb_mod_params_txt=double_stream_mod_txt,
temb_mod_img=double_stream_mod_img,
temb_mod_txt=double_stream_mod_txt,
image_rotary_emb=concat_rotary_emb,
joint_attention_kwargs=joint_attention_kwargs,
)
@@ -884,7 +890,7 @@ class Flux2Transformer2DModel(
hidden_states = block(
hidden_states=hidden_states,
encoder_hidden_states=None,
temb_mod_params=single_stream_mod,
temb_mod=single_stream_mod,
image_rotary_emb=concat_rotary_emb,
joint_attention_kwargs=joint_attention_kwargs,
)

View File

@@ -164,7 +164,11 @@ def compute_text_seq_len_from_mask(
position_ids = torch.arange(text_seq_len, device=encoder_hidden_states.device, dtype=torch.long)
active_positions = torch.where(encoder_hidden_states_mask, position_ids, position_ids.new_zeros(()))
has_active = encoder_hidden_states_mask.any(dim=1)
per_sample_len = torch.where(has_active, active_positions.max(dim=1).values + 1, torch.as_tensor(text_seq_len))
per_sample_len = torch.where(
has_active,
active_positions.max(dim=1).values + 1,
torch.as_tensor(text_seq_len, device=encoder_hidden_states.device),
)
return text_seq_len, per_sample_len, encoder_hidden_states_mask

View File

@@ -18,7 +18,6 @@ import re
import urllib.parse as ul
from typing import Callable
import ftfy
import torch
from transformers import (
AutoTokenizer,
@@ -34,13 +33,13 @@ from diffusers.models.transformers.transformer_prx import PRXTransformer2DModel
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.prx.pipeline_output import PRXPipelineOutput
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
from diffusers.utils import (
logging,
replace_example_docstring,
)
from diffusers.utils import is_ftfy_available, logging, replace_example_docstring
from diffusers.utils.torch_utils import randn_tensor
if is_ftfy_available():
import ftfy
DEFAULT_RESOLUTION = 512
ASPECT_RATIO_256_BIN = {

View File

@@ -516,6 +516,9 @@ def dequantize_gguf_tensor(tensor):
block_size, type_size = GGML_QUANT_SIZES[quant_type]
# Conver to plain tensor to avoid unnecessary __torch_function__ overhead.
tensor = tensor.as_tensor()
tensor = tensor.view(torch.uint8)
shape = _quant_shape_from_byte_shape(tensor.shape, type_size, block_size)
@@ -525,7 +528,7 @@ def dequantize_gguf_tensor(tensor):
dequant = dequant_fn(blocks, block_size, type_size)
dequant = dequant.reshape(shape)
return dequant.as_tensor()
return dequant
class GGUFParameter(torch.nn.Parameter):

View File

@@ -14,6 +14,7 @@
import math
from dataclasses import dataclass
from typing import Literal
import numpy as np
import torch
@@ -41,7 +42,7 @@ class FlowMatchLCMSchedulerOutput(BaseOutput):
denoising loop.
"""
prev_sample: torch.FloatTensor
prev_sample: torch.Tensor
class FlowMatchLCMScheduler(SchedulerMixin, ConfigMixin):
@@ -79,11 +80,11 @@ class FlowMatchLCMScheduler(SchedulerMixin, ConfigMixin):
use_beta_sigmas (`bool`, defaults to False):
Whether to use beta sigmas for step sizes in the noise schedule during sampling.
time_shift_type (`str`, defaults to "exponential"):
The type of dynamic resolution-dependent timestep shifting to apply. Either "exponential" or "linear".
scale_factors ('list', defaults to None)
The type of dynamic resolution-dependent timestep shifting to apply.
scale_factors (`list[float]`, *optional*, defaults to `None`):
It defines how to scale the latents at which predictions are made.
upscale_mode ('str', defaults to 'bicubic')
Upscaling method, applied if scale-wise generation is considered
upscale_mode (`str`, *optional*, defaults to "bicubic"):
Upscaling method, applied if scale-wise generation is considered.
"""
_compatibles = []
@@ -101,16 +102,33 @@ class FlowMatchLCMScheduler(SchedulerMixin, ConfigMixin):
max_image_seq_len: int = 4096,
invert_sigmas: bool = False,
shift_terminal: float | None = None,
use_karras_sigmas: bool = False,
use_exponential_sigmas: bool = False,
use_beta_sigmas: bool = False,
time_shift_type: str = "exponential",
use_karras_sigmas: bool | None = False,
use_exponential_sigmas: bool | None = False,
use_beta_sigmas: bool | None = False,
time_shift_type: Literal["exponential", "linear"] = "exponential",
scale_factors: list[float] | None = None,
upscale_mode: str = "bicubic",
upscale_mode: Literal[
"nearest",
"linear",
"bilinear",
"bicubic",
"trilinear",
"area",
"nearest-exact",
] = "bicubic",
):
if self.config.use_beta_sigmas and not is_scipy_available():
raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
if (
sum(
[
self.config.use_beta_sigmas,
self.config.use_exponential_sigmas,
self.config.use_karras_sigmas,
]
)
> 1
):
raise ValueError(
"Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
)
@@ -162,7 +180,7 @@ class FlowMatchLCMScheduler(SchedulerMixin, ConfigMixin):
return self._begin_index
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
def set_begin_index(self, begin_index: int = 0):
def set_begin_index(self, begin_index: int = 0) -> None:
"""
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
@@ -172,18 +190,18 @@ class FlowMatchLCMScheduler(SchedulerMixin, ConfigMixin):
"""
self._begin_index = begin_index
def set_shift(self, shift: float):
def set_shift(self, shift: float) -> None:
self._shift = shift
def set_scale_factors(self, scale_factors: list, upscale_mode):
def set_scale_factors(self, scale_factors: list[float], upscale_mode: str) -> None:
"""
Sets scale factors for a scale-wise generation regime.
Args:
scale_factors (`list`):
The scale factors for each step
scale_factors (`list[float]`):
The scale factors for each step.
upscale_mode (`str`):
Upscaling method
Upscaling method.
"""
self._scale_factors = scale_factors
self._upscale_mode = upscale_mode
@@ -238,16 +256,18 @@ class FlowMatchLCMScheduler(SchedulerMixin, ConfigMixin):
return sample
def _sigma_to_t(self, sigma):
def _sigma_to_t(self, sigma: float | torch.FloatTensor) -> float | torch.FloatTensor:
return sigma * self.config.num_train_timesteps
def time_shift(self, mu: float, sigma: float, t: torch.Tensor):
def time_shift(
self, mu: float, sigma: float, t: float | np.ndarray | torch.Tensor
) -> float | np.ndarray | torch.Tensor:
if self.config.time_shift_type == "exponential":
return self._time_shift_exponential(mu, sigma, t)
elif self.config.time_shift_type == "linear":
return self._time_shift_linear(mu, sigma, t)
def stretch_shift_to_terminal(self, t: torch.Tensor) -> torch.Tensor:
def stretch_shift_to_terminal(self, t: np.ndarray | torch.Tensor) -> np.ndarray | torch.Tensor:
r"""
Stretches and shifts the timestep schedule to ensure it terminates at the configured `shift_terminal` config
value.
@@ -256,12 +276,13 @@ class FlowMatchLCMScheduler(SchedulerMixin, ConfigMixin):
https://github.com/Lightricks/LTX-Video/blob/a01a171f8fe3d99dce2728d60a73fecf4d4238ae/ltx_video/schedulers/rf.py#L51
Args:
t (`torch.Tensor`):
A tensor of timesteps to be stretched and shifted.
t (`torch.Tensor` or `np.ndarray`):
A tensor or numpy array of timesteps to be stretched and shifted.
Returns:
`torch.Tensor`:
A tensor of adjusted timesteps such that the final value equals `self.config.shift_terminal`.
`torch.Tensor` or `np.ndarray`:
A tensor or numpy array of adjusted timesteps such that the final value equals
`self.config.shift_terminal`.
"""
one_minus_z = 1 - t
scale_factor = one_minus_z[-1] / (1 - self.config.shift_terminal)
@@ -270,12 +291,12 @@ class FlowMatchLCMScheduler(SchedulerMixin, ConfigMixin):
def set_timesteps(
self,
num_inference_steps: int = None,
device: str | torch.device = None,
num_inference_steps: int | None = None,
device: str | torch.device | None = None,
sigmas: list[float] | None = None,
mu: float = None,
mu: float | None = None,
timesteps: list[float] | None = None,
):
) -> None:
"""
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
@@ -317,43 +338,45 @@ class FlowMatchLCMScheduler(SchedulerMixin, ConfigMixin):
is_timesteps_provided = timesteps is not None
if is_timesteps_provided:
timesteps = np.array(timesteps).astype(np.float32)
timesteps = np.array(timesteps).astype(np.float32) # type: ignore
if sigmas is None:
if timesteps is None:
timesteps = np.linspace(
self._sigma_to_t(self.sigma_max), self._sigma_to_t(self.sigma_min), num_inference_steps
timesteps = np.linspace( # type: ignore
self._sigma_to_t(self.sigma_max),
self._sigma_to_t(self.sigma_min),
num_inference_steps,
)
sigmas = timesteps / self.config.num_train_timesteps
sigmas = timesteps / self.config.num_train_timesteps # type: ignore
else:
sigmas = np.array(sigmas).astype(np.float32)
sigmas = np.array(sigmas).astype(np.float32) # type: ignore
num_inference_steps = len(sigmas)
# 2. Perform timestep shifting. Either no shifting is applied, or resolution-dependent shifting of
# "exponential" or "linear" type is applied
if self.config.use_dynamic_shifting:
sigmas = self.time_shift(mu, 1.0, sigmas)
sigmas = self.time_shift(mu, 1.0, sigmas) # type: ignore
else:
sigmas = self.shift * sigmas / (1 + (self.shift - 1) * sigmas)
sigmas = self.shift * sigmas / (1 + (self.shift - 1) * sigmas) # type: ignore
# 3. If required, stretch the sigmas schedule to terminate at the configured `shift_terminal` value
if self.config.shift_terminal:
sigmas = self.stretch_shift_to_terminal(sigmas)
sigmas = self.stretch_shift_to_terminal(sigmas) # type: ignore
# 4. If required, convert sigmas to one of karras, exponential, or beta sigma schedules
if self.config.use_karras_sigmas:
sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps) # type: ignore
elif self.config.use_exponential_sigmas:
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps) # type: ignore
elif self.config.use_beta_sigmas:
sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps) # type: ignore
# 5. Convert sigmas and timesteps to tensors and move to specified device
sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device)
sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device) # type: ignore
if not is_timesteps_provided:
timesteps = sigmas * self.config.num_train_timesteps
timesteps = sigmas * self.config.num_train_timesteps # type: ignore
else:
timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32, device=device)
timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32, device=device) # type: ignore
# 6. Append the terminal sigma value.
# If a model requires inverted sigma schedule for denoising but timesteps without inversion, the
@@ -370,7 +393,11 @@ class FlowMatchLCMScheduler(SchedulerMixin, ConfigMixin):
self._step_index = None
self._begin_index = None
def index_for_timestep(self, timestep, schedule_timesteps=None):
def index_for_timestep(
self,
timestep: float | torch.Tensor,
schedule_timesteps: torch.Tensor | None = None,
) -> int:
if schedule_timesteps is None:
schedule_timesteps = self.timesteps
@@ -382,9 +409,9 @@ class FlowMatchLCMScheduler(SchedulerMixin, ConfigMixin):
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
pos = 1 if len(indices) > 1 else 0
return indices[pos].item()
return int(indices[pos].item())
def _init_step_index(self, timestep):
def _init_step_index(self, timestep: float | torch.Tensor) -> None:
if self.begin_index is None:
if isinstance(timestep, torch.Tensor):
timestep = timestep.to(self.timesteps.device)
@@ -459,7 +486,12 @@ class FlowMatchLCMScheduler(SchedulerMixin, ConfigMixin):
size = [round(self._scale_factors[self._step_index] * size) for size in self._init_size]
x0_pred = torch.nn.functional.interpolate(x0_pred, size=size, mode=self._upscale_mode)
noise = randn_tensor(x0_pred.shape, generator=generator, device=x0_pred.device, dtype=x0_pred.dtype)
noise = randn_tensor(
x0_pred.shape,
generator=generator,
device=x0_pred.device,
dtype=x0_pred.dtype,
)
prev_sample = (1 - sigma_next) * x0_pred + sigma_next * noise
# upon completion increase step index by one
@@ -473,7 +505,7 @@ class FlowMatchLCMScheduler(SchedulerMixin, ConfigMixin):
return FlowMatchLCMSchedulerOutput(prev_sample=prev_sample)
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
"""
Construct the noise schedule as proposed in [Elucidating the Design Space of Diffusion-Based Generative
Models](https://huggingface.co/papers/2206.00364).
@@ -594,11 +626,15 @@ class FlowMatchLCMScheduler(SchedulerMixin, ConfigMixin):
)
return sigmas
def _time_shift_exponential(self, mu, sigma, t):
def _time_shift_exponential(
self, mu: float, sigma: float, t: float | np.ndarray | torch.Tensor
) -> float | np.ndarray | torch.Tensor:
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
def _time_shift_linear(self, mu, sigma, t):
def _time_shift_linear(
self, mu: float, sigma: float, t: float | np.ndarray | torch.Tensor
) -> float | np.ndarray | torch.Tensor:
return mu / (mu + (1 / t - 1) ** sigma)
def __len__(self):
def __len__(self) -> int:
return self.config.num_train_timesteps

View File

@@ -465,8 +465,7 @@ class UNetTesterMixin:
def test_forward_with_norm_groups(self):
if not self._accepts_norm_num_groups(self.model_class):
pytest.skip(f"Test not supported for {self.model_class.__name__}")
init_dict = self.get_init_dict()
inputs_dict = self.get_dummy_inputs()
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["norm_num_groups"] = 16
init_dict["block_out_channels"] = (16, 32)
@@ -481,9 +480,9 @@ class UNetTesterMixin:
if isinstance(output, dict):
output = output.to_tuple()[0]
assert output is not None
self.assertIsNotNone(output)
expected_shape = inputs_dict["sample"].shape
assert output.shape == expected_shape, "Input and output shapes do not match"
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
class ModelTesterMixin:

View File

@@ -287,9 +287,8 @@ class ModelTesterMixin:
f"Parameter shape mismatch for {param_name}. Original: {param_1.shape}, loaded: {param_2.shape}"
)
inputs_dict = self.get_dummy_inputs()
image = model(**inputs_dict, return_dict=False)[0]
new_image = new_model(**inputs_dict, return_dict=False)[0]
image = model(**self.get_dummy_inputs(), return_dict=False)[0]
new_image = new_model(**self.get_dummy_inputs(), return_dict=False)[0]
assert_tensors_close(image, new_image, atol=atol, rtol=rtol, msg="Models give different forward passes.")
@@ -309,9 +308,8 @@ class ModelTesterMixin:
new_model.to(torch_device)
inputs_dict = self.get_dummy_inputs()
image = model(**inputs_dict, return_dict=False)[0]
new_image = new_model(**inputs_dict, return_dict=False)[0]
image = model(**self.get_dummy_inputs(), return_dict=False)[0]
new_image = new_model(**self.get_dummy_inputs(), return_dict=False)[0]
assert_tensors_close(image, new_image, atol=atol, rtol=rtol, msg="Models give different forward passes.")
@@ -339,9 +337,8 @@ class ModelTesterMixin:
model.to(torch_device)
model.eval()
inputs_dict = self.get_dummy_inputs()
first = model(**inputs_dict, return_dict=False)[0]
second = model(**inputs_dict, return_dict=False)[0]
first = model(**self.get_dummy_inputs(), return_dict=False)[0]
second = model(**self.get_dummy_inputs(), return_dict=False)[0]
first_flat = first.flatten()
second_flat = second.flatten()
@@ -398,9 +395,8 @@ class ModelTesterMixin:
model.to(torch_device)
model.eval()
inputs_dict = self.get_dummy_inputs()
outputs_dict = model(**inputs_dict)
outputs_tuple = model(**inputs_dict, return_dict=False)
outputs_dict = model(**self.get_dummy_inputs())
outputs_tuple = model(**self.get_dummy_inputs(), return_dict=False)
recursive_check(outputs_tuple, outputs_dict)
@@ -527,10 +523,8 @@ class ModelTesterMixin:
new_model = new_model.to(torch_device)
torch.manual_seed(0)
# Re-create inputs only if they contain a generator (which needs to be reset)
if "generator" in inputs_dict:
inputs_dict = self.get_dummy_inputs()
new_output = new_model(**inputs_dict, return_dict=False)[0]
inputs_dict_new = self.get_dummy_inputs()
new_output = new_model(**inputs_dict_new, return_dict=False)[0]
assert_tensors_close(
base_output, new_output, atol=atol, rtol=rtol, msg="Output should match after sharded save/load"
@@ -569,10 +563,8 @@ class ModelTesterMixin:
new_model = new_model.to(torch_device)
torch.manual_seed(0)
# Re-create inputs only if they contain a generator (which needs to be reset)
if "generator" in inputs_dict:
inputs_dict = self.get_dummy_inputs()
new_output = new_model(**inputs_dict, return_dict=False)[0]
inputs_dict_new = self.get_dummy_inputs()
new_output = new_model(**inputs_dict_new, return_dict=False)[0]
assert_tensors_close(
base_output, new_output, atol=atol, rtol=rtol, msg="Output should match after variant sharded save/load"
@@ -622,10 +614,8 @@ class ModelTesterMixin:
model_parallel = model_parallel.to(torch_device)
torch.manual_seed(0)
# Re-create inputs only if they contain a generator (which needs to be reset)
if "generator" in inputs_dict:
inputs_dict = self.get_dummy_inputs()
output_parallel = model_parallel(**inputs_dict, return_dict=False)[0]
inputs_dict_parallel = self.get_dummy_inputs()
output_parallel = model_parallel(**inputs_dict_parallel, return_dict=False)[0]
assert_tensors_close(
base_output, output_parallel, atol=atol, rtol=rtol, msg="Output should match with parallel loading"

View File

@@ -92,6 +92,9 @@ class TorchCompileTesterMixin:
model.eval()
model.compile_repeated_blocks(fullgraph=True)
if self.model_class.__name__ == "UNet2DConditionModel":
recompile_limit = 2
with (
torch._inductor.utils.fresh_inductor_cache(),
torch._dynamo.config.patch(recompile_limit=recompile_limit),

View File

@@ -15,7 +15,6 @@
import gc
import json
import logging
import os
import re
@@ -24,12 +23,10 @@ import safetensors.torch
import torch
import torch.nn as nn
from diffusers.utils import logging as diffusers_logging
from diffusers.utils.import_utils import is_peft_available
from diffusers.utils.testing_utils import check_if_dicts_are_equal
from ...testing_utils import (
CaptureLogger,
assert_tensors_close,
backend_empty_cache,
is_lora,
@@ -378,7 +375,7 @@ class LoraHotSwappingForModelTesterMixin:
# additionally check if dynamic compilation works.
if different_shapes is not None:
for height, width in different_shapes:
new_inputs_dict = self.prepare_dummy_input(height=height, width=width)
new_inputs_dict = self.get_dummy_inputs(height=height, width=width)
_ = model(**new_inputs_dict)
else:
output0_after = model(**inputs_dict)["sample"]
@@ -393,7 +390,7 @@ class LoraHotSwappingForModelTesterMixin:
with torch.inference_mode():
if different_shapes is not None:
for height, width in different_shapes:
new_inputs_dict = self.prepare_dummy_input(height=height, width=width)
new_inputs_dict = self.get_dummy_inputs(height=height, width=width)
_ = model(**new_inputs_dict)
else:
output1_after = model(**inputs_dict)["sample"]
@@ -480,7 +477,10 @@ class LoraHotSwappingForModelTesterMixin:
with pytest.raises(RuntimeError, match=msg):
model.enable_lora_hotswap(target_rank=32)
def test_enable_lora_hotswap_called_after_adapter_added_warning(self):
def test_enable_lora_hotswap_called_after_adapter_added_warning(self, caplog):
# ensure that enable_lora_hotswap is called before loading the first adapter
import logging
lora_config = self._get_lora_config(8, 8, target_modules=["to_q"])
init_dict = self.get_init_dict()
model = self.model_class(**init_dict).to(torch_device)
@@ -488,26 +488,21 @@ class LoraHotSwappingForModelTesterMixin:
msg = (
"It is recommended to call `enable_lora_hotswap` before loading the first adapter to avoid recompilation."
)
logger = diffusers_logging.get_logger("diffusers.loaders.peft")
logger.setLevel(logging.WARNING)
with CaptureLogger(logger) as cap_logger:
with caplog.at_level(logging.WARNING):
model.enable_lora_hotswap(target_rank=32, check_compiled="warn")
assert any(msg in record.message for record in caplog.records)
assert msg in str(cap_logger.out), f"Expected warning not found. Captured: {cap_logger.out}"
def test_enable_lora_hotswap_called_after_adapter_added_ignore(self, caplog):
# check possibility to ignore the error/warning
import logging
def test_enable_lora_hotswap_called_after_adapter_added_ignore(self):
lora_config = self._get_lora_config(8, 8, target_modules=["to_q"])
init_dict = self.get_init_dict()
model = self.model_class(**init_dict).to(torch_device)
model.add_adapter(lora_config)
logger = diffusers_logging.get_logger("diffusers.loaders.peft")
logger.setLevel(logging.WARNING)
with CaptureLogger(logger) as cap_logger:
with caplog.at_level(logging.WARNING):
model.enable_lora_hotswap(target_rank=32, check_compiled="ignore")
assert cap_logger.out == "", f"Expected no warnings but found: {cap_logger.out}"
assert len(caplog.records) == 0
def test_enable_lora_hotswap_wrong_check_compiled_argument_raises(self):
# check that wrong argument value raises an error
@@ -520,6 +515,9 @@ class LoraHotSwappingForModelTesterMixin:
model.enable_lora_hotswap(target_rank=32, check_compiled="wrong-argument")
def test_hotswap_second_adapter_targets_more_layers_raises(self, tmp_path, caplog):
# check the error and log
import logging
# at the moment, PEFT requires the 2nd adapter to target the same or a subset of layers
target_modules0 = ["to_q"]
target_modules1 = ["to_q", "to_k"]

View File

@@ -13,6 +13,8 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import pytest
import torch
@@ -24,39 +26,64 @@ from ...testing_utils import (
slow,
torch_device,
)
from ..test_modeling_common import UNetTesterMixin
from ..testing_utils import (
BaseModelTesterConfig,
MemoryTesterMixin,
ModelTesterMixin,
)
from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin
_LAYERWISE_CASTING_XFAIL_REASON = (
"RuntimeError: 'fill_out' not implemented for 'Float8_e4m3fn'. The error is caused due to certain torch.float8_e4m3fn and torch.float8_e5m2 operations "
"not being supported when using deterministic algorithms (which is what the tests run with). To fix:\n"
"1. Wait for next PyTorch release: https://github.com/pytorch/pytorch/issues/137160.\n"
"2. Unskip this test."
)
class UNet1DTesterConfig(BaseModelTesterConfig):
"""Base configuration for UNet1DModel testing (standard variant)."""
class UNet1DModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
model_class = UNet1DModel
main_input_name = "sample"
@property
def model_class(self):
return UNet1DModel
def dummy_input(self):
batch_size = 4
num_features = 14
seq_len = 16
noise = floats_tensor((batch_size, num_features, seq_len)).to(torch_device)
time_step = torch.tensor([10] * batch_size).to(torch_device)
return {"sample": noise, "timestep": time_step}
@property
def input_shape(self):
return (4, 14, 16)
@property
def output_shape(self):
return (14, 16)
return (4, 14, 16)
@property
def main_input_name(self):
return "sample"
@unittest.skip("Test not supported.")
def test_ema_training(self):
pass
def get_init_dict(self):
return {
@unittest.skip("Test not supported.")
def test_training(self):
pass
@unittest.skip("Test not supported.")
def test_layerwise_casting_training(self):
pass
def test_determinism(self):
super().test_determinism()
def test_outputs_equivalence(self):
super().test_outputs_equivalence()
def test_from_save_pretrained(self):
super().test_from_save_pretrained()
def test_from_save_pretrained_variant(self):
super().test_from_save_pretrained_variant()
def test_model_from_pretrained(self):
super().test_model_from_pretrained()
def test_output(self):
super().test_output()
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"block_out_channels": (8, 8, 16, 16),
"in_channels": 14,
"out_channels": 14,
@@ -70,40 +97,18 @@ class UNet1DTesterConfig(BaseModelTesterConfig):
"up_block_types": ("UpResnetBlock1D", "UpResnetBlock1D", "UpResnetBlock1D"),
"act_fn": "swish",
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def get_dummy_inputs(self):
batch_size = 4
num_features = 14
seq_len = 16
return {
"sample": floats_tensor((batch_size, num_features, seq_len)).to(torch_device),
"timestep": torch.tensor([10] * batch_size).to(torch_device),
}
class TestUNet1D(UNet1DTesterConfig, ModelTesterMixin, UNetTesterMixin):
@pytest.mark.skip("Not implemented yet for this UNet")
def test_forward_with_norm_groups(self):
pass
class TestUNet1DMemory(UNet1DTesterConfig, MemoryTesterMixin):
@pytest.mark.xfail(reason=_LAYERWISE_CASTING_XFAIL_REASON)
def test_layerwise_casting_memory(self):
super().test_layerwise_casting_memory()
class TestUNet1DHubLoading(UNet1DTesterConfig):
def test_from_pretrained_hub(self):
model, loading_info = UNet1DModel.from_pretrained(
"bglick13/hopper-medium-v2-value-function-hor32", output_loading_info=True, subfolder="unet"
)
assert model is not None
assert len(loading_info["missing_keys"]) == 0
self.assertIsNotNone(model)
self.assertEqual(len(loading_info["missing_keys"]), 0)
model.to(torch_device)
image = model(**self.get_dummy_inputs())
image = model(**self.dummy_input)
assert image is not None, "Make sure output is not None"
@@ -126,7 +131,12 @@ class TestUNet1DHubLoading(UNet1DTesterConfig):
# fmt: off
expected_output_slice = torch.tensor([-2.137172, 1.1426016, 0.3688687, -0.766922, 0.7303146, 0.11038864, -0.4760633, 0.13270172, 0.02591348])
# fmt: on
assert torch.allclose(output_slice, expected_output_slice, rtol=1e-3)
self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-3))
@unittest.skip("Test not supported.")
def test_forward_with_norm_groups(self):
# Not implemented yet for this UNet
pass
@slow
def test_unet_1d_maestro(self):
@@ -147,29 +157,98 @@ class TestUNet1DHubLoading(UNet1DTesterConfig):
assert (output_sum - 224.0896).abs() < 0.5
assert (output_max - 0.0607).abs() < 4e-4
@pytest.mark.xfail(
reason=(
"RuntimeError: 'fill_out' not implemented for 'Float8_e4m3fn'. The error is caused due to certain torch.float8_e4m3fn and torch.float8_e5m2 operations "
"not being supported when using deterministic algorithms (which is what the tests run with). To fix:\n"
"1. Wait for next PyTorch release: https://github.com/pytorch/pytorch/issues/137160.\n"
"2. Unskip this test."
),
)
def test_layerwise_casting_inference(self):
super().test_layerwise_casting_inference()
# =============================================================================
# UNet1D RL (Value Function) Model Tests
# =============================================================================
@pytest.mark.xfail(
reason=(
"RuntimeError: 'fill_out' not implemented for 'Float8_e4m3fn'. The error is caused due to certain torch.float8_e4m3fn and torch.float8_e5m2 operations "
"not being supported when using deterministic algorithms (which is what the tests run with). To fix:\n"
"1. Wait for next PyTorch release: https://github.com/pytorch/pytorch/issues/137160.\n"
"2. Unskip this test."
),
)
def test_layerwise_casting_memory(self):
pass
class UNet1DRLTesterConfig(BaseModelTesterConfig):
"""Base configuration for UNet1DModel testing (RL value function variant)."""
class UNetRLModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
model_class = UNet1DModel
main_input_name = "sample"
@property
def model_class(self):
return UNet1DModel
def dummy_input(self):
batch_size = 4
num_features = 14
seq_len = 16
noise = floats_tensor((batch_size, num_features, seq_len)).to(torch_device)
time_step = torch.tensor([10] * batch_size).to(torch_device)
return {"sample": noise, "timestep": time_step}
@property
def input_shape(self):
return (4, 14, 16)
@property
def output_shape(self):
return (1,)
return (4, 14, 1)
@property
def main_input_name(self):
return "sample"
def test_determinism(self):
super().test_determinism()
def get_init_dict(self):
return {
def test_outputs_equivalence(self):
super().test_outputs_equivalence()
def test_from_save_pretrained(self):
super().test_from_save_pretrained()
def test_from_save_pretrained_variant(self):
super().test_from_save_pretrained_variant()
def test_model_from_pretrained(self):
super().test_model_from_pretrained()
def test_output(self):
# UNetRL is a value-function is different output shape
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
model.to(torch_device)
model.eval()
with torch.no_grad():
output = model(**inputs_dict)
if isinstance(output, dict):
output = output.sample
self.assertIsNotNone(output)
expected_shape = torch.Size((inputs_dict["sample"].shape[0], 1))
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
@unittest.skip("Test not supported.")
def test_ema_training(self):
pass
@unittest.skip("Test not supported.")
def test_training(self):
pass
@unittest.skip("Test not supported.")
def test_layerwise_casting_training(self):
pass
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"in_channels": 14,
"out_channels": 14,
"down_block_types": ["DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D"],
@@ -185,54 +264,18 @@ class UNet1DRLTesterConfig(BaseModelTesterConfig):
"time_embedding_type": "positional",
"act_fn": "mish",
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def get_dummy_inputs(self):
batch_size = 4
num_features = 14
seq_len = 16
return {
"sample": floats_tensor((batch_size, num_features, seq_len)).to(torch_device),
"timestep": torch.tensor([10] * batch_size).to(torch_device),
}
class TestUNet1DRL(UNet1DRLTesterConfig, ModelTesterMixin, UNetTesterMixin):
@pytest.mark.skip("Not implemented yet for this UNet")
def test_forward_with_norm_groups(self):
pass
@torch.no_grad()
def test_output(self):
# UNetRL is a value-function with different output shape (batch, 1)
model = self.model_class(**self.get_init_dict())
model.to(torch_device)
model.eval()
inputs_dict = self.get_dummy_inputs()
output = model(**inputs_dict, return_dict=False)[0]
assert output is not None
expected_shape = torch.Size((inputs_dict["sample"].shape[0], 1))
assert output.shape == expected_shape, "Input and output shapes do not match"
class TestUNet1DRLMemory(UNet1DRLTesterConfig, MemoryTesterMixin):
@pytest.mark.xfail(reason=_LAYERWISE_CASTING_XFAIL_REASON)
def test_layerwise_casting_memory(self):
super().test_layerwise_casting_memory()
class TestUNet1DRLHubLoading(UNet1DRLTesterConfig):
def test_from_pretrained_hub(self):
value_function, vf_loading_info = UNet1DModel.from_pretrained(
"bglick13/hopper-medium-v2-value-function-hor32", output_loading_info=True, subfolder="value_function"
)
assert value_function is not None
assert len(vf_loading_info["missing_keys"]) == 0
self.assertIsNotNone(value_function)
self.assertEqual(len(vf_loading_info["missing_keys"]), 0)
value_function.to(torch_device)
image = value_function(**self.get_dummy_inputs())
image = value_function(**self.dummy_input)
assert image is not None, "Make sure output is not None"
@@ -256,4 +299,31 @@ class TestUNet1DRLHubLoading(UNet1DRLTesterConfig):
# fmt: off
expected_output_slice = torch.tensor([165.25] * seq_len)
# fmt: on
assert torch.allclose(output, expected_output_slice, rtol=1e-3)
self.assertTrue(torch.allclose(output, expected_output_slice, rtol=1e-3))
@unittest.skip("Test not supported.")
def test_forward_with_norm_groups(self):
# Not implemented yet for this UNet
pass
@pytest.mark.xfail(
reason=(
"RuntimeError: 'fill_out' not implemented for 'Float8_e4m3fn'. The error is caused due to certain torch.float8_e4m3fn and torch.float8_e5m2 operations "
"not being supported when using deterministic algorithms (which is what the tests run with). To fix:\n"
"1. Wait for next PyTorch release: https://github.com/pytorch/pytorch/issues/137160.\n"
"2. Unskip this test."
),
)
def test_layerwise_casting_inference(self):
pass
@pytest.mark.xfail(
reason=(
"RuntimeError: 'fill_out' not implemented for 'Float8_e4m3fn'. The error is caused due to certain torch.float8_e4m3fn and torch.float8_e5m2 operations "
"not being supported when using deterministic algorithms (which is what the tests run with). To fix:\n"
"1. Wait for next PyTorch release: https://github.com/pytorch/pytorch/issues/137160.\n"
"2. Unskip this test."
),
)
def test_layerwise_casting_memory(self):
pass

View File

@@ -15,11 +15,12 @@
import gc
import math
import unittest
import pytest
import torch
from diffusers import UNet2DModel
from diffusers.utils import logging
from ...testing_utils import (
backend_empty_cache,
@@ -30,40 +31,39 @@ from ...testing_utils import (
torch_all_close,
torch_device,
)
from ..test_modeling_common import UNetTesterMixin
from ..testing_utils import (
BaseModelTesterConfig,
MemoryTesterMixin,
ModelTesterMixin,
TrainingTesterMixin,
)
from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin
logger = logging.get_logger(__name__)
enable_full_determinism()
# =============================================================================
# Standard UNet2D Model Tests
# =============================================================================
class UNet2DTesterConfig(BaseModelTesterConfig):
"""Base configuration for standard UNet2DModel testing."""
class Unet2DModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
model_class = UNet2DModel
main_input_name = "sample"
@property
def model_class(self):
return UNet2DModel
def dummy_input(self):
batch_size = 4
num_channels = 3
sizes = (32, 32)
noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
time_step = torch.tensor([10]).to(torch_device)
return {"sample": noise, "timestep": time_step}
@property
def input_shape(self):
return (3, 32, 32)
@property
def output_shape(self):
return (3, 32, 32)
@property
def main_input_name(self):
return "sample"
def get_init_dict(self):
return {
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"block_out_channels": (4, 8),
"norm_num_groups": 2,
"down_block_types": ("DownBlock2D", "AttnDownBlock2D"),
@@ -74,22 +74,11 @@ class UNet2DTesterConfig(BaseModelTesterConfig):
"layers_per_block": 2,
"sample_size": 32,
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def get_dummy_inputs(self):
batch_size = 4
num_channels = 3
sizes = (32, 32)
return {
"sample": floats_tensor((batch_size, num_channels) + sizes).to(torch_device),
"timestep": torch.tensor([10]).to(torch_device),
}
class TestUNet2D(UNet2DTesterConfig, ModelTesterMixin, UNetTesterMixin):
def test_mid_block_attn_groups(self):
init_dict = self.get_init_dict()
inputs_dict = self.get_dummy_inputs()
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["add_attention"] = True
init_dict["attn_norm_num_groups"] = 4
@@ -98,11 +87,13 @@ class TestUNet2D(UNet2DTesterConfig, ModelTesterMixin, UNetTesterMixin):
model.to(torch_device)
model.eval()
assert model.mid_block.attentions[0].group_norm is not None, (
"Mid block Attention group norm should exist but does not."
self.assertIsNotNone(
model.mid_block.attentions[0].group_norm, "Mid block Attention group norm should exist but does not."
)
assert model.mid_block.attentions[0].group_norm.num_groups == init_dict["attn_norm_num_groups"], (
"Mid block Attention group norm does not have the expected number of groups."
self.assertEqual(
model.mid_block.attentions[0].group_norm.num_groups,
init_dict["attn_norm_num_groups"],
"Mid block Attention group norm does not have the expected number of groups.",
)
with torch.no_grad():
@@ -111,15 +102,13 @@ class TestUNet2D(UNet2DTesterConfig, ModelTesterMixin, UNetTesterMixin):
if isinstance(output, dict):
output = output.to_tuple()[0]
assert output is not None
self.assertIsNotNone(output)
expected_shape = inputs_dict["sample"].shape
assert output.shape == expected_shape, "Input and output shapes do not match"
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
def test_mid_block_none(self):
init_dict = self.get_init_dict()
inputs_dict = self.get_dummy_inputs()
mid_none_init_dict = self.get_init_dict()
mid_none_inputs_dict = self.get_dummy_inputs()
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
mid_none_init_dict, mid_none_inputs_dict = self.prepare_init_args_and_inputs_for_common()
mid_none_init_dict["mid_block_type"] = None
model = self.model_class(**init_dict)
@@ -130,7 +119,7 @@ class TestUNet2D(UNet2DTesterConfig, ModelTesterMixin, UNetTesterMixin):
mid_none_model.to(torch_device)
mid_none_model.eval()
assert mid_none_model.mid_block is None, "Mid block should not exist."
self.assertIsNone(mid_none_model.mid_block, "Mid block should not exist.")
with torch.no_grad():
output = model(**inputs_dict)
@@ -144,10 +133,8 @@ class TestUNet2D(UNet2DTesterConfig, ModelTesterMixin, UNetTesterMixin):
if isinstance(mid_none_output, dict):
mid_none_output = mid_none_output.to_tuple()[0]
assert not torch.allclose(output, mid_none_output, rtol=1e-3), "outputs should be different."
self.assertFalse(torch.allclose(output, mid_none_output, rtol=1e-3), "outputs should be different.")
class TestUNet2DTraining(UNet2DTesterConfig, TrainingTesterMixin):
def test_gradient_checkpointing_is_applied(self):
expected_set = {
"AttnUpBlock2D",
@@ -156,32 +143,41 @@ class TestUNet2DTraining(UNet2DTesterConfig, TrainingTesterMixin):
"UpBlock2D",
"DownBlock2D",
}
# NOTE: unlike UNet2DConditionModel, UNet2DModel does not currently support tuples for `attention_head_dim`
super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
attention_head_dim = 8
block_out_channels = (16, 32)
super().test_gradient_checkpointing_is_applied(
expected_set=expected_set, attention_head_dim=attention_head_dim, block_out_channels=block_out_channels
)
# =============================================================================
# UNet2D LDM Model Tests
# =============================================================================
class UNet2DLDMTesterConfig(BaseModelTesterConfig):
"""Base configuration for UNet2DModel LDM variant testing."""
class UNetLDMModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
model_class = UNet2DModel
main_input_name = "sample"
@property
def model_class(self):
return UNet2DModel
def dummy_input(self):
batch_size = 4
num_channels = 4
sizes = (32, 32)
noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
time_step = torch.tensor([10]).to(torch_device)
return {"sample": noise, "timestep": time_step}
@property
def input_shape(self):
return (4, 32, 32)
@property
def output_shape(self):
return (4, 32, 32)
@property
def main_input_name(self):
return "sample"
def get_init_dict(self):
return {
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"sample_size": 32,
"in_channels": 4,
"out_channels": 4,
@@ -191,34 +187,17 @@ class UNet2DLDMTesterConfig(BaseModelTesterConfig):
"down_block_types": ("DownBlock2D", "DownBlock2D"),
"up_block_types": ("UpBlock2D", "UpBlock2D"),
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def get_dummy_inputs(self):
batch_size = 4
num_channels = 4
sizes = (32, 32)
return {
"sample": floats_tensor((batch_size, num_channels) + sizes).to(torch_device),
"timestep": torch.tensor([10]).to(torch_device),
}
class TestUNet2DLDMTraining(UNet2DLDMTesterConfig, TrainingTesterMixin):
def test_gradient_checkpointing_is_applied(self):
expected_set = {"DownBlock2D", "UNetMidBlock2D", "UpBlock2D"}
# NOTE: unlike UNet2DConditionModel, UNet2DModel does not currently support tuples for `attention_head_dim`
super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
class TestUNet2DLDMHubLoading(UNet2DLDMTesterConfig):
def test_from_pretrained_hub(self):
model, loading_info = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update", output_loading_info=True)
assert model is not None
assert len(loading_info["missing_keys"]) == 0
self.assertIsNotNone(model)
self.assertEqual(len(loading_info["missing_keys"]), 0)
model.to(torch_device)
image = model(**self.get_dummy_inputs()).sample
image = model(**self.dummy_input).sample
assert image is not None, "Make sure output is not None"
@@ -226,7 +205,7 @@ class TestUNet2DLDMHubLoading(UNet2DLDMTesterConfig):
def test_from_pretrained_accelerate(self):
model, _ = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update", output_loading_info=True)
model.to(torch_device)
image = model(**self.get_dummy_inputs()).sample
image = model(**self.dummy_input).sample
assert image is not None, "Make sure output is not None"
@@ -286,31 +265,44 @@ class TestUNet2DLDMHubLoading(UNet2DLDMTesterConfig):
expected_output_slice = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800])
# fmt: on
assert torch_all_close(output_slice, expected_output_slice, rtol=1e-3)
self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-3))
def test_gradient_checkpointing_is_applied(self):
expected_set = {"DownBlock2D", "UNetMidBlock2D", "UpBlock2D"}
# NOTE: unlike UNet2DConditionModel, UNet2DModel does not currently support tuples for `attention_head_dim`
attention_head_dim = 32
block_out_channels = (32, 64)
super().test_gradient_checkpointing_is_applied(
expected_set=expected_set, attention_head_dim=attention_head_dim, block_out_channels=block_out_channels
)
# =============================================================================
# NCSN++ Model Tests
# =============================================================================
class NCSNppTesterConfig(BaseModelTesterConfig):
"""Base configuration for UNet2DModel NCSN++ variant testing."""
class NCSNppModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
model_class = UNet2DModel
main_input_name = "sample"
@property
def model_class(self):
return UNet2DModel
def dummy_input(self, sizes=(32, 32)):
batch_size = 4
num_channels = 3
noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
time_step = torch.tensor(batch_size * [10]).to(dtype=torch.int32, device=torch_device)
return {"sample": noise, "timestep": time_step}
@property
def input_shape(self):
return (3, 32, 32)
@property
def output_shape(self):
return (3, 32, 32)
@property
def main_input_name(self):
return "sample"
def get_init_dict(self):
return {
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"block_out_channels": [32, 64, 64, 64],
"in_channels": 3,
"layers_per_block": 1,
@@ -332,71 +324,17 @@ class NCSNppTesterConfig(BaseModelTesterConfig):
"SkipUpBlock2D",
],
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def get_dummy_inputs(self):
batch_size = 4
num_channels = 3
sizes = (32, 32)
return {
"sample": floats_tensor((batch_size, num_channels) + sizes).to(torch_device),
"timestep": torch.tensor(batch_size * [10]).to(dtype=torch.int32, device=torch_device),
}
class TestNCSNpp(NCSNppTesterConfig, ModelTesterMixin, UNetTesterMixin):
@pytest.mark.skip("Test not supported.")
def test_forward_with_norm_groups(self):
pass
@pytest.mark.skip(
"To make layerwise casting work with this model, we will have to update the implementation. "
"Due to potentially low usage, we don't support it here."
)
def test_keep_in_fp32_modules(self):
pass
@pytest.mark.skip(
"To make layerwise casting work with this model, we will have to update the implementation. "
"Due to potentially low usage, we don't support it here."
)
def test_from_save_pretrained_dtype_inference(self):
pass
class TestNCSNppMemory(NCSNppTesterConfig, MemoryTesterMixin):
@pytest.mark.skip(
"To make layerwise casting work with this model, we will have to update the implementation. "
"Due to potentially low usage, we don't support it here."
)
def test_layerwise_casting_memory(self):
pass
@pytest.mark.skip(
"To make layerwise casting work with this model, we will have to update the implementation. "
"Due to potentially low usage, we don't support it here."
)
def test_layerwise_casting_training(self):
pass
class TestNCSNppTraining(NCSNppTesterConfig, TrainingTesterMixin):
def test_gradient_checkpointing_is_applied(self):
expected_set = {
"UNetMidBlock2D",
}
super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
class TestNCSNppHubLoading(NCSNppTesterConfig):
@slow
def test_from_pretrained_hub(self):
model, loading_info = UNet2DModel.from_pretrained("google/ncsnpp-celebahq-256", output_loading_info=True)
assert model is not None
assert len(loading_info["missing_keys"]) == 0
self.assertIsNotNone(model)
self.assertEqual(len(loading_info["missing_keys"]), 0)
model.to(torch_device)
inputs = self.get_dummy_inputs()
inputs = self.dummy_input
noise = floats_tensor((4, 3) + (256, 256)).to(torch_device)
inputs["sample"] = noise
image = model(**inputs)
@@ -423,7 +361,7 @@ class TestNCSNppHubLoading(NCSNppTesterConfig):
expected_output_slice = torch.tensor([-4836.2178, -6487.1470, -3816.8196, -7964.9302, -10966.3037, -20043.5957, 8137.0513, 2340.3328, 544.6056])
# fmt: on
assert torch_all_close(output_slice, expected_output_slice, rtol=1e-2)
self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-2))
def test_output_pretrained_ve_large(self):
model = UNet2DModel.from_pretrained("fusing/ncsnpp-ffhq-ve-dummy-update")
@@ -444,4 +382,35 @@ class TestNCSNppHubLoading(NCSNppTesterConfig):
expected_output_slice = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256])
# fmt: on
assert torch_all_close(output_slice, expected_output_slice, rtol=1e-2)
self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-2))
@unittest.skip("Test not supported.")
def test_forward_with_norm_groups(self):
# not required for this model
pass
def test_gradient_checkpointing_is_applied(self):
expected_set = {
"UNetMidBlock2D",
}
block_out_channels = (32, 64, 64, 64)
super().test_gradient_checkpointing_is_applied(
expected_set=expected_set, block_out_channels=block_out_channels
)
def test_effective_gradient_checkpointing(self):
super().test_effective_gradient_checkpointing(skip={"time_proj.weight"})
@unittest.skip(
"To make layerwise casting work with this model, we will have to update the implementation. Due to potentially low usage, we don't support it here."
)
def test_layerwise_casting_inference(self):
pass
@unittest.skip(
"To make layerwise casting work with this model, we will have to update the implementation. Due to potentially low usage, we don't support it here."
)
def test_layerwise_casting_memory(self):
pass

View File

@@ -20,7 +20,6 @@ import tempfile
import unittest
from collections import OrderedDict
import pytest
import torch
from huggingface_hub import snapshot_download
from parameterized import parameterized
@@ -53,24 +52,17 @@ from ...testing_utils import (
torch_all_close,
torch_device,
)
from ..test_modeling_common import UNetTesterMixin
from ..testing_utils import (
AttentionTesterMixin,
BaseModelTesterConfig,
IPAdapterTesterMixin,
from ..test_modeling_common import (
LoraHotSwappingForModelTesterMixin,
LoraTesterMixin,
MemoryTesterMixin,
ModelTesterMixin,
TorchCompileTesterMixin,
TrainingTesterMixin,
UNetTesterMixin,
)
if is_peft_available():
from peft import LoraConfig
from ..testing_utils.lora import check_if_lora_correctly_set
from peft.tuners.tuners_utils import BaseTunerLayer
logger = logging.get_logger(__name__)
@@ -90,6 +82,16 @@ def get_unet_lora_config():
return unet_lora_config
def check_if_lora_correctly_set(model) -> bool:
"""
Checks if the LoRA layers are correctly set with peft
"""
for module in model.modules():
if isinstance(module, BaseTunerLayer):
return True
return False
def create_ip_adapter_state_dict(model):
# "ip_adapter" (cross-attention weights)
ip_cross_attn_state_dict = {}
@@ -352,28 +354,34 @@ def create_custom_diffusion_layers(model, mock_weights: bool = True):
return custom_diffusion_attn_procs
class UNet2DConditionTesterConfig(BaseModelTesterConfig):
"""Base configuration for UNet2DConditionModel testing."""
class UNet2DConditionModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
model_class = UNet2DConditionModel
main_input_name = "sample"
# We override the items here because the unet under consideration is small.
model_split_percents = [0.5, 0.34, 0.4]
@property
def model_class(self):
return UNet2DConditionModel
def dummy_input(self):
batch_size = 4
num_channels = 4
sizes = (16, 16)
noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
time_step = torch.tensor([10]).to(torch_device)
encoder_hidden_states = floats_tensor((batch_size, 4, 8)).to(torch_device)
return {"sample": noise, "timestep": time_step, "encoder_hidden_states": encoder_hidden_states}
@property
def output_shape(self) -> tuple[int, int, int]:
def input_shape(self):
return (4, 16, 16)
@property
def model_split_percents(self) -> list[float]:
return [0.5, 0.34, 0.4]
def output_shape(self):
return (4, 16, 16)
@property
def main_input_name(self) -> str:
return "sample"
def get_init_dict(self) -> dict:
"""Return UNet2D model initialization arguments."""
return {
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"block_out_channels": (4, 8),
"norm_num_groups": 4,
"down_block_types": ("CrossAttnDownBlock2D", "DownBlock2D"),
@@ -385,24 +393,26 @@ class UNet2DConditionTesterConfig(BaseModelTesterConfig):
"layers_per_block": 1,
"sample_size": 16,
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def get_dummy_inputs(self) -> dict[str, torch.Tensor]:
"""Return dummy inputs for UNet2D model."""
batch_size = 4
num_channels = 4
sizes = (16, 16)
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available(),
reason="XFormers attention is only available with CUDA and `xformers` installed",
)
def test_xformers_enable_works(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
return {
"sample": floats_tensor((batch_size, num_channels) + sizes).to(torch_device),
"timestep": torch.tensor([10]).to(torch_device),
"encoder_hidden_states": floats_tensor((batch_size, 4, 8)).to(torch_device),
}
model.enable_xformers_memory_efficient_attention()
assert (
model.mid_block.attentions[0].transformer_blocks[0].attn1.processor.__class__.__name__
== "XFormersAttnProcessor"
), "xformers is not enabled"
class TestUNet2DCondition(UNet2DConditionTesterConfig, ModelTesterMixin, UNetTesterMixin):
def test_model_with_attention_head_dim_tuple(self):
init_dict = self.get_init_dict()
inputs_dict = self.get_dummy_inputs()
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["block_out_channels"] = (16, 32)
init_dict["attention_head_dim"] = (8, 16)
@@ -417,13 +427,12 @@ class TestUNet2DCondition(UNet2DConditionTesterConfig, ModelTesterMixin, UNetTes
if isinstance(output, dict):
output = output.sample
assert output is not None
self.assertIsNotNone(output)
expected_shape = inputs_dict["sample"].shape
assert output.shape == expected_shape, "Input and output shapes do not match"
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
def test_model_with_use_linear_projection(self):
init_dict = self.get_init_dict()
inputs_dict = self.get_dummy_inputs()
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["use_linear_projection"] = True
@@ -437,13 +446,12 @@ class TestUNet2DCondition(UNet2DConditionTesterConfig, ModelTesterMixin, UNetTes
if isinstance(output, dict):
output = output.sample
assert output is not None
self.assertIsNotNone(output)
expected_shape = inputs_dict["sample"].shape
assert output.shape == expected_shape, "Input and output shapes do not match"
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
def test_model_with_cross_attention_dim_tuple(self):
init_dict = self.get_init_dict()
inputs_dict = self.get_dummy_inputs()
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["cross_attention_dim"] = (8, 8)
@@ -457,13 +465,12 @@ class TestUNet2DCondition(UNet2DConditionTesterConfig, ModelTesterMixin, UNetTes
if isinstance(output, dict):
output = output.sample
assert output is not None
self.assertIsNotNone(output)
expected_shape = inputs_dict["sample"].shape
assert output.shape == expected_shape, "Input and output shapes do not match"
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
def test_model_with_simple_projection(self):
init_dict = self.get_init_dict()
inputs_dict = self.get_dummy_inputs()
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
batch_size, _, _, sample_size = inputs_dict["sample"].shape
@@ -482,13 +489,12 @@ class TestUNet2DCondition(UNet2DConditionTesterConfig, ModelTesterMixin, UNetTes
if isinstance(output, dict):
output = output.sample
assert output is not None
self.assertIsNotNone(output)
expected_shape = inputs_dict["sample"].shape
assert output.shape == expected_shape, "Input and output shapes do not match"
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
def test_model_with_class_embeddings_concat(self):
init_dict = self.get_init_dict()
inputs_dict = self.get_dummy_inputs()
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
batch_size, _, _, sample_size = inputs_dict["sample"].shape
@@ -508,287 +514,12 @@ class TestUNet2DCondition(UNet2DConditionTesterConfig, ModelTesterMixin, UNetTes
if isinstance(output, dict):
output = output.sample
assert output is not None
self.assertIsNotNone(output)
expected_shape = inputs_dict["sample"].shape
assert output.shape == expected_shape, "Input and output shapes do not match"
# see diffusers.models.attention_processor::Attention#prepare_attention_mask
# note: we may not need to fix mask padding to work for stable-diffusion cross-attn masks.
# since the use-case (somebody passes in a too-short cross-attn mask) is pretty small,
# maybe it's fine that this only works for the unclip use-case.
@mark.skip(
reason="we currently pad mask by target_length tokens (what unclip needs), whereas stable-diffusion's cross-attn needs to instead pad by remaining_length."
)
def test_model_xattn_padding(self):
init_dict = self.get_init_dict()
inputs_dict = self.get_dummy_inputs()
model = self.model_class(**{**init_dict, "attention_head_dim": (8, 16)})
model.to(torch_device)
model.eval()
cond = inputs_dict["encoder_hidden_states"]
with torch.no_grad():
full_cond_out = model(**inputs_dict).sample
assert full_cond_out is not None
batch, tokens, _ = cond.shape
keeplast_mask = (torch.arange(tokens) == tokens - 1).expand(batch, -1).to(cond.device, torch.bool)
keeplast_out = model(**{**inputs_dict, "encoder_attention_mask": keeplast_mask}).sample
assert not keeplast_out.allclose(full_cond_out), "a 'keep last token' mask should change the result"
trunc_mask = torch.zeros(batch, tokens - 1, device=cond.device, dtype=torch.bool)
trunc_mask_out = model(**{**inputs_dict, "encoder_attention_mask": trunc_mask}).sample
assert trunc_mask_out.allclose(keeplast_out), (
"a mask with fewer tokens than condition, will be padded with 'keep' tokens. a 'discard-all' mask missing the final token is thus equivalent to a 'keep last' mask."
)
def test_pickle(self):
init_dict = self.get_init_dict()
inputs_dict = self.get_dummy_inputs()
init_dict["block_out_channels"] = (16, 32)
init_dict["attention_head_dim"] = (8, 16)
model = self.model_class(**init_dict)
model.to(torch_device)
with torch.no_grad():
sample = model(**inputs_dict).sample
sample_copy = copy.copy(sample)
assert (sample - sample_copy).abs().max() < 1e-4
def test_asymmetrical_unet(self):
init_dict = self.get_init_dict()
inputs_dict = self.get_dummy_inputs()
# Add asymmetry to configs
init_dict["transformer_layers_per_block"] = [[3, 2], 1]
init_dict["reverse_transformer_layers_per_block"] = [[3, 4], 1]
torch.manual_seed(0)
model = self.model_class(**init_dict)
model.to(torch_device)
output = model(**inputs_dict).sample
expected_shape = inputs_dict["sample"].shape
# Check if input and output shapes are the same
assert output.shape == expected_shape, "Input and output shapes do not match"
class TestUNet2DConditionHubLoading(UNet2DConditionTesterConfig):
"""Hub checkpoint loading tests for UNet2DConditionModel."""
@parameterized.expand(
[
("hf-internal-testing/unet2d-sharded-dummy", None),
("hf-internal-testing/tiny-sd-unet-sharded-latest-format", "fp16"),
]
)
@require_torch_accelerator
def test_load_sharded_checkpoint_from_hub(self, repo_id, variant):
inputs_dict = self.get_dummy_inputs()
loaded_model = self.model_class.from_pretrained(repo_id, variant=variant)
loaded_model = loaded_model.to(torch_device)
new_output = loaded_model(**inputs_dict)
assert loaded_model
assert new_output.sample.shape == (4, 4, 16, 16)
@parameterized.expand(
[
("hf-internal-testing/unet2d-sharded-dummy-subfolder", None),
("hf-internal-testing/tiny-sd-unet-sharded-latest-format-subfolder", "fp16"),
]
)
@require_torch_accelerator
def test_load_sharded_checkpoint_from_hub_subfolder(self, repo_id, variant):
inputs_dict = self.get_dummy_inputs()
loaded_model = self.model_class.from_pretrained(repo_id, subfolder="unet", variant=variant)
loaded_model = loaded_model.to(torch_device)
new_output = loaded_model(**inputs_dict)
assert loaded_model
assert new_output.sample.shape == (4, 4, 16, 16)
@require_torch_accelerator
def test_load_sharded_checkpoint_from_hub_local(self):
inputs_dict = self.get_dummy_inputs()
ckpt_path = snapshot_download("hf-internal-testing/unet2d-sharded-dummy")
loaded_model = self.model_class.from_pretrained(ckpt_path, local_files_only=True)
loaded_model = loaded_model.to(torch_device)
new_output = loaded_model(**inputs_dict)
assert loaded_model
assert new_output.sample.shape == (4, 4, 16, 16)
@require_torch_accelerator
def test_load_sharded_checkpoint_from_hub_local_subfolder(self):
inputs_dict = self.get_dummy_inputs()
ckpt_path = snapshot_download("hf-internal-testing/unet2d-sharded-dummy-subfolder")
loaded_model = self.model_class.from_pretrained(ckpt_path, subfolder="unet", local_files_only=True)
loaded_model = loaded_model.to(torch_device)
new_output = loaded_model(**inputs_dict)
assert loaded_model
assert new_output.sample.shape == (4, 4, 16, 16)
@require_torch_accelerator
@parameterized.expand(
[
("hf-internal-testing/unet2d-sharded-dummy", None),
("hf-internal-testing/tiny-sd-unet-sharded-latest-format", "fp16"),
]
)
def test_load_sharded_checkpoint_device_map_from_hub(self, repo_id, variant):
inputs_dict = self.get_dummy_inputs()
loaded_model = self.model_class.from_pretrained(repo_id, variant=variant, device_map="auto")
new_output = loaded_model(**inputs_dict)
assert loaded_model
assert new_output.sample.shape == (4, 4, 16, 16)
@require_torch_accelerator
@parameterized.expand(
[
("hf-internal-testing/unet2d-sharded-dummy-subfolder", None),
("hf-internal-testing/tiny-sd-unet-sharded-latest-format-subfolder", "fp16"),
]
)
def test_load_sharded_checkpoint_device_map_from_hub_subfolder(self, repo_id, variant):
inputs_dict = self.get_dummy_inputs()
loaded_model = self.model_class.from_pretrained(repo_id, variant=variant, subfolder="unet", device_map="auto")
new_output = loaded_model(**inputs_dict)
assert loaded_model
assert new_output.sample.shape == (4, 4, 16, 16)
@require_torch_accelerator
def test_load_sharded_checkpoint_device_map_from_hub_local(self):
inputs_dict = self.get_dummy_inputs()
ckpt_path = snapshot_download("hf-internal-testing/unet2d-sharded-dummy")
loaded_model = self.model_class.from_pretrained(ckpt_path, local_files_only=True, device_map="auto")
new_output = loaded_model(**inputs_dict)
assert loaded_model
assert new_output.sample.shape == (4, 4, 16, 16)
@require_torch_accelerator
def test_load_sharded_checkpoint_device_map_from_hub_local_subfolder(self):
inputs_dict = self.get_dummy_inputs()
ckpt_path = snapshot_download("hf-internal-testing/unet2d-sharded-dummy-subfolder")
loaded_model = self.model_class.from_pretrained(
ckpt_path, local_files_only=True, subfolder="unet", device_map="auto"
)
new_output = loaded_model(**inputs_dict)
assert loaded_model
assert new_output.sample.shape == (4, 4, 16, 16)
class TestUNet2DConditionLoRA(UNet2DConditionTesterConfig, LoraTesterMixin):
"""LoRA adapter tests for UNet2DConditionModel."""
@require_peft_backend
def test_load_attn_procs_raise_warning(self):
"""Test that deprecated load_attn_procs method raises FutureWarning."""
init_dict = self.get_init_dict()
inputs_dict = self.get_dummy_inputs()
model = self.model_class(**init_dict)
model.to(torch_device)
# forward pass without LoRA
with torch.no_grad():
non_lora_sample = model(**inputs_dict).sample
unet_lora_config = get_unet_lora_config()
model.add_adapter(unet_lora_config)
assert check_if_lora_correctly_set(model), "Lora not correctly set in UNet."
# forward pass with LoRA
with torch.no_grad():
lora_sample_1 = model(**inputs_dict).sample
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_attn_procs(tmpdirname)
model.unload_lora()
with pytest.warns(FutureWarning, match="Using the `load_attn_procs\\(\\)` method has been deprecated"):
model.load_attn_procs(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors"))
# import to still check for the rest of the stuff.
assert check_if_lora_correctly_set(model), "Lora not correctly set in UNet."
with torch.no_grad():
lora_sample_2 = model(**inputs_dict).sample
assert not torch.allclose(non_lora_sample, lora_sample_1, atol=1e-4, rtol=1e-4), (
"LoRA injected UNet should produce different results."
)
assert torch.allclose(lora_sample_1, lora_sample_2, atol=1e-4, rtol=1e-4), (
"Loading from a saved checkpoint should produce identical results."
)
@require_peft_backend
def test_save_attn_procs_raise_warning(self):
"""Test that deprecated save_attn_procs method raises FutureWarning."""
init_dict = self.get_init_dict()
model = self.model_class(**init_dict)
model.to(torch_device)
unet_lora_config = get_unet_lora_config()
model.add_adapter(unet_lora_config)
assert check_if_lora_correctly_set(model), "Lora not correctly set in UNet."
with tempfile.TemporaryDirectory() as tmpdirname:
with pytest.warns(FutureWarning, match="Using the `save_attn_procs\\(\\)` method has been deprecated"):
model.save_attn_procs(os.path.join(tmpdirname))
class TestUNet2DConditionMemory(UNet2DConditionTesterConfig, MemoryTesterMixin):
"""Memory optimization tests for UNet2DConditionModel."""
class TestUNet2DConditionTraining(UNet2DConditionTesterConfig, TrainingTesterMixin):
"""Training tests for UNet2DConditionModel."""
def test_gradient_checkpointing_is_applied(self):
expected_set = {
"CrossAttnUpBlock2D",
"CrossAttnDownBlock2D",
"UNetMidBlock2DCrossAttn",
"UpBlock2D",
"Transformer2DModel",
"DownBlock2D",
}
super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
class TestUNet2DConditionAttention(UNet2DConditionTesterConfig, AttentionTesterMixin):
"""Attention processor tests for UNet2DConditionModel."""
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available(),
reason="XFormers attention is only available with CUDA and `xformers` installed",
)
def test_xformers_enable_works(self):
init_dict = self.get_init_dict()
model = self.model_class(**init_dict)
model.enable_xformers_memory_efficient_attention()
assert (
model.mid_block.attentions[0].transformer_blocks[0].attn1.processor.__class__.__name__
== "XFormersAttnProcessor"
), "xformers is not enabled"
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
def test_model_attention_slicing(self):
init_dict = self.get_init_dict()
inputs_dict = self.get_dummy_inputs()
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["block_out_channels"] = (16, 32)
init_dict["attention_head_dim"] = (8, 16)
@@ -813,7 +544,7 @@ class TestUNet2DConditionAttention(UNet2DConditionTesterConfig, AttentionTesterM
assert output is not None
def test_model_sliceable_head_dim(self):
init_dict = self.get_init_dict()
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["block_out_channels"] = (16, 32)
init_dict["attention_head_dim"] = (8, 16)
@@ -831,6 +562,21 @@ class TestUNet2DConditionAttention(UNet2DConditionTesterConfig, AttentionTesterM
for module in model.children():
check_sliceable_dim_attr(module)
def test_gradient_checkpointing_is_applied(self):
expected_set = {
"CrossAttnUpBlock2D",
"CrossAttnDownBlock2D",
"UNetMidBlock2DCrossAttn",
"UpBlock2D",
"Transformer2DModel",
"DownBlock2D",
}
attention_head_dim = (8, 16)
block_out_channels = (16, 32)
super().test_gradient_checkpointing_is_applied(
expected_set=expected_set, attention_head_dim=attention_head_dim, block_out_channels=block_out_channels
)
def test_special_attn_proc(self):
class AttnEasyProc(torch.nn.Module):
def __init__(self, num):
@@ -872,8 +618,7 @@ class TestUNet2DConditionAttention(UNet2DConditionTesterConfig, AttentionTesterM
return hidden_states
# enable deterministic behavior for gradient checkpointing
init_dict = self.get_init_dict()
inputs_dict = self.get_dummy_inputs()
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["block_out_channels"] = (16, 32)
init_dict["attention_head_dim"] = (8, 16)
@@ -900,8 +645,7 @@ class TestUNet2DConditionAttention(UNet2DConditionTesterConfig, AttentionTesterM
]
)
def test_model_xattn_mask(self, mask_dtype):
init_dict = self.get_init_dict()
inputs_dict = self.get_dummy_inputs()
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**{**init_dict, "attention_head_dim": (8, 16), "block_out_channels": (16, 32)})
model.to(torch_device)
@@ -931,13 +675,39 @@ class TestUNet2DConditionAttention(UNet2DConditionTesterConfig, AttentionTesterM
"masking the last token from our cond should be equivalent to truncating that token out of the condition"
)
# see diffusers.models.attention_processor::Attention#prepare_attention_mask
# note: we may not need to fix mask padding to work for stable-diffusion cross-attn masks.
# since the use-case (somebody passes in a too-short cross-attn mask) is pretty esoteric.
# maybe it's fine that this only works for the unclip use-case.
@mark.skip(
reason="we currently pad mask by target_length tokens (what unclip needs), whereas stable-diffusion's cross-attn needs to instead pad by remaining_length."
)
def test_model_xattn_padding(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
class TestUNet2DConditionCustomDiffusion(UNet2DConditionTesterConfig):
"""Custom Diffusion processor tests for UNet2DConditionModel."""
model = self.model_class(**{**init_dict, "attention_head_dim": (8, 16)})
model.to(torch_device)
model.eval()
cond = inputs_dict["encoder_hidden_states"]
with torch.no_grad():
full_cond_out = model(**inputs_dict).sample
assert full_cond_out is not None
batch, tokens, _ = cond.shape
keeplast_mask = (torch.arange(tokens) == tokens - 1).expand(batch, -1).to(cond.device, torch.bool)
keeplast_out = model(**{**inputs_dict, "encoder_attention_mask": keeplast_mask}).sample
assert not keeplast_out.allclose(full_cond_out), "a 'keep last token' mask should change the result"
trunc_mask = torch.zeros(batch, tokens - 1, device=cond.device, dtype=torch.bool)
trunc_mask_out = model(**{**inputs_dict, "encoder_attention_mask": trunc_mask}).sample
assert trunc_mask_out.allclose(keeplast_out), (
"a mask with fewer tokens than condition, will be padded with 'keep' tokens. a 'discard-all' mask missing the final token is thus equivalent to a 'keep last' mask."
)
def test_custom_diffusion_processors(self):
init_dict = self.get_init_dict()
inputs_dict = self.get_dummy_inputs()
# enable deterministic behavior for gradient checkpointing
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["block_out_channels"] = (16, 32)
init_dict["attention_head_dim"] = (8, 16)
@@ -963,8 +733,8 @@ class TestUNet2DConditionCustomDiffusion(UNet2DConditionTesterConfig):
assert (sample1 - sample2).abs().max() < 3e-3
def test_custom_diffusion_save_load(self):
init_dict = self.get_init_dict()
inputs_dict = self.get_dummy_inputs()
# enable deterministic behavior for gradient checkpointing
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["block_out_channels"] = (16, 32)
init_dict["attention_head_dim"] = (8, 16)
@@ -984,7 +754,7 @@ class TestUNet2DConditionCustomDiffusion(UNet2DConditionTesterConfig):
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_attn_procs(tmpdirname, safe_serialization=False)
assert os.path.isfile(os.path.join(tmpdirname, "pytorch_custom_diffusion_weights.bin"))
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_custom_diffusion_weights.bin")))
torch.manual_seed(0)
new_model = self.model_class(**init_dict)
new_model.load_attn_procs(tmpdirname, weight_name="pytorch_custom_diffusion_weights.bin")
@@ -1003,8 +773,8 @@ class TestUNet2DConditionCustomDiffusion(UNet2DConditionTesterConfig):
reason="XFormers attention is only available with CUDA and `xformers` installed",
)
def test_custom_diffusion_xformers_on_off(self):
init_dict = self.get_init_dict()
inputs_dict = self.get_dummy_inputs()
# enable deterministic behavior for gradient checkpointing
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["block_out_channels"] = (16, 32)
init_dict["attention_head_dim"] = (8, 16)
@@ -1028,28 +798,41 @@ class TestUNet2DConditionCustomDiffusion(UNet2DConditionTesterConfig):
assert (sample - on_sample).abs().max() < 1e-4
assert (sample - off_sample).abs().max() < 1e-4
def test_pickle(self):
# enable deterministic behavior for gradient checkpointing
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
class TestUNet2DConditionIPAdapter(UNet2DConditionTesterConfig, IPAdapterTesterMixin):
"""IP Adapter tests for UNet2DConditionModel."""
init_dict["block_out_channels"] = (16, 32)
init_dict["attention_head_dim"] = (8, 16)
@property
def ip_adapter_processor_cls(self):
return (IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0)
model = self.model_class(**init_dict)
model.to(torch_device)
def create_ip_adapter_state_dict(self, model):
return create_ip_adapter_state_dict(model)
with torch.no_grad():
sample = model(**inputs_dict).sample
def modify_inputs_for_ip_adapter(self, model, inputs_dict):
batch_size = inputs_dict["encoder_hidden_states"].shape[0]
# for ip-adapter image_embeds has shape [batch_size, num_image, embed_dim]
cross_attention_dim = getattr(model.config, "cross_attention_dim", 8)
image_embeds = floats_tensor((batch_size, 1, cross_attention_dim)).to(torch_device)
inputs_dict["added_cond_kwargs"] = {"image_embeds": [image_embeds]}
return inputs_dict
sample_copy = copy.copy(sample)
assert (sample - sample_copy).abs().max() < 1e-4
def test_asymmetrical_unet(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
# Add asymmetry to configs
init_dict["transformer_layers_per_block"] = [[3, 2], 1]
init_dict["reverse_transformer_layers_per_block"] = [[3, 4], 1]
torch.manual_seed(0)
model = self.model_class(**init_dict)
model.to(torch_device)
output = model(**inputs_dict).sample
expected_shape = inputs_dict["sample"].shape
# Check if input and output shapes are the same
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
def test_ip_adapter(self):
init_dict = self.get_init_dict()
inputs_dict = self.get_dummy_inputs()
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["block_out_channels"] = (16, 32)
init_dict["attention_head_dim"] = (8, 16)
@@ -1122,8 +905,7 @@ class TestUNet2DConditionIPAdapter(UNet2DConditionTesterConfig, IPAdapterTesterM
assert sample2.allclose(sample6, atol=1e-4, rtol=1e-4)
def test_ip_adapter_plus(self):
init_dict = self.get_init_dict()
inputs_dict = self.get_dummy_inputs()
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["block_out_channels"] = (16, 32)
init_dict["attention_head_dim"] = (8, 16)
@@ -1195,16 +977,185 @@ class TestUNet2DConditionIPAdapter(UNet2DConditionTesterConfig, IPAdapterTesterM
assert sample2.allclose(sample5, atol=1e-4, rtol=1e-4)
assert sample2.allclose(sample6, atol=1e-4, rtol=1e-4)
@parameterized.expand(
[
("hf-internal-testing/unet2d-sharded-dummy", None),
("hf-internal-testing/tiny-sd-unet-sharded-latest-format", "fp16"),
]
)
@require_torch_accelerator
def test_load_sharded_checkpoint_from_hub(self, repo_id, variant):
_, inputs_dict = self.prepare_init_args_and_inputs_for_common()
loaded_model = self.model_class.from_pretrained(repo_id, variant=variant)
loaded_model = loaded_model.to(torch_device)
new_output = loaded_model(**inputs_dict)
class TestUNet2DConditionModelCompile(UNet2DConditionTesterConfig, TorchCompileTesterMixin):
"""Torch compile tests for UNet2DConditionModel."""
assert loaded_model
assert new_output.sample.shape == (4, 4, 16, 16)
def test_torch_compile_repeated_blocks(self):
return super().test_torch_compile_repeated_blocks(recompile_limit=2)
@parameterized.expand(
[
("hf-internal-testing/unet2d-sharded-dummy-subfolder", None),
("hf-internal-testing/tiny-sd-unet-sharded-latest-format-subfolder", "fp16"),
]
)
@require_torch_accelerator
def test_load_sharded_checkpoint_from_hub_subfolder(self, repo_id, variant):
_, inputs_dict = self.prepare_init_args_and_inputs_for_common()
loaded_model = self.model_class.from_pretrained(repo_id, subfolder="unet", variant=variant)
loaded_model = loaded_model.to(torch_device)
new_output = loaded_model(**inputs_dict)
assert loaded_model
assert new_output.sample.shape == (4, 4, 16, 16)
@require_torch_accelerator
def test_load_sharded_checkpoint_from_hub_local(self):
_, inputs_dict = self.prepare_init_args_and_inputs_for_common()
ckpt_path = snapshot_download("hf-internal-testing/unet2d-sharded-dummy")
loaded_model = self.model_class.from_pretrained(ckpt_path, local_files_only=True)
loaded_model = loaded_model.to(torch_device)
new_output = loaded_model(**inputs_dict)
assert loaded_model
assert new_output.sample.shape == (4, 4, 16, 16)
@require_torch_accelerator
def test_load_sharded_checkpoint_from_hub_local_subfolder(self):
_, inputs_dict = self.prepare_init_args_and_inputs_for_common()
ckpt_path = snapshot_download("hf-internal-testing/unet2d-sharded-dummy-subfolder")
loaded_model = self.model_class.from_pretrained(ckpt_path, subfolder="unet", local_files_only=True)
loaded_model = loaded_model.to(torch_device)
new_output = loaded_model(**inputs_dict)
assert loaded_model
assert new_output.sample.shape == (4, 4, 16, 16)
@require_torch_accelerator
@parameterized.expand(
[
("hf-internal-testing/unet2d-sharded-dummy", None),
("hf-internal-testing/tiny-sd-unet-sharded-latest-format", "fp16"),
]
)
def test_load_sharded_checkpoint_device_map_from_hub(self, repo_id, variant):
_, inputs_dict = self.prepare_init_args_and_inputs_for_common()
loaded_model = self.model_class.from_pretrained(repo_id, variant=variant, device_map="auto")
new_output = loaded_model(**inputs_dict)
assert loaded_model
assert new_output.sample.shape == (4, 4, 16, 16)
@require_torch_accelerator
@parameterized.expand(
[
("hf-internal-testing/unet2d-sharded-dummy-subfolder", None),
("hf-internal-testing/tiny-sd-unet-sharded-latest-format-subfolder", "fp16"),
]
)
def test_load_sharded_checkpoint_device_map_from_hub_subfolder(self, repo_id, variant):
_, inputs_dict = self.prepare_init_args_and_inputs_for_common()
loaded_model = self.model_class.from_pretrained(repo_id, variant=variant, subfolder="unet", device_map="auto")
new_output = loaded_model(**inputs_dict)
assert loaded_model
assert new_output.sample.shape == (4, 4, 16, 16)
@require_torch_accelerator
def test_load_sharded_checkpoint_device_map_from_hub_local(self):
_, inputs_dict = self.prepare_init_args_and_inputs_for_common()
ckpt_path = snapshot_download("hf-internal-testing/unet2d-sharded-dummy")
loaded_model = self.model_class.from_pretrained(ckpt_path, local_files_only=True, device_map="auto")
new_output = loaded_model(**inputs_dict)
assert loaded_model
assert new_output.sample.shape == (4, 4, 16, 16)
@require_torch_accelerator
def test_load_sharded_checkpoint_device_map_from_hub_local_subfolder(self):
_, inputs_dict = self.prepare_init_args_and_inputs_for_common()
ckpt_path = snapshot_download("hf-internal-testing/unet2d-sharded-dummy-subfolder")
loaded_model = self.model_class.from_pretrained(
ckpt_path, local_files_only=True, subfolder="unet", device_map="auto"
)
new_output = loaded_model(**inputs_dict)
assert loaded_model
assert new_output.sample.shape == (4, 4, 16, 16)
@require_peft_backend
def test_load_attn_procs_raise_warning(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
model.to(torch_device)
# forward pass without LoRA
with torch.no_grad():
non_lora_sample = model(**inputs_dict).sample
unet_lora_config = get_unet_lora_config()
model.add_adapter(unet_lora_config)
assert check_if_lora_correctly_set(model), "Lora not correctly set in UNet."
# forward pass with LoRA
with torch.no_grad():
lora_sample_1 = model(**inputs_dict).sample
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_attn_procs(tmpdirname)
model.unload_lora()
with self.assertWarns(FutureWarning) as warning:
model.load_attn_procs(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors"))
warning_message = str(warning.warnings[0].message)
assert "Using the `load_attn_procs()` method has been deprecated" in warning_message
# import to still check for the rest of the stuff.
assert check_if_lora_correctly_set(model), "Lora not correctly set in UNet."
with torch.no_grad():
lora_sample_2 = model(**inputs_dict).sample
assert not torch.allclose(non_lora_sample, lora_sample_1, atol=1e-4, rtol=1e-4), (
"LoRA injected UNet should produce different results."
)
assert torch.allclose(lora_sample_1, lora_sample_2, atol=1e-4, rtol=1e-4), (
"Loading from a saved checkpoint should produce identical results."
)
@require_peft_backend
def test_save_attn_procs_raise_warning(self):
init_dict, _ = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
model.to(torch_device)
unet_lora_config = get_unet_lora_config()
model.add_adapter(unet_lora_config)
assert check_if_lora_correctly_set(model), "Lora not correctly set in UNet."
with tempfile.TemporaryDirectory() as tmpdirname:
with self.assertWarns(FutureWarning) as warning:
model.save_attn_procs(tmpdirname)
warning_message = str(warning.warnings[0].message)
assert "Using the `save_attn_procs()` method has been deprecated" in warning_message
class TestUNet2DConditionModelLoRAHotSwap(UNet2DConditionTesterConfig, LoraHotSwappingForModelTesterMixin):
"""LoRA hot-swapping tests for UNet2DConditionModel."""
class UNet2DConditionModelCompileTests(TorchCompileTesterMixin, unittest.TestCase):
model_class = UNet2DConditionModel
def prepare_init_args_and_inputs_for_common(self):
return UNet2DConditionModelTests().prepare_init_args_and_inputs_for_common()
class UNet2DConditionModelLoRAHotSwapTests(LoraHotSwappingForModelTesterMixin, unittest.TestCase):
model_class = UNet2DConditionModel
def prepare_init_args_and_inputs_for_common(self):
return UNet2DConditionModelTests().prepare_init_args_and_inputs_for_common()
@slow

View File

@@ -18,44 +18,47 @@ import unittest
import numpy as np
import torch
from diffusers import UNet3DConditionModel
from diffusers.models import ModelMixin, UNet3DConditionModel
from diffusers.utils import logging
from diffusers.utils.import_utils import is_xformers_available
from ...testing_utils import (
enable_full_determinism,
floats_tensor,
skip_mps,
torch_device,
)
from ..test_modeling_common import UNetTesterMixin
from ..testing_utils import (
AttentionTesterMixin,
BaseModelTesterConfig,
ModelTesterMixin,
)
from ...testing_utils import enable_full_determinism, floats_tensor, skip_mps, torch_device
from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin
enable_full_determinism()
logger = logging.get_logger(__name__)
@skip_mps
class UNet3DConditionTesterConfig(BaseModelTesterConfig):
"""Base configuration for UNet3DConditionModel testing."""
class UNet3DConditionModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
model_class = UNet3DConditionModel
main_input_name = "sample"
@property
def model_class(self):
return UNet3DConditionModel
def dummy_input(self):
batch_size = 4
num_channels = 4
num_frames = 4
sizes = (16, 16)
noise = floats_tensor((batch_size, num_channels, num_frames) + sizes).to(torch_device)
time_step = torch.tensor([10]).to(torch_device)
encoder_hidden_states = floats_tensor((batch_size, 4, 8)).to(torch_device)
return {"sample": noise, "timestep": time_step, "encoder_hidden_states": encoder_hidden_states}
@property
def input_shape(self):
return (4, 4, 16, 16)
@property
def output_shape(self):
return (4, 4, 16, 16)
@property
def main_input_name(self):
return "sample"
def get_init_dict(self):
return {
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"block_out_channels": (4, 8),
"norm_num_groups": 4,
"down_block_types": (
@@ -70,25 +73,27 @@ class UNet3DConditionTesterConfig(BaseModelTesterConfig):
"layers_per_block": 1,
"sample_size": 16,
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def get_dummy_inputs(self):
batch_size = 4
num_channels = 4
num_frames = 4
sizes = (16, 16)
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available(),
reason="XFormers attention is only available with CUDA and `xformers` installed",
)
def test_xformers_enable_works(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
return {
"sample": floats_tensor((batch_size, num_channels, num_frames) + sizes).to(torch_device),
"timestep": torch.tensor([10]).to(torch_device),
"encoder_hidden_states": floats_tensor((batch_size, 4, 8)).to(torch_device),
}
model.enable_xformers_memory_efficient_attention()
assert (
model.mid_block.attentions[0].transformer_blocks[0].attn1.processor.__class__.__name__
== "XFormersAttnProcessor"
), "xformers is not enabled"
class TestUNet3DCondition(UNet3DConditionTesterConfig, ModelTesterMixin, UNetTesterMixin):
# Overriding to set `norm_num_groups` needs to be different for this model.
def test_forward_with_norm_groups(self):
init_dict = self.get_init_dict()
inputs_dict = self.get_dummy_inputs()
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["block_out_channels"] = (32, 64)
init_dict["norm_num_groups"] = 32
@@ -102,74 +107,39 @@ class TestUNet3DCondition(UNet3DConditionTesterConfig, ModelTesterMixin, UNetTes
if isinstance(output, dict):
output = output.sample
assert output is not None
self.assertIsNotNone(output)
expected_shape = inputs_dict["sample"].shape
assert output.shape == expected_shape, "Input and output shapes do not match"
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
# Overriding since the UNet3D outputs a different structure.
@torch.no_grad()
def test_determinism(self):
model = self.model_class(**self.get_init_dict())
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
model.to(torch_device)
model.eval()
inputs_dict = self.get_dummy_inputs()
with torch.no_grad():
# Warmup pass when using mps (see #372)
if torch_device == "mps" and isinstance(model, ModelMixin):
model(**self.dummy_input)
first = model(**inputs_dict)
if isinstance(first, dict):
first = first.sample
first = model(**inputs_dict)
if isinstance(first, dict):
first = first.sample
second = model(**inputs_dict)
if isinstance(second, dict):
second = second.sample
second = model(**inputs_dict)
if isinstance(second, dict):
second = second.sample
out_1 = first.cpu().numpy()
out_2 = second.cpu().numpy()
out_1 = out_1[~np.isnan(out_1)]
out_2 = out_2[~np.isnan(out_2)]
max_diff = np.amax(np.abs(out_1 - out_2))
assert max_diff <= 1e-5
def test_feed_forward_chunking(self):
init_dict = self.get_init_dict()
inputs_dict = self.get_dummy_inputs()
init_dict["block_out_channels"] = (32, 64)
init_dict["norm_num_groups"] = 32
model = self.model_class(**init_dict)
model.to(torch_device)
model.eval()
with torch.no_grad():
output = model(**inputs_dict)[0]
model.enable_forward_chunking()
with torch.no_grad():
output_2 = model(**inputs_dict)[0]
assert output.shape == output_2.shape, "Shape doesn't match"
assert np.abs(output.cpu() - output_2.cpu()).max() < 1e-2
class TestUNet3DConditionAttention(UNet3DConditionTesterConfig, AttentionTesterMixin):
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available(),
reason="XFormers attention is only available with CUDA and `xformers` installed",
)
def test_xformers_enable_works(self):
init_dict = self.get_init_dict()
model = self.model_class(**init_dict)
model.enable_xformers_memory_efficient_attention()
assert (
model.mid_block.attentions[0].transformer_blocks[0].attn1.processor.__class__.__name__
== "XFormersAttnProcessor"
), "xformers is not enabled"
self.assertLessEqual(max_diff, 1e-5)
def test_model_attention_slicing(self):
init_dict = self.get_init_dict()
inputs_dict = self.get_dummy_inputs()
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["block_out_channels"] = (16, 32)
init_dict["attention_head_dim"] = 8
@@ -192,3 +162,22 @@ class TestUNet3DConditionAttention(UNet3DConditionTesterConfig, AttentionTesterM
with torch.no_grad():
output = model(**inputs_dict)
assert output is not None
def test_feed_forward_chunking(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["block_out_channels"] = (32, 64)
init_dict["norm_num_groups"] = 32
model = self.model_class(**init_dict)
model.to(torch_device)
model.eval()
with torch.no_grad():
output = model(**inputs_dict)[0]
model.enable_forward_chunking()
with torch.no_grad():
output_2 = model(**inputs_dict)[0]
self.assertEqual(output.shape, output_2.shape, "Shape doesn't match")
assert np.abs(output.cpu() - output_2.cpu()).max() < 1e-2

View File

@@ -13,42 +13,59 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import pytest
import torch
from torch import nn
from diffusers import ControlNetXSAdapter, UNet2DConditionModel, UNetControlNetXSModel
from diffusers.utils import logging
from ...testing_utils import enable_full_determinism, floats_tensor, is_flaky, torch_device
from ..test_modeling_common import UNetTesterMixin
from ..testing_utils import (
BaseModelTesterConfig,
ModelTesterMixin,
TrainingTesterMixin,
)
from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin
logger = logging.get_logger(__name__)
enable_full_determinism()
class UNetControlNetXSTesterConfig(BaseModelTesterConfig):
"""Base configuration for UNetControlNetXSModel testing."""
class UNetControlNetXSModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
model_class = UNetControlNetXSModel
main_input_name = "sample"
@property
def model_class(self):
return UNetControlNetXSModel
def dummy_input(self):
batch_size = 4
num_channels = 4
sizes = (16, 16)
conditioning_image_size = (3, 32, 32) # size of additional, unprocessed image for control-conditioning
noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
time_step = torch.tensor([10]).to(torch_device)
encoder_hidden_states = floats_tensor((batch_size, 4, 8)).to(torch_device)
controlnet_cond = floats_tensor((batch_size, *conditioning_image_size)).to(torch_device)
conditioning_scale = 1
return {
"sample": noise,
"timestep": time_step,
"encoder_hidden_states": encoder_hidden_states,
"controlnet_cond": controlnet_cond,
"conditioning_scale": conditioning_scale,
}
@property
def input_shape(self):
return (4, 16, 16)
@property
def output_shape(self):
return (4, 16, 16)
@property
def main_input_name(self):
return "sample"
def get_init_dict(self):
return {
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"sample_size": 16,
"down_block_types": ("DownBlock2D", "CrossAttnDownBlock2D"),
"up_block_types": ("CrossAttnUpBlock2D", "UpBlock2D"),
@@ -63,23 +80,11 @@ class UNetControlNetXSTesterConfig(BaseModelTesterConfig):
"ctrl_max_norm_num_groups": 2,
"ctrl_conditioning_embedding_out_channels": (2, 2),
}
def get_dummy_inputs(self):
batch_size = 4
num_channels = 4
sizes = (16, 16)
conditioning_image_size = (3, 32, 32)
return {
"sample": floats_tensor((batch_size, num_channels) + sizes).to(torch_device),
"timestep": torch.tensor([10]).to(torch_device),
"encoder_hidden_states": floats_tensor((batch_size, 4, 8)).to(torch_device),
"controlnet_cond": floats_tensor((batch_size, *conditioning_image_size)).to(torch_device),
"conditioning_scale": 1,
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def get_dummy_unet(self):
"""Build the underlying UNet for tests that construct UNetControlNetXSModel from UNet + Adapter."""
"""For some tests we also need the underlying UNet. For these, we'll build the UNetControlNetXSModel from the UNet and ControlNetXS-Adapter"""
return UNet2DConditionModel(
block_out_channels=(4, 8),
layers_per_block=2,
@@ -94,16 +99,10 @@ class UNetControlNetXSTesterConfig(BaseModelTesterConfig):
)
def get_dummy_controlnet_from_unet(self, unet, **kwargs):
"""Build the ControlNetXS-Adapter from a UNet."""
"""For some tests we also need the underlying ControlNetXS-Adapter. For these, we'll build the UNetControlNetXSModel from the UNet and ControlNetXS-Adapter"""
# size_ratio and conditioning_embedding_out_channels chosen to keep model small
return ControlNetXSAdapter.from_unet(unet, size_ratio=1, conditioning_embedding_out_channels=(2, 2), **kwargs)
class TestUNetControlNetXS(UNetControlNetXSTesterConfig, ModelTesterMixin, UNetTesterMixin):
@pytest.mark.skip("Test not supported.")
def test_forward_with_norm_groups(self):
# UNetControlNetXSModel only supports SD/SDXL with norm_num_groups=32
pass
def test_from_unet(self):
unet = self.get_dummy_unet()
controlnet = self.get_dummy_controlnet_from_unet(unet)
@@ -116,7 +115,7 @@ class TestUNetControlNetXS(UNetControlNetXSTesterConfig, ModelTesterMixin, UNetT
assert torch.equal(model_state_dict[weight_dict_prefix + "." + param_name], param_value)
# # check unet
# everything except down,mid,up blocks
# everything expect down,mid,up blocks
modules_from_unet = [
"time_embedding",
"conv_in",
@@ -153,7 +152,7 @@ class TestUNetControlNetXS(UNetControlNetXSTesterConfig, ModelTesterMixin, UNetT
assert_equal_weights(u.upsamplers[0], f"up_blocks.{i}.upsamplers")
# # check controlnet
# everything except down,mid,up blocks
# everything expect down,mid,up blocks
modules_from_controlnet = {
"controlnet_cond_embedding": "controlnet_cond_embedding",
"conv_in": "ctrl_conv_in",
@@ -194,12 +193,12 @@ class TestUNetControlNetXS(UNetControlNetXSTesterConfig, ModelTesterMixin, UNetT
for p in module.parameters():
assert p.requires_grad
init_dict = self.get_init_dict()
init_dict, _ = self.prepare_init_args_and_inputs_for_common()
model = UNetControlNetXSModel(**init_dict)
model.freeze_unet_params()
# # check unet
# everything except down,mid,up blocks
# everything expect down,mid,up blocks
modules_from_unet = [
model.base_time_embedding,
model.base_conv_in,
@@ -237,7 +236,7 @@ class TestUNetControlNetXS(UNetControlNetXSTesterConfig, ModelTesterMixin, UNetT
assert_frozen(u.upsamplers)
# # check controlnet
# everything except down,mid,up blocks
# everything expect down,mid,up blocks
modules_from_controlnet = [
model.controlnet_cond_embedding,
model.ctrl_conv_in,
@@ -268,6 +267,16 @@ class TestUNetControlNetXS(UNetControlNetXSTesterConfig, ModelTesterMixin, UNetT
for u in model.up_blocks:
assert_unfrozen(u.ctrl_to_base)
def test_gradient_checkpointing_is_applied(self):
expected_set = {
"Transformer2DModel",
"UNetMidBlock2DCrossAttn",
"ControlNetXSCrossAttnDownBlock2D",
"ControlNetXSCrossAttnMidBlock2D",
"ControlNetXSCrossAttnUpBlock2D",
}
super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
@is_flaky
def test_forward_no_control(self):
unet = self.get_dummy_unet()
@@ -278,7 +287,7 @@ class TestUNetControlNetXS(UNetControlNetXSTesterConfig, ModelTesterMixin, UNetT
unet = unet.to(torch_device)
model = model.to(torch_device)
input_ = self.get_dummy_inputs()
input_ = self.dummy_input
control_specific_input = ["controlnet_cond", "conditioning_scale"]
input_for_unet = {k: v for k, v in input_.items() if k not in control_specific_input}
@@ -303,7 +312,7 @@ class TestUNetControlNetXS(UNetControlNetXSTesterConfig, ModelTesterMixin, UNetT
model = model.to(torch_device)
model_mix_time = model_mix_time.to(torch_device)
input_ = self.get_dummy_inputs()
input_ = self.dummy_input
with torch.no_grad():
output = model(**input_).sample
@@ -311,14 +320,7 @@ class TestUNetControlNetXS(UNetControlNetXSTesterConfig, ModelTesterMixin, UNetT
assert output.shape == output_mix_time.shape
class TestUNetControlNetXSTraining(UNetControlNetXSTesterConfig, TrainingTesterMixin):
def test_gradient_checkpointing_is_applied(self):
expected_set = {
"Transformer2DModel",
"UNetMidBlock2DCrossAttn",
"ControlNetXSCrossAttnDownBlock2D",
"ControlNetXSCrossAttnMidBlock2D",
"ControlNetXSCrossAttnUpBlock2D",
}
super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
@unittest.skip("Test not supported.")
def test_forward_with_norm_groups(self):
# UNetControlNetXSModel currently only supports StableDiffusion and StableDiffusion-XL, both of which have norm_num_groups fixed at 32. So we don't need to test different values for norm_num_groups.
pass

View File

@@ -16,10 +16,10 @@
import copy
import unittest
import pytest
import torch
from diffusers import UNetSpatioTemporalConditionModel
from diffusers.utils import logging
from diffusers.utils.import_utils import is_xformers_available
from ...testing_utils import (
@@ -28,34 +28,45 @@ from ...testing_utils import (
skip_mps,
torch_device,
)
from ..test_modeling_common import UNetTesterMixin
from ..testing_utils import (
AttentionTesterMixin,
BaseModelTesterConfig,
ModelTesterMixin,
TrainingTesterMixin,
)
from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin
logger = logging.get_logger(__name__)
enable_full_determinism()
@skip_mps
class UNetSpatioTemporalTesterConfig(BaseModelTesterConfig):
"""Base configuration for UNetSpatioTemporalConditionModel testing."""
class UNetSpatioTemporalConditionModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
model_class = UNetSpatioTemporalConditionModel
main_input_name = "sample"
@property
def model_class(self):
return UNetSpatioTemporalConditionModel
def dummy_input(self):
batch_size = 2
num_frames = 2
num_channels = 4
sizes = (32, 32)
noise = floats_tensor((batch_size, num_frames, num_channels) + sizes).to(torch_device)
time_step = torch.tensor([10]).to(torch_device)
encoder_hidden_states = floats_tensor((batch_size, 1, 32)).to(torch_device)
return {
"sample": noise,
"timestep": time_step,
"encoder_hidden_states": encoder_hidden_states,
"added_time_ids": self._get_add_time_ids(),
}
@property
def input_shape(self):
return (2, 2, 4, 32, 32)
@property
def output_shape(self):
return (4, 32, 32)
@property
def main_input_name(self):
return "sample"
@property
def fps(self):
return 6
@@ -72,8 +83,8 @@ class UNetSpatioTemporalTesterConfig(BaseModelTesterConfig):
def addition_time_embed_dim(self):
return 32
def get_init_dict(self):
return {
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"block_out_channels": (32, 64),
"down_block_types": (
"CrossAttnDownBlockSpatioTemporal",
@@ -92,23 +103,8 @@ class UNetSpatioTemporalTesterConfig(BaseModelTesterConfig):
"projection_class_embeddings_input_dim": self.addition_time_embed_dim * 3,
"addition_time_embed_dim": self.addition_time_embed_dim,
}
def get_dummy_inputs(self):
batch_size = 2
num_frames = 2
num_channels = 4
sizes = (32, 32)
noise = floats_tensor((batch_size, num_frames, num_channels) + sizes).to(torch_device)
time_step = torch.tensor([10]).to(torch_device)
encoder_hidden_states = floats_tensor((batch_size, 1, 32)).to(torch_device)
return {
"sample": noise,
"timestep": time_step,
"encoder_hidden_states": encoder_hidden_states,
"added_time_ids": self._get_add_time_ids(),
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def _get_add_time_ids(self, do_classifier_free_guidance=True):
add_time_ids = [self.fps, self.motion_bucket_id, self.noise_aug_strength]
@@ -128,15 +124,43 @@ class UNetSpatioTemporalTesterConfig(BaseModelTesterConfig):
return add_time_ids
class TestUNetSpatioTemporal(UNetSpatioTemporalTesterConfig, ModelTesterMixin, UNetTesterMixin):
@pytest.mark.skip("Number of Norm Groups is not configurable")
@unittest.skip("Number of Norm Groups is not configurable")
def test_forward_with_norm_groups(self):
pass
@unittest.skip("Deprecated functionality")
def test_model_attention_slicing(self):
pass
@unittest.skip("Not supported")
def test_model_with_use_linear_projection(self):
pass
@unittest.skip("Not supported")
def test_model_with_simple_projection(self):
pass
@unittest.skip("Not supported")
def test_model_with_class_embeddings_concat(self):
pass
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available(),
reason="XFormers attention is only available with CUDA and `xformers` installed",
)
def test_xformers_enable_works(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
model.enable_xformers_memory_efficient_attention()
assert (
model.mid_block.attentions[0].transformer_blocks[0].attn1.processor.__class__.__name__
== "XFormersAttnProcessor"
), "xformers is not enabled"
def test_model_with_num_attention_heads_tuple(self):
init_dict = self.get_init_dict()
inputs_dict = self.get_dummy_inputs()
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["num_attention_heads"] = (8, 16)
model = self.model_class(**init_dict)
@@ -149,13 +173,12 @@ class TestUNetSpatioTemporal(UNetSpatioTemporalTesterConfig, ModelTesterMixin, U
if isinstance(output, dict):
output = output.sample
assert output is not None
self.assertIsNotNone(output)
expected_shape = inputs_dict["sample"].shape
assert output.shape == expected_shape, "Input and output shapes do not match"
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
def test_model_with_cross_attention_dim_tuple(self):
init_dict = self.get_init_dict()
inputs_dict = self.get_dummy_inputs()
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["cross_attention_dim"] = (32, 32)
@@ -169,13 +192,27 @@ class TestUNetSpatioTemporal(UNetSpatioTemporalTesterConfig, ModelTesterMixin, U
if isinstance(output, dict):
output = output.sample
assert output is not None
self.assertIsNotNone(output)
expected_shape = inputs_dict["sample"].shape
assert output.shape == expected_shape, "Input and output shapes do not match"
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
def test_gradient_checkpointing_is_applied(self):
expected_set = {
"TransformerSpatioTemporalModel",
"CrossAttnDownBlockSpatioTemporal",
"DownBlockSpatioTemporal",
"UpBlockSpatioTemporal",
"CrossAttnUpBlockSpatioTemporal",
"UNetMidBlockSpatioTemporal",
}
num_attention_heads = (8, 16)
super().test_gradient_checkpointing_is_applied(
expected_set=expected_set, num_attention_heads=num_attention_heads
)
def test_pickle(self):
init_dict = self.get_init_dict()
inputs_dict = self.get_dummy_inputs()
# enable deterministic behavior for gradient checkpointing
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["num_attention_heads"] = (8, 16)
@@ -188,33 +225,3 @@ class TestUNetSpatioTemporal(UNetSpatioTemporalTesterConfig, ModelTesterMixin, U
sample_copy = copy.copy(sample)
assert (sample - sample_copy).abs().max() < 1e-4
class TestUNetSpatioTemporalAttention(UNetSpatioTemporalTesterConfig, AttentionTesterMixin):
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available(),
reason="XFormers attention is only available with CUDA and `xformers` installed",
)
def test_xformers_enable_works(self):
init_dict = self.get_init_dict()
model = self.model_class(**init_dict)
model.enable_xformers_memory_efficient_attention()
assert (
model.mid_block.attentions[0].transformer_blocks[0].attn1.processor.__class__.__name__
== "XFormersAttnProcessor"
), "xformers is not enabled"
class TestUNetSpatioTemporalTraining(UNetSpatioTemporalTesterConfig, TrainingTesterMixin):
def test_gradient_checkpointing_is_applied(self):
expected_set = {
"TransformerSpatioTemporalModel",
"CrossAttnDownBlockSpatioTemporal",
"DownBlockSpatioTemporal",
"UpBlockSpatioTemporal",
"CrossAttnUpBlockSpatioTemporal",
"UNetMidBlockSpatioTemporal",
}
super().test_gradient_checkpointing_is_applied(expected_set=expected_set)

View File

@@ -1,7 +1,6 @@
import unittest
import numpy as np
import pytest
import torch
from transformers import AutoTokenizer
from transformers.models.t5gemma.configuration_t5gemma import T5GemmaConfig, T5GemmaModuleConfig
@@ -11,17 +10,11 @@ from diffusers.models import AutoencoderDC, AutoencoderKL
from diffusers.models.transformers.transformer_prx import PRXTransformer2DModel
from diffusers.pipelines.prx.pipeline_prx import PRXPipeline
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
from diffusers.utils import is_transformers_version
from ..pipeline_params import TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
@pytest.mark.xfail(
condition=is_transformers_version(">", "4.57.1"),
reason="See https://github.com/huggingface/diffusers/pull/12456#issuecomment-3424228544",
strict=False,
)
class PRXPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = PRXPipeline
params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"}