mirror of
https://github.com/huggingface/diffusers.git
synced 2026-02-18 00:38:40 +08:00
[Bug] Fix QwenImageEditPlus Series on NPU (#13017)
* [Bug Fix][Qwen-Image-Edit] Fix Qwen-Image-Edit series on NPU * Enhance NPU attention handling by converting attention mask to boolean and refining mask checks. * Refine attention mask handling in NPU attention function to improve validation and conversion logic. * Clean Code * Refine attention mask processing in NPU attention functions to enhance performance and validation. * Remove item() ops on npu fa backend. * Reuse NPU attention mask by `_maybe_modify_attn_mask_npu` * Apply style fixes * Update src/diffusers/models/attention_dispatch.py --------- Co-authored-by: zhangtao <zhangtao529@huawei.com> Co-authored-by: Sayak Paul <spsayakpaul@gmail.com> Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com> Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
This commit is contained in:
@@ -1117,6 +1117,26 @@ def _sage_attention_backward_op(
|
||||
raise NotImplementedError("Backward pass is not implemented for Sage attention.")
|
||||
|
||||
|
||||
def _maybe_modify_attn_mask_npu(query: torch.Tensor, key: torch.Tensor, attn_mask: torch.Tensor | None = None):
|
||||
# Skip Attention Mask if all values are 1, `None` mask can speedup the computation
|
||||
if attn_mask is not None and torch.all(attn_mask != 0):
|
||||
attn_mask = None
|
||||
|
||||
# Reshape Attention Mask: [batch_size, seq_len_k] -> [batch_size, 1, sqe_len_q, seq_len_k]
|
||||
# https://www.hiascend.com/document/detail/zh/Pytorch/730/apiref/torchnpuCustomsapi/docs/context/torch_npu-npu_fusion_attention.md
|
||||
if (
|
||||
attn_mask is not None
|
||||
and attn_mask.ndim == 2
|
||||
and attn_mask.shape[0] == query.shape[0]
|
||||
and attn_mask.shape[1] == key.shape[1]
|
||||
):
|
||||
B, Sq, Skv = attn_mask.shape[0], query.shape[1], key.shape[1]
|
||||
attn_mask = ~attn_mask.to(torch.bool)
|
||||
attn_mask = attn_mask.unsqueeze(1).expand(B, Sq, Skv).unsqueeze(1).contiguous()
|
||||
|
||||
return attn_mask
|
||||
|
||||
|
||||
def _npu_attention_forward_op(
|
||||
ctx: torch.autograd.function.FunctionCtx,
|
||||
query: torch.Tensor,
|
||||
@@ -1134,11 +1154,14 @@ def _npu_attention_forward_op(
|
||||
if return_lse:
|
||||
raise ValueError("NPU attention backend does not support setting `return_lse=True`.")
|
||||
|
||||
attn_mask = _maybe_modify_attn_mask_npu(query, key, attn_mask)
|
||||
|
||||
out = npu_fusion_attention(
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
query.size(2), # num_heads
|
||||
atten_mask=attn_mask,
|
||||
input_layout="BSND",
|
||||
pse=None,
|
||||
scale=1.0 / math.sqrt(query.shape[-1]) if scale is None else scale,
|
||||
@@ -2668,16 +2691,17 @@ def _native_npu_attention(
|
||||
return_lse: bool = False,
|
||||
_parallel_config: "ParallelConfig" | None = None,
|
||||
) -> torch.Tensor:
|
||||
if attn_mask is not None:
|
||||
raise ValueError("`attn_mask` is not supported for NPU attention")
|
||||
if return_lse:
|
||||
raise ValueError("NPU attention backend does not support setting `return_lse=True`.")
|
||||
if _parallel_config is None:
|
||||
attn_mask = _maybe_modify_attn_mask_npu(query, key, attn_mask)
|
||||
|
||||
out = npu_fusion_attention(
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
query.size(2), # num_heads
|
||||
atten_mask=attn_mask,
|
||||
input_layout="BSND",
|
||||
pse=None,
|
||||
scale=1.0 / math.sqrt(query.shape[-1]) if scale is None else scale,
|
||||
@@ -2692,7 +2716,7 @@ def _native_npu_attention(
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
None,
|
||||
attn_mask,
|
||||
dropout_p,
|
||||
None,
|
||||
scale,
|
||||
|
||||
@@ -164,7 +164,11 @@ def compute_text_seq_len_from_mask(
|
||||
position_ids = torch.arange(text_seq_len, device=encoder_hidden_states.device, dtype=torch.long)
|
||||
active_positions = torch.where(encoder_hidden_states_mask, position_ids, position_ids.new_zeros(()))
|
||||
has_active = encoder_hidden_states_mask.any(dim=1)
|
||||
per_sample_len = torch.where(has_active, active_positions.max(dim=1).values + 1, torch.as_tensor(text_seq_len))
|
||||
per_sample_len = torch.where(
|
||||
has_active,
|
||||
active_positions.max(dim=1).values + 1,
|
||||
torch.as_tensor(text_seq_len, device=encoder_hidden_states.device),
|
||||
)
|
||||
return text_seq_len, per_sample_len, encoder_hidden_states_mask
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user