Compare commits

...

18 Commits

Author SHA1 Message Date
DN6
d23c775e86 update 2025-11-10 12:24:49 +05:30
Jay Wu
04f9d2bf3d add ChronoEdit (#12593)
* add ChronoEdit

* add ref to  original function & remove wan2.2 logics

* Update src/diffusers/pipelines/chronoedit/pipeline_chronoedit.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/chronoedit/pipeline_chronoedit.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* add ChronoeEdit test

* add docs

* add docs

* make fix-copies

* fix chronoedit test

---------

Co-authored-by: wjay <wjay@nvidia.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-11-09 22:07:00 -08:00
Dhruv Nair
bc8fd864eb [CI] Push test fix (#12617)
update
2025-11-10 09:26:14 +05:30
Wang, Yi
a9cb08af39 fix the crash in Wan-AI/Wan2.2-TI2V-5B-Diffusers if CP is enabled (#12562)
* fix the crash in Wan-AI/Wan2.2-TI2V-5B-Diffusers if CP is enabled

Signed-off-by: Wang, Yi <yi.a.wang@intel.com>

* address review comment

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* refine

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

---------

Signed-off-by: Wang, Yi <yi.a.wang@intel.com>
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2025-11-07 20:00:13 +05:30
DefTruth
9f669e7b5d feat: enable attention dispatch for huanyuan video (#12591)
* feat: enable attention dispatch for huanyuan video

* feat: enable attention dispatch for huanyuan video
2025-11-07 11:22:41 +05:30
Dhruv Nair
8ac17cd2cb [Modular] Some clean up for Modular tests (#12579)
* update

* update

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-11-07 08:19:15 +05:30
Mohammad Sadegh Salehi
e4393fa613 Fix overflow and dtype handling in rgblike_to_depthmap (NumPy + PyTorch) (#12546)
* Fix overflow in rgblike_to_depthmap by safe dtype casting (torch & NumPy)

* Fix: store original dtype and cast back after safe computation

* Apply style fixes

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-11-06 08:18:21 -10:00
Junsong Chen
b3e9dfced7 [SANA-Video] Adding 5s pre-trained 480p SANA-Video inference (#12584)
* 1. add `SanaVideoTransformer3DModel` in transformer_sana_video.py
2. add `SanaVideoPipeline` in pipeline_sana_video.py
3. add all code we need for import `SanaVideoPipeline`

* add a sample about how to use sana-video;

* code update;

* update hf model path;

* update code;

* sana-video can run now;

* 1. add aspect ratio in sana-video-pipeline;
2. add reshape function in sana-video-processor;
3. fix convert pth to safetensor bugs;

* default to use `use_resolution_binning`;

* make style;

* remove unused code;

* Update src/diffusers/models/transformers/transformer_sana_video.py

Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>

* Update src/diffusers/models/transformers/transformer_sana_video.py

Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>

* Update src/diffusers/models/transformers/transformer_sana_video.py

Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>

* Update src/diffusers/pipelines/sana/pipeline_sana_video.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/models/transformers/transformer_sana_video.py

Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>

* Update src/diffusers/models/transformers/transformer_sana_video.py

Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>

* Update src/diffusers/models/transformers/transformer_sana_video.py

* Update src/diffusers/pipelines/sana/pipeline_sana_video.py

Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>

* Update src/diffusers/models/transformers/transformer_sana_video.py

Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>

* Update src/diffusers/pipelines/sana/pipeline_sana_video.py

Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>

* support `dispatch_attention_fn`

* 1. add sana-video markdown;
2. fix typos;

* add two test case for sana-video (need check)

* fix text-encoder in test-sana-video;

* Update tests/pipelines/sana/test_sana_video.py

* Update tests/pipelines/sana/test_sana_video.py

Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>

* Update tests/pipelines/sana/test_sana_video.py

Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>

* Update tests/pipelines/sana/test_sana_video.py

Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>

* Update tests/pipelines/sana/test_sana_video.py

Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>

* Update tests/pipelines/sana/test_sana_video.py

Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>

* Update src/diffusers/pipelines/sana/pipeline_sana_video.py

Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>

* Update src/diffusers/video_processor.py

Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>

* make style
make quality
make fix-copies

* toctree yaml update;

* add sana-video-transformer3d markdown;

* Apply style fixes

---------

Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-11-05 21:08:47 -08:00
Joseph Turian
58f3771545 Add optional precision-preserving preprocessing for examples/unconditional_image_generation/train_unconditional.py (#12596)
* Add optional precision-preserving preprocessing

* Document decoder caveat for precision flag

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-11-06 09:37:31 +05:30
Dhruv Nair
6198f8a12b [Modular] Allow ModularPipeline to load from revisions (#12592)
* update

* update

* update

* update

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2025-11-06 07:54:24 +05:30
Linoy Tsaban
dcfb18a2d3 [LoRA] add support for more Qwen LoRAs (#12581)
* fix bug when offload and cache_latents both enabled

* fix
2025-11-04 14:27:25 +02:00
Sayak Paul
ac5a1e28fc [docs] sort doc (#12586)
sort doc
2025-11-04 10:26:07 +05:30
Lev Novitskiy
325a95051b Kandinsky 5.0 Docs fixes (#12582)
* add transformer pipeline first version

* updates

* fix 5sec generation

* rewrite Kandinsky5T2VPipeline to diffusers style

* add multiprompt support

* remove prints in pipeline

* add nabla attention

* Wrap Transformer in Diffusers style

* fix license

* fix prompt type

* add gradient checkpointing and peft support

* add usage example

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: Álvaro Somoza <asomoza@users.noreply.github.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: Álvaro Somoza <asomoza@users.noreply.github.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: Álvaro Somoza <asomoza@users.noreply.github.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: Álvaro Somoza <asomoza@users.noreply.github.com>

* Update src/diffusers/models/transformers/transformer_kandinsky.py

Co-authored-by: Álvaro Somoza <asomoza@users.noreply.github.com>

* remove unused imports

* add 10 second models support

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* remove no_grad and simplified prompt paddings

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* moved template to __init__

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/models/transformers/transformer_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* moved sdps inside processor

* remove oneline function

* remove reset_dtype methods

* Transformer: move all methods to forward

* separated prompt encoding

* Update src/diffusers/models/transformers/transformer_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* refactoring

* Update src/diffusers/models/transformers/transformer_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* refactoring acording to acabbc0033

* Update src/diffusers/models/transformers/transformer_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/models/transformers/transformer_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/models/transformers/transformer_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/models/transformers/transformer_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/models/transformers/transformer_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/models/transformers/transformer_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/models/transformers/transformer_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/models/transformers/transformer_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/models/transformers/transformer_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* fixed

* style +copies

* Update src/diffusers/models/transformers/transformer_kandinsky.py

Co-authored-by: Charles <charles@huggingface.co>

* more

* Apply suggestions from code review

* add lora loader doc

* add compiled Nabla Attention

* all needed changes for 10 sec models are added!

* add docs

* Apply style fixes

* update docs

* add kandinsky5 to toctree

* add tests

* fix tests

* Apply style fixes

* update tests

* minor docs refactoring

* refactor Kandinsky 5.0 Vide docs

* Update docs/source/en/_toctree.yml

---------

Co-authored-by: Álvaro Somoza <asomoza@users.noreply.github.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: Charles <charles@huggingface.co>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-11-03 14:38:07 -10:00
Wang, Yi
1ec28a2c77 ulysses enabling in native attention path (#12563)
* ulysses enabling in native attention path

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* address review comment

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* add supports_context_parallel for native attention

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* update templated attention

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

---------

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-11-03 11:48:20 -10:00
YiYi Xu
de6173c683 [modular]pass hub_kwargs to load_config (#12577)
pass hub_kwargs to load_config
2025-11-03 09:44:42 -10:00
Sayak Paul
8f80dda193 [tests] add tests for flux modular (t2i, i2i, kontext) (#12566)
* start flux modular tests.

* up

* add kontext

* up

* up

* up

* Update src/diffusers/modular_pipelines/flux/denoise.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* up

* up

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2025-11-02 10:51:11 +05:30
YiYi Xu
cdbf0ad883 [modular] better warn message (#12573)
better warn message
2025-11-01 18:45:09 -10:00
Dhruv Nair
5e8415a311 Fix custom code loading in Automodel (#12571)
update
2025-11-01 17:04:31 -10:00
51 changed files with 5252 additions and 263 deletions

View File

@@ -76,6 +76,7 @@ jobs:
run: |
uv pip install -e ".[quality]"
uv pip uninstall accelerate && uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
- name: Environment
run: |
python utils/print_env.py
@@ -127,6 +128,7 @@ jobs:
uv pip install -e ".[quality]"
uv pip install peft@git+https://github.com/huggingface/peft.git
uv pip uninstall accelerate && uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
- name: Environment
run: |
@@ -178,6 +180,7 @@ jobs:
- name: Install dependencies
run: |
uv pip install -e ".[quality,training]"
uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
- name: Environment
run: |
python utils/print_env.py

View File

@@ -329,6 +329,8 @@
title: BriaTransformer2DModel
- local: api/models/chroma_transformer
title: ChromaTransformer2DModel
- local: api/models/chronoedit_transformer_3d
title: ChronoEditTransformer3DModel
- local: api/models/cogvideox_transformer3d
title: CogVideoXTransformer3DModel
- local: api/models/cogview3plus_transformer2d
@@ -373,6 +375,8 @@
title: QwenImageTransformer2DModel
- local: api/models/sana_transformer2d
title: SanaTransformer2DModel
- local: api/models/sana_video_transformer3d
title: SanaVideoTransformer3DModel
- local: api/models/sd3_transformer2d
title: SD3Transformer2DModel
- local: api/models/skyreels_v2_transformer_3d
@@ -529,8 +533,6 @@
title: Kandinsky 2.2
- local: api/pipelines/kandinsky3
title: Kandinsky 3
- local: api/pipelines/kandinsky5
title: Kandinsky 5
- local: api/pipelines/kolors
title: Kolors
- local: api/pipelines/latent_consistency_models
@@ -565,6 +567,8 @@
title: Sana
- local: api/pipelines/sana_sprint
title: Sana Sprint
- local: api/pipelines/sana_video
title: Sana Video
- local: api/pipelines/self_attention_guidance
title: Self-Attention Guidance
- local: api/pipelines/semantic_stable_diffusion
@@ -626,6 +630,8 @@
- sections:
- local: api/pipelines/allegro
title: Allegro
- local: api/pipelines/chronoedit
title: ChronoEdit
- local: api/pipelines/cogvideox
title: CogVideoX
- local: api/pipelines/consisid
@@ -638,6 +644,8 @@
title: HunyuanVideo
- local: api/pipelines/i2vgenxl
title: I2VGen-XL
- local: api/pipelines/kandinsky5_video
title: Kandinsky 5.0 Video
- local: api/pipelines/latte
title: Latte
- local: api/pipelines/ltx_video

View File

@@ -0,0 +1,32 @@
<!-- Copyright 2025 The ChronoEdit Team and HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# ChronoEditTransformer3DModel
A Diffusion Transformer model for 3D video-like data from [ChronoEdit: Towards Temporal Reasoning for Image Editing and World Simulation](https://huggingface.co/papers/2510.04290) from NVIDIA and University of Toronto, by Jay Zhangjie Wu, Xuanchi Ren, Tianchang Shen, Tianshi Cao, Kai He, Yifan Lu, Ruiyuan Gao, Enze Xie, Shiyi Lan, Jose M. Alvarez, Jun Gao, Sanja Fidler, Zian Wang, Huan Ling.
> **TL;DR:** ChronoEdit reframes image editing as a video generation task, using input and edited images as start/end frames to leverage pretrained video models with temporal consistency. A temporal reasoning stage introduces reasoning tokens to ensure physically plausible edits and visualize the editing trajectory.
The model can be loaded with the following code snippet.
```python
from diffusers import ChronoEditTransformer3DModel
transformer = ChronoEditTransformer3DModel.from_pretrained("nvidia/ChronoEdit-14B-Diffusers", subfolder="transformer", torch_dtype=torch.bfloat16)
```
## ChronoEditTransformer3DModel
[[autodoc]] ChronoEditTransformer3DModel
## Transformer2DModelOutput
[[autodoc]] models.modeling_outputs.Transformer2DModelOutput

View File

@@ -0,0 +1,36 @@
<!-- Copyright 2025 The SANA-Video Authors and HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# SanaVideoTransformer3DModel
A Diffusion Transformer model for 3D data (video) from [SANA-Video: Efficient Video Generation with Block Linear Diffusion Transformer](https://huggingface.co/papers/2509.24695) from NVIDIA and MIT HAN Lab, by Junsong Chen, Yuyang Zhao, Jincheng Yu, Ruihang Chu, Junyu Chen, Shuai Yang, Xianbang Wang, Yicheng Pan, Daquan Zhou, Huan Ling, Haozhe Liu, Hongwei Yi, Hao Zhang, Muyang Li, Yukang Chen, Han Cai, Sanja Fidler, Ping Luo, Song Han, Enze Xie.
The abstract from the paper is:
*We introduce SANA-Video, a small diffusion model that can efficiently generate videos up to 720x1280 resolution and minute-length duration. SANA-Video synthesizes high-resolution, high-quality and long videos with strong text-video alignment at a remarkably fast speed, deployable on RTX 5090 GPU. Two core designs ensure our efficient, effective and long video generation: (1) Linear DiT: We leverage linear attention as the core operation, which is more efficient than vanilla attention given the large number of tokens processed in video generation. (2) Constant-Memory KV cache for Block Linear Attention: we design block-wise autoregressive approach for long video generation by employing a constant-memory state, derived from the cumulative properties of linear attention. This KV cache provides the Linear DiT with global context at a fixed memory cost, eliminating the need for a traditional KV cache and enabling efficient, minute-long video generation. In addition, we explore effective data filters and model training strategies, narrowing the training cost to 12 days on 64 H100 GPUs, which is only 1% of the cost of MovieGen. Given its low cost, SANA-Video achieves competitive performance compared to modern state-of-the-art small diffusion models (e.g., Wan 2.1-1.3B and SkyReel-V2-1.3B) while being 16x faster in measured latency. Moreover, SANA-Video can be deployed on RTX 5090 GPUs with NVFP4 precision, accelerating the inference speed of generating a 5-second 720p video from 71s to 29s (2.4x speedup). In summary, SANA-Video enables low-cost, high-quality video generation.*
The model can be loaded with the following code snippet.
```python
from diffusers import SanaVideoTransformer3DModel
import torch
transformer = SanaVideoTransformer3DModel.from_pretrained("Efficient-Large-Model/SANA-Video_2B_480p_diffusers", subfolder="transformer", torch_dtype=torch.bfloat16)
```
## SanaVideoTransformer3DModel
[[autodoc]] SanaVideoTransformer3DModel
## Transformer2DModelOutput
[[autodoc]] models.modeling_outputs.Transformer2DModelOutput

View File

@@ -0,0 +1,156 @@
<!-- Copyright 2025 The ChronoEdit Team and HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License. -->
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<a href="https://huggingface.co/docs/diffusers/main/en/tutorials/using_peft_for_inference" target="_blank" rel="noopener">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</a>
</div>
</div>
# ChronoEdit
[ChronoEdit: Towards Temporal Reasoning for Image Editing and World Simulation](https://huggingface.co/papers/2510.04290) from NVIDIA and University of Toronto, by Jay Zhangjie Wu, Xuanchi Ren, Tianchang Shen, Tianshi Cao, Kai He, Yifan Lu, Ruiyuan Gao, Enze Xie, Shiyi Lan, Jose M. Alvarez, Jun Gao, Sanja Fidler, Zian Wang, Huan Ling.
> **TL;DR:** ChronoEdit reframes image editing as a video generation task, using input and edited images as start/end frames to leverage pretrained video models with temporal consistency. A temporal reasoning stage introduces reasoning tokens to ensure physically plausible edits and visualize the editing trajectory.
*Recent advances in large generative models have greatly enhanced both image editing and in-context image generation, yet a critical gap remains in ensuring physical consistency, where edited objects must remain coherent. This capability is especially vital for world simulation related tasks. In this paper, we present ChronoEdit, a framework that reframes image editing as a video generation problem. First, ChronoEdit treats the input and edited images as the first and last frames of a video, allowing it to leverage large pretrained video generative models that capture not only object appearance but also the implicit physics of motion and interaction through learned temporal consistency. Second, ChronoEdit introduces a temporal reasoning stage that explicitly performs editing at inference time. Under this setting, target frame is jointly denoised with reasoning tokens to imagine a plausible editing trajectory that constrains the solution space to physically viable transformations. The reasoning tokens are then dropped after a few steps to avoid the high computational cost of rendering a full video. To validate ChronoEdit, we introduce PBench-Edit, a new benchmark of image-prompt pairs for contexts that require physical consistency, and demonstrate that ChronoEdit surpasses state-of-the-art baselines in both visual fidelity and physical plausibility. Project page for code and models: [this https URL](https://research.nvidia.com/labs/toronto-ai/chronoedit).*
The ChronoEdit pipeline is developed by the ChronoEdit Team. The original code is available on [GitHub](https://github.com/nv-tlabs/ChronoEdit), and pretrained models can be found in the [nvidia/ChronoEdit](https://huggingface.co/collections/nvidia/chronoedit) collection on Hugging Face.
### Image Editing
```py
import torch
import numpy as np
from diffusers import AutoencoderKLWan, ChronoEditTransformer3DModel, ChronoEditPipeline
from diffusers.utils import export_to_video, load_image
from transformers import CLIPVisionModel
from PIL import Image
model_id = "nvidia/ChronoEdit-14B-Diffusers"
image_encoder = CLIPVisionModel.from_pretrained(model_id, subfolder="image_encoder", torch_dtype=torch.float32)
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
transformer = ChronoEditTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.bfloat16)
pipe = ChronoEditPipeline.from_pretrained(model_id, image_encoder=image_encoder, transformer=transformer, vae=vae, torch_dtype=torch.bfloat16)
pipe.to("cuda")
image = load_image(
"https://huggingface.co/spaces/nvidia/ChronoEdit/resolve/main/examples/3.png"
)
max_area = 720 * 1280
aspect_ratio = image.height / image.width
mod_value = pipe.vae_scale_factor_spatial * pipe.transformer.config.patch_size[1]
height = round(np.sqrt(max_area * aspect_ratio)) // mod_value * mod_value
width = round(np.sqrt(max_area / aspect_ratio)) // mod_value * mod_value
print("width", width, "height", height)
image = image.resize((width, height))
prompt = (
"The user wants to transform the image by adding a small, cute mouse sitting inside the floral teacup, enjoying a spa bath. The mouse should appear relaxed and cheerful, with a tiny white bath towel draped over its head like a turban. It should be positioned comfortably in the cups liquid, with gentle steam rising around it to blend with the cozy atmosphere. "
"The mouses pose should be natural—perhaps sitting upright with paws resting lightly on the rim or submerged in the tea. The teacups floral design, gold trim, and warm lighting must remain unchanged to preserve the original aesthetic. The steam should softly swirl around the mouse, enhancing the spa-like, whimsical mood."
)
output = pipe(
image=image,
prompt=prompt,
height=height,
width=width,
num_frames=5,
num_inference_steps=50,
guidance_scale=5.0,
enable_temporal_reasoning=False,
num_temporal_reasoning_steps=0,
).frames[0]
Image.fromarray((output[-1] * 255).clip(0, 255).astype("uint8")).save("output.png")
```
Optionally, enable **temporal reasoning** for improved physical consistency:
```py
output = pipe(
image=image,
prompt=prompt,
height=height,
width=width,
num_frames=29,
num_inference_steps=50,
guidance_scale=5.0,
enable_temporal_reasoning=True,
num_temporal_reasoning_steps=50,
).frames[0]
export_to_video(output, "output.mp4", fps=16)
Image.fromarray((output[-1] * 255).clip(0, 255).astype("uint8")).save("output.png")
```
### Inference with 8-Step Distillation Lora
```py
import torch
import numpy as np
from diffusers import AutoencoderKLWan, ChronoEditTransformer3DModel, ChronoEditPipeline
from diffusers.utils import export_to_video, load_image
from transformers import CLIPVisionModel
from PIL import Image
model_id = "nvidia/ChronoEdit-14B-Diffusers"
image_encoder = CLIPVisionModel.from_pretrained(model_id, subfolder="image_encoder", torch_dtype=torch.float32)
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
transformer = ChronoEditTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.bfloat16)
pipe = ChronoEditPipeline.from_pretrained(model_id, image_encoder=image_encoder, transformer=transformer, vae=vae, torch_dtype=torch.bfloat16)
lora_path = hf_hub_download(repo_id=model_id, filename="lora/chronoedit_distill_lora.safetensors")
pipe.load_lora_weights(lora_path)
pipe.fuse_lora(lora_scale=1.0)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=2.0)
pipe.to("cuda")
image = load_image(
"https://huggingface.co/spaces/nvidia/ChronoEdit/resolve/main/examples/3.png"
)
max_area = 720 * 1280
aspect_ratio = image.height / image.width
mod_value = pipe.vae_scale_factor_spatial * pipe.transformer.config.patch_size[1]
height = round(np.sqrt(max_area * aspect_ratio)) // mod_value * mod_value
width = round(np.sqrt(max_area / aspect_ratio)) // mod_value * mod_value
print("width", width, "height", height)
image = image.resize((width, height))
prompt = (
"The user wants to transform the image by adding a small, cute mouse sitting inside the floral teacup, enjoying a spa bath. The mouse should appear relaxed and cheerful, with a tiny white bath towel draped over its head like a turban. It should be positioned comfortably in the cups liquid, with gentle steam rising around it to blend with the cozy atmosphere. "
"The mouses pose should be natural—perhaps sitting upright with paws resting lightly on the rim or submerged in the tea. The teacups floral design, gold trim, and warm lighting must remain unchanged to preserve the original aesthetic. The steam should softly swirl around the mouse, enhancing the spa-like, whimsical mood."
)
output = pipe(
image=image,
prompt=prompt,
height=height,
width=width,
num_frames=5,
num_inference_steps=8,
guidance_scale=1.0,
enable_temporal_reasoning=False,
num_temporal_reasoning_steps=0,
).frames[0]
export_to_video(output, "output.mp4", fps=16)
Image.fromarray((output[-1] * 255).clip(0, 255).astype("uint8")).save("output.png")
```
## ChronoEditPipeline
[[autodoc]] ChronoEditPipeline
- all
- __call__
## ChronoEditPipelineOutput
[[autodoc]] pipelines.chronoedit.pipeline_output.ChronoEditPipelineOutput

View File

@@ -7,9 +7,9 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# Kandinsky 5.0
# Kandinsky 5.0 Video
Kandinsky 5.0 is created by the Kandinsky team: Alexey Letunovskiy, Maria Kovaleva, Ivan Kirillov, Lev Novitskiy, Denis Koposov, Dmitrii Mikhailov, Anna Averchenkova, Andrey Shutkin, Julia Agafonova, Olga Kim, Anastasiia Kargapoltseva, Nikita Kiselev, Anna Dmitrienko, Anastasia Maltseva, Kirill Chernyshev, Ilia Vasiliev, Viacheslav Vasilev, Vladimir Polovnikov, Yury Kolabushin, Alexander Belykh, Mikhail Mamaev, Anastasia Aliaskina, Tatiana Nikulina, Polina Gavrilova, Vladimir Arkhipkin, Vladimir Korviakov, Nikolai Gerasimenko, Denis Parkhomenko, Denis Dimitrov
Kandinsky 5.0 Video is created by the Kandinsky team: Alexey Letunovskiy, Maria Kovaleva, Ivan Kirillov, Lev Novitskiy, Denis Koposov, Dmitrii Mikhailov, Anna Averchenkova, Andrey Shutkin, Julia Agafonova, Olga Kim, Anastasiia Kargapoltseva, Nikita Kiselev, Anna Dmitrienko, Anastasia Maltseva, Kirill Chernyshev, Ilia Vasiliev, Viacheslav Vasilev, Vladimir Polovnikov, Yury Kolabushin, Alexander Belykh, Mikhail Mamaev, Anastasia Aliaskina, Tatiana Nikulina, Polina Gavrilova, Vladimir Arkhipkin, Vladimir Korviakov, Nikolai Gerasimenko, Denis Parkhomenko, Denis Dimitrov
Kandinsky 5.0 is a family of diffusion models for Video & Image generation. Kandinsky 5.0 T2V Lite is a lightweight video generation model (2B parameters) that ranks #1 among open-source models in its class. It outperforms larger models and offers the best understanding of Russian concepts in the open-source ecosystem.
@@ -92,7 +92,7 @@ pipe = pipe.to("cuda")
pipe.transformer.set_attention_backend(
"flex"
) # <--- Set attention backend to Flex
) # <--- Sett attention bakend to Flex
pipe.transformer.compile(
mode="max-autotune-no-cudagraphs",
dynamic=True
@@ -115,7 +115,7 @@ export_to_video(output, "output.mp4", fps=24, quality=9)
```
### Diffusion Distilled model
**⚠️ Warning!** all nocfg and diffusion distilled models should be inferred without CFG (```guidance_scale=1.0```):
**⚠️ Warning!** all nocfg and diffusion distilled models should be infered wothout CFG (```guidance_scale=1.0```):
```python
model_id = "ai-forever/Kandinsky-5.0-T2V-Lite-distilled16steps-5s-Diffusers"

View File

@@ -24,9 +24,6 @@ The abstract from the paper is:
*This paper presents SANA-Sprint, an efficient diffusion model for ultra-fast text-to-image (T2I) generation. SANA-Sprint is built on a pre-trained foundation model and augmented with hybrid distillation, dramatically reducing inference steps from 20 to 1-4. We introduce three key innovations: (1) We propose a training-free approach that transforms a pre-trained flow-matching model for continuous-time consistency distillation (sCM), eliminating costly training from scratch and achieving high training efficiency. Our hybrid distillation strategy combines sCM with latent adversarial distillation (LADD): sCM ensures alignment with the teacher model, while LADD enhances single-step generation fidelity. (2) SANA-Sprint is a unified step-adaptive model that achieves high-quality generation in 1-4 steps, eliminating step-specific training and improving efficiency. (3) We integrate ControlNet with SANA-Sprint for real-time interactive image generation, enabling instant visual feedback for user interaction. SANA-Sprint establishes a new Pareto frontier in speed-quality tradeoffs, achieving state-of-the-art performance with 7.59 FID and 0.74 GenEval in only 1 step — outperforming FLUX-schnell (7.94 FID / 0.71 GenEval) while being 10× faster (0.1s vs 1.1s on H100). It also achieves 0.1s (T2I) and 0.25s (ControlNet) latency for 1024×1024 images on H100, and 0.31s (T2I) on an RTX 4090, showcasing its exceptional efficiency and potential for AI-powered consumer applications (AIPC). Code and pre-trained models will be open-sourced.*
> [!TIP]
> Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
This pipeline was contributed by [lawrence-cj](https://github.com/lawrence-cj), [shuchen Xue](https://github.com/scxue) and [Enze Xie](https://github.com/xieenze). The original codebase can be found [here](https://github.com/NVlabs/Sana). The original weights can be found under [hf.co/Efficient-Large-Model](https://huggingface.co/Efficient-Large-Model/).
Available models:

View File

@@ -0,0 +1,102 @@
<!-- Copyright 2025 The SANA-Video Authors and HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License. -->
# SanaVideoPipeline
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
<img alt="MPS" src="https://img.shields.io/badge/MPS-000000?style=flat&logo=apple&logoColor=white%22">
</div>
[SANA-Video: Efficient Video Generation with Block Linear Diffusion Transformer](https://huggingface.co/papers/2509.24695) from NVIDIA and MIT HAN Lab, by Junsong Chen, Yuyang Zhao, Jincheng Yu, Ruihang Chu, Junyu Chen, Shuai Yang, Xianbang Wang, Yicheng Pan, Daquan Zhou, Huan Ling, Haozhe Liu, Hongwei Yi, Hao Zhang, Muyang Li, Yukang Chen, Han Cai, Sanja Fidler, Ping Luo, Song Han, Enze Xie.
The abstract from the paper is:
*We introduce SANA-Video, a small diffusion model that can efficiently generate videos up to 720x1280 resolution and minute-length duration. SANA-Video synthesizes high-resolution, high-quality and long videos with strong text-video alignment at a remarkably fast speed, deployable on RTX 5090 GPU. Two core designs ensure our efficient, effective and long video generation: (1) Linear DiT: We leverage linear attention as the core operation, which is more efficient than vanilla attention given the large number of tokens processed in video generation. (2) Constant-Memory KV cache for Block Linear Attention: we design block-wise autoregressive approach for long video generation by employing a constant-memory state, derived from the cumulative properties of linear attention. This KV cache provides the Linear DiT with global context at a fixed memory cost, eliminating the need for a traditional KV cache and enabling efficient, minute-long video generation. In addition, we explore effective data filters and model training strategies, narrowing the training cost to 12 days on 64 H100 GPUs, which is only 1% of the cost of MovieGen. Given its low cost, SANA-Video achieves competitive performance compared to modern state-of-the-art small diffusion models (e.g., Wan 2.1-1.3B and SkyReel-V2-1.3B) while being 16x faster in measured latency. Moreover, SANA-Video can be deployed on RTX 5090 GPUs with NVFP4 precision, accelerating the inference speed of generating a 5-second 720p video from 71s to 29s (2.4x speedup). In summary, SANA-Video enables low-cost, high-quality video generation. [this https URL](https://github.com/NVlabs/SANA).*
This pipeline was contributed by SANA Team. The original codebase can be found [here](https://github.com/NVlabs/Sana). The original weights can be found under [hf.co/Efficient-Large-Model](https://hf.co/collections/Efficient-Large-Model/sana-video).
Available models:
| Model | Recommended dtype |
|:-----:|:-----------------:|
| [`Efficient-Large-Model/SANA-Video_2B_480p_diffusers`](https://huggingface.co/Efficient-Large-Model/ANA-Video_2B_480p_diffusers) | `torch.bfloat16` |
Refer to [this](https://huggingface.co/collections/Efficient-Large-Model/sana-video) collection for more information.
Note: The recommended dtype mentioned is for the transformer weights. The text encoder and VAE weights must stay in `torch.bfloat16` or `torch.float32` for the model to work correctly. Please refer to the inference example below to see how to load the model with the recommended dtype.
## Quantization
Quantization helps reduce the memory requirements of very large models by storing model weights in a lower precision data type. However, quantization may have varying impact on video quality depending on the video model.
Refer to the [Quantization](../../quantization/overview) overview to learn more about supported quantization backends and selecting a quantization backend that supports your use case. The example below demonstrates how to load a quantized [`SanaVideoPipeline`] for inference with bitsandbytes.
```py
import torch
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig, SanaVideoTransformer3DModel, SanaVideoPipeline
from transformers import BitsAndBytesConfig as BitsAndBytesConfig, AutoModel
quant_config = BitsAndBytesConfig(load_in_8bit=True)
text_encoder_8bit = AutoModel.from_pretrained(
"Efficient-Large-Model/SANA-Video_2B_480p_diffusers",
subfolder="text_encoder",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
quant_config = DiffusersBitsAndBytesConfig(load_in_8bit=True)
transformer_8bit = SanaVideoTransformer3DModel.from_pretrained(
"Efficient-Large-Model/SANA-Video_2B_480p_diffusers",
subfolder="transformer",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
pipeline = SanaVideoPipeline.from_pretrained(
"Efficient-Large-Model/SANA-Video_2B_480p_diffusers",
text_encoder=text_encoder_8bit,
transformer=transformer_8bit,
torch_dtype=torch.float16,
device_map="balanced",
)
model_score = 30
prompt = "Evening, backlight, side lighting, soft light, high contrast, mid-shot, centered composition, clean solo shot, warm color. A young Caucasian man stands in a forest, golden light glimmers on his hair as sunlight filters through the leaves. He wears a light shirt, wind gently blowing his hair and collar, light dances across his face with his movements. The background is blurred, with dappled light and soft tree shadows in the distance. The camera focuses on his lifted gaze, clear and emotional."
negative_prompt = "A chaotic sequence with misshapen, deformed limbs in heavy motion blur, sudden disappearance, jump cuts, jerky movements, rapid shot changes, frames out of sync, inconsistent character shapes, temporal artifacts, jitter, and ghosting effects, creating a disorienting visual experience."
motion_prompt = f" motion score: {model_score}."
prompt = prompt + motion_prompt
output = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
height=480,
width=832,
num_frames=81,
guidance_scale=6.0,
num_inference_steps=50
).frames[0]
export_to_video(output, "sana-video-output.mp4", fps=16)
```
## SanaVideoPipeline
[[autodoc]] SanaVideoPipeline
- all
- __call__
## SanaVideoPipelineOutput
[[autodoc]] pipelines.sana.pipeline_sana_video.SanaVideoPipelineOutput

View File

@@ -104,6 +104,8 @@ To use your own dataset, there are 2 ways:
- you can either provide your own folder as `--train_data_dir`
- or you can upload your dataset to the hub (possibly as a private repo, if you prefer so), and simply pass the `--dataset_name` argument.
If your dataset contains 16 or 32-bit channels (for example, medical TIFFs), add the `--preserve_input_precision` flag so the preprocessing keeps the original precision while still training a 3-channel model. Precision still depends on the decoder: Pillow keeps 16-bit grayscale and float inputs, but many 16-bit RGB files are decoded as 8-bit RGB, and the flag cannot recover precision lost at load time.
Below, we explain both in more detail.
#### Provide the dataset as a folder

View File

@@ -52,6 +52,24 @@ def _extract_into_tensor(arr, timesteps, broadcast_shape):
return res.expand(broadcast_shape)
def _ensure_three_channels(tensor: torch.Tensor) -> torch.Tensor:
"""
Ensure the tensor has exactly three channels (C, H, W) by repeating or truncating channels when needed.
"""
if tensor.ndim == 2:
tensor = tensor.unsqueeze(0)
channels = tensor.shape[0]
if channels == 3:
return tensor
if channels == 1:
return tensor.repeat(3, 1, 1)
if channels == 2:
return torch.cat([tensor, tensor[:1]], dim=0)
if channels > 3:
return tensor[:3]
raise ValueError(f"Unsupported number of channels: {channels}")
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
@@ -260,6 +278,11 @@ def parse_args():
parser.add_argument(
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
)
parser.add_argument(
"--preserve_input_precision",
action="store_true",
help="Preserve 16/32-bit image precision by avoiding 8-bit RGB conversion while still producing 3-channel tensors.",
)
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
@@ -453,19 +476,41 @@ def main(args):
# https://huggingface.co/docs/datasets/v2.4.0/en/image_load#imagefolder
# Preprocessing the datasets and DataLoaders creation.
spatial_augmentations = [
transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR),
transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution),
transforms.RandomHorizontalFlip() if args.random_flip else transforms.Lambda(lambda x: x),
]
augmentations = transforms.Compose(
[
transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR),
transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution),
transforms.RandomHorizontalFlip() if args.random_flip else transforms.Lambda(lambda x: x),
spatial_augmentations
+ [
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
precision_augmentations = transforms.Compose(
[
transforms.PILToTensor(),
transforms.Lambda(_ensure_three_channels),
transforms.ConvertImageDtype(torch.float32),
]
+ spatial_augmentations
+ [transforms.Normalize([0.5], [0.5])]
)
def transform_images(examples):
images = [augmentations(image.convert("RGB")) for image in examples["image"]]
return {"input": images}
processed = []
for image in examples["image"]:
if not args.preserve_input_precision:
processed.append(augmentations(image.convert("RGB")))
else:
precise_image = image
if precise_image.mode == "P":
precise_image = precise_image.convert("RGB")
processed.append(precision_augmentations(precise_image))
return {"input": processed}
logger.info(f"Dataset size: {len(dataset)}")

View File

@@ -0,0 +1,324 @@
#!/usr/bin/env python
from __future__ import annotations
import argparse
import os
from contextlib import nullcontext
import torch
from accelerate import init_empty_weights
from huggingface_hub import hf_hub_download, snapshot_download
from termcolor import colored
from transformers import AutoModelForCausalLM, AutoTokenizer
from diffusers import (
AutoencoderKLWan,
DPMSolverMultistepScheduler,
FlowMatchEulerDiscreteScheduler,
SanaVideoPipeline,
SanaVideoTransformer3DModel,
UniPCMultistepScheduler,
)
from diffusers.utils.import_utils import is_accelerate_available
CTX = init_empty_weights if is_accelerate_available else nullcontext
ckpt_ids = ["Efficient-Large-Model/SANA-Video_2B_480p/checkpoints/SANA_Video_2B_480p.pth"]
# https://github.com/NVlabs/Sana/blob/main/inference_video_scripts/inference_sana_video.py
def main(args):
cache_dir_path = os.path.expanduser("~/.cache/huggingface/hub")
if args.orig_ckpt_path is None or args.orig_ckpt_path in ckpt_ids:
ckpt_id = args.orig_ckpt_path or ckpt_ids[0]
snapshot_download(
repo_id=f"{'/'.join(ckpt_id.split('/')[:2])}",
cache_dir=cache_dir_path,
repo_type="model",
)
file_path = hf_hub_download(
repo_id=f"{'/'.join(ckpt_id.split('/')[:2])}",
filename=f"{'/'.join(ckpt_id.split('/')[2:])}",
cache_dir=cache_dir_path,
repo_type="model",
)
else:
file_path = args.orig_ckpt_path
print(colored(f"Loading checkpoint from {file_path}", "green", attrs=["bold"]))
all_state_dict = torch.load(file_path, weights_only=True)
state_dict = all_state_dict.pop("state_dict")
converted_state_dict = {}
# Patch embeddings.
converted_state_dict["patch_embedding.weight"] = state_dict.pop("x_embedder.proj.weight")
converted_state_dict["patch_embedding.bias"] = state_dict.pop("x_embedder.proj.bias")
# Caption projection.
converted_state_dict["caption_projection.linear_1.weight"] = state_dict.pop("y_embedder.y_proj.fc1.weight")
converted_state_dict["caption_projection.linear_1.bias"] = state_dict.pop("y_embedder.y_proj.fc1.bias")
converted_state_dict["caption_projection.linear_2.weight"] = state_dict.pop("y_embedder.y_proj.fc2.weight")
converted_state_dict["caption_projection.linear_2.bias"] = state_dict.pop("y_embedder.y_proj.fc2.bias")
converted_state_dict["time_embed.emb.timestep_embedder.linear_1.weight"] = state_dict.pop(
"t_embedder.mlp.0.weight"
)
converted_state_dict["time_embed.emb.timestep_embedder.linear_1.bias"] = state_dict.pop("t_embedder.mlp.0.bias")
converted_state_dict["time_embed.emb.timestep_embedder.linear_2.weight"] = state_dict.pop(
"t_embedder.mlp.2.weight"
)
converted_state_dict["time_embed.emb.timestep_embedder.linear_2.bias"] = state_dict.pop("t_embedder.mlp.2.bias")
# Shared norm.
converted_state_dict["time_embed.linear.weight"] = state_dict.pop("t_block.1.weight")
converted_state_dict["time_embed.linear.bias"] = state_dict.pop("t_block.1.bias")
# y norm
converted_state_dict["caption_norm.weight"] = state_dict.pop("attention_y_norm.weight")
# scheduler
flow_shift = 8.0
# model config
layer_num = 20
# Positional embedding interpolation scale.
qk_norm = True
# sample size
if args.video_size == 480:
sample_size = 30 # Wan-VAE: 8xp2 downsample factor
patch_size = (1, 2, 2)
elif args.video_size == 720:
sample_size = 22 # Wan-VAE: 32xp1 downsample factor
patch_size = (1, 1, 1)
else:
raise ValueError(f"Video size {args.video_size} is not supported.")
for depth in range(layer_num):
# Transformer blocks.
converted_state_dict[f"transformer_blocks.{depth}.scale_shift_table"] = state_dict.pop(
f"blocks.{depth}.scale_shift_table"
)
# Linear Attention is all you need 🤘
# Self attention.
q, k, v = torch.chunk(state_dict.pop(f"blocks.{depth}.attn.qkv.weight"), 3, dim=0)
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_q.weight"] = q
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_k.weight"] = k
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_v.weight"] = v
if qk_norm is not None:
# Add Q/K normalization for self-attention (attn1) - needed for Sana-Sprint and Sana-1.5
converted_state_dict[f"transformer_blocks.{depth}.attn1.norm_q.weight"] = state_dict.pop(
f"blocks.{depth}.attn.q_norm.weight"
)
converted_state_dict[f"transformer_blocks.{depth}.attn1.norm_k.weight"] = state_dict.pop(
f"blocks.{depth}.attn.k_norm.weight"
)
# Projection.
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_out.0.weight"] = state_dict.pop(
f"blocks.{depth}.attn.proj.weight"
)
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_out.0.bias"] = state_dict.pop(
f"blocks.{depth}.attn.proj.bias"
)
# Feed-forward.
converted_state_dict[f"transformer_blocks.{depth}.ff.conv_inverted.weight"] = state_dict.pop(
f"blocks.{depth}.mlp.inverted_conv.conv.weight"
)
converted_state_dict[f"transformer_blocks.{depth}.ff.conv_inverted.bias"] = state_dict.pop(
f"blocks.{depth}.mlp.inverted_conv.conv.bias"
)
converted_state_dict[f"transformer_blocks.{depth}.ff.conv_depth.weight"] = state_dict.pop(
f"blocks.{depth}.mlp.depth_conv.conv.weight"
)
converted_state_dict[f"transformer_blocks.{depth}.ff.conv_depth.bias"] = state_dict.pop(
f"blocks.{depth}.mlp.depth_conv.conv.bias"
)
converted_state_dict[f"transformer_blocks.{depth}.ff.conv_point.weight"] = state_dict.pop(
f"blocks.{depth}.mlp.point_conv.conv.weight"
)
converted_state_dict[f"transformer_blocks.{depth}.ff.conv_temp.weight"] = state_dict.pop(
f"blocks.{depth}.mlp.t_conv.weight"
)
# Cross-attention.
q = state_dict.pop(f"blocks.{depth}.cross_attn.q_linear.weight")
q_bias = state_dict.pop(f"blocks.{depth}.cross_attn.q_linear.bias")
k, v = torch.chunk(state_dict.pop(f"blocks.{depth}.cross_attn.kv_linear.weight"), 2, dim=0)
k_bias, v_bias = torch.chunk(state_dict.pop(f"blocks.{depth}.cross_attn.kv_linear.bias"), 2, dim=0)
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_q.weight"] = q
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_q.bias"] = q_bias
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_k.weight"] = k
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_k.bias"] = k_bias
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_v.weight"] = v
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_v.bias"] = v_bias
if qk_norm is not None:
# Add Q/K normalization for cross-attention (attn2) - needed for Sana-Sprint and Sana-1.5
converted_state_dict[f"transformer_blocks.{depth}.attn2.norm_q.weight"] = state_dict.pop(
f"blocks.{depth}.cross_attn.q_norm.weight"
)
converted_state_dict[f"transformer_blocks.{depth}.attn2.norm_k.weight"] = state_dict.pop(
f"blocks.{depth}.cross_attn.k_norm.weight"
)
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_out.0.weight"] = state_dict.pop(
f"blocks.{depth}.cross_attn.proj.weight"
)
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_out.0.bias"] = state_dict.pop(
f"blocks.{depth}.cross_attn.proj.bias"
)
# Final block.
converted_state_dict["proj_out.weight"] = state_dict.pop("final_layer.linear.weight")
converted_state_dict["proj_out.bias"] = state_dict.pop("final_layer.linear.bias")
converted_state_dict["scale_shift_table"] = state_dict.pop("final_layer.scale_shift_table")
# Transformer
with CTX():
transformer_kwargs = {
"in_channels": 16,
"out_channels": 16,
"num_attention_heads": 20,
"attention_head_dim": 112,
"num_layers": 20,
"num_cross_attention_heads": 20,
"cross_attention_head_dim": 112,
"cross_attention_dim": 2240,
"caption_channels": 2304,
"mlp_ratio": 3.0,
"attention_bias": False,
"sample_size": sample_size,
"patch_size": patch_size,
"norm_elementwise_affine": False,
"norm_eps": 1e-6,
"qk_norm": "rms_norm_across_heads",
"rope_max_seq_len": 1024,
}
transformer = SanaVideoTransformer3DModel(**transformer_kwargs)
transformer.load_state_dict(converted_state_dict, strict=True, assign=True)
try:
state_dict.pop("y_embedder.y_embedding")
state_dict.pop("pos_embed")
state_dict.pop("logvar_linear.weight")
state_dict.pop("logvar_linear.bias")
except KeyError:
print("y_embedder.y_embedding or pos_embed not found in the state_dict")
assert len(state_dict) == 0, f"State dict is not empty, {state_dict.keys()}"
num_model_params = sum(p.numel() for p in transformer.parameters())
print(f"Total number of transformer parameters: {num_model_params}")
transformer = transformer.to(weight_dtype)
if not args.save_full_pipeline:
print(
colored(
f"Only saving transformer model of {args.model_type}. "
f"Set --save_full_pipeline to save the whole Pipeline",
"green",
attrs=["bold"],
)
)
transformer.save_pretrained(
os.path.join(args.dump_path, "transformer"), safe_serialization=True, max_shard_size="5GB"
)
else:
print(colored(f"Saving the whole Pipeline containing {args.model_type}", "green", attrs=["bold"]))
# VAE
vae = AutoencoderKLWan.from_pretrained(
"Wan-AI/Wan2.1-T2V-1.3B-Diffusers", subfolder="vae", torch_dtype=torch.float32
)
# Text Encoder
text_encoder_model_path = "Efficient-Large-Model/gemma-2-2b-it"
tokenizer = AutoTokenizer.from_pretrained(text_encoder_model_path)
tokenizer.padding_side = "right"
text_encoder = AutoModelForCausalLM.from_pretrained(
text_encoder_model_path, torch_dtype=torch.bfloat16
).get_decoder()
# Choose the appropriate pipeline and scheduler based on model type
# Original Sana scheduler
if args.scheduler_type == "flow-dpm_solver":
scheduler = DPMSolverMultistepScheduler(
flow_shift=flow_shift,
use_flow_sigmas=True,
prediction_type="flow_prediction",
)
elif args.scheduler_type == "flow-euler":
scheduler = FlowMatchEulerDiscreteScheduler(shift=flow_shift)
elif args.scheduler_type == "uni-pc":
scheduler = UniPCMultistepScheduler(
prediction_type="flow_prediction",
use_flow_sigmas=True,
num_train_timesteps=1000,
flow_shift=flow_shift,
)
else:
raise ValueError(f"Scheduler type {args.scheduler_type} is not supported")
pipe = SanaVideoPipeline(
tokenizer=tokenizer,
text_encoder=text_encoder,
transformer=transformer,
vae=vae,
scheduler=scheduler,
)
pipe.save_pretrained(args.dump_path, safe_serialization=True, max_shard_size="5GB")
DTYPE_MAPPING = {
"fp32": torch.float32,
"fp16": torch.float16,
"bf16": torch.bfloat16,
}
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--orig_ckpt_path", default=None, type=str, required=False, help="Path to the checkpoint to convert."
)
parser.add_argument(
"--video_size",
default=480,
type=int,
choices=[480, 720],
required=False,
help="Video size of pretrained model, 480 or 720.",
)
parser.add_argument(
"--model_type",
default="SanaVideo",
type=str,
choices=[
"SanaVideo",
],
)
parser.add_argument(
"--scheduler_type",
default="flow-dpm_solver",
type=str,
choices=["flow-dpm_solver", "flow-euler", "uni-pc"],
help="Scheduler type to use.",
)
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output pipeline.")
parser.add_argument("--save_full_pipeline", action="store_true", help="save all the pipeline elements in one.")
parser.add_argument("--dtype", default="fp32", type=str, choices=["fp32", "fp16", "bf16"], help="Weight dtype.")
args = parser.parse_args()
device = "cuda" if torch.cuda.is_available() else "cpu"
weight_dtype = DTYPE_MAPPING[args.dtype]
main(args)

View File

@@ -202,6 +202,7 @@ else:
"BriaTransformer2DModel",
"CacheMixin",
"ChromaTransformer2DModel",
"ChronoEditTransformer3DModel",
"CogVideoXTransformer3DModel",
"CogView3PlusTransformer2DModel",
"CogView4Transformer2DModel",
@@ -246,6 +247,7 @@ else:
"QwenImageTransformer2DModel",
"SanaControlNetModel",
"SanaTransformer2DModel",
"SanaVideoTransformer3DModel",
"SD3ControlNetModel",
"SD3MultiControlNetModel",
"SD3Transformer2DModel",
@@ -435,6 +437,7 @@ else:
"BriaPipeline",
"ChromaImg2ImgPipeline",
"ChromaPipeline",
"ChronoEditPipeline",
"CLIPImageProjection",
"CogVideoXFunControlPipeline",
"CogVideoXImageToVideoPipeline",
@@ -544,6 +547,7 @@ else:
"SanaPipeline",
"SanaSprintImg2ImgPipeline",
"SanaSprintPipeline",
"SanaVideoPipeline",
"SemanticStableDiffusionPipeline",
"ShapEImg2ImgPipeline",
"ShapEPipeline",
@@ -907,6 +911,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
BriaTransformer2DModel,
CacheMixin,
ChromaTransformer2DModel,
ChronoEditTransformer3DModel,
CogVideoXTransformer3DModel,
CogView3PlusTransformer2DModel,
CogView4Transformer2DModel,
@@ -951,6 +956,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
QwenImageTransformer2DModel,
SanaControlNetModel,
SanaTransformer2DModel,
SanaVideoTransformer3DModel,
SD3ControlNetModel,
SD3MultiControlNetModel,
SD3Transformer2DModel,
@@ -1110,6 +1116,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
BriaPipeline,
ChromaImg2ImgPipeline,
ChromaPipeline,
ChronoEditPipeline,
CLIPImageProjection,
CogVideoXFunControlPipeline,
CogVideoXImageToVideoPipeline,
@@ -1219,6 +1226,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
SanaPipeline,
SanaSprintImg2ImgPipeline,
SanaSprintPipeline,
SanaVideoPipeline,
SemanticStableDiffusionPipeline,
ShapEImg2ImgPipeline,
ShapEPipeline,

View File

@@ -203,10 +203,12 @@ class ContextParallelSplitHook(ModelHook):
def _prepare_cp_input(self, x: torch.Tensor, cp_input: ContextParallelInput) -> torch.Tensor:
if cp_input.expected_dims is not None and x.dim() != cp_input.expected_dims:
raise ValueError(
f"Expected input tensor to have {cp_input.expected_dims} dimensions, but got {x.dim()} dimensions."
logger.warning_once(
f"Expected input tensor to have {cp_input.expected_dims} dimensions, but got {x.dim()} dimensions, split will not be applied."
)
return EquipartitionSharder.shard(x, cp_input.split_dim, self.parallel_config._flattened_mesh)
return x
else:
return EquipartitionSharder.shard(x, cp_input.split_dim, self.parallel_config._flattened_mesh)
class ContextParallelGatherHook(ModelHook):

View File

@@ -1045,16 +1045,39 @@ class VaeImageProcessorLDM3D(VaeImageProcessor):
def rgblike_to_depthmap(image: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]:
r"""
Convert an RGB-like depth image to a depth map.
Args:
image (`Union[np.ndarray, torch.Tensor]`):
The RGB-like depth image to convert.
Returns:
`Union[np.ndarray, torch.Tensor]`:
The corresponding depth map.
"""
return image[:, :, 1] * 2**8 + image[:, :, 2]
# 1. Cast the tensor to a larger integer type (e.g., int32)
# to safely perform the multiplication by 256.
# 2. Perform the 16-bit combination: High-byte * 256 + Low-byte.
# 3. Cast the final result to the desired depth map type (uint16) if needed
# before returning, though leaving it as int32/int64 is often safer
# for return value from a library function.
if isinstance(image, torch.Tensor):
# Cast to a safe dtype (e.g., int32 or int64) for the calculation
original_dtype = image.dtype
image_safe = image.to(torch.int32)
# Calculate the depth map
depth_map = image_safe[:, :, 1] * 256 + image_safe[:, :, 2]
# You may want to cast the final result to uint16, but casting to a
# larger int type (like int32) is sufficient to fix the overflow.
# depth_map = depth_map.to(torch.uint16) # Uncomment if uint16 is strictly required
return depth_map.to(original_dtype)
elif isinstance(image, np.ndarray):
# NumPy equivalent: Cast to a safe dtype (e.g., np.int32)
original_dtype = image.dtype
image_safe = image.astype(np.int32)
# Calculate the depth map
depth_map = image_safe[:, :, 1] * 256 + image_safe[:, :, 2]
# depth_map = depth_map.astype(np.uint16) # Uncomment if uint16 is strictly required
return depth_map.astype(original_dtype)
else:
raise TypeError("Input image must be a torch.Tensor or np.ndarray")
def numpy_to_depth(self, images: np.ndarray) -> List[PIL.Image.Image]:
r"""

View File

@@ -2213,6 +2213,10 @@ def _convert_non_diffusers_qwen_lora_to_diffusers(state_dict):
state_dict = {convert_key(k): v for k, v in state_dict.items()}
has_default = any("default." in k for k in state_dict)
if has_default:
state_dict = {k.replace("default.", ""): v for k, v in state_dict.items()}
converted_state_dict = {}
all_keys = list(state_dict.keys())
down_key = ".lora_down.weight"

View File

@@ -4940,7 +4940,8 @@ class QwenImageLoraLoaderMixin(LoraBaseMixin):
has_alphas_in_sd = any(k.endswith(".alpha") for k in state_dict)
has_lora_unet = any(k.startswith("lora_unet_") for k in state_dict)
has_diffusion_model = any(k.startswith("diffusion_model.") for k in state_dict)
if has_alphas_in_sd or has_lora_unet or has_diffusion_model:
has_default = any("default." in k for k in state_dict)
if has_alphas_in_sd or has_lora_unet or has_diffusion_model or has_default:
state_dict = _convert_non_diffusers_qwen_lora_to_diffusers(state_dict)
out = (state_dict, metadata) if return_lora_metadata else state_dict

View File

@@ -86,6 +86,7 @@ if is_torch_available():
_import_structure["transformers.transformer_bria"] = ["BriaTransformer2DModel"]
_import_structure["transformers.transformer_bria_fibo"] = ["BriaFiboTransformer2DModel"]
_import_structure["transformers.transformer_chroma"] = ["ChromaTransformer2DModel"]
_import_structure["transformers.transformer_chronoedit"] = ["ChronoEditTransformer3DModel"]
_import_structure["transformers.transformer_cogview3plus"] = ["CogView3PlusTransformer2DModel"]
_import_structure["transformers.transformer_cogview4"] = ["CogView4Transformer2DModel"]
_import_structure["transformers.transformer_cosmos"] = ["CosmosTransformer3DModel"]
@@ -102,6 +103,7 @@ if is_torch_available():
_import_structure["transformers.transformer_omnigen"] = ["OmniGenTransformer2DModel"]
_import_structure["transformers.transformer_prx"] = ["PRXTransformer2DModel"]
_import_structure["transformers.transformer_qwenimage"] = ["QwenImageTransformer2DModel"]
_import_structure["transformers.transformer_sana_video"] = ["SanaVideoTransformer3DModel"]
_import_structure["transformers.transformer_sd3"] = ["SD3Transformer2DModel"]
_import_structure["transformers.transformer_skyreels_v2"] = ["SkyReelsV2Transformer3DModel"]
_import_structure["transformers.transformer_temporal"] = ["TransformerTemporalModel"]
@@ -178,6 +180,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
BriaFiboTransformer2DModel,
BriaTransformer2DModel,
ChromaTransformer2DModel,
ChronoEditTransformer3DModel,
CogVideoXTransformer3DModel,
CogView3PlusTransformer2DModel,
CogView4Transformer2DModel,
@@ -204,6 +207,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
PRXTransformer2DModel,
QwenImageTransformer2DModel,
SanaTransformer2DModel,
SanaVideoTransformer3DModel,
SD3Transformer2DModel,
SkyReelsV2Transformer3DModel,
StableAudioDiTModel,

View File

@@ -649,6 +649,86 @@ def _(
# ===== Helper functions to use attention backends with templated CP autograd functions =====
def _native_attention_forward_op(
ctx: torch.autograd.function.FunctionCtx,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
dropout_p: float = 0.0,
is_causal: bool = False,
scale: Optional[float] = None,
enable_gqa: bool = False,
return_lse: bool = False,
_save_ctx: bool = True,
_parallel_config: Optional["ParallelConfig"] = None,
):
# Native attention does not return_lse
if return_lse:
raise ValueError("Native attention does not support return_lse=True")
# used for backward pass
if _save_ctx:
ctx.save_for_backward(query, key, value)
ctx.attn_mask = attn_mask
ctx.dropout_p = dropout_p
ctx.is_causal = is_causal
ctx.scale = scale
ctx.enable_gqa = enable_gqa
query, key, value = (x.permute(0, 2, 1, 3) for x in (query, key, value))
out = torch.nn.functional.scaled_dot_product_attention(
query=query,
key=key,
value=value,
attn_mask=attn_mask,
dropout_p=dropout_p,
is_causal=is_causal,
scale=scale,
enable_gqa=enable_gqa,
)
out = out.permute(0, 2, 1, 3)
return out
def _native_attention_backward_op(
ctx: torch.autograd.function.FunctionCtx,
grad_out: torch.Tensor,
*args,
**kwargs,
):
query, key, value = ctx.saved_tensors
query.requires_grad_(True)
key.requires_grad_(True)
value.requires_grad_(True)
query_t, key_t, value_t = (x.permute(0, 2, 1, 3) for x in (query, key, value))
out = torch.nn.functional.scaled_dot_product_attention(
query=query_t,
key=key_t,
value=value_t,
attn_mask=ctx.attn_mask,
dropout_p=ctx.dropout_p,
is_causal=ctx.is_causal,
scale=ctx.scale,
enable_gqa=ctx.enable_gqa,
)
out = out.permute(0, 2, 1, 3)
grad_out_t = grad_out.permute(0, 2, 1, 3)
grad_query_t, grad_key_t, grad_value_t = torch.autograd.grad(
outputs=out, inputs=[query_t, key_t, value_t], grad_outputs=grad_out_t, retain_graph=False
)
grad_query = grad_query_t.permute(0, 2, 1, 3)
grad_key = grad_key_t.permute(0, 2, 1, 3)
grad_value = grad_value_t.permute(0, 2, 1, 3)
return grad_query, grad_key, grad_value
# https://github.com/pytorch/pytorch/blob/8904ba638726f8c9a5aff5977c4aa76c9d2edfa6/aten/src/ATen/native/native_functions.yaml#L14958
# forward declaration:
# aten::_scaled_dot_product_cudnn_attention(Tensor query, Tensor key, Tensor value, Tensor? attn_bias, bool compute_log_sumexp, float dropout_p=0., bool is_causal=False, bool return_debug_mask=False, *, float? scale=None) -> (Tensor output, Tensor logsumexp, Tensor cum_seq_q, Tensor cum_seq_k, SymInt max_q, SymInt max_k, Tensor philox_seed, Tensor philox_offset, Tensor debug_attn_mask)
@@ -1523,6 +1603,7 @@ def _native_flex_attention(
@_AttentionBackendRegistry.register(
AttentionBackendName.NATIVE,
constraints=[_check_device, _check_shape],
supports_context_parallel=True,
)
def _native_attention(
query: torch.Tensor,
@@ -1538,18 +1619,35 @@ def _native_attention(
) -> torch.Tensor:
if return_lse:
raise ValueError("Native attention backend does not support setting `return_lse=True`.")
query, key, value = (x.permute(0, 2, 1, 3) for x in (query, key, value))
out = torch.nn.functional.scaled_dot_product_attention(
query=query,
key=key,
value=value,
attn_mask=attn_mask,
dropout_p=dropout_p,
is_causal=is_causal,
scale=scale,
enable_gqa=enable_gqa,
)
out = out.permute(0, 2, 1, 3)
if _parallel_config is None:
query, key, value = (x.permute(0, 2, 1, 3) for x in (query, key, value))
out = torch.nn.functional.scaled_dot_product_attention(
query=query,
key=key,
value=value,
attn_mask=attn_mask,
dropout_p=dropout_p,
is_causal=is_causal,
scale=scale,
enable_gqa=enable_gqa,
)
out = out.permute(0, 2, 1, 3)
else:
out = _templated_context_parallel_attention(
query,
key,
value,
attn_mask,
dropout_p,
is_causal,
scale,
enable_gqa,
return_lse,
forward_op=_native_attention_forward_op,
backward_op=_native_attention_backward_op,
_parallel_config=_parallel_config,
)
return out

View File

@@ -147,14 +147,13 @@ class AutoModel(ConfigMixin):
"force_download",
"local_files_only",
"proxies",
"resume_download",
"revision",
"token",
]
hub_kwargs = {name: kwargs.pop(name, None) for name in hub_kwargs_names}
# load_config_kwargs uses the same hub kwargs minus subfolder and resume_download
load_config_kwargs = {k: v for k, v in hub_kwargs.items() if k not in ["subfolder", "resume_download"]}
load_config_kwargs = {k: v for k, v in hub_kwargs.items() if k not in ["subfolder"]}
library = None
orig_class_name = None
@@ -205,7 +204,6 @@ class AutoModel(ConfigMixin):
module_file=module_file,
class_name=class_name,
**hub_kwargs,
**kwargs,
)
else:
from ..pipelines.pipeline_loading_utils import ALL_IMPORTABLE_CLASSES, get_class_obj_and_candidates

View File

@@ -20,6 +20,7 @@ if is_torch_available():
from .transformer_bria import BriaTransformer2DModel
from .transformer_bria_fibo import BriaFiboTransformer2DModel
from .transformer_chroma import ChromaTransformer2DModel
from .transformer_chronoedit import ChronoEditTransformer3DModel
from .transformer_cogview3plus import CogView3PlusTransformer2DModel
from .transformer_cogview4 import CogView4Transformer2DModel
from .transformer_cosmos import CosmosTransformer3DModel
@@ -36,6 +37,7 @@ if is_torch_available():
from .transformer_omnigen import OmniGenTransformer2DModel
from .transformer_prx import PRXTransformer2DModel
from .transformer_qwenimage import QwenImageTransformer2DModel
from .transformer_sana_video import SanaVideoTransformer3DModel
from .transformer_sd3 import SD3Transformer2DModel
from .transformer_skyreels_v2 import SkyReelsV2Transformer3DModel
from .transformer_temporal import TransformerTemporalModel

View File

@@ -0,0 +1,735 @@
# Copyright 2025 The ChronoEdit Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import Any, Dict, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import FromOriginalModelMixin, PeftAdapterMixin
from ...utils import USE_PEFT_BACKEND, deprecate, logging, scale_lora_layers, unscale_lora_layers
from ...utils.torch_utils import maybe_allow_in_graph
from .._modeling_parallel import ContextParallelInput, ContextParallelOutput
from ..attention import AttentionMixin, AttentionModuleMixin, FeedForward
from ..attention_dispatch import dispatch_attention_fn
from ..cache_utils import CacheMixin
from ..embeddings import PixArtAlphaTextProjection, TimestepEmbedding, Timesteps, get_1d_rotary_pos_embed
from ..modeling_outputs import Transformer2DModelOutput
from ..modeling_utils import ModelMixin
from ..normalization import FP32LayerNorm
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
# Copied from diffusers.models.transformers.transformer_wan._get_qkv_projections
def _get_qkv_projections(attn: "WanAttention", hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor):
# encoder_hidden_states is only passed for cross-attention
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
if attn.fused_projections:
if attn.cross_attention_dim_head is None:
# In self-attention layers, we can fuse the entire QKV projection into a single linear
query, key, value = attn.to_qkv(hidden_states).chunk(3, dim=-1)
else:
# In cross-attention layers, we can only fuse the KV projections into a single linear
query = attn.to_q(hidden_states)
key, value = attn.to_kv(encoder_hidden_states).chunk(2, dim=-1)
else:
query = attn.to_q(hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
return query, key, value
# Copied from diffusers.models.transformers.transformer_wan._get_added_kv_projections
def _get_added_kv_projections(attn: "WanAttention", encoder_hidden_states_img: torch.Tensor):
if attn.fused_projections:
key_img, value_img = attn.to_added_kv(encoder_hidden_states_img).chunk(2, dim=-1)
else:
key_img = attn.add_k_proj(encoder_hidden_states_img)
value_img = attn.add_v_proj(encoder_hidden_states_img)
return key_img, value_img
# Copied from diffusers.models.transformers.transformer_wan.WanAttnProcessor
class WanAttnProcessor:
_attention_backend = None
_parallel_config = None
def __init__(self):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError(
"WanAttnProcessor requires PyTorch 2.0. To use it, please upgrade PyTorch to version 2.0 or higher."
)
def __call__(
self,
attn: "WanAttention",
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
) -> torch.Tensor:
encoder_hidden_states_img = None
if attn.add_k_proj is not None:
# 512 is the context length of the text encoder, hardcoded for now
image_context_length = encoder_hidden_states.shape[1] - 512
encoder_hidden_states_img = encoder_hidden_states[:, :image_context_length]
encoder_hidden_states = encoder_hidden_states[:, image_context_length:]
query, key, value = _get_qkv_projections(attn, hidden_states, encoder_hidden_states)
query = attn.norm_q(query)
key = attn.norm_k(key)
query = query.unflatten(2, (attn.heads, -1))
key = key.unflatten(2, (attn.heads, -1))
value = value.unflatten(2, (attn.heads, -1))
if rotary_emb is not None:
def apply_rotary_emb(
hidden_states: torch.Tensor,
freqs_cos: torch.Tensor,
freqs_sin: torch.Tensor,
):
x1, x2 = hidden_states.unflatten(-1, (-1, 2)).unbind(-1)
cos = freqs_cos[..., 0::2]
sin = freqs_sin[..., 1::2]
out = torch.empty_like(hidden_states)
out[..., 0::2] = x1 * cos - x2 * sin
out[..., 1::2] = x1 * sin + x2 * cos
return out.type_as(hidden_states)
query = apply_rotary_emb(query, *rotary_emb)
key = apply_rotary_emb(key, *rotary_emb)
# I2V task
hidden_states_img = None
if encoder_hidden_states_img is not None:
key_img, value_img = _get_added_kv_projections(attn, encoder_hidden_states_img)
key_img = attn.norm_added_k(key_img)
key_img = key_img.unflatten(2, (attn.heads, -1))
value_img = value_img.unflatten(2, (attn.heads, -1))
hidden_states_img = dispatch_attention_fn(
query,
key_img,
value_img,
attn_mask=None,
dropout_p=0.0,
is_causal=False,
backend=self._attention_backend,
parallel_config=self._parallel_config,
)
hidden_states_img = hidden_states_img.flatten(2, 3)
hidden_states_img = hidden_states_img.type_as(query)
hidden_states = dispatch_attention_fn(
query,
key,
value,
attn_mask=attention_mask,
dropout_p=0.0,
is_causal=False,
backend=self._attention_backend,
parallel_config=self._parallel_config,
)
hidden_states = hidden_states.flatten(2, 3)
hidden_states = hidden_states.type_as(query)
if hidden_states_img is not None:
hidden_states = hidden_states + hidden_states_img
hidden_states = attn.to_out[0](hidden_states)
hidden_states = attn.to_out[1](hidden_states)
return hidden_states
# Copied from diffusers.models.transformers.transformer_wan.WanAttnProcessor2_0
class WanAttnProcessor2_0:
def __new__(cls, *args, **kwargs):
deprecation_message = (
"The WanAttnProcessor2_0 class is deprecated and will be removed in a future version. "
"Please use WanAttnProcessor instead. "
)
deprecate("WanAttnProcessor2_0", "1.0.0", deprecation_message, standard_warn=False)
return WanAttnProcessor(*args, **kwargs)
# Copied from diffusers.models.transformers.transformer_wan.WanAttention
class WanAttention(torch.nn.Module, AttentionModuleMixin):
_default_processor_cls = WanAttnProcessor
_available_processors = [WanAttnProcessor]
def __init__(
self,
dim: int,
heads: int = 8,
dim_head: int = 64,
eps: float = 1e-5,
dropout: float = 0.0,
added_kv_proj_dim: Optional[int] = None,
cross_attention_dim_head: Optional[int] = None,
processor=None,
is_cross_attention=None,
):
super().__init__()
self.inner_dim = dim_head * heads
self.heads = heads
self.added_kv_proj_dim = added_kv_proj_dim
self.cross_attention_dim_head = cross_attention_dim_head
self.kv_inner_dim = self.inner_dim if cross_attention_dim_head is None else cross_attention_dim_head * heads
self.to_q = torch.nn.Linear(dim, self.inner_dim, bias=True)
self.to_k = torch.nn.Linear(dim, self.kv_inner_dim, bias=True)
self.to_v = torch.nn.Linear(dim, self.kv_inner_dim, bias=True)
self.to_out = torch.nn.ModuleList(
[
torch.nn.Linear(self.inner_dim, dim, bias=True),
torch.nn.Dropout(dropout),
]
)
self.norm_q = torch.nn.RMSNorm(dim_head * heads, eps=eps, elementwise_affine=True)
self.norm_k = torch.nn.RMSNorm(dim_head * heads, eps=eps, elementwise_affine=True)
self.add_k_proj = self.add_v_proj = None
if added_kv_proj_dim is not None:
self.add_k_proj = torch.nn.Linear(added_kv_proj_dim, self.inner_dim, bias=True)
self.add_v_proj = torch.nn.Linear(added_kv_proj_dim, self.inner_dim, bias=True)
self.norm_added_k = torch.nn.RMSNorm(dim_head * heads, eps=eps)
self.is_cross_attention = cross_attention_dim_head is not None
self.set_processor(processor)
def fuse_projections(self):
if getattr(self, "fused_projections", False):
return
if self.cross_attention_dim_head is None:
concatenated_weights = torch.cat([self.to_q.weight.data, self.to_k.weight.data, self.to_v.weight.data])
concatenated_bias = torch.cat([self.to_q.bias.data, self.to_k.bias.data, self.to_v.bias.data])
out_features, in_features = concatenated_weights.shape
with torch.device("meta"):
self.to_qkv = nn.Linear(in_features, out_features, bias=True)
self.to_qkv.load_state_dict(
{"weight": concatenated_weights, "bias": concatenated_bias}, strict=True, assign=True
)
else:
concatenated_weights = torch.cat([self.to_k.weight.data, self.to_v.weight.data])
concatenated_bias = torch.cat([self.to_k.bias.data, self.to_v.bias.data])
out_features, in_features = concatenated_weights.shape
with torch.device("meta"):
self.to_kv = nn.Linear(in_features, out_features, bias=True)
self.to_kv.load_state_dict(
{"weight": concatenated_weights, "bias": concatenated_bias}, strict=True, assign=True
)
if self.added_kv_proj_dim is not None:
concatenated_weights = torch.cat([self.add_k_proj.weight.data, self.add_v_proj.weight.data])
concatenated_bias = torch.cat([self.add_k_proj.bias.data, self.add_v_proj.bias.data])
out_features, in_features = concatenated_weights.shape
with torch.device("meta"):
self.to_added_kv = nn.Linear(in_features, out_features, bias=True)
self.to_added_kv.load_state_dict(
{"weight": concatenated_weights, "bias": concatenated_bias}, strict=True, assign=True
)
self.fused_projections = True
@torch.no_grad()
def unfuse_projections(self):
if not getattr(self, "fused_projections", False):
return
if hasattr(self, "to_qkv"):
delattr(self, "to_qkv")
if hasattr(self, "to_kv"):
delattr(self, "to_kv")
if hasattr(self, "to_added_kv"):
delattr(self, "to_added_kv")
self.fused_projections = False
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
**kwargs,
) -> torch.Tensor:
return self.processor(self, hidden_states, encoder_hidden_states, attention_mask, rotary_emb, **kwargs)
# Copied from diffusers.models.transformers.transformer_wan.WanImageEmbedding
class WanImageEmbedding(torch.nn.Module):
def __init__(self, in_features: int, out_features: int, pos_embed_seq_len=None):
super().__init__()
self.norm1 = FP32LayerNorm(in_features)
self.ff = FeedForward(in_features, out_features, mult=1, activation_fn="gelu")
self.norm2 = FP32LayerNorm(out_features)
if pos_embed_seq_len is not None:
self.pos_embed = nn.Parameter(torch.zeros(1, pos_embed_seq_len, in_features))
else:
self.pos_embed = None
def forward(self, encoder_hidden_states_image: torch.Tensor) -> torch.Tensor:
if self.pos_embed is not None:
batch_size, seq_len, embed_dim = encoder_hidden_states_image.shape
encoder_hidden_states_image = encoder_hidden_states_image.view(-1, 2 * seq_len, embed_dim)
encoder_hidden_states_image = encoder_hidden_states_image + self.pos_embed
hidden_states = self.norm1(encoder_hidden_states_image)
hidden_states = self.ff(hidden_states)
hidden_states = self.norm2(hidden_states)
return hidden_states
# Copied from diffusers.models.transformers.transformer_wan.WanTimeTextImageEmbedding
class WanTimeTextImageEmbedding(nn.Module):
def __init__(
self,
dim: int,
time_freq_dim: int,
time_proj_dim: int,
text_embed_dim: int,
image_embed_dim: Optional[int] = None,
pos_embed_seq_len: Optional[int] = None,
):
super().__init__()
self.timesteps_proj = Timesteps(num_channels=time_freq_dim, flip_sin_to_cos=True, downscale_freq_shift=0)
self.time_embedder = TimestepEmbedding(in_channels=time_freq_dim, time_embed_dim=dim)
self.act_fn = nn.SiLU()
self.time_proj = nn.Linear(dim, time_proj_dim)
self.text_embedder = PixArtAlphaTextProjection(text_embed_dim, dim, act_fn="gelu_tanh")
self.image_embedder = None
if image_embed_dim is not None:
self.image_embedder = WanImageEmbedding(image_embed_dim, dim, pos_embed_seq_len=pos_embed_seq_len)
def forward(
self,
timestep: torch.Tensor,
encoder_hidden_states: torch.Tensor,
encoder_hidden_states_image: Optional[torch.Tensor] = None,
timestep_seq_len: Optional[int] = None,
):
timestep = self.timesteps_proj(timestep)
if timestep_seq_len is not None:
timestep = timestep.unflatten(0, (-1, timestep_seq_len))
time_embedder_dtype = next(iter(self.time_embedder.parameters())).dtype
if timestep.dtype != time_embedder_dtype and time_embedder_dtype != torch.int8:
timestep = timestep.to(time_embedder_dtype)
temb = self.time_embedder(timestep).type_as(encoder_hidden_states)
timestep_proj = self.time_proj(self.act_fn(temb))
encoder_hidden_states = self.text_embedder(encoder_hidden_states)
if encoder_hidden_states_image is not None:
encoder_hidden_states_image = self.image_embedder(encoder_hidden_states_image)
return temb, timestep_proj, encoder_hidden_states, encoder_hidden_states_image
class ChronoEditRotaryPosEmbed(nn.Module):
def __init__(
self,
attention_head_dim: int,
patch_size: Tuple[int, int, int],
max_seq_len: int,
theta: float = 10000.0,
temporal_skip_len: int = 8,
):
super().__init__()
self.attention_head_dim = attention_head_dim
self.patch_size = patch_size
self.max_seq_len = max_seq_len
self.temporal_skip_len = temporal_skip_len
h_dim = w_dim = 2 * (attention_head_dim // 6)
t_dim = attention_head_dim - h_dim - w_dim
freqs_dtype = torch.float32 if torch.backends.mps.is_available() else torch.float64
freqs_cos = []
freqs_sin = []
for dim in [t_dim, h_dim, w_dim]:
freq_cos, freq_sin = get_1d_rotary_pos_embed(
dim,
max_seq_len,
theta,
use_real=True,
repeat_interleave_real=True,
freqs_dtype=freqs_dtype,
)
freqs_cos.append(freq_cos)
freqs_sin.append(freq_sin)
self.register_buffer("freqs_cos", torch.cat(freqs_cos, dim=1), persistent=False)
self.register_buffer("freqs_sin", torch.cat(freqs_sin, dim=1), persistent=False)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
batch_size, num_channels, num_frames, height, width = hidden_states.shape
p_t, p_h, p_w = self.patch_size
ppf, pph, ppw = num_frames // p_t, height // p_h, width // p_w
split_sizes = [
self.attention_head_dim - 2 * (self.attention_head_dim // 3),
self.attention_head_dim // 3,
self.attention_head_dim // 3,
]
freqs_cos = self.freqs_cos.split(split_sizes, dim=1)
freqs_sin = self.freqs_sin.split(split_sizes, dim=1)
if num_frames == 2:
freqs_cos_f = freqs_cos[0][: self.temporal_skip_len][[0, -1]].view(ppf, 1, 1, -1).expand(ppf, pph, ppw, -1)
else:
freqs_cos_f = freqs_cos[0][:ppf].view(ppf, 1, 1, -1).expand(ppf, pph, ppw, -1)
freqs_cos_h = freqs_cos[1][:pph].view(1, pph, 1, -1).expand(ppf, pph, ppw, -1)
freqs_cos_w = freqs_cos[2][:ppw].view(1, 1, ppw, -1).expand(ppf, pph, ppw, -1)
if num_frames == 2:
freqs_sin_f = freqs_sin[0][: self.temporal_skip_len][[0, -1]].view(ppf, 1, 1, -1).expand(ppf, pph, ppw, -1)
else:
freqs_sin_f = freqs_sin[0][:ppf].view(ppf, 1, 1, -1).expand(ppf, pph, ppw, -1)
freqs_sin_h = freqs_sin[1][:pph].view(1, pph, 1, -1).expand(ppf, pph, ppw, -1)
freqs_sin_w = freqs_sin[2][:ppw].view(1, 1, ppw, -1).expand(ppf, pph, ppw, -1)
freqs_cos = torch.cat([freqs_cos_f, freqs_cos_h, freqs_cos_w], dim=-1).reshape(1, ppf * pph * ppw, 1, -1)
freqs_sin = torch.cat([freqs_sin_f, freqs_sin_h, freqs_sin_w], dim=-1).reshape(1, ppf * pph * ppw, 1, -1)
return freqs_cos, freqs_sin
@maybe_allow_in_graph
# Copied from diffusers.models.transformers.transformer_wan.WanTransformerBlock
class WanTransformerBlock(nn.Module):
def __init__(
self,
dim: int,
ffn_dim: int,
num_heads: int,
qk_norm: str = "rms_norm_across_heads",
cross_attn_norm: bool = False,
eps: float = 1e-6,
added_kv_proj_dim: Optional[int] = None,
):
super().__init__()
# 1. Self-attention
self.norm1 = FP32LayerNorm(dim, eps, elementwise_affine=False)
self.attn1 = WanAttention(
dim=dim,
heads=num_heads,
dim_head=dim // num_heads,
eps=eps,
cross_attention_dim_head=None,
processor=WanAttnProcessor(),
)
# 2. Cross-attention
self.attn2 = WanAttention(
dim=dim,
heads=num_heads,
dim_head=dim // num_heads,
eps=eps,
added_kv_proj_dim=added_kv_proj_dim,
cross_attention_dim_head=dim // num_heads,
processor=WanAttnProcessor(),
)
self.norm2 = FP32LayerNorm(dim, eps, elementwise_affine=True) if cross_attn_norm else nn.Identity()
# 3. Feed-forward
self.ffn = FeedForward(dim, inner_dim=ffn_dim, activation_fn="gelu-approximate")
self.norm3 = FP32LayerNorm(dim, eps, elementwise_affine=False)
self.scale_shift_table = nn.Parameter(torch.randn(1, 6, dim) / dim**0.5)
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
temb: torch.Tensor,
rotary_emb: torch.Tensor,
) -> torch.Tensor:
if temb.ndim == 4:
# temb: batch_size, seq_len, 6, inner_dim (wan2.2 ti2v)
shift_msa, scale_msa, gate_msa, c_shift_msa, c_scale_msa, c_gate_msa = (
self.scale_shift_table.unsqueeze(0) + temb.float()
).chunk(6, dim=2)
# batch_size, seq_len, 1, inner_dim
shift_msa = shift_msa.squeeze(2)
scale_msa = scale_msa.squeeze(2)
gate_msa = gate_msa.squeeze(2)
c_shift_msa = c_shift_msa.squeeze(2)
c_scale_msa = c_scale_msa.squeeze(2)
c_gate_msa = c_gate_msa.squeeze(2)
else:
# temb: batch_size, 6, inner_dim (wan2.1/wan2.2 14B)
shift_msa, scale_msa, gate_msa, c_shift_msa, c_scale_msa, c_gate_msa = (
self.scale_shift_table + temb.float()
).chunk(6, dim=1)
# 1. Self-attention
norm_hidden_states = (self.norm1(hidden_states.float()) * (1 + scale_msa) + shift_msa).type_as(hidden_states)
attn_output = self.attn1(norm_hidden_states, None, None, rotary_emb)
hidden_states = (hidden_states.float() + attn_output * gate_msa).type_as(hidden_states)
# 2. Cross-attention
norm_hidden_states = self.norm2(hidden_states.float()).type_as(hidden_states)
attn_output = self.attn2(norm_hidden_states, encoder_hidden_states, None, None)
hidden_states = hidden_states + attn_output
# 3. Feed-forward
norm_hidden_states = (self.norm3(hidden_states.float()) * (1 + c_scale_msa) + c_shift_msa).type_as(
hidden_states
)
ff_output = self.ffn(norm_hidden_states)
hidden_states = (hidden_states.float() + ff_output.float() * c_gate_msa).type_as(hidden_states)
return hidden_states
# modified from diffusers.models.transformers.transformer_wan.WanTransformer3DModel
class ChronoEditTransformer3DModel(
ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin, CacheMixin, AttentionMixin
):
r"""
A Transformer model for video-like data used in the ChronoEdit model.
Args:
patch_size (`Tuple[int]`, defaults to `(1, 2, 2)`):
3D patch dimensions for video embedding (t_patch, h_patch, w_patch).
num_attention_heads (`int`, defaults to `40`):
Fixed length for text embeddings.
attention_head_dim (`int`, defaults to `128`):
The number of channels in each head.
in_channels (`int`, defaults to `16`):
The number of channels in the input.
out_channels (`int`, defaults to `16`):
The number of channels in the output.
text_dim (`int`, defaults to `512`):
Input dimension for text embeddings.
freq_dim (`int`, defaults to `256`):
Dimension for sinusoidal time embeddings.
ffn_dim (`int`, defaults to `13824`):
Intermediate dimension in feed-forward network.
num_layers (`int`, defaults to `40`):
The number of layers of transformer blocks to use.
window_size (`Tuple[int]`, defaults to `(-1, -1)`):
Window size for local attention (-1 indicates global attention).
cross_attn_norm (`bool`, defaults to `True`):
Enable cross-attention normalization.
qk_norm (`bool`, defaults to `True`):
Enable query/key normalization.
eps (`float`, defaults to `1e-6`):
Epsilon value for normalization layers.
add_img_emb (`bool`, defaults to `False`):
Whether to use img_emb.
added_kv_proj_dim (`int`, *optional*, defaults to `None`):
The number of channels to use for the added key and value projections. If `None`, no projection is used.
"""
_supports_gradient_checkpointing = True
_skip_layerwise_casting_patterns = ["patch_embedding", "condition_embedder", "norm"]
_no_split_modules = ["WanTransformerBlock"]
_keep_in_fp32_modules = ["time_embedder", "scale_shift_table", "norm1", "norm2", "norm3"]
_keys_to_ignore_on_load_unexpected = ["norm_added_q"]
_repeated_blocks = ["WanTransformerBlock"]
_cp_plan = {
"rope": {
0: ContextParallelInput(split_dim=1, expected_dims=4, split_output=True),
1: ContextParallelInput(split_dim=1, expected_dims=4, split_output=True),
},
"blocks.0": {
"hidden_states": ContextParallelInput(split_dim=1, expected_dims=3, split_output=False),
},
"blocks.*": {
"encoder_hidden_states": ContextParallelInput(split_dim=1, expected_dims=3, split_output=False),
},
"proj_out": ContextParallelOutput(gather_dim=1, expected_dims=3),
}
@register_to_config
def __init__(
self,
patch_size: Tuple[int] = (1, 2, 2),
num_attention_heads: int = 40,
attention_head_dim: int = 128,
in_channels: int = 16,
out_channels: int = 16,
text_dim: int = 4096,
freq_dim: int = 256,
ffn_dim: int = 13824,
num_layers: int = 40,
cross_attn_norm: bool = True,
qk_norm: Optional[str] = "rms_norm_across_heads",
eps: float = 1e-6,
image_dim: Optional[int] = None,
added_kv_proj_dim: Optional[int] = None,
rope_max_seq_len: int = 1024,
pos_embed_seq_len: Optional[int] = None,
rope_temporal_skip_len: int = 8,
) -> None:
super().__init__()
inner_dim = num_attention_heads * attention_head_dim
out_channels = out_channels or in_channels
# 1. Patch & position embedding
self.rope = ChronoEditRotaryPosEmbed(
attention_head_dim, patch_size, rope_max_seq_len, temporal_skip_len=rope_temporal_skip_len
)
self.patch_embedding = nn.Conv3d(in_channels, inner_dim, kernel_size=patch_size, stride=patch_size)
# 2. Condition embeddings
# image_embedding_dim=1280 for I2V model
self.condition_embedder = WanTimeTextImageEmbedding(
dim=inner_dim,
time_freq_dim=freq_dim,
time_proj_dim=inner_dim * 6,
text_embed_dim=text_dim,
image_embed_dim=image_dim,
pos_embed_seq_len=pos_embed_seq_len,
)
# 3. Transformer blocks
self.blocks = nn.ModuleList(
[
WanTransformerBlock(
inner_dim, ffn_dim, num_attention_heads, qk_norm, cross_attn_norm, eps, added_kv_proj_dim
)
for _ in range(num_layers)
]
)
# 4. Output norm & projection
self.norm_out = FP32LayerNorm(inner_dim, eps, elementwise_affine=False)
self.proj_out = nn.Linear(inner_dim, out_channels * math.prod(patch_size))
self.scale_shift_table = nn.Parameter(torch.randn(1, 2, inner_dim) / inner_dim**0.5)
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
timestep: torch.LongTensor,
encoder_hidden_states: torch.Tensor,
encoder_hidden_states_image: Optional[torch.Tensor] = None,
return_dict: bool = True,
attention_kwargs: Optional[Dict[str, Any]] = None,
) -> Union[torch.Tensor, Dict[str, torch.Tensor]]:
if attention_kwargs is not None:
attention_kwargs = attention_kwargs.copy()
lora_scale = attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
logger.warning(
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
)
batch_size, num_channels, num_frames, height, width = hidden_states.shape
p_t, p_h, p_w = self.config.patch_size
post_patch_num_frames = num_frames // p_t
post_patch_height = height // p_h
post_patch_width = width // p_w
rotary_emb = self.rope(hidden_states)
hidden_states = self.patch_embedding(hidden_states)
hidden_states = hidden_states.flatten(2).transpose(1, 2)
# timestep shape: batch_size, or batch_size, seq_len (wan 2.2 ti2v)
if timestep.ndim == 2:
ts_seq_len = timestep.shape[1]
timestep = timestep.flatten() # batch_size * seq_len
else:
ts_seq_len = None
temb, timestep_proj, encoder_hidden_states, encoder_hidden_states_image = self.condition_embedder(
timestep, encoder_hidden_states, encoder_hidden_states_image, timestep_seq_len=ts_seq_len
)
if ts_seq_len is not None:
# batch_size, seq_len, 6, inner_dim
timestep_proj = timestep_proj.unflatten(2, (6, -1))
else:
# batch_size, 6, inner_dim
timestep_proj = timestep_proj.unflatten(1, (6, -1))
if encoder_hidden_states_image is not None:
encoder_hidden_states = torch.concat([encoder_hidden_states_image, encoder_hidden_states], dim=1)
# 4. Transformer blocks
if torch.is_grad_enabled() and self.gradient_checkpointing:
for block in self.blocks:
hidden_states = self._gradient_checkpointing_func(
block, hidden_states, encoder_hidden_states, timestep_proj, rotary_emb
)
else:
for block in self.blocks:
hidden_states = block(hidden_states, encoder_hidden_states, timestep_proj, rotary_emb)
# 5. Output norm, projection & unpatchify
if temb.ndim == 3:
# batch_size, seq_len, inner_dim (wan 2.2 ti2v)
shift, scale = (self.scale_shift_table.unsqueeze(0).to(temb.device) + temb.unsqueeze(2)).chunk(2, dim=2)
shift = shift.squeeze(2)
scale = scale.squeeze(2)
else:
# batch_size, inner_dim
shift, scale = (self.scale_shift_table.to(temb.device) + temb.unsqueeze(1)).chunk(2, dim=1)
# Move the shift and scale tensors to the same device as hidden_states.
# When using multi-GPU inference via accelerate these will be on the
# first device rather than the last device, which hidden_states ends up
# on.
shift = shift.to(hidden_states.device)
scale = scale.to(hidden_states.device)
hidden_states = (self.norm_out(hidden_states.float()) * (1 + scale) + shift).type_as(hidden_states)
hidden_states = self.proj_out(hidden_states)
hidden_states = hidden_states.reshape(
batch_size, post_patch_num_frames, post_patch_height, post_patch_width, p_t, p_h, p_w, -1
)
hidden_states = hidden_states.permute(0, 7, 1, 4, 2, 5, 3, 6)
output = hidden_states.flatten(6, 7).flatten(4, 5).flatten(2, 3)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (output,)
return Transformer2DModelOutput(sample=output)

View File

@@ -24,6 +24,7 @@ from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import PeftAdapterMixin
from ...utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
from ..attention import FeedForward
from ..attention_dispatch import dispatch_attention_fn
from ..attention_processor import Attention, AttentionProcessor
from ..cache_utils import CacheMixin
from ..embeddings import (
@@ -42,6 +43,9 @@ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class HunyuanVideoAttnProcessor2_0:
_attention_backend = None
_parallel_config = None
def __init__(self):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError(
@@ -64,9 +68,9 @@ class HunyuanVideoAttnProcessor2_0:
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
query = query.unflatten(2, (attn.heads, -1)).transpose(1, 2)
key = key.unflatten(2, (attn.heads, -1)).transpose(1, 2)
value = value.unflatten(2, (attn.heads, -1)).transpose(1, 2)
query = query.unflatten(2, (attn.heads, -1))
key = key.unflatten(2, (attn.heads, -1))
value = value.unflatten(2, (attn.heads, -1))
# 2. QK normalization
if attn.norm_q is not None:
@@ -81,21 +85,29 @@ class HunyuanVideoAttnProcessor2_0:
if attn.add_q_proj is None and encoder_hidden_states is not None:
query = torch.cat(
[
apply_rotary_emb(query[:, :, : -encoder_hidden_states.shape[1]], image_rotary_emb),
query[:, :, -encoder_hidden_states.shape[1] :],
apply_rotary_emb(
query[:, : -encoder_hidden_states.shape[1]],
image_rotary_emb,
sequence_dim=1,
),
query[:, -encoder_hidden_states.shape[1] :],
],
dim=2,
dim=1,
)
key = torch.cat(
[
apply_rotary_emb(key[:, :, : -encoder_hidden_states.shape[1]], image_rotary_emb),
key[:, :, -encoder_hidden_states.shape[1] :],
apply_rotary_emb(
key[:, : -encoder_hidden_states.shape[1]],
image_rotary_emb,
sequence_dim=1,
),
key[:, -encoder_hidden_states.shape[1] :],
],
dim=2,
dim=1,
)
else:
query = apply_rotary_emb(query, image_rotary_emb)
key = apply_rotary_emb(key, image_rotary_emb)
query = apply_rotary_emb(query, image_rotary_emb, sequence_dim=1)
key = apply_rotary_emb(key, image_rotary_emb, sequence_dim=1)
# 4. Encoder condition QKV projection and normalization
if attn.add_q_proj is not None and encoder_hidden_states is not None:
@@ -103,24 +115,31 @@ class HunyuanVideoAttnProcessor2_0:
encoder_key = attn.add_k_proj(encoder_hidden_states)
encoder_value = attn.add_v_proj(encoder_hidden_states)
encoder_query = encoder_query.unflatten(2, (attn.heads, -1)).transpose(1, 2)
encoder_key = encoder_key.unflatten(2, (attn.heads, -1)).transpose(1, 2)
encoder_value = encoder_value.unflatten(2, (attn.heads, -1)).transpose(1, 2)
encoder_query = encoder_query.unflatten(2, (attn.heads, -1))
encoder_key = encoder_key.unflatten(2, (attn.heads, -1))
encoder_value = encoder_value.unflatten(2, (attn.heads, -1))
if attn.norm_added_q is not None:
encoder_query = attn.norm_added_q(encoder_query)
if attn.norm_added_k is not None:
encoder_key = attn.norm_added_k(encoder_key)
query = torch.cat([query, encoder_query], dim=2)
key = torch.cat([key, encoder_key], dim=2)
value = torch.cat([value, encoder_value], dim=2)
query = torch.cat([query, encoder_query], dim=1)
key = torch.cat([key, encoder_key], dim=1)
value = torch.cat([value, encoder_value], dim=1)
# 5. Attention
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
hidden_states = dispatch_attention_fn(
query,
key,
value,
attn_mask=attention_mask,
dropout_p=0.0,
is_causal=False,
backend=self._attention_backend,
parallel_config=self._parallel_config,
)
hidden_states = hidden_states.transpose(1, 2).flatten(2, 3)
hidden_states = hidden_states.flatten(2, 3)
hidden_states = hidden_states.to(query.dtype)
# 6. Output projection

View File

@@ -0,0 +1,703 @@
# Copyright 2025 The HuggingFace Team and SANA-Video Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import Any, Dict, Optional, Tuple, Union
import torch
import torch.nn.functional as F
from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import FromOriginalModelMixin, PeftAdapterMixin
from ...utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
from ..attention import AttentionMixin
from ..attention_dispatch import dispatch_attention_fn
from ..attention_processor import Attention
from ..embeddings import PixArtAlphaTextProjection, TimestepEmbedding, Timesteps, get_1d_rotary_pos_embed
from ..modeling_outputs import Transformer2DModelOutput
from ..modeling_utils import ModelMixin
from ..normalization import AdaLayerNormSingle, RMSNorm
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class GLUMBTempConv(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
expand_ratio: float = 4,
norm_type: Optional[str] = None,
residual_connection: bool = True,
) -> None:
super().__init__()
hidden_channels = int(expand_ratio * in_channels)
self.norm_type = norm_type
self.residual_connection = residual_connection
self.nonlinearity = nn.SiLU()
self.conv_inverted = nn.Conv2d(in_channels, hidden_channels * 2, 1, 1, 0)
self.conv_depth = nn.Conv2d(hidden_channels * 2, hidden_channels * 2, 3, 1, 1, groups=hidden_channels * 2)
self.conv_point = nn.Conv2d(hidden_channels, out_channels, 1, 1, 0, bias=False)
self.norm = None
if norm_type == "rms_norm":
self.norm = RMSNorm(out_channels, eps=1e-5, elementwise_affine=True, bias=True)
self.conv_temp = nn.Conv2d(
out_channels, out_channels, kernel_size=(3, 1), stride=1, padding=(1, 0), bias=False
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
if self.residual_connection:
residual = hidden_states
batch_size, num_frames, height, width, num_channels = hidden_states.shape
hidden_states = hidden_states.view(batch_size * num_frames, height, width, num_channels).permute(0, 3, 1, 2)
hidden_states = self.conv_inverted(hidden_states)
hidden_states = self.nonlinearity(hidden_states)
hidden_states = self.conv_depth(hidden_states)
hidden_states, gate = torch.chunk(hidden_states, 2, dim=1)
hidden_states = hidden_states * self.nonlinearity(gate)
hidden_states = self.conv_point(hidden_states)
# Temporal aggregation
hidden_states_temporal = hidden_states.view(batch_size, num_frames, num_channels, height * width).permute(
0, 2, 1, 3
)
hidden_states = hidden_states_temporal + self.conv_temp(hidden_states_temporal)
hidden_states = hidden_states.permute(0, 2, 3, 1).view(batch_size, num_frames, height, width, num_channels)
if self.norm_type == "rms_norm":
# move channel to the last dimension so we apply RMSnorm across channel dimension
hidden_states = self.norm(hidden_states.movedim(1, -1)).movedim(-1, 1)
if self.residual_connection:
hidden_states = hidden_states + residual
return hidden_states
class SanaLinearAttnProcessor3_0:
r"""
Processor for implementing scaled dot-product linear attention.
"""
def __call__(
self,
attn: Attention,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
rotary_emb: Optional[torch.Tensor] = None,
) -> torch.Tensor:
original_dtype = hidden_states.dtype
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
query = attn.to_q(hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
query = query.unflatten(2, (attn.heads, -1))
key = key.unflatten(2, (attn.heads, -1))
value = value.unflatten(2, (attn.heads, -1))
# B,N,H,C
query = F.relu(query)
key = F.relu(key)
if rotary_emb is not None:
def apply_rotary_emb(
hidden_states: torch.Tensor,
freqs_cos: torch.Tensor,
freqs_sin: torch.Tensor,
):
x1, x2 = hidden_states.unflatten(-1, (-1, 2)).unbind(-1)
cos = freqs_cos[..., 0::2]
sin = freqs_sin[..., 1::2]
out = torch.empty_like(hidden_states)
out[..., 0::2] = x1 * cos - x2 * sin
out[..., 1::2] = x1 * sin + x2 * cos
return out.type_as(hidden_states)
query_rotate = apply_rotary_emb(query, *rotary_emb)
key_rotate = apply_rotary_emb(key, *rotary_emb)
# B,H,C,N
query = query.permute(0, 2, 3, 1)
key = key.permute(0, 2, 3, 1)
query_rotate = query_rotate.permute(0, 2, 3, 1)
key_rotate = key_rotate.permute(0, 2, 3, 1)
value = value.permute(0, 2, 3, 1)
query_rotate, key_rotate, value = query_rotate.float(), key_rotate.float(), value.float()
z = 1 / (key.sum(dim=-1, keepdim=True).transpose(-2, -1) @ query + 1e-15)
scores = torch.matmul(value, key_rotate.transpose(-1, -2))
hidden_states = torch.matmul(scores, query_rotate)
hidden_states = hidden_states * z
# B,H,C,N
hidden_states = hidden_states.flatten(1, 2).transpose(1, 2)
hidden_states = hidden_states.to(original_dtype)
hidden_states = attn.to_out[0](hidden_states)
hidden_states = attn.to_out[1](hidden_states)
return hidden_states
# Copied from diffusers.models.transformers.transformer_wan.WanRotaryPosEmbed
class WanRotaryPosEmbed(nn.Module):
def __init__(
self,
attention_head_dim: int,
patch_size: Tuple[int, int, int],
max_seq_len: int,
theta: float = 10000.0,
):
super().__init__()
self.attention_head_dim = attention_head_dim
self.patch_size = patch_size
self.max_seq_len = max_seq_len
h_dim = w_dim = 2 * (attention_head_dim // 6)
t_dim = attention_head_dim - h_dim - w_dim
freqs_dtype = torch.float32 if torch.backends.mps.is_available() else torch.float64
freqs_cos = []
freqs_sin = []
for dim in [t_dim, h_dim, w_dim]:
freq_cos, freq_sin = get_1d_rotary_pos_embed(
dim,
max_seq_len,
theta,
use_real=True,
repeat_interleave_real=True,
freqs_dtype=freqs_dtype,
)
freqs_cos.append(freq_cos)
freqs_sin.append(freq_sin)
self.register_buffer("freqs_cos", torch.cat(freqs_cos, dim=1), persistent=False)
self.register_buffer("freqs_sin", torch.cat(freqs_sin, dim=1), persistent=False)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
batch_size, num_channels, num_frames, height, width = hidden_states.shape
p_t, p_h, p_w = self.patch_size
ppf, pph, ppw = num_frames // p_t, height // p_h, width // p_w
split_sizes = [
self.attention_head_dim - 2 * (self.attention_head_dim // 3),
self.attention_head_dim // 3,
self.attention_head_dim // 3,
]
freqs_cos = self.freqs_cos.split(split_sizes, dim=1)
freqs_sin = self.freqs_sin.split(split_sizes, dim=1)
freqs_cos_f = freqs_cos[0][:ppf].view(ppf, 1, 1, -1).expand(ppf, pph, ppw, -1)
freqs_cos_h = freqs_cos[1][:pph].view(1, pph, 1, -1).expand(ppf, pph, ppw, -1)
freqs_cos_w = freqs_cos[2][:ppw].view(1, 1, ppw, -1).expand(ppf, pph, ppw, -1)
freqs_sin_f = freqs_sin[0][:ppf].view(ppf, 1, 1, -1).expand(ppf, pph, ppw, -1)
freqs_sin_h = freqs_sin[1][:pph].view(1, pph, 1, -1).expand(ppf, pph, ppw, -1)
freqs_sin_w = freqs_sin[2][:ppw].view(1, 1, ppw, -1).expand(ppf, pph, ppw, -1)
freqs_cos = torch.cat([freqs_cos_f, freqs_cos_h, freqs_cos_w], dim=-1).reshape(1, ppf * pph * ppw, 1, -1)
freqs_sin = torch.cat([freqs_sin_f, freqs_sin_h, freqs_sin_w], dim=-1).reshape(1, ppf * pph * ppw, 1, -1)
return freqs_cos, freqs_sin
# Copied from diffusers.models.transformers.sana_transformer.SanaModulatedNorm
class SanaModulatedNorm(nn.Module):
def __init__(self, dim: int, elementwise_affine: bool = False, eps: float = 1e-6):
super().__init__()
self.norm = nn.LayerNorm(dim, elementwise_affine=elementwise_affine, eps=eps)
def forward(
self, hidden_states: torch.Tensor, temb: torch.Tensor, scale_shift_table: torch.Tensor
) -> torch.Tensor:
hidden_states = self.norm(hidden_states)
shift, scale = (scale_shift_table[None] + temb[:, None].to(scale_shift_table.device)).chunk(2, dim=1)
hidden_states = hidden_states * (1 + scale) + shift
return hidden_states
class SanaCombinedTimestepGuidanceEmbeddings(nn.Module):
def __init__(self, embedding_dim):
super().__init__()
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
self.guidance_condition_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
self.guidance_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
self.silu = nn.SiLU()
self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=True)
def forward(self, timestep: torch.Tensor, guidance: torch.Tensor = None, hidden_dtype: torch.dtype = None):
timesteps_proj = self.time_proj(timestep)
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype)) # (N, D)
guidance_proj = self.guidance_condition_proj(guidance)
guidance_emb = self.guidance_embedder(guidance_proj.to(dtype=hidden_dtype))
conditioning = timesteps_emb + guidance_emb
return self.linear(self.silu(conditioning)), conditioning
class SanaAttnProcessor2_0:
r"""
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
"""
_attention_backend = None
_parallel_config = None
def __init__(self):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("SanaAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
def __call__(
self,
attn: Attention,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim)
key = key.view(batch_size, -1, attn.heads, head_dim)
value = value.view(batch_size, -1, attn.heads, head_dim)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
hidden_states = dispatch_attention_fn(
query,
key,
value,
attn_mask=attention_mask,
dropout_p=0.0,
is_causal=False,
backend=self._attention_backend,
parallel_config=self._parallel_config,
)
hidden_states = hidden_states.flatten(2, 3)
hidden_states = hidden_states.type_as(query)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
class SanaVideoTransformerBlock(nn.Module):
r"""
Transformer block introduced in [Sana-Video](https://huggingface.co/papers/2509.24695).
"""
def __init__(
self,
dim: int = 2240,
num_attention_heads: int = 20,
attention_head_dim: int = 112,
dropout: float = 0.0,
num_cross_attention_heads: Optional[int] = 20,
cross_attention_head_dim: Optional[int] = 112,
cross_attention_dim: Optional[int] = 2240,
attention_bias: bool = True,
norm_elementwise_affine: bool = False,
norm_eps: float = 1e-6,
attention_out_bias: bool = True,
mlp_ratio: float = 3.0,
qk_norm: Optional[str] = "rms_norm_across_heads",
rope_max_seq_len: int = 1024,
) -> None:
super().__init__()
# 1. Self Attention
self.norm1 = nn.LayerNorm(dim, elementwise_affine=False, eps=norm_eps)
self.attn1 = Attention(
query_dim=dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
kv_heads=num_attention_heads if qk_norm is not None else None,
qk_norm=qk_norm,
dropout=dropout,
bias=attention_bias,
cross_attention_dim=None,
processor=SanaLinearAttnProcessor3_0(),
)
# 2. Cross Attention
if cross_attention_dim is not None:
self.norm2 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
self.attn2 = Attention(
query_dim=dim,
qk_norm=qk_norm,
kv_heads=num_cross_attention_heads if qk_norm is not None else None,
cross_attention_dim=cross_attention_dim,
heads=num_cross_attention_heads,
dim_head=cross_attention_head_dim,
dropout=dropout,
bias=True,
out_bias=attention_out_bias,
processor=SanaAttnProcessor2_0(),
)
# 3. Feed-forward
self.ff = GLUMBTempConv(dim, dim, mlp_ratio, norm_type=None, residual_connection=False)
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
timestep: Optional[torch.LongTensor] = None,
frames: int = None,
height: int = None,
width: int = None,
rotary_emb: Optional[torch.Tensor] = None,
) -> torch.Tensor:
batch_size = hidden_states.shape[0]
# 1. Modulation
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
).chunk(6, dim=1)
# 2. Self Attention
norm_hidden_states = self.norm1(hidden_states)
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
norm_hidden_states = norm_hidden_states.to(hidden_states.dtype)
attn_output = self.attn1(norm_hidden_states, rotary_emb=rotary_emb)
hidden_states = hidden_states + gate_msa * attn_output
# 3. Cross Attention
if self.attn2 is not None:
attn_output = self.attn2(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
)
hidden_states = attn_output + hidden_states
# 4. Feed-forward
norm_hidden_states = self.norm2(hidden_states)
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
norm_hidden_states = norm_hidden_states.unflatten(1, (frames, height, width))
ff_output = self.ff(norm_hidden_states)
ff_output = ff_output.flatten(1, 3)
hidden_states = hidden_states + gate_mlp * ff_output
return hidden_states
class SanaVideoTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin, AttentionMixin):
r"""
A 3D Transformer model introduced in [Sana-Video](https://huggingface.co/papers/2509.24695) family of models.
Args:
in_channels (`int`, defaults to `16`):
The number of channels in the input.
out_channels (`int`, *optional*, defaults to `16`):
The number of channels in the output.
num_attention_heads (`int`, defaults to `20`):
The number of heads to use for multi-head attention.
attention_head_dim (`int`, defaults to `112`):
The number of channels in each head.
num_layers (`int`, defaults to `20`):
The number of layers of Transformer blocks to use.
num_cross_attention_heads (`int`, *optional*, defaults to `20`):
The number of heads to use for cross-attention.
cross_attention_head_dim (`int`, *optional*, defaults to `112`):
The number of channels in each head for cross-attention.
cross_attention_dim (`int`, *optional*, defaults to `2240`):
The number of channels in the cross-attention output.
caption_channels (`int`, defaults to `2304`):
The number of channels in the caption embeddings.
mlp_ratio (`float`, defaults to `2.5`):
The expansion ratio to use in the GLUMBConv layer.
dropout (`float`, defaults to `0.0`):
The dropout probability.
attention_bias (`bool`, defaults to `False`):
Whether to use bias in the attention layer.
sample_size (`int`, defaults to `32`):
The base size of the input latent.
patch_size (`int`, defaults to `1`):
The size of the patches to use in the patch embedding layer.
norm_elementwise_affine (`bool`, defaults to `False`):
Whether to use elementwise affinity in the normalization layer.
norm_eps (`float`, defaults to `1e-6`):
The epsilon value for the normalization layer.
qk_norm (`str`, *optional*, defaults to `None`):
The normalization to use for the query and key.
"""
_supports_gradient_checkpointing = True
_no_split_modules = ["SanaVideoTransformerBlock", "SanaModulatedNorm"]
_skip_layerwise_casting_patterns = ["patch_embedding", "norm"]
@register_to_config
def __init__(
self,
in_channels: int = 16,
out_channels: Optional[int] = 16,
num_attention_heads: int = 20,
attention_head_dim: int = 112,
num_layers: int = 20,
num_cross_attention_heads: Optional[int] = 20,
cross_attention_head_dim: Optional[int] = 112,
cross_attention_dim: Optional[int] = 2240,
caption_channels: int = 2304,
mlp_ratio: float = 2.5,
dropout: float = 0.0,
attention_bias: bool = False,
sample_size: int = 30,
patch_size: Tuple[int, int, int] = (1, 2, 2),
norm_elementwise_affine: bool = False,
norm_eps: float = 1e-6,
interpolation_scale: Optional[int] = None,
guidance_embeds: bool = False,
guidance_embeds_scale: float = 0.1,
qk_norm: Optional[str] = "rms_norm_across_heads",
rope_max_seq_len: int = 1024,
) -> None:
super().__init__()
out_channels = out_channels or in_channels
inner_dim = num_attention_heads * attention_head_dim
# 1. Patch & position embedding
self.rope = WanRotaryPosEmbed(attention_head_dim, patch_size, rope_max_seq_len)
self.patch_embedding = nn.Conv3d(in_channels, inner_dim, kernel_size=patch_size, stride=patch_size)
# 2. Additional condition embeddings
if guidance_embeds:
self.time_embed = SanaCombinedTimestepGuidanceEmbeddings(inner_dim)
else:
self.time_embed = AdaLayerNormSingle(inner_dim)
self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=inner_dim)
self.caption_norm = RMSNorm(inner_dim, eps=1e-5, elementwise_affine=True)
# 3. Transformer blocks
self.transformer_blocks = nn.ModuleList(
[
SanaVideoTransformerBlock(
inner_dim,
num_attention_heads,
attention_head_dim,
dropout=dropout,
num_cross_attention_heads=num_cross_attention_heads,
cross_attention_head_dim=cross_attention_head_dim,
cross_attention_dim=cross_attention_dim,
attention_bias=attention_bias,
norm_elementwise_affine=norm_elementwise_affine,
norm_eps=norm_eps,
mlp_ratio=mlp_ratio,
qk_norm=qk_norm,
)
for _ in range(num_layers)
]
)
# 4. Output blocks
self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5)
self.norm_out = SanaModulatedNorm(inner_dim, elementwise_affine=False, eps=1e-6)
self.proj_out = nn.Linear(inner_dim, math.prod(patch_size) * out_channels)
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
timestep: torch.Tensor,
guidance: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
attention_kwargs: Optional[Dict[str, Any]] = None,
controlnet_block_samples: Optional[Tuple[torch.Tensor]] = None,
return_dict: bool = True,
) -> Union[Tuple[torch.Tensor, ...], Transformer2DModelOutput]:
if attention_kwargs is not None:
attention_kwargs = attention_kwargs.copy()
lora_scale = attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
logger.warning(
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
)
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
# expects mask of shape:
# [batch, key_tokens]
# adds singleton query_tokens dimension:
# [batch, 1, key_tokens]
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
if attention_mask is not None and attention_mask.ndim == 2:
# assume that mask is expressed as:
# (1 = keep, 0 = discard)
# convert mask into a bias that can be added to attention scores:
# (keep = +0, discard = -10000.0)
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
attention_mask = attention_mask.unsqueeze(1)
# convert encoder_attention_mask to a bias the same way we do for attention_mask
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
# 1. Input
batch_size, num_channels, num_frames, height, width = hidden_states.shape
p_t, p_h, p_w = self.config.patch_size
post_patch_num_frames = num_frames // p_t
post_patch_height = height // p_h
post_patch_width = width // p_w
rotary_emb = self.rope(hidden_states)
hidden_states = self.patch_embedding(hidden_states)
hidden_states = hidden_states.flatten(2).transpose(1, 2)
if guidance is not None:
timestep, embedded_timestep = self.time_embed(
timestep, guidance=guidance, hidden_dtype=hidden_states.dtype
)
else:
timestep, embedded_timestep = self.time_embed(
timestep, batch_size=batch_size, hidden_dtype=hidden_states.dtype
)
encoder_hidden_states = self.caption_projection(encoder_hidden_states)
encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
encoder_hidden_states = self.caption_norm(encoder_hidden_states)
# 2. Transformer blocks
if torch.is_grad_enabled() and self.gradient_checkpointing:
for index_block, block in enumerate(self.transformer_blocks):
hidden_states = self._gradient_checkpointing_func(
block,
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
timestep,
post_patch_num_frames,
post_patch_height,
post_patch_width,
rotary_emb,
)
if controlnet_block_samples is not None and 0 < index_block <= len(controlnet_block_samples):
hidden_states = hidden_states + controlnet_block_samples[index_block - 1]
else:
for index_block, block in enumerate(self.transformer_blocks):
hidden_states = block(
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
timestep,
post_patch_num_frames,
post_patch_height,
post_patch_width,
rotary_emb,
)
if controlnet_block_samples is not None and 0 < index_block <= len(controlnet_block_samples):
hidden_states = hidden_states + controlnet_block_samples[index_block - 1]
# 3. Normalization
hidden_states = self.norm_out(hidden_states, embedded_timestep, self.scale_shift_table)
hidden_states = self.proj_out(hidden_states)
# 5. Unpatchify
hidden_states = hidden_states.reshape(
batch_size, post_patch_num_frames, post_patch_height, post_patch_width, p_t, p_h, p_w, -1
)
hidden_states = hidden_states.permute(0, 7, 1, 4, 2, 5, 3, 6)
output = hidden_states.flatten(6, 7).flatten(4, 5).flatten(2, 3)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (output,)
return Transformer2DModelOutput(sample=output)

View File

@@ -555,6 +555,9 @@ class WanTransformer3DModel(
"encoder_hidden_states": ContextParallelInput(split_dim=1, expected_dims=3, split_output=False),
},
"proj_out": ContextParallelOutput(gather_dim=1, expected_dims=3),
"": {
"timestep": ContextParallelInput(split_dim=1, expected_dims=2, split_output=False),
},
}
@register_to_config

View File

@@ -164,7 +164,11 @@ class AutoOffloadStrategy:
device_type = execution_device.type
device_module = getattr(torch, device_type, torch.cuda)
mem_on_device = device_module.mem_get_info(execution_device.index)[0]
try:
mem_on_device = device_module.mem_get_info(execution_device.index)[0]
except AttributeError:
raise AttributeError(f"Do not know how to obtain obtain memory info for {str(device_module)}.")
mem_on_device = mem_on_device - self.memory_reserve_margin
if current_module_size < mem_on_device:
return []
@@ -699,6 +703,8 @@ class ComponentsManager:
if not is_accelerate_available():
raise ImportError("Make sure to install accelerate to use auto_cpu_offload")
# TODO: add a warning if mem_get_info isn't available on `device`.
for name, component in self.components.items():
if isinstance(component, torch.nn.Module) and hasattr(component, "_hf_hook"):
remove_hook_from_module(component, recurse=True)

View File

@@ -598,7 +598,7 @@ class FluxKontextRoPEInputsStep(ModularPipelineBlocks):
and getattr(block_state, "image_width", None) is not None
):
image_latent_height = 2 * (int(block_state.image_height) // (components.vae_scale_factor * 2))
image_latent_width = 2 * (int(block_state.width) // (components.vae_scale_factor * 2))
image_latent_width = 2 * (int(block_state.image_width) // (components.vae_scale_factor * 2))
img_ids = FluxPipeline._prepare_latent_image_ids(
None, image_latent_height // 2, image_latent_width // 2, device, dtype
)

View File

@@ -59,7 +59,7 @@ class FluxLoopDenoiser(ModularPipelineBlocks):
),
InputParam(
"guidance",
required=True,
required=False,
type_hint=torch.Tensor,
description="Guidance scale as a tensor",
),
@@ -141,7 +141,7 @@ class FluxKontextLoopDenoiser(ModularPipelineBlocks):
),
InputParam(
"guidance",
required=True,
required=False,
type_hint=torch.Tensor,
description="Guidance scale as a tensor",
),

View File

@@ -95,7 +95,7 @@ class FluxProcessImagesInputStep(ModularPipelineBlocks):
ComponentSpec(
"image_processor",
VaeImageProcessor,
config=FrozenDict({"vae_scale_factor": 16}),
config=FrozenDict({"vae_scale_factor": 16, "vae_latent_channels": 16}),
default_creation_method="from_config",
),
]
@@ -143,10 +143,6 @@ class FluxProcessImagesInputStep(ModularPipelineBlocks):
class FluxKontextProcessImagesInputStep(ModularPipelineBlocks):
model_name = "flux-kontext"
def __init__(self, _auto_resize=True):
self._auto_resize = _auto_resize
super().__init__()
@property
def description(self) -> str:
return (
@@ -167,7 +163,7 @@ class FluxKontextProcessImagesInputStep(ModularPipelineBlocks):
@property
def inputs(self) -> List[InputParam]:
return [InputParam("image")]
return [InputParam("image"), InputParam("_auto_resize", type_hint=bool, default=True)]
@property
def intermediate_outputs(self) -> List[OutputParam]:
@@ -195,7 +191,8 @@ class FluxKontextProcessImagesInputStep(ModularPipelineBlocks):
img = images[0]
image_height, image_width = components.image_processor.get_default_height_width(img)
aspect_ratio = image_width / image_height
if self._auto_resize:
_auto_resize = block_state._auto_resize
if _auto_resize:
# Kontext is trained on specific resolutions, using one of them is recommended
_, image_width, image_height = min(
(abs(aspect_ratio - w / h), w, h) for w, h in PREFERRED_KONTEXT_RESOLUTIONS

View File

@@ -112,6 +112,10 @@ class FluxTextInputStep(ModularPipelineBlocks):
block_state.prompt_embeds = block_state.prompt_embeds.view(
block_state.batch_size * block_state.num_images_per_prompt, seq_len, -1
)
pooled_prompt_embeds = block_state.pooled_prompt_embeds.repeat(1, block_state.num_images_per_prompt)
block_state.pooled_prompt_embeds = pooled_prompt_embeds.view(
block_state.batch_size * block_state.num_images_per_prompt, -1
)
self.set_block_state(state, block_state)
return components, state

View File

@@ -307,14 +307,13 @@ class ModularPipelineBlocks(ConfigMixin, PushToHubMixin):
"local_files_only",
"local_dir",
"proxies",
"resume_download",
"revision",
"subfolder",
"token",
]
hub_kwargs = {name: kwargs.pop(name) for name in hub_kwargs_names if name in kwargs}
config = cls.load_config(pretrained_model_name_or_path)
config = cls.load_config(pretrained_model_name_or_path, **hub_kwargs)
has_remote_code = "auto_map" in config and cls.__name__ in config["auto_map"]
trust_remote_code = resolve_trust_remote_code(
trust_remote_code, pretrained_model_name_or_path, has_remote_code
@@ -2131,8 +2130,13 @@ class ModularPipeline(ConfigMixin, PushToHubMixin):
component_load_kwargs[key] = value["default"]
try:
components_to_register[name] = spec.load(**component_load_kwargs)
except Exception as e:
logger.warning(f"Failed to create component '{name}': {e}")
except Exception:
logger.warning(
f"\nFailed to create component {name}:\n"
f"- Component spec: {spec}\n"
f"- load() called with kwargs: {component_load_kwargs}\n\n"
f"{traceback.format_exc()}"
)
# Register all components at once
self.register_components(**components_to_register)

View File

@@ -308,6 +308,7 @@ else:
"SanaSprintPipeline",
"SanaControlNetPipeline",
"SanaSprintImg2ImgPipeline",
"SanaVideoPipeline",
]
_import_structure["semantic_stable_diffusion"] = ["SemanticStableDiffusionPipeline"]
_import_structure["shap_e"] = ["ShapEImg2ImgPipeline", "ShapEPipeline"]
@@ -403,6 +404,7 @@ else:
"QwenImageControlNetInpaintPipeline",
"QwenImageControlNetPipeline",
]
_import_structure["chronoedit"] = ["ChronoEditPipeline"]
try:
if not is_onnx_available():
raise OptionalDependencyNotAvailable()
@@ -565,6 +567,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
from .bria import BriaPipeline
from .bria_fibo import BriaFiboPipeline
from .chroma import ChromaImg2ImgPipeline, ChromaPipeline
from .chronoedit import ChronoEditPipeline
from .cogvideo import (
CogVideoXFunControlPipeline,
CogVideoXImageToVideoPipeline,
@@ -735,7 +738,13 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
QwenImageInpaintPipeline,
QwenImagePipeline,
)
from .sana import SanaControlNetPipeline, SanaPipeline, SanaSprintImg2ImgPipeline, SanaSprintPipeline
from .sana import (
SanaControlNetPipeline,
SanaPipeline,
SanaSprintImg2ImgPipeline,
SanaSprintPipeline,
SanaVideoPipeline,
)
from .semantic_stable_diffusion import SemanticStableDiffusionPipeline
from .shap_e import ShapEImg2ImgPipeline, ShapEPipeline
from .stable_audio import StableAudioPipeline, StableAudioProjectionModel

View File

@@ -0,0 +1,47 @@
from typing import TYPE_CHECKING
from ...utils import (
DIFFUSERS_SLOW_IMPORT,
OptionalDependencyNotAvailable,
_LazyModule,
get_objects_from_module,
is_torch_available,
is_transformers_available,
)
_dummy_objects = {}
_import_structure = {}
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils import dummy_torch_and_transformers_objects # noqa F403
_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
else:
_import_structure["pipeline_chronoedit"] = ["ChronoEditPipeline"]
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import *
else:
from .pipeline_chronoedit import ChronoEditPipeline
else:
import sys
sys.modules[__name__] = _LazyModule(
__name__,
globals()["__file__"],
_import_structure,
module_spec=__spec__,
)
for name, value in _dummy_objects.items():
setattr(sys.modules[__name__], name, value)

View File

@@ -0,0 +1,752 @@
# Copyright 2025 The ChronoEdit Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import html
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import PIL
import regex as re
import torch
from transformers import AutoTokenizer, CLIPImageProcessor, CLIPVisionModel, UMT5EncoderModel
from ...callbacks import MultiPipelineCallbacks, PipelineCallback
from ...image_processor import PipelineImageInput
from ...loaders import WanLoraLoaderMixin
from ...models import AutoencoderKLWan, ChronoEditTransformer3DModel
from ...schedulers import FlowMatchEulerDiscreteScheduler
from ...utils import is_ftfy_available, is_torch_xla_available, logging, replace_example_docstring
from ...utils.torch_utils import randn_tensor
from ...video_processor import VideoProcessor
from ..pipeline_utils import DiffusionPipeline
from .pipeline_output import ChronoEditPipelineOutput
if is_torch_xla_available():
import torch_xla.core.xla_model as xm
XLA_AVAILABLE = True
else:
XLA_AVAILABLE = False
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
if is_ftfy_available():
import ftfy
EXAMPLE_DOC_STRING = """
Examples:
```python
>>> import torch
>>> import numpy as np
>>> from diffusers import AutoencoderKLWan, ChronoEditTransformer3DModel, ChronoEditPipeline
>>> from diffusers.utils import export_to_video, load_image
>>> from transformers import CLIPVisionModel
>>> # Available models: nvidia/ChronoEdit-14B-Diffusers
>>> model_id = "nvidia/ChronoEdit-14B-Diffusers"
>>> image_encoder = CLIPVisionModel.from_pretrained(
... model_id, subfolder="image_encoder", torch_dtype=torch.float32
... )
>>> vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
>>> transformer = ChronoEditTransformer3DModel.from_pretrained(
... model_id, subfolder="transformer", torch_dtype=torch.bfloat16
... )
>>> pipe = ChronoEditPipeline.from_pretrained(
... model_id, vae=vae, image_encoder=image_encoder, transformer=transformer, torch_dtype=torch.bfloat16
... )
>>> pipe.to("cuda")
>>> image = load_image("https://huggingface.co/spaces/nvidia/ChronoEdit/resolve/main/examples/3.png")
>>> max_area = 720 * 1280
>>> aspect_ratio = image.height / image.width
>>> mod_value = pipe.vae_scale_factor_spatial * pipe.transformer.config.patch_size[1]
>>> height = round(np.sqrt(max_area * aspect_ratio)) // mod_value * mod_value
>>> width = round(np.sqrt(max_area / aspect_ratio)) // mod_value * mod_value
>>> image = image.resize((width, height))
>>> prompt = (
... "The user wants to transform the image by adding a small, cute mouse sitting inside the floral teacup, enjoying a spa bath. The mouse should appear relaxed and cheerful, with a tiny white bath towel draped over its head like a turban. It should be positioned comfortably in the cups liquid, with gentle steam rising around it to blend with the cozy atmosphere. "
... "The mouses pose should be natural—perhaps sitting upright with paws resting lightly on the rim or submerged in the tea. The teacups floral design, gold trim, and warm lighting must remain unchanged to preserve the original aesthetic. The steam should softly swirl around the mouse, enhancing the spa-like, whimsical mood."
... )
>>> output = pipe(
... image=image,
... prompt=prompt,
... height=height,
... width=width,
... num_frames=5,
... guidance_scale=5.0,
... enable_temporal_reasoning=False,
... num_temporal_reasoning_steps=0,
... ).frames[0]
>>> export_to_video(output, "output.mp4", fps=16)
```
"""
def basic_clean(text):
text = ftfy.fix_text(text)
text = html.unescape(html.unescape(text))
return text.strip()
def whitespace_clean(text):
text = re.sub(r"\s+", " ", text)
text = text.strip()
return text
def prompt_clean(text):
text = whitespace_clean(basic_clean(text))
return text
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
def retrieve_latents(
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
):
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
return encoder_output.latent_dist.sample(generator)
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
return encoder_output.latent_dist.mode()
elif hasattr(encoder_output, "latents"):
return encoder_output.latents
else:
raise AttributeError("Could not access latents of provided encoder_output")
class ChronoEditPipeline(DiffusionPipeline, WanLoraLoaderMixin):
r"""
Pipeline for image-to-video generation using Wan.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
Args:
tokenizer ([`T5Tokenizer`]):
Tokenizer from [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5Tokenizer),
specifically the [google/umt5-xxl](https://huggingface.co/google/umt5-xxl) variant.
text_encoder ([`T5EncoderModel`]):
[T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
the [google/umt5-xxl](https://huggingface.co/google/umt5-xxl) variant.
image_encoder ([`CLIPVisionModel`]):
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPVisionModel), specifically
the
[clip-vit-huge-patch14](https://github.com/mlfoundations/open_clip/blob/main/docs/PRETRAINED.md#vit-h14-xlm-roberta-large)
variant.
transformer ([`WanTransformer3DModel`]):
Conditional Transformer to denoise the input latents.
scheduler ([`UniPCMultistepScheduler`]):
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
vae ([`AutoencoderKLWan`]):
Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations.
"""
model_cpu_offload_seq = "text_encoder->image_encoder->transformer->vae"
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
def __init__(
self,
tokenizer: AutoTokenizer,
text_encoder: UMT5EncoderModel,
image_encoder: CLIPVisionModel,
image_processor: CLIPImageProcessor,
transformer: ChronoEditTransformer3DModel,
vae: AutoencoderKLWan,
scheduler: FlowMatchEulerDiscreteScheduler,
):
super().__init__()
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
image_encoder=image_encoder,
transformer=transformer,
scheduler=scheduler,
image_processor=image_processor,
)
self.vae_scale_factor_temporal = self.vae.config.scale_factor_temporal if getattr(self, "vae", None) else 4
self.vae_scale_factor_spatial = self.vae.config.scale_factor_spatial if getattr(self, "vae", None) else 8
self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial)
self.image_processor = image_processor
# Copied from diffusers.pipelines.wan.pipeline_wan_i2v.WanImageToVideoPipeline._get_t5_prompt_embeds
def _get_t5_prompt_embeds(
self,
prompt: Union[str, List[str]] = None,
num_videos_per_prompt: int = 1,
max_sequence_length: int = 512,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
device = device or self._execution_device
dtype = dtype or self.text_encoder.dtype
prompt = [prompt] if isinstance(prompt, str) else prompt
prompt = [prompt_clean(u) for u in prompt]
batch_size = len(prompt)
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=max_sequence_length,
truncation=True,
add_special_tokens=True,
return_attention_mask=True,
return_tensors="pt",
)
text_input_ids, mask = text_inputs.input_ids, text_inputs.attention_mask
seq_lens = mask.gt(0).sum(dim=1).long()
prompt_embeds = self.text_encoder(text_input_ids.to(device), mask.to(device)).last_hidden_state
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
prompt_embeds = [u[:v] for u, v in zip(prompt_embeds, seq_lens)]
prompt_embeds = torch.stack(
[torch.cat([u, u.new_zeros(max_sequence_length - u.size(0), u.size(1))]) for u in prompt_embeds], dim=0
)
# duplicate text embeddings for each generation per prompt, using mps friendly method
_, seq_len, _ = prompt_embeds.shape
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1)
return prompt_embeds
# Copied from diffusers.pipelines.wan.pipeline_wan_i2v.WanImageToVideoPipeline.encode_image
def encode_image(
self,
image: PipelineImageInput,
device: Optional[torch.device] = None,
):
device = device or self._execution_device
image = self.image_processor(images=image, return_tensors="pt").to(device)
image_embeds = self.image_encoder(**image, output_hidden_states=True)
return image_embeds.hidden_states[-2]
# Copied from diffusers.pipelines.wan.pipeline_wan.WanPipeline.encode_prompt
def encode_prompt(
self,
prompt: Union[str, List[str]],
negative_prompt: Optional[Union[str, List[str]]] = None,
do_classifier_free_guidance: bool = True,
num_videos_per_prompt: int = 1,
prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
max_sequence_length: int = 226,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
Whether to use classifier free guidance or not.
num_videos_per_prompt (`int`, *optional*, defaults to 1):
Number of videos that should be generated per prompt. torch device to place the resulting embeddings on
prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
device: (`torch.device`, *optional*):
torch device
dtype: (`torch.dtype`, *optional*):
torch dtype
"""
device = device or self._execution_device
prompt = [prompt] if isinstance(prompt, str) else prompt
if prompt is not None:
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if prompt_embeds is None:
prompt_embeds = self._get_t5_prompt_embeds(
prompt=prompt,
num_videos_per_prompt=num_videos_per_prompt,
max_sequence_length=max_sequence_length,
device=device,
dtype=dtype,
)
if do_classifier_free_guidance and negative_prompt_embeds is None:
negative_prompt = negative_prompt or ""
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
if prompt is not None and type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
negative_prompt_embeds = self._get_t5_prompt_embeds(
prompt=negative_prompt,
num_videos_per_prompt=num_videos_per_prompt,
max_sequence_length=max_sequence_length,
device=device,
dtype=dtype,
)
return prompt_embeds, negative_prompt_embeds
# modified from diffusers.pipelines.wan.pipeline_wan_i2v.WanImageToVideoPipeline.check_inputs
def check_inputs(
self,
prompt,
negative_prompt,
image,
height,
width,
prompt_embeds=None,
negative_prompt_embeds=None,
image_embeds=None,
callback_on_step_end_tensor_inputs=None,
):
if image is not None and image_embeds is not None:
raise ValueError(
f"Cannot forward both `image`: {image} and `image_embeds`: {image_embeds}. Please make sure to"
" only forward one of the two."
)
if image is None and image_embeds is None:
raise ValueError(
"Provide either `image` or `prompt_embeds`. Cannot leave both `image` and `image_embeds` undefined."
)
if image is not None and not isinstance(image, torch.Tensor) and not isinstance(image, PIL.Image.Image):
raise ValueError(f"`image` has to be of type `torch.Tensor` or `PIL.Image.Image` but is {type(image)}")
if height % 16 != 0 or width % 16 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 16 but are {height} and {width}.")
if callback_on_step_end_tensor_inputs is not None and not all(
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
):
raise ValueError(
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
elif negative_prompt is not None and (
not isinstance(negative_prompt, str) and not isinstance(negative_prompt, list)
):
raise ValueError(f"`negative_prompt` has to be of type `str` or `list` but is {type(negative_prompt)}")
# modified from diffusers.pipelines.wan.pipeline_wan_i2v.WanImageToVideoPipeline.prepare_latents
def prepare_latents(
self,
image: PipelineImageInput,
batch_size: int,
num_channels_latents: int = 16,
height: int = 480,
width: int = 832,
num_frames: int = 81,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
num_latent_frames = (num_frames - 1) // self.vae_scale_factor_temporal + 1
latent_height = height // self.vae_scale_factor_spatial
latent_width = width // self.vae_scale_factor_spatial
shape = (batch_size, num_channels_latents, num_latent_frames, latent_height, latent_width)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
latents = latents.to(device=device, dtype=dtype)
image = image.unsqueeze(2) # [batch_size, channels, 1, height, width]
video_condition = torch.cat(
[image, image.new_zeros(image.shape[0], image.shape[1], num_frames - 1, height, width)], dim=2
)
video_condition = video_condition.to(device=device, dtype=self.vae.dtype)
latents_mean = (
torch.tensor(self.vae.config.latents_mean)
.view(1, self.vae.config.z_dim, 1, 1, 1)
.to(latents.device, latents.dtype)
)
latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to(
latents.device, latents.dtype
)
if isinstance(generator, list):
latent_condition = [
retrieve_latents(self.vae.encode(video_condition), sample_mode="argmax") for _ in generator
]
latent_condition = torch.cat(latent_condition)
else:
latent_condition = retrieve_latents(self.vae.encode(video_condition), sample_mode="argmax")
latent_condition = latent_condition.repeat(batch_size, 1, 1, 1, 1)
latent_condition = latent_condition.to(dtype)
latent_condition = (latent_condition - latents_mean) * latents_std
mask_lat_size = torch.ones(batch_size, 1, num_frames, latent_height, latent_width)
mask_lat_size[:, :, list(range(1, num_frames))] = 0
first_frame_mask = mask_lat_size[:, :, 0:1]
first_frame_mask = torch.repeat_interleave(first_frame_mask, dim=2, repeats=self.vae_scale_factor_temporal)
mask_lat_size = torch.concat([first_frame_mask, mask_lat_size[:, :, 1:, :]], dim=2)
mask_lat_size = mask_lat_size.view(batch_size, -1, self.vae_scale_factor_temporal, latent_height, latent_width)
mask_lat_size = mask_lat_size.transpose(1, 2)
mask_lat_size = mask_lat_size.to(latent_condition.device)
return latents, torch.concat([mask_lat_size, latent_condition], dim=1)
@property
def guidance_scale(self):
return self._guidance_scale
@property
def do_classifier_free_guidance(self):
return self._guidance_scale > 1
@property
def num_timesteps(self):
return self._num_timesteps
@property
def current_timestep(self):
return self._current_timestep
@property
def interrupt(self):
return self._interrupt
@property
def attention_kwargs(self):
return self._attention_kwargs
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
image: PipelineImageInput,
prompt: Union[str, List[str]] = None,
negative_prompt: Union[str, List[str]] = None,
height: int = 480,
width: int = 832,
num_frames: int = 81,
num_inference_steps: int = 50,
guidance_scale: float = 5.0,
num_videos_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None,
prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
image_embeds: Optional[torch.Tensor] = None,
output_type: Optional[str] = "np",
return_dict: bool = True,
attention_kwargs: Optional[Dict[str, Any]] = None,
callback_on_step_end: Optional[
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
max_sequence_length: int = 512,
enable_temporal_reasoning: bool = False,
num_temporal_reasoning_steps: int = 0,
):
r"""
The call function to the pipeline for generation.
Args:
image (`PipelineImageInput`):
The input image to condition the generation on. Must be an image, a list of images or a `torch.Tensor`.
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
height (`int`, defaults to `480`):
The height of the generated video.
width (`int`, defaults to `832`):
The width of the generated video.
num_frames (`int`, defaults to `81`):
The number of frames in the generated video.
num_inference_steps (`int`, defaults to `50`):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, defaults to `5.0`):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
num_videos_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
generation deterministic.
latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor is generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
provided, text embeddings are generated from the `prompt` input argument.
negative_prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
provided, text embeddings are generated from the `negative_prompt` input argument.
image_embeds (`torch.Tensor`, *optional*):
Pre-generated image embeddings. Can be used to easily tweak image inputs (weighting). If not provided,
image embeddings are generated from the `image` input argument.
output_type (`str`, *optional*, defaults to `"np"`):
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`ChronoEditPipelineOutput`] instead of a plain tuple.
attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
callback_on_step_end_tensor_inputs (`List`, *optional*):
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
`._callback_tensor_inputs` attribute of your pipeline class.
max_sequence_length (`int`, defaults to `512`):
The maximum sequence length of the text encoder. If the prompt is longer than this, it will be
truncated. If the prompt is shorter, it will be padded to this length.
enable_temporal_reasoning (`bool`, *optional*, defaults to `False`):
Whether to enable temporal reasoning.
num_temporal_reasoning_steps (`int`, *optional*, defaults to `0`):
The number of steps to enable temporal reasoning.
Examples:
Returns:
[`~ChronoEditPipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`ChronoEditPipelineOutput`] is returned, otherwise a `tuple` is returned
where the first element is a list with the generated images and the second element is a list of `bool`s
indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content.
"""
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
negative_prompt,
image,
height,
width,
prompt_embeds,
negative_prompt_embeds,
image_embeds,
callback_on_step_end_tensor_inputs,
)
num_frames = 5 if not enable_temporal_reasoning else num_frames
if num_frames % self.vae_scale_factor_temporal != 1:
logger.warning(
f"`num_frames - 1` has to be divisible by {self.vae_scale_factor_temporal}. Rounding to the nearest number."
)
num_frames = num_frames // self.vae_scale_factor_temporal * self.vae_scale_factor_temporal + 1
num_frames = max(num_frames, 1)
self._guidance_scale = guidance_scale
self._attention_kwargs = attention_kwargs
self._current_timestep = None
self._interrupt = False
device = self._execution_device
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
# 3. Encode input prompt
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
prompt=prompt,
negative_prompt=negative_prompt,
do_classifier_free_guidance=self.do_classifier_free_guidance,
num_videos_per_prompt=num_videos_per_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
max_sequence_length=max_sequence_length,
device=device,
)
# Encode image embedding
transformer_dtype = self.transformer.dtype
prompt_embeds = prompt_embeds.to(transformer_dtype)
if negative_prompt_embeds is not None:
negative_prompt_embeds = negative_prompt_embeds.to(transformer_dtype)
if image_embeds is None:
image_embeds = self.encode_image(image, device)
image_embeds = image_embeds.repeat(batch_size, 1, 1)
image_embeds = image_embeds.to(transformer_dtype)
# 4. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 5. Prepare latent variables
num_channels_latents = self.vae.config.z_dim
image = self.video_processor.preprocess(image, height=height, width=width).to(device, dtype=torch.float32)
latents, condition = self.prepare_latents(
image,
batch_size * num_videos_per_prompt,
num_channels_latents,
height,
width,
num_frames,
torch.float32,
device,
generator,
latents,
)
# 6. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
self._num_timesteps = len(timesteps)
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
if enable_temporal_reasoning and i == num_temporal_reasoning_steps:
latents = latents[:, :, [0, -1]]
condition = condition[:, :, [0, -1]]
for j in range(len(self.scheduler.model_outputs)):
if self.scheduler.model_outputs[j] is not None:
if latents.shape[-3] != self.scheduler.model_outputs[j].shape[-3]:
self.scheduler.model_outputs[j] = self.scheduler.model_outputs[j][:, :, [0, -1]]
if self.scheduler.last_sample is not None:
self.scheduler.last_sample = self.scheduler.last_sample[:, :, [0, -1]]
self._current_timestep = t
latent_model_input = torch.cat([latents, condition], dim=1).to(transformer_dtype)
timestep = t.expand(latents.shape[0])
noise_pred = self.transformer(
hidden_states=latent_model_input,
timestep=timestep,
encoder_hidden_states=prompt_embeds,
encoder_hidden_states_image=image_embeds,
attention_kwargs=attention_kwargs,
return_dict=False,
)[0]
if self.do_classifier_free_guidance:
noise_uncond = self.transformer(
hidden_states=latent_model_input,
timestep=timestep,
encoder_hidden_states=negative_prompt_embeds,
encoder_hidden_states_image=image_embeds,
attention_kwargs=attention_kwargs,
return_dict=False,
)[0]
noise_pred = noise_uncond + guidance_scale * (noise_pred - noise_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if XLA_AVAILABLE:
xm.mark_step()
self._current_timestep = None
if not output_type == "latent":
latents = latents.to(self.vae.dtype)
latents_mean = (
torch.tensor(self.vae.config.latents_mean)
.view(1, self.vae.config.z_dim, 1, 1, 1)
.to(latents.device, latents.dtype)
)
latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to(
latents.device, latents.dtype
)
latents = latents / latents_std + latents_mean
if enable_temporal_reasoning and latents.shape[2] > 2:
video_edit = self.vae.decode(latents[:, :, [0, -1]], return_dict=False)[0]
video_reason = self.vae.decode(latents[:, :, :-1], return_dict=False)[0]
video = torch.cat([video_reason, video_edit[:, :, 1:]], dim=2)
else:
video = self.vae.decode(latents, return_dict=False)[0]
video = self.video_processor.postprocess_video(video, output_type=output_type)
else:
video = latents
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (video,)
return ChronoEditPipelineOutput(frames=video)

View File

@@ -0,0 +1,20 @@
from dataclasses import dataclass
import torch
from diffusers.utils import BaseOutput
@dataclass
class ChronoEditPipelineOutput(BaseOutput):
r"""
Output class for ChronoEdit pipelines.
Args:
frames (`torch.Tensor`, `np.ndarray`, or List[List[PIL.Image.Image]]):
List of video outputs - It can be a nested list of length `batch_size,` with each sub-list containing
denoised PIL image sequences of length `num_frames.` It can also be a NumPy array or Torch tensor of shape
`(batch_size, num_frames, channels, height, width)`.
"""
frames: torch.Tensor

View File

@@ -26,6 +26,7 @@ else:
_import_structure["pipeline_sana_controlnet"] = ["SanaControlNetPipeline"]
_import_structure["pipeline_sana_sprint"] = ["SanaSprintPipeline"]
_import_structure["pipeline_sana_sprint_img2img"] = ["SanaSprintImg2ImgPipeline"]
_import_structure["pipeline_sana_video"] = ["SanaVideoPipeline"]
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
try:
@@ -39,6 +40,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
from .pipeline_sana_controlnet import SanaControlNetPipeline
from .pipeline_sana_sprint import SanaSprintPipeline
from .pipeline_sana_sprint_img2img import SanaSprintImg2ImgPipeline
from .pipeline_sana_video import SanaVideoPipeline
else:
import sys

View File

@@ -3,6 +3,7 @@ from typing import List, Union
import numpy as np
import PIL.Image
import torch
from ...utils import BaseOutput
@@ -19,3 +20,18 @@ class SanaPipelineOutput(BaseOutput):
"""
images: Union[List[PIL.Image.Image], np.ndarray]
@dataclass
class SanaVideoPipelineOutput(BaseOutput):
r"""
Output class for Sana-Video pipelines.
Args:
frames (`torch.Tensor`, `np.ndarray`, or List[List[PIL.Image.Image]]):
List of video outputs - It can be a nested list of length `batch_size,` with each sub-list containing
denoised PIL image sequences of length `num_frames.` It can also be a NumPy array or Torch tensor of shape
`(batch_size, num_frames, channels, height, width)`.
"""
frames: torch.Tensor

View File

@@ -1,4 +1,4 @@
# Copyright 2025 PixArt-Sigma Authors and The HuggingFace Team. All rights reserved.
# Copyright 2025 SANA Authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.

View File

@@ -1,4 +1,4 @@
# Copyright 2025 PixArt-Sigma Authors and The HuggingFace Team. All rights reserved.
# Copyright 2025 SANA-Sprint Authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.

File diff suppressed because it is too large Load Diff

View File

@@ -648,6 +648,21 @@ class ChromaTransformer2DModel(metaclass=DummyObject):
requires_backends(cls, ["torch"])
class ChronoEditTransformer3DModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
class CogVideoXTransformer3DModel(metaclass=DummyObject):
_backends = ["torch"]
@@ -1308,6 +1323,21 @@ class SanaTransformer2DModel(metaclass=DummyObject):
requires_backends(cls, ["torch"])
class SanaVideoTransformer3DModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
class SD3ControlNetModel(metaclass=DummyObject):
_backends = ["torch"]

View File

@@ -542,6 +542,21 @@ class ChromaPipeline(metaclass=DummyObject):
requires_backends(cls, ["torch", "transformers"])
class ChronoEditPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
class CLIPImageProjection(metaclass=DummyObject):
_backends = ["torch", "transformers"]
@@ -2177,6 +2192,21 @@ class SanaSprintPipeline(metaclass=DummyObject):
requires_backends(cls, ["torch", "transformers"])
class SanaVideoPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
class SemanticStableDiffusionPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]

View File

@@ -358,6 +358,7 @@ def get_cached_module_file(
proxies=proxies,
local_files_only=local_files_only,
local_dir=local_dir,
revision=revision,
token=token,
)
submodule = os.path.join("local", "--".join(pretrained_model_name_or_path.split("/")))

View File

@@ -13,11 +13,12 @@
# limitations under the License.
import warnings
from typing import List, Optional, Union
from typing import List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
import torch.nn.functional as F
from .image_processor import VaeImageProcessor, is_valid_image, is_valid_image_imagelist
@@ -111,3 +112,65 @@ class VideoProcessor(VaeImageProcessor):
raise ValueError(f"{output_type} does not exist. Please choose one of ['np', 'pt', 'pil']")
return outputs
@staticmethod
def classify_height_width_bin(height: int, width: int, ratios: dict) -> Tuple[int, int]:
r"""
Returns the binned height and width based on the aspect ratio.
Args:
height (`int`): The height of the image.
width (`int`): The width of the image.
ratios (`dict`): A dictionary where keys are aspect ratios and values are tuples of (height, width).
Returns:
`Tuple[int, int]`: The closest binned height and width.
"""
ar = float(height / width)
closest_ratio = min(ratios.keys(), key=lambda ratio: abs(float(ratio) - ar))
default_hw = ratios[closest_ratio]
return int(default_hw[0]), int(default_hw[1])
@staticmethod
def resize_and_crop_tensor(samples: torch.Tensor, new_width: int, new_height: int) -> torch.Tensor:
r"""
Resizes and crops a tensor of videos to the specified dimensions.
Args:
samples (`torch.Tensor`):
A tensor of shape (N, C, T, H, W) where N is the batch size, C is the number of channels, T is the
number of frames, H is the height, and W is the width.
new_width (`int`): The desired width of the output videos.
new_height (`int`): The desired height of the output videos.
Returns:
`torch.Tensor`: A tensor containing the resized and cropped videos.
"""
orig_height, orig_width = samples.shape[3], samples.shape[4]
# Check if resizing is needed
if orig_height != new_height or orig_width != new_width:
ratio = max(new_height / orig_height, new_width / orig_width)
resized_width = int(orig_width * ratio)
resized_height = int(orig_height * ratio)
# Reshape to (N*T, C, H, W) for interpolation
n, c, t, h, w = samples.shape
samples = samples.permute(0, 2, 1, 3, 4).reshape(n * t, c, h, w)
# Resize
samples = F.interpolate(
samples, size=(resized_height, resized_width), mode="bilinear", align_corners=False
)
# Center Crop
start_x = (resized_width - new_width) // 2
end_x = start_x + new_width
start_y = (resized_height - new_height) // 2
end_y = start_y + new_height
samples = samples[:, :, start_y:end_y, start_x:end_x]
# Reshape back to (N, C, T, H, W)
samples = samples.reshape(n, t, c, new_height, new_width).permute(0, 2, 1, 3, 4)
return samples

View File

@@ -0,0 +1,97 @@
# Copyright 2025 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import torch
from diffusers import SanaVideoTransformer3DModel
from ...testing_utils import (
enable_full_determinism,
torch_device,
)
from ..test_modeling_common import ModelTesterMixin, TorchCompileTesterMixin
enable_full_determinism()
class SanaVideoTransformer3DTests(ModelTesterMixin, unittest.TestCase):
model_class = SanaVideoTransformer3DModel
main_input_name = "hidden_states"
uses_custom_attn_processor = True
@property
def dummy_input(self):
batch_size = 1
num_channels = 16
num_frames = 2
height = 16
width = 16
text_encoder_embedding_dim = 16
sequence_length = 12
hidden_states = torch.randn((batch_size, num_channels, num_frames, height, width)).to(torch_device)
timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device)
encoder_hidden_states = torch.randn((batch_size, sequence_length, text_encoder_embedding_dim)).to(torch_device)
return {
"hidden_states": hidden_states,
"encoder_hidden_states": encoder_hidden_states,
"timestep": timestep,
}
@property
def input_shape(self):
return (16, 2, 16, 16)
@property
def output_shape(self):
return (16, 2, 16, 16)
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"in_channels": 16,
"out_channels": 16,
"num_attention_heads": 2,
"attention_head_dim": 12,
"num_layers": 2,
"num_cross_attention_heads": 2,
"cross_attention_head_dim": 12,
"cross_attention_dim": 24,
"caption_channels": 16,
"mlp_ratio": 2.5,
"dropout": 0.0,
"attention_bias": False,
"sample_size": 8,
"patch_size": (1, 2, 2),
"norm_elementwise_affine": False,
"norm_eps": 1e-6,
"qk_norm": "rms_norm_across_heads",
"rope_max_seq_len": 32,
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def test_gradient_checkpointing_is_applied(self):
expected_set = {"SanaVideoTransformer3DModel"}
super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
class SanaVideoTransformerCompileTests(TorchCompileTesterMixin, unittest.TestCase):
model_class = SanaVideoTransformer3DModel
def prepare_init_args_and_inputs_for_common(self):
return SanaVideoTransformer3DTests().prepare_init_args_and_inputs_for_common()

View File

View File

@@ -0,0 +1,172 @@
# coding=utf-8
# Copyright 2025 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import tempfile
import numpy as np
import PIL
import torch
from diffusers.image_processor import VaeImageProcessor
from diffusers.modular_pipelines import (
FluxAutoBlocks,
FluxKontextAutoBlocks,
FluxKontextModularPipeline,
FluxModularPipeline,
ModularPipeline,
)
from ...testing_utils import floats_tensor, torch_device
from ..test_modular_pipelines_common import ModularPipelineTesterMixin
class TestFluxModularPipelineFast(ModularPipelineTesterMixin):
pipeline_class = FluxModularPipeline
pipeline_blocks_class = FluxAutoBlocks
repo = "hf-internal-testing/tiny-flux-modular"
params = frozenset(["prompt", "height", "width", "guidance_scale"])
batch_params = frozenset(["prompt"])
def get_dummy_inputs(self, seed=0):
generator = self.get_generator(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 5.0,
"height": 8,
"width": 8,
"max_sequence_length": 48,
"output_type": "pt",
}
return inputs
class TestFluxImg2ImgModularPipelineFast(ModularPipelineTesterMixin):
pipeline_class = FluxModularPipeline
pipeline_blocks_class = FluxAutoBlocks
repo = "hf-internal-testing/tiny-flux-modular"
params = frozenset(["prompt", "height", "width", "guidance_scale", "image"])
batch_params = frozenset(["prompt", "image"])
def get_pipeline(self, components_manager=None, torch_dtype=torch.float32):
pipeline = super().get_pipeline(components_manager, torch_dtype)
# Override `vae_scale_factor` here as currently, `image_processor` is initialized with
# fixed constants instead of
# https://github.com/huggingface/diffusers/blob/d54622c2679d700b425ad61abce9b80fc36212c0/src/diffusers/pipelines/flux/pipeline_flux_img2img.py#L230C9-L232C10
pipeline.image_processor = VaeImageProcessor(vae_scale_factor=2)
return pipeline
def get_dummy_inputs(self, seed=0):
generator = self.get_generator(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 4,
"guidance_scale": 5.0,
"height": 8,
"width": 8,
"max_sequence_length": 48,
"output_type": "pt",
}
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(torch_device)
image = image.cpu().permute(0, 2, 3, 1)[0]
init_image = PIL.Image.fromarray(np.uint8(image)).convert("RGB")
inputs["image"] = init_image
inputs["strength"] = 0.5
return inputs
def test_save_from_pretrained(self):
pipes = []
base_pipe = self.get_pipeline().to(torch_device)
pipes.append(base_pipe)
with tempfile.TemporaryDirectory() as tmpdirname:
base_pipe.save_pretrained(tmpdirname)
pipe = ModularPipeline.from_pretrained(tmpdirname).to(torch_device)
pipe.load_components(torch_dtype=torch.float32)
pipe.to(torch_device)
pipe.image_processor = VaeImageProcessor(vae_scale_factor=2)
pipes.append(pipe)
image_slices = []
for pipe in pipes:
inputs = self.get_dummy_inputs()
image = pipe(**inputs, output="images")
image_slices.append(image[0, -3:, -3:, -1].flatten())
assert torch.abs(image_slices[0] - image_slices[1]).max() < 1e-3
class TestFluxKontextModularPipelineFast(ModularPipelineTesterMixin):
pipeline_class = FluxKontextModularPipeline
pipeline_blocks_class = FluxKontextAutoBlocks
repo = "hf-internal-testing/tiny-flux-kontext-pipe"
params = frozenset(["prompt", "height", "width", "guidance_scale", "image"])
batch_params = frozenset(["prompt", "image"])
def get_dummy_inputs(self, seed=0):
generator = self.get_generator(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 5.0,
"height": 8,
"width": 8,
"max_sequence_length": 48,
"output_type": "pt",
}
image = PIL.Image.new("RGB", (32, 32), 0)
inputs["image"] = image
inputs["max_area"] = inputs["height"] * inputs["width"]
inputs["_auto_resize"] = False
return inputs
def test_save_from_pretrained(self):
pipes = []
base_pipe = self.get_pipeline().to(torch_device)
pipes.append(base_pipe)
with tempfile.TemporaryDirectory() as tmpdirname:
base_pipe.save_pretrained(tmpdirname)
pipe = ModularPipeline.from_pretrained(tmpdirname).to(torch_device)
pipe.load_components(torch_dtype=torch.float32)
pipe.to(torch_device)
pipe.image_processor = VaeImageProcessor(vae_scale_factor=2)
pipes.append(pipe)
image_slices = []
for pipe in pipes:
inputs = self.get_dummy_inputs()
image = pipe(**inputs, output="images")
image_slices.append(image[0, -3:, -3:, -1].flatten())
assert torch.abs(image_slices[0] - image_slices[1]).max() < 1e-3

View File

@@ -14,93 +14,43 @@
# limitations under the License.
import random
import unittest
from typing import Any, Dict
import numpy as np
import torch
from PIL import Image
from diffusers import (
ClassifierFreeGuidance,
StableDiffusionXLAutoBlocks,
StableDiffusionXLModularPipeline,
)
from diffusers import ClassifierFreeGuidance, StableDiffusionXLAutoBlocks, StableDiffusionXLModularPipeline
from diffusers.loaders import ModularIPAdapterMixin
from ...models.unets.test_models_unet_2d_condition import (
create_ip_adapter_state_dict,
)
from ...testing_utils import (
enable_full_determinism,
floats_tensor,
torch_device,
)
from ..test_modular_pipelines_common import (
ModularPipelineTesterMixin,
)
from ...models.unets.test_models_unet_2d_condition import create_ip_adapter_state_dict
from ...testing_utils import enable_full_determinism, floats_tensor, torch_device
from ..test_modular_pipelines_common import ModularPipelineTesterMixin
enable_full_determinism()
class SDXLModularTests:
class SDXLModularTesterMixin:
"""
This mixin defines method to create pipeline, base input and base test across all SDXL modular tests.
"""
pipeline_class = StableDiffusionXLModularPipeline
pipeline_blocks_class = StableDiffusionXLAutoBlocks
repo = "hf-internal-testing/tiny-sdxl-modular"
params = frozenset(
[
"prompt",
"height",
"width",
"negative_prompt",
"cross_attention_kwargs",
"image",
"mask_image",
]
)
batch_params = frozenset(["prompt", "negative_prompt", "image", "mask_image"])
def get_pipeline(self, components_manager=None, torch_dtype=torch.float32):
pipeline = self.pipeline_blocks_class().init_pipeline(self.repo, components_manager=components_manager)
pipeline.load_components(torch_dtype=torch_dtype)
return pipeline
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"output_type": "np",
}
return inputs
def _test_stable_diffusion_xl_euler(self, expected_image_shape, expected_slice, expected_max_diff=1e-2):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
sd_pipe = self.get_pipeline()
sd_pipe = sd_pipe.to(device)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
inputs = self.get_dummy_inputs()
image = sd_pipe(**inputs, output="images")
image_slice = image[0, -3:, -3:, -1]
assert image.shape == expected_image_shape
assert np.abs(image_slice.flatten() - expected_slice).max() < expected_max_diff, (
"Image Slice does not match expected slice"
)
max_diff = torch.abs(image_slice.flatten() - expected_slice).max()
assert max_diff < expected_max_diff, f"Image slice does not match expected slice. Max Difference: {max_diff}"
class SDXLModularIPAdapterTests:
class SDXLModularIPAdapterTesterMixin:
"""
This mixin is designed to test IP Adapter.
"""
@@ -139,7 +89,7 @@ class SDXLModularIPAdapterTests:
if "image" in parameters and "strength" in parameters:
inputs["num_inference_steps"] = 4
inputs["output_type"] = "np"
inputs["output_type"] = "pt"
return inputs
def test_ip_adapter(self, expected_max_diff: float = 1e-4, expected_pipe_slice=None):
@@ -164,7 +114,7 @@ class SDXLModularIPAdapterTests:
cross_attention_dim = pipe.unet.config.get("cross_attention_dim")
# forward pass without ip adapter
inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs())
if expected_pipe_slice is None:
output_without_adapter = pipe(**inputs, output="images")
else:
@@ -175,7 +125,7 @@ class SDXLModularIPAdapterTests:
pipe.unet._load_ip_adapter_weights(adapter_state_dict)
# forward pass with single ip adapter, but scale=0 which should have no effect
inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs())
inputs["ip_adapter_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)]
inputs["negative_ip_adapter_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)]
pipe.set_ip_adapter_scale(0.0)
@@ -184,7 +134,7 @@ class SDXLModularIPAdapterTests:
output_without_adapter_scale = output_without_adapter_scale[0, -3:, -3:, -1].flatten()
# forward pass with single ip adapter, but with scale of adapter weights
inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs())
inputs["ip_adapter_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)]
inputs["negative_ip_adapter_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)]
pipe.set_ip_adapter_scale(42.0)
@@ -192,8 +142,8 @@ class SDXLModularIPAdapterTests:
if expected_pipe_slice is not None:
output_with_adapter_scale = output_with_adapter_scale[0, -3:, -3:, -1].flatten()
max_diff_without_adapter_scale = np.abs(output_without_adapter_scale - output_without_adapter).max()
max_diff_with_adapter_scale = np.abs(output_with_adapter_scale - output_without_adapter).max()
max_diff_without_adapter_scale = torch.abs(output_without_adapter_scale - output_without_adapter).max()
max_diff_with_adapter_scale = torch.abs(output_with_adapter_scale - output_without_adapter).max()
assert max_diff_without_adapter_scale < expected_max_diff, (
"Output without ip-adapter must be same as normal inference"
@@ -206,7 +156,7 @@ class SDXLModularIPAdapterTests:
pipe.unet._load_ip_adapter_weights([adapter_state_dict_1, adapter_state_dict_2])
# forward pass with multi ip adapter, but scale=0 which should have no effect
inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs())
inputs["ip_adapter_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)] * 2
inputs["negative_ip_adapter_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)] * 2
pipe.set_ip_adapter_scale([0.0, 0.0])
@@ -215,7 +165,7 @@ class SDXLModularIPAdapterTests:
output_without_multi_adapter_scale = output_without_multi_adapter_scale[0, -3:, -3:, -1].flatten()
# forward pass with multi ip adapter, but with scale of adapter weights
inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs())
inputs["ip_adapter_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)] * 2
inputs["negative_ip_adapter_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)] * 2
pipe.set_ip_adapter_scale([42.0, 42.0])
@@ -223,10 +173,10 @@ class SDXLModularIPAdapterTests:
if expected_pipe_slice is not None:
output_with_multi_adapter_scale = output_with_multi_adapter_scale[0, -3:, -3:, -1].flatten()
max_diff_without_multi_adapter_scale = np.abs(
max_diff_without_multi_adapter_scale = torch.abs(
output_without_multi_adapter_scale - output_without_adapter
).max()
max_diff_with_multi_adapter_scale = np.abs(output_with_multi_adapter_scale - output_without_adapter).max()
max_diff_with_multi_adapter_scale = torch.abs(output_with_multi_adapter_scale - output_without_adapter).max()
assert max_diff_without_multi_adapter_scale < expected_max_diff, (
"Output without multi-ip-adapter must be same as normal inference"
)
@@ -235,7 +185,7 @@ class SDXLModularIPAdapterTests:
)
class SDXLModularControlNetTests:
class SDXLModularControlNetTesterMixin:
"""
This mixin is designed to test ControlNet.
"""
@@ -274,24 +224,26 @@ class SDXLModularControlNetTests:
pipe.set_progress_bar_config(disable=None)
# forward pass without controlnet
inputs = self.get_dummy_inputs(torch_device)
inputs = self.get_dummy_inputs()
output_without_controlnet = pipe(**inputs, output="images")
output_without_controlnet = output_without_controlnet[0, -3:, -3:, -1].flatten()
# forward pass with single controlnet, but scale=0 which should have no effect
inputs = self._modify_inputs_for_controlnet_test(self.get_dummy_inputs(torch_device))
inputs = self._modify_inputs_for_controlnet_test(self.get_dummy_inputs())
inputs["controlnet_conditioning_scale"] = 0.0
output_without_controlnet_scale = pipe(**inputs, output="images")
output_without_controlnet_scale = output_without_controlnet_scale[0, -3:, -3:, -1].flatten()
# forward pass with single controlnet, but with scale of adapter weights
inputs = self._modify_inputs_for_controlnet_test(self.get_dummy_inputs(torch_device))
inputs = self._modify_inputs_for_controlnet_test(self.get_dummy_inputs())
inputs["controlnet_conditioning_scale"] = 42.0
output_with_controlnet_scale = pipe(**inputs, output="images")
output_with_controlnet_scale = output_with_controlnet_scale[0, -3:, -3:, -1].flatten()
max_diff_without_controlnet_scale = np.abs(output_without_controlnet_scale - output_without_controlnet).max()
max_diff_with_controlnet_scale = np.abs(output_with_controlnet_scale - output_without_controlnet).max()
max_diff_without_controlnet_scale = torch.abs(
output_without_controlnet_scale - output_without_controlnet
).max()
max_diff_with_controlnet_scale = torch.abs(output_with_controlnet_scale - output_without_controlnet).max()
assert max_diff_without_controlnet_scale < expected_max_diff, (
"Output without controlnet must be same as normal inference"
@@ -307,21 +259,21 @@ class SDXLModularControlNetTests:
guider = ClassifierFreeGuidance(guidance_scale=1.0)
pipe.update_components(guider=guider)
inputs = self._modify_inputs_for_controlnet_test(self.get_dummy_inputs(torch_device))
inputs = self._modify_inputs_for_controlnet_test(self.get_dummy_inputs())
out_no_cfg = pipe(**inputs, output="images")
# forward pass with CFG applied
guider = ClassifierFreeGuidance(guidance_scale=7.5)
pipe.update_components(guider=guider)
inputs = self._modify_inputs_for_controlnet_test(self.get_dummy_inputs(torch_device))
inputs = self._modify_inputs_for_controlnet_test(self.get_dummy_inputs())
out_cfg = pipe(**inputs, output="images")
assert out_cfg.shape == out_no_cfg.shape
max_diff = np.abs(out_cfg - out_no_cfg).max()
max_diff = torch.abs(out_cfg - out_no_cfg).max()
assert max_diff > 1e-2, "Output with CFG must be different from normal inference"
class SDXLModularGuiderTests:
class SDXLModularGuiderTesterMixin:
def test_guider_cfg(self):
pipe = self.get_pipeline()
pipe = pipe.to(torch_device)
@@ -331,13 +283,13 @@ class SDXLModularGuiderTests:
guider = ClassifierFreeGuidance(guidance_scale=1.0)
pipe.update_components(guider=guider)
inputs = self.get_dummy_inputs(torch_device)
inputs = self.get_dummy_inputs()
out_no_cfg = pipe(**inputs, output="images")
# forward pass with CFG applied
guider = ClassifierFreeGuidance(guidance_scale=7.5)
pipe.update_components(guider=guider)
inputs = self.get_dummy_inputs(torch_device)
inputs = self.get_dummy_inputs()
out_cfg = pipe(**inputs, output="images")
assert out_cfg.shape == out_no_cfg.shape
@@ -345,30 +297,57 @@ class SDXLModularGuiderTests:
assert max_diff > 1e-2, "Output with CFG must be different from normal inference"
class SDXLModularPipelineFastTests(
SDXLModularTests,
SDXLModularIPAdapterTests,
SDXLModularControlNetTests,
SDXLModularGuiderTests,
class TestSDXLModularPipelineFast(
SDXLModularTesterMixin,
SDXLModularIPAdapterTesterMixin,
SDXLModularControlNetTesterMixin,
SDXLModularGuiderTesterMixin,
ModularPipelineTesterMixin,
unittest.TestCase,
):
"""Test cases for Stable Diffusion XL modular pipeline fast tests."""
pipeline_class = StableDiffusionXLModularPipeline
pipeline_blocks_class = StableDiffusionXLAutoBlocks
repo = "hf-internal-testing/tiny-sdxl-modular"
params = frozenset(
[
"prompt",
"height",
"width",
"negative_prompt",
"cross_attention_kwargs",
]
)
batch_params = frozenset(["prompt", "negative_prompt"])
expected_image_output_shape = (1, 3, 64, 64)
def get_dummy_inputs(self, seed=0):
generator = self.get_generator(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"output_type": "pt",
}
return inputs
def test_stable_diffusion_xl_euler(self):
self._test_stable_diffusion_xl_euler(
expected_image_shape=(1, 64, 64, 3),
expected_slice=[
0.5966781,
0.62939394,
0.48465094,
0.51573336,
0.57593524,
0.47035995,
0.53410417,
0.51436996,
0.47313565,
],
expected_image_shape=self.expected_image_output_shape,
expected_slice=torch.tensor(
[
0.5966781,
0.62939394,
0.48465094,
0.51573336,
0.57593524,
0.47035995,
0.53410417,
0.51436996,
0.47313565,
],
device=torch_device,
),
expected_max_diff=1e-2,
)
@@ -376,39 +355,65 @@ class SDXLModularPipelineFastTests(
super().test_inference_batch_single_identical(expected_max_diff=3e-3)
class SDXLImg2ImgModularPipelineFastTests(
SDXLModularTests,
SDXLModularIPAdapterTests,
SDXLModularControlNetTests,
SDXLModularGuiderTests,
class TestSDXLImg2ImgModularPipelineFast(
SDXLModularTesterMixin,
SDXLModularIPAdapterTesterMixin,
SDXLModularControlNetTesterMixin,
SDXLModularGuiderTesterMixin,
ModularPipelineTesterMixin,
unittest.TestCase,
):
"""Test cases for Stable Diffusion XL image-to-image modular pipeline fast tests."""
def get_dummy_inputs(self, device, seed=0):
inputs = super().get_dummy_inputs(device, seed)
image = floats_tensor((1, 3, 64, 64), rng=random.Random(seed)).to(device)
image = image / 2 + 0.5
inputs["image"] = image
inputs["strength"] = 0.8
pipeline_class = StableDiffusionXLModularPipeline
pipeline_blocks_class = StableDiffusionXLAutoBlocks
repo = "hf-internal-testing/tiny-sdxl-modular"
params = frozenset(
[
"prompt",
"height",
"width",
"negative_prompt",
"cross_attention_kwargs",
"image",
]
)
batch_params = frozenset(["prompt", "negative_prompt", "image"])
expected_image_output_shape = (1, 3, 64, 64)
def get_dummy_inputs(self, seed=0):
generator = self.get_generator(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 4,
"output_type": "pt",
}
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(torch_device)
image = image.cpu().permute(0, 2, 3, 1)[0]
init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64))
inputs["image"] = init_image
inputs["strength"] = 0.5
return inputs
def test_stable_diffusion_xl_euler(self):
self._test_stable_diffusion_xl_euler(
expected_image_shape=(1, 64, 64, 3),
expected_slice=[
0.56943184,
0.4702148,
0.48048905,
0.6235963,
0.551138,
0.49629188,
0.60031277,
0.5688907,
0.43996853,
],
expected_image_shape=self.expected_image_output_shape,
expected_slice=torch.tensor(
[
0.56943184,
0.4702148,
0.48048905,
0.6235963,
0.551138,
0.49629188,
0.60031277,
0.5688907,
0.43996853,
],
device=torch_device,
),
expected_max_diff=1e-2,
)
@@ -417,20 +422,43 @@ class SDXLImg2ImgModularPipelineFastTests(
class SDXLInpaintingModularPipelineFastTests(
SDXLModularTests,
SDXLModularIPAdapterTests,
SDXLModularControlNetTests,
SDXLModularGuiderTests,
SDXLModularTesterMixin,
SDXLModularIPAdapterTesterMixin,
SDXLModularControlNetTesterMixin,
SDXLModularGuiderTesterMixin,
ModularPipelineTesterMixin,
unittest.TestCase,
):
"""Test cases for Stable Diffusion XL inpainting modular pipeline fast tests."""
pipeline_class = StableDiffusionXLModularPipeline
pipeline_blocks_class = StableDiffusionXLAutoBlocks
repo = "hf-internal-testing/tiny-sdxl-modular"
params = frozenset(
[
"prompt",
"height",
"width",
"negative_prompt",
"cross_attention_kwargs",
"image",
"mask_image",
]
)
batch_params = frozenset(["prompt", "negative_prompt", "image", "mask_image"])
expected_image_output_shape = (1, 3, 64, 64)
def get_dummy_inputs(self, device, seed=0):
inputs = super().get_dummy_inputs(device, seed)
generator = self.get_generator(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 4,
"output_type": "pt",
}
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
image = image.cpu().permute(0, 2, 3, 1)[0]
init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64))
# create mask
image[8:, 8:, :] = 255
mask_image = Image.fromarray(np.uint8(image)).convert("L").resize((64, 64))
@@ -443,18 +471,21 @@ class SDXLInpaintingModularPipelineFastTests(
def test_stable_diffusion_xl_euler(self):
self._test_stable_diffusion_xl_euler(
expected_image_shape=(1, 64, 64, 3),
expected_slice=[
0.40872607,
0.38842705,
0.34893104,
0.47837183,
0.43792963,
0.5332134,
0.3716843,
0.47274873,
0.45000193,
],
expected_image_shape=self.expected_image_output_shape,
expected_slice=torch.tensor(
[
0.40872607,
0.38842705,
0.34893104,
0.47837183,
0.43792963,
0.5332134,
0.3716843,
0.47274873,
0.45000193,
],
device=torch_device,
),
expected_max_diff=1e-2,
)

View File

@@ -1,9 +1,7 @@
import gc
import tempfile
import unittest
from typing import Callable, Union
import numpy as np
import torch
import diffusers
@@ -19,17 +17,9 @@ from ..testing_utils import (
)
def to_np(tensor):
if isinstance(tensor, torch.Tensor):
tensor = tensor.detach().cpu().numpy()
return tensor
@require_torch
class ModularPipelineTesterMixin:
"""
This mixin is designed to be used with unittest.TestCase classes.
It provides a set of common tests for each modular pipeline,
including:
- test_pipeline_call_signature: check if the pipeline's __call__ method has all required parameters
@@ -57,9 +47,8 @@ class ModularPipelineTesterMixin:
]
)
def get_generator(self, seed):
device = torch_device if torch_device != "mps" else "cpu"
generator = torch.Generator(device).manual_seed(seed)
def get_generator(self, seed=0):
generator = torch.Generator("cpu").manual_seed(seed)
return generator
@property
@@ -82,13 +71,7 @@ class ModularPipelineTesterMixin:
"See existing pipeline tests for reference."
)
def get_pipeline(self):
raise NotImplementedError(
"You need to implement `get_pipeline(self)` in the child test class. "
"See existing pipeline tests for reference."
)
def get_dummy_inputs(self, device, seed=0):
def get_dummy_inputs(self, seed=0):
raise NotImplementedError(
"You need to implement `get_dummy_inputs(self, device, seed)` in the child test class. "
"See existing pipeline tests for reference."
@@ -123,20 +106,23 @@ class ModularPipelineTesterMixin:
"See existing pipeline tests for reference."
)
def setUp(self):
def setup_method(self):
# clean up the VRAM before each test
super().setUp()
torch.compiler.reset()
gc.collect()
backend_empty_cache(torch_device)
def tearDown(self):
def teardown_method(self):
# clean up the VRAM after each test in case of CUDA runtime errors
super().tearDown()
torch.compiler.reset()
gc.collect()
backend_empty_cache(torch_device)
def get_pipeline(self, components_manager=None, torch_dtype=torch.float32):
pipeline = self.pipeline_blocks_class().init_pipeline(self.repo, components_manager=components_manager)
pipeline.load_components(torch_dtype=torch_dtype)
return pipeline
def test_pipeline_call_signature(self):
pipe = self.get_pipeline()
input_parameters = pipe.blocks.input_names
@@ -156,7 +142,7 @@ class ModularPipelineTesterMixin:
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
inputs = self.get_dummy_inputs()
inputs["generator"] = self.get_generator(0)
logger = logging.get_logger(pipe.__module__)
@@ -196,7 +182,7 @@ class ModularPipelineTesterMixin:
pipe = self.get_pipeline()
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
inputs = self.get_dummy_inputs()
# Reset generator in case it is has been used in self.get_dummy_inputs
inputs["generator"] = self.get_generator(0)
@@ -226,10 +212,9 @@ class ModularPipelineTesterMixin:
assert output_batch.shape[0] == batch_size
max_diff = np.abs(to_np(output_batch[0]) - to_np(output[0])).max()
max_diff = torch.abs(output_batch[0] - output[0]).max()
assert max_diff < expected_max_diff, "Batch inference results different from single inference results"
@unittest.skipIf(torch_device not in ["cuda", "xpu"], reason="float16 requires CUDA or XPU")
@require_accelerator
def test_float16_inference(self, expected_max_diff=5e-2):
pipe = self.get_pipeline()
@@ -240,13 +225,13 @@ class ModularPipelineTesterMixin:
pipe_fp16.to(torch_device, torch.float16)
pipe_fp16.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
inputs = self.get_dummy_inputs()
# Reset generator in case it is used inside dummy inputs
if "generator" in inputs:
inputs["generator"] = self.get_generator(0)
output = pipe(**inputs, output="images")
fp16_inputs = self.get_dummy_inputs(torch_device)
fp16_inputs = self.get_dummy_inputs()
# Reset generator in case it is used inside dummy inputs
if "generator" in fp16_inputs:
fp16_inputs["generator"] = self.get_generator(0)
@@ -283,8 +268,8 @@ class ModularPipelineTesterMixin:
pipe.set_progress_bar_config(disable=None)
pipe.to("cpu")
output = pipe(**self.get_dummy_inputs("cpu"), output="images")
assert np.isnan(to_np(output)).sum() == 0, "CPU Inference returns NaN"
output = pipe(**self.get_dummy_inputs(), output="images")
assert torch.isnan(output).sum() == 0, "CPU Inference returns NaN"
@require_accelerator
def test_inference_is_not_nan(self):
@@ -292,8 +277,8 @@ class ModularPipelineTesterMixin:
pipe.set_progress_bar_config(disable=None)
pipe.to(torch_device)
output = pipe(**self.get_dummy_inputs(torch_device), output="images")
assert np.isnan(to_np(output)).sum() == 0, "Accelerator Inference returns NaN"
output = pipe(**self.get_dummy_inputs(), output="images")
assert torch.isnan(output).sum() == 0, "Accelerator Inference returns NaN"
def test_num_images_per_prompt(self):
pipe = self.get_pipeline()
@@ -309,7 +294,7 @@ class ModularPipelineTesterMixin:
for batch_size in batch_sizes:
for num_images_per_prompt in num_images_per_prompts:
inputs = self.get_dummy_inputs(torch_device)
inputs = self.get_dummy_inputs()
for key in inputs.keys():
if key in self.batch_params:
@@ -329,12 +314,12 @@ class ModularPipelineTesterMixin:
image_slices = []
for pipe in [base_pipe, offload_pipe]:
inputs = self.get_dummy_inputs(torch_device)
inputs = self.get_dummy_inputs()
image = pipe(**inputs, output="images")
image_slices.append(image[0, -3:, -3:, -1].flatten())
assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3
assert torch.abs(image_slices[0] - image_slices[1]).max() < 1e-3
def test_save_from_pretrained(self):
pipes = []
@@ -351,9 +336,9 @@ class ModularPipelineTesterMixin:
image_slices = []
for pipe in pipes:
inputs = self.get_dummy_inputs(torch_device)
inputs = self.get_dummy_inputs()
image = pipe(**inputs, output="images")
image_slices.append(image[0, -3:, -3:, -1].flatten())
assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3
assert torch.abs(image_slices[0] - image_slices[1]).max() < 1e-3

View File

View File

@@ -0,0 +1,176 @@
# Copyright 2025 The HuggingFace Team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import torch
from PIL import Image
from transformers import (
AutoTokenizer,
CLIPImageProcessor,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
T5EncoderModel,
)
from diffusers import (
AutoencoderKLWan,
ChronoEditPipeline,
ChronoEditTransformer3DModel,
FlowMatchEulerDiscreteScheduler,
)
from ...testing_utils import enable_full_determinism
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class ChronoEditPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = ChronoEditPipeline
params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs", "height", "width"}
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
required_optional_params = frozenset(
[
"num_inference_steps",
"generator",
"latents",
"return_dict",
"callback_on_step_end",
"callback_on_step_end_tensor_inputs",
]
)
test_xformers_attention = False
supports_dduf = False
def get_dummy_components(self):
torch.manual_seed(0)
vae = AutoencoderKLWan(
base_dim=3,
z_dim=16,
dim_mult=[1, 1, 1, 1],
num_res_blocks=1,
temperal_downsample=[False, True, True],
)
torch.manual_seed(0)
# TODO: impl FlowDPMSolverMultistepScheduler
scheduler = FlowMatchEulerDiscreteScheduler(shift=7.0)
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)
transformer = ChronoEditTransformer3DModel(
patch_size=(1, 2, 2),
num_attention_heads=2,
attention_head_dim=12,
in_channels=36,
out_channels=16,
text_dim=32,
freq_dim=256,
ffn_dim=32,
num_layers=2,
cross_attn_norm=True,
qk_norm="rms_norm_across_heads",
rope_max_seq_len=32,
image_dim=4,
)
torch.manual_seed(0)
image_encoder_config = CLIPVisionConfig(
hidden_size=4,
projection_dim=4,
num_hidden_layers=2,
num_attention_heads=2,
image_size=32,
intermediate_size=16,
patch_size=1,
)
image_encoder = CLIPVisionModelWithProjection(image_encoder_config)
torch.manual_seed(0)
image_processor = CLIPImageProcessor(crop_size=32, size=32)
components = {
"transformer": transformer,
"vae": vae,
"scheduler": scheduler,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"image_encoder": image_encoder,
"image_processor": image_processor,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
image_height = 16
image_width = 16
image = Image.new("RGB", (image_width, image_height))
inputs = {
"image": image,
"prompt": "dance monkey",
"negative_prompt": "negative", # TODO
"height": image_height,
"width": image_width,
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"num_frames": 5,
"max_sequence_length": 16,
"output_type": "pt",
}
return inputs
def test_inference(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
video = pipe(**inputs).frames
generated_video = video[0]
self.assertEqual(generated_video.shape, (5, 3, 16, 16))
# fmt: off
expected_slice = torch.tensor([0.4525, 0.4520, 0.4485, 0.4534, 0.4523, 0.4522, 0.4529, 0.4528, 0.5022, 0.5064, 0.5011, 0.5061, 0.5028, 0.4979, 0.5117, 0.5192])
# fmt: on
generated_slice = generated_video.flatten()
generated_slice = torch.cat([generated_slice[:8], generated_slice[-8:]])
self.assertTrue(torch.allclose(generated_slice, expected_slice, atol=1e-3))
@unittest.skip("Test not supported")
def test_attention_slicing_forward_pass(self):
pass
@unittest.skip("TODO: revisit failing as it requires a very high threshold to pass")
def test_inference_batch_single_identical(self):
pass
@unittest.skip(
"ChronoEditPipeline has to run in mixed precision. Save/Load the entire pipeline in FP16 will result in errors"
)
def test_save_load_float16(self):
pass

View File

@@ -0,0 +1,225 @@
# Copyright 2025 The HuggingFace Team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import tempfile
import unittest
import numpy as np
import torch
from transformers import Gemma2Config, Gemma2Model, GemmaTokenizer
from diffusers import AutoencoderKLWan, DPMSolverMultistepScheduler, SanaVideoPipeline, SanaVideoTransformer3DModel
from ...testing_utils import (
backend_empty_cache,
enable_full_determinism,
require_torch_accelerator,
slow,
torch_device,
)
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class SanaVideoPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = SanaVideoPipeline
params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"}
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
required_optional_params = frozenset(
[
"num_inference_steps",
"generator",
"latents",
"return_dict",
"callback_on_step_end",
"callback_on_step_end_tensor_inputs",
]
)
test_xformers_attention = False
supports_dduf = False
def get_dummy_components(self):
torch.manual_seed(0)
vae = AutoencoderKLWan(
base_dim=3,
z_dim=16,
dim_mult=[1, 1, 1, 1],
num_res_blocks=1,
temperal_downsample=[False, True, True],
)
torch.manual_seed(0)
scheduler = DPMSolverMultistepScheduler()
torch.manual_seed(0)
text_encoder_config = Gemma2Config(
head_dim=16,
hidden_size=8,
initializer_range=0.02,
intermediate_size=64,
max_position_embeddings=8192,
model_type="gemma2",
num_attention_heads=2,
num_hidden_layers=1,
num_key_value_heads=2,
vocab_size=8,
attn_implementation="eager",
)
text_encoder = Gemma2Model(text_encoder_config)
tokenizer = GemmaTokenizer.from_pretrained("hf-internal-testing/dummy-gemma")
torch.manual_seed(0)
transformer = SanaVideoTransformer3DModel(
in_channels=16,
out_channels=16,
num_attention_heads=2,
attention_head_dim=12,
num_layers=2,
num_cross_attention_heads=2,
cross_attention_head_dim=12,
cross_attention_dim=24,
caption_channels=8,
mlp_ratio=2.5,
dropout=0.0,
attention_bias=False,
sample_size=8,
patch_size=(1, 2, 2),
norm_elementwise_affine=False,
norm_eps=1e-6,
qk_norm="rms_norm_across_heads",
rope_max_seq_len=32,
)
components = {
"transformer": transformer,
"vae": vae,
"scheduler": scheduler,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "",
"negative_prompt": "",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"height": 32,
"width": 32,
"frames": 9,
"max_sequence_length": 16,
"output_type": "pt",
"complex_human_instruction": [],
"use_resolution_binning": False,
}
return inputs
def test_inference(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
video = pipe(**inputs).frames
generated_video = video[0]
self.assertEqual(generated_video.shape, (9, 3, 32, 32))
@unittest.skip("Test not supported")
def test_attention_slicing_forward_pass(self):
pass
def test_save_load_local(self, expected_max_difference=5e-4):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
for component in pipe.components.values():
if hasattr(component, "set_default_attn_processor"):
component.set_default_attn_processor()
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
torch.manual_seed(0)
output = pipe(**inputs)[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(tmpdir, safe_serialization=False)
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
for component in pipe_loaded.components.values():
if hasattr(component, "set_default_attn_processor"):
component.set_default_attn_processor()
pipe_loaded.to(torch_device)
pipe_loaded.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
torch.manual_seed(0)
output_loaded = pipe_loaded(**inputs)[0]
max_diff = np.abs(output.detach().cpu().numpy() - output_loaded.detach().cpu().numpy()).max()
self.assertLess(max_diff, expected_max_difference)
# TODO(aryan): Create a dummy gemma model with smol vocab size
@unittest.skip(
"A very small vocab size is used for fast tests. So, any kind of prompt other than the empty default used in other tests will lead to a embedding lookup error. This test uses a long prompt that causes the error."
)
def test_inference_batch_consistent(self):
pass
@unittest.skip(
"A very small vocab size is used for fast tests. So, any kind of prompt other than the empty default used in other tests will lead to a embedding lookup error. This test uses a long prompt that causes the error."
)
def test_inference_batch_single_identical(self):
pass
def test_float16_inference(self):
# Requires higher tolerance as model seems very sensitive to dtype
super().test_float16_inference(expected_max_diff=0.08)
def test_save_load_float16(self):
# Requires higher tolerance as model seems very sensitive to dtype
super().test_save_load_float16(expected_max_diff=0.2)
@slow
@require_torch_accelerator
class SanaVideoPipelineIntegrationTests(unittest.TestCase):
prompt = "Evening, backlight, side lighting, soft light, high contrast, mid-shot, centered composition, clean solo shot, warm color. A young Caucasian man stands in a forest."
def setUp(self):
super().setUp()
gc.collect()
backend_empty_cache(torch_device)
def tearDown(self):
super().tearDown()
gc.collect()
backend_empty_cache(torch_device)
@unittest.skip("TODO: test needs to be implemented")
def test_sana_video_480p(self):
pass