Compare commits

...

3 Commits

Author SHA1 Message Date
DN6
d23c775e86 update 2025-11-10 12:24:49 +05:30
Jay Wu
04f9d2bf3d add ChronoEdit (#12593)
* add ChronoEdit

* add ref to  original function & remove wan2.2 logics

* Update src/diffusers/pipelines/chronoedit/pipeline_chronoedit.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/chronoedit/pipeline_chronoedit.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* add ChronoeEdit test

* add docs

* add docs

* make fix-copies

* fix chronoedit test

---------

Co-authored-by: wjay <wjay@nvidia.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-11-09 22:07:00 -08:00
Dhruv Nair
bc8fd864eb [CI] Push test fix (#12617)
update
2025-11-10 09:26:14 +05:30
16 changed files with 1964 additions and 0 deletions

View File

@@ -76,6 +76,7 @@ jobs:
run: |
uv pip install -e ".[quality]"
uv pip uninstall accelerate && uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
- name: Environment
run: |
python utils/print_env.py
@@ -127,6 +128,7 @@ jobs:
uv pip install -e ".[quality]"
uv pip install peft@git+https://github.com/huggingface/peft.git
uv pip uninstall accelerate && uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
- name: Environment
run: |
@@ -178,6 +180,7 @@ jobs:
- name: Install dependencies
run: |
uv pip install -e ".[quality,training]"
uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
- name: Environment
run: |
python utils/print_env.py

View File

@@ -329,6 +329,8 @@
title: BriaTransformer2DModel
- local: api/models/chroma_transformer
title: ChromaTransformer2DModel
- local: api/models/chronoedit_transformer_3d
title: ChronoEditTransformer3DModel
- local: api/models/cogvideox_transformer3d
title: CogVideoXTransformer3DModel
- local: api/models/cogview3plus_transformer2d
@@ -628,6 +630,8 @@
- sections:
- local: api/pipelines/allegro
title: Allegro
- local: api/pipelines/chronoedit
title: ChronoEdit
- local: api/pipelines/cogvideox
title: CogVideoX
- local: api/pipelines/consisid

View File

@@ -0,0 +1,32 @@
<!-- Copyright 2025 The ChronoEdit Team and HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# ChronoEditTransformer3DModel
A Diffusion Transformer model for 3D video-like data from [ChronoEdit: Towards Temporal Reasoning for Image Editing and World Simulation](https://huggingface.co/papers/2510.04290) from NVIDIA and University of Toronto, by Jay Zhangjie Wu, Xuanchi Ren, Tianchang Shen, Tianshi Cao, Kai He, Yifan Lu, Ruiyuan Gao, Enze Xie, Shiyi Lan, Jose M. Alvarez, Jun Gao, Sanja Fidler, Zian Wang, Huan Ling.
> **TL;DR:** ChronoEdit reframes image editing as a video generation task, using input and edited images as start/end frames to leverage pretrained video models with temporal consistency. A temporal reasoning stage introduces reasoning tokens to ensure physically plausible edits and visualize the editing trajectory.
The model can be loaded with the following code snippet.
```python
from diffusers import ChronoEditTransformer3DModel
transformer = ChronoEditTransformer3DModel.from_pretrained("nvidia/ChronoEdit-14B-Diffusers", subfolder="transformer", torch_dtype=torch.bfloat16)
```
## ChronoEditTransformer3DModel
[[autodoc]] ChronoEditTransformer3DModel
## Transformer2DModelOutput
[[autodoc]] models.modeling_outputs.Transformer2DModelOutput

View File

@@ -0,0 +1,156 @@
<!-- Copyright 2025 The ChronoEdit Team and HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License. -->
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<a href="https://huggingface.co/docs/diffusers/main/en/tutorials/using_peft_for_inference" target="_blank" rel="noopener">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</a>
</div>
</div>
# ChronoEdit
[ChronoEdit: Towards Temporal Reasoning for Image Editing and World Simulation](https://huggingface.co/papers/2510.04290) from NVIDIA and University of Toronto, by Jay Zhangjie Wu, Xuanchi Ren, Tianchang Shen, Tianshi Cao, Kai He, Yifan Lu, Ruiyuan Gao, Enze Xie, Shiyi Lan, Jose M. Alvarez, Jun Gao, Sanja Fidler, Zian Wang, Huan Ling.
> **TL;DR:** ChronoEdit reframes image editing as a video generation task, using input and edited images as start/end frames to leverage pretrained video models with temporal consistency. A temporal reasoning stage introduces reasoning tokens to ensure physically plausible edits and visualize the editing trajectory.
*Recent advances in large generative models have greatly enhanced both image editing and in-context image generation, yet a critical gap remains in ensuring physical consistency, where edited objects must remain coherent. This capability is especially vital for world simulation related tasks. In this paper, we present ChronoEdit, a framework that reframes image editing as a video generation problem. First, ChronoEdit treats the input and edited images as the first and last frames of a video, allowing it to leverage large pretrained video generative models that capture not only object appearance but also the implicit physics of motion and interaction through learned temporal consistency. Second, ChronoEdit introduces a temporal reasoning stage that explicitly performs editing at inference time. Under this setting, target frame is jointly denoised with reasoning tokens to imagine a plausible editing trajectory that constrains the solution space to physically viable transformations. The reasoning tokens are then dropped after a few steps to avoid the high computational cost of rendering a full video. To validate ChronoEdit, we introduce PBench-Edit, a new benchmark of image-prompt pairs for contexts that require physical consistency, and demonstrate that ChronoEdit surpasses state-of-the-art baselines in both visual fidelity and physical plausibility. Project page for code and models: [this https URL](https://research.nvidia.com/labs/toronto-ai/chronoedit).*
The ChronoEdit pipeline is developed by the ChronoEdit Team. The original code is available on [GitHub](https://github.com/nv-tlabs/ChronoEdit), and pretrained models can be found in the [nvidia/ChronoEdit](https://huggingface.co/collections/nvidia/chronoedit) collection on Hugging Face.
### Image Editing
```py
import torch
import numpy as np
from diffusers import AutoencoderKLWan, ChronoEditTransformer3DModel, ChronoEditPipeline
from diffusers.utils import export_to_video, load_image
from transformers import CLIPVisionModel
from PIL import Image
model_id = "nvidia/ChronoEdit-14B-Diffusers"
image_encoder = CLIPVisionModel.from_pretrained(model_id, subfolder="image_encoder", torch_dtype=torch.float32)
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
transformer = ChronoEditTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.bfloat16)
pipe = ChronoEditPipeline.from_pretrained(model_id, image_encoder=image_encoder, transformer=transformer, vae=vae, torch_dtype=torch.bfloat16)
pipe.to("cuda")
image = load_image(
"https://huggingface.co/spaces/nvidia/ChronoEdit/resolve/main/examples/3.png"
)
max_area = 720 * 1280
aspect_ratio = image.height / image.width
mod_value = pipe.vae_scale_factor_spatial * pipe.transformer.config.patch_size[1]
height = round(np.sqrt(max_area * aspect_ratio)) // mod_value * mod_value
width = round(np.sqrt(max_area / aspect_ratio)) // mod_value * mod_value
print("width", width, "height", height)
image = image.resize((width, height))
prompt = (
"The user wants to transform the image by adding a small, cute mouse sitting inside the floral teacup, enjoying a spa bath. The mouse should appear relaxed and cheerful, with a tiny white bath towel draped over its head like a turban. It should be positioned comfortably in the cups liquid, with gentle steam rising around it to blend with the cozy atmosphere. "
"The mouses pose should be natural—perhaps sitting upright with paws resting lightly on the rim or submerged in the tea. The teacups floral design, gold trim, and warm lighting must remain unchanged to preserve the original aesthetic. The steam should softly swirl around the mouse, enhancing the spa-like, whimsical mood."
)
output = pipe(
image=image,
prompt=prompt,
height=height,
width=width,
num_frames=5,
num_inference_steps=50,
guidance_scale=5.0,
enable_temporal_reasoning=False,
num_temporal_reasoning_steps=0,
).frames[0]
Image.fromarray((output[-1] * 255).clip(0, 255).astype("uint8")).save("output.png")
```
Optionally, enable **temporal reasoning** for improved physical consistency:
```py
output = pipe(
image=image,
prompt=prompt,
height=height,
width=width,
num_frames=29,
num_inference_steps=50,
guidance_scale=5.0,
enable_temporal_reasoning=True,
num_temporal_reasoning_steps=50,
).frames[0]
export_to_video(output, "output.mp4", fps=16)
Image.fromarray((output[-1] * 255).clip(0, 255).astype("uint8")).save("output.png")
```
### Inference with 8-Step Distillation Lora
```py
import torch
import numpy as np
from diffusers import AutoencoderKLWan, ChronoEditTransformer3DModel, ChronoEditPipeline
from diffusers.utils import export_to_video, load_image
from transformers import CLIPVisionModel
from PIL import Image
model_id = "nvidia/ChronoEdit-14B-Diffusers"
image_encoder = CLIPVisionModel.from_pretrained(model_id, subfolder="image_encoder", torch_dtype=torch.float32)
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
transformer = ChronoEditTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.bfloat16)
pipe = ChronoEditPipeline.from_pretrained(model_id, image_encoder=image_encoder, transformer=transformer, vae=vae, torch_dtype=torch.bfloat16)
lora_path = hf_hub_download(repo_id=model_id, filename="lora/chronoedit_distill_lora.safetensors")
pipe.load_lora_weights(lora_path)
pipe.fuse_lora(lora_scale=1.0)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=2.0)
pipe.to("cuda")
image = load_image(
"https://huggingface.co/spaces/nvidia/ChronoEdit/resolve/main/examples/3.png"
)
max_area = 720 * 1280
aspect_ratio = image.height / image.width
mod_value = pipe.vae_scale_factor_spatial * pipe.transformer.config.patch_size[1]
height = round(np.sqrt(max_area * aspect_ratio)) // mod_value * mod_value
width = round(np.sqrt(max_area / aspect_ratio)) // mod_value * mod_value
print("width", width, "height", height)
image = image.resize((width, height))
prompt = (
"The user wants to transform the image by adding a small, cute mouse sitting inside the floral teacup, enjoying a spa bath. The mouse should appear relaxed and cheerful, with a tiny white bath towel draped over its head like a turban. It should be positioned comfortably in the cups liquid, with gentle steam rising around it to blend with the cozy atmosphere. "
"The mouses pose should be natural—perhaps sitting upright with paws resting lightly on the rim or submerged in the tea. The teacups floral design, gold trim, and warm lighting must remain unchanged to preserve the original aesthetic. The steam should softly swirl around the mouse, enhancing the spa-like, whimsical mood."
)
output = pipe(
image=image,
prompt=prompt,
height=height,
width=width,
num_frames=5,
num_inference_steps=8,
guidance_scale=1.0,
enable_temporal_reasoning=False,
num_temporal_reasoning_steps=0,
).frames[0]
export_to_video(output, "output.mp4", fps=16)
Image.fromarray((output[-1] * 255).clip(0, 255).astype("uint8")).save("output.png")
```
## ChronoEditPipeline
[[autodoc]] ChronoEditPipeline
- all
- __call__
## ChronoEditPipelineOutput
[[autodoc]] pipelines.chronoedit.pipeline_output.ChronoEditPipelineOutput

View File

@@ -202,6 +202,7 @@ else:
"BriaTransformer2DModel",
"CacheMixin",
"ChromaTransformer2DModel",
"ChronoEditTransformer3DModel",
"CogVideoXTransformer3DModel",
"CogView3PlusTransformer2DModel",
"CogView4Transformer2DModel",
@@ -436,6 +437,7 @@ else:
"BriaPipeline",
"ChromaImg2ImgPipeline",
"ChromaPipeline",
"ChronoEditPipeline",
"CLIPImageProjection",
"CogVideoXFunControlPipeline",
"CogVideoXImageToVideoPipeline",
@@ -909,6 +911,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
BriaTransformer2DModel,
CacheMixin,
ChromaTransformer2DModel,
ChronoEditTransformer3DModel,
CogVideoXTransformer3DModel,
CogView3PlusTransformer2DModel,
CogView4Transformer2DModel,
@@ -1113,6 +1116,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
BriaPipeline,
ChromaImg2ImgPipeline,
ChromaPipeline,
ChronoEditPipeline,
CLIPImageProjection,
CogVideoXFunControlPipeline,
CogVideoXImageToVideoPipeline,

View File

@@ -86,6 +86,7 @@ if is_torch_available():
_import_structure["transformers.transformer_bria"] = ["BriaTransformer2DModel"]
_import_structure["transformers.transformer_bria_fibo"] = ["BriaFiboTransformer2DModel"]
_import_structure["transformers.transformer_chroma"] = ["ChromaTransformer2DModel"]
_import_structure["transformers.transformer_chronoedit"] = ["ChronoEditTransformer3DModel"]
_import_structure["transformers.transformer_cogview3plus"] = ["CogView3PlusTransformer2DModel"]
_import_structure["transformers.transformer_cogview4"] = ["CogView4Transformer2DModel"]
_import_structure["transformers.transformer_cosmos"] = ["CosmosTransformer3DModel"]
@@ -179,6 +180,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
BriaFiboTransformer2DModel,
BriaTransformer2DModel,
ChromaTransformer2DModel,
ChronoEditTransformer3DModel,
CogVideoXTransformer3DModel,
CogView3PlusTransformer2DModel,
CogView4Transformer2DModel,

View File

@@ -20,6 +20,7 @@ if is_torch_available():
from .transformer_bria import BriaTransformer2DModel
from .transformer_bria_fibo import BriaFiboTransformer2DModel
from .transformer_chroma import ChromaTransformer2DModel
from .transformer_chronoedit import ChronoEditTransformer3DModel
from .transformer_cogview3plus import CogView3PlusTransformer2DModel
from .transformer_cogview4 import CogView4Transformer2DModel
from .transformer_cosmos import CosmosTransformer3DModel

View File

@@ -0,0 +1,735 @@
# Copyright 2025 The ChronoEdit Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import Any, Dict, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import FromOriginalModelMixin, PeftAdapterMixin
from ...utils import USE_PEFT_BACKEND, deprecate, logging, scale_lora_layers, unscale_lora_layers
from ...utils.torch_utils import maybe_allow_in_graph
from .._modeling_parallel import ContextParallelInput, ContextParallelOutput
from ..attention import AttentionMixin, AttentionModuleMixin, FeedForward
from ..attention_dispatch import dispatch_attention_fn
from ..cache_utils import CacheMixin
from ..embeddings import PixArtAlphaTextProjection, TimestepEmbedding, Timesteps, get_1d_rotary_pos_embed
from ..modeling_outputs import Transformer2DModelOutput
from ..modeling_utils import ModelMixin
from ..normalization import FP32LayerNorm
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
# Copied from diffusers.models.transformers.transformer_wan._get_qkv_projections
def _get_qkv_projections(attn: "WanAttention", hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor):
# encoder_hidden_states is only passed for cross-attention
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
if attn.fused_projections:
if attn.cross_attention_dim_head is None:
# In self-attention layers, we can fuse the entire QKV projection into a single linear
query, key, value = attn.to_qkv(hidden_states).chunk(3, dim=-1)
else:
# In cross-attention layers, we can only fuse the KV projections into a single linear
query = attn.to_q(hidden_states)
key, value = attn.to_kv(encoder_hidden_states).chunk(2, dim=-1)
else:
query = attn.to_q(hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
return query, key, value
# Copied from diffusers.models.transformers.transformer_wan._get_added_kv_projections
def _get_added_kv_projections(attn: "WanAttention", encoder_hidden_states_img: torch.Tensor):
if attn.fused_projections:
key_img, value_img = attn.to_added_kv(encoder_hidden_states_img).chunk(2, dim=-1)
else:
key_img = attn.add_k_proj(encoder_hidden_states_img)
value_img = attn.add_v_proj(encoder_hidden_states_img)
return key_img, value_img
# Copied from diffusers.models.transformers.transformer_wan.WanAttnProcessor
class WanAttnProcessor:
_attention_backend = None
_parallel_config = None
def __init__(self):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError(
"WanAttnProcessor requires PyTorch 2.0. To use it, please upgrade PyTorch to version 2.0 or higher."
)
def __call__(
self,
attn: "WanAttention",
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
) -> torch.Tensor:
encoder_hidden_states_img = None
if attn.add_k_proj is not None:
# 512 is the context length of the text encoder, hardcoded for now
image_context_length = encoder_hidden_states.shape[1] - 512
encoder_hidden_states_img = encoder_hidden_states[:, :image_context_length]
encoder_hidden_states = encoder_hidden_states[:, image_context_length:]
query, key, value = _get_qkv_projections(attn, hidden_states, encoder_hidden_states)
query = attn.norm_q(query)
key = attn.norm_k(key)
query = query.unflatten(2, (attn.heads, -1))
key = key.unflatten(2, (attn.heads, -1))
value = value.unflatten(2, (attn.heads, -1))
if rotary_emb is not None:
def apply_rotary_emb(
hidden_states: torch.Tensor,
freqs_cos: torch.Tensor,
freqs_sin: torch.Tensor,
):
x1, x2 = hidden_states.unflatten(-1, (-1, 2)).unbind(-1)
cos = freqs_cos[..., 0::2]
sin = freqs_sin[..., 1::2]
out = torch.empty_like(hidden_states)
out[..., 0::2] = x1 * cos - x2 * sin
out[..., 1::2] = x1 * sin + x2 * cos
return out.type_as(hidden_states)
query = apply_rotary_emb(query, *rotary_emb)
key = apply_rotary_emb(key, *rotary_emb)
# I2V task
hidden_states_img = None
if encoder_hidden_states_img is not None:
key_img, value_img = _get_added_kv_projections(attn, encoder_hidden_states_img)
key_img = attn.norm_added_k(key_img)
key_img = key_img.unflatten(2, (attn.heads, -1))
value_img = value_img.unflatten(2, (attn.heads, -1))
hidden_states_img = dispatch_attention_fn(
query,
key_img,
value_img,
attn_mask=None,
dropout_p=0.0,
is_causal=False,
backend=self._attention_backend,
parallel_config=self._parallel_config,
)
hidden_states_img = hidden_states_img.flatten(2, 3)
hidden_states_img = hidden_states_img.type_as(query)
hidden_states = dispatch_attention_fn(
query,
key,
value,
attn_mask=attention_mask,
dropout_p=0.0,
is_causal=False,
backend=self._attention_backend,
parallel_config=self._parallel_config,
)
hidden_states = hidden_states.flatten(2, 3)
hidden_states = hidden_states.type_as(query)
if hidden_states_img is not None:
hidden_states = hidden_states + hidden_states_img
hidden_states = attn.to_out[0](hidden_states)
hidden_states = attn.to_out[1](hidden_states)
return hidden_states
# Copied from diffusers.models.transformers.transformer_wan.WanAttnProcessor2_0
class WanAttnProcessor2_0:
def __new__(cls, *args, **kwargs):
deprecation_message = (
"The WanAttnProcessor2_0 class is deprecated and will be removed in a future version. "
"Please use WanAttnProcessor instead. "
)
deprecate("WanAttnProcessor2_0", "1.0.0", deprecation_message, standard_warn=False)
return WanAttnProcessor(*args, **kwargs)
# Copied from diffusers.models.transformers.transformer_wan.WanAttention
class WanAttention(torch.nn.Module, AttentionModuleMixin):
_default_processor_cls = WanAttnProcessor
_available_processors = [WanAttnProcessor]
def __init__(
self,
dim: int,
heads: int = 8,
dim_head: int = 64,
eps: float = 1e-5,
dropout: float = 0.0,
added_kv_proj_dim: Optional[int] = None,
cross_attention_dim_head: Optional[int] = None,
processor=None,
is_cross_attention=None,
):
super().__init__()
self.inner_dim = dim_head * heads
self.heads = heads
self.added_kv_proj_dim = added_kv_proj_dim
self.cross_attention_dim_head = cross_attention_dim_head
self.kv_inner_dim = self.inner_dim if cross_attention_dim_head is None else cross_attention_dim_head * heads
self.to_q = torch.nn.Linear(dim, self.inner_dim, bias=True)
self.to_k = torch.nn.Linear(dim, self.kv_inner_dim, bias=True)
self.to_v = torch.nn.Linear(dim, self.kv_inner_dim, bias=True)
self.to_out = torch.nn.ModuleList(
[
torch.nn.Linear(self.inner_dim, dim, bias=True),
torch.nn.Dropout(dropout),
]
)
self.norm_q = torch.nn.RMSNorm(dim_head * heads, eps=eps, elementwise_affine=True)
self.norm_k = torch.nn.RMSNorm(dim_head * heads, eps=eps, elementwise_affine=True)
self.add_k_proj = self.add_v_proj = None
if added_kv_proj_dim is not None:
self.add_k_proj = torch.nn.Linear(added_kv_proj_dim, self.inner_dim, bias=True)
self.add_v_proj = torch.nn.Linear(added_kv_proj_dim, self.inner_dim, bias=True)
self.norm_added_k = torch.nn.RMSNorm(dim_head * heads, eps=eps)
self.is_cross_attention = cross_attention_dim_head is not None
self.set_processor(processor)
def fuse_projections(self):
if getattr(self, "fused_projections", False):
return
if self.cross_attention_dim_head is None:
concatenated_weights = torch.cat([self.to_q.weight.data, self.to_k.weight.data, self.to_v.weight.data])
concatenated_bias = torch.cat([self.to_q.bias.data, self.to_k.bias.data, self.to_v.bias.data])
out_features, in_features = concatenated_weights.shape
with torch.device("meta"):
self.to_qkv = nn.Linear(in_features, out_features, bias=True)
self.to_qkv.load_state_dict(
{"weight": concatenated_weights, "bias": concatenated_bias}, strict=True, assign=True
)
else:
concatenated_weights = torch.cat([self.to_k.weight.data, self.to_v.weight.data])
concatenated_bias = torch.cat([self.to_k.bias.data, self.to_v.bias.data])
out_features, in_features = concatenated_weights.shape
with torch.device("meta"):
self.to_kv = nn.Linear(in_features, out_features, bias=True)
self.to_kv.load_state_dict(
{"weight": concatenated_weights, "bias": concatenated_bias}, strict=True, assign=True
)
if self.added_kv_proj_dim is not None:
concatenated_weights = torch.cat([self.add_k_proj.weight.data, self.add_v_proj.weight.data])
concatenated_bias = torch.cat([self.add_k_proj.bias.data, self.add_v_proj.bias.data])
out_features, in_features = concatenated_weights.shape
with torch.device("meta"):
self.to_added_kv = nn.Linear(in_features, out_features, bias=True)
self.to_added_kv.load_state_dict(
{"weight": concatenated_weights, "bias": concatenated_bias}, strict=True, assign=True
)
self.fused_projections = True
@torch.no_grad()
def unfuse_projections(self):
if not getattr(self, "fused_projections", False):
return
if hasattr(self, "to_qkv"):
delattr(self, "to_qkv")
if hasattr(self, "to_kv"):
delattr(self, "to_kv")
if hasattr(self, "to_added_kv"):
delattr(self, "to_added_kv")
self.fused_projections = False
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
**kwargs,
) -> torch.Tensor:
return self.processor(self, hidden_states, encoder_hidden_states, attention_mask, rotary_emb, **kwargs)
# Copied from diffusers.models.transformers.transformer_wan.WanImageEmbedding
class WanImageEmbedding(torch.nn.Module):
def __init__(self, in_features: int, out_features: int, pos_embed_seq_len=None):
super().__init__()
self.norm1 = FP32LayerNorm(in_features)
self.ff = FeedForward(in_features, out_features, mult=1, activation_fn="gelu")
self.norm2 = FP32LayerNorm(out_features)
if pos_embed_seq_len is not None:
self.pos_embed = nn.Parameter(torch.zeros(1, pos_embed_seq_len, in_features))
else:
self.pos_embed = None
def forward(self, encoder_hidden_states_image: torch.Tensor) -> torch.Tensor:
if self.pos_embed is not None:
batch_size, seq_len, embed_dim = encoder_hidden_states_image.shape
encoder_hidden_states_image = encoder_hidden_states_image.view(-1, 2 * seq_len, embed_dim)
encoder_hidden_states_image = encoder_hidden_states_image + self.pos_embed
hidden_states = self.norm1(encoder_hidden_states_image)
hidden_states = self.ff(hidden_states)
hidden_states = self.norm2(hidden_states)
return hidden_states
# Copied from diffusers.models.transformers.transformer_wan.WanTimeTextImageEmbedding
class WanTimeTextImageEmbedding(nn.Module):
def __init__(
self,
dim: int,
time_freq_dim: int,
time_proj_dim: int,
text_embed_dim: int,
image_embed_dim: Optional[int] = None,
pos_embed_seq_len: Optional[int] = None,
):
super().__init__()
self.timesteps_proj = Timesteps(num_channels=time_freq_dim, flip_sin_to_cos=True, downscale_freq_shift=0)
self.time_embedder = TimestepEmbedding(in_channels=time_freq_dim, time_embed_dim=dim)
self.act_fn = nn.SiLU()
self.time_proj = nn.Linear(dim, time_proj_dim)
self.text_embedder = PixArtAlphaTextProjection(text_embed_dim, dim, act_fn="gelu_tanh")
self.image_embedder = None
if image_embed_dim is not None:
self.image_embedder = WanImageEmbedding(image_embed_dim, dim, pos_embed_seq_len=pos_embed_seq_len)
def forward(
self,
timestep: torch.Tensor,
encoder_hidden_states: torch.Tensor,
encoder_hidden_states_image: Optional[torch.Tensor] = None,
timestep_seq_len: Optional[int] = None,
):
timestep = self.timesteps_proj(timestep)
if timestep_seq_len is not None:
timestep = timestep.unflatten(0, (-1, timestep_seq_len))
time_embedder_dtype = next(iter(self.time_embedder.parameters())).dtype
if timestep.dtype != time_embedder_dtype and time_embedder_dtype != torch.int8:
timestep = timestep.to(time_embedder_dtype)
temb = self.time_embedder(timestep).type_as(encoder_hidden_states)
timestep_proj = self.time_proj(self.act_fn(temb))
encoder_hidden_states = self.text_embedder(encoder_hidden_states)
if encoder_hidden_states_image is not None:
encoder_hidden_states_image = self.image_embedder(encoder_hidden_states_image)
return temb, timestep_proj, encoder_hidden_states, encoder_hidden_states_image
class ChronoEditRotaryPosEmbed(nn.Module):
def __init__(
self,
attention_head_dim: int,
patch_size: Tuple[int, int, int],
max_seq_len: int,
theta: float = 10000.0,
temporal_skip_len: int = 8,
):
super().__init__()
self.attention_head_dim = attention_head_dim
self.patch_size = patch_size
self.max_seq_len = max_seq_len
self.temporal_skip_len = temporal_skip_len
h_dim = w_dim = 2 * (attention_head_dim // 6)
t_dim = attention_head_dim - h_dim - w_dim
freqs_dtype = torch.float32 if torch.backends.mps.is_available() else torch.float64
freqs_cos = []
freqs_sin = []
for dim in [t_dim, h_dim, w_dim]:
freq_cos, freq_sin = get_1d_rotary_pos_embed(
dim,
max_seq_len,
theta,
use_real=True,
repeat_interleave_real=True,
freqs_dtype=freqs_dtype,
)
freqs_cos.append(freq_cos)
freqs_sin.append(freq_sin)
self.register_buffer("freqs_cos", torch.cat(freqs_cos, dim=1), persistent=False)
self.register_buffer("freqs_sin", torch.cat(freqs_sin, dim=1), persistent=False)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
batch_size, num_channels, num_frames, height, width = hidden_states.shape
p_t, p_h, p_w = self.patch_size
ppf, pph, ppw = num_frames // p_t, height // p_h, width // p_w
split_sizes = [
self.attention_head_dim - 2 * (self.attention_head_dim // 3),
self.attention_head_dim // 3,
self.attention_head_dim // 3,
]
freqs_cos = self.freqs_cos.split(split_sizes, dim=1)
freqs_sin = self.freqs_sin.split(split_sizes, dim=1)
if num_frames == 2:
freqs_cos_f = freqs_cos[0][: self.temporal_skip_len][[0, -1]].view(ppf, 1, 1, -1).expand(ppf, pph, ppw, -1)
else:
freqs_cos_f = freqs_cos[0][:ppf].view(ppf, 1, 1, -1).expand(ppf, pph, ppw, -1)
freqs_cos_h = freqs_cos[1][:pph].view(1, pph, 1, -1).expand(ppf, pph, ppw, -1)
freqs_cos_w = freqs_cos[2][:ppw].view(1, 1, ppw, -1).expand(ppf, pph, ppw, -1)
if num_frames == 2:
freqs_sin_f = freqs_sin[0][: self.temporal_skip_len][[0, -1]].view(ppf, 1, 1, -1).expand(ppf, pph, ppw, -1)
else:
freqs_sin_f = freqs_sin[0][:ppf].view(ppf, 1, 1, -1).expand(ppf, pph, ppw, -1)
freqs_sin_h = freqs_sin[1][:pph].view(1, pph, 1, -1).expand(ppf, pph, ppw, -1)
freqs_sin_w = freqs_sin[2][:ppw].view(1, 1, ppw, -1).expand(ppf, pph, ppw, -1)
freqs_cos = torch.cat([freqs_cos_f, freqs_cos_h, freqs_cos_w], dim=-1).reshape(1, ppf * pph * ppw, 1, -1)
freqs_sin = torch.cat([freqs_sin_f, freqs_sin_h, freqs_sin_w], dim=-1).reshape(1, ppf * pph * ppw, 1, -1)
return freqs_cos, freqs_sin
@maybe_allow_in_graph
# Copied from diffusers.models.transformers.transformer_wan.WanTransformerBlock
class WanTransformerBlock(nn.Module):
def __init__(
self,
dim: int,
ffn_dim: int,
num_heads: int,
qk_norm: str = "rms_norm_across_heads",
cross_attn_norm: bool = False,
eps: float = 1e-6,
added_kv_proj_dim: Optional[int] = None,
):
super().__init__()
# 1. Self-attention
self.norm1 = FP32LayerNorm(dim, eps, elementwise_affine=False)
self.attn1 = WanAttention(
dim=dim,
heads=num_heads,
dim_head=dim // num_heads,
eps=eps,
cross_attention_dim_head=None,
processor=WanAttnProcessor(),
)
# 2. Cross-attention
self.attn2 = WanAttention(
dim=dim,
heads=num_heads,
dim_head=dim // num_heads,
eps=eps,
added_kv_proj_dim=added_kv_proj_dim,
cross_attention_dim_head=dim // num_heads,
processor=WanAttnProcessor(),
)
self.norm2 = FP32LayerNorm(dim, eps, elementwise_affine=True) if cross_attn_norm else nn.Identity()
# 3. Feed-forward
self.ffn = FeedForward(dim, inner_dim=ffn_dim, activation_fn="gelu-approximate")
self.norm3 = FP32LayerNorm(dim, eps, elementwise_affine=False)
self.scale_shift_table = nn.Parameter(torch.randn(1, 6, dim) / dim**0.5)
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
temb: torch.Tensor,
rotary_emb: torch.Tensor,
) -> torch.Tensor:
if temb.ndim == 4:
# temb: batch_size, seq_len, 6, inner_dim (wan2.2 ti2v)
shift_msa, scale_msa, gate_msa, c_shift_msa, c_scale_msa, c_gate_msa = (
self.scale_shift_table.unsqueeze(0) + temb.float()
).chunk(6, dim=2)
# batch_size, seq_len, 1, inner_dim
shift_msa = shift_msa.squeeze(2)
scale_msa = scale_msa.squeeze(2)
gate_msa = gate_msa.squeeze(2)
c_shift_msa = c_shift_msa.squeeze(2)
c_scale_msa = c_scale_msa.squeeze(2)
c_gate_msa = c_gate_msa.squeeze(2)
else:
# temb: batch_size, 6, inner_dim (wan2.1/wan2.2 14B)
shift_msa, scale_msa, gate_msa, c_shift_msa, c_scale_msa, c_gate_msa = (
self.scale_shift_table + temb.float()
).chunk(6, dim=1)
# 1. Self-attention
norm_hidden_states = (self.norm1(hidden_states.float()) * (1 + scale_msa) + shift_msa).type_as(hidden_states)
attn_output = self.attn1(norm_hidden_states, None, None, rotary_emb)
hidden_states = (hidden_states.float() + attn_output * gate_msa).type_as(hidden_states)
# 2. Cross-attention
norm_hidden_states = self.norm2(hidden_states.float()).type_as(hidden_states)
attn_output = self.attn2(norm_hidden_states, encoder_hidden_states, None, None)
hidden_states = hidden_states + attn_output
# 3. Feed-forward
norm_hidden_states = (self.norm3(hidden_states.float()) * (1 + c_scale_msa) + c_shift_msa).type_as(
hidden_states
)
ff_output = self.ffn(norm_hidden_states)
hidden_states = (hidden_states.float() + ff_output.float() * c_gate_msa).type_as(hidden_states)
return hidden_states
# modified from diffusers.models.transformers.transformer_wan.WanTransformer3DModel
class ChronoEditTransformer3DModel(
ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin, CacheMixin, AttentionMixin
):
r"""
A Transformer model for video-like data used in the ChronoEdit model.
Args:
patch_size (`Tuple[int]`, defaults to `(1, 2, 2)`):
3D patch dimensions for video embedding (t_patch, h_patch, w_patch).
num_attention_heads (`int`, defaults to `40`):
Fixed length for text embeddings.
attention_head_dim (`int`, defaults to `128`):
The number of channels in each head.
in_channels (`int`, defaults to `16`):
The number of channels in the input.
out_channels (`int`, defaults to `16`):
The number of channels in the output.
text_dim (`int`, defaults to `512`):
Input dimension for text embeddings.
freq_dim (`int`, defaults to `256`):
Dimension for sinusoidal time embeddings.
ffn_dim (`int`, defaults to `13824`):
Intermediate dimension in feed-forward network.
num_layers (`int`, defaults to `40`):
The number of layers of transformer blocks to use.
window_size (`Tuple[int]`, defaults to `(-1, -1)`):
Window size for local attention (-1 indicates global attention).
cross_attn_norm (`bool`, defaults to `True`):
Enable cross-attention normalization.
qk_norm (`bool`, defaults to `True`):
Enable query/key normalization.
eps (`float`, defaults to `1e-6`):
Epsilon value for normalization layers.
add_img_emb (`bool`, defaults to `False`):
Whether to use img_emb.
added_kv_proj_dim (`int`, *optional*, defaults to `None`):
The number of channels to use for the added key and value projections. If `None`, no projection is used.
"""
_supports_gradient_checkpointing = True
_skip_layerwise_casting_patterns = ["patch_embedding", "condition_embedder", "norm"]
_no_split_modules = ["WanTransformerBlock"]
_keep_in_fp32_modules = ["time_embedder", "scale_shift_table", "norm1", "norm2", "norm3"]
_keys_to_ignore_on_load_unexpected = ["norm_added_q"]
_repeated_blocks = ["WanTransformerBlock"]
_cp_plan = {
"rope": {
0: ContextParallelInput(split_dim=1, expected_dims=4, split_output=True),
1: ContextParallelInput(split_dim=1, expected_dims=4, split_output=True),
},
"blocks.0": {
"hidden_states": ContextParallelInput(split_dim=1, expected_dims=3, split_output=False),
},
"blocks.*": {
"encoder_hidden_states": ContextParallelInput(split_dim=1, expected_dims=3, split_output=False),
},
"proj_out": ContextParallelOutput(gather_dim=1, expected_dims=3),
}
@register_to_config
def __init__(
self,
patch_size: Tuple[int] = (1, 2, 2),
num_attention_heads: int = 40,
attention_head_dim: int = 128,
in_channels: int = 16,
out_channels: int = 16,
text_dim: int = 4096,
freq_dim: int = 256,
ffn_dim: int = 13824,
num_layers: int = 40,
cross_attn_norm: bool = True,
qk_norm: Optional[str] = "rms_norm_across_heads",
eps: float = 1e-6,
image_dim: Optional[int] = None,
added_kv_proj_dim: Optional[int] = None,
rope_max_seq_len: int = 1024,
pos_embed_seq_len: Optional[int] = None,
rope_temporal_skip_len: int = 8,
) -> None:
super().__init__()
inner_dim = num_attention_heads * attention_head_dim
out_channels = out_channels or in_channels
# 1. Patch & position embedding
self.rope = ChronoEditRotaryPosEmbed(
attention_head_dim, patch_size, rope_max_seq_len, temporal_skip_len=rope_temporal_skip_len
)
self.patch_embedding = nn.Conv3d(in_channels, inner_dim, kernel_size=patch_size, stride=patch_size)
# 2. Condition embeddings
# image_embedding_dim=1280 for I2V model
self.condition_embedder = WanTimeTextImageEmbedding(
dim=inner_dim,
time_freq_dim=freq_dim,
time_proj_dim=inner_dim * 6,
text_embed_dim=text_dim,
image_embed_dim=image_dim,
pos_embed_seq_len=pos_embed_seq_len,
)
# 3. Transformer blocks
self.blocks = nn.ModuleList(
[
WanTransformerBlock(
inner_dim, ffn_dim, num_attention_heads, qk_norm, cross_attn_norm, eps, added_kv_proj_dim
)
for _ in range(num_layers)
]
)
# 4. Output norm & projection
self.norm_out = FP32LayerNorm(inner_dim, eps, elementwise_affine=False)
self.proj_out = nn.Linear(inner_dim, out_channels * math.prod(patch_size))
self.scale_shift_table = nn.Parameter(torch.randn(1, 2, inner_dim) / inner_dim**0.5)
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
timestep: torch.LongTensor,
encoder_hidden_states: torch.Tensor,
encoder_hidden_states_image: Optional[torch.Tensor] = None,
return_dict: bool = True,
attention_kwargs: Optional[Dict[str, Any]] = None,
) -> Union[torch.Tensor, Dict[str, torch.Tensor]]:
if attention_kwargs is not None:
attention_kwargs = attention_kwargs.copy()
lora_scale = attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
logger.warning(
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
)
batch_size, num_channels, num_frames, height, width = hidden_states.shape
p_t, p_h, p_w = self.config.patch_size
post_patch_num_frames = num_frames // p_t
post_patch_height = height // p_h
post_patch_width = width // p_w
rotary_emb = self.rope(hidden_states)
hidden_states = self.patch_embedding(hidden_states)
hidden_states = hidden_states.flatten(2).transpose(1, 2)
# timestep shape: batch_size, or batch_size, seq_len (wan 2.2 ti2v)
if timestep.ndim == 2:
ts_seq_len = timestep.shape[1]
timestep = timestep.flatten() # batch_size * seq_len
else:
ts_seq_len = None
temb, timestep_proj, encoder_hidden_states, encoder_hidden_states_image = self.condition_embedder(
timestep, encoder_hidden_states, encoder_hidden_states_image, timestep_seq_len=ts_seq_len
)
if ts_seq_len is not None:
# batch_size, seq_len, 6, inner_dim
timestep_proj = timestep_proj.unflatten(2, (6, -1))
else:
# batch_size, 6, inner_dim
timestep_proj = timestep_proj.unflatten(1, (6, -1))
if encoder_hidden_states_image is not None:
encoder_hidden_states = torch.concat([encoder_hidden_states_image, encoder_hidden_states], dim=1)
# 4. Transformer blocks
if torch.is_grad_enabled() and self.gradient_checkpointing:
for block in self.blocks:
hidden_states = self._gradient_checkpointing_func(
block, hidden_states, encoder_hidden_states, timestep_proj, rotary_emb
)
else:
for block in self.blocks:
hidden_states = block(hidden_states, encoder_hidden_states, timestep_proj, rotary_emb)
# 5. Output norm, projection & unpatchify
if temb.ndim == 3:
# batch_size, seq_len, inner_dim (wan 2.2 ti2v)
shift, scale = (self.scale_shift_table.unsqueeze(0).to(temb.device) + temb.unsqueeze(2)).chunk(2, dim=2)
shift = shift.squeeze(2)
scale = scale.squeeze(2)
else:
# batch_size, inner_dim
shift, scale = (self.scale_shift_table.to(temb.device) + temb.unsqueeze(1)).chunk(2, dim=1)
# Move the shift and scale tensors to the same device as hidden_states.
# When using multi-GPU inference via accelerate these will be on the
# first device rather than the last device, which hidden_states ends up
# on.
shift = shift.to(hidden_states.device)
scale = scale.to(hidden_states.device)
hidden_states = (self.norm_out(hidden_states.float()) * (1 + scale) + shift).type_as(hidden_states)
hidden_states = self.proj_out(hidden_states)
hidden_states = hidden_states.reshape(
batch_size, post_patch_num_frames, post_patch_height, post_patch_width, p_t, p_h, p_w, -1
)
hidden_states = hidden_states.permute(0, 7, 1, 4, 2, 5, 3, 6)
output = hidden_states.flatten(6, 7).flatten(4, 5).flatten(2, 3)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (output,)
return Transformer2DModelOutput(sample=output)

View File

@@ -404,6 +404,7 @@ else:
"QwenImageControlNetInpaintPipeline",
"QwenImageControlNetPipeline",
]
_import_structure["chronoedit"] = ["ChronoEditPipeline"]
try:
if not is_onnx_available():
raise OptionalDependencyNotAvailable()
@@ -566,6 +567,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
from .bria import BriaPipeline
from .bria_fibo import BriaFiboPipeline
from .chroma import ChromaImg2ImgPipeline, ChromaPipeline
from .chronoedit import ChronoEditPipeline
from .cogvideo import (
CogVideoXFunControlPipeline,
CogVideoXImageToVideoPipeline,

View File

@@ -0,0 +1,47 @@
from typing import TYPE_CHECKING
from ...utils import (
DIFFUSERS_SLOW_IMPORT,
OptionalDependencyNotAvailable,
_LazyModule,
get_objects_from_module,
is_torch_available,
is_transformers_available,
)
_dummy_objects = {}
_import_structure = {}
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils import dummy_torch_and_transformers_objects # noqa F403
_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
else:
_import_structure["pipeline_chronoedit"] = ["ChronoEditPipeline"]
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import *
else:
from .pipeline_chronoedit import ChronoEditPipeline
else:
import sys
sys.modules[__name__] = _LazyModule(
__name__,
globals()["__file__"],
_import_structure,
module_spec=__spec__,
)
for name, value in _dummy_objects.items():
setattr(sys.modules[__name__], name, value)

View File

@@ -0,0 +1,752 @@
# Copyright 2025 The ChronoEdit Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import html
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import PIL
import regex as re
import torch
from transformers import AutoTokenizer, CLIPImageProcessor, CLIPVisionModel, UMT5EncoderModel
from ...callbacks import MultiPipelineCallbacks, PipelineCallback
from ...image_processor import PipelineImageInput
from ...loaders import WanLoraLoaderMixin
from ...models import AutoencoderKLWan, ChronoEditTransformer3DModel
from ...schedulers import FlowMatchEulerDiscreteScheduler
from ...utils import is_ftfy_available, is_torch_xla_available, logging, replace_example_docstring
from ...utils.torch_utils import randn_tensor
from ...video_processor import VideoProcessor
from ..pipeline_utils import DiffusionPipeline
from .pipeline_output import ChronoEditPipelineOutput
if is_torch_xla_available():
import torch_xla.core.xla_model as xm
XLA_AVAILABLE = True
else:
XLA_AVAILABLE = False
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
if is_ftfy_available():
import ftfy
EXAMPLE_DOC_STRING = """
Examples:
```python
>>> import torch
>>> import numpy as np
>>> from diffusers import AutoencoderKLWan, ChronoEditTransformer3DModel, ChronoEditPipeline
>>> from diffusers.utils import export_to_video, load_image
>>> from transformers import CLIPVisionModel
>>> # Available models: nvidia/ChronoEdit-14B-Diffusers
>>> model_id = "nvidia/ChronoEdit-14B-Diffusers"
>>> image_encoder = CLIPVisionModel.from_pretrained(
... model_id, subfolder="image_encoder", torch_dtype=torch.float32
... )
>>> vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
>>> transformer = ChronoEditTransformer3DModel.from_pretrained(
... model_id, subfolder="transformer", torch_dtype=torch.bfloat16
... )
>>> pipe = ChronoEditPipeline.from_pretrained(
... model_id, vae=vae, image_encoder=image_encoder, transformer=transformer, torch_dtype=torch.bfloat16
... )
>>> pipe.to("cuda")
>>> image = load_image("https://huggingface.co/spaces/nvidia/ChronoEdit/resolve/main/examples/3.png")
>>> max_area = 720 * 1280
>>> aspect_ratio = image.height / image.width
>>> mod_value = pipe.vae_scale_factor_spatial * pipe.transformer.config.patch_size[1]
>>> height = round(np.sqrt(max_area * aspect_ratio)) // mod_value * mod_value
>>> width = round(np.sqrt(max_area / aspect_ratio)) // mod_value * mod_value
>>> image = image.resize((width, height))
>>> prompt = (
... "The user wants to transform the image by adding a small, cute mouse sitting inside the floral teacup, enjoying a spa bath. The mouse should appear relaxed and cheerful, with a tiny white bath towel draped over its head like a turban. It should be positioned comfortably in the cups liquid, with gentle steam rising around it to blend with the cozy atmosphere. "
... "The mouses pose should be natural—perhaps sitting upright with paws resting lightly on the rim or submerged in the tea. The teacups floral design, gold trim, and warm lighting must remain unchanged to preserve the original aesthetic. The steam should softly swirl around the mouse, enhancing the spa-like, whimsical mood."
... )
>>> output = pipe(
... image=image,
... prompt=prompt,
... height=height,
... width=width,
... num_frames=5,
... guidance_scale=5.0,
... enable_temporal_reasoning=False,
... num_temporal_reasoning_steps=0,
... ).frames[0]
>>> export_to_video(output, "output.mp4", fps=16)
```
"""
def basic_clean(text):
text = ftfy.fix_text(text)
text = html.unescape(html.unescape(text))
return text.strip()
def whitespace_clean(text):
text = re.sub(r"\s+", " ", text)
text = text.strip()
return text
def prompt_clean(text):
text = whitespace_clean(basic_clean(text))
return text
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
def retrieve_latents(
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
):
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
return encoder_output.latent_dist.sample(generator)
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
return encoder_output.latent_dist.mode()
elif hasattr(encoder_output, "latents"):
return encoder_output.latents
else:
raise AttributeError("Could not access latents of provided encoder_output")
class ChronoEditPipeline(DiffusionPipeline, WanLoraLoaderMixin):
r"""
Pipeline for image-to-video generation using Wan.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
Args:
tokenizer ([`T5Tokenizer`]):
Tokenizer from [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5Tokenizer),
specifically the [google/umt5-xxl](https://huggingface.co/google/umt5-xxl) variant.
text_encoder ([`T5EncoderModel`]):
[T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
the [google/umt5-xxl](https://huggingface.co/google/umt5-xxl) variant.
image_encoder ([`CLIPVisionModel`]):
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPVisionModel), specifically
the
[clip-vit-huge-patch14](https://github.com/mlfoundations/open_clip/blob/main/docs/PRETRAINED.md#vit-h14-xlm-roberta-large)
variant.
transformer ([`WanTransformer3DModel`]):
Conditional Transformer to denoise the input latents.
scheduler ([`UniPCMultistepScheduler`]):
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
vae ([`AutoencoderKLWan`]):
Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations.
"""
model_cpu_offload_seq = "text_encoder->image_encoder->transformer->vae"
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
def __init__(
self,
tokenizer: AutoTokenizer,
text_encoder: UMT5EncoderModel,
image_encoder: CLIPVisionModel,
image_processor: CLIPImageProcessor,
transformer: ChronoEditTransformer3DModel,
vae: AutoencoderKLWan,
scheduler: FlowMatchEulerDiscreteScheduler,
):
super().__init__()
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
image_encoder=image_encoder,
transformer=transformer,
scheduler=scheduler,
image_processor=image_processor,
)
self.vae_scale_factor_temporal = self.vae.config.scale_factor_temporal if getattr(self, "vae", None) else 4
self.vae_scale_factor_spatial = self.vae.config.scale_factor_spatial if getattr(self, "vae", None) else 8
self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial)
self.image_processor = image_processor
# Copied from diffusers.pipelines.wan.pipeline_wan_i2v.WanImageToVideoPipeline._get_t5_prompt_embeds
def _get_t5_prompt_embeds(
self,
prompt: Union[str, List[str]] = None,
num_videos_per_prompt: int = 1,
max_sequence_length: int = 512,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
device = device or self._execution_device
dtype = dtype or self.text_encoder.dtype
prompt = [prompt] if isinstance(prompt, str) else prompt
prompt = [prompt_clean(u) for u in prompt]
batch_size = len(prompt)
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=max_sequence_length,
truncation=True,
add_special_tokens=True,
return_attention_mask=True,
return_tensors="pt",
)
text_input_ids, mask = text_inputs.input_ids, text_inputs.attention_mask
seq_lens = mask.gt(0).sum(dim=1).long()
prompt_embeds = self.text_encoder(text_input_ids.to(device), mask.to(device)).last_hidden_state
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
prompt_embeds = [u[:v] for u, v in zip(prompt_embeds, seq_lens)]
prompt_embeds = torch.stack(
[torch.cat([u, u.new_zeros(max_sequence_length - u.size(0), u.size(1))]) for u in prompt_embeds], dim=0
)
# duplicate text embeddings for each generation per prompt, using mps friendly method
_, seq_len, _ = prompt_embeds.shape
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1)
return prompt_embeds
# Copied from diffusers.pipelines.wan.pipeline_wan_i2v.WanImageToVideoPipeline.encode_image
def encode_image(
self,
image: PipelineImageInput,
device: Optional[torch.device] = None,
):
device = device or self._execution_device
image = self.image_processor(images=image, return_tensors="pt").to(device)
image_embeds = self.image_encoder(**image, output_hidden_states=True)
return image_embeds.hidden_states[-2]
# Copied from diffusers.pipelines.wan.pipeline_wan.WanPipeline.encode_prompt
def encode_prompt(
self,
prompt: Union[str, List[str]],
negative_prompt: Optional[Union[str, List[str]]] = None,
do_classifier_free_guidance: bool = True,
num_videos_per_prompt: int = 1,
prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
max_sequence_length: int = 226,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
Whether to use classifier free guidance or not.
num_videos_per_prompt (`int`, *optional*, defaults to 1):
Number of videos that should be generated per prompt. torch device to place the resulting embeddings on
prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
device: (`torch.device`, *optional*):
torch device
dtype: (`torch.dtype`, *optional*):
torch dtype
"""
device = device or self._execution_device
prompt = [prompt] if isinstance(prompt, str) else prompt
if prompt is not None:
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if prompt_embeds is None:
prompt_embeds = self._get_t5_prompt_embeds(
prompt=prompt,
num_videos_per_prompt=num_videos_per_prompt,
max_sequence_length=max_sequence_length,
device=device,
dtype=dtype,
)
if do_classifier_free_guidance and negative_prompt_embeds is None:
negative_prompt = negative_prompt or ""
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
if prompt is not None and type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
negative_prompt_embeds = self._get_t5_prompt_embeds(
prompt=negative_prompt,
num_videos_per_prompt=num_videos_per_prompt,
max_sequence_length=max_sequence_length,
device=device,
dtype=dtype,
)
return prompt_embeds, negative_prompt_embeds
# modified from diffusers.pipelines.wan.pipeline_wan_i2v.WanImageToVideoPipeline.check_inputs
def check_inputs(
self,
prompt,
negative_prompt,
image,
height,
width,
prompt_embeds=None,
negative_prompt_embeds=None,
image_embeds=None,
callback_on_step_end_tensor_inputs=None,
):
if image is not None and image_embeds is not None:
raise ValueError(
f"Cannot forward both `image`: {image} and `image_embeds`: {image_embeds}. Please make sure to"
" only forward one of the two."
)
if image is None and image_embeds is None:
raise ValueError(
"Provide either `image` or `prompt_embeds`. Cannot leave both `image` and `image_embeds` undefined."
)
if image is not None and not isinstance(image, torch.Tensor) and not isinstance(image, PIL.Image.Image):
raise ValueError(f"`image` has to be of type `torch.Tensor` or `PIL.Image.Image` but is {type(image)}")
if height % 16 != 0 or width % 16 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 16 but are {height} and {width}.")
if callback_on_step_end_tensor_inputs is not None and not all(
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
):
raise ValueError(
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
elif negative_prompt is not None and (
not isinstance(negative_prompt, str) and not isinstance(negative_prompt, list)
):
raise ValueError(f"`negative_prompt` has to be of type `str` or `list` but is {type(negative_prompt)}")
# modified from diffusers.pipelines.wan.pipeline_wan_i2v.WanImageToVideoPipeline.prepare_latents
def prepare_latents(
self,
image: PipelineImageInput,
batch_size: int,
num_channels_latents: int = 16,
height: int = 480,
width: int = 832,
num_frames: int = 81,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
num_latent_frames = (num_frames - 1) // self.vae_scale_factor_temporal + 1
latent_height = height // self.vae_scale_factor_spatial
latent_width = width // self.vae_scale_factor_spatial
shape = (batch_size, num_channels_latents, num_latent_frames, latent_height, latent_width)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
latents = latents.to(device=device, dtype=dtype)
image = image.unsqueeze(2) # [batch_size, channels, 1, height, width]
video_condition = torch.cat(
[image, image.new_zeros(image.shape[0], image.shape[1], num_frames - 1, height, width)], dim=2
)
video_condition = video_condition.to(device=device, dtype=self.vae.dtype)
latents_mean = (
torch.tensor(self.vae.config.latents_mean)
.view(1, self.vae.config.z_dim, 1, 1, 1)
.to(latents.device, latents.dtype)
)
latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to(
latents.device, latents.dtype
)
if isinstance(generator, list):
latent_condition = [
retrieve_latents(self.vae.encode(video_condition), sample_mode="argmax") for _ in generator
]
latent_condition = torch.cat(latent_condition)
else:
latent_condition = retrieve_latents(self.vae.encode(video_condition), sample_mode="argmax")
latent_condition = latent_condition.repeat(batch_size, 1, 1, 1, 1)
latent_condition = latent_condition.to(dtype)
latent_condition = (latent_condition - latents_mean) * latents_std
mask_lat_size = torch.ones(batch_size, 1, num_frames, latent_height, latent_width)
mask_lat_size[:, :, list(range(1, num_frames))] = 0
first_frame_mask = mask_lat_size[:, :, 0:1]
first_frame_mask = torch.repeat_interleave(first_frame_mask, dim=2, repeats=self.vae_scale_factor_temporal)
mask_lat_size = torch.concat([first_frame_mask, mask_lat_size[:, :, 1:, :]], dim=2)
mask_lat_size = mask_lat_size.view(batch_size, -1, self.vae_scale_factor_temporal, latent_height, latent_width)
mask_lat_size = mask_lat_size.transpose(1, 2)
mask_lat_size = mask_lat_size.to(latent_condition.device)
return latents, torch.concat([mask_lat_size, latent_condition], dim=1)
@property
def guidance_scale(self):
return self._guidance_scale
@property
def do_classifier_free_guidance(self):
return self._guidance_scale > 1
@property
def num_timesteps(self):
return self._num_timesteps
@property
def current_timestep(self):
return self._current_timestep
@property
def interrupt(self):
return self._interrupt
@property
def attention_kwargs(self):
return self._attention_kwargs
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
image: PipelineImageInput,
prompt: Union[str, List[str]] = None,
negative_prompt: Union[str, List[str]] = None,
height: int = 480,
width: int = 832,
num_frames: int = 81,
num_inference_steps: int = 50,
guidance_scale: float = 5.0,
num_videos_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None,
prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
image_embeds: Optional[torch.Tensor] = None,
output_type: Optional[str] = "np",
return_dict: bool = True,
attention_kwargs: Optional[Dict[str, Any]] = None,
callback_on_step_end: Optional[
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
max_sequence_length: int = 512,
enable_temporal_reasoning: bool = False,
num_temporal_reasoning_steps: int = 0,
):
r"""
The call function to the pipeline for generation.
Args:
image (`PipelineImageInput`):
The input image to condition the generation on. Must be an image, a list of images or a `torch.Tensor`.
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
height (`int`, defaults to `480`):
The height of the generated video.
width (`int`, defaults to `832`):
The width of the generated video.
num_frames (`int`, defaults to `81`):
The number of frames in the generated video.
num_inference_steps (`int`, defaults to `50`):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, defaults to `5.0`):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
num_videos_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
generation deterministic.
latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor is generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
provided, text embeddings are generated from the `prompt` input argument.
negative_prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
provided, text embeddings are generated from the `negative_prompt` input argument.
image_embeds (`torch.Tensor`, *optional*):
Pre-generated image embeddings. Can be used to easily tweak image inputs (weighting). If not provided,
image embeddings are generated from the `image` input argument.
output_type (`str`, *optional*, defaults to `"np"`):
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`ChronoEditPipelineOutput`] instead of a plain tuple.
attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
callback_on_step_end_tensor_inputs (`List`, *optional*):
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
`._callback_tensor_inputs` attribute of your pipeline class.
max_sequence_length (`int`, defaults to `512`):
The maximum sequence length of the text encoder. If the prompt is longer than this, it will be
truncated. If the prompt is shorter, it will be padded to this length.
enable_temporal_reasoning (`bool`, *optional*, defaults to `False`):
Whether to enable temporal reasoning.
num_temporal_reasoning_steps (`int`, *optional*, defaults to `0`):
The number of steps to enable temporal reasoning.
Examples:
Returns:
[`~ChronoEditPipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`ChronoEditPipelineOutput`] is returned, otherwise a `tuple` is returned
where the first element is a list with the generated images and the second element is a list of `bool`s
indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content.
"""
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
negative_prompt,
image,
height,
width,
prompt_embeds,
negative_prompt_embeds,
image_embeds,
callback_on_step_end_tensor_inputs,
)
num_frames = 5 if not enable_temporal_reasoning else num_frames
if num_frames % self.vae_scale_factor_temporal != 1:
logger.warning(
f"`num_frames - 1` has to be divisible by {self.vae_scale_factor_temporal}. Rounding to the nearest number."
)
num_frames = num_frames // self.vae_scale_factor_temporal * self.vae_scale_factor_temporal + 1
num_frames = max(num_frames, 1)
self._guidance_scale = guidance_scale
self._attention_kwargs = attention_kwargs
self._current_timestep = None
self._interrupt = False
device = self._execution_device
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
# 3. Encode input prompt
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
prompt=prompt,
negative_prompt=negative_prompt,
do_classifier_free_guidance=self.do_classifier_free_guidance,
num_videos_per_prompt=num_videos_per_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
max_sequence_length=max_sequence_length,
device=device,
)
# Encode image embedding
transformer_dtype = self.transformer.dtype
prompt_embeds = prompt_embeds.to(transformer_dtype)
if negative_prompt_embeds is not None:
negative_prompt_embeds = negative_prompt_embeds.to(transformer_dtype)
if image_embeds is None:
image_embeds = self.encode_image(image, device)
image_embeds = image_embeds.repeat(batch_size, 1, 1)
image_embeds = image_embeds.to(transformer_dtype)
# 4. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 5. Prepare latent variables
num_channels_latents = self.vae.config.z_dim
image = self.video_processor.preprocess(image, height=height, width=width).to(device, dtype=torch.float32)
latents, condition = self.prepare_latents(
image,
batch_size * num_videos_per_prompt,
num_channels_latents,
height,
width,
num_frames,
torch.float32,
device,
generator,
latents,
)
# 6. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
self._num_timesteps = len(timesteps)
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
if enable_temporal_reasoning and i == num_temporal_reasoning_steps:
latents = latents[:, :, [0, -1]]
condition = condition[:, :, [0, -1]]
for j in range(len(self.scheduler.model_outputs)):
if self.scheduler.model_outputs[j] is not None:
if latents.shape[-3] != self.scheduler.model_outputs[j].shape[-3]:
self.scheduler.model_outputs[j] = self.scheduler.model_outputs[j][:, :, [0, -1]]
if self.scheduler.last_sample is not None:
self.scheduler.last_sample = self.scheduler.last_sample[:, :, [0, -1]]
self._current_timestep = t
latent_model_input = torch.cat([latents, condition], dim=1).to(transformer_dtype)
timestep = t.expand(latents.shape[0])
noise_pred = self.transformer(
hidden_states=latent_model_input,
timestep=timestep,
encoder_hidden_states=prompt_embeds,
encoder_hidden_states_image=image_embeds,
attention_kwargs=attention_kwargs,
return_dict=False,
)[0]
if self.do_classifier_free_guidance:
noise_uncond = self.transformer(
hidden_states=latent_model_input,
timestep=timestep,
encoder_hidden_states=negative_prompt_embeds,
encoder_hidden_states_image=image_embeds,
attention_kwargs=attention_kwargs,
return_dict=False,
)[0]
noise_pred = noise_uncond + guidance_scale * (noise_pred - noise_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if XLA_AVAILABLE:
xm.mark_step()
self._current_timestep = None
if not output_type == "latent":
latents = latents.to(self.vae.dtype)
latents_mean = (
torch.tensor(self.vae.config.latents_mean)
.view(1, self.vae.config.z_dim, 1, 1, 1)
.to(latents.device, latents.dtype)
)
latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to(
latents.device, latents.dtype
)
latents = latents / latents_std + latents_mean
if enable_temporal_reasoning and latents.shape[2] > 2:
video_edit = self.vae.decode(latents[:, :, [0, -1]], return_dict=False)[0]
video_reason = self.vae.decode(latents[:, :, :-1], return_dict=False)[0]
video = torch.cat([video_reason, video_edit[:, :, 1:]], dim=2)
else:
video = self.vae.decode(latents, return_dict=False)[0]
video = self.video_processor.postprocess_video(video, output_type=output_type)
else:
video = latents
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (video,)
return ChronoEditPipelineOutput(frames=video)

View File

@@ -0,0 +1,20 @@
from dataclasses import dataclass
import torch
from diffusers.utils import BaseOutput
@dataclass
class ChronoEditPipelineOutput(BaseOutput):
r"""
Output class for ChronoEdit pipelines.
Args:
frames (`torch.Tensor`, `np.ndarray`, or List[List[PIL.Image.Image]]):
List of video outputs - It can be a nested list of length `batch_size,` with each sub-list containing
denoised PIL image sequences of length `num_frames.` It can also be a NumPy array or Torch tensor of shape
`(batch_size, num_frames, channels, height, width)`.
"""
frames: torch.Tensor

View File

@@ -648,6 +648,21 @@ class ChromaTransformer2DModel(metaclass=DummyObject):
requires_backends(cls, ["torch"])
class ChronoEditTransformer3DModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
class CogVideoXTransformer3DModel(metaclass=DummyObject):
_backends = ["torch"]

View File

@@ -542,6 +542,21 @@ class ChromaPipeline(metaclass=DummyObject):
requires_backends(cls, ["torch", "transformers"])
class ChronoEditPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
class CLIPImageProjection(metaclass=DummyObject):
_backends = ["torch", "transformers"]

View File

View File

@@ -0,0 +1,176 @@
# Copyright 2025 The HuggingFace Team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import torch
from PIL import Image
from transformers import (
AutoTokenizer,
CLIPImageProcessor,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
T5EncoderModel,
)
from diffusers import (
AutoencoderKLWan,
ChronoEditPipeline,
ChronoEditTransformer3DModel,
FlowMatchEulerDiscreteScheduler,
)
from ...testing_utils import enable_full_determinism
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class ChronoEditPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = ChronoEditPipeline
params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs", "height", "width"}
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
required_optional_params = frozenset(
[
"num_inference_steps",
"generator",
"latents",
"return_dict",
"callback_on_step_end",
"callback_on_step_end_tensor_inputs",
]
)
test_xformers_attention = False
supports_dduf = False
def get_dummy_components(self):
torch.manual_seed(0)
vae = AutoencoderKLWan(
base_dim=3,
z_dim=16,
dim_mult=[1, 1, 1, 1],
num_res_blocks=1,
temperal_downsample=[False, True, True],
)
torch.manual_seed(0)
# TODO: impl FlowDPMSolverMultistepScheduler
scheduler = FlowMatchEulerDiscreteScheduler(shift=7.0)
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)
transformer = ChronoEditTransformer3DModel(
patch_size=(1, 2, 2),
num_attention_heads=2,
attention_head_dim=12,
in_channels=36,
out_channels=16,
text_dim=32,
freq_dim=256,
ffn_dim=32,
num_layers=2,
cross_attn_norm=True,
qk_norm="rms_norm_across_heads",
rope_max_seq_len=32,
image_dim=4,
)
torch.manual_seed(0)
image_encoder_config = CLIPVisionConfig(
hidden_size=4,
projection_dim=4,
num_hidden_layers=2,
num_attention_heads=2,
image_size=32,
intermediate_size=16,
patch_size=1,
)
image_encoder = CLIPVisionModelWithProjection(image_encoder_config)
torch.manual_seed(0)
image_processor = CLIPImageProcessor(crop_size=32, size=32)
components = {
"transformer": transformer,
"vae": vae,
"scheduler": scheduler,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"image_encoder": image_encoder,
"image_processor": image_processor,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
image_height = 16
image_width = 16
image = Image.new("RGB", (image_width, image_height))
inputs = {
"image": image,
"prompt": "dance monkey",
"negative_prompt": "negative", # TODO
"height": image_height,
"width": image_width,
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"num_frames": 5,
"max_sequence_length": 16,
"output_type": "pt",
}
return inputs
def test_inference(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
video = pipe(**inputs).frames
generated_video = video[0]
self.assertEqual(generated_video.shape, (5, 3, 16, 16))
# fmt: off
expected_slice = torch.tensor([0.4525, 0.4520, 0.4485, 0.4534, 0.4523, 0.4522, 0.4529, 0.4528, 0.5022, 0.5064, 0.5011, 0.5061, 0.5028, 0.4979, 0.5117, 0.5192])
# fmt: on
generated_slice = generated_video.flatten()
generated_slice = torch.cat([generated_slice[:8], generated_slice[-8:]])
self.assertTrue(torch.allclose(generated_slice, expected_slice, atol=1e-3))
@unittest.skip("Test not supported")
def test_attention_slicing_forward_pass(self):
pass
@unittest.skip("TODO: revisit failing as it requires a very high threshold to pass")
def test_inference_batch_single_identical(self):
pass
@unittest.skip(
"ChronoEditPipeline has to run in mixed precision. Save/Load the entire pipeline in FP16 will result in errors"
)
def test_save_load_float16(self):
pass