mirror of
https://github.com/huggingface/diffusers.git
synced 2025-12-08 05:24:20 +08:00
Compare commits
37 Commits
unbloat-pi
...
cp-fix
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
e41ca61479 | ||
|
|
0fd58c7706 | ||
|
|
35d703310c | ||
|
|
b455dc94a2 | ||
|
|
04f9d2bf3d | ||
|
|
bc8fd864eb | ||
|
|
a9cb08af39 | ||
|
|
9f669e7b5d | ||
|
|
8ac17cd2cb | ||
|
|
e4393fa613 | ||
|
|
197dd5f312 | ||
|
|
b3e9dfced7 | ||
|
|
58f3771545 | ||
|
|
6198f8a12b | ||
|
|
dcfb18a2d3 | ||
|
|
ac5a1e28fc | ||
|
|
3dcc9ca73a | ||
|
|
325a95051b | ||
|
|
1ec28a2c77 | ||
|
|
de6173c683 | ||
|
|
8f80dda193 | ||
|
|
cdbf0ad883 | ||
|
|
5e8415a311 | ||
|
|
d65f857d63 | ||
|
|
3b12a0b77d | ||
|
|
450564563e | ||
|
|
56114f46cc | ||
|
|
fb15ff526f | ||
|
|
5bfc7dd419 | ||
|
|
f92578342f | ||
|
|
8018a6a733 | ||
|
|
0845ca07d3 | ||
|
|
881e262c08 | ||
|
|
a66787b62b | ||
|
|
1d76322675 | ||
|
|
428399b590 | ||
|
|
faf61a4877 |
3
.github/workflows/push_tests.yml
vendored
3
.github/workflows/push_tests.yml
vendored
@@ -76,6 +76,7 @@ jobs:
|
||||
run: |
|
||||
uv pip install -e ".[quality]"
|
||||
uv pip uninstall accelerate && uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
|
||||
uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
|
||||
- name: Environment
|
||||
run: |
|
||||
python utils/print_env.py
|
||||
@@ -127,6 +128,7 @@ jobs:
|
||||
uv pip install -e ".[quality]"
|
||||
uv pip install peft@git+https://github.com/huggingface/peft.git
|
||||
uv pip uninstall accelerate && uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
|
||||
uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
|
||||
|
||||
- name: Environment
|
||||
run: |
|
||||
@@ -178,6 +180,7 @@ jobs:
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
uv pip install -e ".[quality,training]"
|
||||
uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
|
||||
- name: Environment
|
||||
run: |
|
||||
python utils/print_env.py
|
||||
|
||||
@@ -329,6 +329,8 @@
|
||||
title: BriaTransformer2DModel
|
||||
- local: api/models/chroma_transformer
|
||||
title: ChromaTransformer2DModel
|
||||
- local: api/models/chronoedit_transformer_3d
|
||||
title: ChronoEditTransformer3DModel
|
||||
- local: api/models/cogvideox_transformer3d
|
||||
title: CogVideoXTransformer3DModel
|
||||
- local: api/models/cogview3plus_transformer2d
|
||||
@@ -373,6 +375,8 @@
|
||||
title: QwenImageTransformer2DModel
|
||||
- local: api/models/sana_transformer2d
|
||||
title: SanaTransformer2DModel
|
||||
- local: api/models/sana_video_transformer3d
|
||||
title: SanaVideoTransformer3DModel
|
||||
- local: api/models/sd3_transformer2d
|
||||
title: SD3Transformer2DModel
|
||||
- local: api/models/skyreels_v2_transformer_3d
|
||||
@@ -529,8 +533,6 @@
|
||||
title: Kandinsky 2.2
|
||||
- local: api/pipelines/kandinsky3
|
||||
title: Kandinsky 3
|
||||
- local: api/pipelines/kandinsky5
|
||||
title: Kandinsky 5
|
||||
- local: api/pipelines/kolors
|
||||
title: Kolors
|
||||
- local: api/pipelines/latent_consistency_models
|
||||
@@ -565,6 +567,8 @@
|
||||
title: Sana
|
||||
- local: api/pipelines/sana_sprint
|
||||
title: Sana Sprint
|
||||
- local: api/pipelines/sana_video
|
||||
title: Sana Video
|
||||
- local: api/pipelines/self_attention_guidance
|
||||
title: Self-Attention Guidance
|
||||
- local: api/pipelines/semantic_stable_diffusion
|
||||
@@ -626,6 +630,8 @@
|
||||
- sections:
|
||||
- local: api/pipelines/allegro
|
||||
title: Allegro
|
||||
- local: api/pipelines/chronoedit
|
||||
title: ChronoEdit
|
||||
- local: api/pipelines/cogvideox
|
||||
title: CogVideoX
|
||||
- local: api/pipelines/consisid
|
||||
@@ -638,6 +644,8 @@
|
||||
title: HunyuanVideo
|
||||
- local: api/pipelines/i2vgenxl
|
||||
title: I2VGen-XL
|
||||
- local: api/pipelines/kandinsky5_video
|
||||
title: Kandinsky 5.0 Video
|
||||
- local: api/pipelines/latte
|
||||
title: Latte
|
||||
- local: api/pipelines/ltx_video
|
||||
|
||||
32
docs/source/en/api/models/chronoedit_transformer_3d.md
Normal file
32
docs/source/en/api/models/chronoedit_transformer_3d.md
Normal file
@@ -0,0 +1,32 @@
|
||||
<!-- Copyright 2025 The ChronoEdit Team and HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License. -->
|
||||
|
||||
# ChronoEditTransformer3DModel
|
||||
|
||||
A Diffusion Transformer model for 3D video-like data from [ChronoEdit: Towards Temporal Reasoning for Image Editing and World Simulation](https://huggingface.co/papers/2510.04290) from NVIDIA and University of Toronto, by Jay Zhangjie Wu, Xuanchi Ren, Tianchang Shen, Tianshi Cao, Kai He, Yifan Lu, Ruiyuan Gao, Enze Xie, Shiyi Lan, Jose M. Alvarez, Jun Gao, Sanja Fidler, Zian Wang, Huan Ling.
|
||||
|
||||
> **TL;DR:** ChronoEdit reframes image editing as a video generation task, using input and edited images as start/end frames to leverage pretrained video models with temporal consistency. A temporal reasoning stage introduces reasoning tokens to ensure physically plausible edits and visualize the editing trajectory.
|
||||
|
||||
The model can be loaded with the following code snippet.
|
||||
|
||||
```python
|
||||
from diffusers import ChronoEditTransformer3DModel
|
||||
|
||||
transformer = ChronoEditTransformer3DModel.from_pretrained("nvidia/ChronoEdit-14B-Diffusers", subfolder="transformer", torch_dtype=torch.bfloat16)
|
||||
```
|
||||
|
||||
## ChronoEditTransformer3DModel
|
||||
|
||||
[[autodoc]] ChronoEditTransformer3DModel
|
||||
|
||||
## Transformer2DModelOutput
|
||||
|
||||
[[autodoc]] models.modeling_outputs.Transformer2DModelOutput
|
||||
36
docs/source/en/api/models/sana_video_transformer3d.md
Normal file
36
docs/source/en/api/models/sana_video_transformer3d.md
Normal file
@@ -0,0 +1,36 @@
|
||||
<!-- Copyright 2025 The SANA-Video Authors and HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License. -->
|
||||
|
||||
# SanaVideoTransformer3DModel
|
||||
|
||||
A Diffusion Transformer model for 3D data (video) from [SANA-Video: Efficient Video Generation with Block Linear Diffusion Transformer](https://huggingface.co/papers/2509.24695) from NVIDIA and MIT HAN Lab, by Junsong Chen, Yuyang Zhao, Jincheng Yu, Ruihang Chu, Junyu Chen, Shuai Yang, Xianbang Wang, Yicheng Pan, Daquan Zhou, Huan Ling, Haozhe Liu, Hongwei Yi, Hao Zhang, Muyang Li, Yukang Chen, Han Cai, Sanja Fidler, Ping Luo, Song Han, Enze Xie.
|
||||
|
||||
The abstract from the paper is:
|
||||
|
||||
*We introduce SANA-Video, a small diffusion model that can efficiently generate videos up to 720x1280 resolution and minute-length duration. SANA-Video synthesizes high-resolution, high-quality and long videos with strong text-video alignment at a remarkably fast speed, deployable on RTX 5090 GPU. Two core designs ensure our efficient, effective and long video generation: (1) Linear DiT: We leverage linear attention as the core operation, which is more efficient than vanilla attention given the large number of tokens processed in video generation. (2) Constant-Memory KV cache for Block Linear Attention: we design block-wise autoregressive approach for long video generation by employing a constant-memory state, derived from the cumulative properties of linear attention. This KV cache provides the Linear DiT with global context at a fixed memory cost, eliminating the need for a traditional KV cache and enabling efficient, minute-long video generation. In addition, we explore effective data filters and model training strategies, narrowing the training cost to 12 days on 64 H100 GPUs, which is only 1% of the cost of MovieGen. Given its low cost, SANA-Video achieves competitive performance compared to modern state-of-the-art small diffusion models (e.g., Wan 2.1-1.3B and SkyReel-V2-1.3B) while being 16x faster in measured latency. Moreover, SANA-Video can be deployed on RTX 5090 GPUs with NVFP4 precision, accelerating the inference speed of generating a 5-second 720p video from 71s to 29s (2.4x speedup). In summary, SANA-Video enables low-cost, high-quality video generation.*
|
||||
|
||||
The model can be loaded with the following code snippet.
|
||||
|
||||
```python
|
||||
from diffusers import SanaVideoTransformer3DModel
|
||||
import torch
|
||||
|
||||
transformer = SanaVideoTransformer3DModel.from_pretrained("Efficient-Large-Model/SANA-Video_2B_480p_diffusers", subfolder="transformer", torch_dtype=torch.bfloat16)
|
||||
```
|
||||
|
||||
## SanaVideoTransformer3DModel
|
||||
|
||||
[[autodoc]] SanaVideoTransformer3DModel
|
||||
|
||||
## Transformer2DModelOutput
|
||||
|
||||
[[autodoc]] models.modeling_outputs.Transformer2DModelOutput
|
||||
|
||||
156
docs/source/en/api/pipelines/chronoedit.md
Normal file
156
docs/source/en/api/pipelines/chronoedit.md
Normal file
@@ -0,0 +1,156 @@
|
||||
<!-- Copyright 2025 The ChronoEdit Team and HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License. -->
|
||||
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<a href="https://huggingface.co/docs/diffusers/main/en/tutorials/using_peft_for_inference" target="_blank" rel="noopener">
|
||||
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
|
||||
</a>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
# ChronoEdit
|
||||
|
||||
[ChronoEdit: Towards Temporal Reasoning for Image Editing and World Simulation](https://huggingface.co/papers/2510.04290) from NVIDIA and University of Toronto, by Jay Zhangjie Wu, Xuanchi Ren, Tianchang Shen, Tianshi Cao, Kai He, Yifan Lu, Ruiyuan Gao, Enze Xie, Shiyi Lan, Jose M. Alvarez, Jun Gao, Sanja Fidler, Zian Wang, Huan Ling.
|
||||
|
||||
> **TL;DR:** ChronoEdit reframes image editing as a video generation task, using input and edited images as start/end frames to leverage pretrained video models with temporal consistency. A temporal reasoning stage introduces reasoning tokens to ensure physically plausible edits and visualize the editing trajectory.
|
||||
|
||||
*Recent advances in large generative models have greatly enhanced both image editing and in-context image generation, yet a critical gap remains in ensuring physical consistency, where edited objects must remain coherent. This capability is especially vital for world simulation related tasks. In this paper, we present ChronoEdit, a framework that reframes image editing as a video generation problem. First, ChronoEdit treats the input and edited images as the first and last frames of a video, allowing it to leverage large pretrained video generative models that capture not only object appearance but also the implicit physics of motion and interaction through learned temporal consistency. Second, ChronoEdit introduces a temporal reasoning stage that explicitly performs editing at inference time. Under this setting, target frame is jointly denoised with reasoning tokens to imagine a plausible editing trajectory that constrains the solution space to physically viable transformations. The reasoning tokens are then dropped after a few steps to avoid the high computational cost of rendering a full video. To validate ChronoEdit, we introduce PBench-Edit, a new benchmark of image-prompt pairs for contexts that require physical consistency, and demonstrate that ChronoEdit surpasses state-of-the-art baselines in both visual fidelity and physical plausibility. Project page for code and models: [this https URL](https://research.nvidia.com/labs/toronto-ai/chronoedit).*
|
||||
|
||||
The ChronoEdit pipeline is developed by the ChronoEdit Team. The original code is available on [GitHub](https://github.com/nv-tlabs/ChronoEdit), and pretrained models can be found in the [nvidia/ChronoEdit](https://huggingface.co/collections/nvidia/chronoedit) collection on Hugging Face.
|
||||
|
||||
|
||||
### Image Editing
|
||||
|
||||
```py
|
||||
import torch
|
||||
import numpy as np
|
||||
from diffusers import AutoencoderKLWan, ChronoEditTransformer3DModel, ChronoEditPipeline
|
||||
from diffusers.utils import export_to_video, load_image
|
||||
from transformers import CLIPVisionModel
|
||||
from PIL import Image
|
||||
|
||||
model_id = "nvidia/ChronoEdit-14B-Diffusers"
|
||||
image_encoder = CLIPVisionModel.from_pretrained(model_id, subfolder="image_encoder", torch_dtype=torch.float32)
|
||||
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
|
||||
transformer = ChronoEditTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.bfloat16)
|
||||
pipe = ChronoEditPipeline.from_pretrained(model_id, image_encoder=image_encoder, transformer=transformer, vae=vae, torch_dtype=torch.bfloat16)
|
||||
pipe.to("cuda")
|
||||
|
||||
image = load_image(
|
||||
"https://huggingface.co/spaces/nvidia/ChronoEdit/resolve/main/examples/3.png"
|
||||
)
|
||||
max_area = 720 * 1280
|
||||
aspect_ratio = image.height / image.width
|
||||
mod_value = pipe.vae_scale_factor_spatial * pipe.transformer.config.patch_size[1]
|
||||
height = round(np.sqrt(max_area * aspect_ratio)) // mod_value * mod_value
|
||||
width = round(np.sqrt(max_area / aspect_ratio)) // mod_value * mod_value
|
||||
print("width", width, "height", height)
|
||||
image = image.resize((width, height))
|
||||
prompt = (
|
||||
"The user wants to transform the image by adding a small, cute mouse sitting inside the floral teacup, enjoying a spa bath. The mouse should appear relaxed and cheerful, with a tiny white bath towel draped over its head like a turban. It should be positioned comfortably in the cup’s liquid, with gentle steam rising around it to blend with the cozy atmosphere. "
|
||||
"The mouse’s pose should be natural—perhaps sitting upright with paws resting lightly on the rim or submerged in the tea. The teacup’s floral design, gold trim, and warm lighting must remain unchanged to preserve the original aesthetic. The steam should softly swirl around the mouse, enhancing the spa-like, whimsical mood."
|
||||
)
|
||||
|
||||
output = pipe(
|
||||
image=image,
|
||||
prompt=prompt,
|
||||
height=height,
|
||||
width=width,
|
||||
num_frames=5,
|
||||
num_inference_steps=50,
|
||||
guidance_scale=5.0,
|
||||
enable_temporal_reasoning=False,
|
||||
num_temporal_reasoning_steps=0,
|
||||
).frames[0]
|
||||
Image.fromarray((output[-1] * 255).clip(0, 255).astype("uint8")).save("output.png")
|
||||
```
|
||||
|
||||
Optionally, enable **temporal reasoning** for improved physical consistency:
|
||||
```py
|
||||
output = pipe(
|
||||
image=image,
|
||||
prompt=prompt,
|
||||
height=height,
|
||||
width=width,
|
||||
num_frames=29,
|
||||
num_inference_steps=50,
|
||||
guidance_scale=5.0,
|
||||
enable_temporal_reasoning=True,
|
||||
num_temporal_reasoning_steps=50,
|
||||
).frames[0]
|
||||
export_to_video(output, "output.mp4", fps=16)
|
||||
Image.fromarray((output[-1] * 255).clip(0, 255).astype("uint8")).save("output.png")
|
||||
```
|
||||
|
||||
### Inference with 8-Step Distillation Lora
|
||||
|
||||
```py
|
||||
import torch
|
||||
import numpy as np
|
||||
from diffusers import AutoencoderKLWan, ChronoEditTransformer3DModel, ChronoEditPipeline
|
||||
from diffusers.utils import export_to_video, load_image
|
||||
from transformers import CLIPVisionModel
|
||||
from PIL import Image
|
||||
|
||||
model_id = "nvidia/ChronoEdit-14B-Diffusers"
|
||||
image_encoder = CLIPVisionModel.from_pretrained(model_id, subfolder="image_encoder", torch_dtype=torch.float32)
|
||||
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
|
||||
transformer = ChronoEditTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.bfloat16)
|
||||
pipe = ChronoEditPipeline.from_pretrained(model_id, image_encoder=image_encoder, transformer=transformer, vae=vae, torch_dtype=torch.bfloat16)
|
||||
lora_path = hf_hub_download(repo_id=model_id, filename="lora/chronoedit_distill_lora.safetensors")
|
||||
pipe.load_lora_weights(lora_path)
|
||||
pipe.fuse_lora(lora_scale=1.0)
|
||||
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=2.0)
|
||||
pipe.to("cuda")
|
||||
|
||||
image = load_image(
|
||||
"https://huggingface.co/spaces/nvidia/ChronoEdit/resolve/main/examples/3.png"
|
||||
)
|
||||
max_area = 720 * 1280
|
||||
aspect_ratio = image.height / image.width
|
||||
mod_value = pipe.vae_scale_factor_spatial * pipe.transformer.config.patch_size[1]
|
||||
height = round(np.sqrt(max_area * aspect_ratio)) // mod_value * mod_value
|
||||
width = round(np.sqrt(max_area / aspect_ratio)) // mod_value * mod_value
|
||||
print("width", width, "height", height)
|
||||
image = image.resize((width, height))
|
||||
prompt = (
|
||||
"The user wants to transform the image by adding a small, cute mouse sitting inside the floral teacup, enjoying a spa bath. The mouse should appear relaxed and cheerful, with a tiny white bath towel draped over its head like a turban. It should be positioned comfortably in the cup’s liquid, with gentle steam rising around it to blend with the cozy atmosphere. "
|
||||
"The mouse’s pose should be natural—perhaps sitting upright with paws resting lightly on the rim or submerged in the tea. The teacup’s floral design, gold trim, and warm lighting must remain unchanged to preserve the original aesthetic. The steam should softly swirl around the mouse, enhancing the spa-like, whimsical mood."
|
||||
)
|
||||
|
||||
output = pipe(
|
||||
image=image,
|
||||
prompt=prompt,
|
||||
height=height,
|
||||
width=width,
|
||||
num_frames=5,
|
||||
num_inference_steps=8,
|
||||
guidance_scale=1.0,
|
||||
enable_temporal_reasoning=False,
|
||||
num_temporal_reasoning_steps=0,
|
||||
).frames[0]
|
||||
export_to_video(output, "output.mp4", fps=16)
|
||||
Image.fromarray((output[-1] * 255).clip(0, 255).astype("uint8")).save("output.png")
|
||||
```
|
||||
|
||||
## ChronoEditPipeline
|
||||
|
||||
[[autodoc]] ChronoEditPipeline
|
||||
- all
|
||||
- __call__
|
||||
|
||||
## ChronoEditPipelineOutput
|
||||
|
||||
[[autodoc]] pipelines.chronoedit.pipeline_output.ChronoEditPipelineOutput
|
||||
@@ -7,9 +7,9 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# Kandinsky 5.0
|
||||
# Kandinsky 5.0 Video
|
||||
|
||||
Kandinsky 5.0 is created by the Kandinsky team: Alexey Letunovskiy, Maria Kovaleva, Ivan Kirillov, Lev Novitskiy, Denis Koposov, Dmitrii Mikhailov, Anna Averchenkova, Andrey Shutkin, Julia Agafonova, Olga Kim, Anastasiia Kargapoltseva, Nikita Kiselev, Anna Dmitrienko, Anastasia Maltseva, Kirill Chernyshev, Ilia Vasiliev, Viacheslav Vasilev, Vladimir Polovnikov, Yury Kolabushin, Alexander Belykh, Mikhail Mamaev, Anastasia Aliaskina, Tatiana Nikulina, Polina Gavrilova, Vladimir Arkhipkin, Vladimir Korviakov, Nikolai Gerasimenko, Denis Parkhomenko, Denis Dimitrov
|
||||
Kandinsky 5.0 Video is created by the Kandinsky team: Alexey Letunovskiy, Maria Kovaleva, Ivan Kirillov, Lev Novitskiy, Denis Koposov, Dmitrii Mikhailov, Anna Averchenkova, Andrey Shutkin, Julia Agafonova, Olga Kim, Anastasiia Kargapoltseva, Nikita Kiselev, Anna Dmitrienko, Anastasia Maltseva, Kirill Chernyshev, Ilia Vasiliev, Viacheslav Vasilev, Vladimir Polovnikov, Yury Kolabushin, Alexander Belykh, Mikhail Mamaev, Anastasia Aliaskina, Tatiana Nikulina, Polina Gavrilova, Vladimir Arkhipkin, Vladimir Korviakov, Nikolai Gerasimenko, Denis Parkhomenko, Denis Dimitrov
|
||||
|
||||
|
||||
Kandinsky 5.0 is a family of diffusion models for Video & Image generation. Kandinsky 5.0 T2V Lite is a lightweight video generation model (2B parameters) that ranks #1 among open-source models in its class. It outperforms larger models and offers the best understanding of Russian concepts in the open-source ecosystem.
|
||||
@@ -92,7 +92,7 @@ pipe = pipe.to("cuda")
|
||||
|
||||
pipe.transformer.set_attention_backend(
|
||||
"flex"
|
||||
) # <--- Set attention backend to Flex
|
||||
) # <--- Sett attention bakend to Flex
|
||||
pipe.transformer.compile(
|
||||
mode="max-autotune-no-cudagraphs",
|
||||
dynamic=True
|
||||
@@ -115,7 +115,7 @@ export_to_video(output, "output.mp4", fps=24, quality=9)
|
||||
```
|
||||
|
||||
### Diffusion Distilled model
|
||||
**⚠️ Warning!** all nocfg and diffusion distilled models should be inferred without CFG (```guidance_scale=1.0```):
|
||||
**⚠️ Warning!** all nocfg and diffusion distilled models should be infered wothout CFG (```guidance_scale=1.0```):
|
||||
|
||||
```python
|
||||
model_id = "ai-forever/Kandinsky-5.0-T2V-Lite-distilled16steps-5s-Diffusers"
|
||||
@@ -24,9 +24,6 @@ The abstract from the paper is:
|
||||
|
||||
*This paper presents SANA-Sprint, an efficient diffusion model for ultra-fast text-to-image (T2I) generation. SANA-Sprint is built on a pre-trained foundation model and augmented with hybrid distillation, dramatically reducing inference steps from 20 to 1-4. We introduce three key innovations: (1) We propose a training-free approach that transforms a pre-trained flow-matching model for continuous-time consistency distillation (sCM), eliminating costly training from scratch and achieving high training efficiency. Our hybrid distillation strategy combines sCM with latent adversarial distillation (LADD): sCM ensures alignment with the teacher model, while LADD enhances single-step generation fidelity. (2) SANA-Sprint is a unified step-adaptive model that achieves high-quality generation in 1-4 steps, eliminating step-specific training and improving efficiency. (3) We integrate ControlNet with SANA-Sprint for real-time interactive image generation, enabling instant visual feedback for user interaction. SANA-Sprint establishes a new Pareto frontier in speed-quality tradeoffs, achieving state-of-the-art performance with 7.59 FID and 0.74 GenEval in only 1 step — outperforming FLUX-schnell (7.94 FID / 0.71 GenEval) while being 10× faster (0.1s vs 1.1s on H100). It also achieves 0.1s (T2I) and 0.25s (ControlNet) latency for 1024×1024 images on H100, and 0.31s (T2I) on an RTX 4090, showcasing its exceptional efficiency and potential for AI-powered consumer applications (AIPC). Code and pre-trained models will be open-sourced.*
|
||||
|
||||
> [!TIP]
|
||||
> Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
|
||||
|
||||
This pipeline was contributed by [lawrence-cj](https://github.com/lawrence-cj), [shuchen Xue](https://github.com/scxue) and [Enze Xie](https://github.com/xieenze). The original codebase can be found [here](https://github.com/NVlabs/Sana). The original weights can be found under [hf.co/Efficient-Large-Model](https://huggingface.co/Efficient-Large-Model/).
|
||||
|
||||
Available models:
|
||||
|
||||
102
docs/source/en/api/pipelines/sana_video.md
Normal file
102
docs/source/en/api/pipelines/sana_video.md
Normal file
@@ -0,0 +1,102 @@
|
||||
<!-- Copyright 2025 The SANA-Video Authors and HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License. -->
|
||||
|
||||
# SanaVideoPipeline
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
|
||||
<img alt="MPS" src="https://img.shields.io/badge/MPS-000000?style=flat&logo=apple&logoColor=white%22">
|
||||
</div>
|
||||
|
||||
[SANA-Video: Efficient Video Generation with Block Linear Diffusion Transformer](https://huggingface.co/papers/2509.24695) from NVIDIA and MIT HAN Lab, by Junsong Chen, Yuyang Zhao, Jincheng Yu, Ruihang Chu, Junyu Chen, Shuai Yang, Xianbang Wang, Yicheng Pan, Daquan Zhou, Huan Ling, Haozhe Liu, Hongwei Yi, Hao Zhang, Muyang Li, Yukang Chen, Han Cai, Sanja Fidler, Ping Luo, Song Han, Enze Xie.
|
||||
|
||||
The abstract from the paper is:
|
||||
|
||||
*We introduce SANA-Video, a small diffusion model that can efficiently generate videos up to 720x1280 resolution and minute-length duration. SANA-Video synthesizes high-resolution, high-quality and long videos with strong text-video alignment at a remarkably fast speed, deployable on RTX 5090 GPU. Two core designs ensure our efficient, effective and long video generation: (1) Linear DiT: We leverage linear attention as the core operation, which is more efficient than vanilla attention given the large number of tokens processed in video generation. (2) Constant-Memory KV cache for Block Linear Attention: we design block-wise autoregressive approach for long video generation by employing a constant-memory state, derived from the cumulative properties of linear attention. This KV cache provides the Linear DiT with global context at a fixed memory cost, eliminating the need for a traditional KV cache and enabling efficient, minute-long video generation. In addition, we explore effective data filters and model training strategies, narrowing the training cost to 12 days on 64 H100 GPUs, which is only 1% of the cost of MovieGen. Given its low cost, SANA-Video achieves competitive performance compared to modern state-of-the-art small diffusion models (e.g., Wan 2.1-1.3B and SkyReel-V2-1.3B) while being 16x faster in measured latency. Moreover, SANA-Video can be deployed on RTX 5090 GPUs with NVFP4 precision, accelerating the inference speed of generating a 5-second 720p video from 71s to 29s (2.4x speedup). In summary, SANA-Video enables low-cost, high-quality video generation. [this https URL](https://github.com/NVlabs/SANA).*
|
||||
|
||||
This pipeline was contributed by SANA Team. The original codebase can be found [here](https://github.com/NVlabs/Sana). The original weights can be found under [hf.co/Efficient-Large-Model](https://hf.co/collections/Efficient-Large-Model/sana-video).
|
||||
|
||||
Available models:
|
||||
|
||||
| Model | Recommended dtype |
|
||||
|:-----:|:-----------------:|
|
||||
| [`Efficient-Large-Model/SANA-Video_2B_480p_diffusers`](https://huggingface.co/Efficient-Large-Model/ANA-Video_2B_480p_diffusers) | `torch.bfloat16` |
|
||||
|
||||
Refer to [this](https://huggingface.co/collections/Efficient-Large-Model/sana-video) collection for more information.
|
||||
|
||||
Note: The recommended dtype mentioned is for the transformer weights. The text encoder and VAE weights must stay in `torch.bfloat16` or `torch.float32` for the model to work correctly. Please refer to the inference example below to see how to load the model with the recommended dtype.
|
||||
|
||||
## Quantization
|
||||
|
||||
Quantization helps reduce the memory requirements of very large models by storing model weights in a lower precision data type. However, quantization may have varying impact on video quality depending on the video model.
|
||||
|
||||
Refer to the [Quantization](../../quantization/overview) overview to learn more about supported quantization backends and selecting a quantization backend that supports your use case. The example below demonstrates how to load a quantized [`SanaVideoPipeline`] for inference with bitsandbytes.
|
||||
|
||||
```py
|
||||
import torch
|
||||
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig, SanaVideoTransformer3DModel, SanaVideoPipeline
|
||||
from transformers import BitsAndBytesConfig as BitsAndBytesConfig, AutoModel
|
||||
|
||||
quant_config = BitsAndBytesConfig(load_in_8bit=True)
|
||||
text_encoder_8bit = AutoModel.from_pretrained(
|
||||
"Efficient-Large-Model/SANA-Video_2B_480p_diffusers",
|
||||
subfolder="text_encoder",
|
||||
quantization_config=quant_config,
|
||||
torch_dtype=torch.float16,
|
||||
)
|
||||
|
||||
quant_config = DiffusersBitsAndBytesConfig(load_in_8bit=True)
|
||||
transformer_8bit = SanaVideoTransformer3DModel.from_pretrained(
|
||||
"Efficient-Large-Model/SANA-Video_2B_480p_diffusers",
|
||||
subfolder="transformer",
|
||||
quantization_config=quant_config,
|
||||
torch_dtype=torch.float16,
|
||||
)
|
||||
|
||||
pipeline = SanaVideoPipeline.from_pretrained(
|
||||
"Efficient-Large-Model/SANA-Video_2B_480p_diffusers",
|
||||
text_encoder=text_encoder_8bit,
|
||||
transformer=transformer_8bit,
|
||||
torch_dtype=torch.float16,
|
||||
device_map="balanced",
|
||||
)
|
||||
|
||||
model_score = 30
|
||||
prompt = "Evening, backlight, side lighting, soft light, high contrast, mid-shot, centered composition, clean solo shot, warm color. A young Caucasian man stands in a forest, golden light glimmers on his hair as sunlight filters through the leaves. He wears a light shirt, wind gently blowing his hair and collar, light dances across his face with his movements. The background is blurred, with dappled light and soft tree shadows in the distance. The camera focuses on his lifted gaze, clear and emotional."
|
||||
negative_prompt = "A chaotic sequence with misshapen, deformed limbs in heavy motion blur, sudden disappearance, jump cuts, jerky movements, rapid shot changes, frames out of sync, inconsistent character shapes, temporal artifacts, jitter, and ghosting effects, creating a disorienting visual experience."
|
||||
motion_prompt = f" motion score: {model_score}."
|
||||
prompt = prompt + motion_prompt
|
||||
|
||||
output = pipeline(
|
||||
prompt=prompt,
|
||||
negative_prompt=negative_prompt,
|
||||
height=480,
|
||||
width=832,
|
||||
num_frames=81,
|
||||
guidance_scale=6.0,
|
||||
num_inference_steps=50
|
||||
).frames[0]
|
||||
export_to_video(output, "sana-video-output.mp4", fps=16)
|
||||
```
|
||||
|
||||
## SanaVideoPipeline
|
||||
|
||||
[[autodoc]] SanaVideoPipeline
|
||||
- all
|
||||
- __call__
|
||||
|
||||
|
||||
## SanaVideoPipelineOutput
|
||||
|
||||
[[autodoc]] pipelines.sana.pipeline_sana_video.SanaVideoPipelineOutput
|
||||
@@ -104,6 +104,8 @@ To use your own dataset, there are 2 ways:
|
||||
- you can either provide your own folder as `--train_data_dir`
|
||||
- or you can upload your dataset to the hub (possibly as a private repo, if you prefer so), and simply pass the `--dataset_name` argument.
|
||||
|
||||
If your dataset contains 16 or 32-bit channels (for example, medical TIFFs), add the `--preserve_input_precision` flag so the preprocessing keeps the original precision while still training a 3-channel model. Precision still depends on the decoder: Pillow keeps 16-bit grayscale and float inputs, but many 16-bit RGB files are decoded as 8-bit RGB, and the flag cannot recover precision lost at load time.
|
||||
|
||||
Below, we explain both in more detail.
|
||||
|
||||
#### Provide the dataset as a folder
|
||||
|
||||
@@ -52,6 +52,24 @@ def _extract_into_tensor(arr, timesteps, broadcast_shape):
|
||||
return res.expand(broadcast_shape)
|
||||
|
||||
|
||||
def _ensure_three_channels(tensor: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Ensure the tensor has exactly three channels (C, H, W) by repeating or truncating channels when needed.
|
||||
"""
|
||||
if tensor.ndim == 2:
|
||||
tensor = tensor.unsqueeze(0)
|
||||
channels = tensor.shape[0]
|
||||
if channels == 3:
|
||||
return tensor
|
||||
if channels == 1:
|
||||
return tensor.repeat(3, 1, 1)
|
||||
if channels == 2:
|
||||
return torch.cat([tensor, tensor[:1]], dim=0)
|
||||
if channels > 3:
|
||||
return tensor[:3]
|
||||
raise ValueError(f"Unsupported number of channels: {channels}")
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(description="Simple example of a training script.")
|
||||
parser.add_argument(
|
||||
@@ -260,6 +278,11 @@ def parse_args():
|
||||
parser.add_argument(
|
||||
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--preserve_input_precision",
|
||||
action="store_true",
|
||||
help="Preserve 16/32-bit image precision by avoiding 8-bit RGB conversion while still producing 3-channel tensors.",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
|
||||
@@ -453,19 +476,41 @@ def main(args):
|
||||
# https://huggingface.co/docs/datasets/v2.4.0/en/image_load#imagefolder
|
||||
|
||||
# Preprocessing the datasets and DataLoaders creation.
|
||||
spatial_augmentations = [
|
||||
transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR),
|
||||
transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution),
|
||||
transforms.RandomHorizontalFlip() if args.random_flip else transforms.Lambda(lambda x: x),
|
||||
]
|
||||
|
||||
augmentations = transforms.Compose(
|
||||
[
|
||||
transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR),
|
||||
transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution),
|
||||
transforms.RandomHorizontalFlip() if args.random_flip else transforms.Lambda(lambda x: x),
|
||||
spatial_augmentations
|
||||
+ [
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize([0.5], [0.5]),
|
||||
]
|
||||
)
|
||||
|
||||
precision_augmentations = transforms.Compose(
|
||||
[
|
||||
transforms.PILToTensor(),
|
||||
transforms.Lambda(_ensure_three_channels),
|
||||
transforms.ConvertImageDtype(torch.float32),
|
||||
]
|
||||
+ spatial_augmentations
|
||||
+ [transforms.Normalize([0.5], [0.5])]
|
||||
)
|
||||
|
||||
def transform_images(examples):
|
||||
images = [augmentations(image.convert("RGB")) for image in examples["image"]]
|
||||
return {"input": images}
|
||||
processed = []
|
||||
for image in examples["image"]:
|
||||
if not args.preserve_input_precision:
|
||||
processed.append(augmentations(image.convert("RGB")))
|
||||
else:
|
||||
precise_image = image
|
||||
if precise_image.mode == "P":
|
||||
precise_image = precise_image.convert("RGB")
|
||||
processed.append(precision_augmentations(precise_image))
|
||||
return {"input": processed}
|
||||
|
||||
logger.info(f"Dataset size: {len(dataset)}")
|
||||
|
||||
|
||||
@@ -10,7 +10,7 @@ from accelerate import init_empty_weights
|
||||
from diffusers import (
|
||||
SanaControlNetModel,
|
||||
)
|
||||
from diffusers.models.modeling_utils import load_model_dict_into_meta
|
||||
from diffusers.models.model_loading_utils import load_model_dict_into_meta
|
||||
from diffusers.utils.import_utils import is_accelerate_available
|
||||
|
||||
|
||||
|
||||
@@ -20,7 +20,7 @@ from diffusers import (
|
||||
SanaTransformer2DModel,
|
||||
SCMScheduler,
|
||||
)
|
||||
from diffusers.models.modeling_utils import load_model_dict_into_meta
|
||||
from diffusers.models.model_loading_utils import load_model_dict_into_meta
|
||||
from diffusers.utils.import_utils import is_accelerate_available
|
||||
|
||||
|
||||
|
||||
324
scripts/convert_sana_video_to_diffusers.py
Normal file
324
scripts/convert_sana_video_to_diffusers.py
Normal file
@@ -0,0 +1,324 @@
|
||||
#!/usr/bin/env python
|
||||
from __future__ import annotations
|
||||
|
||||
import argparse
|
||||
import os
|
||||
from contextlib import nullcontext
|
||||
|
||||
import torch
|
||||
from accelerate import init_empty_weights
|
||||
from huggingface_hub import hf_hub_download, snapshot_download
|
||||
from termcolor import colored
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKLWan,
|
||||
DPMSolverMultistepScheduler,
|
||||
FlowMatchEulerDiscreteScheduler,
|
||||
SanaVideoPipeline,
|
||||
SanaVideoTransformer3DModel,
|
||||
UniPCMultistepScheduler,
|
||||
)
|
||||
from diffusers.utils.import_utils import is_accelerate_available
|
||||
|
||||
|
||||
CTX = init_empty_weights if is_accelerate_available else nullcontext
|
||||
|
||||
ckpt_ids = ["Efficient-Large-Model/SANA-Video_2B_480p/checkpoints/SANA_Video_2B_480p.pth"]
|
||||
# https://github.com/NVlabs/Sana/blob/main/inference_video_scripts/inference_sana_video.py
|
||||
|
||||
|
||||
def main(args):
|
||||
cache_dir_path = os.path.expanduser("~/.cache/huggingface/hub")
|
||||
|
||||
if args.orig_ckpt_path is None or args.orig_ckpt_path in ckpt_ids:
|
||||
ckpt_id = args.orig_ckpt_path or ckpt_ids[0]
|
||||
snapshot_download(
|
||||
repo_id=f"{'/'.join(ckpt_id.split('/')[:2])}",
|
||||
cache_dir=cache_dir_path,
|
||||
repo_type="model",
|
||||
)
|
||||
file_path = hf_hub_download(
|
||||
repo_id=f"{'/'.join(ckpt_id.split('/')[:2])}",
|
||||
filename=f"{'/'.join(ckpt_id.split('/')[2:])}",
|
||||
cache_dir=cache_dir_path,
|
||||
repo_type="model",
|
||||
)
|
||||
else:
|
||||
file_path = args.orig_ckpt_path
|
||||
|
||||
print(colored(f"Loading checkpoint from {file_path}", "green", attrs=["bold"]))
|
||||
all_state_dict = torch.load(file_path, weights_only=True)
|
||||
state_dict = all_state_dict.pop("state_dict")
|
||||
converted_state_dict = {}
|
||||
|
||||
# Patch embeddings.
|
||||
converted_state_dict["patch_embedding.weight"] = state_dict.pop("x_embedder.proj.weight")
|
||||
converted_state_dict["patch_embedding.bias"] = state_dict.pop("x_embedder.proj.bias")
|
||||
|
||||
# Caption projection.
|
||||
converted_state_dict["caption_projection.linear_1.weight"] = state_dict.pop("y_embedder.y_proj.fc1.weight")
|
||||
converted_state_dict["caption_projection.linear_1.bias"] = state_dict.pop("y_embedder.y_proj.fc1.bias")
|
||||
converted_state_dict["caption_projection.linear_2.weight"] = state_dict.pop("y_embedder.y_proj.fc2.weight")
|
||||
converted_state_dict["caption_projection.linear_2.bias"] = state_dict.pop("y_embedder.y_proj.fc2.bias")
|
||||
|
||||
converted_state_dict["time_embed.emb.timestep_embedder.linear_1.weight"] = state_dict.pop(
|
||||
"t_embedder.mlp.0.weight"
|
||||
)
|
||||
converted_state_dict["time_embed.emb.timestep_embedder.linear_1.bias"] = state_dict.pop("t_embedder.mlp.0.bias")
|
||||
converted_state_dict["time_embed.emb.timestep_embedder.linear_2.weight"] = state_dict.pop(
|
||||
"t_embedder.mlp.2.weight"
|
||||
)
|
||||
converted_state_dict["time_embed.emb.timestep_embedder.linear_2.bias"] = state_dict.pop("t_embedder.mlp.2.bias")
|
||||
|
||||
# Shared norm.
|
||||
converted_state_dict["time_embed.linear.weight"] = state_dict.pop("t_block.1.weight")
|
||||
converted_state_dict["time_embed.linear.bias"] = state_dict.pop("t_block.1.bias")
|
||||
|
||||
# y norm
|
||||
converted_state_dict["caption_norm.weight"] = state_dict.pop("attention_y_norm.weight")
|
||||
|
||||
# scheduler
|
||||
flow_shift = 8.0
|
||||
|
||||
# model config
|
||||
layer_num = 20
|
||||
# Positional embedding interpolation scale.
|
||||
qk_norm = True
|
||||
|
||||
# sample size
|
||||
if args.video_size == 480:
|
||||
sample_size = 30 # Wan-VAE: 8xp2 downsample factor
|
||||
patch_size = (1, 2, 2)
|
||||
elif args.video_size == 720:
|
||||
sample_size = 22 # Wan-VAE: 32xp1 downsample factor
|
||||
patch_size = (1, 1, 1)
|
||||
else:
|
||||
raise ValueError(f"Video size {args.video_size} is not supported.")
|
||||
|
||||
for depth in range(layer_num):
|
||||
# Transformer blocks.
|
||||
converted_state_dict[f"transformer_blocks.{depth}.scale_shift_table"] = state_dict.pop(
|
||||
f"blocks.{depth}.scale_shift_table"
|
||||
)
|
||||
|
||||
# Linear Attention is all you need 🤘
|
||||
# Self attention.
|
||||
q, k, v = torch.chunk(state_dict.pop(f"blocks.{depth}.attn.qkv.weight"), 3, dim=0)
|
||||
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_q.weight"] = q
|
||||
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_k.weight"] = k
|
||||
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_v.weight"] = v
|
||||
if qk_norm is not None:
|
||||
# Add Q/K normalization for self-attention (attn1) - needed for Sana-Sprint and Sana-1.5
|
||||
converted_state_dict[f"transformer_blocks.{depth}.attn1.norm_q.weight"] = state_dict.pop(
|
||||
f"blocks.{depth}.attn.q_norm.weight"
|
||||
)
|
||||
converted_state_dict[f"transformer_blocks.{depth}.attn1.norm_k.weight"] = state_dict.pop(
|
||||
f"blocks.{depth}.attn.k_norm.weight"
|
||||
)
|
||||
# Projection.
|
||||
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_out.0.weight"] = state_dict.pop(
|
||||
f"blocks.{depth}.attn.proj.weight"
|
||||
)
|
||||
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_out.0.bias"] = state_dict.pop(
|
||||
f"blocks.{depth}.attn.proj.bias"
|
||||
)
|
||||
|
||||
# Feed-forward.
|
||||
converted_state_dict[f"transformer_blocks.{depth}.ff.conv_inverted.weight"] = state_dict.pop(
|
||||
f"blocks.{depth}.mlp.inverted_conv.conv.weight"
|
||||
)
|
||||
converted_state_dict[f"transformer_blocks.{depth}.ff.conv_inverted.bias"] = state_dict.pop(
|
||||
f"blocks.{depth}.mlp.inverted_conv.conv.bias"
|
||||
)
|
||||
converted_state_dict[f"transformer_blocks.{depth}.ff.conv_depth.weight"] = state_dict.pop(
|
||||
f"blocks.{depth}.mlp.depth_conv.conv.weight"
|
||||
)
|
||||
converted_state_dict[f"transformer_blocks.{depth}.ff.conv_depth.bias"] = state_dict.pop(
|
||||
f"blocks.{depth}.mlp.depth_conv.conv.bias"
|
||||
)
|
||||
converted_state_dict[f"transformer_blocks.{depth}.ff.conv_point.weight"] = state_dict.pop(
|
||||
f"blocks.{depth}.mlp.point_conv.conv.weight"
|
||||
)
|
||||
converted_state_dict[f"transformer_blocks.{depth}.ff.conv_temp.weight"] = state_dict.pop(
|
||||
f"blocks.{depth}.mlp.t_conv.weight"
|
||||
)
|
||||
|
||||
# Cross-attention.
|
||||
q = state_dict.pop(f"blocks.{depth}.cross_attn.q_linear.weight")
|
||||
q_bias = state_dict.pop(f"blocks.{depth}.cross_attn.q_linear.bias")
|
||||
k, v = torch.chunk(state_dict.pop(f"blocks.{depth}.cross_attn.kv_linear.weight"), 2, dim=0)
|
||||
k_bias, v_bias = torch.chunk(state_dict.pop(f"blocks.{depth}.cross_attn.kv_linear.bias"), 2, dim=0)
|
||||
|
||||
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_q.weight"] = q
|
||||
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_q.bias"] = q_bias
|
||||
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_k.weight"] = k
|
||||
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_k.bias"] = k_bias
|
||||
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_v.weight"] = v
|
||||
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_v.bias"] = v_bias
|
||||
if qk_norm is not None:
|
||||
# Add Q/K normalization for cross-attention (attn2) - needed for Sana-Sprint and Sana-1.5
|
||||
converted_state_dict[f"transformer_blocks.{depth}.attn2.norm_q.weight"] = state_dict.pop(
|
||||
f"blocks.{depth}.cross_attn.q_norm.weight"
|
||||
)
|
||||
converted_state_dict[f"transformer_blocks.{depth}.attn2.norm_k.weight"] = state_dict.pop(
|
||||
f"blocks.{depth}.cross_attn.k_norm.weight"
|
||||
)
|
||||
|
||||
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_out.0.weight"] = state_dict.pop(
|
||||
f"blocks.{depth}.cross_attn.proj.weight"
|
||||
)
|
||||
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_out.0.bias"] = state_dict.pop(
|
||||
f"blocks.{depth}.cross_attn.proj.bias"
|
||||
)
|
||||
|
||||
# Final block.
|
||||
converted_state_dict["proj_out.weight"] = state_dict.pop("final_layer.linear.weight")
|
||||
converted_state_dict["proj_out.bias"] = state_dict.pop("final_layer.linear.bias")
|
||||
converted_state_dict["scale_shift_table"] = state_dict.pop("final_layer.scale_shift_table")
|
||||
|
||||
# Transformer
|
||||
with CTX():
|
||||
transformer_kwargs = {
|
||||
"in_channels": 16,
|
||||
"out_channels": 16,
|
||||
"num_attention_heads": 20,
|
||||
"attention_head_dim": 112,
|
||||
"num_layers": 20,
|
||||
"num_cross_attention_heads": 20,
|
||||
"cross_attention_head_dim": 112,
|
||||
"cross_attention_dim": 2240,
|
||||
"caption_channels": 2304,
|
||||
"mlp_ratio": 3.0,
|
||||
"attention_bias": False,
|
||||
"sample_size": sample_size,
|
||||
"patch_size": patch_size,
|
||||
"norm_elementwise_affine": False,
|
||||
"norm_eps": 1e-6,
|
||||
"qk_norm": "rms_norm_across_heads",
|
||||
"rope_max_seq_len": 1024,
|
||||
}
|
||||
|
||||
transformer = SanaVideoTransformer3DModel(**transformer_kwargs)
|
||||
|
||||
transformer.load_state_dict(converted_state_dict, strict=True, assign=True)
|
||||
|
||||
try:
|
||||
state_dict.pop("y_embedder.y_embedding")
|
||||
state_dict.pop("pos_embed")
|
||||
state_dict.pop("logvar_linear.weight")
|
||||
state_dict.pop("logvar_linear.bias")
|
||||
except KeyError:
|
||||
print("y_embedder.y_embedding or pos_embed not found in the state_dict")
|
||||
|
||||
assert len(state_dict) == 0, f"State dict is not empty, {state_dict.keys()}"
|
||||
|
||||
num_model_params = sum(p.numel() for p in transformer.parameters())
|
||||
print(f"Total number of transformer parameters: {num_model_params}")
|
||||
|
||||
transformer = transformer.to(weight_dtype)
|
||||
|
||||
if not args.save_full_pipeline:
|
||||
print(
|
||||
colored(
|
||||
f"Only saving transformer model of {args.model_type}. "
|
||||
f"Set --save_full_pipeline to save the whole Pipeline",
|
||||
"green",
|
||||
attrs=["bold"],
|
||||
)
|
||||
)
|
||||
transformer.save_pretrained(
|
||||
os.path.join(args.dump_path, "transformer"), safe_serialization=True, max_shard_size="5GB"
|
||||
)
|
||||
else:
|
||||
print(colored(f"Saving the whole Pipeline containing {args.model_type}", "green", attrs=["bold"]))
|
||||
# VAE
|
||||
vae = AutoencoderKLWan.from_pretrained(
|
||||
"Wan-AI/Wan2.1-T2V-1.3B-Diffusers", subfolder="vae", torch_dtype=torch.float32
|
||||
)
|
||||
|
||||
# Text Encoder
|
||||
text_encoder_model_path = "Efficient-Large-Model/gemma-2-2b-it"
|
||||
tokenizer = AutoTokenizer.from_pretrained(text_encoder_model_path)
|
||||
tokenizer.padding_side = "right"
|
||||
text_encoder = AutoModelForCausalLM.from_pretrained(
|
||||
text_encoder_model_path, torch_dtype=torch.bfloat16
|
||||
).get_decoder()
|
||||
|
||||
# Choose the appropriate pipeline and scheduler based on model type
|
||||
# Original Sana scheduler
|
||||
if args.scheduler_type == "flow-dpm_solver":
|
||||
scheduler = DPMSolverMultistepScheduler(
|
||||
flow_shift=flow_shift,
|
||||
use_flow_sigmas=True,
|
||||
prediction_type="flow_prediction",
|
||||
)
|
||||
elif args.scheduler_type == "flow-euler":
|
||||
scheduler = FlowMatchEulerDiscreteScheduler(shift=flow_shift)
|
||||
elif args.scheduler_type == "uni-pc":
|
||||
scheduler = UniPCMultistepScheduler(
|
||||
prediction_type="flow_prediction",
|
||||
use_flow_sigmas=True,
|
||||
num_train_timesteps=1000,
|
||||
flow_shift=flow_shift,
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Scheduler type {args.scheduler_type} is not supported")
|
||||
|
||||
pipe = SanaVideoPipeline(
|
||||
tokenizer=tokenizer,
|
||||
text_encoder=text_encoder,
|
||||
transformer=transformer,
|
||||
vae=vae,
|
||||
scheduler=scheduler,
|
||||
)
|
||||
|
||||
pipe.save_pretrained(args.dump_path, safe_serialization=True, max_shard_size="5GB")
|
||||
|
||||
|
||||
DTYPE_MAPPING = {
|
||||
"fp32": torch.float32,
|
||||
"fp16": torch.float16,
|
||||
"bf16": torch.bfloat16,
|
||||
}
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
parser.add_argument(
|
||||
"--orig_ckpt_path", default=None, type=str, required=False, help="Path to the checkpoint to convert."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--video_size",
|
||||
default=480,
|
||||
type=int,
|
||||
choices=[480, 720],
|
||||
required=False,
|
||||
help="Video size of pretrained model, 480 or 720.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--model_type",
|
||||
default="SanaVideo",
|
||||
type=str,
|
||||
choices=[
|
||||
"SanaVideo",
|
||||
],
|
||||
)
|
||||
parser.add_argument(
|
||||
"--scheduler_type",
|
||||
default="flow-dpm_solver",
|
||||
type=str,
|
||||
choices=["flow-dpm_solver", "flow-euler", "uni-pc"],
|
||||
help="Scheduler type to use.",
|
||||
)
|
||||
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output pipeline.")
|
||||
parser.add_argument("--save_full_pipeline", action="store_true", help="save all the pipeline elements in one.")
|
||||
parser.add_argument("--dtype", default="fp32", type=str, choices=["fp32", "fp16", "bf16"], help="Weight dtype.")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
weight_dtype = DTYPE_MAPPING[args.dtype]
|
||||
|
||||
main(args)
|
||||
@@ -7,7 +7,7 @@ from accelerate import init_empty_weights
|
||||
|
||||
from diffusers import AutoencoderKL, SD3Transformer2DModel
|
||||
from diffusers.loaders.single_file_utils import convert_ldm_vae_checkpoint
|
||||
from diffusers.models.modeling_utils import load_model_dict_into_meta
|
||||
from diffusers.models.model_loading_utils import load_model_dict_into_meta
|
||||
from diffusers.utils.import_utils import is_accelerate_available
|
||||
|
||||
|
||||
|
||||
@@ -18,7 +18,7 @@ from diffusers import (
|
||||
StableAudioPipeline,
|
||||
StableAudioProjectionModel,
|
||||
)
|
||||
from diffusers.models.modeling_utils import load_model_dict_into_meta
|
||||
from diffusers.models.model_loading_utils import load_model_dict_into_meta
|
||||
from diffusers.utils import is_accelerate_available
|
||||
|
||||
|
||||
|
||||
@@ -20,7 +20,7 @@ from diffusers import (
|
||||
)
|
||||
from diffusers.loaders.single_file_utils import convert_stable_cascade_unet_single_file_to_diffusers
|
||||
from diffusers.models import StableCascadeUNet
|
||||
from diffusers.models.modeling_utils import load_model_dict_into_meta
|
||||
from diffusers.models.model_loading_utils import load_model_dict_into_meta
|
||||
from diffusers.pipelines.wuerstchen import PaellaVQModel
|
||||
from diffusers.utils import is_accelerate_available
|
||||
|
||||
|
||||
@@ -20,7 +20,7 @@ from diffusers import (
|
||||
)
|
||||
from diffusers.loaders.single_file_utils import convert_stable_cascade_unet_single_file_to_diffusers
|
||||
from diffusers.models import StableCascadeUNet
|
||||
from diffusers.models.modeling_utils import load_model_dict_into_meta
|
||||
from diffusers.models.model_loading_utils import load_model_dict_into_meta
|
||||
from diffusers.pipelines.wuerstchen import PaellaVQModel
|
||||
from diffusers.utils import is_accelerate_available
|
||||
|
||||
|
||||
@@ -202,6 +202,7 @@ else:
|
||||
"BriaTransformer2DModel",
|
||||
"CacheMixin",
|
||||
"ChromaTransformer2DModel",
|
||||
"ChronoEditTransformer3DModel",
|
||||
"CogVideoXTransformer3DModel",
|
||||
"CogView3PlusTransformer2DModel",
|
||||
"CogView4Transformer2DModel",
|
||||
@@ -246,6 +247,7 @@ else:
|
||||
"QwenImageTransformer2DModel",
|
||||
"SanaControlNetModel",
|
||||
"SanaTransformer2DModel",
|
||||
"SanaVideoTransformer3DModel",
|
||||
"SD3ControlNetModel",
|
||||
"SD3MultiControlNetModel",
|
||||
"SD3Transformer2DModel",
|
||||
@@ -405,6 +407,7 @@ else:
|
||||
"QwenImageModularPipeline",
|
||||
"StableDiffusionXLAutoBlocks",
|
||||
"StableDiffusionXLModularPipeline",
|
||||
"Wan22AutoBlocks",
|
||||
"WanAutoBlocks",
|
||||
"WanModularPipeline",
|
||||
]
|
||||
@@ -435,6 +438,7 @@ else:
|
||||
"BriaPipeline",
|
||||
"ChromaImg2ImgPipeline",
|
||||
"ChromaPipeline",
|
||||
"ChronoEditPipeline",
|
||||
"CLIPImageProjection",
|
||||
"CogVideoXFunControlPipeline",
|
||||
"CogVideoXImageToVideoPipeline",
|
||||
@@ -544,6 +548,7 @@ else:
|
||||
"SanaPipeline",
|
||||
"SanaSprintImg2ImgPipeline",
|
||||
"SanaSprintPipeline",
|
||||
"SanaVideoPipeline",
|
||||
"SemanticStableDiffusionPipeline",
|
||||
"ShapEImg2ImgPipeline",
|
||||
"ShapEPipeline",
|
||||
@@ -907,6 +912,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
BriaTransformer2DModel,
|
||||
CacheMixin,
|
||||
ChromaTransformer2DModel,
|
||||
ChronoEditTransformer3DModel,
|
||||
CogVideoXTransformer3DModel,
|
||||
CogView3PlusTransformer2DModel,
|
||||
CogView4Transformer2DModel,
|
||||
@@ -951,6 +957,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
QwenImageTransformer2DModel,
|
||||
SanaControlNetModel,
|
||||
SanaTransformer2DModel,
|
||||
SanaVideoTransformer3DModel,
|
||||
SD3ControlNetModel,
|
||||
SD3MultiControlNetModel,
|
||||
SD3Transformer2DModel,
|
||||
@@ -1084,6 +1091,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
QwenImageModularPipeline,
|
||||
StableDiffusionXLAutoBlocks,
|
||||
StableDiffusionXLModularPipeline,
|
||||
Wan22AutoBlocks,
|
||||
WanAutoBlocks,
|
||||
WanModularPipeline,
|
||||
)
|
||||
@@ -1110,6 +1118,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
BriaPipeline,
|
||||
ChromaImg2ImgPipeline,
|
||||
ChromaPipeline,
|
||||
ChronoEditPipeline,
|
||||
CLIPImageProjection,
|
||||
CogVideoXFunControlPipeline,
|
||||
CogVideoXImageToVideoPipeline,
|
||||
@@ -1219,6 +1228,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
SanaPipeline,
|
||||
SanaSprintImg2ImgPipeline,
|
||||
SanaSprintPipeline,
|
||||
SanaVideoPipeline,
|
||||
SemanticStableDiffusionPipeline,
|
||||
ShapEImg2ImgPipeline,
|
||||
ShapEPipeline,
|
||||
|
||||
@@ -13,7 +13,7 @@
|
||||
# limitations under the License.
|
||||
|
||||
import math
|
||||
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple
|
||||
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
|
||||
@@ -88,6 +88,19 @@ class AdaptiveProjectedGuidance(BaseGuidance):
|
||||
data_batches.append(data_batch)
|
||||
return data_batches
|
||||
|
||||
def prepare_inputs_from_block_state(
|
||||
self, data: "BlockState", input_fields: Dict[str, Union[str, Tuple[str, str]]]
|
||||
) -> List["BlockState"]:
|
||||
if self._step == 0:
|
||||
if self.adaptive_projected_guidance_momentum is not None:
|
||||
self.momentum_buffer = MomentumBuffer(self.adaptive_projected_guidance_momentum)
|
||||
tuple_indices = [0] if self.num_conditions == 1 else [0, 1]
|
||||
data_batches = []
|
||||
for tuple_idx, input_prediction in zip(tuple_indices, self._input_predictions):
|
||||
data_batch = self._prepare_batch_from_block_state(input_fields, data, tuple_idx, input_prediction)
|
||||
data_batches.append(data_batch)
|
||||
return data_batches
|
||||
|
||||
def forward(self, pred_cond: torch.Tensor, pred_uncond: Optional[torch.Tensor] = None) -> GuiderOutput:
|
||||
pred = None
|
||||
|
||||
|
||||
@@ -13,7 +13,7 @@
|
||||
# limitations under the License.
|
||||
|
||||
import math
|
||||
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple
|
||||
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
|
||||
@@ -99,6 +99,19 @@ class AdaptiveProjectedMixGuidance(BaseGuidance):
|
||||
data_batches.append(data_batch)
|
||||
return data_batches
|
||||
|
||||
def prepare_inputs_from_block_state(
|
||||
self, data: "BlockState", input_fields: Dict[str, Union[str, Tuple[str, str]]]
|
||||
) -> List["BlockState"]:
|
||||
if self._step == 0:
|
||||
if self.adaptive_projected_guidance_momentum is not None:
|
||||
self.momentum_buffer = MomentumBuffer(self.adaptive_projected_guidance_momentum)
|
||||
tuple_indices = [0] if self.num_conditions == 1 else [0, 1]
|
||||
data_batches = []
|
||||
for tuple_idx, input_prediction in zip(tuple_indices, self._input_predictions):
|
||||
data_batch = self._prepare_batch_from_block_state(input_fields, data, tuple_idx, input_prediction)
|
||||
data_batches.append(data_batch)
|
||||
return data_batches
|
||||
|
||||
def forward(self, pred_cond: torch.Tensor, pred_uncond: Optional[torch.Tensor] = None) -> GuiderOutput:
|
||||
pred = None
|
||||
|
||||
|
||||
@@ -141,6 +141,16 @@ class AutoGuidance(BaseGuidance):
|
||||
data_batches.append(data_batch)
|
||||
return data_batches
|
||||
|
||||
def prepare_inputs_from_block_state(
|
||||
self, data: "BlockState", input_fields: Dict[str, Union[str, Tuple[str, str]]]
|
||||
) -> List["BlockState"]:
|
||||
tuple_indices = [0] if self.num_conditions == 1 else [0, 1]
|
||||
data_batches = []
|
||||
for tuple_idx, input_prediction in zip(tuple_indices, self._input_predictions):
|
||||
data_batch = self._prepare_batch_from_block_state(input_fields, data, tuple_idx, input_prediction)
|
||||
data_batches.append(data_batch)
|
||||
return data_batches
|
||||
|
||||
def forward(self, pred_cond: torch.Tensor, pred_uncond: Optional[torch.Tensor] = None) -> GuiderOutput:
|
||||
pred = None
|
||||
|
||||
|
||||
@@ -13,7 +13,7 @@
|
||||
# limitations under the License.
|
||||
|
||||
import math
|
||||
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple
|
||||
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
|
||||
@@ -99,6 +99,16 @@ class ClassifierFreeGuidance(BaseGuidance):
|
||||
data_batches.append(data_batch)
|
||||
return data_batches
|
||||
|
||||
def prepare_inputs_from_block_state(
|
||||
self, data: "BlockState", input_fields: Dict[str, Union[str, Tuple[str, str]]]
|
||||
) -> List["BlockState"]:
|
||||
tuple_indices = [0] if self.num_conditions == 1 else [0, 1]
|
||||
data_batches = []
|
||||
for tuple_idx, input_prediction in zip(tuple_indices, self._input_predictions):
|
||||
data_batch = self._prepare_batch_from_block_state(input_fields, data, tuple_idx, input_prediction)
|
||||
data_batches.append(data_batch)
|
||||
return data_batches
|
||||
|
||||
def forward(self, pred_cond: torch.Tensor, pred_uncond: Optional[torch.Tensor] = None) -> GuiderOutput:
|
||||
pred = None
|
||||
|
||||
|
||||
@@ -13,7 +13,7 @@
|
||||
# limitations under the License.
|
||||
|
||||
import math
|
||||
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple
|
||||
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
|
||||
@@ -85,6 +85,16 @@ class ClassifierFreeZeroStarGuidance(BaseGuidance):
|
||||
data_batches.append(data_batch)
|
||||
return data_batches
|
||||
|
||||
def prepare_inputs_from_block_state(
|
||||
self, data: "BlockState", input_fields: Dict[str, Union[str, Tuple[str, str]]]
|
||||
) -> List["BlockState"]:
|
||||
tuple_indices = [0] if self.num_conditions == 1 else [0, 1]
|
||||
data_batches = []
|
||||
for tuple_idx, input_prediction in zip(tuple_indices, self._input_predictions):
|
||||
data_batch = self._prepare_batch_from_block_state(input_fields, data, tuple_idx, input_prediction)
|
||||
data_batches.append(data_batch)
|
||||
return data_batches
|
||||
|
||||
def forward(self, pred_cond: torch.Tensor, pred_uncond: Optional[torch.Tensor] = None) -> GuiderOutput:
|
||||
pred = None
|
||||
|
||||
|
||||
@@ -226,6 +226,16 @@ class FrequencyDecoupledGuidance(BaseGuidance):
|
||||
data_batches.append(data_batch)
|
||||
return data_batches
|
||||
|
||||
def prepare_inputs_from_block_state(
|
||||
self, data: "BlockState", input_fields: Dict[str, Union[str, Tuple[str, str]]]
|
||||
) -> List["BlockState"]:
|
||||
tuple_indices = [0] if self.num_conditions == 1 else [0, 1]
|
||||
data_batches = []
|
||||
for tuple_idx, input_prediction in zip(tuple_indices, self._input_predictions):
|
||||
data_batch = self._prepare_batch_from_block_state(input_fields, data, tuple_idx, input_prediction)
|
||||
data_batches.append(data_batch)
|
||||
return data_batches
|
||||
|
||||
def forward(self, pred_cond: torch.Tensor, pred_uncond: Optional[torch.Tensor] = None) -> GuiderOutput:
|
||||
pred = None
|
||||
|
||||
|
||||
@@ -166,6 +166,11 @@ class BaseGuidance(ConfigMixin, PushToHubMixin):
|
||||
def prepare_inputs(self, data: "BlockState") -> List["BlockState"]:
|
||||
raise NotImplementedError("BaseGuidance::prepare_inputs must be implemented in subclasses.")
|
||||
|
||||
def prepare_inputs_from_block_state(
|
||||
self, data: "BlockState", input_fields: Dict[str, Union[str, Tuple[str, str]]]
|
||||
) -> List["BlockState"]:
|
||||
raise NotImplementedError("BaseGuidance::prepare_inputs_from_block_state must be implemented in subclasses.")
|
||||
|
||||
def __call__(self, data: List["BlockState"]) -> Any:
|
||||
if not all(hasattr(d, "noise_pred") for d in data):
|
||||
raise ValueError("Expected all data to have `noise_pred` attribute.")
|
||||
@@ -234,6 +239,51 @@ class BaseGuidance(ConfigMixin, PushToHubMixin):
|
||||
data_batch[cls._identifier_key] = identifier
|
||||
return BlockState(**data_batch)
|
||||
|
||||
@classmethod
|
||||
def _prepare_batch_from_block_state(
|
||||
cls,
|
||||
input_fields: Dict[str, Union[str, Tuple[str, str]]],
|
||||
data: "BlockState",
|
||||
tuple_index: int,
|
||||
identifier: str,
|
||||
) -> "BlockState":
|
||||
"""
|
||||
Prepares a batch of data for the guidance technique. This method is used in the `prepare_inputs` method of the
|
||||
`BaseGuidance` class. It prepares the batch based on the provided tuple index.
|
||||
|
||||
Args:
|
||||
input_fields (`Dict[str, Union[str, Tuple[str, str]]]`):
|
||||
A dictionary where the keys are the names of the fields that will be used to store the data once it is
|
||||
prepared with `prepare_inputs`. The values can be either a string or a tuple of length 2, which is used
|
||||
to look up the required data provided for preparation. If a string is provided, it will be used as the
|
||||
conditional data (or unconditional if used with a guidance method that requires it). If a tuple of
|
||||
length 2 is provided, the first element must be the conditional data identifier and the second element
|
||||
must be the unconditional data identifier or None.
|
||||
data (`BlockState`):
|
||||
The input data to be prepared.
|
||||
tuple_index (`int`):
|
||||
The index to use when accessing input fields that are tuples.
|
||||
|
||||
Returns:
|
||||
`BlockState`: The prepared batch of data.
|
||||
"""
|
||||
from ..modular_pipelines.modular_pipeline import BlockState
|
||||
|
||||
data_batch = {}
|
||||
for key, value in input_fields.items():
|
||||
try:
|
||||
if isinstance(value, str):
|
||||
data_batch[key] = getattr(data, value)
|
||||
elif isinstance(value, tuple):
|
||||
data_batch[key] = getattr(data, value[tuple_index])
|
||||
else:
|
||||
# We've already checked that value is a string or a tuple of strings with length 2
|
||||
pass
|
||||
except AttributeError:
|
||||
logger.debug(f"`data` does not have attribute(s) {value}, skipping.")
|
||||
data_batch[cls._identifier_key] = identifier
|
||||
return BlockState(**data_batch)
|
||||
|
||||
@classmethod
|
||||
@validate_hf_hub_args
|
||||
def from_pretrained(
|
||||
|
||||
@@ -187,6 +187,26 @@ class PerturbedAttentionGuidance(BaseGuidance):
|
||||
data_batches.append(data_batch)
|
||||
return data_batches
|
||||
|
||||
def prepare_inputs_from_block_state(
|
||||
self, data: "BlockState", input_fields: Dict[str, Union[str, Tuple[str, str]]]
|
||||
) -> List["BlockState"]:
|
||||
if self.num_conditions == 1:
|
||||
tuple_indices = [0]
|
||||
input_predictions = ["pred_cond"]
|
||||
elif self.num_conditions == 2:
|
||||
tuple_indices = [0, 1]
|
||||
input_predictions = (
|
||||
["pred_cond", "pred_uncond"] if self._is_cfg_enabled() else ["pred_cond", "pred_cond_skip"]
|
||||
)
|
||||
else:
|
||||
tuple_indices = [0, 1, 0]
|
||||
input_predictions = ["pred_cond", "pred_uncond", "pred_cond_skip"]
|
||||
data_batches = []
|
||||
for tuple_idx, input_prediction in zip(tuple_indices, input_predictions):
|
||||
data_batch = self._prepare_batch_from_block_state(input_fields, data, tuple_idx, input_prediction)
|
||||
data_batches.append(data_batch)
|
||||
return data_batches
|
||||
|
||||
# Copied from diffusers.guiders.skip_layer_guidance.SkipLayerGuidance.forward
|
||||
def forward(
|
||||
self,
|
||||
|
||||
@@ -183,6 +183,26 @@ class SkipLayerGuidance(BaseGuidance):
|
||||
data_batches.append(data_batch)
|
||||
return data_batches
|
||||
|
||||
def prepare_inputs_from_block_state(
|
||||
self, data: "BlockState", input_fields: Dict[str, Union[str, Tuple[str, str]]]
|
||||
) -> List["BlockState"]:
|
||||
if self.num_conditions == 1:
|
||||
tuple_indices = [0]
|
||||
input_predictions = ["pred_cond"]
|
||||
elif self.num_conditions == 2:
|
||||
tuple_indices = [0, 1]
|
||||
input_predictions = (
|
||||
["pred_cond", "pred_uncond"] if self._is_cfg_enabled() else ["pred_cond", "pred_cond_skip"]
|
||||
)
|
||||
else:
|
||||
tuple_indices = [0, 1, 0]
|
||||
input_predictions = ["pred_cond", "pred_uncond", "pred_cond_skip"]
|
||||
data_batches = []
|
||||
for tuple_idx, input_prediction in zip(tuple_indices, input_predictions):
|
||||
data_batch = self._prepare_batch_from_block_state(input_fields, data, tuple_idx, input_prediction)
|
||||
data_batches.append(data_batch)
|
||||
return data_batches
|
||||
|
||||
def forward(
|
||||
self,
|
||||
pred_cond: torch.Tensor,
|
||||
|
||||
@@ -172,6 +172,26 @@ class SmoothedEnergyGuidance(BaseGuidance):
|
||||
data_batches.append(data_batch)
|
||||
return data_batches
|
||||
|
||||
def prepare_inputs_from_block_state(
|
||||
self, data: "BlockState", input_fields: Dict[str, Union[str, Tuple[str, str]]]
|
||||
) -> List["BlockState"]:
|
||||
if self.num_conditions == 1:
|
||||
tuple_indices = [0]
|
||||
input_predictions = ["pred_cond"]
|
||||
elif self.num_conditions == 2:
|
||||
tuple_indices = [0, 1]
|
||||
input_predictions = (
|
||||
["pred_cond", "pred_uncond"] if self._is_cfg_enabled() else ["pred_cond", "pred_cond_seg"]
|
||||
)
|
||||
else:
|
||||
tuple_indices = [0, 1, 0]
|
||||
input_predictions = ["pred_cond", "pred_uncond", "pred_cond_seg"]
|
||||
data_batches = []
|
||||
for tuple_idx, input_prediction in zip(tuple_indices, input_predictions):
|
||||
data_batch = self._prepare_batch_from_block_state(input_fields, data, tuple_idx, input_prediction)
|
||||
data_batches.append(data_batch)
|
||||
return data_batches
|
||||
|
||||
def forward(
|
||||
self,
|
||||
pred_cond: torch.Tensor,
|
||||
|
||||
@@ -13,7 +13,7 @@
|
||||
# limitations under the License.
|
||||
|
||||
import math
|
||||
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple
|
||||
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
|
||||
@@ -74,6 +74,16 @@ class TangentialClassifierFreeGuidance(BaseGuidance):
|
||||
data_batches.append(data_batch)
|
||||
return data_batches
|
||||
|
||||
def prepare_inputs_from_block_state(
|
||||
self, data: "BlockState", input_fields: Dict[str, Union[str, Tuple[str, str]]]
|
||||
) -> List["BlockState"]:
|
||||
tuple_indices = [0] if self.num_conditions == 1 else [0, 1]
|
||||
data_batches = []
|
||||
for tuple_idx, input_prediction in zip(tuple_indices, self._input_predictions):
|
||||
data_batch = self._prepare_batch_from_block_state(input_fields, data, tuple_idx, input_prediction)
|
||||
data_batches.append(data_batch)
|
||||
return data_batches
|
||||
|
||||
def forward(self, pred_cond: torch.Tensor, pred_uncond: Optional[torch.Tensor] = None) -> GuiderOutput:
|
||||
pred = None
|
||||
|
||||
|
||||
@@ -203,10 +203,12 @@ class ContextParallelSplitHook(ModelHook):
|
||||
|
||||
def _prepare_cp_input(self, x: torch.Tensor, cp_input: ContextParallelInput) -> torch.Tensor:
|
||||
if cp_input.expected_dims is not None and x.dim() != cp_input.expected_dims:
|
||||
raise ValueError(
|
||||
f"Expected input tensor to have {cp_input.expected_dims} dimensions, but got {x.dim()} dimensions."
|
||||
logger.warning_once(
|
||||
f"Expected input tensor to have {cp_input.expected_dims} dimensions, but got {x.dim()} dimensions, split will not be applied."
|
||||
)
|
||||
return EquipartitionSharder.shard(x, cp_input.split_dim, self.parallel_config._flattened_mesh)
|
||||
return x
|
||||
else:
|
||||
return EquipartitionSharder.shard(x, cp_input.split_dim, self.parallel_config._flattened_mesh)
|
||||
|
||||
|
||||
class ContextParallelGatherHook(ModelHook):
|
||||
|
||||
@@ -1045,16 +1045,39 @@ class VaeImageProcessorLDM3D(VaeImageProcessor):
|
||||
def rgblike_to_depthmap(image: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]:
|
||||
r"""
|
||||
Convert an RGB-like depth image to a depth map.
|
||||
|
||||
Args:
|
||||
image (`Union[np.ndarray, torch.Tensor]`):
|
||||
The RGB-like depth image to convert.
|
||||
|
||||
Returns:
|
||||
`Union[np.ndarray, torch.Tensor]`:
|
||||
The corresponding depth map.
|
||||
"""
|
||||
return image[:, :, 1] * 2**8 + image[:, :, 2]
|
||||
# 1. Cast the tensor to a larger integer type (e.g., int32)
|
||||
# to safely perform the multiplication by 256.
|
||||
# 2. Perform the 16-bit combination: High-byte * 256 + Low-byte.
|
||||
# 3. Cast the final result to the desired depth map type (uint16) if needed
|
||||
# before returning, though leaving it as int32/int64 is often safer
|
||||
# for return value from a library function.
|
||||
|
||||
if isinstance(image, torch.Tensor):
|
||||
# Cast to a safe dtype (e.g., int32 or int64) for the calculation
|
||||
original_dtype = image.dtype
|
||||
image_safe = image.to(torch.int32)
|
||||
|
||||
# Calculate the depth map
|
||||
depth_map = image_safe[:, :, 1] * 256 + image_safe[:, :, 2]
|
||||
|
||||
# You may want to cast the final result to uint16, but casting to a
|
||||
# larger int type (like int32) is sufficient to fix the overflow.
|
||||
# depth_map = depth_map.to(torch.uint16) # Uncomment if uint16 is strictly required
|
||||
return depth_map.to(original_dtype)
|
||||
|
||||
elif isinstance(image, np.ndarray):
|
||||
# NumPy equivalent: Cast to a safe dtype (e.g., np.int32)
|
||||
original_dtype = image.dtype
|
||||
image_safe = image.astype(np.int32)
|
||||
|
||||
# Calculate the depth map
|
||||
depth_map = image_safe[:, :, 1] * 256 + image_safe[:, :, 2]
|
||||
|
||||
# depth_map = depth_map.astype(np.uint16) # Uncomment if uint16 is strictly required
|
||||
return depth_map.astype(original_dtype)
|
||||
else:
|
||||
raise TypeError("Input image must be a torch.Tensor or np.ndarray")
|
||||
|
||||
def numpy_to_depth(self, images: np.ndarray) -> List[PIL.Image.Image]:
|
||||
r"""
|
||||
|
||||
@@ -2213,6 +2213,10 @@ def _convert_non_diffusers_qwen_lora_to_diffusers(state_dict):
|
||||
|
||||
state_dict = {convert_key(k): v for k, v in state_dict.items()}
|
||||
|
||||
has_default = any("default." in k for k in state_dict)
|
||||
if has_default:
|
||||
state_dict = {k.replace("default.", ""): v for k, v in state_dict.items()}
|
||||
|
||||
converted_state_dict = {}
|
||||
all_keys = list(state_dict.keys())
|
||||
down_key = ".lora_down.weight"
|
||||
|
||||
@@ -4940,7 +4940,8 @@ class QwenImageLoraLoaderMixin(LoraBaseMixin):
|
||||
has_alphas_in_sd = any(k.endswith(".alpha") for k in state_dict)
|
||||
has_lora_unet = any(k.startswith("lora_unet_") for k in state_dict)
|
||||
has_diffusion_model = any(k.startswith("diffusion_model.") for k in state_dict)
|
||||
if has_alphas_in_sd or has_lora_unet or has_diffusion_model:
|
||||
has_default = any("default." in k for k in state_dict)
|
||||
if has_alphas_in_sd or has_lora_unet or has_diffusion_model or has_default:
|
||||
state_dict = _convert_non_diffusers_qwen_lora_to_diffusers(state_dict)
|
||||
|
||||
out = (state_dict, metadata) if return_lora_metadata else state_dict
|
||||
|
||||
@@ -86,6 +86,7 @@ if is_torch_available():
|
||||
_import_structure["transformers.transformer_bria"] = ["BriaTransformer2DModel"]
|
||||
_import_structure["transformers.transformer_bria_fibo"] = ["BriaFiboTransformer2DModel"]
|
||||
_import_structure["transformers.transformer_chroma"] = ["ChromaTransformer2DModel"]
|
||||
_import_structure["transformers.transformer_chronoedit"] = ["ChronoEditTransformer3DModel"]
|
||||
_import_structure["transformers.transformer_cogview3plus"] = ["CogView3PlusTransformer2DModel"]
|
||||
_import_structure["transformers.transformer_cogview4"] = ["CogView4Transformer2DModel"]
|
||||
_import_structure["transformers.transformer_cosmos"] = ["CosmosTransformer3DModel"]
|
||||
@@ -102,6 +103,7 @@ if is_torch_available():
|
||||
_import_structure["transformers.transformer_omnigen"] = ["OmniGenTransformer2DModel"]
|
||||
_import_structure["transformers.transformer_prx"] = ["PRXTransformer2DModel"]
|
||||
_import_structure["transformers.transformer_qwenimage"] = ["QwenImageTransformer2DModel"]
|
||||
_import_structure["transformers.transformer_sana_video"] = ["SanaVideoTransformer3DModel"]
|
||||
_import_structure["transformers.transformer_sd3"] = ["SD3Transformer2DModel"]
|
||||
_import_structure["transformers.transformer_skyreels_v2"] = ["SkyReelsV2Transformer3DModel"]
|
||||
_import_structure["transformers.transformer_temporal"] = ["TransformerTemporalModel"]
|
||||
@@ -178,6 +180,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
BriaFiboTransformer2DModel,
|
||||
BriaTransformer2DModel,
|
||||
ChromaTransformer2DModel,
|
||||
ChronoEditTransformer3DModel,
|
||||
CogVideoXTransformer3DModel,
|
||||
CogView3PlusTransformer2DModel,
|
||||
CogView4Transformer2DModel,
|
||||
@@ -204,6 +207,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
PRXTransformer2DModel,
|
||||
QwenImageTransformer2DModel,
|
||||
SanaTransformer2DModel,
|
||||
SanaVideoTransformer3DModel,
|
||||
SD3Transformer2DModel,
|
||||
SkyReelsV2Transformer3DModel,
|
||||
StableAudioDiTModel,
|
||||
|
||||
@@ -44,11 +44,16 @@ class ContextParallelConfig:
|
||||
|
||||
Args:
|
||||
ring_degree (`int`, *optional*, defaults to `1`):
|
||||
Number of devices to use for ring attention within a context parallel region. Must be a divisor of the
|
||||
total number of devices in the context parallel mesh.
|
||||
Number of devices to use for Ring Attention. Sequence is split across devices. Each device computes
|
||||
attention between its local Q and KV chunks passed sequentially around ring. Lower memory (only holds 1/N
|
||||
of KV at a time), overlaps compute with communication, but requires N iterations to see all tokens. Best
|
||||
for long sequences with limited memory/bandwidth. Number of devices to use for ring attention within a
|
||||
context parallel region. Must be a divisor of the total number of devices in the context parallel mesh.
|
||||
ulysses_degree (`int`, *optional*, defaults to `1`):
|
||||
Number of devices to use for ulysses attention within a context parallel region. Must be a divisor of the
|
||||
total number of devices in the context parallel mesh.
|
||||
Number of devices to use for Ulysses Attention. Sequence split is across devices. Each device computes
|
||||
local QKV, then all-gathers all KV chunks to compute full attention in one pass. Higher memory (stores all
|
||||
KV), requires high-bandwidth all-to-all communication, but lower latency. Best for moderate sequences with
|
||||
good interconnect bandwidth.
|
||||
convert_to_fp32 (`bool`, *optional*, defaults to `True`):
|
||||
Whether to convert output and LSE to float32 for ring attention numerical stability.
|
||||
rotate_method (`str`, *optional*, defaults to `"allgather"`):
|
||||
@@ -79,29 +84,46 @@ class ContextParallelConfig:
|
||||
if self.ulysses_degree is None:
|
||||
self.ulysses_degree = 1
|
||||
|
||||
if self.ring_degree == 1 and self.ulysses_degree == 1:
|
||||
raise ValueError(
|
||||
"Either ring_degree or ulysses_degree must be greater than 1 in order to use context parallel inference"
|
||||
)
|
||||
if self.ring_degree < 1 or self.ulysses_degree < 1:
|
||||
raise ValueError("`ring_degree` and `ulysses_degree` must be greater than or equal to 1.")
|
||||
if self.ring_degree > 1 and self.ulysses_degree > 1:
|
||||
raise ValueError(
|
||||
"Unified Ulysses-Ring attention is not yet supported. Please set either `ring_degree` or `ulysses_degree` to 1."
|
||||
)
|
||||
if self.rotate_method != "allgather":
|
||||
raise NotImplementedError(
|
||||
f"Only rotate_method='allgather' is supported for now, but got {self.rotate_method}."
|
||||
)
|
||||
|
||||
@property
|
||||
def mesh_shape(self) -> Tuple[int, int]:
|
||||
return (self.ring_degree, self.ulysses_degree)
|
||||
|
||||
@property
|
||||
def mesh_dim_names(self) -> Tuple[str, str]:
|
||||
"""Dimension names for the device mesh."""
|
||||
return ("ring", "ulysses")
|
||||
|
||||
def setup(self, rank: int, world_size: int, device: torch.device, mesh: torch.distributed.device_mesh.DeviceMesh):
|
||||
self._rank = rank
|
||||
self._world_size = world_size
|
||||
self._device = device
|
||||
self._mesh = mesh
|
||||
if self.ring_degree is None:
|
||||
self.ring_degree = 1
|
||||
if self.ulysses_degree is None:
|
||||
self.ulysses_degree = 1
|
||||
if self.rotate_method != "allgather":
|
||||
raise NotImplementedError(
|
||||
f"Only rotate_method='allgather' is supported for now, but got {self.rotate_method}."
|
||||
|
||||
if self.ulysses_degree * self.ring_degree > world_size:
|
||||
raise ValueError(
|
||||
f"The product of `ring_degree` ({self.ring_degree}) and `ulysses_degree` ({self.ulysses_degree}) must not exceed the world size ({world_size})."
|
||||
)
|
||||
if self._flattened_mesh is None:
|
||||
self._flattened_mesh = self._mesh._flatten()
|
||||
if self._ring_mesh is None:
|
||||
self._ring_mesh = self._mesh["ring"]
|
||||
if self._ulysses_mesh is None:
|
||||
self._ulysses_mesh = self._mesh["ulysses"]
|
||||
if self._ring_local_rank is None:
|
||||
self._ring_local_rank = self._ring_mesh.get_local_rank()
|
||||
if self._ulysses_local_rank is None:
|
||||
self._ulysses_local_rank = self._ulysses_mesh.get_local_rank()
|
||||
|
||||
self._flattened_mesh = self._mesh._flatten()
|
||||
self._ring_mesh = self._mesh["ring"]
|
||||
self._ulysses_mesh = self._mesh["ulysses"]
|
||||
self._ring_local_rank = self._ring_mesh.get_local_rank()
|
||||
self._ulysses_local_rank = self._ulysses_mesh.get_local_rank()
|
||||
|
||||
|
||||
@dataclass
|
||||
@@ -119,7 +141,7 @@ class ParallelConfig:
|
||||
_rank: int = None
|
||||
_world_size: int = None
|
||||
_device: torch.device = None
|
||||
_cp_mesh: torch.distributed.device_mesh.DeviceMesh = None
|
||||
_mesh: torch.distributed.device_mesh.DeviceMesh = None
|
||||
|
||||
def setup(
|
||||
self,
|
||||
@@ -127,14 +149,14 @@ class ParallelConfig:
|
||||
world_size: int,
|
||||
device: torch.device,
|
||||
*,
|
||||
cp_mesh: Optional[torch.distributed.device_mesh.DeviceMesh] = None,
|
||||
mesh: Optional[torch.distributed.device_mesh.DeviceMesh] = None,
|
||||
):
|
||||
self._rank = rank
|
||||
self._world_size = world_size
|
||||
self._device = device
|
||||
self._cp_mesh = cp_mesh
|
||||
self._mesh = mesh
|
||||
if self.context_parallel_config is not None:
|
||||
self.context_parallel_config.setup(rank, world_size, device, cp_mesh)
|
||||
self.context_parallel_config.setup(rank, world_size, device, mesh)
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
|
||||
@@ -220,7 +220,7 @@ class _AttentionBackendRegistry:
|
||||
_backends = {}
|
||||
_constraints = {}
|
||||
_supported_arg_names = {}
|
||||
_supports_context_parallel = {}
|
||||
_supports_context_parallel = set()
|
||||
_active_backend = AttentionBackendName(DIFFUSERS_ATTN_BACKEND)
|
||||
_checks_enabled = DIFFUSERS_ATTN_CHECKS
|
||||
|
||||
@@ -237,7 +237,9 @@ class _AttentionBackendRegistry:
|
||||
cls._backends[backend] = func
|
||||
cls._constraints[backend] = constraints or []
|
||||
cls._supported_arg_names[backend] = set(inspect.signature(func).parameters.keys())
|
||||
cls._supports_context_parallel[backend] = supports_context_parallel
|
||||
if supports_context_parallel:
|
||||
cls._supports_context_parallel.add(backend.value)
|
||||
|
||||
return func
|
||||
|
||||
return decorator
|
||||
@@ -251,15 +253,12 @@ class _AttentionBackendRegistry:
|
||||
return list(cls._backends.keys())
|
||||
|
||||
@classmethod
|
||||
def _is_context_parallel_enabled(
|
||||
cls, backend: AttentionBackendName, parallel_config: Optional["ParallelConfig"]
|
||||
def _is_context_parallel_available(
|
||||
cls,
|
||||
backend: AttentionBackendName,
|
||||
) -> bool:
|
||||
supports_context_parallel = backend in cls._supports_context_parallel
|
||||
is_degree_greater_than_1 = parallel_config is not None and (
|
||||
parallel_config.context_parallel_config.ring_degree > 1
|
||||
or parallel_config.context_parallel_config.ulysses_degree > 1
|
||||
)
|
||||
return supports_context_parallel and is_degree_greater_than_1
|
||||
supports_context_parallel = backend.value in cls._supports_context_parallel
|
||||
return supports_context_parallel
|
||||
|
||||
|
||||
@contextlib.contextmanager
|
||||
@@ -306,14 +305,6 @@ def dispatch_attention_fn(
|
||||
backend_name = AttentionBackendName(backend)
|
||||
backend_fn = _AttentionBackendRegistry._backends.get(backend_name)
|
||||
|
||||
if parallel_config is not None and not _AttentionBackendRegistry._is_context_parallel_enabled(
|
||||
backend_name, parallel_config
|
||||
):
|
||||
raise ValueError(
|
||||
f"Backend {backend_name} either does not support context parallelism or context parallelism "
|
||||
f"was enabled with a world size of 1."
|
||||
)
|
||||
|
||||
kwargs = {
|
||||
"query": query,
|
||||
"key": key,
|
||||
@@ -649,6 +640,86 @@ def _(
|
||||
# ===== Helper functions to use attention backends with templated CP autograd functions =====
|
||||
|
||||
|
||||
def _native_attention_forward_op(
|
||||
ctx: torch.autograd.function.FunctionCtx,
|
||||
query: torch.Tensor,
|
||||
key: torch.Tensor,
|
||||
value: torch.Tensor,
|
||||
attn_mask: Optional[torch.Tensor] = None,
|
||||
dropout_p: float = 0.0,
|
||||
is_causal: bool = False,
|
||||
scale: Optional[float] = None,
|
||||
enable_gqa: bool = False,
|
||||
return_lse: bool = False,
|
||||
_save_ctx: bool = True,
|
||||
_parallel_config: Optional["ParallelConfig"] = None,
|
||||
):
|
||||
# Native attention does not return_lse
|
||||
if return_lse:
|
||||
raise ValueError("Native attention does not support return_lse=True")
|
||||
|
||||
# used for backward pass
|
||||
if _save_ctx:
|
||||
ctx.save_for_backward(query, key, value)
|
||||
ctx.attn_mask = attn_mask
|
||||
ctx.dropout_p = dropout_p
|
||||
ctx.is_causal = is_causal
|
||||
ctx.scale = scale
|
||||
ctx.enable_gqa = enable_gqa
|
||||
|
||||
query, key, value = (x.permute(0, 2, 1, 3) for x in (query, key, value))
|
||||
out = torch.nn.functional.scaled_dot_product_attention(
|
||||
query=query,
|
||||
key=key,
|
||||
value=value,
|
||||
attn_mask=attn_mask,
|
||||
dropout_p=dropout_p,
|
||||
is_causal=is_causal,
|
||||
scale=scale,
|
||||
enable_gqa=enable_gqa,
|
||||
)
|
||||
out = out.permute(0, 2, 1, 3)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
def _native_attention_backward_op(
|
||||
ctx: torch.autograd.function.FunctionCtx,
|
||||
grad_out: torch.Tensor,
|
||||
*args,
|
||||
**kwargs,
|
||||
):
|
||||
query, key, value = ctx.saved_tensors
|
||||
|
||||
query.requires_grad_(True)
|
||||
key.requires_grad_(True)
|
||||
value.requires_grad_(True)
|
||||
|
||||
query_t, key_t, value_t = (x.permute(0, 2, 1, 3) for x in (query, key, value))
|
||||
out = torch.nn.functional.scaled_dot_product_attention(
|
||||
query=query_t,
|
||||
key=key_t,
|
||||
value=value_t,
|
||||
attn_mask=ctx.attn_mask,
|
||||
dropout_p=ctx.dropout_p,
|
||||
is_causal=ctx.is_causal,
|
||||
scale=ctx.scale,
|
||||
enable_gqa=ctx.enable_gqa,
|
||||
)
|
||||
out = out.permute(0, 2, 1, 3)
|
||||
|
||||
grad_out_t = grad_out.permute(0, 2, 1, 3)
|
||||
grad_query_t, grad_key_t, grad_value_t = torch.autograd.grad(
|
||||
outputs=out, inputs=[query_t, key_t, value_t], grad_outputs=grad_out_t, retain_graph=False
|
||||
)
|
||||
|
||||
grad_query = grad_query_t.permute(0, 2, 1, 3)
|
||||
grad_key = grad_key_t.permute(0, 2, 1, 3)
|
||||
grad_value = grad_value_t.permute(0, 2, 1, 3)
|
||||
|
||||
return grad_query, grad_key, grad_value
|
||||
|
||||
|
||||
# https://github.com/pytorch/pytorch/blob/8904ba638726f8c9a5aff5977c4aa76c9d2edfa6/aten/src/ATen/native/native_functions.yaml#L14958
|
||||
# forward declaration:
|
||||
# aten::_scaled_dot_product_cudnn_attention(Tensor query, Tensor key, Tensor value, Tensor? attn_bias, bool compute_log_sumexp, float dropout_p=0., bool is_causal=False, bool return_debug_mask=False, *, float? scale=None) -> (Tensor output, Tensor logsumexp, Tensor cum_seq_q, Tensor cum_seq_k, SymInt max_q, SymInt max_k, Tensor philox_seed, Tensor philox_offset, Tensor debug_attn_mask)
|
||||
@@ -1523,6 +1594,7 @@ def _native_flex_attention(
|
||||
@_AttentionBackendRegistry.register(
|
||||
AttentionBackendName.NATIVE,
|
||||
constraints=[_check_device, _check_shape],
|
||||
supports_context_parallel=True,
|
||||
)
|
||||
def _native_attention(
|
||||
query: torch.Tensor,
|
||||
@@ -1538,18 +1610,35 @@ def _native_attention(
|
||||
) -> torch.Tensor:
|
||||
if return_lse:
|
||||
raise ValueError("Native attention backend does not support setting `return_lse=True`.")
|
||||
query, key, value = (x.permute(0, 2, 1, 3) for x in (query, key, value))
|
||||
out = torch.nn.functional.scaled_dot_product_attention(
|
||||
query=query,
|
||||
key=key,
|
||||
value=value,
|
||||
attn_mask=attn_mask,
|
||||
dropout_p=dropout_p,
|
||||
is_causal=is_causal,
|
||||
scale=scale,
|
||||
enable_gqa=enable_gqa,
|
||||
)
|
||||
out = out.permute(0, 2, 1, 3)
|
||||
if _parallel_config is None:
|
||||
query, key, value = (x.permute(0, 2, 1, 3) for x in (query, key, value))
|
||||
out = torch.nn.functional.scaled_dot_product_attention(
|
||||
query=query,
|
||||
key=key,
|
||||
value=value,
|
||||
attn_mask=attn_mask,
|
||||
dropout_p=dropout_p,
|
||||
is_causal=is_causal,
|
||||
scale=scale,
|
||||
enable_gqa=enable_gqa,
|
||||
)
|
||||
out = out.permute(0, 2, 1, 3)
|
||||
else:
|
||||
out = _templated_context_parallel_attention(
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
attn_mask,
|
||||
dropout_p,
|
||||
is_causal,
|
||||
scale,
|
||||
enable_gqa,
|
||||
return_lse,
|
||||
forward_op=_native_attention_forward_op,
|
||||
backward_op=_native_attention_backward_op,
|
||||
_parallel_config=_parallel_config,
|
||||
)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
|
||||
@@ -147,14 +147,13 @@ class AutoModel(ConfigMixin):
|
||||
"force_download",
|
||||
"local_files_only",
|
||||
"proxies",
|
||||
"resume_download",
|
||||
"revision",
|
||||
"token",
|
||||
]
|
||||
hub_kwargs = {name: kwargs.pop(name, None) for name in hub_kwargs_names}
|
||||
|
||||
# load_config_kwargs uses the same hub kwargs minus subfolder and resume_download
|
||||
load_config_kwargs = {k: v for k, v in hub_kwargs.items() if k not in ["subfolder", "resume_download"]}
|
||||
load_config_kwargs = {k: v for k, v in hub_kwargs.items() if k not in ["subfolder"]}
|
||||
|
||||
library = None
|
||||
orig_class_name = None
|
||||
@@ -205,7 +204,6 @@ class AutoModel(ConfigMixin):
|
||||
module_file=module_file,
|
||||
class_name=class_name,
|
||||
**hub_kwargs,
|
||||
**kwargs,
|
||||
)
|
||||
else:
|
||||
from ..pipelines.pipeline_loading_utils import ALL_IMPORTABLE_CLASSES, get_class_obj_and_candidates
|
||||
|
||||
@@ -1484,59 +1484,71 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
|
||||
config: Union[ParallelConfig, ContextParallelConfig],
|
||||
cp_plan: Optional[Dict[str, ContextParallelModelPlan]] = None,
|
||||
):
|
||||
from ..hooks.context_parallel import apply_context_parallel
|
||||
from .attention import AttentionModuleMixin
|
||||
from .attention_processor import Attention, MochiAttention
|
||||
|
||||
logger.warning(
|
||||
"`enable_parallelism` is an experimental feature. The API may change in the future and breaking changes may be introduced at any time without warning."
|
||||
)
|
||||
|
||||
if not torch.distributed.is_available() and not torch.distributed.is_initialized():
|
||||
raise RuntimeError(
|
||||
"torch.distributed must be available and initialized before calling `enable_parallelism`."
|
||||
)
|
||||
|
||||
from ..hooks.context_parallel import apply_context_parallel
|
||||
from .attention import AttentionModuleMixin
|
||||
from .attention_dispatch import AttentionBackendName, _AttentionBackendRegistry
|
||||
from .attention_processor import Attention, MochiAttention
|
||||
|
||||
if isinstance(config, ContextParallelConfig):
|
||||
config = ParallelConfig(context_parallel_config=config)
|
||||
|
||||
if not torch.distributed.is_initialized():
|
||||
raise RuntimeError("torch.distributed must be initialized before calling `enable_parallelism`.")
|
||||
|
||||
rank = torch.distributed.get_rank()
|
||||
world_size = torch.distributed.get_world_size()
|
||||
device_type = torch._C._get_accelerator().type
|
||||
device_module = torch.get_device_module(device_type)
|
||||
device = torch.device(device_type, rank % device_module.device_count())
|
||||
|
||||
cp_mesh = None
|
||||
attention_classes = (Attention, MochiAttention, AttentionModuleMixin)
|
||||
|
||||
if config.context_parallel_config is not None:
|
||||
for module in self.modules():
|
||||
if not isinstance(module, attention_classes):
|
||||
continue
|
||||
|
||||
processor = module.processor
|
||||
if processor is None or not hasattr(processor, "_attention_backend"):
|
||||
continue
|
||||
|
||||
attention_backend = processor._attention_backend
|
||||
if attention_backend is None:
|
||||
attention_backend, _ = _AttentionBackendRegistry.get_active_backend()
|
||||
else:
|
||||
attention_backend = AttentionBackendName(attention_backend)
|
||||
|
||||
if not _AttentionBackendRegistry._is_context_parallel_available(attention_backend):
|
||||
compatible_backends = sorted(_AttentionBackendRegistry._supports_context_parallel)
|
||||
raise ValueError(
|
||||
f"Context parallelism is enabled but the attention processor '{processor.__class__.__name__}' "
|
||||
f"is using backend '{attention_backend.value}' which does not support context parallelism. "
|
||||
f"Please set a compatible attention backend: {compatible_backends} using `model.set_attention_backend()` before "
|
||||
f"calling `enable_parallelism()`."
|
||||
)
|
||||
|
||||
# All modules use the same attention processor and backend. We don't need to
|
||||
# iterate over all modules after checking the first processor
|
||||
break
|
||||
|
||||
mesh = None
|
||||
if config.context_parallel_config is not None:
|
||||
cp_config = config.context_parallel_config
|
||||
if cp_config.ring_degree < 1 or cp_config.ulysses_degree < 1:
|
||||
raise ValueError("`ring_degree` and `ulysses_degree` must be greater than or equal to 1.")
|
||||
if cp_config.ring_degree > 1 and cp_config.ulysses_degree > 1:
|
||||
raise ValueError(
|
||||
"Unified Ulysses-Ring attention is not yet supported. Please set either `ring_degree` or `ulysses_degree` to 1."
|
||||
)
|
||||
if cp_config.ring_degree * cp_config.ulysses_degree > world_size:
|
||||
raise ValueError(
|
||||
f"The product of `ring_degree` ({cp_config.ring_degree}) and `ulysses_degree` ({cp_config.ulysses_degree}) must not exceed the world size ({world_size})."
|
||||
)
|
||||
cp_mesh = torch.distributed.device_mesh.init_device_mesh(
|
||||
mesh = torch.distributed.device_mesh.init_device_mesh(
|
||||
device_type=device_type,
|
||||
mesh_shape=(cp_config.ring_degree, cp_config.ulysses_degree),
|
||||
mesh_dim_names=("ring", "ulysses"),
|
||||
mesh_shape=cp_config.mesh_shape,
|
||||
mesh_dim_names=cp_config.mesh_dim_names,
|
||||
)
|
||||
|
||||
config.setup(rank, world_size, device, cp_mesh=cp_mesh)
|
||||
|
||||
if cp_plan is None and self._cp_plan is None:
|
||||
raise ValueError(
|
||||
"`cp_plan` must be provided either as an argument or set in the model's `_cp_plan` attribute."
|
||||
)
|
||||
cp_plan = cp_plan if cp_plan is not None else self._cp_plan
|
||||
|
||||
if config.context_parallel_config is not None:
|
||||
apply_context_parallel(self, config.context_parallel_config, cp_plan)
|
||||
|
||||
config.setup(rank, world_size, device, mesh=mesh)
|
||||
self._parallel_config = config
|
||||
|
||||
attention_classes = (Attention, MochiAttention, AttentionModuleMixin)
|
||||
for module in self.modules():
|
||||
if not isinstance(module, attention_classes):
|
||||
continue
|
||||
@@ -1545,6 +1557,14 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
|
||||
continue
|
||||
processor._parallel_config = config
|
||||
|
||||
if config.context_parallel_config is not None:
|
||||
if cp_plan is None and self._cp_plan is None:
|
||||
raise ValueError(
|
||||
"`cp_plan` must be provided either as an argument or set in the model's `_cp_plan` attribute."
|
||||
)
|
||||
cp_plan = cp_plan if cp_plan is not None else self._cp_plan
|
||||
apply_context_parallel(self, config.context_parallel_config, cp_plan)
|
||||
|
||||
@classmethod
|
||||
def _load_pretrained_model(
|
||||
cls,
|
||||
|
||||
@@ -20,6 +20,7 @@ if is_torch_available():
|
||||
from .transformer_bria import BriaTransformer2DModel
|
||||
from .transformer_bria_fibo import BriaFiboTransformer2DModel
|
||||
from .transformer_chroma import ChromaTransformer2DModel
|
||||
from .transformer_chronoedit import ChronoEditTransformer3DModel
|
||||
from .transformer_cogview3plus import CogView3PlusTransformer2DModel
|
||||
from .transformer_cogview4 import CogView4Transformer2DModel
|
||||
from .transformer_cosmos import CosmosTransformer3DModel
|
||||
@@ -36,6 +37,7 @@ if is_torch_available():
|
||||
from .transformer_omnigen import OmniGenTransformer2DModel
|
||||
from .transformer_prx import PRXTransformer2DModel
|
||||
from .transformer_qwenimage import QwenImageTransformer2DModel
|
||||
from .transformer_sana_video import SanaVideoTransformer3DModel
|
||||
from .transformer_sd3 import SD3Transformer2DModel
|
||||
from .transformer_skyreels_v2 import SkyReelsV2Transformer3DModel
|
||||
from .transformer_temporal import TransformerTemporalModel
|
||||
|
||||
735
src/diffusers/models/transformers/transformer_chronoedit.py
Normal file
735
src/diffusers/models/transformers/transformer_chronoedit.py
Normal file
@@ -0,0 +1,735 @@
|
||||
# Copyright 2025 The ChronoEdit Team and The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import math
|
||||
from typing import Any, Dict, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from ...configuration_utils import ConfigMixin, register_to_config
|
||||
from ...loaders import FromOriginalModelMixin, PeftAdapterMixin
|
||||
from ...utils import USE_PEFT_BACKEND, deprecate, logging, scale_lora_layers, unscale_lora_layers
|
||||
from ...utils.torch_utils import maybe_allow_in_graph
|
||||
from .._modeling_parallel import ContextParallelInput, ContextParallelOutput
|
||||
from ..attention import AttentionMixin, AttentionModuleMixin, FeedForward
|
||||
from ..attention_dispatch import dispatch_attention_fn
|
||||
from ..cache_utils import CacheMixin
|
||||
from ..embeddings import PixArtAlphaTextProjection, TimestepEmbedding, Timesteps, get_1d_rotary_pos_embed
|
||||
from ..modeling_outputs import Transformer2DModelOutput
|
||||
from ..modeling_utils import ModelMixin
|
||||
from ..normalization import FP32LayerNorm
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
|
||||
# Copied from diffusers.models.transformers.transformer_wan._get_qkv_projections
|
||||
def _get_qkv_projections(attn: "WanAttention", hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor):
|
||||
# encoder_hidden_states is only passed for cross-attention
|
||||
if encoder_hidden_states is None:
|
||||
encoder_hidden_states = hidden_states
|
||||
|
||||
if attn.fused_projections:
|
||||
if attn.cross_attention_dim_head is None:
|
||||
# In self-attention layers, we can fuse the entire QKV projection into a single linear
|
||||
query, key, value = attn.to_qkv(hidden_states).chunk(3, dim=-1)
|
||||
else:
|
||||
# In cross-attention layers, we can only fuse the KV projections into a single linear
|
||||
query = attn.to_q(hidden_states)
|
||||
key, value = attn.to_kv(encoder_hidden_states).chunk(2, dim=-1)
|
||||
else:
|
||||
query = attn.to_q(hidden_states)
|
||||
key = attn.to_k(encoder_hidden_states)
|
||||
value = attn.to_v(encoder_hidden_states)
|
||||
return query, key, value
|
||||
|
||||
|
||||
# Copied from diffusers.models.transformers.transformer_wan._get_added_kv_projections
|
||||
def _get_added_kv_projections(attn: "WanAttention", encoder_hidden_states_img: torch.Tensor):
|
||||
if attn.fused_projections:
|
||||
key_img, value_img = attn.to_added_kv(encoder_hidden_states_img).chunk(2, dim=-1)
|
||||
else:
|
||||
key_img = attn.add_k_proj(encoder_hidden_states_img)
|
||||
value_img = attn.add_v_proj(encoder_hidden_states_img)
|
||||
return key_img, value_img
|
||||
|
||||
|
||||
# Copied from diffusers.models.transformers.transformer_wan.WanAttnProcessor
|
||||
class WanAttnProcessor:
|
||||
_attention_backend = None
|
||||
_parallel_config = None
|
||||
|
||||
def __init__(self):
|
||||
if not hasattr(F, "scaled_dot_product_attention"):
|
||||
raise ImportError(
|
||||
"WanAttnProcessor requires PyTorch 2.0. To use it, please upgrade PyTorch to version 2.0 or higher."
|
||||
)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
attn: "WanAttention",
|
||||
hidden_states: torch.Tensor,
|
||||
encoder_hidden_states: Optional[torch.Tensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
||||
) -> torch.Tensor:
|
||||
encoder_hidden_states_img = None
|
||||
if attn.add_k_proj is not None:
|
||||
# 512 is the context length of the text encoder, hardcoded for now
|
||||
image_context_length = encoder_hidden_states.shape[1] - 512
|
||||
encoder_hidden_states_img = encoder_hidden_states[:, :image_context_length]
|
||||
encoder_hidden_states = encoder_hidden_states[:, image_context_length:]
|
||||
|
||||
query, key, value = _get_qkv_projections(attn, hidden_states, encoder_hidden_states)
|
||||
|
||||
query = attn.norm_q(query)
|
||||
key = attn.norm_k(key)
|
||||
|
||||
query = query.unflatten(2, (attn.heads, -1))
|
||||
key = key.unflatten(2, (attn.heads, -1))
|
||||
value = value.unflatten(2, (attn.heads, -1))
|
||||
|
||||
if rotary_emb is not None:
|
||||
|
||||
def apply_rotary_emb(
|
||||
hidden_states: torch.Tensor,
|
||||
freqs_cos: torch.Tensor,
|
||||
freqs_sin: torch.Tensor,
|
||||
):
|
||||
x1, x2 = hidden_states.unflatten(-1, (-1, 2)).unbind(-1)
|
||||
cos = freqs_cos[..., 0::2]
|
||||
sin = freqs_sin[..., 1::2]
|
||||
out = torch.empty_like(hidden_states)
|
||||
out[..., 0::2] = x1 * cos - x2 * sin
|
||||
out[..., 1::2] = x1 * sin + x2 * cos
|
||||
return out.type_as(hidden_states)
|
||||
|
||||
query = apply_rotary_emb(query, *rotary_emb)
|
||||
key = apply_rotary_emb(key, *rotary_emb)
|
||||
|
||||
# I2V task
|
||||
hidden_states_img = None
|
||||
if encoder_hidden_states_img is not None:
|
||||
key_img, value_img = _get_added_kv_projections(attn, encoder_hidden_states_img)
|
||||
key_img = attn.norm_added_k(key_img)
|
||||
|
||||
key_img = key_img.unflatten(2, (attn.heads, -1))
|
||||
value_img = value_img.unflatten(2, (attn.heads, -1))
|
||||
|
||||
hidden_states_img = dispatch_attention_fn(
|
||||
query,
|
||||
key_img,
|
||||
value_img,
|
||||
attn_mask=None,
|
||||
dropout_p=0.0,
|
||||
is_causal=False,
|
||||
backend=self._attention_backend,
|
||||
parallel_config=self._parallel_config,
|
||||
)
|
||||
hidden_states_img = hidden_states_img.flatten(2, 3)
|
||||
hidden_states_img = hidden_states_img.type_as(query)
|
||||
|
||||
hidden_states = dispatch_attention_fn(
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
attn_mask=attention_mask,
|
||||
dropout_p=0.0,
|
||||
is_causal=False,
|
||||
backend=self._attention_backend,
|
||||
parallel_config=self._parallel_config,
|
||||
)
|
||||
hidden_states = hidden_states.flatten(2, 3)
|
||||
hidden_states = hidden_states.type_as(query)
|
||||
|
||||
if hidden_states_img is not None:
|
||||
hidden_states = hidden_states + hidden_states_img
|
||||
|
||||
hidden_states = attn.to_out[0](hidden_states)
|
||||
hidden_states = attn.to_out[1](hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
# Copied from diffusers.models.transformers.transformer_wan.WanAttnProcessor2_0
|
||||
class WanAttnProcessor2_0:
|
||||
def __new__(cls, *args, **kwargs):
|
||||
deprecation_message = (
|
||||
"The WanAttnProcessor2_0 class is deprecated and will be removed in a future version. "
|
||||
"Please use WanAttnProcessor instead. "
|
||||
)
|
||||
deprecate("WanAttnProcessor2_0", "1.0.0", deprecation_message, standard_warn=False)
|
||||
return WanAttnProcessor(*args, **kwargs)
|
||||
|
||||
|
||||
# Copied from diffusers.models.transformers.transformer_wan.WanAttention
|
||||
class WanAttention(torch.nn.Module, AttentionModuleMixin):
|
||||
_default_processor_cls = WanAttnProcessor
|
||||
_available_processors = [WanAttnProcessor]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
heads: int = 8,
|
||||
dim_head: int = 64,
|
||||
eps: float = 1e-5,
|
||||
dropout: float = 0.0,
|
||||
added_kv_proj_dim: Optional[int] = None,
|
||||
cross_attention_dim_head: Optional[int] = None,
|
||||
processor=None,
|
||||
is_cross_attention=None,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.inner_dim = dim_head * heads
|
||||
self.heads = heads
|
||||
self.added_kv_proj_dim = added_kv_proj_dim
|
||||
self.cross_attention_dim_head = cross_attention_dim_head
|
||||
self.kv_inner_dim = self.inner_dim if cross_attention_dim_head is None else cross_attention_dim_head * heads
|
||||
|
||||
self.to_q = torch.nn.Linear(dim, self.inner_dim, bias=True)
|
||||
self.to_k = torch.nn.Linear(dim, self.kv_inner_dim, bias=True)
|
||||
self.to_v = torch.nn.Linear(dim, self.kv_inner_dim, bias=True)
|
||||
self.to_out = torch.nn.ModuleList(
|
||||
[
|
||||
torch.nn.Linear(self.inner_dim, dim, bias=True),
|
||||
torch.nn.Dropout(dropout),
|
||||
]
|
||||
)
|
||||
self.norm_q = torch.nn.RMSNorm(dim_head * heads, eps=eps, elementwise_affine=True)
|
||||
self.norm_k = torch.nn.RMSNorm(dim_head * heads, eps=eps, elementwise_affine=True)
|
||||
|
||||
self.add_k_proj = self.add_v_proj = None
|
||||
if added_kv_proj_dim is not None:
|
||||
self.add_k_proj = torch.nn.Linear(added_kv_proj_dim, self.inner_dim, bias=True)
|
||||
self.add_v_proj = torch.nn.Linear(added_kv_proj_dim, self.inner_dim, bias=True)
|
||||
self.norm_added_k = torch.nn.RMSNorm(dim_head * heads, eps=eps)
|
||||
|
||||
self.is_cross_attention = cross_attention_dim_head is not None
|
||||
|
||||
self.set_processor(processor)
|
||||
|
||||
def fuse_projections(self):
|
||||
if getattr(self, "fused_projections", False):
|
||||
return
|
||||
|
||||
if self.cross_attention_dim_head is None:
|
||||
concatenated_weights = torch.cat([self.to_q.weight.data, self.to_k.weight.data, self.to_v.weight.data])
|
||||
concatenated_bias = torch.cat([self.to_q.bias.data, self.to_k.bias.data, self.to_v.bias.data])
|
||||
out_features, in_features = concatenated_weights.shape
|
||||
with torch.device("meta"):
|
||||
self.to_qkv = nn.Linear(in_features, out_features, bias=True)
|
||||
self.to_qkv.load_state_dict(
|
||||
{"weight": concatenated_weights, "bias": concatenated_bias}, strict=True, assign=True
|
||||
)
|
||||
else:
|
||||
concatenated_weights = torch.cat([self.to_k.weight.data, self.to_v.weight.data])
|
||||
concatenated_bias = torch.cat([self.to_k.bias.data, self.to_v.bias.data])
|
||||
out_features, in_features = concatenated_weights.shape
|
||||
with torch.device("meta"):
|
||||
self.to_kv = nn.Linear(in_features, out_features, bias=True)
|
||||
self.to_kv.load_state_dict(
|
||||
{"weight": concatenated_weights, "bias": concatenated_bias}, strict=True, assign=True
|
||||
)
|
||||
|
||||
if self.added_kv_proj_dim is not None:
|
||||
concatenated_weights = torch.cat([self.add_k_proj.weight.data, self.add_v_proj.weight.data])
|
||||
concatenated_bias = torch.cat([self.add_k_proj.bias.data, self.add_v_proj.bias.data])
|
||||
out_features, in_features = concatenated_weights.shape
|
||||
with torch.device("meta"):
|
||||
self.to_added_kv = nn.Linear(in_features, out_features, bias=True)
|
||||
self.to_added_kv.load_state_dict(
|
||||
{"weight": concatenated_weights, "bias": concatenated_bias}, strict=True, assign=True
|
||||
)
|
||||
|
||||
self.fused_projections = True
|
||||
|
||||
@torch.no_grad()
|
||||
def unfuse_projections(self):
|
||||
if not getattr(self, "fused_projections", False):
|
||||
return
|
||||
|
||||
if hasattr(self, "to_qkv"):
|
||||
delattr(self, "to_qkv")
|
||||
if hasattr(self, "to_kv"):
|
||||
delattr(self, "to_kv")
|
||||
if hasattr(self, "to_added_kv"):
|
||||
delattr(self, "to_added_kv")
|
||||
|
||||
self.fused_projections = False
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
encoder_hidden_states: Optional[torch.Tensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
||||
**kwargs,
|
||||
) -> torch.Tensor:
|
||||
return self.processor(self, hidden_states, encoder_hidden_states, attention_mask, rotary_emb, **kwargs)
|
||||
|
||||
|
||||
# Copied from diffusers.models.transformers.transformer_wan.WanImageEmbedding
|
||||
class WanImageEmbedding(torch.nn.Module):
|
||||
def __init__(self, in_features: int, out_features: int, pos_embed_seq_len=None):
|
||||
super().__init__()
|
||||
|
||||
self.norm1 = FP32LayerNorm(in_features)
|
||||
self.ff = FeedForward(in_features, out_features, mult=1, activation_fn="gelu")
|
||||
self.norm2 = FP32LayerNorm(out_features)
|
||||
if pos_embed_seq_len is not None:
|
||||
self.pos_embed = nn.Parameter(torch.zeros(1, pos_embed_seq_len, in_features))
|
||||
else:
|
||||
self.pos_embed = None
|
||||
|
||||
def forward(self, encoder_hidden_states_image: torch.Tensor) -> torch.Tensor:
|
||||
if self.pos_embed is not None:
|
||||
batch_size, seq_len, embed_dim = encoder_hidden_states_image.shape
|
||||
encoder_hidden_states_image = encoder_hidden_states_image.view(-1, 2 * seq_len, embed_dim)
|
||||
encoder_hidden_states_image = encoder_hidden_states_image + self.pos_embed
|
||||
|
||||
hidden_states = self.norm1(encoder_hidden_states_image)
|
||||
hidden_states = self.ff(hidden_states)
|
||||
hidden_states = self.norm2(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
# Copied from diffusers.models.transformers.transformer_wan.WanTimeTextImageEmbedding
|
||||
class WanTimeTextImageEmbedding(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
time_freq_dim: int,
|
||||
time_proj_dim: int,
|
||||
text_embed_dim: int,
|
||||
image_embed_dim: Optional[int] = None,
|
||||
pos_embed_seq_len: Optional[int] = None,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.timesteps_proj = Timesteps(num_channels=time_freq_dim, flip_sin_to_cos=True, downscale_freq_shift=0)
|
||||
self.time_embedder = TimestepEmbedding(in_channels=time_freq_dim, time_embed_dim=dim)
|
||||
self.act_fn = nn.SiLU()
|
||||
self.time_proj = nn.Linear(dim, time_proj_dim)
|
||||
self.text_embedder = PixArtAlphaTextProjection(text_embed_dim, dim, act_fn="gelu_tanh")
|
||||
|
||||
self.image_embedder = None
|
||||
if image_embed_dim is not None:
|
||||
self.image_embedder = WanImageEmbedding(image_embed_dim, dim, pos_embed_seq_len=pos_embed_seq_len)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
timestep: torch.Tensor,
|
||||
encoder_hidden_states: torch.Tensor,
|
||||
encoder_hidden_states_image: Optional[torch.Tensor] = None,
|
||||
timestep_seq_len: Optional[int] = None,
|
||||
):
|
||||
timestep = self.timesteps_proj(timestep)
|
||||
if timestep_seq_len is not None:
|
||||
timestep = timestep.unflatten(0, (-1, timestep_seq_len))
|
||||
|
||||
time_embedder_dtype = next(iter(self.time_embedder.parameters())).dtype
|
||||
if timestep.dtype != time_embedder_dtype and time_embedder_dtype != torch.int8:
|
||||
timestep = timestep.to(time_embedder_dtype)
|
||||
temb = self.time_embedder(timestep).type_as(encoder_hidden_states)
|
||||
timestep_proj = self.time_proj(self.act_fn(temb))
|
||||
|
||||
encoder_hidden_states = self.text_embedder(encoder_hidden_states)
|
||||
if encoder_hidden_states_image is not None:
|
||||
encoder_hidden_states_image = self.image_embedder(encoder_hidden_states_image)
|
||||
|
||||
return temb, timestep_proj, encoder_hidden_states, encoder_hidden_states_image
|
||||
|
||||
|
||||
class ChronoEditRotaryPosEmbed(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
attention_head_dim: int,
|
||||
patch_size: Tuple[int, int, int],
|
||||
max_seq_len: int,
|
||||
theta: float = 10000.0,
|
||||
temporal_skip_len: int = 8,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.attention_head_dim = attention_head_dim
|
||||
self.patch_size = patch_size
|
||||
self.max_seq_len = max_seq_len
|
||||
self.temporal_skip_len = temporal_skip_len
|
||||
|
||||
h_dim = w_dim = 2 * (attention_head_dim // 6)
|
||||
t_dim = attention_head_dim - h_dim - w_dim
|
||||
freqs_dtype = torch.float32 if torch.backends.mps.is_available() else torch.float64
|
||||
|
||||
freqs_cos = []
|
||||
freqs_sin = []
|
||||
|
||||
for dim in [t_dim, h_dim, w_dim]:
|
||||
freq_cos, freq_sin = get_1d_rotary_pos_embed(
|
||||
dim,
|
||||
max_seq_len,
|
||||
theta,
|
||||
use_real=True,
|
||||
repeat_interleave_real=True,
|
||||
freqs_dtype=freqs_dtype,
|
||||
)
|
||||
freqs_cos.append(freq_cos)
|
||||
freqs_sin.append(freq_sin)
|
||||
|
||||
self.register_buffer("freqs_cos", torch.cat(freqs_cos, dim=1), persistent=False)
|
||||
self.register_buffer("freqs_sin", torch.cat(freqs_sin, dim=1), persistent=False)
|
||||
|
||||
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||||
batch_size, num_channels, num_frames, height, width = hidden_states.shape
|
||||
p_t, p_h, p_w = self.patch_size
|
||||
ppf, pph, ppw = num_frames // p_t, height // p_h, width // p_w
|
||||
|
||||
split_sizes = [
|
||||
self.attention_head_dim - 2 * (self.attention_head_dim // 3),
|
||||
self.attention_head_dim // 3,
|
||||
self.attention_head_dim // 3,
|
||||
]
|
||||
|
||||
freqs_cos = self.freqs_cos.split(split_sizes, dim=1)
|
||||
freqs_sin = self.freqs_sin.split(split_sizes, dim=1)
|
||||
|
||||
if num_frames == 2:
|
||||
freqs_cos_f = freqs_cos[0][: self.temporal_skip_len][[0, -1]].view(ppf, 1, 1, -1).expand(ppf, pph, ppw, -1)
|
||||
else:
|
||||
freqs_cos_f = freqs_cos[0][:ppf].view(ppf, 1, 1, -1).expand(ppf, pph, ppw, -1)
|
||||
freqs_cos_h = freqs_cos[1][:pph].view(1, pph, 1, -1).expand(ppf, pph, ppw, -1)
|
||||
freqs_cos_w = freqs_cos[2][:ppw].view(1, 1, ppw, -1).expand(ppf, pph, ppw, -1)
|
||||
|
||||
if num_frames == 2:
|
||||
freqs_sin_f = freqs_sin[0][: self.temporal_skip_len][[0, -1]].view(ppf, 1, 1, -1).expand(ppf, pph, ppw, -1)
|
||||
else:
|
||||
freqs_sin_f = freqs_sin[0][:ppf].view(ppf, 1, 1, -1).expand(ppf, pph, ppw, -1)
|
||||
freqs_sin_h = freqs_sin[1][:pph].view(1, pph, 1, -1).expand(ppf, pph, ppw, -1)
|
||||
freqs_sin_w = freqs_sin[2][:ppw].view(1, 1, ppw, -1).expand(ppf, pph, ppw, -1)
|
||||
|
||||
freqs_cos = torch.cat([freqs_cos_f, freqs_cos_h, freqs_cos_w], dim=-1).reshape(1, ppf * pph * ppw, 1, -1)
|
||||
freqs_sin = torch.cat([freqs_sin_f, freqs_sin_h, freqs_sin_w], dim=-1).reshape(1, ppf * pph * ppw, 1, -1)
|
||||
|
||||
return freqs_cos, freqs_sin
|
||||
|
||||
|
||||
@maybe_allow_in_graph
|
||||
# Copied from diffusers.models.transformers.transformer_wan.WanTransformerBlock
|
||||
class WanTransformerBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
ffn_dim: int,
|
||||
num_heads: int,
|
||||
qk_norm: str = "rms_norm_across_heads",
|
||||
cross_attn_norm: bool = False,
|
||||
eps: float = 1e-6,
|
||||
added_kv_proj_dim: Optional[int] = None,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
# 1. Self-attention
|
||||
self.norm1 = FP32LayerNorm(dim, eps, elementwise_affine=False)
|
||||
self.attn1 = WanAttention(
|
||||
dim=dim,
|
||||
heads=num_heads,
|
||||
dim_head=dim // num_heads,
|
||||
eps=eps,
|
||||
cross_attention_dim_head=None,
|
||||
processor=WanAttnProcessor(),
|
||||
)
|
||||
|
||||
# 2. Cross-attention
|
||||
self.attn2 = WanAttention(
|
||||
dim=dim,
|
||||
heads=num_heads,
|
||||
dim_head=dim // num_heads,
|
||||
eps=eps,
|
||||
added_kv_proj_dim=added_kv_proj_dim,
|
||||
cross_attention_dim_head=dim // num_heads,
|
||||
processor=WanAttnProcessor(),
|
||||
)
|
||||
self.norm2 = FP32LayerNorm(dim, eps, elementwise_affine=True) if cross_attn_norm else nn.Identity()
|
||||
|
||||
# 3. Feed-forward
|
||||
self.ffn = FeedForward(dim, inner_dim=ffn_dim, activation_fn="gelu-approximate")
|
||||
self.norm3 = FP32LayerNorm(dim, eps, elementwise_affine=False)
|
||||
|
||||
self.scale_shift_table = nn.Parameter(torch.randn(1, 6, dim) / dim**0.5)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
encoder_hidden_states: torch.Tensor,
|
||||
temb: torch.Tensor,
|
||||
rotary_emb: torch.Tensor,
|
||||
) -> torch.Tensor:
|
||||
if temb.ndim == 4:
|
||||
# temb: batch_size, seq_len, 6, inner_dim (wan2.2 ti2v)
|
||||
shift_msa, scale_msa, gate_msa, c_shift_msa, c_scale_msa, c_gate_msa = (
|
||||
self.scale_shift_table.unsqueeze(0) + temb.float()
|
||||
).chunk(6, dim=2)
|
||||
# batch_size, seq_len, 1, inner_dim
|
||||
shift_msa = shift_msa.squeeze(2)
|
||||
scale_msa = scale_msa.squeeze(2)
|
||||
gate_msa = gate_msa.squeeze(2)
|
||||
c_shift_msa = c_shift_msa.squeeze(2)
|
||||
c_scale_msa = c_scale_msa.squeeze(2)
|
||||
c_gate_msa = c_gate_msa.squeeze(2)
|
||||
else:
|
||||
# temb: batch_size, 6, inner_dim (wan2.1/wan2.2 14B)
|
||||
shift_msa, scale_msa, gate_msa, c_shift_msa, c_scale_msa, c_gate_msa = (
|
||||
self.scale_shift_table + temb.float()
|
||||
).chunk(6, dim=1)
|
||||
|
||||
# 1. Self-attention
|
||||
norm_hidden_states = (self.norm1(hidden_states.float()) * (1 + scale_msa) + shift_msa).type_as(hidden_states)
|
||||
attn_output = self.attn1(norm_hidden_states, None, None, rotary_emb)
|
||||
hidden_states = (hidden_states.float() + attn_output * gate_msa).type_as(hidden_states)
|
||||
|
||||
# 2. Cross-attention
|
||||
norm_hidden_states = self.norm2(hidden_states.float()).type_as(hidden_states)
|
||||
attn_output = self.attn2(norm_hidden_states, encoder_hidden_states, None, None)
|
||||
hidden_states = hidden_states + attn_output
|
||||
|
||||
# 3. Feed-forward
|
||||
norm_hidden_states = (self.norm3(hidden_states.float()) * (1 + c_scale_msa) + c_shift_msa).type_as(
|
||||
hidden_states
|
||||
)
|
||||
ff_output = self.ffn(norm_hidden_states)
|
||||
hidden_states = (hidden_states.float() + ff_output.float() * c_gate_msa).type_as(hidden_states)
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
# modified from diffusers.models.transformers.transformer_wan.WanTransformer3DModel
|
||||
class ChronoEditTransformer3DModel(
|
||||
ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin, CacheMixin, AttentionMixin
|
||||
):
|
||||
r"""
|
||||
A Transformer model for video-like data used in the ChronoEdit model.
|
||||
|
||||
Args:
|
||||
patch_size (`Tuple[int]`, defaults to `(1, 2, 2)`):
|
||||
3D patch dimensions for video embedding (t_patch, h_patch, w_patch).
|
||||
num_attention_heads (`int`, defaults to `40`):
|
||||
Fixed length for text embeddings.
|
||||
attention_head_dim (`int`, defaults to `128`):
|
||||
The number of channels in each head.
|
||||
in_channels (`int`, defaults to `16`):
|
||||
The number of channels in the input.
|
||||
out_channels (`int`, defaults to `16`):
|
||||
The number of channels in the output.
|
||||
text_dim (`int`, defaults to `512`):
|
||||
Input dimension for text embeddings.
|
||||
freq_dim (`int`, defaults to `256`):
|
||||
Dimension for sinusoidal time embeddings.
|
||||
ffn_dim (`int`, defaults to `13824`):
|
||||
Intermediate dimension in feed-forward network.
|
||||
num_layers (`int`, defaults to `40`):
|
||||
The number of layers of transformer blocks to use.
|
||||
window_size (`Tuple[int]`, defaults to `(-1, -1)`):
|
||||
Window size for local attention (-1 indicates global attention).
|
||||
cross_attn_norm (`bool`, defaults to `True`):
|
||||
Enable cross-attention normalization.
|
||||
qk_norm (`bool`, defaults to `True`):
|
||||
Enable query/key normalization.
|
||||
eps (`float`, defaults to `1e-6`):
|
||||
Epsilon value for normalization layers.
|
||||
add_img_emb (`bool`, defaults to `False`):
|
||||
Whether to use img_emb.
|
||||
added_kv_proj_dim (`int`, *optional*, defaults to `None`):
|
||||
The number of channels to use for the added key and value projections. If `None`, no projection is used.
|
||||
"""
|
||||
|
||||
_supports_gradient_checkpointing = True
|
||||
_skip_layerwise_casting_patterns = ["patch_embedding", "condition_embedder", "norm"]
|
||||
_no_split_modules = ["WanTransformerBlock"]
|
||||
_keep_in_fp32_modules = ["time_embedder", "scale_shift_table", "norm1", "norm2", "norm3"]
|
||||
_keys_to_ignore_on_load_unexpected = ["norm_added_q"]
|
||||
_repeated_blocks = ["WanTransformerBlock"]
|
||||
_cp_plan = {
|
||||
"rope": {
|
||||
0: ContextParallelInput(split_dim=1, expected_dims=4, split_output=True),
|
||||
1: ContextParallelInput(split_dim=1, expected_dims=4, split_output=True),
|
||||
},
|
||||
"blocks.0": {
|
||||
"hidden_states": ContextParallelInput(split_dim=1, expected_dims=3, split_output=False),
|
||||
},
|
||||
"blocks.*": {
|
||||
"encoder_hidden_states": ContextParallelInput(split_dim=1, expected_dims=3, split_output=False),
|
||||
},
|
||||
"proj_out": ContextParallelOutput(gather_dim=1, expected_dims=3),
|
||||
}
|
||||
|
||||
@register_to_config
|
||||
def __init__(
|
||||
self,
|
||||
patch_size: Tuple[int] = (1, 2, 2),
|
||||
num_attention_heads: int = 40,
|
||||
attention_head_dim: int = 128,
|
||||
in_channels: int = 16,
|
||||
out_channels: int = 16,
|
||||
text_dim: int = 4096,
|
||||
freq_dim: int = 256,
|
||||
ffn_dim: int = 13824,
|
||||
num_layers: int = 40,
|
||||
cross_attn_norm: bool = True,
|
||||
qk_norm: Optional[str] = "rms_norm_across_heads",
|
||||
eps: float = 1e-6,
|
||||
image_dim: Optional[int] = None,
|
||||
added_kv_proj_dim: Optional[int] = None,
|
||||
rope_max_seq_len: int = 1024,
|
||||
pos_embed_seq_len: Optional[int] = None,
|
||||
rope_temporal_skip_len: int = 8,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
|
||||
inner_dim = num_attention_heads * attention_head_dim
|
||||
out_channels = out_channels or in_channels
|
||||
|
||||
# 1. Patch & position embedding
|
||||
self.rope = ChronoEditRotaryPosEmbed(
|
||||
attention_head_dim, patch_size, rope_max_seq_len, temporal_skip_len=rope_temporal_skip_len
|
||||
)
|
||||
self.patch_embedding = nn.Conv3d(in_channels, inner_dim, kernel_size=patch_size, stride=patch_size)
|
||||
|
||||
# 2. Condition embeddings
|
||||
# image_embedding_dim=1280 for I2V model
|
||||
self.condition_embedder = WanTimeTextImageEmbedding(
|
||||
dim=inner_dim,
|
||||
time_freq_dim=freq_dim,
|
||||
time_proj_dim=inner_dim * 6,
|
||||
text_embed_dim=text_dim,
|
||||
image_embed_dim=image_dim,
|
||||
pos_embed_seq_len=pos_embed_seq_len,
|
||||
)
|
||||
|
||||
# 3. Transformer blocks
|
||||
self.blocks = nn.ModuleList(
|
||||
[
|
||||
WanTransformerBlock(
|
||||
inner_dim, ffn_dim, num_attention_heads, qk_norm, cross_attn_norm, eps, added_kv_proj_dim
|
||||
)
|
||||
for _ in range(num_layers)
|
||||
]
|
||||
)
|
||||
|
||||
# 4. Output norm & projection
|
||||
self.norm_out = FP32LayerNorm(inner_dim, eps, elementwise_affine=False)
|
||||
self.proj_out = nn.Linear(inner_dim, out_channels * math.prod(patch_size))
|
||||
self.scale_shift_table = nn.Parameter(torch.randn(1, 2, inner_dim) / inner_dim**0.5)
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
timestep: torch.LongTensor,
|
||||
encoder_hidden_states: torch.Tensor,
|
||||
encoder_hidden_states_image: Optional[torch.Tensor] = None,
|
||||
return_dict: bool = True,
|
||||
attention_kwargs: Optional[Dict[str, Any]] = None,
|
||||
) -> Union[torch.Tensor, Dict[str, torch.Tensor]]:
|
||||
if attention_kwargs is not None:
|
||||
attention_kwargs = attention_kwargs.copy()
|
||||
lora_scale = attention_kwargs.pop("scale", 1.0)
|
||||
else:
|
||||
lora_scale = 1.0
|
||||
|
||||
if USE_PEFT_BACKEND:
|
||||
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
||||
scale_lora_layers(self, lora_scale)
|
||||
else:
|
||||
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
|
||||
logger.warning(
|
||||
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
|
||||
)
|
||||
|
||||
batch_size, num_channels, num_frames, height, width = hidden_states.shape
|
||||
p_t, p_h, p_w = self.config.patch_size
|
||||
post_patch_num_frames = num_frames // p_t
|
||||
post_patch_height = height // p_h
|
||||
post_patch_width = width // p_w
|
||||
|
||||
rotary_emb = self.rope(hidden_states)
|
||||
|
||||
hidden_states = self.patch_embedding(hidden_states)
|
||||
hidden_states = hidden_states.flatten(2).transpose(1, 2)
|
||||
|
||||
# timestep shape: batch_size, or batch_size, seq_len (wan 2.2 ti2v)
|
||||
if timestep.ndim == 2:
|
||||
ts_seq_len = timestep.shape[1]
|
||||
timestep = timestep.flatten() # batch_size * seq_len
|
||||
else:
|
||||
ts_seq_len = None
|
||||
|
||||
temb, timestep_proj, encoder_hidden_states, encoder_hidden_states_image = self.condition_embedder(
|
||||
timestep, encoder_hidden_states, encoder_hidden_states_image, timestep_seq_len=ts_seq_len
|
||||
)
|
||||
if ts_seq_len is not None:
|
||||
# batch_size, seq_len, 6, inner_dim
|
||||
timestep_proj = timestep_proj.unflatten(2, (6, -1))
|
||||
else:
|
||||
# batch_size, 6, inner_dim
|
||||
timestep_proj = timestep_proj.unflatten(1, (6, -1))
|
||||
|
||||
if encoder_hidden_states_image is not None:
|
||||
encoder_hidden_states = torch.concat([encoder_hidden_states_image, encoder_hidden_states], dim=1)
|
||||
|
||||
# 4. Transformer blocks
|
||||
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
||||
for block in self.blocks:
|
||||
hidden_states = self._gradient_checkpointing_func(
|
||||
block, hidden_states, encoder_hidden_states, timestep_proj, rotary_emb
|
||||
)
|
||||
else:
|
||||
for block in self.blocks:
|
||||
hidden_states = block(hidden_states, encoder_hidden_states, timestep_proj, rotary_emb)
|
||||
|
||||
# 5. Output norm, projection & unpatchify
|
||||
if temb.ndim == 3:
|
||||
# batch_size, seq_len, inner_dim (wan 2.2 ti2v)
|
||||
shift, scale = (self.scale_shift_table.unsqueeze(0).to(temb.device) + temb.unsqueeze(2)).chunk(2, dim=2)
|
||||
shift = shift.squeeze(2)
|
||||
scale = scale.squeeze(2)
|
||||
else:
|
||||
# batch_size, inner_dim
|
||||
shift, scale = (self.scale_shift_table.to(temb.device) + temb.unsqueeze(1)).chunk(2, dim=1)
|
||||
|
||||
# Move the shift and scale tensors to the same device as hidden_states.
|
||||
# When using multi-GPU inference via accelerate these will be on the
|
||||
# first device rather than the last device, which hidden_states ends up
|
||||
# on.
|
||||
shift = shift.to(hidden_states.device)
|
||||
scale = scale.to(hidden_states.device)
|
||||
|
||||
hidden_states = (self.norm_out(hidden_states.float()) * (1 + scale) + shift).type_as(hidden_states)
|
||||
hidden_states = self.proj_out(hidden_states)
|
||||
|
||||
hidden_states = hidden_states.reshape(
|
||||
batch_size, post_patch_num_frames, post_patch_height, post_patch_width, p_t, p_h, p_w, -1
|
||||
)
|
||||
hidden_states = hidden_states.permute(0, 7, 1, 4, 2, 5, 3, 6)
|
||||
output = hidden_states.flatten(6, 7).flatten(4, 5).flatten(2, 3)
|
||||
|
||||
if USE_PEFT_BACKEND:
|
||||
# remove `lora_scale` from each PEFT layer
|
||||
unscale_lora_layers(self, lora_scale)
|
||||
|
||||
if not return_dict:
|
||||
return (output,)
|
||||
|
||||
return Transformer2DModelOutput(sample=output)
|
||||
@@ -24,6 +24,7 @@ from ...configuration_utils import ConfigMixin, register_to_config
|
||||
from ...loaders import PeftAdapterMixin
|
||||
from ...utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
|
||||
from ..attention import FeedForward
|
||||
from ..attention_dispatch import dispatch_attention_fn
|
||||
from ..attention_processor import Attention, AttentionProcessor
|
||||
from ..cache_utils import CacheMixin
|
||||
from ..embeddings import (
|
||||
@@ -42,6 +43,9 @@ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
|
||||
class HunyuanVideoAttnProcessor2_0:
|
||||
_attention_backend = None
|
||||
_parallel_config = None
|
||||
|
||||
def __init__(self):
|
||||
if not hasattr(F, "scaled_dot_product_attention"):
|
||||
raise ImportError(
|
||||
@@ -64,9 +68,9 @@ class HunyuanVideoAttnProcessor2_0:
|
||||
key = attn.to_k(hidden_states)
|
||||
value = attn.to_v(hidden_states)
|
||||
|
||||
query = query.unflatten(2, (attn.heads, -1)).transpose(1, 2)
|
||||
key = key.unflatten(2, (attn.heads, -1)).transpose(1, 2)
|
||||
value = value.unflatten(2, (attn.heads, -1)).transpose(1, 2)
|
||||
query = query.unflatten(2, (attn.heads, -1))
|
||||
key = key.unflatten(2, (attn.heads, -1))
|
||||
value = value.unflatten(2, (attn.heads, -1))
|
||||
|
||||
# 2. QK normalization
|
||||
if attn.norm_q is not None:
|
||||
@@ -81,21 +85,29 @@ class HunyuanVideoAttnProcessor2_0:
|
||||
if attn.add_q_proj is None and encoder_hidden_states is not None:
|
||||
query = torch.cat(
|
||||
[
|
||||
apply_rotary_emb(query[:, :, : -encoder_hidden_states.shape[1]], image_rotary_emb),
|
||||
query[:, :, -encoder_hidden_states.shape[1] :],
|
||||
apply_rotary_emb(
|
||||
query[:, : -encoder_hidden_states.shape[1]],
|
||||
image_rotary_emb,
|
||||
sequence_dim=1,
|
||||
),
|
||||
query[:, -encoder_hidden_states.shape[1] :],
|
||||
],
|
||||
dim=2,
|
||||
dim=1,
|
||||
)
|
||||
key = torch.cat(
|
||||
[
|
||||
apply_rotary_emb(key[:, :, : -encoder_hidden_states.shape[1]], image_rotary_emb),
|
||||
key[:, :, -encoder_hidden_states.shape[1] :],
|
||||
apply_rotary_emb(
|
||||
key[:, : -encoder_hidden_states.shape[1]],
|
||||
image_rotary_emb,
|
||||
sequence_dim=1,
|
||||
),
|
||||
key[:, -encoder_hidden_states.shape[1] :],
|
||||
],
|
||||
dim=2,
|
||||
dim=1,
|
||||
)
|
||||
else:
|
||||
query = apply_rotary_emb(query, image_rotary_emb)
|
||||
key = apply_rotary_emb(key, image_rotary_emb)
|
||||
query = apply_rotary_emb(query, image_rotary_emb, sequence_dim=1)
|
||||
key = apply_rotary_emb(key, image_rotary_emb, sequence_dim=1)
|
||||
|
||||
# 4. Encoder condition QKV projection and normalization
|
||||
if attn.add_q_proj is not None and encoder_hidden_states is not None:
|
||||
@@ -103,24 +115,31 @@ class HunyuanVideoAttnProcessor2_0:
|
||||
encoder_key = attn.add_k_proj(encoder_hidden_states)
|
||||
encoder_value = attn.add_v_proj(encoder_hidden_states)
|
||||
|
||||
encoder_query = encoder_query.unflatten(2, (attn.heads, -1)).transpose(1, 2)
|
||||
encoder_key = encoder_key.unflatten(2, (attn.heads, -1)).transpose(1, 2)
|
||||
encoder_value = encoder_value.unflatten(2, (attn.heads, -1)).transpose(1, 2)
|
||||
encoder_query = encoder_query.unflatten(2, (attn.heads, -1))
|
||||
encoder_key = encoder_key.unflatten(2, (attn.heads, -1))
|
||||
encoder_value = encoder_value.unflatten(2, (attn.heads, -1))
|
||||
|
||||
if attn.norm_added_q is not None:
|
||||
encoder_query = attn.norm_added_q(encoder_query)
|
||||
if attn.norm_added_k is not None:
|
||||
encoder_key = attn.norm_added_k(encoder_key)
|
||||
|
||||
query = torch.cat([query, encoder_query], dim=2)
|
||||
key = torch.cat([key, encoder_key], dim=2)
|
||||
value = torch.cat([value, encoder_value], dim=2)
|
||||
query = torch.cat([query, encoder_query], dim=1)
|
||||
key = torch.cat([key, encoder_key], dim=1)
|
||||
value = torch.cat([value, encoder_value], dim=1)
|
||||
|
||||
# 5. Attention
|
||||
hidden_states = F.scaled_dot_product_attention(
|
||||
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
||||
hidden_states = dispatch_attention_fn(
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
attn_mask=attention_mask,
|
||||
dropout_p=0.0,
|
||||
is_causal=False,
|
||||
backend=self._attention_backend,
|
||||
parallel_config=self._parallel_config,
|
||||
)
|
||||
hidden_states = hidden_states.transpose(1, 2).flatten(2, 3)
|
||||
hidden_states = hidden_states.flatten(2, 3)
|
||||
hidden_states = hidden_states.to(query.dtype)
|
||||
|
||||
# 6. Output projection
|
||||
|
||||
703
src/diffusers/models/transformers/transformer_sana_video.py
Normal file
703
src/diffusers/models/transformers/transformer_sana_video.py
Normal file
@@ -0,0 +1,703 @@
|
||||
# Copyright 2025 The HuggingFace Team and SANA-Video Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import math
|
||||
from typing import Any, Dict, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch import nn
|
||||
|
||||
from ...configuration_utils import ConfigMixin, register_to_config
|
||||
from ...loaders import FromOriginalModelMixin, PeftAdapterMixin
|
||||
from ...utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
|
||||
from ..attention import AttentionMixin
|
||||
from ..attention_dispatch import dispatch_attention_fn
|
||||
from ..attention_processor import Attention
|
||||
from ..embeddings import PixArtAlphaTextProjection, TimestepEmbedding, Timesteps, get_1d_rotary_pos_embed
|
||||
from ..modeling_outputs import Transformer2DModelOutput
|
||||
from ..modeling_utils import ModelMixin
|
||||
from ..normalization import AdaLayerNormSingle, RMSNorm
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
|
||||
class GLUMBTempConv(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int,
|
||||
out_channels: int,
|
||||
expand_ratio: float = 4,
|
||||
norm_type: Optional[str] = None,
|
||||
residual_connection: bool = True,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
|
||||
hidden_channels = int(expand_ratio * in_channels)
|
||||
self.norm_type = norm_type
|
||||
self.residual_connection = residual_connection
|
||||
|
||||
self.nonlinearity = nn.SiLU()
|
||||
self.conv_inverted = nn.Conv2d(in_channels, hidden_channels * 2, 1, 1, 0)
|
||||
self.conv_depth = nn.Conv2d(hidden_channels * 2, hidden_channels * 2, 3, 1, 1, groups=hidden_channels * 2)
|
||||
self.conv_point = nn.Conv2d(hidden_channels, out_channels, 1, 1, 0, bias=False)
|
||||
|
||||
self.norm = None
|
||||
if norm_type == "rms_norm":
|
||||
self.norm = RMSNorm(out_channels, eps=1e-5, elementwise_affine=True, bias=True)
|
||||
|
||||
self.conv_temp = nn.Conv2d(
|
||||
out_channels, out_channels, kernel_size=(3, 1), stride=1, padding=(1, 0), bias=False
|
||||
)
|
||||
|
||||
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||||
if self.residual_connection:
|
||||
residual = hidden_states
|
||||
batch_size, num_frames, height, width, num_channels = hidden_states.shape
|
||||
hidden_states = hidden_states.view(batch_size * num_frames, height, width, num_channels).permute(0, 3, 1, 2)
|
||||
|
||||
hidden_states = self.conv_inverted(hidden_states)
|
||||
hidden_states = self.nonlinearity(hidden_states)
|
||||
|
||||
hidden_states = self.conv_depth(hidden_states)
|
||||
hidden_states, gate = torch.chunk(hidden_states, 2, dim=1)
|
||||
hidden_states = hidden_states * self.nonlinearity(gate)
|
||||
|
||||
hidden_states = self.conv_point(hidden_states)
|
||||
|
||||
# Temporal aggregation
|
||||
hidden_states_temporal = hidden_states.view(batch_size, num_frames, num_channels, height * width).permute(
|
||||
0, 2, 1, 3
|
||||
)
|
||||
hidden_states = hidden_states_temporal + self.conv_temp(hidden_states_temporal)
|
||||
hidden_states = hidden_states.permute(0, 2, 3, 1).view(batch_size, num_frames, height, width, num_channels)
|
||||
|
||||
if self.norm_type == "rms_norm":
|
||||
# move channel to the last dimension so we apply RMSnorm across channel dimension
|
||||
hidden_states = self.norm(hidden_states.movedim(1, -1)).movedim(-1, 1)
|
||||
|
||||
if self.residual_connection:
|
||||
hidden_states = hidden_states + residual
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
class SanaLinearAttnProcessor3_0:
|
||||
r"""
|
||||
Processor for implementing scaled dot-product linear attention.
|
||||
"""
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
attn: Attention,
|
||||
hidden_states: torch.Tensor,
|
||||
encoder_hidden_states: Optional[torch.Tensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
rotary_emb: Optional[torch.Tensor] = None,
|
||||
) -> torch.Tensor:
|
||||
original_dtype = hidden_states.dtype
|
||||
|
||||
if encoder_hidden_states is None:
|
||||
encoder_hidden_states = hidden_states
|
||||
|
||||
query = attn.to_q(hidden_states)
|
||||
key = attn.to_k(encoder_hidden_states)
|
||||
value = attn.to_v(encoder_hidden_states)
|
||||
|
||||
if attn.norm_q is not None:
|
||||
query = attn.norm_q(query)
|
||||
if attn.norm_k is not None:
|
||||
key = attn.norm_k(key)
|
||||
|
||||
query = query.unflatten(2, (attn.heads, -1))
|
||||
key = key.unflatten(2, (attn.heads, -1))
|
||||
value = value.unflatten(2, (attn.heads, -1))
|
||||
# B,N,H,C
|
||||
|
||||
query = F.relu(query)
|
||||
key = F.relu(key)
|
||||
|
||||
if rotary_emb is not None:
|
||||
|
||||
def apply_rotary_emb(
|
||||
hidden_states: torch.Tensor,
|
||||
freqs_cos: torch.Tensor,
|
||||
freqs_sin: torch.Tensor,
|
||||
):
|
||||
x1, x2 = hidden_states.unflatten(-1, (-1, 2)).unbind(-1)
|
||||
cos = freqs_cos[..., 0::2]
|
||||
sin = freqs_sin[..., 1::2]
|
||||
out = torch.empty_like(hidden_states)
|
||||
out[..., 0::2] = x1 * cos - x2 * sin
|
||||
out[..., 1::2] = x1 * sin + x2 * cos
|
||||
return out.type_as(hidden_states)
|
||||
|
||||
query_rotate = apply_rotary_emb(query, *rotary_emb)
|
||||
key_rotate = apply_rotary_emb(key, *rotary_emb)
|
||||
|
||||
# B,H,C,N
|
||||
query = query.permute(0, 2, 3, 1)
|
||||
key = key.permute(0, 2, 3, 1)
|
||||
query_rotate = query_rotate.permute(0, 2, 3, 1)
|
||||
key_rotate = key_rotate.permute(0, 2, 3, 1)
|
||||
value = value.permute(0, 2, 3, 1)
|
||||
|
||||
query_rotate, key_rotate, value = query_rotate.float(), key_rotate.float(), value.float()
|
||||
|
||||
z = 1 / (key.sum(dim=-1, keepdim=True).transpose(-2, -1) @ query + 1e-15)
|
||||
|
||||
scores = torch.matmul(value, key_rotate.transpose(-1, -2))
|
||||
hidden_states = torch.matmul(scores, query_rotate)
|
||||
|
||||
hidden_states = hidden_states * z
|
||||
# B,H,C,N
|
||||
hidden_states = hidden_states.flatten(1, 2).transpose(1, 2)
|
||||
hidden_states = hidden_states.to(original_dtype)
|
||||
|
||||
hidden_states = attn.to_out[0](hidden_states)
|
||||
hidden_states = attn.to_out[1](hidden_states)
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
# Copied from diffusers.models.transformers.transformer_wan.WanRotaryPosEmbed
|
||||
class WanRotaryPosEmbed(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
attention_head_dim: int,
|
||||
patch_size: Tuple[int, int, int],
|
||||
max_seq_len: int,
|
||||
theta: float = 10000.0,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.attention_head_dim = attention_head_dim
|
||||
self.patch_size = patch_size
|
||||
self.max_seq_len = max_seq_len
|
||||
|
||||
h_dim = w_dim = 2 * (attention_head_dim // 6)
|
||||
t_dim = attention_head_dim - h_dim - w_dim
|
||||
freqs_dtype = torch.float32 if torch.backends.mps.is_available() else torch.float64
|
||||
|
||||
freqs_cos = []
|
||||
freqs_sin = []
|
||||
|
||||
for dim in [t_dim, h_dim, w_dim]:
|
||||
freq_cos, freq_sin = get_1d_rotary_pos_embed(
|
||||
dim,
|
||||
max_seq_len,
|
||||
theta,
|
||||
use_real=True,
|
||||
repeat_interleave_real=True,
|
||||
freqs_dtype=freqs_dtype,
|
||||
)
|
||||
freqs_cos.append(freq_cos)
|
||||
freqs_sin.append(freq_sin)
|
||||
|
||||
self.register_buffer("freqs_cos", torch.cat(freqs_cos, dim=1), persistent=False)
|
||||
self.register_buffer("freqs_sin", torch.cat(freqs_sin, dim=1), persistent=False)
|
||||
|
||||
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||||
batch_size, num_channels, num_frames, height, width = hidden_states.shape
|
||||
p_t, p_h, p_w = self.patch_size
|
||||
ppf, pph, ppw = num_frames // p_t, height // p_h, width // p_w
|
||||
|
||||
split_sizes = [
|
||||
self.attention_head_dim - 2 * (self.attention_head_dim // 3),
|
||||
self.attention_head_dim // 3,
|
||||
self.attention_head_dim // 3,
|
||||
]
|
||||
|
||||
freqs_cos = self.freqs_cos.split(split_sizes, dim=1)
|
||||
freqs_sin = self.freqs_sin.split(split_sizes, dim=1)
|
||||
|
||||
freqs_cos_f = freqs_cos[0][:ppf].view(ppf, 1, 1, -1).expand(ppf, pph, ppw, -1)
|
||||
freqs_cos_h = freqs_cos[1][:pph].view(1, pph, 1, -1).expand(ppf, pph, ppw, -1)
|
||||
freqs_cos_w = freqs_cos[2][:ppw].view(1, 1, ppw, -1).expand(ppf, pph, ppw, -1)
|
||||
|
||||
freqs_sin_f = freqs_sin[0][:ppf].view(ppf, 1, 1, -1).expand(ppf, pph, ppw, -1)
|
||||
freqs_sin_h = freqs_sin[1][:pph].view(1, pph, 1, -1).expand(ppf, pph, ppw, -1)
|
||||
freqs_sin_w = freqs_sin[2][:ppw].view(1, 1, ppw, -1).expand(ppf, pph, ppw, -1)
|
||||
|
||||
freqs_cos = torch.cat([freqs_cos_f, freqs_cos_h, freqs_cos_w], dim=-1).reshape(1, ppf * pph * ppw, 1, -1)
|
||||
freqs_sin = torch.cat([freqs_sin_f, freqs_sin_h, freqs_sin_w], dim=-1).reshape(1, ppf * pph * ppw, 1, -1)
|
||||
|
||||
return freqs_cos, freqs_sin
|
||||
|
||||
|
||||
# Copied from diffusers.models.transformers.sana_transformer.SanaModulatedNorm
|
||||
class SanaModulatedNorm(nn.Module):
|
||||
def __init__(self, dim: int, elementwise_affine: bool = False, eps: float = 1e-6):
|
||||
super().__init__()
|
||||
self.norm = nn.LayerNorm(dim, elementwise_affine=elementwise_affine, eps=eps)
|
||||
|
||||
def forward(
|
||||
self, hidden_states: torch.Tensor, temb: torch.Tensor, scale_shift_table: torch.Tensor
|
||||
) -> torch.Tensor:
|
||||
hidden_states = self.norm(hidden_states)
|
||||
shift, scale = (scale_shift_table[None] + temb[:, None].to(scale_shift_table.device)).chunk(2, dim=1)
|
||||
hidden_states = hidden_states * (1 + scale) + shift
|
||||
return hidden_states
|
||||
|
||||
|
||||
class SanaCombinedTimestepGuidanceEmbeddings(nn.Module):
|
||||
def __init__(self, embedding_dim):
|
||||
super().__init__()
|
||||
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
|
||||
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
|
||||
|
||||
self.guidance_condition_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
|
||||
self.guidance_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
|
||||
|
||||
self.silu = nn.SiLU()
|
||||
self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=True)
|
||||
|
||||
def forward(self, timestep: torch.Tensor, guidance: torch.Tensor = None, hidden_dtype: torch.dtype = None):
|
||||
timesteps_proj = self.time_proj(timestep)
|
||||
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype)) # (N, D)
|
||||
|
||||
guidance_proj = self.guidance_condition_proj(guidance)
|
||||
guidance_emb = self.guidance_embedder(guidance_proj.to(dtype=hidden_dtype))
|
||||
conditioning = timesteps_emb + guidance_emb
|
||||
|
||||
return self.linear(self.silu(conditioning)), conditioning
|
||||
|
||||
|
||||
class SanaAttnProcessor2_0:
|
||||
r"""
|
||||
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
||||
"""
|
||||
|
||||
_attention_backend = None
|
||||
_parallel_config = None
|
||||
|
||||
def __init__(self):
|
||||
if not hasattr(F, "scaled_dot_product_attention"):
|
||||
raise ImportError("SanaAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
attn: Attention,
|
||||
hidden_states: torch.Tensor,
|
||||
encoder_hidden_states: Optional[torch.Tensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
) -> torch.Tensor:
|
||||
batch_size, sequence_length, _ = (
|
||||
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
||||
)
|
||||
|
||||
if attention_mask is not None:
|
||||
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
||||
# scaled_dot_product_attention expects attention_mask shape to be
|
||||
# (batch, heads, source_length, target_length)
|
||||
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
||||
|
||||
query = attn.to_q(hidden_states)
|
||||
|
||||
if encoder_hidden_states is None:
|
||||
encoder_hidden_states = hidden_states
|
||||
|
||||
key = attn.to_k(encoder_hidden_states)
|
||||
value = attn.to_v(encoder_hidden_states)
|
||||
|
||||
if attn.norm_q is not None:
|
||||
query = attn.norm_q(query)
|
||||
if attn.norm_k is not None:
|
||||
key = attn.norm_k(key)
|
||||
|
||||
inner_dim = key.shape[-1]
|
||||
head_dim = inner_dim // attn.heads
|
||||
|
||||
query = query.view(batch_size, -1, attn.heads, head_dim)
|
||||
key = key.view(batch_size, -1, attn.heads, head_dim)
|
||||
value = value.view(batch_size, -1, attn.heads, head_dim)
|
||||
|
||||
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
||||
hidden_states = dispatch_attention_fn(
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
attn_mask=attention_mask,
|
||||
dropout_p=0.0,
|
||||
is_causal=False,
|
||||
backend=self._attention_backend,
|
||||
parallel_config=self._parallel_config,
|
||||
)
|
||||
hidden_states = hidden_states.flatten(2, 3)
|
||||
hidden_states = hidden_states.type_as(query)
|
||||
|
||||
# linear proj
|
||||
hidden_states = attn.to_out[0](hidden_states)
|
||||
# dropout
|
||||
hidden_states = attn.to_out[1](hidden_states)
|
||||
|
||||
hidden_states = hidden_states / attn.rescale_output_factor
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
class SanaVideoTransformerBlock(nn.Module):
|
||||
r"""
|
||||
Transformer block introduced in [Sana-Video](https://huggingface.co/papers/2509.24695).
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim: int = 2240,
|
||||
num_attention_heads: int = 20,
|
||||
attention_head_dim: int = 112,
|
||||
dropout: float = 0.0,
|
||||
num_cross_attention_heads: Optional[int] = 20,
|
||||
cross_attention_head_dim: Optional[int] = 112,
|
||||
cross_attention_dim: Optional[int] = 2240,
|
||||
attention_bias: bool = True,
|
||||
norm_elementwise_affine: bool = False,
|
||||
norm_eps: float = 1e-6,
|
||||
attention_out_bias: bool = True,
|
||||
mlp_ratio: float = 3.0,
|
||||
qk_norm: Optional[str] = "rms_norm_across_heads",
|
||||
rope_max_seq_len: int = 1024,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
|
||||
# 1. Self Attention
|
||||
self.norm1 = nn.LayerNorm(dim, elementwise_affine=False, eps=norm_eps)
|
||||
self.attn1 = Attention(
|
||||
query_dim=dim,
|
||||
heads=num_attention_heads,
|
||||
dim_head=attention_head_dim,
|
||||
kv_heads=num_attention_heads if qk_norm is not None else None,
|
||||
qk_norm=qk_norm,
|
||||
dropout=dropout,
|
||||
bias=attention_bias,
|
||||
cross_attention_dim=None,
|
||||
processor=SanaLinearAttnProcessor3_0(),
|
||||
)
|
||||
|
||||
# 2. Cross Attention
|
||||
if cross_attention_dim is not None:
|
||||
self.norm2 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
|
||||
self.attn2 = Attention(
|
||||
query_dim=dim,
|
||||
qk_norm=qk_norm,
|
||||
kv_heads=num_cross_attention_heads if qk_norm is not None else None,
|
||||
cross_attention_dim=cross_attention_dim,
|
||||
heads=num_cross_attention_heads,
|
||||
dim_head=cross_attention_head_dim,
|
||||
dropout=dropout,
|
||||
bias=True,
|
||||
out_bias=attention_out_bias,
|
||||
processor=SanaAttnProcessor2_0(),
|
||||
)
|
||||
|
||||
# 3. Feed-forward
|
||||
self.ff = GLUMBTempConv(dim, dim, mlp_ratio, norm_type=None, residual_connection=False)
|
||||
|
||||
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
encoder_hidden_states: Optional[torch.Tensor] = None,
|
||||
encoder_attention_mask: Optional[torch.Tensor] = None,
|
||||
timestep: Optional[torch.LongTensor] = None,
|
||||
frames: int = None,
|
||||
height: int = None,
|
||||
width: int = None,
|
||||
rotary_emb: Optional[torch.Tensor] = None,
|
||||
) -> torch.Tensor:
|
||||
batch_size = hidden_states.shape[0]
|
||||
|
||||
# 1. Modulation
|
||||
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
|
||||
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
|
||||
).chunk(6, dim=1)
|
||||
|
||||
# 2. Self Attention
|
||||
norm_hidden_states = self.norm1(hidden_states)
|
||||
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
|
||||
norm_hidden_states = norm_hidden_states.to(hidden_states.dtype)
|
||||
|
||||
attn_output = self.attn1(norm_hidden_states, rotary_emb=rotary_emb)
|
||||
hidden_states = hidden_states + gate_msa * attn_output
|
||||
|
||||
# 3. Cross Attention
|
||||
if self.attn2 is not None:
|
||||
attn_output = self.attn2(
|
||||
hidden_states,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
attention_mask=encoder_attention_mask,
|
||||
)
|
||||
hidden_states = attn_output + hidden_states
|
||||
|
||||
# 4. Feed-forward
|
||||
norm_hidden_states = self.norm2(hidden_states)
|
||||
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
|
||||
|
||||
norm_hidden_states = norm_hidden_states.unflatten(1, (frames, height, width))
|
||||
ff_output = self.ff(norm_hidden_states)
|
||||
ff_output = ff_output.flatten(1, 3)
|
||||
hidden_states = hidden_states + gate_mlp * ff_output
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
class SanaVideoTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin, AttentionMixin):
|
||||
r"""
|
||||
A 3D Transformer model introduced in [Sana-Video](https://huggingface.co/papers/2509.24695) family of models.
|
||||
|
||||
Args:
|
||||
in_channels (`int`, defaults to `16`):
|
||||
The number of channels in the input.
|
||||
out_channels (`int`, *optional*, defaults to `16`):
|
||||
The number of channels in the output.
|
||||
num_attention_heads (`int`, defaults to `20`):
|
||||
The number of heads to use for multi-head attention.
|
||||
attention_head_dim (`int`, defaults to `112`):
|
||||
The number of channels in each head.
|
||||
num_layers (`int`, defaults to `20`):
|
||||
The number of layers of Transformer blocks to use.
|
||||
num_cross_attention_heads (`int`, *optional*, defaults to `20`):
|
||||
The number of heads to use for cross-attention.
|
||||
cross_attention_head_dim (`int`, *optional*, defaults to `112`):
|
||||
The number of channels in each head for cross-attention.
|
||||
cross_attention_dim (`int`, *optional*, defaults to `2240`):
|
||||
The number of channels in the cross-attention output.
|
||||
caption_channels (`int`, defaults to `2304`):
|
||||
The number of channels in the caption embeddings.
|
||||
mlp_ratio (`float`, defaults to `2.5`):
|
||||
The expansion ratio to use in the GLUMBConv layer.
|
||||
dropout (`float`, defaults to `0.0`):
|
||||
The dropout probability.
|
||||
attention_bias (`bool`, defaults to `False`):
|
||||
Whether to use bias in the attention layer.
|
||||
sample_size (`int`, defaults to `32`):
|
||||
The base size of the input latent.
|
||||
patch_size (`int`, defaults to `1`):
|
||||
The size of the patches to use in the patch embedding layer.
|
||||
norm_elementwise_affine (`bool`, defaults to `False`):
|
||||
Whether to use elementwise affinity in the normalization layer.
|
||||
norm_eps (`float`, defaults to `1e-6`):
|
||||
The epsilon value for the normalization layer.
|
||||
qk_norm (`str`, *optional*, defaults to `None`):
|
||||
The normalization to use for the query and key.
|
||||
"""
|
||||
|
||||
_supports_gradient_checkpointing = True
|
||||
_no_split_modules = ["SanaVideoTransformerBlock", "SanaModulatedNorm"]
|
||||
_skip_layerwise_casting_patterns = ["patch_embedding", "norm"]
|
||||
|
||||
@register_to_config
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int = 16,
|
||||
out_channels: Optional[int] = 16,
|
||||
num_attention_heads: int = 20,
|
||||
attention_head_dim: int = 112,
|
||||
num_layers: int = 20,
|
||||
num_cross_attention_heads: Optional[int] = 20,
|
||||
cross_attention_head_dim: Optional[int] = 112,
|
||||
cross_attention_dim: Optional[int] = 2240,
|
||||
caption_channels: int = 2304,
|
||||
mlp_ratio: float = 2.5,
|
||||
dropout: float = 0.0,
|
||||
attention_bias: bool = False,
|
||||
sample_size: int = 30,
|
||||
patch_size: Tuple[int, int, int] = (1, 2, 2),
|
||||
norm_elementwise_affine: bool = False,
|
||||
norm_eps: float = 1e-6,
|
||||
interpolation_scale: Optional[int] = None,
|
||||
guidance_embeds: bool = False,
|
||||
guidance_embeds_scale: float = 0.1,
|
||||
qk_norm: Optional[str] = "rms_norm_across_heads",
|
||||
rope_max_seq_len: int = 1024,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
|
||||
out_channels = out_channels or in_channels
|
||||
inner_dim = num_attention_heads * attention_head_dim
|
||||
|
||||
# 1. Patch & position embedding
|
||||
self.rope = WanRotaryPosEmbed(attention_head_dim, patch_size, rope_max_seq_len)
|
||||
self.patch_embedding = nn.Conv3d(in_channels, inner_dim, kernel_size=patch_size, stride=patch_size)
|
||||
|
||||
# 2. Additional condition embeddings
|
||||
if guidance_embeds:
|
||||
self.time_embed = SanaCombinedTimestepGuidanceEmbeddings(inner_dim)
|
||||
else:
|
||||
self.time_embed = AdaLayerNormSingle(inner_dim)
|
||||
|
||||
self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=inner_dim)
|
||||
self.caption_norm = RMSNorm(inner_dim, eps=1e-5, elementwise_affine=True)
|
||||
|
||||
# 3. Transformer blocks
|
||||
self.transformer_blocks = nn.ModuleList(
|
||||
[
|
||||
SanaVideoTransformerBlock(
|
||||
inner_dim,
|
||||
num_attention_heads,
|
||||
attention_head_dim,
|
||||
dropout=dropout,
|
||||
num_cross_attention_heads=num_cross_attention_heads,
|
||||
cross_attention_head_dim=cross_attention_head_dim,
|
||||
cross_attention_dim=cross_attention_dim,
|
||||
attention_bias=attention_bias,
|
||||
norm_elementwise_affine=norm_elementwise_affine,
|
||||
norm_eps=norm_eps,
|
||||
mlp_ratio=mlp_ratio,
|
||||
qk_norm=qk_norm,
|
||||
)
|
||||
for _ in range(num_layers)
|
||||
]
|
||||
)
|
||||
|
||||
# 4. Output blocks
|
||||
self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5)
|
||||
self.norm_out = SanaModulatedNorm(inner_dim, elementwise_affine=False, eps=1e-6)
|
||||
self.proj_out = nn.Linear(inner_dim, math.prod(patch_size) * out_channels)
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
encoder_hidden_states: torch.Tensor,
|
||||
timestep: torch.Tensor,
|
||||
guidance: Optional[torch.Tensor] = None,
|
||||
encoder_attention_mask: Optional[torch.Tensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
attention_kwargs: Optional[Dict[str, Any]] = None,
|
||||
controlnet_block_samples: Optional[Tuple[torch.Tensor]] = None,
|
||||
return_dict: bool = True,
|
||||
) -> Union[Tuple[torch.Tensor, ...], Transformer2DModelOutput]:
|
||||
if attention_kwargs is not None:
|
||||
attention_kwargs = attention_kwargs.copy()
|
||||
lora_scale = attention_kwargs.pop("scale", 1.0)
|
||||
else:
|
||||
lora_scale = 1.0
|
||||
|
||||
if USE_PEFT_BACKEND:
|
||||
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
||||
scale_lora_layers(self, lora_scale)
|
||||
else:
|
||||
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
|
||||
logger.warning(
|
||||
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
|
||||
)
|
||||
|
||||
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
|
||||
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
|
||||
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
|
||||
# expects mask of shape:
|
||||
# [batch, key_tokens]
|
||||
# adds singleton query_tokens dimension:
|
||||
# [batch, 1, key_tokens]
|
||||
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
||||
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
||||
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
||||
if attention_mask is not None and attention_mask.ndim == 2:
|
||||
# assume that mask is expressed as:
|
||||
# (1 = keep, 0 = discard)
|
||||
# convert mask into a bias that can be added to attention scores:
|
||||
# (keep = +0, discard = -10000.0)
|
||||
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
|
||||
attention_mask = attention_mask.unsqueeze(1)
|
||||
|
||||
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
||||
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
|
||||
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
|
||||
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
||||
|
||||
# 1. Input
|
||||
batch_size, num_channels, num_frames, height, width = hidden_states.shape
|
||||
p_t, p_h, p_w = self.config.patch_size
|
||||
post_patch_num_frames = num_frames // p_t
|
||||
post_patch_height = height // p_h
|
||||
post_patch_width = width // p_w
|
||||
|
||||
rotary_emb = self.rope(hidden_states)
|
||||
|
||||
hidden_states = self.patch_embedding(hidden_states)
|
||||
hidden_states = hidden_states.flatten(2).transpose(1, 2)
|
||||
|
||||
if guidance is not None:
|
||||
timestep, embedded_timestep = self.time_embed(
|
||||
timestep, guidance=guidance, hidden_dtype=hidden_states.dtype
|
||||
)
|
||||
else:
|
||||
timestep, embedded_timestep = self.time_embed(
|
||||
timestep, batch_size=batch_size, hidden_dtype=hidden_states.dtype
|
||||
)
|
||||
|
||||
encoder_hidden_states = self.caption_projection(encoder_hidden_states)
|
||||
encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
|
||||
|
||||
encoder_hidden_states = self.caption_norm(encoder_hidden_states)
|
||||
|
||||
# 2. Transformer blocks
|
||||
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
||||
for index_block, block in enumerate(self.transformer_blocks):
|
||||
hidden_states = self._gradient_checkpointing_func(
|
||||
block,
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
timestep,
|
||||
post_patch_num_frames,
|
||||
post_patch_height,
|
||||
post_patch_width,
|
||||
rotary_emb,
|
||||
)
|
||||
if controlnet_block_samples is not None and 0 < index_block <= len(controlnet_block_samples):
|
||||
hidden_states = hidden_states + controlnet_block_samples[index_block - 1]
|
||||
|
||||
else:
|
||||
for index_block, block in enumerate(self.transformer_blocks):
|
||||
hidden_states = block(
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
timestep,
|
||||
post_patch_num_frames,
|
||||
post_patch_height,
|
||||
post_patch_width,
|
||||
rotary_emb,
|
||||
)
|
||||
if controlnet_block_samples is not None and 0 < index_block <= len(controlnet_block_samples):
|
||||
hidden_states = hidden_states + controlnet_block_samples[index_block - 1]
|
||||
|
||||
# 3. Normalization
|
||||
hidden_states = self.norm_out(hidden_states, embedded_timestep, self.scale_shift_table)
|
||||
|
||||
hidden_states = self.proj_out(hidden_states)
|
||||
|
||||
# 5. Unpatchify
|
||||
hidden_states = hidden_states.reshape(
|
||||
batch_size, post_patch_num_frames, post_patch_height, post_patch_width, p_t, p_h, p_w, -1
|
||||
)
|
||||
hidden_states = hidden_states.permute(0, 7, 1, 4, 2, 5, 3, 6)
|
||||
output = hidden_states.flatten(6, 7).flatten(4, 5).flatten(2, 3)
|
||||
|
||||
if USE_PEFT_BACKEND:
|
||||
# remove `lora_scale` from each PEFT layer
|
||||
unscale_lora_layers(self, lora_scale)
|
||||
|
||||
if not return_dict:
|
||||
return (output,)
|
||||
|
||||
return Transformer2DModelOutput(sample=output)
|
||||
@@ -555,6 +555,9 @@ class WanTransformer3DModel(
|
||||
"encoder_hidden_states": ContextParallelInput(split_dim=1, expected_dims=3, split_output=False),
|
||||
},
|
||||
"proj_out": ContextParallelOutput(gather_dim=1, expected_dims=3),
|
||||
"": {
|
||||
"timestep": ContextParallelInput(split_dim=1, expected_dims=2, split_output=False),
|
||||
},
|
||||
}
|
||||
|
||||
@register_to_config
|
||||
|
||||
@@ -45,7 +45,7 @@ else:
|
||||
"InsertableDict",
|
||||
]
|
||||
_import_structure["stable_diffusion_xl"] = ["StableDiffusionXLAutoBlocks", "StableDiffusionXLModularPipeline"]
|
||||
_import_structure["wan"] = ["WanAutoBlocks", "WanModularPipeline"]
|
||||
_import_structure["wan"] = ["WanAutoBlocks", "Wan22AutoBlocks", "WanModularPipeline"]
|
||||
_import_structure["flux"] = [
|
||||
"FluxAutoBlocks",
|
||||
"FluxModularPipeline",
|
||||
@@ -90,7 +90,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
QwenImageModularPipeline,
|
||||
)
|
||||
from .stable_diffusion_xl import StableDiffusionXLAutoBlocks, StableDiffusionXLModularPipeline
|
||||
from .wan import WanAutoBlocks, WanModularPipeline
|
||||
from .wan import Wan22AutoBlocks, WanAutoBlocks, WanModularPipeline
|
||||
else:
|
||||
import sys
|
||||
|
||||
|
||||
@@ -164,7 +164,11 @@ class AutoOffloadStrategy:
|
||||
|
||||
device_type = execution_device.type
|
||||
device_module = getattr(torch, device_type, torch.cuda)
|
||||
mem_on_device = device_module.mem_get_info(execution_device.index)[0]
|
||||
try:
|
||||
mem_on_device = device_module.mem_get_info(execution_device.index)[0]
|
||||
except AttributeError:
|
||||
raise AttributeError(f"Do not know how to obtain obtain memory info for {str(device_module)}.")
|
||||
|
||||
mem_on_device = mem_on_device - self.memory_reserve_margin
|
||||
if current_module_size < mem_on_device:
|
||||
return []
|
||||
@@ -699,6 +703,8 @@ class ComponentsManager:
|
||||
if not is_accelerate_available():
|
||||
raise ImportError("Make sure to install accelerate to use auto_cpu_offload")
|
||||
|
||||
# TODO: add a warning if mem_get_info isn't available on `device`.
|
||||
|
||||
for name, component in self.components.items():
|
||||
if isinstance(component, torch.nn.Module) and hasattr(component, "_hf_hook"):
|
||||
remove_hook_from_module(component, recurse=True)
|
||||
|
||||
@@ -598,7 +598,7 @@ class FluxKontextRoPEInputsStep(ModularPipelineBlocks):
|
||||
and getattr(block_state, "image_width", None) is not None
|
||||
):
|
||||
image_latent_height = 2 * (int(block_state.image_height) // (components.vae_scale_factor * 2))
|
||||
image_latent_width = 2 * (int(block_state.width) // (components.vae_scale_factor * 2))
|
||||
image_latent_width = 2 * (int(block_state.image_width) // (components.vae_scale_factor * 2))
|
||||
img_ids = FluxPipeline._prepare_latent_image_ids(
|
||||
None, image_latent_height // 2, image_latent_width // 2, device, dtype
|
||||
)
|
||||
|
||||
@@ -59,7 +59,7 @@ class FluxLoopDenoiser(ModularPipelineBlocks):
|
||||
),
|
||||
InputParam(
|
||||
"guidance",
|
||||
required=True,
|
||||
required=False,
|
||||
type_hint=torch.Tensor,
|
||||
description="Guidance scale as a tensor",
|
||||
),
|
||||
@@ -141,7 +141,7 @@ class FluxKontextLoopDenoiser(ModularPipelineBlocks):
|
||||
),
|
||||
InputParam(
|
||||
"guidance",
|
||||
required=True,
|
||||
required=False,
|
||||
type_hint=torch.Tensor,
|
||||
description="Guidance scale as a tensor",
|
||||
),
|
||||
|
||||
@@ -95,7 +95,7 @@ class FluxProcessImagesInputStep(ModularPipelineBlocks):
|
||||
ComponentSpec(
|
||||
"image_processor",
|
||||
VaeImageProcessor,
|
||||
config=FrozenDict({"vae_scale_factor": 16}),
|
||||
config=FrozenDict({"vae_scale_factor": 16, "vae_latent_channels": 16}),
|
||||
default_creation_method="from_config",
|
||||
),
|
||||
]
|
||||
@@ -143,10 +143,6 @@ class FluxProcessImagesInputStep(ModularPipelineBlocks):
|
||||
class FluxKontextProcessImagesInputStep(ModularPipelineBlocks):
|
||||
model_name = "flux-kontext"
|
||||
|
||||
def __init__(self, _auto_resize=True):
|
||||
self._auto_resize = _auto_resize
|
||||
super().__init__()
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
@@ -167,7 +163,7 @@ class FluxKontextProcessImagesInputStep(ModularPipelineBlocks):
|
||||
|
||||
@property
|
||||
def inputs(self) -> List[InputParam]:
|
||||
return [InputParam("image")]
|
||||
return [InputParam("image"), InputParam("_auto_resize", type_hint=bool, default=True)]
|
||||
|
||||
@property
|
||||
def intermediate_outputs(self) -> List[OutputParam]:
|
||||
@@ -195,7 +191,8 @@ class FluxKontextProcessImagesInputStep(ModularPipelineBlocks):
|
||||
img = images[0]
|
||||
image_height, image_width = components.image_processor.get_default_height_width(img)
|
||||
aspect_ratio = image_width / image_height
|
||||
if self._auto_resize:
|
||||
_auto_resize = block_state._auto_resize
|
||||
if _auto_resize:
|
||||
# Kontext is trained on specific resolutions, using one of them is recommended
|
||||
_, image_width, image_height = min(
|
||||
(abs(aspect_ratio - w / h), w, h) for w, h in PREFERRED_KONTEXT_RESOLUTIONS
|
||||
|
||||
@@ -112,6 +112,10 @@ class FluxTextInputStep(ModularPipelineBlocks):
|
||||
block_state.prompt_embeds = block_state.prompt_embeds.view(
|
||||
block_state.batch_size * block_state.num_images_per_prompt, seq_len, -1
|
||||
)
|
||||
pooled_prompt_embeds = block_state.pooled_prompt_embeds.repeat(1, block_state.num_images_per_prompt)
|
||||
block_state.pooled_prompt_embeds = pooled_prompt_embeds.view(
|
||||
block_state.batch_size * block_state.num_images_per_prompt, -1
|
||||
)
|
||||
self.set_block_state(state, block_state)
|
||||
|
||||
return components, state
|
||||
|
||||
@@ -307,14 +307,13 @@ class ModularPipelineBlocks(ConfigMixin, PushToHubMixin):
|
||||
"local_files_only",
|
||||
"local_dir",
|
||||
"proxies",
|
||||
"resume_download",
|
||||
"revision",
|
||||
"subfolder",
|
||||
"token",
|
||||
]
|
||||
hub_kwargs = {name: kwargs.pop(name) for name in hub_kwargs_names if name in kwargs}
|
||||
|
||||
config = cls.load_config(pretrained_model_name_or_path)
|
||||
config = cls.load_config(pretrained_model_name_or_path, **hub_kwargs)
|
||||
has_remote_code = "auto_map" in config and cls.__name__ in config["auto_map"]
|
||||
trust_remote_code = resolve_trust_remote_code(
|
||||
trust_remote_code, pretrained_model_name_or_path, has_remote_code
|
||||
@@ -1442,6 +1441,8 @@ class ModularPipeline(ConfigMixin, PushToHubMixin):
|
||||
pretrained_model_name_or_path: Optional[Union[str, os.PathLike]] = None,
|
||||
components_manager: Optional[ComponentsManager] = None,
|
||||
collection: Optional[str] = None,
|
||||
modular_config_dict: Optional[Dict[str, Any]] = None,
|
||||
config_dict: Optional[Dict[str, Any]] = None,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
@@ -1493,23 +1494,8 @@ class ModularPipeline(ConfigMixin, PushToHubMixin):
|
||||
- The pipeline's config dict is also used to store the pipeline blocks's class name, which will be saved as
|
||||
`_blocks_class_name` in the config dict
|
||||
"""
|
||||
if blocks is None:
|
||||
blocks_class_name = self.default_blocks_name
|
||||
if blocks_class_name is not None:
|
||||
diffusers_module = importlib.import_module("diffusers")
|
||||
blocks_class = getattr(diffusers_module, blocks_class_name)
|
||||
blocks = blocks_class()
|
||||
else:
|
||||
logger.warning(f"`blocks` is `None`, no default blocks class found for {self.__class__.__name__}")
|
||||
|
||||
self.blocks = blocks
|
||||
self._components_manager = components_manager
|
||||
self._collection = collection
|
||||
self._component_specs = {spec.name: deepcopy(spec) for spec in self.blocks.expected_components}
|
||||
self._config_specs = {spec.name: deepcopy(spec) for spec in self.blocks.expected_configs}
|
||||
|
||||
# update component_specs and config_specs from modular_repo
|
||||
if pretrained_model_name_or_path is not None:
|
||||
if modular_config_dict is None and config_dict is None and pretrained_model_name_or_path is not None:
|
||||
cache_dir = kwargs.pop("cache_dir", None)
|
||||
force_download = kwargs.pop("force_download", False)
|
||||
proxies = kwargs.pop("proxies", None)
|
||||
@@ -1525,52 +1511,59 @@ class ModularPipeline(ConfigMixin, PushToHubMixin):
|
||||
"local_files_only": local_files_only,
|
||||
"revision": revision,
|
||||
}
|
||||
# try to load modular_model_index.json
|
||||
try:
|
||||
config_dict = self.load_config(pretrained_model_name_or_path, **load_config_kwargs)
|
||||
except EnvironmentError as e:
|
||||
logger.debug(f"modular_model_index.json not found: {e}")
|
||||
config_dict = None
|
||||
|
||||
# update component_specs and config_specs based on modular_model_index.json
|
||||
if config_dict is not None:
|
||||
for name, value in config_dict.items():
|
||||
# all the components in modular_model_index.json are from_pretrained components
|
||||
if name in self._component_specs and isinstance(value, (tuple, list)) and len(value) == 3:
|
||||
library, class_name, component_spec_dict = value
|
||||
component_spec = self._dict_to_component_spec(name, component_spec_dict)
|
||||
component_spec.default_creation_method = "from_pretrained"
|
||||
self._component_specs[name] = component_spec
|
||||
modular_config_dict, config_dict = self._load_pipeline_config(
|
||||
pretrained_model_name_or_path, **load_config_kwargs
|
||||
)
|
||||
|
||||
elif name in self._config_specs:
|
||||
self._config_specs[name].default = value
|
||||
|
||||
# if modular_model_index.json is not found, try to load model_index.json
|
||||
if blocks is None:
|
||||
if modular_config_dict is not None:
|
||||
blocks_class_name = modular_config_dict.get("_blocks_class_name")
|
||||
elif config_dict is not None:
|
||||
blocks_class_name = self.get_default_blocks_name(config_dict)
|
||||
else:
|
||||
logger.debug(" loading config from model_index.json")
|
||||
try:
|
||||
from diffusers import DiffusionPipeline
|
||||
blocks_class_name = None
|
||||
if blocks_class_name is not None:
|
||||
diffusers_module = importlib.import_module("diffusers")
|
||||
blocks_class = getattr(diffusers_module, blocks_class_name)
|
||||
blocks = blocks_class()
|
||||
else:
|
||||
logger.warning(f"`blocks` is `None`, no default blocks class found for {self.__class__.__name__}")
|
||||
|
||||
config_dict = DiffusionPipeline.load_config(pretrained_model_name_or_path, **load_config_kwargs)
|
||||
except EnvironmentError as e:
|
||||
logger.debug(f" model_index.json not found in the repo: {e}")
|
||||
config_dict = None
|
||||
self.blocks = blocks
|
||||
self._components_manager = components_manager
|
||||
self._collection = collection
|
||||
self._component_specs = {spec.name: deepcopy(spec) for spec in self.blocks.expected_components}
|
||||
self._config_specs = {spec.name: deepcopy(spec) for spec in self.blocks.expected_configs}
|
||||
|
||||
# update component_specs and config_specs based on model_index.json
|
||||
if config_dict is not None:
|
||||
for name, value in config_dict.items():
|
||||
if name in self._component_specs and isinstance(value, (tuple, list)) and len(value) == 2:
|
||||
library, class_name = value
|
||||
component_spec_dict = {
|
||||
"repo": pretrained_model_name_or_path,
|
||||
"subfolder": name,
|
||||
"type_hint": (library, class_name),
|
||||
}
|
||||
component_spec = self._dict_to_component_spec(name, component_spec_dict)
|
||||
component_spec.default_creation_method = "from_pretrained"
|
||||
self._component_specs[name] = component_spec
|
||||
elif name in self._config_specs:
|
||||
self._config_specs[name].default = value
|
||||
# update component_specs and config_specs based on modular_model_index.json
|
||||
if modular_config_dict is not None:
|
||||
for name, value in modular_config_dict.items():
|
||||
# all the components in modular_model_index.json are from_pretrained components
|
||||
if name in self._component_specs and isinstance(value, (tuple, list)) and len(value) == 3:
|
||||
library, class_name, component_spec_dict = value
|
||||
component_spec = self._dict_to_component_spec(name, component_spec_dict)
|
||||
component_spec.default_creation_method = "from_pretrained"
|
||||
self._component_specs[name] = component_spec
|
||||
|
||||
elif name in self._config_specs:
|
||||
self._config_specs[name].default = value
|
||||
|
||||
# if `modular_config_dict` is None (i.e. `modular_model_index.json` is not found), update based on `config_dict` (i.e. `model_index.json`)
|
||||
elif config_dict is not None:
|
||||
for name, value in config_dict.items():
|
||||
if name in self._component_specs and isinstance(value, (tuple, list)) and len(value) == 2:
|
||||
library, class_name = value
|
||||
component_spec_dict = {
|
||||
"repo": pretrained_model_name_or_path,
|
||||
"subfolder": name,
|
||||
"type_hint": (library, class_name),
|
||||
}
|
||||
component_spec = self._dict_to_component_spec(name, component_spec_dict)
|
||||
component_spec.default_creation_method = "from_pretrained"
|
||||
self._component_specs[name] = component_spec
|
||||
elif name in self._config_specs:
|
||||
self._config_specs[name].default = value
|
||||
|
||||
if len(kwargs) > 0:
|
||||
logger.warning(f"Unexpected input '{kwargs.keys()}' provided. This input will be ignored.")
|
||||
@@ -1602,6 +1595,35 @@ class ModularPipeline(ConfigMixin, PushToHubMixin):
|
||||
params[input_param.name] = input_param.default
|
||||
return params
|
||||
|
||||
def get_default_blocks_name(self, config_dict: Optional[Dict[str, Any]]) -> Optional[str]:
|
||||
return self.default_blocks_name
|
||||
|
||||
@classmethod
|
||||
def _load_pipeline_config(
|
||||
cls,
|
||||
pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
|
||||
**load_config_kwargs,
|
||||
):
|
||||
try:
|
||||
# try to load modular_model_index.json
|
||||
modular_config_dict = cls.load_config(pretrained_model_name_or_path, **load_config_kwargs)
|
||||
return modular_config_dict, None
|
||||
|
||||
except EnvironmentError as e:
|
||||
logger.debug(f" modular_model_index.json not found in the repo: {e}")
|
||||
|
||||
try:
|
||||
logger.debug(" try to load model_index.json")
|
||||
from diffusers import DiffusionPipeline
|
||||
|
||||
config_dict = DiffusionPipeline.load_config(pretrained_model_name_or_path, **load_config_kwargs)
|
||||
return None, config_dict
|
||||
|
||||
except EnvironmentError as e:
|
||||
logger.debug(f" model_index.json not found in the repo: {e}")
|
||||
|
||||
return None, None
|
||||
|
||||
@classmethod
|
||||
@validate_hf_hub_args
|
||||
def from_pretrained(
|
||||
@@ -1656,42 +1678,33 @@ class ModularPipeline(ConfigMixin, PushToHubMixin):
|
||||
"revision": revision,
|
||||
}
|
||||
|
||||
try:
|
||||
# try to load modular_model_index.json
|
||||
config_dict = cls.load_config(pretrained_model_name_or_path, **load_config_kwargs)
|
||||
except EnvironmentError as e:
|
||||
logger.debug(f" modular_model_index.json not found in the repo: {e}")
|
||||
config_dict = None
|
||||
modular_config_dict, config_dict = cls._load_pipeline_config(
|
||||
pretrained_model_name_or_path, **load_config_kwargs
|
||||
)
|
||||
|
||||
if config_dict is not None:
|
||||
pipeline_class = _get_pipeline_class(cls, config=config_dict)
|
||||
if modular_config_dict is not None:
|
||||
pipeline_class = _get_pipeline_class(cls, config=modular_config_dict)
|
||||
elif config_dict is not None:
|
||||
from diffusers.pipelines.auto_pipeline import _get_model
|
||||
|
||||
logger.debug(" try to determine the modular pipeline class from model_index.json")
|
||||
standard_pipeline_class = _get_pipeline_class(cls, config=config_dict)
|
||||
model_name = _get_model(standard_pipeline_class.__name__)
|
||||
pipeline_class_name = MODULAR_PIPELINE_MAPPING.get(model_name, ModularPipeline.__name__)
|
||||
diffusers_module = importlib.import_module("diffusers")
|
||||
pipeline_class = getattr(diffusers_module, pipeline_class_name)
|
||||
else:
|
||||
try:
|
||||
logger.debug(" try to load model_index.json")
|
||||
from diffusers import DiffusionPipeline
|
||||
from diffusers.pipelines.auto_pipeline import _get_model
|
||||
|
||||
config_dict = DiffusionPipeline.load_config(pretrained_model_name_or_path, **load_config_kwargs)
|
||||
except EnvironmentError as e:
|
||||
logger.debug(f" model_index.json not found in the repo: {e}")
|
||||
|
||||
if config_dict is not None:
|
||||
logger.debug(" try to determine the modular pipeline class from model_index.json")
|
||||
standard_pipeline_class = _get_pipeline_class(cls, config=config_dict)
|
||||
model_name = _get_model(standard_pipeline_class.__name__)
|
||||
pipeline_class_name = MODULAR_PIPELINE_MAPPING.get(model_name, ModularPipeline.__name__)
|
||||
diffusers_module = importlib.import_module("diffusers")
|
||||
pipeline_class = getattr(diffusers_module, pipeline_class_name)
|
||||
else:
|
||||
# there is no config for modular pipeline, assuming that the pipeline block does not need any from_pretrained components
|
||||
pipeline_class = cls
|
||||
pretrained_model_name_or_path = None
|
||||
# there is no config for modular pipeline, assuming that the pipeline block does not need any from_pretrained components
|
||||
pipeline_class = cls
|
||||
pretrained_model_name_or_path = None
|
||||
|
||||
pipeline = pipeline_class(
|
||||
blocks=blocks,
|
||||
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
||||
components_manager=components_manager,
|
||||
collection=collection,
|
||||
modular_config_dict=modular_config_dict,
|
||||
config_dict=config_dict,
|
||||
**kwargs,
|
||||
)
|
||||
return pipeline
|
||||
@@ -2131,8 +2144,15 @@ class ModularPipeline(ConfigMixin, PushToHubMixin):
|
||||
component_load_kwargs[key] = value["default"]
|
||||
try:
|
||||
components_to_register[name] = spec.load(**component_load_kwargs)
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to create component '{name}': {e}")
|
||||
except Exception:
|
||||
logger.warning(
|
||||
f"\nFailed to create component {name}:\n"
|
||||
f"- Component spec: {spec}\n"
|
||||
f"- load() called with kwargs: {component_load_kwargs}\n"
|
||||
"If this component is not required for your workflow you can safely ignore this message.\n\n"
|
||||
"Traceback:\n"
|
||||
f"{traceback.format_exc()}"
|
||||
)
|
||||
|
||||
# Register all components at once
|
||||
self.register_components(**components_to_register)
|
||||
|
||||
@@ -21,16 +21,14 @@ except OptionalDependencyNotAvailable:
|
||||
|
||||
_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
|
||||
else:
|
||||
_import_structure["decoders"] = ["WanImageVaeDecoderStep"]
|
||||
_import_structure["encoders"] = ["WanTextEncoderStep"]
|
||||
_import_structure["modular_blocks"] = [
|
||||
"ALL_BLOCKS",
|
||||
"AUTO_BLOCKS",
|
||||
"TEXT2VIDEO_BLOCKS",
|
||||
"WanAutoBeforeDenoiseStep",
|
||||
"Wan22AutoBlocks",
|
||||
"WanAutoBlocks",
|
||||
"WanAutoBlocks",
|
||||
"WanAutoDecodeStep",
|
||||
"WanAutoDenoiseStep",
|
||||
"WanAutoImageEncoderStep",
|
||||
"WanAutoVaeImageEncoderStep",
|
||||
]
|
||||
_import_structure["modular_pipeline"] = ["WanModularPipeline"]
|
||||
|
||||
@@ -41,15 +39,14 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
except OptionalDependencyNotAvailable:
|
||||
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
|
||||
else:
|
||||
from .decoders import WanImageVaeDecoderStep
|
||||
from .encoders import WanTextEncoderStep
|
||||
from .modular_blocks import (
|
||||
ALL_BLOCKS,
|
||||
AUTO_BLOCKS,
|
||||
TEXT2VIDEO_BLOCKS,
|
||||
WanAutoBeforeDenoiseStep,
|
||||
Wan22AutoBlocks,
|
||||
WanAutoBlocks,
|
||||
WanAutoDecodeStep,
|
||||
WanAutoDenoiseStep,
|
||||
WanAutoImageEncoderStep,
|
||||
WanAutoVaeImageEncoderStep,
|
||||
)
|
||||
from .modular_pipeline import WanModularPipeline
|
||||
else:
|
||||
|
||||
@@ -13,10 +13,11 @@
|
||||
# limitations under the License.
|
||||
|
||||
import inspect
|
||||
from typing import List, Optional, Union
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
|
||||
from ...models import WanTransformer3DModel
|
||||
from ...schedulers import UniPCMultistepScheduler
|
||||
from ...utils import logging
|
||||
from ...utils.torch_utils import randn_tensor
|
||||
@@ -34,6 +35,97 @@ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
# configuration of guider is.
|
||||
|
||||
|
||||
def repeat_tensor_to_batch_size(
|
||||
input_name: str,
|
||||
input_tensor: torch.Tensor,
|
||||
batch_size: int,
|
||||
num_videos_per_prompt: int = 1,
|
||||
) -> torch.Tensor:
|
||||
"""Repeat tensor elements to match the final batch size.
|
||||
|
||||
This function expands a tensor's batch dimension to match the final batch size (batch_size * num_videos_per_prompt)
|
||||
by repeating each element along dimension 0.
|
||||
|
||||
The input tensor must have batch size 1 or batch_size. The function will:
|
||||
- If batch size is 1: repeat each element (batch_size * num_videos_per_prompt) times
|
||||
- If batch size equals batch_size: repeat each element num_videos_per_prompt times
|
||||
|
||||
Args:
|
||||
input_name (str): Name of the input tensor (used for error messages)
|
||||
input_tensor (torch.Tensor): The tensor to repeat. Must have batch size 1 or batch_size.
|
||||
batch_size (int): The base batch size (number of prompts)
|
||||
num_videos_per_prompt (int, optional): Number of videos to generate per prompt. Defaults to 1.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: The repeated tensor with final batch size (batch_size * num_videos_per_prompt)
|
||||
|
||||
Raises:
|
||||
ValueError: If input_tensor is not a torch.Tensor or has invalid batch size
|
||||
|
||||
Examples:
|
||||
tensor = torch.tensor([[1, 2, 3]]) # shape: [1, 3] repeated = repeat_tensor_to_batch_size("image", tensor,
|
||||
batch_size=2, num_videos_per_prompt=2) repeated # tensor([[1, 2, 3], [1, 2, 3], [1, 2, 3], [1, 2, 3]]) - shape:
|
||||
[4, 3]
|
||||
|
||||
tensor = torch.tensor([[1, 2, 3], [4, 5, 6]]) # shape: [2, 3] repeated = repeat_tensor_to_batch_size("image",
|
||||
tensor, batch_size=2, num_videos_per_prompt=2) repeated # tensor([[1, 2, 3], [1, 2, 3], [4, 5, 6], [4, 5, 6]])
|
||||
- shape: [4, 3]
|
||||
"""
|
||||
# make sure input is a tensor
|
||||
if not isinstance(input_tensor, torch.Tensor):
|
||||
raise ValueError(f"`{input_name}` must be a tensor")
|
||||
|
||||
# make sure input tensor e.g. image_latents has batch size 1 or batch_size same as prompts
|
||||
if input_tensor.shape[0] == 1:
|
||||
repeat_by = batch_size * num_videos_per_prompt
|
||||
elif input_tensor.shape[0] == batch_size:
|
||||
repeat_by = num_videos_per_prompt
|
||||
else:
|
||||
raise ValueError(
|
||||
f"`{input_name}` must have have batch size 1 or {batch_size}, but got {input_tensor.shape[0]}"
|
||||
)
|
||||
|
||||
# expand the tensor to match the batch_size * num_videos_per_prompt
|
||||
input_tensor = input_tensor.repeat_interleave(repeat_by, dim=0)
|
||||
|
||||
return input_tensor
|
||||
|
||||
|
||||
def calculate_dimension_from_latents(
|
||||
latents: torch.Tensor, vae_scale_factor_temporal: int, vae_scale_factor_spatial: int
|
||||
) -> Tuple[int, int]:
|
||||
"""Calculate image dimensions from latent tensor dimensions.
|
||||
|
||||
This function converts latent temporal and spatial dimensions to image temporal and spatial dimensions by
|
||||
multiplying the latent num_frames/height/width by the VAE scale factor.
|
||||
|
||||
Args:
|
||||
latents (torch.Tensor): The latent tensor. Must have 4 or 5 dimensions.
|
||||
Expected shapes: [batch, channels, height, width] or [batch, channels, frames, height, width]
|
||||
vae_scale_factor_temporal (int): The scale factor used by the VAE to compress temporal dimension.
|
||||
Typically 4 for most VAEs (video is 4x larger than latents in temporal dimension)
|
||||
vae_scale_factor_spatial (int): The scale factor used by the VAE to compress spatial dimension.
|
||||
Typically 8 for most VAEs (image is 8x larger than latents in each dimension)
|
||||
|
||||
Returns:
|
||||
Tuple[int, int]: The calculated image dimensions as (height, width)
|
||||
|
||||
Raises:
|
||||
ValueError: If latents tensor doesn't have 4 or 5 dimensions
|
||||
|
||||
"""
|
||||
if latents.ndim != 5:
|
||||
raise ValueError(f"latents must have 5 dimensions, but got {latents.ndim}")
|
||||
|
||||
_, _, num_latent_frames, latent_height, latent_width = latents.shape
|
||||
|
||||
num_frames = (num_latent_frames - 1) * vae_scale_factor_temporal + 1
|
||||
height = latent_height * vae_scale_factor_spatial
|
||||
width = latent_width * vae_scale_factor_spatial
|
||||
|
||||
return num_frames, height, width
|
||||
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
||||
def retrieve_timesteps(
|
||||
scheduler,
|
||||
@@ -94,7 +186,7 @@ def retrieve_timesteps(
|
||||
return timesteps, num_inference_steps
|
||||
|
||||
|
||||
class WanInputStep(ModularPipelineBlocks):
|
||||
class WanTextInputStep(ModularPipelineBlocks):
|
||||
model_name = "wan"
|
||||
|
||||
@property
|
||||
@@ -109,14 +201,15 @@ class WanInputStep(ModularPipelineBlocks):
|
||||
)
|
||||
|
||||
@property
|
||||
def inputs(self) -> List[InputParam]:
|
||||
def expected_components(self) -> List[ComponentSpec]:
|
||||
return [
|
||||
InputParam("num_videos_per_prompt", default=1),
|
||||
ComponentSpec("transformer", WanTransformer3DModel),
|
||||
]
|
||||
|
||||
@property
|
||||
def intermediate_inputs(self) -> List[str]:
|
||||
def inputs(self) -> List[InputParam]:
|
||||
return [
|
||||
InputParam("num_videos_per_prompt", default=1),
|
||||
InputParam(
|
||||
"prompt_embeds",
|
||||
required=True,
|
||||
@@ -141,19 +234,7 @@ class WanInputStep(ModularPipelineBlocks):
|
||||
OutputParam(
|
||||
"dtype",
|
||||
type_hint=torch.dtype,
|
||||
description="Data type of model tensor inputs (determined by `prompt_embeds`)",
|
||||
),
|
||||
OutputParam(
|
||||
"prompt_embeds",
|
||||
type_hint=torch.Tensor,
|
||||
kwargs_type="denoiser_input_fields", # already in intermedites state but declare here again for denoiser_input_fields
|
||||
description="text embeddings used to guide the image generation",
|
||||
),
|
||||
OutputParam(
|
||||
"negative_prompt_embeds",
|
||||
type_hint=torch.Tensor,
|
||||
kwargs_type="denoiser_input_fields", # already in intermedites state but declare here again for denoiser_input_fields
|
||||
description="negative text embeddings used to guide the image generation",
|
||||
description="Data type of model tensor inputs (determined by `transformer.dtype`)",
|
||||
),
|
||||
]
|
||||
|
||||
@@ -194,6 +275,140 @@ class WanInputStep(ModularPipelineBlocks):
|
||||
return components, state
|
||||
|
||||
|
||||
class WanAdditionalInputsStep(ModularPipelineBlocks):
|
||||
model_name = "wan"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
image_latent_inputs: List[str] = ["first_frame_latents"],
|
||||
additional_batch_inputs: List[str] = [],
|
||||
):
|
||||
"""Initialize a configurable step that standardizes the inputs for the denoising step. It:\n"
|
||||
|
||||
This step handles multiple common tasks to prepare inputs for the denoising step:
|
||||
1. For encoded image latents, use it update height/width if None, and expands batch size
|
||||
2. For additional_batch_inputs: Only expands batch dimensions to match final batch size
|
||||
|
||||
This is a dynamic block that allows you to configure which inputs to process.
|
||||
|
||||
Args:
|
||||
image_latent_inputs (List[str], optional): Names of image latent tensors to process.
|
||||
In additional to adjust batch size of these inputs, they will be used to determine height/width. Can be
|
||||
a single string or list of strings. Defaults to ["first_frame_latents"].
|
||||
additional_batch_inputs (List[str], optional):
|
||||
Names of additional conditional input tensors to expand batch size. These tensors will only have their
|
||||
batch dimensions adjusted to match the final batch size. Can be a single string or list of strings.
|
||||
Defaults to [].
|
||||
|
||||
Examples:
|
||||
# Configure to process first_frame_latents (default behavior) WanAdditionalInputsStep()
|
||||
|
||||
# Configure to process multiple image latent inputs
|
||||
WanAdditionalInputsStep(image_latent_inputs=["first_frame_latents", "last_frame_latents"])
|
||||
|
||||
# Configure to process image latents and additional batch inputs WanAdditionalInputsStep(
|
||||
image_latent_inputs=["first_frame_latents"], additional_batch_inputs=["image_embeds"]
|
||||
)
|
||||
"""
|
||||
if not isinstance(image_latent_inputs, list):
|
||||
image_latent_inputs = [image_latent_inputs]
|
||||
if not isinstance(additional_batch_inputs, list):
|
||||
additional_batch_inputs = [additional_batch_inputs]
|
||||
|
||||
self._image_latent_inputs = image_latent_inputs
|
||||
self._additional_batch_inputs = additional_batch_inputs
|
||||
super().__init__()
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
# Functionality section
|
||||
summary_section = (
|
||||
"Input processing step that:\n"
|
||||
" 1. For image latent inputs: Updates height/width if None, and expands batch size\n"
|
||||
" 2. For additional batch inputs: Expands batch dimensions to match final batch size"
|
||||
)
|
||||
|
||||
# Inputs info
|
||||
inputs_info = ""
|
||||
if self._image_latent_inputs or self._additional_batch_inputs:
|
||||
inputs_info = "\n\nConfigured inputs:"
|
||||
if self._image_latent_inputs:
|
||||
inputs_info += f"\n - Image latent inputs: {self._image_latent_inputs}"
|
||||
if self._additional_batch_inputs:
|
||||
inputs_info += f"\n - Additional batch inputs: {self._additional_batch_inputs}"
|
||||
|
||||
# Placement guidance
|
||||
placement_section = "\n\nThis block should be placed after the encoder steps and the text input step."
|
||||
|
||||
return summary_section + inputs_info + placement_section
|
||||
|
||||
@property
|
||||
def inputs(self) -> List[InputParam]:
|
||||
inputs = [
|
||||
InputParam(name="num_videos_per_prompt", default=1),
|
||||
InputParam(name="batch_size", required=True),
|
||||
InputParam(name="height"),
|
||||
InputParam(name="width"),
|
||||
InputParam(name="num_frames"),
|
||||
]
|
||||
|
||||
# Add image latent inputs
|
||||
for image_latent_input_name in self._image_latent_inputs:
|
||||
inputs.append(InputParam(name=image_latent_input_name))
|
||||
|
||||
# Add additional batch inputs
|
||||
for input_name in self._additional_batch_inputs:
|
||||
inputs.append(InputParam(name=input_name))
|
||||
|
||||
return inputs
|
||||
|
||||
def __call__(self, components: WanModularPipeline, state: PipelineState) -> PipelineState:
|
||||
block_state = self.get_block_state(state)
|
||||
|
||||
# Process image latent inputs (height/width calculation, patchify, and batch expansion)
|
||||
for image_latent_input_name in self._image_latent_inputs:
|
||||
image_latent_tensor = getattr(block_state, image_latent_input_name)
|
||||
if image_latent_tensor is None:
|
||||
continue
|
||||
|
||||
# 1. Calculate num_frames, height/width from latents
|
||||
num_frames, height, width = calculate_dimension_from_latents(
|
||||
image_latent_tensor, components.vae_scale_factor_temporal, components.vae_scale_factor_spatial
|
||||
)
|
||||
block_state.num_frames = block_state.num_frames or num_frames
|
||||
block_state.height = block_state.height or height
|
||||
block_state.width = block_state.width or width
|
||||
|
||||
# 3. Expand batch size
|
||||
image_latent_tensor = repeat_tensor_to_batch_size(
|
||||
input_name=image_latent_input_name,
|
||||
input_tensor=image_latent_tensor,
|
||||
num_videos_per_prompt=block_state.num_videos_per_prompt,
|
||||
batch_size=block_state.batch_size,
|
||||
)
|
||||
|
||||
setattr(block_state, image_latent_input_name, image_latent_tensor)
|
||||
|
||||
# Process additional batch inputs (only batch expansion)
|
||||
for input_name in self._additional_batch_inputs:
|
||||
input_tensor = getattr(block_state, input_name)
|
||||
if input_tensor is None:
|
||||
continue
|
||||
|
||||
# Only expand batch size
|
||||
input_tensor = repeat_tensor_to_batch_size(
|
||||
input_name=input_name,
|
||||
input_tensor=input_tensor,
|
||||
num_videos_per_prompt=block_state.num_videos_per_prompt,
|
||||
batch_size=block_state.batch_size,
|
||||
)
|
||||
|
||||
setattr(block_state, input_name, input_tensor)
|
||||
|
||||
self.set_block_state(state, block_state)
|
||||
return components, state
|
||||
|
||||
|
||||
class WanSetTimestepsStep(ModularPipelineBlocks):
|
||||
model_name = "wan"
|
||||
|
||||
@@ -215,26 +430,15 @@ class WanSetTimestepsStep(ModularPipelineBlocks):
|
||||
InputParam("sigmas"),
|
||||
]
|
||||
|
||||
@property
|
||||
def intermediate_outputs(self) -> List[OutputParam]:
|
||||
return [
|
||||
OutputParam("timesteps", type_hint=torch.Tensor, description="The timesteps to use for inference"),
|
||||
OutputParam(
|
||||
"num_inference_steps",
|
||||
type_hint=int,
|
||||
description="The number of denoising steps to perform at inference time",
|
||||
),
|
||||
]
|
||||
|
||||
@torch.no_grad()
|
||||
def __call__(self, components: WanModularPipeline, state: PipelineState) -> PipelineState:
|
||||
block_state = self.get_block_state(state)
|
||||
block_state.device = components._execution_device
|
||||
device = components._execution_device
|
||||
|
||||
block_state.timesteps, block_state.num_inference_steps = retrieve_timesteps(
|
||||
components.scheduler,
|
||||
block_state.num_inference_steps,
|
||||
block_state.device,
|
||||
device,
|
||||
block_state.timesteps,
|
||||
block_state.sigmas,
|
||||
)
|
||||
@@ -246,10 +450,6 @@ class WanSetTimestepsStep(ModularPipelineBlocks):
|
||||
class WanPrepareLatentsStep(ModularPipelineBlocks):
|
||||
model_name = "wan"
|
||||
|
||||
@property
|
||||
def expected_components(self) -> List[ComponentSpec]:
|
||||
return []
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return "Prepare latents step that prepares the latents for the text-to-video generation process"
|
||||
@@ -262,11 +462,6 @@ class WanPrepareLatentsStep(ModularPipelineBlocks):
|
||||
InputParam("num_frames", type_hint=int),
|
||||
InputParam("latents", type_hint=Optional[torch.Tensor]),
|
||||
InputParam("num_videos_per_prompt", type_hint=int, default=1),
|
||||
]
|
||||
|
||||
@property
|
||||
def intermediate_inputs(self) -> List[InputParam]:
|
||||
return [
|
||||
InputParam("generator"),
|
||||
InputParam(
|
||||
"batch_size",
|
||||
@@ -337,29 +532,106 @@ class WanPrepareLatentsStep(ModularPipelineBlocks):
|
||||
@torch.no_grad()
|
||||
def __call__(self, components: WanModularPipeline, state: PipelineState) -> PipelineState:
|
||||
block_state = self.get_block_state(state)
|
||||
self.check_inputs(components, block_state)
|
||||
|
||||
device = components._execution_device
|
||||
dtype = torch.float32 # Wan latents should be torch.float32 for best quality
|
||||
|
||||
block_state.height = block_state.height or components.default_height
|
||||
block_state.width = block_state.width or components.default_width
|
||||
block_state.num_frames = block_state.num_frames or components.default_num_frames
|
||||
block_state.device = components._execution_device
|
||||
block_state.dtype = torch.float32 # Wan latents should be torch.float32 for best quality
|
||||
block_state.num_channels_latents = components.num_channels_latents
|
||||
|
||||
self.check_inputs(components, block_state)
|
||||
|
||||
block_state.latents = self.prepare_latents(
|
||||
components,
|
||||
block_state.batch_size * block_state.num_videos_per_prompt,
|
||||
block_state.num_channels_latents,
|
||||
block_state.height,
|
||||
block_state.width,
|
||||
block_state.num_frames,
|
||||
block_state.dtype,
|
||||
block_state.device,
|
||||
block_state.generator,
|
||||
block_state.latents,
|
||||
batch_size=block_state.batch_size * block_state.num_videos_per_prompt,
|
||||
num_channels_latents=components.num_channels_latents,
|
||||
height=block_state.height,
|
||||
width=block_state.width,
|
||||
num_frames=block_state.num_frames,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
generator=block_state.generator,
|
||||
latents=block_state.latents,
|
||||
)
|
||||
|
||||
self.set_block_state(state, block_state)
|
||||
|
||||
return components, state
|
||||
|
||||
|
||||
class WanPrepareFirstFrameLatentsStep(ModularPipelineBlocks):
|
||||
model_name = "wan"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return "step that prepares the masked first frame latents and add it to the latent condition"
|
||||
|
||||
@property
|
||||
def inputs(self) -> List[InputParam]:
|
||||
return [
|
||||
InputParam("first_frame_latents", type_hint=Optional[torch.Tensor]),
|
||||
InputParam("num_frames", type_hint=int),
|
||||
]
|
||||
|
||||
def __call__(self, components: WanModularPipeline, state: PipelineState) -> PipelineState:
|
||||
block_state = self.get_block_state(state)
|
||||
|
||||
batch_size, _, _, latent_height, latent_width = block_state.first_frame_latents.shape
|
||||
|
||||
mask_lat_size = torch.ones(batch_size, 1, block_state.num_frames, latent_height, latent_width)
|
||||
mask_lat_size[:, :, list(range(1, block_state.num_frames))] = 0
|
||||
|
||||
first_frame_mask = mask_lat_size[:, :, 0:1]
|
||||
first_frame_mask = torch.repeat_interleave(
|
||||
first_frame_mask, dim=2, repeats=components.vae_scale_factor_temporal
|
||||
)
|
||||
mask_lat_size = torch.concat([first_frame_mask, mask_lat_size[:, :, 1:, :]], dim=2)
|
||||
mask_lat_size = mask_lat_size.view(
|
||||
batch_size, -1, components.vae_scale_factor_temporal, latent_height, latent_width
|
||||
)
|
||||
mask_lat_size = mask_lat_size.transpose(1, 2)
|
||||
mask_lat_size = mask_lat_size.to(block_state.first_frame_latents.device)
|
||||
block_state.first_frame_latents = torch.concat([mask_lat_size, block_state.first_frame_latents], dim=1)
|
||||
|
||||
self.set_block_state(state, block_state)
|
||||
return components, state
|
||||
|
||||
|
||||
class WanPrepareFirstLastFrameLatentsStep(ModularPipelineBlocks):
|
||||
model_name = "wan"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return "step that prepares the masked latents with first and last frames and add it to the latent condition"
|
||||
|
||||
@property
|
||||
def inputs(self) -> List[InputParam]:
|
||||
return [
|
||||
InputParam("first_last_frame_latents", type_hint=Optional[torch.Tensor]),
|
||||
InputParam("num_frames", type_hint=int),
|
||||
]
|
||||
|
||||
def __call__(self, components: WanModularPipeline, state: PipelineState) -> PipelineState:
|
||||
block_state = self.get_block_state(state)
|
||||
|
||||
batch_size, _, _, latent_height, latent_width = block_state.first_last_frame_latents.shape
|
||||
|
||||
mask_lat_size = torch.ones(batch_size, 1, block_state.num_frames, latent_height, latent_width)
|
||||
mask_lat_size[:, :, list(range(1, block_state.num_frames - 1))] = 0
|
||||
|
||||
first_frame_mask = mask_lat_size[:, :, 0:1]
|
||||
first_frame_mask = torch.repeat_interleave(
|
||||
first_frame_mask, dim=2, repeats=components.vae_scale_factor_temporal
|
||||
)
|
||||
mask_lat_size = torch.concat([first_frame_mask, mask_lat_size[:, :, 1:, :]], dim=2)
|
||||
mask_lat_size = mask_lat_size.view(
|
||||
batch_size, -1, components.vae_scale_factor_temporal, latent_height, latent_width
|
||||
)
|
||||
mask_lat_size = mask_lat_size.transpose(1, 2)
|
||||
mask_lat_size = mask_lat_size.to(block_state.first_last_frame_latents.device)
|
||||
block_state.first_last_frame_latents = torch.concat(
|
||||
[mask_lat_size, block_state.first_last_frame_latents], dim=1
|
||||
)
|
||||
|
||||
self.set_block_state(state, block_state)
|
||||
return components, state
|
||||
|
||||
@@ -29,7 +29,7 @@ from ..modular_pipeline_utils import ComponentSpec, InputParam, OutputParam
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
|
||||
class WanDecodeStep(ModularPipelineBlocks):
|
||||
class WanImageVaeDecoderStep(ModularPipelineBlocks):
|
||||
model_name = "wan"
|
||||
|
||||
@property
|
||||
@@ -50,12 +50,6 @@ class WanDecodeStep(ModularPipelineBlocks):
|
||||
|
||||
@property
|
||||
def inputs(self) -> List[Tuple[str, Any]]:
|
||||
return [
|
||||
InputParam("output_type", default="pil"),
|
||||
]
|
||||
|
||||
@property
|
||||
def intermediate_inputs(self) -> List[str]:
|
||||
return [
|
||||
InputParam(
|
||||
"latents",
|
||||
@@ -80,25 +74,20 @@ class WanDecodeStep(ModularPipelineBlocks):
|
||||
block_state = self.get_block_state(state)
|
||||
vae_dtype = components.vae.dtype
|
||||
|
||||
if not block_state.output_type == "latent":
|
||||
latents = block_state.latents
|
||||
latents_mean = (
|
||||
torch.tensor(components.vae.config.latents_mean)
|
||||
.view(1, components.vae.config.z_dim, 1, 1, 1)
|
||||
.to(latents.device, latents.dtype)
|
||||
)
|
||||
latents_std = 1.0 / torch.tensor(components.vae.config.latents_std).view(
|
||||
1, components.vae.config.z_dim, 1, 1, 1
|
||||
).to(latents.device, latents.dtype)
|
||||
latents = latents / latents_std + latents_mean
|
||||
latents = latents.to(vae_dtype)
|
||||
block_state.videos = components.vae.decode(latents, return_dict=False)[0]
|
||||
else:
|
||||
block_state.videos = block_state.latents
|
||||
|
||||
block_state.videos = components.video_processor.postprocess_video(
|
||||
block_state.videos, output_type=block_state.output_type
|
||||
latents = block_state.latents
|
||||
latents_mean = (
|
||||
torch.tensor(components.vae.config.latents_mean)
|
||||
.view(1, components.vae.config.z_dim, 1, 1, 1)
|
||||
.to(latents.device, latents.dtype)
|
||||
)
|
||||
latents_std = 1.0 / torch.tensor(components.vae.config.latents_std).view(
|
||||
1, components.vae.config.z_dim, 1, 1, 1
|
||||
).to(latents.device, latents.dtype)
|
||||
latents = latents / latents_std + latents_mean
|
||||
latents = latents.to(vae_dtype)
|
||||
block_state.videos = components.vae.decode(latents, return_dict=False)[0]
|
||||
|
||||
block_state.videos = components.video_processor.postprocess_video(block_state.videos, output_type="np")
|
||||
|
||||
self.set_block_state(state, block_state)
|
||||
|
||||
|
||||
@@ -12,7 +12,7 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import Any, List, Tuple
|
||||
from typing import Any, Dict, List, Tuple
|
||||
|
||||
import torch
|
||||
|
||||
@@ -27,16 +27,156 @@ from ..modular_pipeline import (
|
||||
ModularPipelineBlocks,
|
||||
PipelineState,
|
||||
)
|
||||
from ..modular_pipeline_utils import ComponentSpec, InputParam, OutputParam
|
||||
from ..modular_pipeline_utils import ComponentSpec, ConfigSpec, InputParam
|
||||
from .modular_pipeline import WanModularPipeline
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
|
||||
class WanLoopBeforeDenoiser(ModularPipelineBlocks):
|
||||
model_name = "wan"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"step within the denoising loop that prepares the latent input for the denoiser. "
|
||||
"This block should be used to compose the `sub_blocks` attribute of a `LoopSequentialPipelineBlocks` "
|
||||
"object (e.g. `WanDenoiseLoopWrapper`)"
|
||||
)
|
||||
|
||||
@property
|
||||
def inputs(self) -> List[InputParam]:
|
||||
return [
|
||||
InputParam(
|
||||
"latents",
|
||||
required=True,
|
||||
type_hint=torch.Tensor,
|
||||
description="The initial latents to use for the denoising process. Can be generated in prepare_latent step.",
|
||||
),
|
||||
InputParam(
|
||||
"dtype",
|
||||
required=True,
|
||||
type_hint=torch.dtype,
|
||||
description="The dtype of the model inputs. Can be generated in input step.",
|
||||
),
|
||||
]
|
||||
|
||||
@torch.no_grad()
|
||||
def __call__(self, components: WanModularPipeline, block_state: BlockState, i: int, t: torch.Tensor):
|
||||
block_state.latent_model_input = block_state.latents.to(block_state.dtype)
|
||||
return components, block_state
|
||||
|
||||
|
||||
class WanImage2VideoLoopBeforeDenoiser(ModularPipelineBlocks):
|
||||
model_name = "wan"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"step within the denoising loop that prepares the latent input for the denoiser. "
|
||||
"This block should be used to compose the `sub_blocks` attribute of a `LoopSequentialPipelineBlocks` "
|
||||
"object (e.g. `WanDenoiseLoopWrapper`)"
|
||||
)
|
||||
|
||||
@property
|
||||
def inputs(self) -> List[InputParam]:
|
||||
return [
|
||||
InputParam(
|
||||
"latents",
|
||||
required=True,
|
||||
type_hint=torch.Tensor,
|
||||
description="The initial latents to use for the denoising process. Can be generated in prepare_latent step.",
|
||||
),
|
||||
InputParam(
|
||||
"first_frame_latents",
|
||||
required=True,
|
||||
type_hint=torch.Tensor,
|
||||
description="The first frame latents to use for the denoising process. Can be generated in prepare_first_frame_latents step.",
|
||||
),
|
||||
InputParam(
|
||||
"dtype",
|
||||
required=True,
|
||||
type_hint=torch.dtype,
|
||||
description="The dtype of the model inputs. Can be generated in input step.",
|
||||
),
|
||||
]
|
||||
|
||||
@torch.no_grad()
|
||||
def __call__(self, components: WanModularPipeline, block_state: BlockState, i: int, t: torch.Tensor):
|
||||
block_state.latent_model_input = torch.cat([block_state.latents, block_state.first_frame_latents], dim=1).to(
|
||||
block_state.dtype
|
||||
)
|
||||
return components, block_state
|
||||
|
||||
|
||||
class WanFLF2VLoopBeforeDenoiser(ModularPipelineBlocks):
|
||||
model_name = "wan"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"step within the denoising loop that prepares the latent input for the denoiser. "
|
||||
"This block should be used to compose the `sub_blocks` attribute of a `LoopSequentialPipelineBlocks` "
|
||||
"object (e.g. `WanDenoiseLoopWrapper`)"
|
||||
)
|
||||
|
||||
@property
|
||||
def inputs(self) -> List[InputParam]:
|
||||
return [
|
||||
InputParam(
|
||||
"latents",
|
||||
required=True,
|
||||
type_hint=torch.Tensor,
|
||||
description="The initial latents to use for the denoising process. Can be generated in prepare_latent step.",
|
||||
),
|
||||
InputParam(
|
||||
"first_last_frame_latents",
|
||||
required=True,
|
||||
type_hint=torch.Tensor,
|
||||
description="The first and last frame latents to use for the denoising process. Can be generated in prepare_first_last_frame_latents step.",
|
||||
),
|
||||
InputParam(
|
||||
"dtype",
|
||||
required=True,
|
||||
type_hint=torch.dtype,
|
||||
description="The dtype of the model inputs. Can be generated in input step.",
|
||||
),
|
||||
]
|
||||
|
||||
@torch.no_grad()
|
||||
def __call__(self, components: WanModularPipeline, block_state: BlockState, i: int, t: torch.Tensor):
|
||||
block_state.latent_model_input = torch.cat(
|
||||
[block_state.latents, block_state.first_last_frame_latents], dim=1
|
||||
).to(block_state.dtype)
|
||||
return components, block_state
|
||||
|
||||
|
||||
class WanLoopDenoiser(ModularPipelineBlocks):
|
||||
model_name = "wan"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
guider_input_fields: Dict[str, Any] = {"encoder_hidden_states": ("prompt_embeds", "negative_prompt_embeds")},
|
||||
):
|
||||
"""Initialize a denoiser block that calls the denoiser model. This block is used in Wan2.1.
|
||||
|
||||
Args:
|
||||
guider_input_fields: A dictionary that maps each argument expected by the denoiser model
|
||||
(for example, "encoder_hidden_states") to data stored on 'block_state'. The value can be either:
|
||||
|
||||
- A tuple of strings. For instance, {"encoder_hidden_states": ("prompt_embeds",
|
||||
"negative_prompt_embeds")} tells the guider to read `block_state.prompt_embeds` and
|
||||
`block_state.negative_prompt_embeds` and pass them as the conditional and unconditional batches of
|
||||
'encoder_hidden_states'.
|
||||
- A string. For example, {"encoder_hidden_image": "image_embeds"} makes the guider forward
|
||||
`block_state.image_embeds` for both conditional and unconditional batches.
|
||||
"""
|
||||
if not isinstance(guider_input_fields, dict):
|
||||
raise ValueError(f"guider_input_fields must be a dictionary but is {type(guider_input_fields)}")
|
||||
self._guider_input_fields = guider_input_fields
|
||||
super().__init__()
|
||||
|
||||
@property
|
||||
def expected_components(self) -> List[ComponentSpec]:
|
||||
return [
|
||||
@@ -59,49 +199,30 @@ class WanLoopDenoiser(ModularPipelineBlocks):
|
||||
|
||||
@property
|
||||
def inputs(self) -> List[Tuple[str, Any]]:
|
||||
return [
|
||||
inputs = [
|
||||
InputParam("attention_kwargs"),
|
||||
]
|
||||
|
||||
@property
|
||||
def intermediate_inputs(self) -> List[str]:
|
||||
return [
|
||||
InputParam(
|
||||
"latents",
|
||||
required=True,
|
||||
type_hint=torch.Tensor,
|
||||
description="The initial latents to use for the denoising process. Can be generated in prepare_latent step.",
|
||||
),
|
||||
InputParam(
|
||||
"num_inference_steps",
|
||||
required=True,
|
||||
type_hint=int,
|
||||
description="The number of inference steps to use for the denoising process. Can be generated in set_timesteps step.",
|
||||
),
|
||||
InputParam(
|
||||
kwargs_type="denoiser_input_fields",
|
||||
description=(
|
||||
"All conditional model inputs that need to be prepared with guider. "
|
||||
"It should contain prompt_embeds/negative_prompt_embeds. "
|
||||
"Please add `kwargs_type=denoiser_input_fields` to their parameter spec (`OutputParam`) when they are created and added to the pipeline state"
|
||||
),
|
||||
),
|
||||
]
|
||||
guider_input_names = []
|
||||
for value in self._guider_input_fields.values():
|
||||
if isinstance(value, tuple):
|
||||
guider_input_names.extend(value)
|
||||
else:
|
||||
guider_input_names.append(value)
|
||||
|
||||
for name in guider_input_names:
|
||||
inputs.append(InputParam(name=name, required=True, type_hint=torch.Tensor))
|
||||
return inputs
|
||||
|
||||
@torch.no_grad()
|
||||
def __call__(
|
||||
self, components: WanModularPipeline, block_state: BlockState, i: int, t: torch.Tensor
|
||||
) -> PipelineState:
|
||||
# Map the keys we'll see on each `guider_state_batch` (e.g. guider_state_batch.prompt_embeds)
|
||||
# to the corresponding (cond, uncond) fields on block_state. (e.g. block_state.prompt_embeds, block_state.negative_prompt_embeds)
|
||||
guider_inputs = {
|
||||
"prompt_embeds": (
|
||||
getattr(block_state, "prompt_embeds", None),
|
||||
getattr(block_state, "negative_prompt_embeds", None),
|
||||
),
|
||||
}
|
||||
transformer_dtype = components.transformer.dtype
|
||||
|
||||
components.guider.set_state(step=i, num_inference_steps=block_state.num_inference_steps, timestep=t)
|
||||
|
||||
# The guider splits model inputs into separate batches for conditional/unconditional predictions.
|
||||
@@ -112,22 +233,26 @@ class WanLoopDenoiser(ModularPipelineBlocks):
|
||||
# {"encoder_hidden_states": negative_prompt_embeds, "__guidance_identifier__": "pred_uncond"}, # unconditional batch
|
||||
# ]
|
||||
# Other guidance methods may return 1 batch (no guidance) or 3+ batches (e.g., PAG, APG).
|
||||
guider_state = components.guider.prepare_inputs(guider_inputs)
|
||||
guider_state = components.guider.prepare_inputs_from_block_state(block_state, self._guider_input_fields)
|
||||
|
||||
# run the denoiser for each guidance batch
|
||||
for guider_state_batch in guider_state:
|
||||
components.guider.prepare_models(components.transformer)
|
||||
cond_kwargs = {input_name: getattr(guider_state_batch, input_name) for input_name in guider_inputs.keys()}
|
||||
prompt_embeds = cond_kwargs.pop("prompt_embeds")
|
||||
cond_kwargs = guider_state_batch.as_dict()
|
||||
cond_kwargs = {
|
||||
k: v.to(block_state.dtype) if isinstance(v, torch.Tensor) else v
|
||||
for k, v in cond_kwargs.items()
|
||||
if k in self._guider_input_fields.keys()
|
||||
}
|
||||
|
||||
# Predict the noise residual
|
||||
# store the noise_pred in guider_state_batch so that we can apply guidance across all batches
|
||||
guider_state_batch.noise_pred = components.transformer(
|
||||
hidden_states=block_state.latents.to(transformer_dtype),
|
||||
timestep=t.flatten(),
|
||||
encoder_hidden_states=prompt_embeds,
|
||||
hidden_states=block_state.latent_model_input.to(block_state.dtype),
|
||||
timestep=t.expand(block_state.latent_model_input.shape[0]).to(block_state.dtype),
|
||||
attention_kwargs=block_state.attention_kwargs,
|
||||
return_dict=False,
|
||||
**cond_kwargs,
|
||||
)[0]
|
||||
components.guider.cleanup_models(components.transformer)
|
||||
|
||||
@@ -137,6 +262,141 @@ class WanLoopDenoiser(ModularPipelineBlocks):
|
||||
return components, block_state
|
||||
|
||||
|
||||
class Wan22LoopDenoiser(ModularPipelineBlocks):
|
||||
model_name = "wan"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
guider_input_fields: Dict[str, Any] = {"encoder_hidden_states": ("prompt_embeds", "negative_prompt_embeds")},
|
||||
):
|
||||
"""Initialize a denoiser block that calls the denoiser model. This block is used in Wan2.2.
|
||||
|
||||
Args:
|
||||
guider_input_fields: A dictionary that maps each argument expected by the denoiser model
|
||||
(for example, "encoder_hidden_states") to data stored on `block_state`. The value can be either:
|
||||
|
||||
- A tuple of strings. For instance, `{"encoder_hidden_states": ("prompt_embeds",
|
||||
"negative_prompt_embeds")}` tells the guider to read `block_state.prompt_embeds` and
|
||||
`block_state.negative_prompt_embeds` and pass them as the conditional and unconditional batches of
|
||||
`encoder_hidden_states`.
|
||||
- A string. For example, `{"encoder_hidden_image": "image_embeds"}` makes the guider forward
|
||||
`block_state.image_embeds` for both conditional and unconditional batches.
|
||||
"""
|
||||
if not isinstance(guider_input_fields, dict):
|
||||
raise ValueError(f"guider_input_fields must be a dictionary but is {type(guider_input_fields)}")
|
||||
self._guider_input_fields = guider_input_fields
|
||||
super().__init__()
|
||||
|
||||
@property
|
||||
def expected_components(self) -> List[ComponentSpec]:
|
||||
return [
|
||||
ComponentSpec(
|
||||
"guider",
|
||||
ClassifierFreeGuidance,
|
||||
config=FrozenDict({"guidance_scale": 4.0}),
|
||||
default_creation_method="from_config",
|
||||
),
|
||||
ComponentSpec(
|
||||
"guider_2",
|
||||
ClassifierFreeGuidance,
|
||||
config=FrozenDict({"guidance_scale": 3.0}),
|
||||
default_creation_method="from_config",
|
||||
),
|
||||
ComponentSpec("transformer", WanTransformer3DModel),
|
||||
ComponentSpec("transformer_2", WanTransformer3DModel),
|
||||
]
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"Step within the denoising loop that denoise the latents with guidance. "
|
||||
"This block should be used to compose the `sub_blocks` attribute of a `LoopSequentialPipelineBlocks` "
|
||||
"object (e.g. `WanDenoiseLoopWrapper`)"
|
||||
)
|
||||
|
||||
@property
|
||||
def expected_configs(self) -> List[ConfigSpec]:
|
||||
return [
|
||||
ConfigSpec(
|
||||
name="boundary_ratio",
|
||||
default=0.875,
|
||||
description="The boundary ratio to divide the denoising loop into high noise and low noise stages.",
|
||||
),
|
||||
]
|
||||
|
||||
@property
|
||||
def inputs(self) -> List[Tuple[str, Any]]:
|
||||
inputs = [
|
||||
InputParam("attention_kwargs"),
|
||||
InputParam(
|
||||
"num_inference_steps",
|
||||
required=True,
|
||||
type_hint=int,
|
||||
description="The number of inference steps to use for the denoising process. Can be generated in set_timesteps step.",
|
||||
),
|
||||
]
|
||||
guider_input_names = []
|
||||
for value in self._guider_input_fields.values():
|
||||
if isinstance(value, tuple):
|
||||
guider_input_names.extend(value)
|
||||
else:
|
||||
guider_input_names.append(value)
|
||||
|
||||
for name in guider_input_names:
|
||||
inputs.append(InputParam(name=name, required=True, type_hint=torch.Tensor))
|
||||
return inputs
|
||||
|
||||
@torch.no_grad()
|
||||
def __call__(
|
||||
self, components: WanModularPipeline, block_state: BlockState, i: int, t: torch.Tensor
|
||||
) -> PipelineState:
|
||||
boundary_timestep = components.config.boundary_ratio * components.num_train_timesteps
|
||||
if t >= boundary_timestep:
|
||||
block_state.current_model = components.transformer
|
||||
block_state.guider = components.guider
|
||||
else:
|
||||
block_state.current_model = components.transformer_2
|
||||
block_state.guider = components.guider_2
|
||||
|
||||
block_state.guider.set_state(step=i, num_inference_steps=block_state.num_inference_steps, timestep=t)
|
||||
|
||||
# The guider splits model inputs into separate batches for conditional/unconditional predictions.
|
||||
# For CFG with guider_inputs = {"encoder_hidden_states": (prompt_embeds, negative_prompt_embeds)}:
|
||||
# you will get a guider_state with two batches:
|
||||
# guider_state = [
|
||||
# {"encoder_hidden_states": prompt_embeds, "__guidance_identifier__": "pred_cond"}, # conditional batch
|
||||
# {"encoder_hidden_states": negative_prompt_embeds, "__guidance_identifier__": "pred_uncond"}, # unconditional batch
|
||||
# ]
|
||||
# Other guidance methods may return 1 batch (no guidance) or 3+ batches (e.g., PAG, APG).
|
||||
guider_state = block_state.guider.prepare_inputs_from_block_state(block_state, self._guider_input_fields)
|
||||
|
||||
# run the denoiser for each guidance batch
|
||||
for guider_state_batch in guider_state:
|
||||
block_state.guider.prepare_models(block_state.current_model)
|
||||
cond_kwargs = guider_state_batch.as_dict()
|
||||
cond_kwargs = {
|
||||
k: v.to(block_state.dtype) if isinstance(v, torch.Tensor) else v
|
||||
for k, v in cond_kwargs.items()
|
||||
if k in self._guider_input_fields.keys()
|
||||
}
|
||||
|
||||
# Predict the noise residual
|
||||
# store the noise_pred in guider_state_batch so that we can apply guidance across all batches
|
||||
guider_state_batch.noise_pred = block_state.current_model(
|
||||
hidden_states=block_state.latent_model_input.to(block_state.dtype),
|
||||
timestep=t.expand(block_state.latent_model_input.shape[0]).to(block_state.dtype),
|
||||
attention_kwargs=block_state.attention_kwargs,
|
||||
return_dict=False,
|
||||
**cond_kwargs,
|
||||
)[0]
|
||||
block_state.guider.cleanup_models(block_state.current_model)
|
||||
|
||||
# Perform guidance
|
||||
block_state.noise_pred = block_state.guider(guider_state)[0]
|
||||
|
||||
return components, block_state
|
||||
|
||||
|
||||
class WanLoopAfterDenoiser(ModularPipelineBlocks):
|
||||
model_name = "wan"
|
||||
|
||||
@@ -154,20 +414,6 @@ class WanLoopAfterDenoiser(ModularPipelineBlocks):
|
||||
"object (e.g. `WanDenoiseLoopWrapper`)"
|
||||
)
|
||||
|
||||
@property
|
||||
def inputs(self) -> List[Tuple[str, Any]]:
|
||||
return []
|
||||
|
||||
@property
|
||||
def intermediate_inputs(self) -> List[str]:
|
||||
return [
|
||||
InputParam("generator"),
|
||||
]
|
||||
|
||||
@property
|
||||
def intermediate_outputs(self) -> List[OutputParam]:
|
||||
return [OutputParam("latents", type_hint=torch.Tensor, description="The denoised latents")]
|
||||
|
||||
@torch.no_grad()
|
||||
def __call__(self, components: WanModularPipeline, block_state: BlockState, i: int, t: torch.Tensor):
|
||||
# Perform scheduler step using the predicted output
|
||||
@@ -198,18 +444,11 @@ class WanDenoiseLoopWrapper(LoopSequentialPipelineBlocks):
|
||||
@property
|
||||
def loop_expected_components(self) -> List[ComponentSpec]:
|
||||
return [
|
||||
ComponentSpec(
|
||||
"guider",
|
||||
ClassifierFreeGuidance,
|
||||
config=FrozenDict({"guidance_scale": 5.0}),
|
||||
default_creation_method="from_config",
|
||||
),
|
||||
ComponentSpec("scheduler", UniPCMultistepScheduler),
|
||||
ComponentSpec("transformer", WanTransformer3DModel),
|
||||
]
|
||||
|
||||
@property
|
||||
def loop_intermediate_inputs(self) -> List[InputParam]:
|
||||
def loop_inputs(self) -> List[InputParam]:
|
||||
return [
|
||||
InputParam(
|
||||
"timesteps",
|
||||
@@ -248,7 +487,12 @@ class WanDenoiseLoopWrapper(LoopSequentialPipelineBlocks):
|
||||
|
||||
class WanDenoiseStep(WanDenoiseLoopWrapper):
|
||||
block_classes = [
|
||||
WanLoopDenoiser,
|
||||
WanLoopBeforeDenoiser,
|
||||
WanLoopDenoiser(
|
||||
guider_input_fields={
|
||||
"encoder_hidden_states": ("prompt_embeds", "negative_prompt_embeds"),
|
||||
}
|
||||
),
|
||||
WanLoopAfterDenoiser,
|
||||
]
|
||||
block_names = ["before_denoiser", "denoiser", "after_denoiser"]
|
||||
@@ -259,7 +503,110 @@ class WanDenoiseStep(WanDenoiseLoopWrapper):
|
||||
"Denoise step that iteratively denoise the latents. \n"
|
||||
"Its loop logic is defined in `WanDenoiseLoopWrapper.__call__` method \n"
|
||||
"At each iteration, it runs blocks defined in `sub_blocks` sequentially:\n"
|
||||
" - `WanLoopBeforeDenoiser`\n"
|
||||
" - `WanLoopDenoiser`\n"
|
||||
" - `WanLoopAfterDenoiser`\n"
|
||||
"This block supports both text2vid tasks."
|
||||
"This block supports text-to-video tasks for wan2.1."
|
||||
)
|
||||
|
||||
|
||||
class Wan22DenoiseStep(WanDenoiseLoopWrapper):
|
||||
block_classes = [
|
||||
WanLoopBeforeDenoiser,
|
||||
Wan22LoopDenoiser(
|
||||
guider_input_fields={
|
||||
"encoder_hidden_states": ("prompt_embeds", "negative_prompt_embeds"),
|
||||
}
|
||||
),
|
||||
WanLoopAfterDenoiser,
|
||||
]
|
||||
block_names = ["before_denoiser", "denoiser", "after_denoiser"]
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"Denoise step that iteratively denoise the latents. \n"
|
||||
"Its loop logic is defined in `WanDenoiseLoopWrapper.__call__` method \n"
|
||||
"At each iteration, it runs blocks defined in `sub_blocks` sequentially:\n"
|
||||
" - `WanLoopBeforeDenoiser`\n"
|
||||
" - `Wan22LoopDenoiser`\n"
|
||||
" - `WanLoopAfterDenoiser`\n"
|
||||
"This block supports text-to-video tasks for Wan2.2."
|
||||
)
|
||||
|
||||
|
||||
class WanImage2VideoDenoiseStep(WanDenoiseLoopWrapper):
|
||||
block_classes = [
|
||||
WanImage2VideoLoopBeforeDenoiser,
|
||||
WanLoopDenoiser(
|
||||
guider_input_fields={
|
||||
"encoder_hidden_states": ("prompt_embeds", "negative_prompt_embeds"),
|
||||
"encoder_hidden_states_image": "image_embeds",
|
||||
}
|
||||
),
|
||||
WanLoopAfterDenoiser,
|
||||
]
|
||||
block_names = ["before_denoiser", "denoiser", "after_denoiser"]
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"Denoise step that iteratively denoise the latents. \n"
|
||||
"Its loop logic is defined in `WanDenoiseLoopWrapper.__call__` method \n"
|
||||
"At each iteration, it runs blocks defined in `sub_blocks` sequentially:\n"
|
||||
" - `WanImage2VideoLoopBeforeDenoiser`\n"
|
||||
" - `WanLoopDenoiser`\n"
|
||||
" - `WanLoopAfterDenoiser`\n"
|
||||
"This block supports image-to-video tasks for wan2.1."
|
||||
)
|
||||
|
||||
|
||||
class Wan22Image2VideoDenoiseStep(WanDenoiseLoopWrapper):
|
||||
block_classes = [
|
||||
WanImage2VideoLoopBeforeDenoiser,
|
||||
Wan22LoopDenoiser(
|
||||
guider_input_fields={
|
||||
"encoder_hidden_states": ("prompt_embeds", "negative_prompt_embeds"),
|
||||
}
|
||||
),
|
||||
WanLoopAfterDenoiser,
|
||||
]
|
||||
block_names = ["before_denoiser", "denoiser", "after_denoiser"]
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"Denoise step that iteratively denoise the latents. \n"
|
||||
"Its loop logic is defined in `WanDenoiseLoopWrapper.__call__` method \n"
|
||||
"At each iteration, it runs blocks defined in `sub_blocks` sequentially:\n"
|
||||
" - `WanImage2VideoLoopBeforeDenoiser`\n"
|
||||
" - `WanLoopDenoiser`\n"
|
||||
" - `WanLoopAfterDenoiser`\n"
|
||||
"This block supports image-to-video tasks for Wan2.2."
|
||||
)
|
||||
|
||||
|
||||
class WanFLF2VDenoiseStep(WanDenoiseLoopWrapper):
|
||||
block_classes = [
|
||||
WanFLF2VLoopBeforeDenoiser,
|
||||
WanLoopDenoiser(
|
||||
guider_input_fields={
|
||||
"encoder_hidden_states": ("prompt_embeds", "negative_prompt_embeds"),
|
||||
"encoder_hidden_states_image": "image_embeds",
|
||||
}
|
||||
),
|
||||
WanLoopAfterDenoiser,
|
||||
]
|
||||
block_names = ["before_denoiser", "denoiser", "after_denoiser"]
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"Denoise step that iteratively denoise the latents. \n"
|
||||
"Its loop logic is defined in `WanDenoiseLoopWrapper.__call__` method \n"
|
||||
"At each iteration, it runs blocks defined in `sub_blocks` sequentially:\n"
|
||||
" - `WanFLF2VLoopBeforeDenoiser`\n"
|
||||
" - `WanLoopDenoiser`\n"
|
||||
" - `WanLoopAfterDenoiser`\n"
|
||||
"This block supports FLF2V tasks for wan2.1."
|
||||
)
|
||||
|
||||
@@ -15,21 +15,29 @@
|
||||
import html
|
||||
from typing import List, Optional, Union
|
||||
|
||||
import numpy as np
|
||||
import PIL
|
||||
import regex as re
|
||||
import torch
|
||||
from transformers import AutoTokenizer, UMT5EncoderModel
|
||||
from transformers import AutoTokenizer, CLIPImageProcessor, CLIPVisionModel, UMT5EncoderModel
|
||||
|
||||
from ...configuration_utils import FrozenDict
|
||||
from ...guiders import ClassifierFreeGuidance
|
||||
from ...utils import is_ftfy_available, logging
|
||||
from ...image_processor import PipelineImageInput
|
||||
from ...models import AutoencoderKLWan
|
||||
from ...utils import is_ftfy_available, is_torchvision_available, logging
|
||||
from ...video_processor import VideoProcessor
|
||||
from ..modular_pipeline import ModularPipelineBlocks, PipelineState
|
||||
from ..modular_pipeline_utils import ComponentSpec, ConfigSpec, InputParam, OutputParam
|
||||
from ..modular_pipeline_utils import ComponentSpec, InputParam, OutputParam
|
||||
from .modular_pipeline import WanModularPipeline
|
||||
|
||||
|
||||
if is_ftfy_available():
|
||||
import ftfy
|
||||
|
||||
if is_torchvision_available():
|
||||
from torchvision import transforms
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
@@ -51,6 +59,103 @@ def prompt_clean(text):
|
||||
return text
|
||||
|
||||
|
||||
def get_t5_prompt_embeds(
|
||||
text_encoder: UMT5EncoderModel,
|
||||
tokenizer: AutoTokenizer,
|
||||
prompt: Union[str, List[str]],
|
||||
max_sequence_length: int,
|
||||
device: torch.device,
|
||||
):
|
||||
dtype = text_encoder.dtype
|
||||
prompt = [prompt] if isinstance(prompt, str) else prompt
|
||||
prompt = [prompt_clean(u) for u in prompt]
|
||||
|
||||
text_inputs = tokenizer(
|
||||
prompt,
|
||||
padding="max_length",
|
||||
max_length=max_sequence_length,
|
||||
truncation=True,
|
||||
add_special_tokens=True,
|
||||
return_attention_mask=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
text_input_ids, mask = text_inputs.input_ids, text_inputs.attention_mask
|
||||
seq_lens = mask.gt(0).sum(dim=1).long()
|
||||
prompt_embeds = text_encoder(text_input_ids.to(device), mask.to(device)).last_hidden_state
|
||||
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
||||
prompt_embeds = [u[:v] for u, v in zip(prompt_embeds, seq_lens)]
|
||||
prompt_embeds = torch.stack(
|
||||
[torch.cat([u, u.new_zeros(max_sequence_length - u.size(0), u.size(1))]) for u in prompt_embeds], dim=0
|
||||
)
|
||||
|
||||
return prompt_embeds
|
||||
|
||||
|
||||
def encode_image(
|
||||
image: PipelineImageInput,
|
||||
image_processor: CLIPImageProcessor,
|
||||
image_encoder: CLIPVisionModel,
|
||||
device: Optional[torch.device] = None,
|
||||
):
|
||||
image = image_processor(images=image, return_tensors="pt").to(device)
|
||||
image_embeds = image_encoder(**image, output_hidden_states=True)
|
||||
return image_embeds.hidden_states[-2]
|
||||
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
||||
def retrieve_latents(
|
||||
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
||||
):
|
||||
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
||||
return encoder_output.latent_dist.sample(generator)
|
||||
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
||||
return encoder_output.latent_dist.mode()
|
||||
elif hasattr(encoder_output, "latents"):
|
||||
return encoder_output.latents
|
||||
else:
|
||||
raise AttributeError("Could not access latents of provided encoder_output")
|
||||
|
||||
|
||||
def encode_vae_image(
|
||||
video_tensor: torch.Tensor,
|
||||
vae: AutoencoderKLWan,
|
||||
generator: torch.Generator,
|
||||
device: torch.device,
|
||||
dtype: torch.dtype,
|
||||
latent_channels: int = 16,
|
||||
):
|
||||
if not isinstance(video_tensor, torch.Tensor):
|
||||
raise ValueError(f"Expected video_tensor to be a tensor, got {type(video_tensor)}.")
|
||||
|
||||
if isinstance(generator, list) and len(generator) != video_tensor.shape[0]:
|
||||
raise ValueError(
|
||||
f"You have passed a list of generators of length {len(generator)}, but it is not same as number of images {video_tensor.shape[0]}."
|
||||
)
|
||||
|
||||
video_tensor = video_tensor.to(device=device, dtype=dtype)
|
||||
|
||||
if isinstance(generator, list):
|
||||
video_latents = [
|
||||
retrieve_latents(vae.encode(video_tensor[i : i + 1]), generator=generator[i], sample_mode="argmax")
|
||||
for i in range(video_tensor.shape[0])
|
||||
]
|
||||
video_latents = torch.cat(video_latents, dim=0)
|
||||
else:
|
||||
video_latents = retrieve_latents(vae.encode(video_tensor), sample_mode="argmax")
|
||||
|
||||
latents_mean = (
|
||||
torch.tensor(vae.config.latents_mean)
|
||||
.view(1, latent_channels, 1, 1, 1)
|
||||
.to(video_latents.device, video_latents.dtype)
|
||||
)
|
||||
latents_std = 1.0 / torch.tensor(vae.config.latents_std).view(1, latent_channels, 1, 1, 1).to(
|
||||
video_latents.device, video_latents.dtype
|
||||
)
|
||||
video_latents = (video_latents - latents_mean) * latents_std
|
||||
|
||||
return video_latents
|
||||
|
||||
|
||||
class WanTextEncoderStep(ModularPipelineBlocks):
|
||||
model_name = "wan"
|
||||
|
||||
@@ -71,16 +176,12 @@ class WanTextEncoderStep(ModularPipelineBlocks):
|
||||
),
|
||||
]
|
||||
|
||||
@property
|
||||
def expected_configs(self) -> List[ConfigSpec]:
|
||||
return []
|
||||
|
||||
@property
|
||||
def inputs(self) -> List[InputParam]:
|
||||
return [
|
||||
InputParam("prompt"),
|
||||
InputParam("negative_prompt"),
|
||||
InputParam("attention_kwargs"),
|
||||
InputParam("max_sequence_length", default=512),
|
||||
]
|
||||
|
||||
@property
|
||||
@@ -107,47 +208,13 @@ class WanTextEncoderStep(ModularPipelineBlocks):
|
||||
):
|
||||
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(block_state.prompt)}")
|
||||
|
||||
@staticmethod
|
||||
def _get_t5_prompt_embeds(
|
||||
components,
|
||||
prompt: Union[str, List[str]],
|
||||
max_sequence_length: int,
|
||||
device: torch.device,
|
||||
):
|
||||
dtype = components.text_encoder.dtype
|
||||
prompt = [prompt] if isinstance(prompt, str) else prompt
|
||||
prompt = [prompt_clean(u) for u in prompt]
|
||||
|
||||
text_inputs = components.tokenizer(
|
||||
prompt,
|
||||
padding="max_length",
|
||||
max_length=max_sequence_length,
|
||||
truncation=True,
|
||||
add_special_tokens=True,
|
||||
return_attention_mask=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
text_input_ids, mask = text_inputs.input_ids, text_inputs.attention_mask
|
||||
seq_lens = mask.gt(0).sum(dim=1).long()
|
||||
prompt_embeds = components.text_encoder(text_input_ids.to(device), mask.to(device)).last_hidden_state
|
||||
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
||||
prompt_embeds = [u[:v] for u, v in zip(prompt_embeds, seq_lens)]
|
||||
prompt_embeds = torch.stack(
|
||||
[torch.cat([u, u.new_zeros(max_sequence_length - u.size(0), u.size(1))]) for u in prompt_embeds], dim=0
|
||||
)
|
||||
|
||||
return prompt_embeds
|
||||
|
||||
@staticmethod
|
||||
def encode_prompt(
|
||||
components,
|
||||
prompt: str,
|
||||
device: Optional[torch.device] = None,
|
||||
num_videos_per_prompt: int = 1,
|
||||
prepare_unconditional_embeds: bool = True,
|
||||
negative_prompt: Optional[str] = None,
|
||||
prompt_embeds: Optional[torch.Tensor] = None,
|
||||
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
||||
max_sequence_length: int = 512,
|
||||
):
|
||||
r"""
|
||||
@@ -158,32 +225,29 @@ class WanTextEncoderStep(ModularPipelineBlocks):
|
||||
prompt to be encoded
|
||||
device: (`torch.device`):
|
||||
torch device
|
||||
num_videos_per_prompt (`int`):
|
||||
number of videos that should be generated per prompt
|
||||
prepare_unconditional_embeds (`bool`):
|
||||
whether to use prepare unconditional embeddings or not
|
||||
negative_prompt (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
||||
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
||||
less than `1`).
|
||||
prompt_embeds (`torch.Tensor`, *optional*):
|
||||
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
||||
provided, text embeddings will be generated from `prompt` input argument.
|
||||
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
||||
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
||||
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
||||
argument.
|
||||
max_sequence_length (`int`, defaults to `512`):
|
||||
The maximum number of text tokens to be used for the generation process.
|
||||
"""
|
||||
device = device or components._execution_device
|
||||
prompt = [prompt] if isinstance(prompt, str) else prompt
|
||||
batch_size = len(prompt) if prompt is not None else prompt_embeds.shape[0]
|
||||
if not isinstance(prompt, list):
|
||||
prompt = [prompt]
|
||||
batch_size = len(prompt)
|
||||
|
||||
if prompt_embeds is None:
|
||||
prompt_embeds = WanTextEncoderStep._get_t5_prompt_embeds(components, prompt, max_sequence_length, device)
|
||||
prompt_embeds = get_t5_prompt_embeds(
|
||||
text_encoder=components.text_encoder,
|
||||
tokenizer=components.tokenizer,
|
||||
prompt=prompt,
|
||||
max_sequence_length=max_sequence_length,
|
||||
device=device,
|
||||
)
|
||||
|
||||
if prepare_unconditional_embeds and negative_prompt_embeds is None:
|
||||
if prepare_unconditional_embeds:
|
||||
negative_prompt = negative_prompt or ""
|
||||
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
|
||||
|
||||
@@ -199,18 +263,14 @@ class WanTextEncoderStep(ModularPipelineBlocks):
|
||||
" the batch size of `prompt`."
|
||||
)
|
||||
|
||||
negative_prompt_embeds = WanTextEncoderStep._get_t5_prompt_embeds(
|
||||
components, negative_prompt, max_sequence_length, device
|
||||
negative_prompt_embeds = get_t5_prompt_embeds(
|
||||
text_encoder=components.text_encoder,
|
||||
tokenizer=components.tokenizer,
|
||||
prompt=negative_prompt,
|
||||
max_sequence_length=max_sequence_length,
|
||||
device=device,
|
||||
)
|
||||
|
||||
bs_embed, seq_len, _ = prompt_embeds.shape
|
||||
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
|
||||
prompt_embeds = prompt_embeds.view(bs_embed * num_videos_per_prompt, seq_len, -1)
|
||||
|
||||
if prepare_unconditional_embeds:
|
||||
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_videos_per_prompt, 1)
|
||||
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1)
|
||||
|
||||
return prompt_embeds, negative_prompt_embeds
|
||||
|
||||
@torch.no_grad()
|
||||
@@ -219,7 +279,6 @@ class WanTextEncoderStep(ModularPipelineBlocks):
|
||||
block_state = self.get_block_state(state)
|
||||
self.check_inputs(block_state)
|
||||
|
||||
block_state.prepare_unconditional_embeds = components.guider.num_conditions > 1
|
||||
block_state.device = components._execution_device
|
||||
|
||||
# Encode input prompt
|
||||
@@ -227,16 +286,382 @@ class WanTextEncoderStep(ModularPipelineBlocks):
|
||||
block_state.prompt_embeds,
|
||||
block_state.negative_prompt_embeds,
|
||||
) = self.encode_prompt(
|
||||
components,
|
||||
block_state.prompt,
|
||||
block_state.device,
|
||||
1,
|
||||
block_state.prepare_unconditional_embeds,
|
||||
block_state.negative_prompt,
|
||||
prompt_embeds=None,
|
||||
negative_prompt_embeds=None,
|
||||
components=components,
|
||||
prompt=block_state.prompt,
|
||||
device=block_state.device,
|
||||
prepare_unconditional_embeds=components.requires_unconditional_embeds,
|
||||
negative_prompt=block_state.negative_prompt,
|
||||
max_sequence_length=block_state.max_sequence_length,
|
||||
)
|
||||
|
||||
# Add outputs
|
||||
self.set_block_state(state, block_state)
|
||||
return components, state
|
||||
|
||||
|
||||
class WanImageResizeStep(ModularPipelineBlocks):
|
||||
model_name = "wan"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return "Image Resize step that resize the image to the target area (height * width) while maintaining the aspect ratio."
|
||||
|
||||
@property
|
||||
def inputs(self) -> List[InputParam]:
|
||||
return [
|
||||
InputParam("image", type_hint=PIL.Image.Image, required=True),
|
||||
InputParam("height", type_hint=int, default=480),
|
||||
InputParam("width", type_hint=int, default=832),
|
||||
]
|
||||
|
||||
@property
|
||||
def intermediate_outputs(self) -> List[OutputParam]:
|
||||
return [
|
||||
OutputParam("resized_image", type_hint=PIL.Image.Image),
|
||||
]
|
||||
|
||||
def __call__(self, components: WanModularPipeline, state: PipelineState) -> PipelineState:
|
||||
block_state = self.get_block_state(state)
|
||||
max_area = block_state.height * block_state.width
|
||||
|
||||
image = block_state.image
|
||||
aspect_ratio = image.height / image.width
|
||||
mod_value = components.vae_scale_factor_spatial * components.patch_size_spatial
|
||||
block_state.height = round(np.sqrt(max_area * aspect_ratio)) // mod_value * mod_value
|
||||
block_state.width = round(np.sqrt(max_area / aspect_ratio)) // mod_value * mod_value
|
||||
block_state.resized_image = image.resize((block_state.width, block_state.height))
|
||||
|
||||
self.set_block_state(state, block_state)
|
||||
return components, state
|
||||
|
||||
|
||||
class WanImageCropResizeStep(ModularPipelineBlocks):
|
||||
model_name = "wan"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return "Image Resize step that resize the last_image to the same size of first frame image with center crop."
|
||||
|
||||
@property
|
||||
def inputs(self) -> List[InputParam]:
|
||||
return [
|
||||
InputParam(
|
||||
"resized_image", type_hint=PIL.Image.Image, required=True, description="The resized first frame image"
|
||||
),
|
||||
InputParam("last_image", type_hint=PIL.Image.Image, required=True, description="The last frameimage"),
|
||||
]
|
||||
|
||||
@property
|
||||
def intermediate_outputs(self) -> List[OutputParam]:
|
||||
return [
|
||||
OutputParam("resized_last_image", type_hint=PIL.Image.Image),
|
||||
]
|
||||
|
||||
def __call__(self, components: WanModularPipeline, state: PipelineState) -> PipelineState:
|
||||
block_state = self.get_block_state(state)
|
||||
|
||||
height = block_state.resized_image.height
|
||||
width = block_state.resized_image.width
|
||||
image = block_state.last_image
|
||||
|
||||
# Calculate resize ratio to match first frame dimensions
|
||||
resize_ratio = max(width / image.width, height / image.height)
|
||||
|
||||
# Resize the image
|
||||
width = round(image.width * resize_ratio)
|
||||
height = round(image.height * resize_ratio)
|
||||
size = [width, height]
|
||||
resized_image = transforms.functional.center_crop(image, size)
|
||||
block_state.resized_last_image = resized_image
|
||||
|
||||
self.set_block_state(state, block_state)
|
||||
return components, state
|
||||
|
||||
|
||||
class WanImageEncoderStep(ModularPipelineBlocks):
|
||||
model_name = "wan"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return "Image Encoder step that generate image_embeds based on first frame image to guide the video generation"
|
||||
|
||||
@property
|
||||
def expected_components(self) -> List[ComponentSpec]:
|
||||
return [
|
||||
ComponentSpec("image_processor", CLIPImageProcessor),
|
||||
ComponentSpec("image_encoder", CLIPVisionModel),
|
||||
]
|
||||
|
||||
@property
|
||||
def inputs(self) -> List[InputParam]:
|
||||
return [
|
||||
InputParam("resized_image", type_hint=PIL.Image.Image, required=True),
|
||||
]
|
||||
|
||||
@property
|
||||
def intermediate_outputs(self) -> List[OutputParam]:
|
||||
return [
|
||||
OutputParam("image_embeds", type_hint=torch.Tensor, description="The image embeddings"),
|
||||
]
|
||||
|
||||
def __call__(self, components: WanModularPipeline, state: PipelineState) -> PipelineState:
|
||||
block_state = self.get_block_state(state)
|
||||
|
||||
device = components._execution_device
|
||||
|
||||
image = block_state.resized_image
|
||||
|
||||
image_embeds = encode_image(
|
||||
image_processor=components.image_processor,
|
||||
image_encoder=components.image_encoder,
|
||||
image=image,
|
||||
device=device,
|
||||
)
|
||||
block_state.image_embeds = image_embeds
|
||||
self.set_block_state(state, block_state)
|
||||
return components, state
|
||||
|
||||
|
||||
class WanFirstLastFrameImageEncoderStep(ModularPipelineBlocks):
|
||||
model_name = "wan"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return "Image Encoder step that generate image_embeds based on first and last frame images to guide the video generation"
|
||||
|
||||
@property
|
||||
def expected_components(self) -> List[ComponentSpec]:
|
||||
return [
|
||||
ComponentSpec("image_processor", CLIPImageProcessor),
|
||||
ComponentSpec("image_encoder", CLIPVisionModel),
|
||||
]
|
||||
|
||||
@property
|
||||
def inputs(self) -> List[InputParam]:
|
||||
return [
|
||||
InputParam("resized_image", type_hint=PIL.Image.Image, required=True),
|
||||
InputParam("resized_last_image", type_hint=PIL.Image.Image, required=True),
|
||||
]
|
||||
|
||||
@property
|
||||
def intermediate_outputs(self) -> List[OutputParam]:
|
||||
return [
|
||||
OutputParam("image_embeds", type_hint=torch.Tensor, description="The image embeddings"),
|
||||
]
|
||||
|
||||
def __call__(self, components: WanModularPipeline, state: PipelineState) -> PipelineState:
|
||||
block_state = self.get_block_state(state)
|
||||
|
||||
device = components._execution_device
|
||||
|
||||
first_frame_image = block_state.resized_image
|
||||
last_frame_image = block_state.resized_last_image
|
||||
|
||||
image_embeds = encode_image(
|
||||
image_processor=components.image_processor,
|
||||
image_encoder=components.image_encoder,
|
||||
image=[first_frame_image, last_frame_image],
|
||||
device=device,
|
||||
)
|
||||
block_state.image_embeds = image_embeds
|
||||
self.set_block_state(state, block_state)
|
||||
return components, state
|
||||
|
||||
|
||||
class WanVaeImageEncoderStep(ModularPipelineBlocks):
|
||||
model_name = "wan"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return "Vae Image Encoder step that generate condition_latents based on first frame image to guide the video generation"
|
||||
|
||||
@property
|
||||
def expected_components(self) -> List[ComponentSpec]:
|
||||
return [
|
||||
ComponentSpec("vae", AutoencoderKLWan),
|
||||
ComponentSpec(
|
||||
"video_processor",
|
||||
VideoProcessor,
|
||||
config=FrozenDict({"vae_scale_factor": 8}),
|
||||
default_creation_method="from_config",
|
||||
),
|
||||
]
|
||||
|
||||
@property
|
||||
def inputs(self) -> List[InputParam]:
|
||||
return [
|
||||
InputParam("resized_image", type_hint=PIL.Image.Image, required=True),
|
||||
InputParam("height"),
|
||||
InputParam("width"),
|
||||
InputParam("num_frames"),
|
||||
InputParam("generator"),
|
||||
]
|
||||
|
||||
@property
|
||||
def intermediate_outputs(self) -> List[OutputParam]:
|
||||
return [
|
||||
OutputParam(
|
||||
"first_frame_latents",
|
||||
type_hint=torch.Tensor,
|
||||
description="video latent representation with the first frame image condition",
|
||||
),
|
||||
]
|
||||
|
||||
@staticmethod
|
||||
def check_inputs(components, block_state):
|
||||
if (block_state.height is not None and block_state.height % components.vae_scale_factor_spatial != 0) or (
|
||||
block_state.width is not None and block_state.width % components.vae_scale_factor_spatial != 0
|
||||
):
|
||||
raise ValueError(
|
||||
f"`height` and `width` have to be divisible by {components.vae_scale_factor_spatial} but are {block_state.height} and {block_state.width}."
|
||||
)
|
||||
if block_state.num_frames is not None and (
|
||||
block_state.num_frames < 1 or (block_state.num_frames - 1) % components.vae_scale_factor_temporal != 0
|
||||
):
|
||||
raise ValueError(
|
||||
f"`num_frames` has to be greater than 0, and (num_frames - 1) must be divisible by {components.vae_scale_factor_temporal}, but got {block_state.num_frames}."
|
||||
)
|
||||
|
||||
def __call__(self, components: WanModularPipeline, state: PipelineState) -> PipelineState:
|
||||
block_state = self.get_block_state(state)
|
||||
self.check_inputs(components, block_state)
|
||||
|
||||
image = block_state.resized_image
|
||||
|
||||
device = components._execution_device
|
||||
dtype = torch.float32
|
||||
|
||||
height = block_state.height or components.default_height
|
||||
width = block_state.width or components.default_width
|
||||
num_frames = block_state.num_frames or components.default_num_frames
|
||||
|
||||
image_tensor = components.video_processor.preprocess(image, height=height, width=width).to(
|
||||
device=device, dtype=dtype
|
||||
)
|
||||
|
||||
if image_tensor.dim() == 4:
|
||||
image_tensor = image_tensor.unsqueeze(2)
|
||||
|
||||
video_tensor = torch.cat(
|
||||
[
|
||||
image_tensor,
|
||||
image_tensor.new_zeros(image_tensor.shape[0], image_tensor.shape[1], num_frames - 1, height, width),
|
||||
],
|
||||
dim=2,
|
||||
).to(device=device, dtype=dtype)
|
||||
|
||||
block_state.first_frame_latents = encode_vae_image(
|
||||
video_tensor=video_tensor,
|
||||
vae=components.vae,
|
||||
generator=block_state.generator,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
latent_channels=components.num_channels_latents,
|
||||
)
|
||||
|
||||
self.set_block_state(state, block_state)
|
||||
return components, state
|
||||
|
||||
|
||||
class WanFirstLastFrameVaeImageEncoderStep(ModularPipelineBlocks):
|
||||
model_name = "wan"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return "Vae Image Encoder step that generate condition_latents based on first and last frame images to guide the video generation"
|
||||
|
||||
@property
|
||||
def expected_components(self) -> List[ComponentSpec]:
|
||||
return [
|
||||
ComponentSpec("vae", AutoencoderKLWan),
|
||||
ComponentSpec(
|
||||
"video_processor",
|
||||
VideoProcessor,
|
||||
config=FrozenDict({"vae_scale_factor": 8}),
|
||||
default_creation_method="from_config",
|
||||
),
|
||||
]
|
||||
|
||||
@property
|
||||
def inputs(self) -> List[InputParam]:
|
||||
return [
|
||||
InputParam("resized_image", type_hint=PIL.Image.Image, required=True),
|
||||
InputParam("resized_last_image", type_hint=PIL.Image.Image, required=True),
|
||||
InputParam("height"),
|
||||
InputParam("width"),
|
||||
InputParam("num_frames"),
|
||||
InputParam("generator"),
|
||||
]
|
||||
|
||||
@property
|
||||
def intermediate_outputs(self) -> List[OutputParam]:
|
||||
return [
|
||||
OutputParam(
|
||||
"first_last_frame_latents",
|
||||
type_hint=torch.Tensor,
|
||||
description="video latent representation with the first and last frame images condition",
|
||||
),
|
||||
]
|
||||
|
||||
@staticmethod
|
||||
def check_inputs(components, block_state):
|
||||
if (block_state.height is not None and block_state.height % components.vae_scale_factor_spatial != 0) or (
|
||||
block_state.width is not None and block_state.width % components.vae_scale_factor_spatial != 0
|
||||
):
|
||||
raise ValueError(
|
||||
f"`height` and `width` have to be divisible by {components.vae_scale_factor_spatial} but are {block_state.height} and {block_state.width}."
|
||||
)
|
||||
if block_state.num_frames is not None and (
|
||||
block_state.num_frames < 1 or (block_state.num_frames - 1) % components.vae_scale_factor_temporal != 0
|
||||
):
|
||||
raise ValueError(
|
||||
f"`num_frames` has to be greater than 0, and (num_frames - 1) must be divisible by {components.vae_scale_factor_temporal}, but got {block_state.num_frames}."
|
||||
)
|
||||
|
||||
def __call__(self, components: WanModularPipeline, state: PipelineState) -> PipelineState:
|
||||
block_state = self.get_block_state(state)
|
||||
self.check_inputs(components, block_state)
|
||||
|
||||
first_frame_image = block_state.resized_image
|
||||
last_frame_image = block_state.resized_last_image
|
||||
|
||||
device = components._execution_device
|
||||
dtype = torch.float32
|
||||
|
||||
height = block_state.height or components.default_height
|
||||
width = block_state.width or components.default_width
|
||||
num_frames = block_state.num_frames or components.default_num_frames
|
||||
|
||||
first_image_tensor = components.video_processor.preprocess(first_frame_image, height=height, width=width).to(
|
||||
device=device, dtype=dtype
|
||||
)
|
||||
first_image_tensor = first_image_tensor.unsqueeze(2)
|
||||
|
||||
last_image_tensor = components.video_processor.preprocess(last_frame_image, height=height, width=width).to(
|
||||
device=device, dtype=dtype
|
||||
)
|
||||
|
||||
last_image_tensor = last_image_tensor.unsqueeze(2)
|
||||
|
||||
video_tensor = torch.cat(
|
||||
[
|
||||
first_image_tensor,
|
||||
first_image_tensor.new_zeros(
|
||||
first_image_tensor.shape[0], first_image_tensor.shape[1], num_frames - 2, height, width
|
||||
),
|
||||
last_image_tensor,
|
||||
],
|
||||
dim=2,
|
||||
).to(device=device, dtype=dtype)
|
||||
|
||||
block_state.first_last_frame_latents = encode_vae_image(
|
||||
video_tensor=video_tensor,
|
||||
vae=components.vae,
|
||||
generator=block_state.generator,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
latent_channels=components.num_channels_latents,
|
||||
)
|
||||
|
||||
self.set_block_state(state, block_state)
|
||||
return components, state
|
||||
|
||||
@@ -16,96 +16,244 @@ from ...utils import logging
|
||||
from ..modular_pipeline import AutoPipelineBlocks, SequentialPipelineBlocks
|
||||
from ..modular_pipeline_utils import InsertableDict
|
||||
from .before_denoise import (
|
||||
WanInputStep,
|
||||
WanAdditionalInputsStep,
|
||||
WanPrepareFirstFrameLatentsStep,
|
||||
WanPrepareFirstLastFrameLatentsStep,
|
||||
WanPrepareLatentsStep,
|
||||
WanSetTimestepsStep,
|
||||
WanTextInputStep,
|
||||
)
|
||||
from .decoders import WanImageVaeDecoderStep
|
||||
from .denoise import (
|
||||
Wan22DenoiseStep,
|
||||
Wan22Image2VideoDenoiseStep,
|
||||
WanDenoiseStep,
|
||||
WanFLF2VDenoiseStep,
|
||||
WanImage2VideoDenoiseStep,
|
||||
)
|
||||
from .encoders import (
|
||||
WanFirstLastFrameImageEncoderStep,
|
||||
WanFirstLastFrameVaeImageEncoderStep,
|
||||
WanImageCropResizeStep,
|
||||
WanImageEncoderStep,
|
||||
WanImageResizeStep,
|
||||
WanTextEncoderStep,
|
||||
WanVaeImageEncoderStep,
|
||||
)
|
||||
from .decoders import WanDecodeStep
|
||||
from .denoise import WanDenoiseStep
|
||||
from .encoders import WanTextEncoderStep
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
|
||||
# before_denoise: text2vid
|
||||
class WanBeforeDenoiseStep(SequentialPipelineBlocks):
|
||||
# wan2.1
|
||||
# wan2.1: text2vid
|
||||
class WanCoreDenoiseStep(SequentialPipelineBlocks):
|
||||
block_classes = [
|
||||
WanInputStep,
|
||||
WanTextInputStep,
|
||||
WanSetTimestepsStep,
|
||||
WanPrepareLatentsStep,
|
||||
]
|
||||
block_names = ["input", "set_timesteps", "prepare_latents"]
|
||||
|
||||
@property
|
||||
def description(self):
|
||||
return (
|
||||
"Before denoise step that prepare the inputs for the denoise step.\n"
|
||||
+ "This is a sequential pipeline blocks:\n"
|
||||
+ " - `WanInputStep` is used to adjust the batch size of the model inputs\n"
|
||||
+ " - `WanSetTimestepsStep` is used to set the timesteps\n"
|
||||
+ " - `WanPrepareLatentsStep` is used to prepare the latents\n"
|
||||
)
|
||||
|
||||
|
||||
# before_denoise: all task (text2vid,)
|
||||
class WanAutoBeforeDenoiseStep(AutoPipelineBlocks):
|
||||
block_classes = [
|
||||
WanBeforeDenoiseStep,
|
||||
]
|
||||
block_names = ["text2vid"]
|
||||
block_trigger_inputs = [None]
|
||||
|
||||
@property
|
||||
def description(self):
|
||||
return (
|
||||
"Before denoise step that prepare the inputs for the denoise step.\n"
|
||||
+ "This is an auto pipeline block that works for text2vid.\n"
|
||||
+ " - `WanBeforeDenoiseStep` (text2vid) is used.\n"
|
||||
)
|
||||
|
||||
|
||||
# denoise: text2vid
|
||||
class WanAutoDenoiseStep(AutoPipelineBlocks):
|
||||
block_classes = [
|
||||
WanDenoiseStep,
|
||||
]
|
||||
block_names = ["denoise"]
|
||||
block_trigger_inputs = [None]
|
||||
block_names = ["input", "set_timesteps", "prepare_latents", "denoise"]
|
||||
|
||||
@property
|
||||
def description(self):
|
||||
return (
|
||||
"denoise block that takes encoded conditions and runs the denoising process.\n"
|
||||
+ "This is a sequential pipeline blocks:\n"
|
||||
+ " - `WanTextInputStep` is used to adjust the batch size of the model inputs\n"
|
||||
+ " - `WanSetTimestepsStep` is used to set the timesteps\n"
|
||||
+ " - `WanPrepareLatentsStep` is used to prepare the latents\n"
|
||||
+ " - `WanDenoiseStep` is used to denoise the latents\n"
|
||||
)
|
||||
|
||||
|
||||
# wan2.1: image2video
|
||||
## image encoder
|
||||
class WanImage2VideoImageEncoderStep(SequentialPipelineBlocks):
|
||||
model_name = "wan"
|
||||
block_classes = [WanImageResizeStep, WanImageEncoderStep]
|
||||
block_names = ["image_resize", "image_encoder"]
|
||||
|
||||
@property
|
||||
def description(self):
|
||||
return "Image2Video Image Encoder step that resize the image and encode the image to generate the image embeddings"
|
||||
|
||||
|
||||
## vae encoder
|
||||
class WanImage2VideoVaeImageEncoderStep(SequentialPipelineBlocks):
|
||||
model_name = "wan"
|
||||
block_classes = [WanImageResizeStep, WanVaeImageEncoderStep]
|
||||
block_names = ["image_resize", "vae_image_encoder"]
|
||||
|
||||
@property
|
||||
def description(self):
|
||||
return "Image2Video Vae Image Encoder step that resize the image and encode the first frame image to its latent representation"
|
||||
|
||||
|
||||
## denoise
|
||||
class WanImage2VideoCoreDenoiseStep(SequentialPipelineBlocks):
|
||||
block_classes = [
|
||||
WanTextInputStep,
|
||||
WanAdditionalInputsStep(image_latent_inputs=["first_frame_latents"]),
|
||||
WanSetTimestepsStep,
|
||||
WanPrepareLatentsStep,
|
||||
WanPrepareFirstFrameLatentsStep,
|
||||
WanImage2VideoDenoiseStep,
|
||||
]
|
||||
block_names = [
|
||||
"input",
|
||||
"additional_inputs",
|
||||
"set_timesteps",
|
||||
"prepare_latents",
|
||||
"prepare_first_frame_latents",
|
||||
"denoise",
|
||||
]
|
||||
|
||||
@property
|
||||
def description(self):
|
||||
return (
|
||||
"denoise block that takes encoded text and image latent conditions and runs the denoising process.\n"
|
||||
+ "This is a sequential pipeline blocks:\n"
|
||||
+ " - `WanTextInputStep` is used to adjust the batch size of the model inputs\n"
|
||||
+ " - `WanAdditionalInputsStep` is used to adjust the batch size of the latent conditions\n"
|
||||
+ " - `WanSetTimestepsStep` is used to set the timesteps\n"
|
||||
+ " - `WanPrepareLatentsStep` is used to prepare the latents\n"
|
||||
+ " - `WanPrepareFirstFrameLatentsStep` is used to prepare the first frame latent conditions\n"
|
||||
+ " - `WanImage2VideoDenoiseStep` is used to denoise the latents\n"
|
||||
)
|
||||
|
||||
|
||||
# wan2.1: FLF2v
|
||||
|
||||
|
||||
## image encoder
|
||||
class WanFLF2VImageEncoderStep(SequentialPipelineBlocks):
|
||||
model_name = "wan"
|
||||
block_classes = [WanImageResizeStep, WanImageCropResizeStep, WanFirstLastFrameImageEncoderStep]
|
||||
block_names = ["image_resize", "last_image_resize", "image_encoder"]
|
||||
|
||||
@property
|
||||
def description(self):
|
||||
return "FLF2V Image Encoder step that resize and encode and encode the first and last frame images to generate the image embeddings"
|
||||
|
||||
|
||||
## vae encoder
|
||||
class WanFLF2VVaeImageEncoderStep(SequentialPipelineBlocks):
|
||||
model_name = "wan"
|
||||
block_classes = [WanImageResizeStep, WanImageCropResizeStep, WanFirstLastFrameVaeImageEncoderStep]
|
||||
block_names = ["image_resize", "last_image_resize", "vae_image_encoder"]
|
||||
|
||||
@property
|
||||
def description(self):
|
||||
return "FLF2V Vae Image Encoder step that resize and encode and encode the first and last frame images to generate the latent conditions"
|
||||
|
||||
|
||||
## denoise
|
||||
class WanFLF2VCoreDenoiseStep(SequentialPipelineBlocks):
|
||||
block_classes = [
|
||||
WanTextInputStep,
|
||||
WanAdditionalInputsStep(image_latent_inputs=["first_last_frame_latents"]),
|
||||
WanSetTimestepsStep,
|
||||
WanPrepareLatentsStep,
|
||||
WanPrepareFirstLastFrameLatentsStep,
|
||||
WanFLF2VDenoiseStep,
|
||||
]
|
||||
block_names = [
|
||||
"input",
|
||||
"additional_inputs",
|
||||
"set_timesteps",
|
||||
"prepare_latents",
|
||||
"prepare_first_last_frame_latents",
|
||||
"denoise",
|
||||
]
|
||||
|
||||
@property
|
||||
def description(self):
|
||||
return (
|
||||
"denoise block that takes encoded text and image latent conditions and runs the denoising process.\n"
|
||||
+ "This is a sequential pipeline blocks:\n"
|
||||
+ " - `WanTextInputStep` is used to adjust the batch size of the model inputs\n"
|
||||
+ " - `WanAdditionalInputsStep` is used to adjust the batch size of the latent conditions\n"
|
||||
+ " - `WanSetTimestepsStep` is used to set the timesteps\n"
|
||||
+ " - `WanPrepareLatentsStep` is used to prepare the latents\n"
|
||||
+ " - `WanPrepareFirstLastFrameLatentsStep` is used to prepare the latent conditions\n"
|
||||
+ " - `WanImage2VideoDenoiseStep` is used to denoise the latents\n"
|
||||
)
|
||||
|
||||
|
||||
# wan2.1: auto blocks
|
||||
## image encoder
|
||||
class WanAutoImageEncoderStep(AutoPipelineBlocks):
|
||||
block_classes = [WanFLF2VImageEncoderStep, WanImage2VideoImageEncoderStep]
|
||||
block_names = ["flf2v_image_encoder", "image2video_image_encoder"]
|
||||
block_trigger_inputs = ["last_image", "image"]
|
||||
|
||||
@property
|
||||
def description(self):
|
||||
return (
|
||||
"Image Encoder step that encode the image to generate the image embeddings"
|
||||
+ "This is an auto pipeline block that works for image2video tasks."
|
||||
+ " - `WanFLF2VImageEncoderStep` (flf2v) is used when `last_image` is provided."
|
||||
+ " - `WanImage2VideoImageEncoderStep` (image2video) is used when `image` is provided."
|
||||
+ " - if `last_image` or `image` is not provided, step will be skipped."
|
||||
)
|
||||
|
||||
|
||||
## vae encoder
|
||||
class WanAutoVaeImageEncoderStep(AutoPipelineBlocks):
|
||||
block_classes = [WanFLF2VVaeImageEncoderStep, WanImage2VideoVaeImageEncoderStep]
|
||||
block_names = ["flf2v_vae_image_encoder", "image2video_vae_image_encoder"]
|
||||
block_trigger_inputs = ["last_image", "image"]
|
||||
|
||||
@property
|
||||
def description(self):
|
||||
return (
|
||||
"Vae Image Encoder step that encode the image to generate the image latents"
|
||||
+ "This is an auto pipeline block that works for image2video tasks."
|
||||
+ " - `WanFLF2VVaeImageEncoderStep` (flf2v) is used when `last_image` is provided."
|
||||
+ " - `WanImage2VideoVaeImageEncoderStep` (image2video) is used when `image` is provided."
|
||||
+ " - if `last_image` or `image` is not provided, step will be skipped."
|
||||
)
|
||||
|
||||
|
||||
## denoise
|
||||
class WanAutoDenoiseStep(AutoPipelineBlocks):
|
||||
block_classes = [
|
||||
WanFLF2VCoreDenoiseStep,
|
||||
WanImage2VideoCoreDenoiseStep,
|
||||
WanCoreDenoiseStep,
|
||||
]
|
||||
block_names = ["flf2v", "image2video", "text2video"]
|
||||
block_trigger_inputs = ["first_last_frame_latents", "first_frame_latents", None]
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"Denoise step that iteratively denoise the latents. "
|
||||
"This is a auto pipeline block that works for text2vid tasks.."
|
||||
" - `WanDenoiseStep` (denoise) for text2vid tasks."
|
||||
"This is a auto pipeline block that works for text2video and image2video tasks."
|
||||
" - `WanCoreDenoiseStep` (text2video) for text2vid tasks."
|
||||
" - `WanCoreImage2VideoCoreDenoiseStep` (image2video) for image2video tasks."
|
||||
+ " - if `first_frame_latents` is provided, `WanCoreImage2VideoDenoiseStep` will be used.\n"
|
||||
+ " - if `first_frame_latents` is not provided, `WanCoreDenoiseStep` will be used.\n"
|
||||
)
|
||||
|
||||
|
||||
# decode: all task (text2img, img2img, inpainting)
|
||||
class WanAutoDecodeStep(AutoPipelineBlocks):
|
||||
block_classes = [WanDecodeStep]
|
||||
block_names = ["non-inpaint"]
|
||||
block_trigger_inputs = [None]
|
||||
|
||||
@property
|
||||
def description(self):
|
||||
return "Decode step that decode the denoised latents into videos outputs.\n - `WanDecodeStep`"
|
||||
|
||||
|
||||
# text2vid
|
||||
# auto pipeline blocks
|
||||
class WanAutoBlocks(SequentialPipelineBlocks):
|
||||
block_classes = [
|
||||
WanTextEncoderStep,
|
||||
WanAutoBeforeDenoiseStep,
|
||||
WanAutoImageEncoderStep,
|
||||
WanAutoVaeImageEncoderStep,
|
||||
WanAutoDenoiseStep,
|
||||
WanAutoDecodeStep,
|
||||
WanImageVaeDecoderStep,
|
||||
]
|
||||
block_names = [
|
||||
"text_encoder",
|
||||
"before_denoise",
|
||||
"image_encoder",
|
||||
"vae_image_encoder",
|
||||
"denoise",
|
||||
"decoder",
|
||||
"decode",
|
||||
]
|
||||
|
||||
@property
|
||||
@@ -116,29 +264,211 @@ class WanAutoBlocks(SequentialPipelineBlocks):
|
||||
)
|
||||
|
||||
|
||||
# wan22
|
||||
# wan2.2: text2vid
|
||||
|
||||
|
||||
## denoise
|
||||
class Wan22CoreDenoiseStep(SequentialPipelineBlocks):
|
||||
block_classes = [
|
||||
WanTextInputStep,
|
||||
WanSetTimestepsStep,
|
||||
WanPrepareLatentsStep,
|
||||
Wan22DenoiseStep,
|
||||
]
|
||||
block_names = ["input", "set_timesteps", "prepare_latents", "denoise"]
|
||||
|
||||
@property
|
||||
def description(self):
|
||||
return (
|
||||
"denoise block that takes encoded conditions and runs the denoising process.\n"
|
||||
+ "This is a sequential pipeline blocks:\n"
|
||||
+ " - `WanTextInputStep` is used to adjust the batch size of the model inputs\n"
|
||||
+ " - `WanSetTimestepsStep` is used to set the timesteps\n"
|
||||
+ " - `WanPrepareLatentsStep` is used to prepare the latents\n"
|
||||
+ " - `Wan22DenoiseStep` is used to denoise the latents in wan2.2\n"
|
||||
)
|
||||
|
||||
|
||||
# wan2.2: image2video
|
||||
## denoise
|
||||
class Wan22Image2VideoCoreDenoiseStep(SequentialPipelineBlocks):
|
||||
block_classes = [
|
||||
WanTextInputStep,
|
||||
WanAdditionalInputsStep(image_latent_inputs=["first_frame_latents"]),
|
||||
WanSetTimestepsStep,
|
||||
WanPrepareLatentsStep,
|
||||
WanPrepareFirstFrameLatentsStep,
|
||||
Wan22Image2VideoDenoiseStep,
|
||||
]
|
||||
block_names = [
|
||||
"input",
|
||||
"additional_inputs",
|
||||
"set_timesteps",
|
||||
"prepare_latents",
|
||||
"prepare_first_frame_latents",
|
||||
"denoise",
|
||||
]
|
||||
|
||||
@property
|
||||
def description(self):
|
||||
return (
|
||||
"denoise block that takes encoded text and image latent conditions and runs the denoising process.\n"
|
||||
+ "This is a sequential pipeline blocks:\n"
|
||||
+ " - `WanTextInputStep` is used to adjust the batch size of the model inputs\n"
|
||||
+ " - `WanAdditionalInputsStep` is used to adjust the batch size of the latent conditions\n"
|
||||
+ " - `WanSetTimestepsStep` is used to set the timesteps\n"
|
||||
+ " - `WanPrepareLatentsStep` is used to prepare the latents\n"
|
||||
+ " - `WanPrepareFirstFrameLatentsStep` is used to prepare the first frame latent conditions\n"
|
||||
+ " - `Wan22Image2VideoDenoiseStep` is used to denoise the latents in wan2.2\n"
|
||||
)
|
||||
|
||||
|
||||
class Wan22AutoDenoiseStep(AutoPipelineBlocks):
|
||||
block_classes = [
|
||||
Wan22Image2VideoCoreDenoiseStep,
|
||||
Wan22CoreDenoiseStep,
|
||||
]
|
||||
block_names = ["image2video", "text2video"]
|
||||
block_trigger_inputs = ["first_frame_latents", None]
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"Denoise step that iteratively denoise the latents. "
|
||||
"This is a auto pipeline block that works for text2video and image2video tasks."
|
||||
" - `Wan22Image2VideoCoreDenoiseStep` (image2video) for image2video tasks."
|
||||
" - `Wan22CoreDenoiseStep` (text2video) for text2vid tasks."
|
||||
+ " - if `first_frame_latents` is provided, `Wan22Image2VideoCoreDenoiseStep` will be used.\n"
|
||||
+ " - if `first_frame_latents` is not provided, `Wan22CoreDenoiseStep` will be used.\n"
|
||||
)
|
||||
|
||||
|
||||
class Wan22AutoBlocks(SequentialPipelineBlocks):
|
||||
block_classes = [
|
||||
WanTextEncoderStep,
|
||||
WanAutoVaeImageEncoderStep,
|
||||
Wan22AutoDenoiseStep,
|
||||
WanImageVaeDecoderStep,
|
||||
]
|
||||
block_names = [
|
||||
"text_encoder",
|
||||
"vae_image_encoder",
|
||||
"denoise",
|
||||
"decode",
|
||||
]
|
||||
|
||||
@property
|
||||
def description(self):
|
||||
return (
|
||||
"Auto Modular pipeline for text-to-video using Wan2.2.\n"
|
||||
+ "- for text-to-video generation, all you need to provide is `prompt`"
|
||||
)
|
||||
|
||||
|
||||
# presets for wan2.1 and wan2.2
|
||||
# YiYi Notes: should we move these to doc?
|
||||
# wan2.1
|
||||
TEXT2VIDEO_BLOCKS = InsertableDict(
|
||||
[
|
||||
("text_encoder", WanTextEncoderStep),
|
||||
("input", WanInputStep),
|
||||
("input", WanTextInputStep),
|
||||
("set_timesteps", WanSetTimestepsStep),
|
||||
("prepare_latents", WanPrepareLatentsStep),
|
||||
("denoise", WanDenoiseStep),
|
||||
("decode", WanDecodeStep),
|
||||
("decode", WanImageVaeDecoderStep),
|
||||
]
|
||||
)
|
||||
|
||||
IMAGE2VIDEO_BLOCKS = InsertableDict(
|
||||
[
|
||||
("image_resize", WanImageResizeStep),
|
||||
("image_encoder", WanImage2VideoImageEncoderStep),
|
||||
("vae_image_encoder", WanImage2VideoVaeImageEncoderStep),
|
||||
("input", WanTextInputStep),
|
||||
("additional_inputs", WanAdditionalInputsStep(image_latent_inputs=["first_frame_latents"])),
|
||||
("set_timesteps", WanSetTimestepsStep),
|
||||
("prepare_latents", WanPrepareLatentsStep),
|
||||
("prepare_first_frame_latents", WanPrepareFirstFrameLatentsStep),
|
||||
("denoise", WanImage2VideoDenoiseStep),
|
||||
("decode", WanImageVaeDecoderStep),
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
FLF2V_BLOCKS = InsertableDict(
|
||||
[
|
||||
("image_resize", WanImageResizeStep),
|
||||
("last_image_resize", WanImageCropResizeStep),
|
||||
("image_encoder", WanFLF2VImageEncoderStep),
|
||||
("vae_image_encoder", WanFLF2VVaeImageEncoderStep),
|
||||
("input", WanTextInputStep),
|
||||
("additional_inputs", WanAdditionalInputsStep(image_latent_inputs=["first_last_frame_latents"])),
|
||||
("set_timesteps", WanSetTimestepsStep),
|
||||
("prepare_latents", WanPrepareLatentsStep),
|
||||
("prepare_first_last_frame_latents", WanPrepareFirstLastFrameLatentsStep),
|
||||
("denoise", WanFLF2VDenoiseStep),
|
||||
("decode", WanImageVaeDecoderStep),
|
||||
]
|
||||
)
|
||||
|
||||
AUTO_BLOCKS = InsertableDict(
|
||||
[
|
||||
("text_encoder", WanTextEncoderStep),
|
||||
("before_denoise", WanAutoBeforeDenoiseStep),
|
||||
("image_encoder", WanAutoImageEncoderStep),
|
||||
("vae_image_encoder", WanAutoVaeImageEncoderStep),
|
||||
("denoise", WanAutoDenoiseStep),
|
||||
("decode", WanAutoDecodeStep),
|
||||
("decode", WanImageVaeDecoderStep),
|
||||
]
|
||||
)
|
||||
|
||||
# wan2.2 presets
|
||||
|
||||
TEXT2VIDEO_BLOCKS_WAN22 = InsertableDict(
|
||||
[
|
||||
("text_encoder", WanTextEncoderStep),
|
||||
("input", WanTextInputStep),
|
||||
("set_timesteps", WanSetTimestepsStep),
|
||||
("prepare_latents", WanPrepareLatentsStep),
|
||||
("denoise", Wan22DenoiseStep),
|
||||
("decode", WanImageVaeDecoderStep),
|
||||
]
|
||||
)
|
||||
|
||||
IMAGE2VIDEO_BLOCKS_WAN22 = InsertableDict(
|
||||
[
|
||||
("image_resize", WanImageResizeStep),
|
||||
("vae_image_encoder", WanImage2VideoVaeImageEncoderStep),
|
||||
("input", WanTextInputStep),
|
||||
("set_timesteps", WanSetTimestepsStep),
|
||||
("prepare_latents", WanPrepareLatentsStep),
|
||||
("denoise", Wan22DenoiseStep),
|
||||
("decode", WanImageVaeDecoderStep),
|
||||
]
|
||||
)
|
||||
|
||||
AUTO_BLOCKS_WAN22 = InsertableDict(
|
||||
[
|
||||
("text_encoder", WanTextEncoderStep),
|
||||
("vae_image_encoder", WanAutoVaeImageEncoderStep),
|
||||
("denoise", Wan22AutoDenoiseStep),
|
||||
("decode", WanImageVaeDecoderStep),
|
||||
]
|
||||
)
|
||||
|
||||
# presets all blocks (wan and wan22)
|
||||
|
||||
|
||||
ALL_BLOCKS = {
|
||||
"text2video": TEXT2VIDEO_BLOCKS,
|
||||
"auto": AUTO_BLOCKS,
|
||||
"wan2.1": {
|
||||
"text2video": TEXT2VIDEO_BLOCKS,
|
||||
"image2video": IMAGE2VIDEO_BLOCKS,
|
||||
"flf2v": FLF2V_BLOCKS,
|
||||
"auto": AUTO_BLOCKS,
|
||||
},
|
||||
"wan2.2": {
|
||||
"text2video": TEXT2VIDEO_BLOCKS_WAN22,
|
||||
"image2video": IMAGE2VIDEO_BLOCKS_WAN22,
|
||||
"auto": AUTO_BLOCKS_WAN22,
|
||||
},
|
||||
}
|
||||
|
||||
@@ -13,6 +13,8 @@
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from ...loaders import WanLoraLoaderMixin
|
||||
from ...pipelines.pipeline_utils import StableDiffusionMixin
|
||||
from ...utils import logging
|
||||
@@ -35,6 +37,13 @@ class WanModularPipeline(
|
||||
|
||||
default_blocks_name = "WanAutoBlocks"
|
||||
|
||||
# override the default_blocks_name in base class, which is just return self.default_blocks_name
|
||||
def get_default_blocks_name(self, config_dict: Optional[Dict[str, Any]]) -> Optional[str]:
|
||||
if config_dict is not None and "boundary_ratio" in config_dict and config_dict["boundary_ratio"] is not None:
|
||||
return "Wan22AutoBlocks"
|
||||
else:
|
||||
return "WanAutoBlocks"
|
||||
|
||||
@property
|
||||
def default_height(self):
|
||||
return self.default_sample_height * self.vae_scale_factor_spatial
|
||||
@@ -59,6 +68,13 @@ class WanModularPipeline(
|
||||
def default_sample_num_frames(self):
|
||||
return 21
|
||||
|
||||
@property
|
||||
def patch_size_spatial(self):
|
||||
patch_size_spatial = 2
|
||||
if hasattr(self, "transformer") and self.transformer is not None:
|
||||
patch_size_spatial = self.transformer.config.patch_size[1]
|
||||
return patch_size_spatial
|
||||
|
||||
@property
|
||||
def vae_scale_factor_spatial(self):
|
||||
vae_scale_factor = 8
|
||||
@@ -86,3 +102,19 @@ class WanModularPipeline(
|
||||
if hasattr(self, "vae") and self.vae is not None:
|
||||
num_channels_latents = self.vae.config.z_dim
|
||||
return num_channels_latents
|
||||
|
||||
@property
|
||||
def requires_unconditional_embeds(self):
|
||||
requires_unconditional_embeds = False
|
||||
|
||||
if hasattr(self, "guider") and self.guider is not None:
|
||||
requires_unconditional_embeds = self.guider._enabled and self.guider.num_conditions > 1
|
||||
|
||||
return requires_unconditional_embeds
|
||||
|
||||
@property
|
||||
def num_train_timesteps(self):
|
||||
num_train_timesteps = 1000
|
||||
if hasattr(self, "scheduler") and self.scheduler is not None:
|
||||
num_train_timesteps = self.scheduler.config.num_train_timesteps
|
||||
return num_train_timesteps
|
||||
|
||||
@@ -308,6 +308,7 @@ else:
|
||||
"SanaSprintPipeline",
|
||||
"SanaControlNetPipeline",
|
||||
"SanaSprintImg2ImgPipeline",
|
||||
"SanaVideoPipeline",
|
||||
]
|
||||
_import_structure["semantic_stable_diffusion"] = ["SemanticStableDiffusionPipeline"]
|
||||
_import_structure["shap_e"] = ["ShapEImg2ImgPipeline", "ShapEPipeline"]
|
||||
@@ -403,6 +404,7 @@ else:
|
||||
"QwenImageControlNetInpaintPipeline",
|
||||
"QwenImageControlNetPipeline",
|
||||
]
|
||||
_import_structure["chronoedit"] = ["ChronoEditPipeline"]
|
||||
try:
|
||||
if not is_onnx_available():
|
||||
raise OptionalDependencyNotAvailable()
|
||||
@@ -565,6 +567,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
from .bria import BriaPipeline
|
||||
from .bria_fibo import BriaFiboPipeline
|
||||
from .chroma import ChromaImg2ImgPipeline, ChromaPipeline
|
||||
from .chronoedit import ChronoEditPipeline
|
||||
from .cogvideo import (
|
||||
CogVideoXFunControlPipeline,
|
||||
CogVideoXImageToVideoPipeline,
|
||||
@@ -735,7 +738,13 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
QwenImageInpaintPipeline,
|
||||
QwenImagePipeline,
|
||||
)
|
||||
from .sana import SanaControlNetPipeline, SanaPipeline, SanaSprintImg2ImgPipeline, SanaSprintPipeline
|
||||
from .sana import (
|
||||
SanaControlNetPipeline,
|
||||
SanaPipeline,
|
||||
SanaSprintImg2ImgPipeline,
|
||||
SanaSprintPipeline,
|
||||
SanaVideoPipeline,
|
||||
)
|
||||
from .semantic_stable_diffusion import SemanticStableDiffusionPipeline
|
||||
from .shap_e import ShapEImg2ImgPipeline, ShapEPipeline
|
||||
from .stable_audio import StableAudioPipeline, StableAudioProjectionModel
|
||||
|
||||
@@ -117,6 +117,7 @@ from .stable_diffusion_xl import (
|
||||
StableDiffusionXLInpaintPipeline,
|
||||
StableDiffusionXLPipeline,
|
||||
)
|
||||
from .wan import WanImageToVideoPipeline, WanPipeline, WanVideoToVideoPipeline
|
||||
from .wuerstchen import WuerstchenCombinedPipeline, WuerstchenDecoderPipeline
|
||||
|
||||
|
||||
@@ -214,6 +215,24 @@ AUTO_INPAINT_PIPELINES_MAPPING = OrderedDict(
|
||||
]
|
||||
)
|
||||
|
||||
AUTO_TEXT2VIDEO_PIPELINES_MAPPING = OrderedDict(
|
||||
[
|
||||
("wan", WanPipeline),
|
||||
]
|
||||
)
|
||||
|
||||
AUTO_IMAGE2VIDEO_PIPELINES_MAPPING = OrderedDict(
|
||||
[
|
||||
("wan", WanImageToVideoPipeline),
|
||||
]
|
||||
)
|
||||
|
||||
AUTO_VIDEO2VIDEO_PIPELINES_MAPPING = OrderedDict(
|
||||
[
|
||||
("wan", WanVideoToVideoPipeline),
|
||||
]
|
||||
)
|
||||
|
||||
_AUTO_TEXT2IMAGE_DECODER_PIPELINES_MAPPING = OrderedDict(
|
||||
[
|
||||
("kandinsky", KandinskyPipeline),
|
||||
@@ -247,6 +266,9 @@ SUPPORTED_TASKS_MAPPINGS = [
|
||||
AUTO_TEXT2IMAGE_PIPELINES_MAPPING,
|
||||
AUTO_IMAGE2IMAGE_PIPELINES_MAPPING,
|
||||
AUTO_INPAINT_PIPELINES_MAPPING,
|
||||
AUTO_TEXT2VIDEO_PIPELINES_MAPPING,
|
||||
AUTO_IMAGE2VIDEO_PIPELINES_MAPPING,
|
||||
AUTO_VIDEO2VIDEO_PIPELINES_MAPPING,
|
||||
_AUTO_TEXT2IMAGE_DECODER_PIPELINES_MAPPING,
|
||||
_AUTO_IMAGE2IMAGE_DECODER_PIPELINES_MAPPING,
|
||||
_AUTO_INPAINT_DECODER_PIPELINES_MAPPING,
|
||||
|
||||
47
src/diffusers/pipelines/chronoedit/__init__.py
Normal file
47
src/diffusers/pipelines/chronoedit/__init__.py
Normal file
@@ -0,0 +1,47 @@
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from ...utils import (
|
||||
DIFFUSERS_SLOW_IMPORT,
|
||||
OptionalDependencyNotAvailable,
|
||||
_LazyModule,
|
||||
get_objects_from_module,
|
||||
is_torch_available,
|
||||
is_transformers_available,
|
||||
)
|
||||
|
||||
|
||||
_dummy_objects = {}
|
||||
_import_structure = {}
|
||||
|
||||
|
||||
try:
|
||||
if not (is_transformers_available() and is_torch_available()):
|
||||
raise OptionalDependencyNotAvailable()
|
||||
except OptionalDependencyNotAvailable:
|
||||
from ...utils import dummy_torch_and_transformers_objects # noqa F403
|
||||
|
||||
_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
|
||||
else:
|
||||
_import_structure["pipeline_chronoedit"] = ["ChronoEditPipeline"]
|
||||
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
try:
|
||||
if not (is_transformers_available() and is_torch_available()):
|
||||
raise OptionalDependencyNotAvailable()
|
||||
|
||||
except OptionalDependencyNotAvailable:
|
||||
from ...utils.dummy_torch_and_transformers_objects import *
|
||||
else:
|
||||
from .pipeline_chronoedit import ChronoEditPipeline
|
||||
|
||||
else:
|
||||
import sys
|
||||
|
||||
sys.modules[__name__] = _LazyModule(
|
||||
__name__,
|
||||
globals()["__file__"],
|
||||
_import_structure,
|
||||
module_spec=__spec__,
|
||||
)
|
||||
|
||||
for name, value in _dummy_objects.items():
|
||||
setattr(sys.modules[__name__], name, value)
|
||||
752
src/diffusers/pipelines/chronoedit/pipeline_chronoedit.py
Normal file
752
src/diffusers/pipelines/chronoedit/pipeline_chronoedit.py
Normal file
@@ -0,0 +1,752 @@
|
||||
# Copyright 2025 The ChronoEdit Team and The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import html
|
||||
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import PIL
|
||||
import regex as re
|
||||
import torch
|
||||
from transformers import AutoTokenizer, CLIPImageProcessor, CLIPVisionModel, UMT5EncoderModel
|
||||
|
||||
from ...callbacks import MultiPipelineCallbacks, PipelineCallback
|
||||
from ...image_processor import PipelineImageInput
|
||||
from ...loaders import WanLoraLoaderMixin
|
||||
from ...models import AutoencoderKLWan, ChronoEditTransformer3DModel
|
||||
from ...schedulers import FlowMatchEulerDiscreteScheduler
|
||||
from ...utils import is_ftfy_available, is_torch_xla_available, logging, replace_example_docstring
|
||||
from ...utils.torch_utils import randn_tensor
|
||||
from ...video_processor import VideoProcessor
|
||||
from ..pipeline_utils import DiffusionPipeline
|
||||
from .pipeline_output import ChronoEditPipelineOutput
|
||||
|
||||
|
||||
if is_torch_xla_available():
|
||||
import torch_xla.core.xla_model as xm
|
||||
|
||||
XLA_AVAILABLE = True
|
||||
else:
|
||||
XLA_AVAILABLE = False
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
if is_ftfy_available():
|
||||
import ftfy
|
||||
|
||||
EXAMPLE_DOC_STRING = """
|
||||
Examples:
|
||||
```python
|
||||
>>> import torch
|
||||
>>> import numpy as np
|
||||
>>> from diffusers import AutoencoderKLWan, ChronoEditTransformer3DModel, ChronoEditPipeline
|
||||
>>> from diffusers.utils import export_to_video, load_image
|
||||
>>> from transformers import CLIPVisionModel
|
||||
|
||||
>>> # Available models: nvidia/ChronoEdit-14B-Diffusers
|
||||
>>> model_id = "nvidia/ChronoEdit-14B-Diffusers"
|
||||
>>> image_encoder = CLIPVisionModel.from_pretrained(
|
||||
... model_id, subfolder="image_encoder", torch_dtype=torch.float32
|
||||
... )
|
||||
>>> vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
|
||||
>>> transformer = ChronoEditTransformer3DModel.from_pretrained(
|
||||
... model_id, subfolder="transformer", torch_dtype=torch.bfloat16
|
||||
... )
|
||||
>>> pipe = ChronoEditPipeline.from_pretrained(
|
||||
... model_id, vae=vae, image_encoder=image_encoder, transformer=transformer, torch_dtype=torch.bfloat16
|
||||
... )
|
||||
>>> pipe.to("cuda")
|
||||
|
||||
>>> image = load_image("https://huggingface.co/spaces/nvidia/ChronoEdit/resolve/main/examples/3.png")
|
||||
>>> max_area = 720 * 1280
|
||||
>>> aspect_ratio = image.height / image.width
|
||||
>>> mod_value = pipe.vae_scale_factor_spatial * pipe.transformer.config.patch_size[1]
|
||||
>>> height = round(np.sqrt(max_area * aspect_ratio)) // mod_value * mod_value
|
||||
>>> width = round(np.sqrt(max_area / aspect_ratio)) // mod_value * mod_value
|
||||
>>> image = image.resize((width, height))
|
||||
>>> prompt = (
|
||||
... "The user wants to transform the image by adding a small, cute mouse sitting inside the floral teacup, enjoying a spa bath. The mouse should appear relaxed and cheerful, with a tiny white bath towel draped over its head like a turban. It should be positioned comfortably in the cup’s liquid, with gentle steam rising around it to blend with the cozy atmosphere. "
|
||||
... "The mouse’s pose should be natural—perhaps sitting upright with paws resting lightly on the rim or submerged in the tea. The teacup’s floral design, gold trim, and warm lighting must remain unchanged to preserve the original aesthetic. The steam should softly swirl around the mouse, enhancing the spa-like, whimsical mood."
|
||||
... )
|
||||
|
||||
>>> output = pipe(
|
||||
... image=image,
|
||||
... prompt=prompt,
|
||||
... height=height,
|
||||
... width=width,
|
||||
... num_frames=5,
|
||||
... guidance_scale=5.0,
|
||||
... enable_temporal_reasoning=False,
|
||||
... num_temporal_reasoning_steps=0,
|
||||
... ).frames[0]
|
||||
>>> export_to_video(output, "output.mp4", fps=16)
|
||||
```
|
||||
"""
|
||||
|
||||
|
||||
def basic_clean(text):
|
||||
text = ftfy.fix_text(text)
|
||||
text = html.unescape(html.unescape(text))
|
||||
return text.strip()
|
||||
|
||||
|
||||
def whitespace_clean(text):
|
||||
text = re.sub(r"\s+", " ", text)
|
||||
text = text.strip()
|
||||
return text
|
||||
|
||||
|
||||
def prompt_clean(text):
|
||||
text = whitespace_clean(basic_clean(text))
|
||||
return text
|
||||
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
||||
def retrieve_latents(
|
||||
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
||||
):
|
||||
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
||||
return encoder_output.latent_dist.sample(generator)
|
||||
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
||||
return encoder_output.latent_dist.mode()
|
||||
elif hasattr(encoder_output, "latents"):
|
||||
return encoder_output.latents
|
||||
else:
|
||||
raise AttributeError("Could not access latents of provided encoder_output")
|
||||
|
||||
|
||||
class ChronoEditPipeline(DiffusionPipeline, WanLoraLoaderMixin):
|
||||
r"""
|
||||
Pipeline for image-to-video generation using Wan.
|
||||
|
||||
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
||||
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
||||
|
||||
Args:
|
||||
tokenizer ([`T5Tokenizer`]):
|
||||
Tokenizer from [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5Tokenizer),
|
||||
specifically the [google/umt5-xxl](https://huggingface.co/google/umt5-xxl) variant.
|
||||
text_encoder ([`T5EncoderModel`]):
|
||||
[T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
|
||||
the [google/umt5-xxl](https://huggingface.co/google/umt5-xxl) variant.
|
||||
image_encoder ([`CLIPVisionModel`]):
|
||||
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPVisionModel), specifically
|
||||
the
|
||||
[clip-vit-huge-patch14](https://github.com/mlfoundations/open_clip/blob/main/docs/PRETRAINED.md#vit-h14-xlm-roberta-large)
|
||||
variant.
|
||||
transformer ([`WanTransformer3DModel`]):
|
||||
Conditional Transformer to denoise the input latents.
|
||||
scheduler ([`UniPCMultistepScheduler`]):
|
||||
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
|
||||
vae ([`AutoencoderKLWan`]):
|
||||
Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations.
|
||||
"""
|
||||
|
||||
model_cpu_offload_seq = "text_encoder->image_encoder->transformer->vae"
|
||||
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
tokenizer: AutoTokenizer,
|
||||
text_encoder: UMT5EncoderModel,
|
||||
image_encoder: CLIPVisionModel,
|
||||
image_processor: CLIPImageProcessor,
|
||||
transformer: ChronoEditTransformer3DModel,
|
||||
vae: AutoencoderKLWan,
|
||||
scheduler: FlowMatchEulerDiscreteScheduler,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.register_modules(
|
||||
vae=vae,
|
||||
text_encoder=text_encoder,
|
||||
tokenizer=tokenizer,
|
||||
image_encoder=image_encoder,
|
||||
transformer=transformer,
|
||||
scheduler=scheduler,
|
||||
image_processor=image_processor,
|
||||
)
|
||||
|
||||
self.vae_scale_factor_temporal = self.vae.config.scale_factor_temporal if getattr(self, "vae", None) else 4
|
||||
self.vae_scale_factor_spatial = self.vae.config.scale_factor_spatial if getattr(self, "vae", None) else 8
|
||||
self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial)
|
||||
self.image_processor = image_processor
|
||||
|
||||
# Copied from diffusers.pipelines.wan.pipeline_wan_i2v.WanImageToVideoPipeline._get_t5_prompt_embeds
|
||||
def _get_t5_prompt_embeds(
|
||||
self,
|
||||
prompt: Union[str, List[str]] = None,
|
||||
num_videos_per_prompt: int = 1,
|
||||
max_sequence_length: int = 512,
|
||||
device: Optional[torch.device] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
):
|
||||
device = device or self._execution_device
|
||||
dtype = dtype or self.text_encoder.dtype
|
||||
|
||||
prompt = [prompt] if isinstance(prompt, str) else prompt
|
||||
prompt = [prompt_clean(u) for u in prompt]
|
||||
batch_size = len(prompt)
|
||||
|
||||
text_inputs = self.tokenizer(
|
||||
prompt,
|
||||
padding="max_length",
|
||||
max_length=max_sequence_length,
|
||||
truncation=True,
|
||||
add_special_tokens=True,
|
||||
return_attention_mask=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
text_input_ids, mask = text_inputs.input_ids, text_inputs.attention_mask
|
||||
seq_lens = mask.gt(0).sum(dim=1).long()
|
||||
|
||||
prompt_embeds = self.text_encoder(text_input_ids.to(device), mask.to(device)).last_hidden_state
|
||||
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
||||
prompt_embeds = [u[:v] for u, v in zip(prompt_embeds, seq_lens)]
|
||||
prompt_embeds = torch.stack(
|
||||
[torch.cat([u, u.new_zeros(max_sequence_length - u.size(0), u.size(1))]) for u in prompt_embeds], dim=0
|
||||
)
|
||||
|
||||
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
||||
_, seq_len, _ = prompt_embeds.shape
|
||||
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
|
||||
prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1)
|
||||
|
||||
return prompt_embeds
|
||||
|
||||
# Copied from diffusers.pipelines.wan.pipeline_wan_i2v.WanImageToVideoPipeline.encode_image
|
||||
def encode_image(
|
||||
self,
|
||||
image: PipelineImageInput,
|
||||
device: Optional[torch.device] = None,
|
||||
):
|
||||
device = device or self._execution_device
|
||||
image = self.image_processor(images=image, return_tensors="pt").to(device)
|
||||
image_embeds = self.image_encoder(**image, output_hidden_states=True)
|
||||
return image_embeds.hidden_states[-2]
|
||||
|
||||
# Copied from diffusers.pipelines.wan.pipeline_wan.WanPipeline.encode_prompt
|
||||
def encode_prompt(
|
||||
self,
|
||||
prompt: Union[str, List[str]],
|
||||
negative_prompt: Optional[Union[str, List[str]]] = None,
|
||||
do_classifier_free_guidance: bool = True,
|
||||
num_videos_per_prompt: int = 1,
|
||||
prompt_embeds: Optional[torch.Tensor] = None,
|
||||
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
||||
max_sequence_length: int = 226,
|
||||
device: Optional[torch.device] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
):
|
||||
r"""
|
||||
Encodes the prompt into text encoder hidden states.
|
||||
|
||||
Args:
|
||||
prompt (`str` or `List[str]`, *optional*):
|
||||
prompt to be encoded
|
||||
negative_prompt (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
||||
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
||||
less than `1`).
|
||||
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
|
||||
Whether to use classifier free guidance or not.
|
||||
num_videos_per_prompt (`int`, *optional*, defaults to 1):
|
||||
Number of videos that should be generated per prompt. torch device to place the resulting embeddings on
|
||||
prompt_embeds (`torch.Tensor`, *optional*):
|
||||
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
||||
provided, text embeddings will be generated from `prompt` input argument.
|
||||
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
||||
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
||||
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
||||
argument.
|
||||
device: (`torch.device`, *optional*):
|
||||
torch device
|
||||
dtype: (`torch.dtype`, *optional*):
|
||||
torch dtype
|
||||
"""
|
||||
device = device or self._execution_device
|
||||
|
||||
prompt = [prompt] if isinstance(prompt, str) else prompt
|
||||
if prompt is not None:
|
||||
batch_size = len(prompt)
|
||||
else:
|
||||
batch_size = prompt_embeds.shape[0]
|
||||
|
||||
if prompt_embeds is None:
|
||||
prompt_embeds = self._get_t5_prompt_embeds(
|
||||
prompt=prompt,
|
||||
num_videos_per_prompt=num_videos_per_prompt,
|
||||
max_sequence_length=max_sequence_length,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
)
|
||||
|
||||
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
||||
negative_prompt = negative_prompt or ""
|
||||
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
|
||||
|
||||
if prompt is not None and type(prompt) is not type(negative_prompt):
|
||||
raise TypeError(
|
||||
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
||||
f" {type(prompt)}."
|
||||
)
|
||||
elif batch_size != len(negative_prompt):
|
||||
raise ValueError(
|
||||
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
||||
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
||||
" the batch size of `prompt`."
|
||||
)
|
||||
|
||||
negative_prompt_embeds = self._get_t5_prompt_embeds(
|
||||
prompt=negative_prompt,
|
||||
num_videos_per_prompt=num_videos_per_prompt,
|
||||
max_sequence_length=max_sequence_length,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
)
|
||||
|
||||
return prompt_embeds, negative_prompt_embeds
|
||||
|
||||
# modified from diffusers.pipelines.wan.pipeline_wan_i2v.WanImageToVideoPipeline.check_inputs
|
||||
def check_inputs(
|
||||
self,
|
||||
prompt,
|
||||
negative_prompt,
|
||||
image,
|
||||
height,
|
||||
width,
|
||||
prompt_embeds=None,
|
||||
negative_prompt_embeds=None,
|
||||
image_embeds=None,
|
||||
callback_on_step_end_tensor_inputs=None,
|
||||
):
|
||||
if image is not None and image_embeds is not None:
|
||||
raise ValueError(
|
||||
f"Cannot forward both `image`: {image} and `image_embeds`: {image_embeds}. Please make sure to"
|
||||
" only forward one of the two."
|
||||
)
|
||||
if image is None and image_embeds is None:
|
||||
raise ValueError(
|
||||
"Provide either `image` or `prompt_embeds`. Cannot leave both `image` and `image_embeds` undefined."
|
||||
)
|
||||
if image is not None and not isinstance(image, torch.Tensor) and not isinstance(image, PIL.Image.Image):
|
||||
raise ValueError(f"`image` has to be of type `torch.Tensor` or `PIL.Image.Image` but is {type(image)}")
|
||||
if height % 16 != 0 or width % 16 != 0:
|
||||
raise ValueError(f"`height` and `width` have to be divisible by 16 but are {height} and {width}.")
|
||||
|
||||
if callback_on_step_end_tensor_inputs is not None and not all(
|
||||
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
||||
):
|
||||
raise ValueError(
|
||||
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
||||
)
|
||||
|
||||
if prompt is not None and prompt_embeds is not None:
|
||||
raise ValueError(
|
||||
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
||||
" only forward one of the two."
|
||||
)
|
||||
elif negative_prompt is not None and negative_prompt_embeds is not None:
|
||||
raise ValueError(
|
||||
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to"
|
||||
" only forward one of the two."
|
||||
)
|
||||
elif prompt is None and prompt_embeds is None:
|
||||
raise ValueError(
|
||||
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
||||
)
|
||||
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
||||
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
||||
elif negative_prompt is not None and (
|
||||
not isinstance(negative_prompt, str) and not isinstance(negative_prompt, list)
|
||||
):
|
||||
raise ValueError(f"`negative_prompt` has to be of type `str` or `list` but is {type(negative_prompt)}")
|
||||
|
||||
# modified from diffusers.pipelines.wan.pipeline_wan_i2v.WanImageToVideoPipeline.prepare_latents
|
||||
def prepare_latents(
|
||||
self,
|
||||
image: PipelineImageInput,
|
||||
batch_size: int,
|
||||
num_channels_latents: int = 16,
|
||||
height: int = 480,
|
||||
width: int = 832,
|
||||
num_frames: int = 81,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
device: Optional[torch.device] = None,
|
||||
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
||||
latents: Optional[torch.Tensor] = None,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
num_latent_frames = (num_frames - 1) // self.vae_scale_factor_temporal + 1
|
||||
latent_height = height // self.vae_scale_factor_spatial
|
||||
latent_width = width // self.vae_scale_factor_spatial
|
||||
|
||||
shape = (batch_size, num_channels_latents, num_latent_frames, latent_height, latent_width)
|
||||
if isinstance(generator, list) and len(generator) != batch_size:
|
||||
raise ValueError(
|
||||
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
||||
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
||||
)
|
||||
|
||||
if latents is None:
|
||||
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
||||
else:
|
||||
latents = latents.to(device=device, dtype=dtype)
|
||||
|
||||
image = image.unsqueeze(2) # [batch_size, channels, 1, height, width]
|
||||
video_condition = torch.cat(
|
||||
[image, image.new_zeros(image.shape[0], image.shape[1], num_frames - 1, height, width)], dim=2
|
||||
)
|
||||
video_condition = video_condition.to(device=device, dtype=self.vae.dtype)
|
||||
|
||||
latents_mean = (
|
||||
torch.tensor(self.vae.config.latents_mean)
|
||||
.view(1, self.vae.config.z_dim, 1, 1, 1)
|
||||
.to(latents.device, latents.dtype)
|
||||
)
|
||||
latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to(
|
||||
latents.device, latents.dtype
|
||||
)
|
||||
|
||||
if isinstance(generator, list):
|
||||
latent_condition = [
|
||||
retrieve_latents(self.vae.encode(video_condition), sample_mode="argmax") for _ in generator
|
||||
]
|
||||
latent_condition = torch.cat(latent_condition)
|
||||
else:
|
||||
latent_condition = retrieve_latents(self.vae.encode(video_condition), sample_mode="argmax")
|
||||
latent_condition = latent_condition.repeat(batch_size, 1, 1, 1, 1)
|
||||
|
||||
latent_condition = latent_condition.to(dtype)
|
||||
latent_condition = (latent_condition - latents_mean) * latents_std
|
||||
|
||||
mask_lat_size = torch.ones(batch_size, 1, num_frames, latent_height, latent_width)
|
||||
mask_lat_size[:, :, list(range(1, num_frames))] = 0
|
||||
first_frame_mask = mask_lat_size[:, :, 0:1]
|
||||
first_frame_mask = torch.repeat_interleave(first_frame_mask, dim=2, repeats=self.vae_scale_factor_temporal)
|
||||
mask_lat_size = torch.concat([first_frame_mask, mask_lat_size[:, :, 1:, :]], dim=2)
|
||||
mask_lat_size = mask_lat_size.view(batch_size, -1, self.vae_scale_factor_temporal, latent_height, latent_width)
|
||||
mask_lat_size = mask_lat_size.transpose(1, 2)
|
||||
mask_lat_size = mask_lat_size.to(latent_condition.device)
|
||||
|
||||
return latents, torch.concat([mask_lat_size, latent_condition], dim=1)
|
||||
|
||||
@property
|
||||
def guidance_scale(self):
|
||||
return self._guidance_scale
|
||||
|
||||
@property
|
||||
def do_classifier_free_guidance(self):
|
||||
return self._guidance_scale > 1
|
||||
|
||||
@property
|
||||
def num_timesteps(self):
|
||||
return self._num_timesteps
|
||||
|
||||
@property
|
||||
def current_timestep(self):
|
||||
return self._current_timestep
|
||||
|
||||
@property
|
||||
def interrupt(self):
|
||||
return self._interrupt
|
||||
|
||||
@property
|
||||
def attention_kwargs(self):
|
||||
return self._attention_kwargs
|
||||
|
||||
@torch.no_grad()
|
||||
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
||||
def __call__(
|
||||
self,
|
||||
image: PipelineImageInput,
|
||||
prompt: Union[str, List[str]] = None,
|
||||
negative_prompt: Union[str, List[str]] = None,
|
||||
height: int = 480,
|
||||
width: int = 832,
|
||||
num_frames: int = 81,
|
||||
num_inference_steps: int = 50,
|
||||
guidance_scale: float = 5.0,
|
||||
num_videos_per_prompt: Optional[int] = 1,
|
||||
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
||||
latents: Optional[torch.Tensor] = None,
|
||||
prompt_embeds: Optional[torch.Tensor] = None,
|
||||
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
||||
image_embeds: Optional[torch.Tensor] = None,
|
||||
output_type: Optional[str] = "np",
|
||||
return_dict: bool = True,
|
||||
attention_kwargs: Optional[Dict[str, Any]] = None,
|
||||
callback_on_step_end: Optional[
|
||||
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
|
||||
] = None,
|
||||
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
||||
max_sequence_length: int = 512,
|
||||
enable_temporal_reasoning: bool = False,
|
||||
num_temporal_reasoning_steps: int = 0,
|
||||
):
|
||||
r"""
|
||||
The call function to the pipeline for generation.
|
||||
|
||||
Args:
|
||||
image (`PipelineImageInput`):
|
||||
The input image to condition the generation on. Must be an image, a list of images or a `torch.Tensor`.
|
||||
prompt (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
||||
instead.
|
||||
negative_prompt (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
||||
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
||||
less than `1`).
|
||||
height (`int`, defaults to `480`):
|
||||
The height of the generated video.
|
||||
width (`int`, defaults to `832`):
|
||||
The width of the generated video.
|
||||
num_frames (`int`, defaults to `81`):
|
||||
The number of frames in the generated video.
|
||||
num_inference_steps (`int`, defaults to `50`):
|
||||
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
||||
expense of slower inference.
|
||||
guidance_scale (`float`, defaults to `5.0`):
|
||||
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
||||
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
||||
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
||||
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
||||
usually at the expense of lower image quality.
|
||||
num_videos_per_prompt (`int`, *optional*, defaults to 1):
|
||||
The number of images to generate per prompt.
|
||||
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
||||
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
||||
generation deterministic.
|
||||
latents (`torch.Tensor`, *optional*):
|
||||
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
||||
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
||||
tensor is generated by sampling using the supplied random `generator`.
|
||||
prompt_embeds (`torch.Tensor`, *optional*):
|
||||
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
||||
provided, text embeddings are generated from the `prompt` input argument.
|
||||
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
||||
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
||||
provided, text embeddings are generated from the `negative_prompt` input argument.
|
||||
image_embeds (`torch.Tensor`, *optional*):
|
||||
Pre-generated image embeddings. Can be used to easily tweak image inputs (weighting). If not provided,
|
||||
image embeddings are generated from the `image` input argument.
|
||||
output_type (`str`, *optional*, defaults to `"np"`):
|
||||
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to return a [`ChronoEditPipelineOutput`] instead of a plain tuple.
|
||||
attention_kwargs (`dict`, *optional*):
|
||||
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
||||
`self.processor` in
|
||||
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
||||
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
|
||||
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
|
||||
each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
|
||||
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
|
||||
list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
|
||||
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
||||
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
||||
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
||||
`._callback_tensor_inputs` attribute of your pipeline class.
|
||||
max_sequence_length (`int`, defaults to `512`):
|
||||
The maximum sequence length of the text encoder. If the prompt is longer than this, it will be
|
||||
truncated. If the prompt is shorter, it will be padded to this length.
|
||||
enable_temporal_reasoning (`bool`, *optional*, defaults to `False`):
|
||||
Whether to enable temporal reasoning.
|
||||
num_temporal_reasoning_steps (`int`, *optional*, defaults to `0`):
|
||||
The number of steps to enable temporal reasoning.
|
||||
|
||||
Examples:
|
||||
|
||||
Returns:
|
||||
[`~ChronoEditPipelineOutput`] or `tuple`:
|
||||
If `return_dict` is `True`, [`ChronoEditPipelineOutput`] is returned, otherwise a `tuple` is returned
|
||||
where the first element is a list with the generated images and the second element is a list of `bool`s
|
||||
indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content.
|
||||
"""
|
||||
|
||||
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
||||
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
||||
|
||||
# 1. Check inputs. Raise error if not correct
|
||||
self.check_inputs(
|
||||
prompt,
|
||||
negative_prompt,
|
||||
image,
|
||||
height,
|
||||
width,
|
||||
prompt_embeds,
|
||||
negative_prompt_embeds,
|
||||
image_embeds,
|
||||
callback_on_step_end_tensor_inputs,
|
||||
)
|
||||
|
||||
num_frames = 5 if not enable_temporal_reasoning else num_frames
|
||||
|
||||
if num_frames % self.vae_scale_factor_temporal != 1:
|
||||
logger.warning(
|
||||
f"`num_frames - 1` has to be divisible by {self.vae_scale_factor_temporal}. Rounding to the nearest number."
|
||||
)
|
||||
num_frames = num_frames // self.vae_scale_factor_temporal * self.vae_scale_factor_temporal + 1
|
||||
num_frames = max(num_frames, 1)
|
||||
|
||||
self._guidance_scale = guidance_scale
|
||||
self._attention_kwargs = attention_kwargs
|
||||
self._current_timestep = None
|
||||
self._interrupt = False
|
||||
|
||||
device = self._execution_device
|
||||
|
||||
# 2. Define call parameters
|
||||
if prompt is not None and isinstance(prompt, str):
|
||||
batch_size = 1
|
||||
elif prompt is not None and isinstance(prompt, list):
|
||||
batch_size = len(prompt)
|
||||
else:
|
||||
batch_size = prompt_embeds.shape[0]
|
||||
|
||||
# 3. Encode input prompt
|
||||
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
||||
prompt=prompt,
|
||||
negative_prompt=negative_prompt,
|
||||
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
||||
num_videos_per_prompt=num_videos_per_prompt,
|
||||
prompt_embeds=prompt_embeds,
|
||||
negative_prompt_embeds=negative_prompt_embeds,
|
||||
max_sequence_length=max_sequence_length,
|
||||
device=device,
|
||||
)
|
||||
|
||||
# Encode image embedding
|
||||
transformer_dtype = self.transformer.dtype
|
||||
prompt_embeds = prompt_embeds.to(transformer_dtype)
|
||||
if negative_prompt_embeds is not None:
|
||||
negative_prompt_embeds = negative_prompt_embeds.to(transformer_dtype)
|
||||
|
||||
if image_embeds is None:
|
||||
image_embeds = self.encode_image(image, device)
|
||||
image_embeds = image_embeds.repeat(batch_size, 1, 1)
|
||||
image_embeds = image_embeds.to(transformer_dtype)
|
||||
|
||||
# 4. Prepare timesteps
|
||||
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
||||
timesteps = self.scheduler.timesteps
|
||||
|
||||
# 5. Prepare latent variables
|
||||
num_channels_latents = self.vae.config.z_dim
|
||||
image = self.video_processor.preprocess(image, height=height, width=width).to(device, dtype=torch.float32)
|
||||
latents, condition = self.prepare_latents(
|
||||
image,
|
||||
batch_size * num_videos_per_prompt,
|
||||
num_channels_latents,
|
||||
height,
|
||||
width,
|
||||
num_frames,
|
||||
torch.float32,
|
||||
device,
|
||||
generator,
|
||||
latents,
|
||||
)
|
||||
|
||||
# 6. Denoising loop
|
||||
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
||||
self._num_timesteps = len(timesteps)
|
||||
|
||||
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
||||
for i, t in enumerate(timesteps):
|
||||
if self.interrupt:
|
||||
continue
|
||||
|
||||
if enable_temporal_reasoning and i == num_temporal_reasoning_steps:
|
||||
latents = latents[:, :, [0, -1]]
|
||||
condition = condition[:, :, [0, -1]]
|
||||
|
||||
for j in range(len(self.scheduler.model_outputs)):
|
||||
if self.scheduler.model_outputs[j] is not None:
|
||||
if latents.shape[-3] != self.scheduler.model_outputs[j].shape[-3]:
|
||||
self.scheduler.model_outputs[j] = self.scheduler.model_outputs[j][:, :, [0, -1]]
|
||||
if self.scheduler.last_sample is not None:
|
||||
self.scheduler.last_sample = self.scheduler.last_sample[:, :, [0, -1]]
|
||||
|
||||
self._current_timestep = t
|
||||
latent_model_input = torch.cat([latents, condition], dim=1).to(transformer_dtype)
|
||||
timestep = t.expand(latents.shape[0])
|
||||
|
||||
noise_pred = self.transformer(
|
||||
hidden_states=latent_model_input,
|
||||
timestep=timestep,
|
||||
encoder_hidden_states=prompt_embeds,
|
||||
encoder_hidden_states_image=image_embeds,
|
||||
attention_kwargs=attention_kwargs,
|
||||
return_dict=False,
|
||||
)[0]
|
||||
|
||||
if self.do_classifier_free_guidance:
|
||||
noise_uncond = self.transformer(
|
||||
hidden_states=latent_model_input,
|
||||
timestep=timestep,
|
||||
encoder_hidden_states=negative_prompt_embeds,
|
||||
encoder_hidden_states_image=image_embeds,
|
||||
attention_kwargs=attention_kwargs,
|
||||
return_dict=False,
|
||||
)[0]
|
||||
noise_pred = noise_uncond + guidance_scale * (noise_pred - noise_uncond)
|
||||
|
||||
# compute the previous noisy sample x_t -> x_t-1
|
||||
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
||||
|
||||
if callback_on_step_end is not None:
|
||||
callback_kwargs = {}
|
||||
for k in callback_on_step_end_tensor_inputs:
|
||||
callback_kwargs[k] = locals()[k]
|
||||
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
||||
|
||||
latents = callback_outputs.pop("latents", latents)
|
||||
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
||||
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
||||
|
||||
# call the callback, if provided
|
||||
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
||||
progress_bar.update()
|
||||
|
||||
if XLA_AVAILABLE:
|
||||
xm.mark_step()
|
||||
|
||||
self._current_timestep = None
|
||||
|
||||
if not output_type == "latent":
|
||||
latents = latents.to(self.vae.dtype)
|
||||
latents_mean = (
|
||||
torch.tensor(self.vae.config.latents_mean)
|
||||
.view(1, self.vae.config.z_dim, 1, 1, 1)
|
||||
.to(latents.device, latents.dtype)
|
||||
)
|
||||
latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to(
|
||||
latents.device, latents.dtype
|
||||
)
|
||||
latents = latents / latents_std + latents_mean
|
||||
if enable_temporal_reasoning and latents.shape[2] > 2:
|
||||
video_edit = self.vae.decode(latents[:, :, [0, -1]], return_dict=False)[0]
|
||||
video_reason = self.vae.decode(latents[:, :, :-1], return_dict=False)[0]
|
||||
video = torch.cat([video_reason, video_edit[:, :, 1:]], dim=2)
|
||||
else:
|
||||
video = self.vae.decode(latents, return_dict=False)[0]
|
||||
video = self.video_processor.postprocess_video(video, output_type=output_type)
|
||||
else:
|
||||
video = latents
|
||||
|
||||
# Offload all models
|
||||
self.maybe_free_model_hooks()
|
||||
|
||||
if not return_dict:
|
||||
return (video,)
|
||||
|
||||
return ChronoEditPipelineOutput(frames=video)
|
||||
20
src/diffusers/pipelines/chronoedit/pipeline_output.py
Normal file
20
src/diffusers/pipelines/chronoedit/pipeline_output.py
Normal file
@@ -0,0 +1,20 @@
|
||||
from dataclasses import dataclass
|
||||
|
||||
import torch
|
||||
|
||||
from diffusers.utils import BaseOutput
|
||||
|
||||
|
||||
@dataclass
|
||||
class ChronoEditPipelineOutput(BaseOutput):
|
||||
r"""
|
||||
Output class for ChronoEdit pipelines.
|
||||
|
||||
Args:
|
||||
frames (`torch.Tensor`, `np.ndarray`, or List[List[PIL.Image.Image]]):
|
||||
List of video outputs - It can be a nested list of length `batch_size,` with each sub-list containing
|
||||
denoised PIL image sequences of length `num_frames.` It can also be a NumPy array or Torch tensor of shape
|
||||
`(batch_size, num_frames, channels, height, width)`.
|
||||
"""
|
||||
|
||||
frames: torch.Tensor
|
||||
@@ -26,6 +26,7 @@ else:
|
||||
_import_structure["pipeline_sana_controlnet"] = ["SanaControlNetPipeline"]
|
||||
_import_structure["pipeline_sana_sprint"] = ["SanaSprintPipeline"]
|
||||
_import_structure["pipeline_sana_sprint_img2img"] = ["SanaSprintImg2ImgPipeline"]
|
||||
_import_structure["pipeline_sana_video"] = ["SanaVideoPipeline"]
|
||||
|
||||
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
try:
|
||||
@@ -39,6 +40,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
from .pipeline_sana_controlnet import SanaControlNetPipeline
|
||||
from .pipeline_sana_sprint import SanaSprintPipeline
|
||||
from .pipeline_sana_sprint_img2img import SanaSprintImg2ImgPipeline
|
||||
from .pipeline_sana_video import SanaVideoPipeline
|
||||
else:
|
||||
import sys
|
||||
|
||||
|
||||
@@ -3,6 +3,7 @@ from typing import List, Union
|
||||
|
||||
import numpy as np
|
||||
import PIL.Image
|
||||
import torch
|
||||
|
||||
from ...utils import BaseOutput
|
||||
|
||||
@@ -19,3 +20,18 @@ class SanaPipelineOutput(BaseOutput):
|
||||
"""
|
||||
|
||||
images: Union[List[PIL.Image.Image], np.ndarray]
|
||||
|
||||
|
||||
@dataclass
|
||||
class SanaVideoPipelineOutput(BaseOutput):
|
||||
r"""
|
||||
Output class for Sana-Video pipelines.
|
||||
|
||||
Args:
|
||||
frames (`torch.Tensor`, `np.ndarray`, or List[List[PIL.Image.Image]]):
|
||||
List of video outputs - It can be a nested list of length `batch_size,` with each sub-list containing
|
||||
denoised PIL image sequences of length `num_frames.` It can also be a NumPy array or Torch tensor of shape
|
||||
`(batch_size, num_frames, channels, height, width)`.
|
||||
"""
|
||||
|
||||
frames: torch.Tensor
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
# Copyright 2025 PixArt-Sigma Authors and The HuggingFace Team. All rights reserved.
|
||||
# Copyright 2025 SANA Authors and The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
# Copyright 2025 PixArt-Sigma Authors and The HuggingFace Team. All rights reserved.
|
||||
# Copyright 2025 SANA-Sprint Authors and The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
||||
1017
src/diffusers/pipelines/sana/pipeline_sana_video.py
Normal file
1017
src/diffusers/pipelines/sana/pipeline_sana_video.py
Normal file
File diff suppressed because it is too large
Load Diff
@@ -648,6 +648,21 @@ class ChromaTransformer2DModel(metaclass=DummyObject):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
|
||||
class ChronoEditTransformer3DModel(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
|
||||
class CogVideoXTransformer3DModel(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
||||
@@ -1308,6 +1323,21 @@ class SanaTransformer2DModel(metaclass=DummyObject):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
|
||||
class SanaVideoTransformer3DModel(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
|
||||
class SD3ControlNetModel(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
||||
|
||||
@@ -182,6 +182,21 @@ class StableDiffusionXLModularPipeline(metaclass=DummyObject):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class Wan22AutoBlocks(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class WanAutoBlocks(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
@@ -542,6 +557,21 @@ class ChromaPipeline(metaclass=DummyObject):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class ChronoEditPipeline(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class CLIPImageProjection(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
@@ -2177,6 +2207,21 @@ class SanaSprintPipeline(metaclass=DummyObject):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class SanaVideoPipeline(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class SemanticStableDiffusionPipeline(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
|
||||
@@ -358,6 +358,7 @@ def get_cached_module_file(
|
||||
proxies=proxies,
|
||||
local_files_only=local_files_only,
|
||||
local_dir=local_dir,
|
||||
revision=revision,
|
||||
token=token,
|
||||
)
|
||||
submodule = os.path.join("local", "--".join(pretrained_model_name_or_path.split("/")))
|
||||
|
||||
@@ -13,11 +13,12 @@
|
||||
# limitations under the License.
|
||||
|
||||
import warnings
|
||||
from typing import List, Optional, Union
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import PIL
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
from .image_processor import VaeImageProcessor, is_valid_image, is_valid_image_imagelist
|
||||
|
||||
@@ -111,3 +112,65 @@ class VideoProcessor(VaeImageProcessor):
|
||||
raise ValueError(f"{output_type} does not exist. Please choose one of ['np', 'pt', 'pil']")
|
||||
|
||||
return outputs
|
||||
|
||||
@staticmethod
|
||||
def classify_height_width_bin(height: int, width: int, ratios: dict) -> Tuple[int, int]:
|
||||
r"""
|
||||
Returns the binned height and width based on the aspect ratio.
|
||||
|
||||
Args:
|
||||
height (`int`): The height of the image.
|
||||
width (`int`): The width of the image.
|
||||
ratios (`dict`): A dictionary where keys are aspect ratios and values are tuples of (height, width).
|
||||
|
||||
Returns:
|
||||
`Tuple[int, int]`: The closest binned height and width.
|
||||
"""
|
||||
ar = float(height / width)
|
||||
closest_ratio = min(ratios.keys(), key=lambda ratio: abs(float(ratio) - ar))
|
||||
default_hw = ratios[closest_ratio]
|
||||
return int(default_hw[0]), int(default_hw[1])
|
||||
|
||||
@staticmethod
|
||||
def resize_and_crop_tensor(samples: torch.Tensor, new_width: int, new_height: int) -> torch.Tensor:
|
||||
r"""
|
||||
Resizes and crops a tensor of videos to the specified dimensions.
|
||||
|
||||
Args:
|
||||
samples (`torch.Tensor`):
|
||||
A tensor of shape (N, C, T, H, W) where N is the batch size, C is the number of channels, T is the
|
||||
number of frames, H is the height, and W is the width.
|
||||
new_width (`int`): The desired width of the output videos.
|
||||
new_height (`int`): The desired height of the output videos.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`: A tensor containing the resized and cropped videos.
|
||||
"""
|
||||
orig_height, orig_width = samples.shape[3], samples.shape[4]
|
||||
|
||||
# Check if resizing is needed
|
||||
if orig_height != new_height or orig_width != new_width:
|
||||
ratio = max(new_height / orig_height, new_width / orig_width)
|
||||
resized_width = int(orig_width * ratio)
|
||||
resized_height = int(orig_height * ratio)
|
||||
|
||||
# Reshape to (N*T, C, H, W) for interpolation
|
||||
n, c, t, h, w = samples.shape
|
||||
samples = samples.permute(0, 2, 1, 3, 4).reshape(n * t, c, h, w)
|
||||
|
||||
# Resize
|
||||
samples = F.interpolate(
|
||||
samples, size=(resized_height, resized_width), mode="bilinear", align_corners=False
|
||||
)
|
||||
|
||||
# Center Crop
|
||||
start_x = (resized_width - new_width) // 2
|
||||
end_x = start_x + new_width
|
||||
start_y = (resized_height - new_height) // 2
|
||||
end_y = start_y + new_height
|
||||
samples = samples[:, :, start_y:end_y, start_x:end_x]
|
||||
|
||||
# Reshape back to (N, C, T, H, W)
|
||||
samples = samples.reshape(n, t, c, new_height, new_width).permute(0, 2, 1, 3, 4)
|
||||
|
||||
return samples
|
||||
|
||||
@@ -0,0 +1,97 @@
|
||||
# Copyright 2025 HuggingFace Inc.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import unittest
|
||||
|
||||
import torch
|
||||
|
||||
from diffusers import SanaVideoTransformer3DModel
|
||||
|
||||
from ...testing_utils import (
|
||||
enable_full_determinism,
|
||||
torch_device,
|
||||
)
|
||||
from ..test_modeling_common import ModelTesterMixin, TorchCompileTesterMixin
|
||||
|
||||
|
||||
enable_full_determinism()
|
||||
|
||||
|
||||
class SanaVideoTransformer3DTests(ModelTesterMixin, unittest.TestCase):
|
||||
model_class = SanaVideoTransformer3DModel
|
||||
main_input_name = "hidden_states"
|
||||
uses_custom_attn_processor = True
|
||||
|
||||
@property
|
||||
def dummy_input(self):
|
||||
batch_size = 1
|
||||
num_channels = 16
|
||||
num_frames = 2
|
||||
height = 16
|
||||
width = 16
|
||||
text_encoder_embedding_dim = 16
|
||||
sequence_length = 12
|
||||
|
||||
hidden_states = torch.randn((batch_size, num_channels, num_frames, height, width)).to(torch_device)
|
||||
timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device)
|
||||
encoder_hidden_states = torch.randn((batch_size, sequence_length, text_encoder_embedding_dim)).to(torch_device)
|
||||
|
||||
return {
|
||||
"hidden_states": hidden_states,
|
||||
"encoder_hidden_states": encoder_hidden_states,
|
||||
"timestep": timestep,
|
||||
}
|
||||
|
||||
@property
|
||||
def input_shape(self):
|
||||
return (16, 2, 16, 16)
|
||||
|
||||
@property
|
||||
def output_shape(self):
|
||||
return (16, 2, 16, 16)
|
||||
|
||||
def prepare_init_args_and_inputs_for_common(self):
|
||||
init_dict = {
|
||||
"in_channels": 16,
|
||||
"out_channels": 16,
|
||||
"num_attention_heads": 2,
|
||||
"attention_head_dim": 12,
|
||||
"num_layers": 2,
|
||||
"num_cross_attention_heads": 2,
|
||||
"cross_attention_head_dim": 12,
|
||||
"cross_attention_dim": 24,
|
||||
"caption_channels": 16,
|
||||
"mlp_ratio": 2.5,
|
||||
"dropout": 0.0,
|
||||
"attention_bias": False,
|
||||
"sample_size": 8,
|
||||
"patch_size": (1, 2, 2),
|
||||
"norm_elementwise_affine": False,
|
||||
"norm_eps": 1e-6,
|
||||
"qk_norm": "rms_norm_across_heads",
|
||||
"rope_max_seq_len": 32,
|
||||
}
|
||||
inputs_dict = self.dummy_input
|
||||
return init_dict, inputs_dict
|
||||
|
||||
def test_gradient_checkpointing_is_applied(self):
|
||||
expected_set = {"SanaVideoTransformer3DModel"}
|
||||
super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
|
||||
|
||||
|
||||
class SanaVideoTransformerCompileTests(TorchCompileTesterMixin, unittest.TestCase):
|
||||
model_class = SanaVideoTransformer3DModel
|
||||
|
||||
def prepare_init_args_and_inputs_for_common(self):
|
||||
return SanaVideoTransformer3DTests().prepare_init_args_and_inputs_for_common()
|
||||
0
tests/modular_pipelines/flux/__init__.py
Normal file
0
tests/modular_pipelines/flux/__init__.py
Normal file
172
tests/modular_pipelines/flux/test_modular_pipeline_flux.py
Normal file
172
tests/modular_pipelines/flux/test_modular_pipeline_flux.py
Normal file
@@ -0,0 +1,172 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2025 HuggingFace Inc.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import random
|
||||
import tempfile
|
||||
|
||||
import numpy as np
|
||||
import PIL
|
||||
import torch
|
||||
|
||||
from diffusers.image_processor import VaeImageProcessor
|
||||
from diffusers.modular_pipelines import (
|
||||
FluxAutoBlocks,
|
||||
FluxKontextAutoBlocks,
|
||||
FluxKontextModularPipeline,
|
||||
FluxModularPipeline,
|
||||
ModularPipeline,
|
||||
)
|
||||
|
||||
from ...testing_utils import floats_tensor, torch_device
|
||||
from ..test_modular_pipelines_common import ModularPipelineTesterMixin
|
||||
|
||||
|
||||
class TestFluxModularPipelineFast(ModularPipelineTesterMixin):
|
||||
pipeline_class = FluxModularPipeline
|
||||
pipeline_blocks_class = FluxAutoBlocks
|
||||
repo = "hf-internal-testing/tiny-flux-modular"
|
||||
|
||||
params = frozenset(["prompt", "height", "width", "guidance_scale"])
|
||||
batch_params = frozenset(["prompt"])
|
||||
|
||||
def get_dummy_inputs(self, seed=0):
|
||||
generator = self.get_generator(seed)
|
||||
inputs = {
|
||||
"prompt": "A painting of a squirrel eating a burger",
|
||||
"generator": generator,
|
||||
"num_inference_steps": 2,
|
||||
"guidance_scale": 5.0,
|
||||
"height": 8,
|
||||
"width": 8,
|
||||
"max_sequence_length": 48,
|
||||
"output_type": "pt",
|
||||
}
|
||||
return inputs
|
||||
|
||||
|
||||
class TestFluxImg2ImgModularPipelineFast(ModularPipelineTesterMixin):
|
||||
pipeline_class = FluxModularPipeline
|
||||
pipeline_blocks_class = FluxAutoBlocks
|
||||
repo = "hf-internal-testing/tiny-flux-modular"
|
||||
|
||||
params = frozenset(["prompt", "height", "width", "guidance_scale", "image"])
|
||||
batch_params = frozenset(["prompt", "image"])
|
||||
|
||||
def get_pipeline(self, components_manager=None, torch_dtype=torch.float32):
|
||||
pipeline = super().get_pipeline(components_manager, torch_dtype)
|
||||
|
||||
# Override `vae_scale_factor` here as currently, `image_processor` is initialized with
|
||||
# fixed constants instead of
|
||||
# https://github.com/huggingface/diffusers/blob/d54622c2679d700b425ad61abce9b80fc36212c0/src/diffusers/pipelines/flux/pipeline_flux_img2img.py#L230C9-L232C10
|
||||
pipeline.image_processor = VaeImageProcessor(vae_scale_factor=2)
|
||||
return pipeline
|
||||
|
||||
def get_dummy_inputs(self, seed=0):
|
||||
generator = self.get_generator(seed)
|
||||
inputs = {
|
||||
"prompt": "A painting of a squirrel eating a burger",
|
||||
"generator": generator,
|
||||
"num_inference_steps": 4,
|
||||
"guidance_scale": 5.0,
|
||||
"height": 8,
|
||||
"width": 8,
|
||||
"max_sequence_length": 48,
|
||||
"output_type": "pt",
|
||||
}
|
||||
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(torch_device)
|
||||
image = image.cpu().permute(0, 2, 3, 1)[0]
|
||||
init_image = PIL.Image.fromarray(np.uint8(image)).convert("RGB")
|
||||
|
||||
inputs["image"] = init_image
|
||||
inputs["strength"] = 0.5
|
||||
|
||||
return inputs
|
||||
|
||||
def test_save_from_pretrained(self):
|
||||
pipes = []
|
||||
base_pipe = self.get_pipeline().to(torch_device)
|
||||
pipes.append(base_pipe)
|
||||
|
||||
with tempfile.TemporaryDirectory() as tmpdirname:
|
||||
base_pipe.save_pretrained(tmpdirname)
|
||||
|
||||
pipe = ModularPipeline.from_pretrained(tmpdirname).to(torch_device)
|
||||
pipe.load_components(torch_dtype=torch.float32)
|
||||
pipe.to(torch_device)
|
||||
pipe.image_processor = VaeImageProcessor(vae_scale_factor=2)
|
||||
|
||||
pipes.append(pipe)
|
||||
|
||||
image_slices = []
|
||||
for pipe in pipes:
|
||||
inputs = self.get_dummy_inputs()
|
||||
image = pipe(**inputs, output="images")
|
||||
|
||||
image_slices.append(image[0, -3:, -3:, -1].flatten())
|
||||
|
||||
assert torch.abs(image_slices[0] - image_slices[1]).max() < 1e-3
|
||||
|
||||
|
||||
class TestFluxKontextModularPipelineFast(ModularPipelineTesterMixin):
|
||||
pipeline_class = FluxKontextModularPipeline
|
||||
pipeline_blocks_class = FluxKontextAutoBlocks
|
||||
repo = "hf-internal-testing/tiny-flux-kontext-pipe"
|
||||
|
||||
params = frozenset(["prompt", "height", "width", "guidance_scale", "image"])
|
||||
batch_params = frozenset(["prompt", "image"])
|
||||
|
||||
def get_dummy_inputs(self, seed=0):
|
||||
generator = self.get_generator(seed)
|
||||
inputs = {
|
||||
"prompt": "A painting of a squirrel eating a burger",
|
||||
"generator": generator,
|
||||
"num_inference_steps": 2,
|
||||
"guidance_scale": 5.0,
|
||||
"height": 8,
|
||||
"width": 8,
|
||||
"max_sequence_length": 48,
|
||||
"output_type": "pt",
|
||||
}
|
||||
image = PIL.Image.new("RGB", (32, 32), 0)
|
||||
|
||||
inputs["image"] = image
|
||||
inputs["max_area"] = inputs["height"] * inputs["width"]
|
||||
inputs["_auto_resize"] = False
|
||||
|
||||
return inputs
|
||||
|
||||
def test_save_from_pretrained(self):
|
||||
pipes = []
|
||||
base_pipe = self.get_pipeline().to(torch_device)
|
||||
pipes.append(base_pipe)
|
||||
|
||||
with tempfile.TemporaryDirectory() as tmpdirname:
|
||||
base_pipe.save_pretrained(tmpdirname)
|
||||
|
||||
pipe = ModularPipeline.from_pretrained(tmpdirname).to(torch_device)
|
||||
pipe.load_components(torch_dtype=torch.float32)
|
||||
pipe.to(torch_device)
|
||||
pipe.image_processor = VaeImageProcessor(vae_scale_factor=2)
|
||||
|
||||
pipes.append(pipe)
|
||||
|
||||
image_slices = []
|
||||
for pipe in pipes:
|
||||
inputs = self.get_dummy_inputs()
|
||||
image = pipe(**inputs, output="images")
|
||||
|
||||
image_slices.append(image[0, -3:, -3:, -1].flatten())
|
||||
|
||||
assert torch.abs(image_slices[0] - image_slices[1]).max() < 1e-3
|
||||
@@ -14,93 +14,43 @@
|
||||
# limitations under the License.
|
||||
|
||||
import random
|
||||
import unittest
|
||||
from typing import Any, Dict
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
|
||||
from diffusers import (
|
||||
ClassifierFreeGuidance,
|
||||
StableDiffusionXLAutoBlocks,
|
||||
StableDiffusionXLModularPipeline,
|
||||
)
|
||||
from diffusers import ClassifierFreeGuidance, StableDiffusionXLAutoBlocks, StableDiffusionXLModularPipeline
|
||||
from diffusers.loaders import ModularIPAdapterMixin
|
||||
|
||||
from ...models.unets.test_models_unet_2d_condition import (
|
||||
create_ip_adapter_state_dict,
|
||||
)
|
||||
from ...testing_utils import (
|
||||
enable_full_determinism,
|
||||
floats_tensor,
|
||||
torch_device,
|
||||
)
|
||||
from ..test_modular_pipelines_common import (
|
||||
ModularPipelineTesterMixin,
|
||||
)
|
||||
from ...models.unets.test_models_unet_2d_condition import create_ip_adapter_state_dict
|
||||
from ...testing_utils import enable_full_determinism, floats_tensor, torch_device
|
||||
from ..test_modular_pipelines_common import ModularPipelineTesterMixin
|
||||
|
||||
|
||||
enable_full_determinism()
|
||||
|
||||
|
||||
class SDXLModularTests:
|
||||
class SDXLModularTesterMixin:
|
||||
"""
|
||||
This mixin defines method to create pipeline, base input and base test across all SDXL modular tests.
|
||||
"""
|
||||
|
||||
pipeline_class = StableDiffusionXLModularPipeline
|
||||
pipeline_blocks_class = StableDiffusionXLAutoBlocks
|
||||
repo = "hf-internal-testing/tiny-sdxl-modular"
|
||||
params = frozenset(
|
||||
[
|
||||
"prompt",
|
||||
"height",
|
||||
"width",
|
||||
"negative_prompt",
|
||||
"cross_attention_kwargs",
|
||||
"image",
|
||||
"mask_image",
|
||||
]
|
||||
)
|
||||
batch_params = frozenset(["prompt", "negative_prompt", "image", "mask_image"])
|
||||
|
||||
def get_pipeline(self, components_manager=None, torch_dtype=torch.float32):
|
||||
pipeline = self.pipeline_blocks_class().init_pipeline(self.repo, components_manager=components_manager)
|
||||
pipeline.load_components(torch_dtype=torch_dtype)
|
||||
return pipeline
|
||||
|
||||
def get_dummy_inputs(self, device, seed=0):
|
||||
if str(device).startswith("mps"):
|
||||
generator = torch.manual_seed(seed)
|
||||
else:
|
||||
generator = torch.Generator(device=device).manual_seed(seed)
|
||||
inputs = {
|
||||
"prompt": "A painting of a squirrel eating a burger",
|
||||
"generator": generator,
|
||||
"num_inference_steps": 2,
|
||||
"output_type": "np",
|
||||
}
|
||||
return inputs
|
||||
|
||||
def _test_stable_diffusion_xl_euler(self, expected_image_shape, expected_slice, expected_max_diff=1e-2):
|
||||
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
||||
sd_pipe = self.get_pipeline()
|
||||
sd_pipe = sd_pipe.to(device)
|
||||
sd_pipe = sd_pipe.to(torch_device)
|
||||
sd_pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
inputs = self.get_dummy_inputs(device)
|
||||
inputs = self.get_dummy_inputs()
|
||||
image = sd_pipe(**inputs, output="images")
|
||||
image_slice = image[0, -3:, -3:, -1]
|
||||
|
||||
assert image.shape == expected_image_shape
|
||||
|
||||
assert np.abs(image_slice.flatten() - expected_slice).max() < expected_max_diff, (
|
||||
"Image Slice does not match expected slice"
|
||||
)
|
||||
max_diff = torch.abs(image_slice.flatten() - expected_slice).max()
|
||||
assert max_diff < expected_max_diff, f"Image slice does not match expected slice. Max Difference: {max_diff}"
|
||||
|
||||
|
||||
class SDXLModularIPAdapterTests:
|
||||
class SDXLModularIPAdapterTesterMixin:
|
||||
"""
|
||||
This mixin is designed to test IP Adapter.
|
||||
"""
|
||||
@@ -139,7 +89,7 @@ class SDXLModularIPAdapterTests:
|
||||
if "image" in parameters and "strength" in parameters:
|
||||
inputs["num_inference_steps"] = 4
|
||||
|
||||
inputs["output_type"] = "np"
|
||||
inputs["output_type"] = "pt"
|
||||
return inputs
|
||||
|
||||
def test_ip_adapter(self, expected_max_diff: float = 1e-4, expected_pipe_slice=None):
|
||||
@@ -164,7 +114,7 @@ class SDXLModularIPAdapterTests:
|
||||
cross_attention_dim = pipe.unet.config.get("cross_attention_dim")
|
||||
|
||||
# forward pass without ip adapter
|
||||
inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
|
||||
inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs())
|
||||
if expected_pipe_slice is None:
|
||||
output_without_adapter = pipe(**inputs, output="images")
|
||||
else:
|
||||
@@ -175,7 +125,7 @@ class SDXLModularIPAdapterTests:
|
||||
pipe.unet._load_ip_adapter_weights(adapter_state_dict)
|
||||
|
||||
# forward pass with single ip adapter, but scale=0 which should have no effect
|
||||
inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
|
||||
inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs())
|
||||
inputs["ip_adapter_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)]
|
||||
inputs["negative_ip_adapter_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)]
|
||||
pipe.set_ip_adapter_scale(0.0)
|
||||
@@ -184,7 +134,7 @@ class SDXLModularIPAdapterTests:
|
||||
output_without_adapter_scale = output_without_adapter_scale[0, -3:, -3:, -1].flatten()
|
||||
|
||||
# forward pass with single ip adapter, but with scale of adapter weights
|
||||
inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
|
||||
inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs())
|
||||
inputs["ip_adapter_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)]
|
||||
inputs["negative_ip_adapter_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)]
|
||||
pipe.set_ip_adapter_scale(42.0)
|
||||
@@ -192,8 +142,8 @@ class SDXLModularIPAdapterTests:
|
||||
if expected_pipe_slice is not None:
|
||||
output_with_adapter_scale = output_with_adapter_scale[0, -3:, -3:, -1].flatten()
|
||||
|
||||
max_diff_without_adapter_scale = np.abs(output_without_adapter_scale - output_without_adapter).max()
|
||||
max_diff_with_adapter_scale = np.abs(output_with_adapter_scale - output_without_adapter).max()
|
||||
max_diff_without_adapter_scale = torch.abs(output_without_adapter_scale - output_without_adapter).max()
|
||||
max_diff_with_adapter_scale = torch.abs(output_with_adapter_scale - output_without_adapter).max()
|
||||
|
||||
assert max_diff_without_adapter_scale < expected_max_diff, (
|
||||
"Output without ip-adapter must be same as normal inference"
|
||||
@@ -206,7 +156,7 @@ class SDXLModularIPAdapterTests:
|
||||
pipe.unet._load_ip_adapter_weights([adapter_state_dict_1, adapter_state_dict_2])
|
||||
|
||||
# forward pass with multi ip adapter, but scale=0 which should have no effect
|
||||
inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
|
||||
inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs())
|
||||
inputs["ip_adapter_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)] * 2
|
||||
inputs["negative_ip_adapter_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)] * 2
|
||||
pipe.set_ip_adapter_scale([0.0, 0.0])
|
||||
@@ -215,7 +165,7 @@ class SDXLModularIPAdapterTests:
|
||||
output_without_multi_adapter_scale = output_without_multi_adapter_scale[0, -3:, -3:, -1].flatten()
|
||||
|
||||
# forward pass with multi ip adapter, but with scale of adapter weights
|
||||
inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
|
||||
inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs())
|
||||
inputs["ip_adapter_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)] * 2
|
||||
inputs["negative_ip_adapter_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)] * 2
|
||||
pipe.set_ip_adapter_scale([42.0, 42.0])
|
||||
@@ -223,10 +173,10 @@ class SDXLModularIPAdapterTests:
|
||||
if expected_pipe_slice is not None:
|
||||
output_with_multi_adapter_scale = output_with_multi_adapter_scale[0, -3:, -3:, -1].flatten()
|
||||
|
||||
max_diff_without_multi_adapter_scale = np.abs(
|
||||
max_diff_without_multi_adapter_scale = torch.abs(
|
||||
output_without_multi_adapter_scale - output_without_adapter
|
||||
).max()
|
||||
max_diff_with_multi_adapter_scale = np.abs(output_with_multi_adapter_scale - output_without_adapter).max()
|
||||
max_diff_with_multi_adapter_scale = torch.abs(output_with_multi_adapter_scale - output_without_adapter).max()
|
||||
assert max_diff_without_multi_adapter_scale < expected_max_diff, (
|
||||
"Output without multi-ip-adapter must be same as normal inference"
|
||||
)
|
||||
@@ -235,7 +185,7 @@ class SDXLModularIPAdapterTests:
|
||||
)
|
||||
|
||||
|
||||
class SDXLModularControlNetTests:
|
||||
class SDXLModularControlNetTesterMixin:
|
||||
"""
|
||||
This mixin is designed to test ControlNet.
|
||||
"""
|
||||
@@ -274,24 +224,26 @@ class SDXLModularControlNetTests:
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
# forward pass without controlnet
|
||||
inputs = self.get_dummy_inputs(torch_device)
|
||||
inputs = self.get_dummy_inputs()
|
||||
output_without_controlnet = pipe(**inputs, output="images")
|
||||
output_without_controlnet = output_without_controlnet[0, -3:, -3:, -1].flatten()
|
||||
|
||||
# forward pass with single controlnet, but scale=0 which should have no effect
|
||||
inputs = self._modify_inputs_for_controlnet_test(self.get_dummy_inputs(torch_device))
|
||||
inputs = self._modify_inputs_for_controlnet_test(self.get_dummy_inputs())
|
||||
inputs["controlnet_conditioning_scale"] = 0.0
|
||||
output_without_controlnet_scale = pipe(**inputs, output="images")
|
||||
output_without_controlnet_scale = output_without_controlnet_scale[0, -3:, -3:, -1].flatten()
|
||||
|
||||
# forward pass with single controlnet, but with scale of adapter weights
|
||||
inputs = self._modify_inputs_for_controlnet_test(self.get_dummy_inputs(torch_device))
|
||||
inputs = self._modify_inputs_for_controlnet_test(self.get_dummy_inputs())
|
||||
inputs["controlnet_conditioning_scale"] = 42.0
|
||||
output_with_controlnet_scale = pipe(**inputs, output="images")
|
||||
output_with_controlnet_scale = output_with_controlnet_scale[0, -3:, -3:, -1].flatten()
|
||||
|
||||
max_diff_without_controlnet_scale = np.abs(output_without_controlnet_scale - output_without_controlnet).max()
|
||||
max_diff_with_controlnet_scale = np.abs(output_with_controlnet_scale - output_without_controlnet).max()
|
||||
max_diff_without_controlnet_scale = torch.abs(
|
||||
output_without_controlnet_scale - output_without_controlnet
|
||||
).max()
|
||||
max_diff_with_controlnet_scale = torch.abs(output_with_controlnet_scale - output_without_controlnet).max()
|
||||
|
||||
assert max_diff_without_controlnet_scale < expected_max_diff, (
|
||||
"Output without controlnet must be same as normal inference"
|
||||
@@ -307,21 +259,21 @@ class SDXLModularControlNetTests:
|
||||
guider = ClassifierFreeGuidance(guidance_scale=1.0)
|
||||
pipe.update_components(guider=guider)
|
||||
|
||||
inputs = self._modify_inputs_for_controlnet_test(self.get_dummy_inputs(torch_device))
|
||||
inputs = self._modify_inputs_for_controlnet_test(self.get_dummy_inputs())
|
||||
out_no_cfg = pipe(**inputs, output="images")
|
||||
|
||||
# forward pass with CFG applied
|
||||
guider = ClassifierFreeGuidance(guidance_scale=7.5)
|
||||
pipe.update_components(guider=guider)
|
||||
inputs = self._modify_inputs_for_controlnet_test(self.get_dummy_inputs(torch_device))
|
||||
inputs = self._modify_inputs_for_controlnet_test(self.get_dummy_inputs())
|
||||
out_cfg = pipe(**inputs, output="images")
|
||||
|
||||
assert out_cfg.shape == out_no_cfg.shape
|
||||
max_diff = np.abs(out_cfg - out_no_cfg).max()
|
||||
max_diff = torch.abs(out_cfg - out_no_cfg).max()
|
||||
assert max_diff > 1e-2, "Output with CFG must be different from normal inference"
|
||||
|
||||
|
||||
class SDXLModularGuiderTests:
|
||||
class SDXLModularGuiderTesterMixin:
|
||||
def test_guider_cfg(self):
|
||||
pipe = self.get_pipeline()
|
||||
pipe = pipe.to(torch_device)
|
||||
@@ -331,13 +283,13 @@ class SDXLModularGuiderTests:
|
||||
guider = ClassifierFreeGuidance(guidance_scale=1.0)
|
||||
pipe.update_components(guider=guider)
|
||||
|
||||
inputs = self.get_dummy_inputs(torch_device)
|
||||
inputs = self.get_dummy_inputs()
|
||||
out_no_cfg = pipe(**inputs, output="images")
|
||||
|
||||
# forward pass with CFG applied
|
||||
guider = ClassifierFreeGuidance(guidance_scale=7.5)
|
||||
pipe.update_components(guider=guider)
|
||||
inputs = self.get_dummy_inputs(torch_device)
|
||||
inputs = self.get_dummy_inputs()
|
||||
out_cfg = pipe(**inputs, output="images")
|
||||
|
||||
assert out_cfg.shape == out_no_cfg.shape
|
||||
@@ -345,30 +297,57 @@ class SDXLModularGuiderTests:
|
||||
assert max_diff > 1e-2, "Output with CFG must be different from normal inference"
|
||||
|
||||
|
||||
class SDXLModularPipelineFastTests(
|
||||
SDXLModularTests,
|
||||
SDXLModularIPAdapterTests,
|
||||
SDXLModularControlNetTests,
|
||||
SDXLModularGuiderTests,
|
||||
class TestSDXLModularPipelineFast(
|
||||
SDXLModularTesterMixin,
|
||||
SDXLModularIPAdapterTesterMixin,
|
||||
SDXLModularControlNetTesterMixin,
|
||||
SDXLModularGuiderTesterMixin,
|
||||
ModularPipelineTesterMixin,
|
||||
unittest.TestCase,
|
||||
):
|
||||
"""Test cases for Stable Diffusion XL modular pipeline fast tests."""
|
||||
|
||||
pipeline_class = StableDiffusionXLModularPipeline
|
||||
pipeline_blocks_class = StableDiffusionXLAutoBlocks
|
||||
repo = "hf-internal-testing/tiny-sdxl-modular"
|
||||
params = frozenset(
|
||||
[
|
||||
"prompt",
|
||||
"height",
|
||||
"width",
|
||||
"negative_prompt",
|
||||
"cross_attention_kwargs",
|
||||
]
|
||||
)
|
||||
batch_params = frozenset(["prompt", "negative_prompt"])
|
||||
expected_image_output_shape = (1, 3, 64, 64)
|
||||
|
||||
def get_dummy_inputs(self, seed=0):
|
||||
generator = self.get_generator(seed)
|
||||
inputs = {
|
||||
"prompt": "A painting of a squirrel eating a burger",
|
||||
"generator": generator,
|
||||
"num_inference_steps": 2,
|
||||
"output_type": "pt",
|
||||
}
|
||||
return inputs
|
||||
|
||||
def test_stable_diffusion_xl_euler(self):
|
||||
self._test_stable_diffusion_xl_euler(
|
||||
expected_image_shape=(1, 64, 64, 3),
|
||||
expected_slice=[
|
||||
0.5966781,
|
||||
0.62939394,
|
||||
0.48465094,
|
||||
0.51573336,
|
||||
0.57593524,
|
||||
0.47035995,
|
||||
0.53410417,
|
||||
0.51436996,
|
||||
0.47313565,
|
||||
],
|
||||
expected_image_shape=self.expected_image_output_shape,
|
||||
expected_slice=torch.tensor(
|
||||
[
|
||||
0.5966781,
|
||||
0.62939394,
|
||||
0.48465094,
|
||||
0.51573336,
|
||||
0.57593524,
|
||||
0.47035995,
|
||||
0.53410417,
|
||||
0.51436996,
|
||||
0.47313565,
|
||||
],
|
||||
device=torch_device,
|
||||
),
|
||||
expected_max_diff=1e-2,
|
||||
)
|
||||
|
||||
@@ -376,39 +355,65 @@ class SDXLModularPipelineFastTests(
|
||||
super().test_inference_batch_single_identical(expected_max_diff=3e-3)
|
||||
|
||||
|
||||
class SDXLImg2ImgModularPipelineFastTests(
|
||||
SDXLModularTests,
|
||||
SDXLModularIPAdapterTests,
|
||||
SDXLModularControlNetTests,
|
||||
SDXLModularGuiderTests,
|
||||
class TestSDXLImg2ImgModularPipelineFast(
|
||||
SDXLModularTesterMixin,
|
||||
SDXLModularIPAdapterTesterMixin,
|
||||
SDXLModularControlNetTesterMixin,
|
||||
SDXLModularGuiderTesterMixin,
|
||||
ModularPipelineTesterMixin,
|
||||
unittest.TestCase,
|
||||
):
|
||||
"""Test cases for Stable Diffusion XL image-to-image modular pipeline fast tests."""
|
||||
|
||||
def get_dummy_inputs(self, device, seed=0):
|
||||
inputs = super().get_dummy_inputs(device, seed)
|
||||
image = floats_tensor((1, 3, 64, 64), rng=random.Random(seed)).to(device)
|
||||
image = image / 2 + 0.5
|
||||
inputs["image"] = image
|
||||
inputs["strength"] = 0.8
|
||||
pipeline_class = StableDiffusionXLModularPipeline
|
||||
pipeline_blocks_class = StableDiffusionXLAutoBlocks
|
||||
repo = "hf-internal-testing/tiny-sdxl-modular"
|
||||
params = frozenset(
|
||||
[
|
||||
"prompt",
|
||||
"height",
|
||||
"width",
|
||||
"negative_prompt",
|
||||
"cross_attention_kwargs",
|
||||
"image",
|
||||
]
|
||||
)
|
||||
batch_params = frozenset(["prompt", "negative_prompt", "image"])
|
||||
expected_image_output_shape = (1, 3, 64, 64)
|
||||
|
||||
def get_dummy_inputs(self, seed=0):
|
||||
generator = self.get_generator(seed)
|
||||
inputs = {
|
||||
"prompt": "A painting of a squirrel eating a burger",
|
||||
"generator": generator,
|
||||
"num_inference_steps": 4,
|
||||
"output_type": "pt",
|
||||
}
|
||||
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(torch_device)
|
||||
image = image.cpu().permute(0, 2, 3, 1)[0]
|
||||
init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64))
|
||||
|
||||
inputs["image"] = init_image
|
||||
inputs["strength"] = 0.5
|
||||
|
||||
return inputs
|
||||
|
||||
def test_stable_diffusion_xl_euler(self):
|
||||
self._test_stable_diffusion_xl_euler(
|
||||
expected_image_shape=(1, 64, 64, 3),
|
||||
expected_slice=[
|
||||
0.56943184,
|
||||
0.4702148,
|
||||
0.48048905,
|
||||
0.6235963,
|
||||
0.551138,
|
||||
0.49629188,
|
||||
0.60031277,
|
||||
0.5688907,
|
||||
0.43996853,
|
||||
],
|
||||
expected_image_shape=self.expected_image_output_shape,
|
||||
expected_slice=torch.tensor(
|
||||
[
|
||||
0.56943184,
|
||||
0.4702148,
|
||||
0.48048905,
|
||||
0.6235963,
|
||||
0.551138,
|
||||
0.49629188,
|
||||
0.60031277,
|
||||
0.5688907,
|
||||
0.43996853,
|
||||
],
|
||||
device=torch_device,
|
||||
),
|
||||
expected_max_diff=1e-2,
|
||||
)
|
||||
|
||||
@@ -417,20 +422,43 @@ class SDXLImg2ImgModularPipelineFastTests(
|
||||
|
||||
|
||||
class SDXLInpaintingModularPipelineFastTests(
|
||||
SDXLModularTests,
|
||||
SDXLModularIPAdapterTests,
|
||||
SDXLModularControlNetTests,
|
||||
SDXLModularGuiderTests,
|
||||
SDXLModularTesterMixin,
|
||||
SDXLModularIPAdapterTesterMixin,
|
||||
SDXLModularControlNetTesterMixin,
|
||||
SDXLModularGuiderTesterMixin,
|
||||
ModularPipelineTesterMixin,
|
||||
unittest.TestCase,
|
||||
):
|
||||
"""Test cases for Stable Diffusion XL inpainting modular pipeline fast tests."""
|
||||
|
||||
pipeline_class = StableDiffusionXLModularPipeline
|
||||
pipeline_blocks_class = StableDiffusionXLAutoBlocks
|
||||
repo = "hf-internal-testing/tiny-sdxl-modular"
|
||||
params = frozenset(
|
||||
[
|
||||
"prompt",
|
||||
"height",
|
||||
"width",
|
||||
"negative_prompt",
|
||||
"cross_attention_kwargs",
|
||||
"image",
|
||||
"mask_image",
|
||||
]
|
||||
)
|
||||
batch_params = frozenset(["prompt", "negative_prompt", "image", "mask_image"])
|
||||
expected_image_output_shape = (1, 3, 64, 64)
|
||||
|
||||
def get_dummy_inputs(self, device, seed=0):
|
||||
inputs = super().get_dummy_inputs(device, seed)
|
||||
generator = self.get_generator(seed)
|
||||
inputs = {
|
||||
"prompt": "A painting of a squirrel eating a burger",
|
||||
"generator": generator,
|
||||
"num_inference_steps": 4,
|
||||
"output_type": "pt",
|
||||
}
|
||||
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
|
||||
image = image.cpu().permute(0, 2, 3, 1)[0]
|
||||
init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64))
|
||||
|
||||
# create mask
|
||||
image[8:, 8:, :] = 255
|
||||
mask_image = Image.fromarray(np.uint8(image)).convert("L").resize((64, 64))
|
||||
@@ -443,18 +471,21 @@ class SDXLInpaintingModularPipelineFastTests(
|
||||
|
||||
def test_stable_diffusion_xl_euler(self):
|
||||
self._test_stable_diffusion_xl_euler(
|
||||
expected_image_shape=(1, 64, 64, 3),
|
||||
expected_slice=[
|
||||
0.40872607,
|
||||
0.38842705,
|
||||
0.34893104,
|
||||
0.47837183,
|
||||
0.43792963,
|
||||
0.5332134,
|
||||
0.3716843,
|
||||
0.47274873,
|
||||
0.45000193,
|
||||
],
|
||||
expected_image_shape=self.expected_image_output_shape,
|
||||
expected_slice=torch.tensor(
|
||||
[
|
||||
0.40872607,
|
||||
0.38842705,
|
||||
0.34893104,
|
||||
0.47837183,
|
||||
0.43792963,
|
||||
0.5332134,
|
||||
0.3716843,
|
||||
0.47274873,
|
||||
0.45000193,
|
||||
],
|
||||
device=torch_device,
|
||||
),
|
||||
expected_max_diff=1e-2,
|
||||
)
|
||||
|
||||
|
||||
@@ -1,9 +1,7 @@
|
||||
import gc
|
||||
import tempfile
|
||||
import unittest
|
||||
from typing import Callable, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
import diffusers
|
||||
@@ -19,17 +17,9 @@ from ..testing_utils import (
|
||||
)
|
||||
|
||||
|
||||
def to_np(tensor):
|
||||
if isinstance(tensor, torch.Tensor):
|
||||
tensor = tensor.detach().cpu().numpy()
|
||||
|
||||
return tensor
|
||||
|
||||
|
||||
@require_torch
|
||||
class ModularPipelineTesterMixin:
|
||||
"""
|
||||
This mixin is designed to be used with unittest.TestCase classes.
|
||||
It provides a set of common tests for each modular pipeline,
|
||||
including:
|
||||
- test_pipeline_call_signature: check if the pipeline's __call__ method has all required parameters
|
||||
@@ -57,9 +47,8 @@ class ModularPipelineTesterMixin:
|
||||
]
|
||||
)
|
||||
|
||||
def get_generator(self, seed):
|
||||
device = torch_device if torch_device != "mps" else "cpu"
|
||||
generator = torch.Generator(device).manual_seed(seed)
|
||||
def get_generator(self, seed=0):
|
||||
generator = torch.Generator("cpu").manual_seed(seed)
|
||||
return generator
|
||||
|
||||
@property
|
||||
@@ -82,13 +71,7 @@ class ModularPipelineTesterMixin:
|
||||
"See existing pipeline tests for reference."
|
||||
)
|
||||
|
||||
def get_pipeline(self):
|
||||
raise NotImplementedError(
|
||||
"You need to implement `get_pipeline(self)` in the child test class. "
|
||||
"See existing pipeline tests for reference."
|
||||
)
|
||||
|
||||
def get_dummy_inputs(self, device, seed=0):
|
||||
def get_dummy_inputs(self, seed=0):
|
||||
raise NotImplementedError(
|
||||
"You need to implement `get_dummy_inputs(self, device, seed)` in the child test class. "
|
||||
"See existing pipeline tests for reference."
|
||||
@@ -123,20 +106,23 @@ class ModularPipelineTesterMixin:
|
||||
"See existing pipeline tests for reference."
|
||||
)
|
||||
|
||||
def setUp(self):
|
||||
def setup_method(self):
|
||||
# clean up the VRAM before each test
|
||||
super().setUp()
|
||||
torch.compiler.reset()
|
||||
gc.collect()
|
||||
backend_empty_cache(torch_device)
|
||||
|
||||
def tearDown(self):
|
||||
def teardown_method(self):
|
||||
# clean up the VRAM after each test in case of CUDA runtime errors
|
||||
super().tearDown()
|
||||
torch.compiler.reset()
|
||||
gc.collect()
|
||||
backend_empty_cache(torch_device)
|
||||
|
||||
def get_pipeline(self, components_manager=None, torch_dtype=torch.float32):
|
||||
pipeline = self.pipeline_blocks_class().init_pipeline(self.repo, components_manager=components_manager)
|
||||
pipeline.load_components(torch_dtype=torch_dtype)
|
||||
return pipeline
|
||||
|
||||
def test_pipeline_call_signature(self):
|
||||
pipe = self.get_pipeline()
|
||||
input_parameters = pipe.blocks.input_names
|
||||
@@ -156,7 +142,7 @@ class ModularPipelineTesterMixin:
|
||||
pipe.to(torch_device)
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
inputs = self.get_dummy_inputs(torch_device)
|
||||
inputs = self.get_dummy_inputs()
|
||||
inputs["generator"] = self.get_generator(0)
|
||||
|
||||
logger = logging.get_logger(pipe.__module__)
|
||||
@@ -196,7 +182,7 @@ class ModularPipelineTesterMixin:
|
||||
pipe = self.get_pipeline()
|
||||
pipe.to(torch_device)
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
inputs = self.get_dummy_inputs(torch_device)
|
||||
inputs = self.get_dummy_inputs()
|
||||
|
||||
# Reset generator in case it is has been used in self.get_dummy_inputs
|
||||
inputs["generator"] = self.get_generator(0)
|
||||
@@ -226,10 +212,9 @@ class ModularPipelineTesterMixin:
|
||||
|
||||
assert output_batch.shape[0] == batch_size
|
||||
|
||||
max_diff = np.abs(to_np(output_batch[0]) - to_np(output[0])).max()
|
||||
max_diff = torch.abs(output_batch[0] - output[0]).max()
|
||||
assert max_diff < expected_max_diff, "Batch inference results different from single inference results"
|
||||
|
||||
@unittest.skipIf(torch_device not in ["cuda", "xpu"], reason="float16 requires CUDA or XPU")
|
||||
@require_accelerator
|
||||
def test_float16_inference(self, expected_max_diff=5e-2):
|
||||
pipe = self.get_pipeline()
|
||||
@@ -240,13 +225,13 @@ class ModularPipelineTesterMixin:
|
||||
pipe_fp16.to(torch_device, torch.float16)
|
||||
pipe_fp16.set_progress_bar_config(disable=None)
|
||||
|
||||
inputs = self.get_dummy_inputs(torch_device)
|
||||
inputs = self.get_dummy_inputs()
|
||||
# Reset generator in case it is used inside dummy inputs
|
||||
if "generator" in inputs:
|
||||
inputs["generator"] = self.get_generator(0)
|
||||
output = pipe(**inputs, output="images")
|
||||
|
||||
fp16_inputs = self.get_dummy_inputs(torch_device)
|
||||
fp16_inputs = self.get_dummy_inputs()
|
||||
# Reset generator in case it is used inside dummy inputs
|
||||
if "generator" in fp16_inputs:
|
||||
fp16_inputs["generator"] = self.get_generator(0)
|
||||
@@ -283,8 +268,8 @@ class ModularPipelineTesterMixin:
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
pipe.to("cpu")
|
||||
|
||||
output = pipe(**self.get_dummy_inputs("cpu"), output="images")
|
||||
assert np.isnan(to_np(output)).sum() == 0, "CPU Inference returns NaN"
|
||||
output = pipe(**self.get_dummy_inputs(), output="images")
|
||||
assert torch.isnan(output).sum() == 0, "CPU Inference returns NaN"
|
||||
|
||||
@require_accelerator
|
||||
def test_inference_is_not_nan(self):
|
||||
@@ -292,8 +277,8 @@ class ModularPipelineTesterMixin:
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
pipe.to(torch_device)
|
||||
|
||||
output = pipe(**self.get_dummy_inputs(torch_device), output="images")
|
||||
assert np.isnan(to_np(output)).sum() == 0, "Accelerator Inference returns NaN"
|
||||
output = pipe(**self.get_dummy_inputs(), output="images")
|
||||
assert torch.isnan(output).sum() == 0, "Accelerator Inference returns NaN"
|
||||
|
||||
def test_num_images_per_prompt(self):
|
||||
pipe = self.get_pipeline()
|
||||
@@ -309,7 +294,7 @@ class ModularPipelineTesterMixin:
|
||||
|
||||
for batch_size in batch_sizes:
|
||||
for num_images_per_prompt in num_images_per_prompts:
|
||||
inputs = self.get_dummy_inputs(torch_device)
|
||||
inputs = self.get_dummy_inputs()
|
||||
|
||||
for key in inputs.keys():
|
||||
if key in self.batch_params:
|
||||
@@ -329,12 +314,12 @@ class ModularPipelineTesterMixin:
|
||||
|
||||
image_slices = []
|
||||
for pipe in [base_pipe, offload_pipe]:
|
||||
inputs = self.get_dummy_inputs(torch_device)
|
||||
inputs = self.get_dummy_inputs()
|
||||
image = pipe(**inputs, output="images")
|
||||
|
||||
image_slices.append(image[0, -3:, -3:, -1].flatten())
|
||||
|
||||
assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3
|
||||
assert torch.abs(image_slices[0] - image_slices[1]).max() < 1e-3
|
||||
|
||||
def test_save_from_pretrained(self):
|
||||
pipes = []
|
||||
@@ -351,9 +336,9 @@ class ModularPipelineTesterMixin:
|
||||
|
||||
image_slices = []
|
||||
for pipe in pipes:
|
||||
inputs = self.get_dummy_inputs(torch_device)
|
||||
inputs = self.get_dummy_inputs()
|
||||
image = pipe(**inputs, output="images")
|
||||
|
||||
image_slices.append(image[0, -3:, -3:, -1].flatten())
|
||||
|
||||
assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3
|
||||
assert torch.abs(image_slices[0] - image_slices[1]).max() < 1e-3
|
||||
|
||||
0
tests/pipelines/chronoedit/__init__.py
Normal file
0
tests/pipelines/chronoedit/__init__.py
Normal file
176
tests/pipelines/chronoedit/test_chronoedit.py
Normal file
176
tests/pipelines/chronoedit/test_chronoedit.py
Normal file
@@ -0,0 +1,176 @@
|
||||
# Copyright 2025 The HuggingFace Team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import unittest
|
||||
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
CLIPImageProcessor,
|
||||
CLIPVisionConfig,
|
||||
CLIPVisionModelWithProjection,
|
||||
T5EncoderModel,
|
||||
)
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKLWan,
|
||||
ChronoEditPipeline,
|
||||
ChronoEditTransformer3DModel,
|
||||
FlowMatchEulerDiscreteScheduler,
|
||||
)
|
||||
|
||||
from ...testing_utils import enable_full_determinism
|
||||
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
|
||||
from ..test_pipelines_common import PipelineTesterMixin
|
||||
|
||||
|
||||
enable_full_determinism()
|
||||
|
||||
|
||||
class ChronoEditPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
pipeline_class = ChronoEditPipeline
|
||||
params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs", "height", "width"}
|
||||
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
|
||||
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
|
||||
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
|
||||
required_optional_params = frozenset(
|
||||
[
|
||||
"num_inference_steps",
|
||||
"generator",
|
||||
"latents",
|
||||
"return_dict",
|
||||
"callback_on_step_end",
|
||||
"callback_on_step_end_tensor_inputs",
|
||||
]
|
||||
)
|
||||
test_xformers_attention = False
|
||||
supports_dduf = False
|
||||
|
||||
def get_dummy_components(self):
|
||||
torch.manual_seed(0)
|
||||
vae = AutoencoderKLWan(
|
||||
base_dim=3,
|
||||
z_dim=16,
|
||||
dim_mult=[1, 1, 1, 1],
|
||||
num_res_blocks=1,
|
||||
temperal_downsample=[False, True, True],
|
||||
)
|
||||
|
||||
torch.manual_seed(0)
|
||||
# TODO: impl FlowDPMSolverMultistepScheduler
|
||||
scheduler = FlowMatchEulerDiscreteScheduler(shift=7.0)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
torch.manual_seed(0)
|
||||
transformer = ChronoEditTransformer3DModel(
|
||||
patch_size=(1, 2, 2),
|
||||
num_attention_heads=2,
|
||||
attention_head_dim=12,
|
||||
in_channels=36,
|
||||
out_channels=16,
|
||||
text_dim=32,
|
||||
freq_dim=256,
|
||||
ffn_dim=32,
|
||||
num_layers=2,
|
||||
cross_attn_norm=True,
|
||||
qk_norm="rms_norm_across_heads",
|
||||
rope_max_seq_len=32,
|
||||
image_dim=4,
|
||||
)
|
||||
|
||||
torch.manual_seed(0)
|
||||
image_encoder_config = CLIPVisionConfig(
|
||||
hidden_size=4,
|
||||
projection_dim=4,
|
||||
num_hidden_layers=2,
|
||||
num_attention_heads=2,
|
||||
image_size=32,
|
||||
intermediate_size=16,
|
||||
patch_size=1,
|
||||
)
|
||||
image_encoder = CLIPVisionModelWithProjection(image_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
image_processor = CLIPImageProcessor(crop_size=32, size=32)
|
||||
|
||||
components = {
|
||||
"transformer": transformer,
|
||||
"vae": vae,
|
||||
"scheduler": scheduler,
|
||||
"text_encoder": text_encoder,
|
||||
"tokenizer": tokenizer,
|
||||
"image_encoder": image_encoder,
|
||||
"image_processor": image_processor,
|
||||
}
|
||||
return components
|
||||
|
||||
def get_dummy_inputs(self, device, seed=0):
|
||||
if str(device).startswith("mps"):
|
||||
generator = torch.manual_seed(seed)
|
||||
else:
|
||||
generator = torch.Generator(device=device).manual_seed(seed)
|
||||
image_height = 16
|
||||
image_width = 16
|
||||
image = Image.new("RGB", (image_width, image_height))
|
||||
inputs = {
|
||||
"image": image,
|
||||
"prompt": "dance monkey",
|
||||
"negative_prompt": "negative", # TODO
|
||||
"height": image_height,
|
||||
"width": image_width,
|
||||
"generator": generator,
|
||||
"num_inference_steps": 2,
|
||||
"guidance_scale": 6.0,
|
||||
"num_frames": 5,
|
||||
"max_sequence_length": 16,
|
||||
"output_type": "pt",
|
||||
}
|
||||
return inputs
|
||||
|
||||
def test_inference(self):
|
||||
device = "cpu"
|
||||
|
||||
components = self.get_dummy_components()
|
||||
pipe = self.pipeline_class(**components)
|
||||
pipe.to(device)
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
inputs = self.get_dummy_inputs(device)
|
||||
video = pipe(**inputs).frames
|
||||
generated_video = video[0]
|
||||
self.assertEqual(generated_video.shape, (5, 3, 16, 16))
|
||||
|
||||
# fmt: off
|
||||
expected_slice = torch.tensor([0.4525, 0.4520, 0.4485, 0.4534, 0.4523, 0.4522, 0.4529, 0.4528, 0.5022, 0.5064, 0.5011, 0.5061, 0.5028, 0.4979, 0.5117, 0.5192])
|
||||
# fmt: on
|
||||
|
||||
generated_slice = generated_video.flatten()
|
||||
generated_slice = torch.cat([generated_slice[:8], generated_slice[-8:]])
|
||||
self.assertTrue(torch.allclose(generated_slice, expected_slice, atol=1e-3))
|
||||
|
||||
@unittest.skip("Test not supported")
|
||||
def test_attention_slicing_forward_pass(self):
|
||||
pass
|
||||
|
||||
@unittest.skip("TODO: revisit failing as it requires a very high threshold to pass")
|
||||
def test_inference_batch_single_identical(self):
|
||||
pass
|
||||
|
||||
@unittest.skip(
|
||||
"ChronoEditPipeline has to run in mixed precision. Save/Load the entire pipeline in FP16 will result in errors"
|
||||
)
|
||||
def test_save_load_float16(self):
|
||||
pass
|
||||
225
tests/pipelines/sana/test_sana_video.py
Normal file
225
tests/pipelines/sana/test_sana_video.py
Normal file
@@ -0,0 +1,225 @@
|
||||
# Copyright 2025 The HuggingFace Team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import gc
|
||||
import tempfile
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import Gemma2Config, Gemma2Model, GemmaTokenizer
|
||||
|
||||
from diffusers import AutoencoderKLWan, DPMSolverMultistepScheduler, SanaVideoPipeline, SanaVideoTransformer3DModel
|
||||
|
||||
from ...testing_utils import (
|
||||
backend_empty_cache,
|
||||
enable_full_determinism,
|
||||
require_torch_accelerator,
|
||||
slow,
|
||||
torch_device,
|
||||
)
|
||||
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
|
||||
from ..test_pipelines_common import PipelineTesterMixin
|
||||
|
||||
|
||||
enable_full_determinism()
|
||||
|
||||
|
||||
class SanaVideoPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
pipeline_class = SanaVideoPipeline
|
||||
params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"}
|
||||
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
|
||||
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
|
||||
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
|
||||
required_optional_params = frozenset(
|
||||
[
|
||||
"num_inference_steps",
|
||||
"generator",
|
||||
"latents",
|
||||
"return_dict",
|
||||
"callback_on_step_end",
|
||||
"callback_on_step_end_tensor_inputs",
|
||||
]
|
||||
)
|
||||
test_xformers_attention = False
|
||||
supports_dduf = False
|
||||
|
||||
def get_dummy_components(self):
|
||||
torch.manual_seed(0)
|
||||
vae = AutoencoderKLWan(
|
||||
base_dim=3,
|
||||
z_dim=16,
|
||||
dim_mult=[1, 1, 1, 1],
|
||||
num_res_blocks=1,
|
||||
temperal_downsample=[False, True, True],
|
||||
)
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = DPMSolverMultistepScheduler()
|
||||
|
||||
torch.manual_seed(0)
|
||||
text_encoder_config = Gemma2Config(
|
||||
head_dim=16,
|
||||
hidden_size=8,
|
||||
initializer_range=0.02,
|
||||
intermediate_size=64,
|
||||
max_position_embeddings=8192,
|
||||
model_type="gemma2",
|
||||
num_attention_heads=2,
|
||||
num_hidden_layers=1,
|
||||
num_key_value_heads=2,
|
||||
vocab_size=8,
|
||||
attn_implementation="eager",
|
||||
)
|
||||
text_encoder = Gemma2Model(text_encoder_config)
|
||||
tokenizer = GemmaTokenizer.from_pretrained("hf-internal-testing/dummy-gemma")
|
||||
|
||||
torch.manual_seed(0)
|
||||
transformer = SanaVideoTransformer3DModel(
|
||||
in_channels=16,
|
||||
out_channels=16,
|
||||
num_attention_heads=2,
|
||||
attention_head_dim=12,
|
||||
num_layers=2,
|
||||
num_cross_attention_heads=2,
|
||||
cross_attention_head_dim=12,
|
||||
cross_attention_dim=24,
|
||||
caption_channels=8,
|
||||
mlp_ratio=2.5,
|
||||
dropout=0.0,
|
||||
attention_bias=False,
|
||||
sample_size=8,
|
||||
patch_size=(1, 2, 2),
|
||||
norm_elementwise_affine=False,
|
||||
norm_eps=1e-6,
|
||||
qk_norm="rms_norm_across_heads",
|
||||
rope_max_seq_len=32,
|
||||
)
|
||||
|
||||
components = {
|
||||
"transformer": transformer,
|
||||
"vae": vae,
|
||||
"scheduler": scheduler,
|
||||
"text_encoder": text_encoder,
|
||||
"tokenizer": tokenizer,
|
||||
}
|
||||
return components
|
||||
|
||||
def get_dummy_inputs(self, device, seed=0):
|
||||
if str(device).startswith("mps"):
|
||||
generator = torch.manual_seed(seed)
|
||||
else:
|
||||
generator = torch.Generator(device=device).manual_seed(seed)
|
||||
inputs = {
|
||||
"prompt": "",
|
||||
"negative_prompt": "",
|
||||
"generator": generator,
|
||||
"num_inference_steps": 2,
|
||||
"guidance_scale": 6.0,
|
||||
"height": 32,
|
||||
"width": 32,
|
||||
"frames": 9,
|
||||
"max_sequence_length": 16,
|
||||
"output_type": "pt",
|
||||
"complex_human_instruction": [],
|
||||
"use_resolution_binning": False,
|
||||
}
|
||||
return inputs
|
||||
|
||||
def test_inference(self):
|
||||
device = "cpu"
|
||||
|
||||
components = self.get_dummy_components()
|
||||
pipe = self.pipeline_class(**components)
|
||||
pipe.to(device)
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
inputs = self.get_dummy_inputs(device)
|
||||
video = pipe(**inputs).frames
|
||||
generated_video = video[0]
|
||||
self.assertEqual(generated_video.shape, (9, 3, 32, 32))
|
||||
|
||||
@unittest.skip("Test not supported")
|
||||
def test_attention_slicing_forward_pass(self):
|
||||
pass
|
||||
|
||||
def test_save_load_local(self, expected_max_difference=5e-4):
|
||||
components = self.get_dummy_components()
|
||||
pipe = self.pipeline_class(**components)
|
||||
for component in pipe.components.values():
|
||||
if hasattr(component, "set_default_attn_processor"):
|
||||
component.set_default_attn_processor()
|
||||
pipe.to(torch_device)
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
inputs = self.get_dummy_inputs(torch_device)
|
||||
torch.manual_seed(0)
|
||||
output = pipe(**inputs)[0]
|
||||
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
pipe.save_pretrained(tmpdir, safe_serialization=False)
|
||||
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
|
||||
for component in pipe_loaded.components.values():
|
||||
if hasattr(component, "set_default_attn_processor"):
|
||||
component.set_default_attn_processor()
|
||||
pipe_loaded.to(torch_device)
|
||||
pipe_loaded.set_progress_bar_config(disable=None)
|
||||
|
||||
inputs = self.get_dummy_inputs(torch_device)
|
||||
torch.manual_seed(0)
|
||||
output_loaded = pipe_loaded(**inputs)[0]
|
||||
|
||||
max_diff = np.abs(output.detach().cpu().numpy() - output_loaded.detach().cpu().numpy()).max()
|
||||
self.assertLess(max_diff, expected_max_difference)
|
||||
|
||||
# TODO(aryan): Create a dummy gemma model with smol vocab size
|
||||
@unittest.skip(
|
||||
"A very small vocab size is used for fast tests. So, any kind of prompt other than the empty default used in other tests will lead to a embedding lookup error. This test uses a long prompt that causes the error."
|
||||
)
|
||||
def test_inference_batch_consistent(self):
|
||||
pass
|
||||
|
||||
@unittest.skip(
|
||||
"A very small vocab size is used for fast tests. So, any kind of prompt other than the empty default used in other tests will lead to a embedding lookup error. This test uses a long prompt that causes the error."
|
||||
)
|
||||
def test_inference_batch_single_identical(self):
|
||||
pass
|
||||
|
||||
def test_float16_inference(self):
|
||||
# Requires higher tolerance as model seems very sensitive to dtype
|
||||
super().test_float16_inference(expected_max_diff=0.08)
|
||||
|
||||
def test_save_load_float16(self):
|
||||
# Requires higher tolerance as model seems very sensitive to dtype
|
||||
super().test_save_load_float16(expected_max_diff=0.2)
|
||||
|
||||
|
||||
@slow
|
||||
@require_torch_accelerator
|
||||
class SanaVideoPipelineIntegrationTests(unittest.TestCase):
|
||||
prompt = "Evening, backlight, side lighting, soft light, high contrast, mid-shot, centered composition, clean solo shot, warm color. A young Caucasian man stands in a forest."
|
||||
|
||||
def setUp(self):
|
||||
super().setUp()
|
||||
gc.collect()
|
||||
backend_empty_cache(torch_device)
|
||||
|
||||
def tearDown(self):
|
||||
super().tearDown()
|
||||
gc.collect()
|
||||
backend_empty_cache(torch_device)
|
||||
|
||||
@unittest.skip("TODO: test needs to be implemented")
|
||||
def test_sana_video_480p(self):
|
||||
pass
|
||||
Reference in New Issue
Block a user