mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-30 07:24:54 +08:00
Compare commits
16 Commits
torchao-co
...
paulinebm-
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
60cdb52f19 | ||
|
|
db37140474 | ||
|
|
88ffb00139 | ||
|
|
b6098ca006 | ||
|
|
7c6d314549 | ||
|
|
3138e37fe6 | ||
|
|
0da1aa90b5 | ||
|
|
5ffb65803d | ||
|
|
d0ae34d313 | ||
|
|
47378066c0 | ||
|
|
208cda8f6d | ||
|
|
1cdb8723b8 | ||
|
|
f6b6a7181e | ||
|
|
52766e6a69 | ||
|
|
973a077c6a | ||
|
|
0c4f6c9cff |
22
.github/workflows/codeql.yml
vendored
Normal file
22
.github/workflows/codeql.yml
vendored
Normal file
@@ -0,0 +1,22 @@
|
||||
---
|
||||
name: CodeQL Security Analysis For Github Actions
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: ["main"]
|
||||
workflow_dispatch:
|
||||
# pull_request:
|
||||
|
||||
jobs:
|
||||
codeql:
|
||||
name: CodeQL Analysis
|
||||
uses: huggingface/security-workflows/.github/workflows/codeql-reusable.yml@v1
|
||||
permissions:
|
||||
security-events: write
|
||||
packages: read
|
||||
actions: read
|
||||
contents: read
|
||||
with:
|
||||
languages: '["actions","python"]'
|
||||
queries: 'security-extended,security-and-quality'
|
||||
runner: 'ubuntu-latest' #optional if need custom runner
|
||||
24
.github/workflows/mirror_community_pipeline.yml
vendored
24
.github/workflows/mirror_community_pipeline.yml
vendored
@@ -24,7 +24,6 @@ jobs:
|
||||
mirror_community_pipeline:
|
||||
env:
|
||||
SLACK_WEBHOOK_URL: ${{ secrets.SLACK_WEBHOOK_URL_COMMUNITY_MIRROR }}
|
||||
|
||||
runs-on: ubuntu-22.04
|
||||
steps:
|
||||
# Checkout to correct ref
|
||||
@@ -39,25 +38,28 @@ jobs:
|
||||
# If ref is 'refs/heads/main' => set 'main'
|
||||
# Else it must be a tag => set {tag}
|
||||
- name: Set checkout_ref and path_in_repo
|
||||
EVENT_NAME: ${{ github.event_name }}
|
||||
EVENT_INPUT_REF: ${{ github.event.inputs.ref }}
|
||||
GITHUB_REF: ${{ github.ref }}
|
||||
run: |
|
||||
if [ "${{ github.event_name }}" == "workflow_dispatch" ]; then
|
||||
if [ -z "${{ github.event.inputs.ref }}" ]; then
|
||||
if [ "$EVENT_NAME" == "workflow_dispatch" ]; then
|
||||
if [ -z "$EVENT_INPUT_REF" ]; then
|
||||
echo "Error: Missing ref input"
|
||||
exit 1
|
||||
elif [ "${{ github.event.inputs.ref }}" == "main" ]; then
|
||||
elif [ "$EVENT_INPUT_REF" == "main" ]; then
|
||||
echo "CHECKOUT_REF=refs/heads/main" >> $GITHUB_ENV
|
||||
echo "PATH_IN_REPO=main" >> $GITHUB_ENV
|
||||
else
|
||||
echo "CHECKOUT_REF=refs/tags/${{ github.event.inputs.ref }}" >> $GITHUB_ENV
|
||||
echo "PATH_IN_REPO=${{ github.event.inputs.ref }}" >> $GITHUB_ENV
|
||||
echo "CHECKOUT_REF=refs/tags/$EVENT_INPUT_REF" >> $GITHUB_ENV
|
||||
echo "PATH_IN_REPO=$EVENT_INPUT_REF" >> $GITHUB_ENV
|
||||
fi
|
||||
elif [ "${{ github.ref }}" == "refs/heads/main" ]; then
|
||||
echo "CHECKOUT_REF=${{ github.ref }}" >> $GITHUB_ENV
|
||||
elif [ "$GITHUB_REF" == "refs/heads/main" ]; then
|
||||
echo "CHECKOUT_REF=$GITHUB_REF" >> $GITHUB_ENV
|
||||
echo "PATH_IN_REPO=main" >> $GITHUB_ENV
|
||||
else
|
||||
# e.g. refs/tags/v0.28.1 -> v0.28.1
|
||||
echo "CHECKOUT_REF=${{ github.ref }}" >> $GITHUB_ENV
|
||||
echo "PATH_IN_REPO=$(echo ${{ github.ref }} | sed 's/^refs\/tags\///')" >> $GITHUB_ENV
|
||||
echo "CHECKOUT_REF=$GITHUB_REF" >> $GITHUB_ENV
|
||||
echo "PATH_IN_REPO=$(echo $GITHUB_REF | sed 's/^refs\/tags\///')" >> $GITHUB_ENV
|
||||
fi
|
||||
- name: Print env vars
|
||||
run: |
|
||||
@@ -99,4 +101,4 @@ jobs:
|
||||
- name: Report failure status
|
||||
if: ${{ failure() }}
|
||||
run: |
|
||||
pip install requests && python utils/notify_community_pipelines_mirror.py --status=failure
|
||||
pip install requests && python utils/notify_community_pipelines_mirror.py --status=failure
|
||||
|
||||
@@ -263,8 +263,8 @@ def main():
|
||||
world_size = dist.get_world_size()
|
||||
|
||||
pipeline = DiffusionPipeline.from_pretrained(
|
||||
"black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16, device_map=device
|
||||
)
|
||||
"black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16
|
||||
).to(device)
|
||||
pipeline.transformer.set_attention_backend("_native_cudnn")
|
||||
|
||||
cp_config = ContextParallelConfig(ring_degree=world_size)
|
||||
|
||||
@@ -21,8 +21,8 @@ from transformers import (
|
||||
BertModel,
|
||||
BertTokenizer,
|
||||
CLIPImageProcessor,
|
||||
MT5Tokenizer,
|
||||
T5EncoderModel,
|
||||
T5Tokenizer,
|
||||
)
|
||||
|
||||
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
|
||||
@@ -260,7 +260,7 @@ class HunyuanDiTDifferentialImg2ImgPipeline(DiffusionPipeline):
|
||||
The HunyuanDiT model designed by Tencent Hunyuan.
|
||||
text_encoder_2 (`T5EncoderModel`):
|
||||
The mT5 embedder. Specifically, it is 't5-v1_1-xxl'.
|
||||
tokenizer_2 (`MT5Tokenizer`):
|
||||
tokenizer_2 (`T5Tokenizer`):
|
||||
The tokenizer for the mT5 embedder.
|
||||
scheduler ([`DDPMScheduler`]):
|
||||
A scheduler to be used in combination with HunyuanDiT to denoise the encoded image latents.
|
||||
@@ -295,7 +295,7 @@ class HunyuanDiTDifferentialImg2ImgPipeline(DiffusionPipeline):
|
||||
feature_extractor: CLIPImageProcessor,
|
||||
requires_safety_checker: bool = True,
|
||||
text_encoder_2=T5EncoderModel,
|
||||
tokenizer_2=MT5Tokenizer,
|
||||
tokenizer_2=T5Tokenizer,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
|
||||
844
examples/community/pipeline_z_image_differential_img2img.py
Normal file
844
examples/community/pipeline_z_image_differential_img2img.py
Normal file
@@ -0,0 +1,844 @@
|
||||
# Copyright 2025 Alibaba Z-Image Team and The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import inspect
|
||||
from typing import Any, Callable, Dict, List, Optional, Union
|
||||
|
||||
import torch
|
||||
from transformers import AutoTokenizer, PreTrainedModel
|
||||
|
||||
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
||||
from diffusers.loaders import FromSingleFileMixin, ZImageLoraLoaderMixin
|
||||
from diffusers.models.autoencoders import AutoencoderKL
|
||||
from diffusers.models.transformers import ZImageTransformer2DModel
|
||||
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
||||
from diffusers.pipelines.z_image.pipeline_output import ZImagePipelineOutput
|
||||
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
|
||||
from diffusers.utils import logging, replace_example_docstring
|
||||
from diffusers.utils.torch_utils import randn_tensor
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
EXAMPLE_DOC_STRING = """
|
||||
Examples:
|
||||
```py
|
||||
>>> import torch
|
||||
>>> from pipeline_z_image_differential_img2img import ZImageDifferentialImg2ImgPipeline
|
||||
>>> from diffusers.utils import load_image
|
||||
|
||||
>>> pipe = ZImageDifferentialImg2ImgPipeline.from_pretrained("Z-a-o/Z-Image-Turbo", torch_dtype=torch.bfloat16)
|
||||
>>> pipe.to("cuda")
|
||||
|
||||
>>> init_image = load_image(
|
||||
>>> "https://github.com/exx8/differential-diffusion/blob/main/assets/input.jpg?raw=true",
|
||||
>>> )
|
||||
|
||||
>>> mask = load_image(
|
||||
>>> "https://github.com/exx8/differential-diffusion/blob/main/assets/map.jpg?raw=true",
|
||||
>>> )
|
||||
|
||||
>>> prompt = "painting of a mountain landscape with a meadow and a forest, meadow background, anime countryside landscape, anime nature wallpap, anime landscape wallpaper, studio ghibli landscape, anime landscape, mountain behind meadow, anime background art, studio ghibli environment, background of flowery hill, anime beautiful peace scene, forrest background, anime scenery, landscape background, background art, anime scenery concept art"
|
||||
|
||||
>>> image = pipe(
|
||||
... prompt,
|
||||
... image=init_image,
|
||||
... mask_image=mask,
|
||||
... strength=0.75,
|
||||
... num_inference_steps=9,
|
||||
... guidance_scale=0.0,
|
||||
... generator=torch.Generator("cuda").manual_seed(41),
|
||||
... ).images[0]
|
||||
>>> image.save("image.png")
|
||||
```
|
||||
"""
|
||||
|
||||
|
||||
# Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
|
||||
def calculate_shift(
|
||||
image_seq_len,
|
||||
base_seq_len: int = 256,
|
||||
max_seq_len: int = 4096,
|
||||
base_shift: float = 0.5,
|
||||
max_shift: float = 1.15,
|
||||
):
|
||||
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
|
||||
b = base_shift - m * base_seq_len
|
||||
mu = image_seq_len * m + b
|
||||
return mu
|
||||
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
||||
def retrieve_latents(
|
||||
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
||||
):
|
||||
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
||||
return encoder_output.latent_dist.sample(generator)
|
||||
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
||||
return encoder_output.latent_dist.mode()
|
||||
elif hasattr(encoder_output, "latents"):
|
||||
return encoder_output.latents
|
||||
else:
|
||||
raise AttributeError("Could not access latents of provided encoder_output")
|
||||
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
||||
def retrieve_timesteps(
|
||||
scheduler,
|
||||
num_inference_steps: Optional[int] = None,
|
||||
device: Optional[Union[str, torch.device]] = None,
|
||||
timesteps: Optional[List[int]] = None,
|
||||
sigmas: Optional[List[float]] = None,
|
||||
**kwargs,
|
||||
):
|
||||
r"""
|
||||
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
||||
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
||||
|
||||
Args:
|
||||
scheduler (`SchedulerMixin`):
|
||||
The scheduler to get timesteps from.
|
||||
num_inference_steps (`int`):
|
||||
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
||||
must be `None`.
|
||||
device (`str` or `torch.device`, *optional*):
|
||||
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
||||
timesteps (`List[int]`, *optional*):
|
||||
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
||||
`num_inference_steps` and `sigmas` must be `None`.
|
||||
sigmas (`List[float]`, *optional*):
|
||||
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
||||
`num_inference_steps` and `timesteps` must be `None`.
|
||||
|
||||
Returns:
|
||||
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
||||
second element is the number of inference steps.
|
||||
"""
|
||||
if timesteps is not None and sigmas is not None:
|
||||
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
||||
if timesteps is not None:
|
||||
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
||||
if not accepts_timesteps:
|
||||
raise ValueError(
|
||||
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
||||
f" timestep schedules. Please check whether you are using the correct scheduler."
|
||||
)
|
||||
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
||||
timesteps = scheduler.timesteps
|
||||
num_inference_steps = len(timesteps)
|
||||
elif sigmas is not None:
|
||||
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
||||
if not accept_sigmas:
|
||||
raise ValueError(
|
||||
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
||||
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
||||
)
|
||||
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
||||
timesteps = scheduler.timesteps
|
||||
num_inference_steps = len(timesteps)
|
||||
else:
|
||||
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
||||
timesteps = scheduler.timesteps
|
||||
return timesteps, num_inference_steps
|
||||
|
||||
|
||||
class ZImageDifferentialImg2ImgPipeline(DiffusionPipeline, ZImageLoraLoaderMixin, FromSingleFileMixin):
|
||||
r"""
|
||||
The ZImage pipeline for image-to-image generation.
|
||||
|
||||
Args:
|
||||
scheduler ([`FlowMatchEulerDiscreteScheduler`]):
|
||||
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
|
||||
vae ([`AutoencoderKL`]):
|
||||
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
||||
text_encoder ([`PreTrainedModel`]):
|
||||
A text encoder model to encode text prompts.
|
||||
tokenizer ([`AutoTokenizer`]):
|
||||
A tokenizer to tokenize text prompts.
|
||||
transformer ([`ZImageTransformer2DModel`]):
|
||||
A ZImage transformer model to denoise the encoded image latents.
|
||||
"""
|
||||
|
||||
model_cpu_offload_seq = "text_encoder->transformer->vae"
|
||||
_optional_components = []
|
||||
_callback_tensor_inputs = ["latents", "prompt_embeds"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
scheduler: FlowMatchEulerDiscreteScheduler,
|
||||
vae: AutoencoderKL,
|
||||
text_encoder: PreTrainedModel,
|
||||
tokenizer: AutoTokenizer,
|
||||
transformer: ZImageTransformer2DModel,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.register_modules(
|
||||
vae=vae,
|
||||
text_encoder=text_encoder,
|
||||
tokenizer=tokenizer,
|
||||
scheduler=scheduler,
|
||||
transformer=transformer,
|
||||
)
|
||||
self.vae_scale_factor = (
|
||||
2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
|
||||
)
|
||||
latent_channels = self.vae.config.latent_channels if getattr(self, "vae", None) else 16
|
||||
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
|
||||
|
||||
self.mask_processor = VaeImageProcessor(
|
||||
vae_scale_factor=self.vae_scale_factor,
|
||||
vae_latent_channels=latent_channels,
|
||||
do_normalize=False,
|
||||
do_binarize=False,
|
||||
do_convert_grayscale=True,
|
||||
)
|
||||
|
||||
# Copied from diffusers.pipelines.z_image.pipeline_z_image.ZImagePipeline.encode_prompt
|
||||
def encode_prompt(
|
||||
self,
|
||||
prompt: Union[str, List[str]],
|
||||
device: Optional[torch.device] = None,
|
||||
do_classifier_free_guidance: bool = True,
|
||||
negative_prompt: Optional[Union[str, List[str]]] = None,
|
||||
prompt_embeds: Optional[List[torch.FloatTensor]] = None,
|
||||
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
max_sequence_length: int = 512,
|
||||
):
|
||||
prompt = [prompt] if isinstance(prompt, str) else prompt
|
||||
prompt_embeds = self._encode_prompt(
|
||||
prompt=prompt,
|
||||
device=device,
|
||||
prompt_embeds=prompt_embeds,
|
||||
max_sequence_length=max_sequence_length,
|
||||
)
|
||||
|
||||
if do_classifier_free_guidance:
|
||||
if negative_prompt is None:
|
||||
negative_prompt = ["" for _ in prompt]
|
||||
else:
|
||||
negative_prompt = [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
|
||||
assert len(prompt) == len(negative_prompt)
|
||||
negative_prompt_embeds = self._encode_prompt(
|
||||
prompt=negative_prompt,
|
||||
device=device,
|
||||
prompt_embeds=negative_prompt_embeds,
|
||||
max_sequence_length=max_sequence_length,
|
||||
)
|
||||
else:
|
||||
negative_prompt_embeds = []
|
||||
return prompt_embeds, negative_prompt_embeds
|
||||
|
||||
# Copied from diffusers.pipelines.z_image.pipeline_z_image.ZImagePipeline._encode_prompt
|
||||
def _encode_prompt(
|
||||
self,
|
||||
prompt: Union[str, List[str]],
|
||||
device: Optional[torch.device] = None,
|
||||
prompt_embeds: Optional[List[torch.FloatTensor]] = None,
|
||||
max_sequence_length: int = 512,
|
||||
) -> List[torch.FloatTensor]:
|
||||
device = device or self._execution_device
|
||||
|
||||
if prompt_embeds is not None:
|
||||
return prompt_embeds
|
||||
|
||||
if isinstance(prompt, str):
|
||||
prompt = [prompt]
|
||||
|
||||
for i, prompt_item in enumerate(prompt):
|
||||
messages = [
|
||||
{"role": "user", "content": prompt_item},
|
||||
]
|
||||
prompt_item = self.tokenizer.apply_chat_template(
|
||||
messages,
|
||||
tokenize=False,
|
||||
add_generation_prompt=True,
|
||||
enable_thinking=True,
|
||||
)
|
||||
prompt[i] = prompt_item
|
||||
|
||||
text_inputs = self.tokenizer(
|
||||
prompt,
|
||||
padding="max_length",
|
||||
max_length=max_sequence_length,
|
||||
truncation=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
|
||||
text_input_ids = text_inputs.input_ids.to(device)
|
||||
prompt_masks = text_inputs.attention_mask.to(device).bool()
|
||||
|
||||
prompt_embeds = self.text_encoder(
|
||||
input_ids=text_input_ids,
|
||||
attention_mask=prompt_masks,
|
||||
output_hidden_states=True,
|
||||
).hidden_states[-2]
|
||||
|
||||
embeddings_list = []
|
||||
|
||||
for i in range(len(prompt_embeds)):
|
||||
embeddings_list.append(prompt_embeds[i][prompt_masks[i]])
|
||||
|
||||
return embeddings_list
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_img2img.StableDiffusion3Img2ImgPipeline.get_timesteps
|
||||
def get_timesteps(self, num_inference_steps, strength, device):
|
||||
# get the original timestep using init_timestep
|
||||
init_timestep = min(num_inference_steps * strength, num_inference_steps)
|
||||
|
||||
t_start = int(max(num_inference_steps - init_timestep, 0))
|
||||
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
|
||||
if hasattr(self.scheduler, "set_begin_index"):
|
||||
self.scheduler.set_begin_index(t_start * self.scheduler.order)
|
||||
|
||||
return timesteps, num_inference_steps - t_start
|
||||
|
||||
@staticmethod
|
||||
def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
|
||||
latent_image_ids = torch.zeros(height // 2, width // 2, 3)
|
||||
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None]
|
||||
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :]
|
||||
|
||||
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
|
||||
|
||||
latent_image_ids = latent_image_ids.reshape(
|
||||
latent_image_id_height * latent_image_id_width, latent_image_id_channels
|
||||
)
|
||||
|
||||
return latent_image_ids.to(device=device, dtype=dtype)
|
||||
|
||||
def prepare_latents(
|
||||
self,
|
||||
image,
|
||||
timestep,
|
||||
batch_size,
|
||||
num_channels_latents,
|
||||
height,
|
||||
width,
|
||||
dtype,
|
||||
device,
|
||||
generator,
|
||||
latents=None,
|
||||
):
|
||||
height = 2 * (int(height) // (self.vae_scale_factor * 2))
|
||||
width = 2 * (int(width) // (self.vae_scale_factor * 2))
|
||||
|
||||
shape = (batch_size, num_channels_latents, height, width)
|
||||
latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype)
|
||||
|
||||
if latents is not None:
|
||||
return latents.to(device=device, dtype=dtype)
|
||||
|
||||
# Encode the input image
|
||||
image = image.to(device=device, dtype=dtype)
|
||||
if image.shape[1] != num_channels_latents:
|
||||
if isinstance(generator, list):
|
||||
image_latents = [
|
||||
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
|
||||
for i in range(image.shape[0])
|
||||
]
|
||||
image_latents = torch.cat(image_latents, dim=0)
|
||||
else:
|
||||
image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
|
||||
|
||||
# Apply scaling (inverse of decoding: decode does latents/scaling_factor + shift_factor)
|
||||
image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
|
||||
else:
|
||||
image_latents = image
|
||||
|
||||
# Handle batch size expansion
|
||||
if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
|
||||
additional_image_per_prompt = batch_size // image_latents.shape[0]
|
||||
image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0)
|
||||
elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
|
||||
raise ValueError(
|
||||
f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
|
||||
)
|
||||
|
||||
# Add noise using flow matching scale_noise
|
||||
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
||||
latents = self.scheduler.scale_noise(image_latents, timestep, noise)
|
||||
|
||||
return latents, noise, image_latents, latent_image_ids
|
||||
|
||||
def prepare_mask_latents(
|
||||
self,
|
||||
mask,
|
||||
masked_image,
|
||||
batch_size,
|
||||
num_images_per_prompt,
|
||||
height,
|
||||
width,
|
||||
dtype,
|
||||
device,
|
||||
generator,
|
||||
):
|
||||
height = 2 * (int(height) // (self.vae_scale_factor * 2))
|
||||
width = 2 * (int(width) // (self.vae_scale_factor * 2))
|
||||
# resize the mask to latents shape as we concatenate the mask to the latents
|
||||
# we do that before converting to dtype to avoid breaking in case we're using cpu_offload
|
||||
# and half precision
|
||||
mask = torch.nn.functional.interpolate(mask, size=(height, width))
|
||||
mask = mask.to(device=device, dtype=dtype)
|
||||
|
||||
batch_size = batch_size * num_images_per_prompt
|
||||
|
||||
masked_image = masked_image.to(device=device, dtype=dtype)
|
||||
|
||||
if masked_image.shape[1] == 16:
|
||||
masked_image_latents = masked_image
|
||||
else:
|
||||
masked_image_latents = retrieve_latents(self.vae.encode(masked_image), generator=generator)
|
||||
|
||||
masked_image_latents = (masked_image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
|
||||
|
||||
# duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
|
||||
if mask.shape[0] < batch_size:
|
||||
if not batch_size % mask.shape[0] == 0:
|
||||
raise ValueError(
|
||||
"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
|
||||
f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
|
||||
" of masks that you pass is divisible by the total requested batch size."
|
||||
)
|
||||
mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
|
||||
if masked_image_latents.shape[0] < batch_size:
|
||||
if not batch_size % masked_image_latents.shape[0] == 0:
|
||||
raise ValueError(
|
||||
"The passed images and the required batch size don't match. Images are supposed to be duplicated"
|
||||
f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
|
||||
" Make sure the number of images that you pass is divisible by the total requested batch size."
|
||||
)
|
||||
masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1)
|
||||
|
||||
# aligning device to prevent device errors when concating it with the latent model input
|
||||
masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
|
||||
|
||||
return mask, masked_image_latents
|
||||
|
||||
@property
|
||||
def guidance_scale(self):
|
||||
return self._guidance_scale
|
||||
|
||||
@property
|
||||
def do_classifier_free_guidance(self):
|
||||
return self._guidance_scale > 1
|
||||
|
||||
@property
|
||||
def joint_attention_kwargs(self):
|
||||
return self._joint_attention_kwargs
|
||||
|
||||
@property
|
||||
def num_timesteps(self):
|
||||
return self._num_timesteps
|
||||
|
||||
@property
|
||||
def interrupt(self):
|
||||
return self._interrupt
|
||||
|
||||
@torch.no_grad()
|
||||
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
||||
def __call__(
|
||||
self,
|
||||
prompt: Union[str, List[str]] = None,
|
||||
image: PipelineImageInput = None,
|
||||
mask_image: PipelineImageInput = None,
|
||||
strength: float = 0.6,
|
||||
height: Optional[int] = None,
|
||||
width: Optional[int] = None,
|
||||
num_inference_steps: int = 50,
|
||||
sigmas: Optional[List[float]] = None,
|
||||
guidance_scale: float = 5.0,
|
||||
cfg_normalization: bool = False,
|
||||
cfg_truncation: float = 1.0,
|
||||
negative_prompt: Optional[Union[str, List[str]]] = None,
|
||||
num_images_per_prompt: Optional[int] = 1,
|
||||
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
||||
latents: Optional[torch.FloatTensor] = None,
|
||||
prompt_embeds: Optional[List[torch.FloatTensor]] = None,
|
||||
negative_prompt_embeds: Optional[List[torch.FloatTensor]] = None,
|
||||
output_type: Optional[str] = "pil",
|
||||
return_dict: bool = True,
|
||||
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
||||
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
||||
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
||||
max_sequence_length: int = 512,
|
||||
):
|
||||
r"""
|
||||
Function invoked when calling the pipeline for image-to-image generation.
|
||||
|
||||
Args:
|
||||
prompt (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
||||
instead.
|
||||
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
|
||||
`Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
|
||||
numpy array and pytorch tensor, the expected value range is between `[0, 1]`. If it's a tensor or a
|
||||
list of tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or
|
||||
a list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)`.
|
||||
mask_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
|
||||
`Image`, numpy array or tensor representing an image batch to mask `image`. Black pixels in the mask
|
||||
are repainted while white pixels are preserved. If `mask_image` is a PIL image, it is converted to a
|
||||
single channel (luminance) before use. If it's a numpy array or pytorch tensor, it should contain one
|
||||
color channel (L) instead of 3, so the expected shape for pytorch tensor would be `(B, 1, H, W)`, `(B,
|
||||
H, W)`, `(1, H, W)`, `(H, W)`. And for numpy array would be for `(B, H, W, 1)`, `(B, H, W)`, `(H, W,
|
||||
1)`, or `(H, W)`.
|
||||
strength (`float`, *optional*, defaults to 0.6):
|
||||
Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
|
||||
starting point and more noise is added the higher the `strength`. The number of denoising steps depends
|
||||
on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
|
||||
process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
|
||||
essentially ignores `image`.
|
||||
height (`int`, *optional*, defaults to 1024):
|
||||
The height in pixels of the generated image. If not provided, uses the input image height.
|
||||
width (`int`, *optional*, defaults to 1024):
|
||||
The width in pixels of the generated image. If not provided, uses the input image width.
|
||||
num_inference_steps (`int`, *optional*, defaults to 50):
|
||||
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
||||
expense of slower inference.
|
||||
sigmas (`List[float]`, *optional*):
|
||||
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
||||
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
||||
will be used.
|
||||
guidance_scale (`float`, *optional*, defaults to 5.0):
|
||||
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
||||
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
||||
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
||||
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
||||
usually at the expense of lower image quality.
|
||||
cfg_normalization (`bool`, *optional*, defaults to False):
|
||||
Whether to apply configuration normalization.
|
||||
cfg_truncation (`float`, *optional*, defaults to 1.0):
|
||||
The truncation value for configuration.
|
||||
negative_prompt (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
||||
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
||||
less than `1`).
|
||||
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
||||
The number of images to generate per prompt.
|
||||
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
||||
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
||||
to make generation deterministic.
|
||||
latents (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
||||
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
||||
tensor will be generated by sampling using the supplied random `generator`.
|
||||
prompt_embeds (`List[torch.FloatTensor]`, *optional*):
|
||||
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
||||
provided, text embeddings will be generated from `prompt` input argument.
|
||||
negative_prompt_embeds (`List[torch.FloatTensor]`, *optional*):
|
||||
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
||||
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
||||
argument.
|
||||
output_type (`str`, *optional*, defaults to `"pil"`):
|
||||
The output format of the generate image. Choose between
|
||||
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to return a [`~pipelines.stable_diffusion.ZImagePipelineOutput`] instead of a plain
|
||||
tuple.
|
||||
joint_attention_kwargs (`dict`, *optional*):
|
||||
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
||||
`self.processor` in
|
||||
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
||||
callback_on_step_end (`Callable`, *optional*):
|
||||
A function that calls at the end of each denoising steps during the inference. The function is called
|
||||
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
||||
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
||||
`callback_on_step_end_tensor_inputs`.
|
||||
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
||||
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
||||
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
||||
`._callback_tensor_inputs` attribute of your pipeline class.
|
||||
max_sequence_length (`int`, *optional*, defaults to 512):
|
||||
Maximum sequence length to use with the `prompt`.
|
||||
|
||||
Examples:
|
||||
|
||||
Returns:
|
||||
[`~pipelines.z_image.ZImagePipelineOutput`] or `tuple`: [`~pipelines.z_image.ZImagePipelineOutput`] if
|
||||
`return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the
|
||||
generated images.
|
||||
"""
|
||||
# 1. Check inputs and validate strength
|
||||
if strength < 0 or strength > 1:
|
||||
raise ValueError(f"The value of strength should be in [0.0, 1.0] but is {strength}")
|
||||
|
||||
# 2. Preprocess image
|
||||
init_image = self.image_processor.preprocess(image)
|
||||
init_image = init_image.to(dtype=torch.float32)
|
||||
|
||||
# Get dimensions from the preprocessed image if not specified
|
||||
if height is None:
|
||||
height = init_image.shape[-2]
|
||||
if width is None:
|
||||
width = init_image.shape[-1]
|
||||
|
||||
vae_scale = self.vae_scale_factor * 2
|
||||
if height % vae_scale != 0:
|
||||
raise ValueError(
|
||||
f"Height must be divisible by {vae_scale} (got {height}). "
|
||||
f"Please adjust the height to a multiple of {vae_scale}."
|
||||
)
|
||||
if width % vae_scale != 0:
|
||||
raise ValueError(
|
||||
f"Width must be divisible by {vae_scale} (got {width}). "
|
||||
f"Please adjust the width to a multiple of {vae_scale}."
|
||||
)
|
||||
|
||||
device = self._execution_device
|
||||
|
||||
self._guidance_scale = guidance_scale
|
||||
self._joint_attention_kwargs = joint_attention_kwargs
|
||||
self._interrupt = False
|
||||
self._cfg_normalization = cfg_normalization
|
||||
self._cfg_truncation = cfg_truncation
|
||||
|
||||
# 3. Define call parameters
|
||||
if prompt is not None and isinstance(prompt, str):
|
||||
batch_size = 1
|
||||
elif prompt is not None and isinstance(prompt, list):
|
||||
batch_size = len(prompt)
|
||||
else:
|
||||
batch_size = len(prompt_embeds)
|
||||
|
||||
# If prompt_embeds is provided and prompt is None, skip encoding
|
||||
if prompt_embeds is not None and prompt is None:
|
||||
if self.do_classifier_free_guidance and negative_prompt_embeds is None:
|
||||
raise ValueError(
|
||||
"When `prompt_embeds` is provided without `prompt`, "
|
||||
"`negative_prompt_embeds` must also be provided for classifier-free guidance."
|
||||
)
|
||||
else:
|
||||
(
|
||||
prompt_embeds,
|
||||
negative_prompt_embeds,
|
||||
) = self.encode_prompt(
|
||||
prompt=prompt,
|
||||
negative_prompt=negative_prompt,
|
||||
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
||||
prompt_embeds=prompt_embeds,
|
||||
negative_prompt_embeds=negative_prompt_embeds,
|
||||
device=device,
|
||||
max_sequence_length=max_sequence_length,
|
||||
)
|
||||
|
||||
# 4. Prepare latent variables
|
||||
num_channels_latents = self.transformer.in_channels
|
||||
|
||||
# Repeat prompt_embeds for num_images_per_prompt
|
||||
if num_images_per_prompt > 1:
|
||||
prompt_embeds = [pe for pe in prompt_embeds for _ in range(num_images_per_prompt)]
|
||||
if self.do_classifier_free_guidance and negative_prompt_embeds:
|
||||
negative_prompt_embeds = [npe for npe in negative_prompt_embeds for _ in range(num_images_per_prompt)]
|
||||
|
||||
actual_batch_size = batch_size * num_images_per_prompt
|
||||
|
||||
# Calculate latent dimensions for image_seq_len
|
||||
latent_height = 2 * (int(height) // (self.vae_scale_factor * 2))
|
||||
latent_width = 2 * (int(width) // (self.vae_scale_factor * 2))
|
||||
image_seq_len = (latent_height // 2) * (latent_width // 2)
|
||||
|
||||
# 5. Prepare timesteps
|
||||
mu = calculate_shift(
|
||||
image_seq_len,
|
||||
self.scheduler.config.get("base_image_seq_len", 256),
|
||||
self.scheduler.config.get("max_image_seq_len", 4096),
|
||||
self.scheduler.config.get("base_shift", 0.5),
|
||||
self.scheduler.config.get("max_shift", 1.15),
|
||||
)
|
||||
self.scheduler.sigma_min = 0.0
|
||||
scheduler_kwargs = {"mu": mu}
|
||||
timesteps, num_inference_steps = retrieve_timesteps(
|
||||
self.scheduler,
|
||||
num_inference_steps,
|
||||
device,
|
||||
sigmas=sigmas,
|
||||
**scheduler_kwargs,
|
||||
)
|
||||
|
||||
# 6. Adjust timesteps based on strength
|
||||
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
|
||||
if num_inference_steps < 1:
|
||||
raise ValueError(
|
||||
f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline "
|
||||
f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline."
|
||||
)
|
||||
latent_timestep = timesteps[:1].repeat(actual_batch_size)
|
||||
|
||||
# 7. Prepare latents from image
|
||||
latents, noise, original_image_latents, latent_image_ids = self.prepare_latents(
|
||||
init_image,
|
||||
latent_timestep,
|
||||
actual_batch_size,
|
||||
num_channels_latents,
|
||||
height,
|
||||
width,
|
||||
prompt_embeds[0].dtype,
|
||||
device,
|
||||
generator,
|
||||
latents,
|
||||
)
|
||||
resize_mode = "default"
|
||||
crops_coords = None
|
||||
|
||||
# start diff diff preparation
|
||||
original_mask = self.mask_processor.preprocess(
|
||||
mask_image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords
|
||||
)
|
||||
|
||||
masked_image = init_image * original_mask
|
||||
original_mask, _ = self.prepare_mask_latents(
|
||||
original_mask,
|
||||
masked_image,
|
||||
batch_size,
|
||||
num_images_per_prompt,
|
||||
height,
|
||||
width,
|
||||
prompt_embeds[0].dtype,
|
||||
device,
|
||||
generator,
|
||||
)
|
||||
mask_thresholds = torch.arange(num_inference_steps, dtype=original_mask.dtype) / num_inference_steps
|
||||
mask_thresholds = mask_thresholds.reshape(-1, 1, 1, 1).to(device)
|
||||
masks = original_mask > mask_thresholds
|
||||
# end diff diff preparation
|
||||
|
||||
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
||||
self._num_timesteps = len(timesteps)
|
||||
|
||||
# 8. Denoising loop
|
||||
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
||||
for i, t in enumerate(timesteps):
|
||||
if self.interrupt:
|
||||
continue
|
||||
|
||||
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
||||
timestep = t.expand(latents.shape[0])
|
||||
timestep = (1000 - timestep) / 1000
|
||||
# Normalized time for time-aware config (0 at start, 1 at end)
|
||||
t_norm = timestep[0].item()
|
||||
|
||||
# Handle cfg truncation
|
||||
current_guidance_scale = self.guidance_scale
|
||||
if (
|
||||
self.do_classifier_free_guidance
|
||||
and self._cfg_truncation is not None
|
||||
and float(self._cfg_truncation) <= 1
|
||||
):
|
||||
if t_norm > self._cfg_truncation:
|
||||
current_guidance_scale = 0.0
|
||||
|
||||
# Run CFG only if configured AND scale is non-zero
|
||||
apply_cfg = self.do_classifier_free_guidance and current_guidance_scale > 0
|
||||
|
||||
if apply_cfg:
|
||||
latents_typed = latents.to(self.transformer.dtype)
|
||||
latent_model_input = latents_typed.repeat(2, 1, 1, 1)
|
||||
prompt_embeds_model_input = prompt_embeds + negative_prompt_embeds
|
||||
timestep_model_input = timestep.repeat(2)
|
||||
else:
|
||||
latent_model_input = latents.to(self.transformer.dtype)
|
||||
prompt_embeds_model_input = prompt_embeds
|
||||
timestep_model_input = timestep
|
||||
|
||||
latent_model_input = latent_model_input.unsqueeze(2)
|
||||
latent_model_input_list = list(latent_model_input.unbind(dim=0))
|
||||
|
||||
model_out_list = self.transformer(
|
||||
latent_model_input_list,
|
||||
timestep_model_input,
|
||||
prompt_embeds_model_input,
|
||||
)[0]
|
||||
|
||||
if apply_cfg:
|
||||
# Perform CFG
|
||||
pos_out = model_out_list[:actual_batch_size]
|
||||
neg_out = model_out_list[actual_batch_size:]
|
||||
|
||||
noise_pred = []
|
||||
for j in range(actual_batch_size):
|
||||
pos = pos_out[j].float()
|
||||
neg = neg_out[j].float()
|
||||
|
||||
pred = pos + current_guidance_scale * (pos - neg)
|
||||
|
||||
# Renormalization
|
||||
if self._cfg_normalization and float(self._cfg_normalization) > 0.0:
|
||||
ori_pos_norm = torch.linalg.vector_norm(pos)
|
||||
new_pos_norm = torch.linalg.vector_norm(pred)
|
||||
max_new_norm = ori_pos_norm * float(self._cfg_normalization)
|
||||
if new_pos_norm > max_new_norm:
|
||||
pred = pred * (max_new_norm / new_pos_norm)
|
||||
|
||||
noise_pred.append(pred)
|
||||
|
||||
noise_pred = torch.stack(noise_pred, dim=0)
|
||||
else:
|
||||
noise_pred = torch.stack([t.float() for t in model_out_list], dim=0)
|
||||
|
||||
noise_pred = noise_pred.squeeze(2)
|
||||
noise_pred = -noise_pred
|
||||
|
||||
# compute the previous noisy sample x_t -> x_t-1
|
||||
latents = self.scheduler.step(noise_pred.to(torch.float32), t, latents, return_dict=False)[0]
|
||||
assert latents.dtype == torch.float32
|
||||
|
||||
# start diff diff
|
||||
image_latent = original_image_latents
|
||||
latents_dtype = latents.dtype
|
||||
if i < len(timesteps) - 1:
|
||||
noise_timestep = timesteps[i + 1]
|
||||
image_latent = self.scheduler.scale_noise(
|
||||
original_image_latents, torch.tensor([noise_timestep]), noise
|
||||
)
|
||||
|
||||
mask = masks[i].to(latents_dtype)
|
||||
latents = image_latent * mask + latents * (1 - mask)
|
||||
# end diff diff
|
||||
|
||||
if latents.dtype != latents_dtype:
|
||||
if torch.backends.mps.is_available():
|
||||
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
||||
latents = latents.to(latents_dtype)
|
||||
|
||||
if callback_on_step_end is not None:
|
||||
callback_kwargs = {}
|
||||
for k in callback_on_step_end_tensor_inputs:
|
||||
callback_kwargs[k] = locals()[k]
|
||||
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
||||
|
||||
latents = callback_outputs.pop("latents", latents)
|
||||
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
||||
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
||||
|
||||
# call the callback, if provided
|
||||
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
||||
progress_bar.update()
|
||||
|
||||
if output_type == "latent":
|
||||
image = latents
|
||||
|
||||
else:
|
||||
latents = latents.to(self.vae.dtype)
|
||||
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
||||
|
||||
image = self.vae.decode(latents, return_dict=False)[0]
|
||||
image = self.image_processor.postprocess(image, output_type=output_type)
|
||||
|
||||
# Offload all models
|
||||
self.maybe_free_model_hooks()
|
||||
|
||||
if not return_dict:
|
||||
return (image,)
|
||||
|
||||
return ZImagePipelineOutput(images=image)
|
||||
@@ -29,13 +29,52 @@ hf download nvidia/Cosmos-Predict2.5-2B
|
||||
|
||||
Convert checkpoint
|
||||
```bash
|
||||
# pre-trained
|
||||
transformer_ckpt_path=~/.cache/huggingface/hub/models--nvidia--Cosmos-Predict2.5-2B/snapshots/865baf084d4c9e850eac59a021277d5a9b9e8b63/base/pre-trained/d20b7120-df3e-4911-919d-db6e08bad31c_ema_bf16.pt
|
||||
|
||||
python scripts/convert_cosmos_to_diffusers.py \
|
||||
--transformer_type Cosmos-2.5-Predict-Base-2B \
|
||||
--transformer_ckpt_path $transformer_ckpt_path \
|
||||
--vae_type wan2.1 \
|
||||
--output_path converted/cosmos-p2.5-base-2b \
|
||||
--output_path converted/2b/d20b7120-df3e-4911-919d-db6e08bad31c \
|
||||
--save_pipeline
|
||||
|
||||
# post-trained
|
||||
transformer_ckpt_path=~/.cache/huggingface/hub/models--nvidia--Cosmos-Predict2.5-2B/snapshots/865baf084d4c9e850eac59a021277d5a9b9e8b63/base/post-trained/81edfebe-bd6a-4039-8c1d-737df1a790bf_ema_bf16.pt
|
||||
|
||||
python scripts/convert_cosmos_to_diffusers.py \
|
||||
--transformer_type Cosmos-2.5-Predict-Base-2B \
|
||||
--transformer_ckpt_path $transformer_ckpt_path \
|
||||
--vae_type wan2.1 \
|
||||
--output_path converted/2b/81edfebe-bd6a-4039-8c1d-737df1a790bf \
|
||||
--save_pipeline
|
||||
```
|
||||
|
||||
## 14B
|
||||
|
||||
```bash
|
||||
hf download nvidia/Cosmos-Predict2.5-14B
|
||||
```
|
||||
|
||||
```bash
|
||||
# pre-trained
|
||||
transformer_ckpt_path=~/.cache/huggingface/hub/models--nvidia--Cosmos-Predict2.5-14B/snapshots/71ebf3e8af30ecfe440bf0481115975fcc052b46/base/pre-trained/54937b8c-29de-4f04-862c-e67b04ec41e8_ema_bf16.pt
|
||||
|
||||
python scripts/convert_cosmos_to_diffusers.py \
|
||||
--transformer_type Cosmos-2.5-Predict-Base-14B \
|
||||
--transformer_ckpt_path $transformer_ckpt_path \
|
||||
--vae_type wan2.1 \
|
||||
--output_path converted/14b/54937b8c-29de-4f04-862c-e67b04ec41e8/ \
|
||||
--save_pipeline
|
||||
|
||||
# post-trained
|
||||
transformer_ckpt_path=~/.cache/huggingface/hub/models--nvidia--Cosmos-Predict2.5-14B/snapshots/71ebf3e8af30ecfe440bf0481115975fcc052b46/base/post-trained/e21d2a49-4747-44c8-ba44-9f6f9243715f_ema_bf16.pt
|
||||
|
||||
python scripts/convert_cosmos_to_diffusers.py \
|
||||
--transformer_type Cosmos-2.5-Predict-Base-14B \
|
||||
--transformer_ckpt_path $transformer_ckpt_path \
|
||||
--vae_type wan2.1 \
|
||||
--output_path converted/14b/e21d2a49-4747-44c8-ba44-9f6f9243715f/ \
|
||||
--save_pipeline
|
||||
```
|
||||
|
||||
@@ -298,6 +337,25 @@ TRANSFORMER_CONFIGS = {
|
||||
"crossattn_proj_in_channels": 100352,
|
||||
"encoder_hidden_states_channels": 1024,
|
||||
},
|
||||
"Cosmos-2.5-Predict-Base-14B": {
|
||||
"in_channels": 16 + 1,
|
||||
"out_channels": 16,
|
||||
"num_attention_heads": 40,
|
||||
"attention_head_dim": 128,
|
||||
"num_layers": 36,
|
||||
"mlp_ratio": 4.0,
|
||||
"text_embed_dim": 1024,
|
||||
"adaln_lora_dim": 256,
|
||||
"max_size": (128, 240, 240),
|
||||
"patch_size": (1, 2, 2),
|
||||
"rope_scale": (1.0, 3.0, 3.0),
|
||||
"concat_padding_mask": True,
|
||||
# NOTE: source config has pos_emb_learnable: 'True' - but params are missing
|
||||
"extra_pos_embed_type": None,
|
||||
"use_crossattn_projection": True,
|
||||
"crossattn_proj_in_channels": 100352,
|
||||
"encoder_hidden_states_channels": 1024,
|
||||
},
|
||||
}
|
||||
|
||||
VAE_KEYS_RENAME_DICT = {
|
||||
|
||||
2
setup.py
2
setup.py
@@ -274,7 +274,7 @@ version_range_max = max(sys.version_info[1], 10) + 1
|
||||
|
||||
setup(
|
||||
name="diffusers",
|
||||
version="0.36.0.dev0", # expected format is one of x.y.z.dev0, or x.y.z.rc1 or x.y.z (no to dashes, yes to dots)
|
||||
version="0.37.0.dev0", # expected format is one of x.y.z.dev0, or x.y.z.rc1 or x.y.z (no to dashes, yes to dots)
|
||||
description="State-of-the-art diffusion in PyTorch and JAX.",
|
||||
long_description=open("README.md", "r", encoding="utf-8").read(),
|
||||
long_description_content_type="text/markdown",
|
||||
|
||||
@@ -675,6 +675,7 @@ else:
|
||||
"ZImageControlNetInpaintPipeline",
|
||||
"ZImageControlNetPipeline",
|
||||
"ZImageImg2ImgPipeline",
|
||||
"ZImageOmniPipeline",
|
||||
"ZImagePipeline",
|
||||
]
|
||||
)
|
||||
@@ -1386,6 +1387,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
ZImageControlNetInpaintPipeline,
|
||||
ZImageControlNetPipeline,
|
||||
ZImageImg2ImgPipeline,
|
||||
ZImageOmniPipeline,
|
||||
ZImagePipeline,
|
||||
)
|
||||
|
||||
|
||||
@@ -162,7 +162,7 @@ SINGLE_FILE_LOADABLE_CLASSES = {
|
||||
"default_subfolder": "transformer",
|
||||
},
|
||||
"QwenImageTransformer2DModel": {
|
||||
"checkpoint_mapping_fn": lambda x: x,
|
||||
"checkpoint_mapping_fn": lambda checkpoint, **kwargs: checkpoint,
|
||||
"default_subfolder": "transformer",
|
||||
},
|
||||
"Flux2Transformer2DModel": {
|
||||
|
||||
@@ -120,7 +120,10 @@ CHECKPOINT_KEY_NAMES = {
|
||||
"hunyuan-video": "txt_in.individual_token_refiner.blocks.0.adaLN_modulation.1.bias",
|
||||
"instruct-pix2pix": "model.diffusion_model.input_blocks.0.0.weight",
|
||||
"lumina2": ["model.diffusion_model.cap_embedder.0.weight", "cap_embedder.0.weight"],
|
||||
"z-image-turbo": "cap_embedder.0.weight",
|
||||
"z-image-turbo": [
|
||||
"model.diffusion_model.layers.0.adaLN_modulation.0.weight",
|
||||
"layers.0.adaLN_modulation.0.weight",
|
||||
],
|
||||
"z-image-turbo-controlnet": "control_all_x_embedder.2-1.weight",
|
||||
"z-image-turbo-controlnet-2.x": "control_layers.14.adaLN_modulation.0.weight",
|
||||
"sana": [
|
||||
@@ -223,7 +226,8 @@ DIFFUSERS_DEFAULT_PIPELINE_PATHS = {
|
||||
"cosmos-2.0-v2w-14B": {"pretrained_model_name_or_path": "nvidia/Cosmos-Predict2-14B-Video2World"},
|
||||
"z-image-turbo": {"pretrained_model_name_or_path": "Tongyi-MAI/Z-Image-Turbo"},
|
||||
"z-image-turbo-controlnet": {"pretrained_model_name_or_path": "hlky/Z-Image-Turbo-Fun-Controlnet-Union"},
|
||||
"z-image-turbo-controlnet-2.x": {"pretrained_model_name_or_path": "hlky/Z-Image-Turbo-Fun-Controlnet-Union-2.1"},
|
||||
"z-image-turbo-controlnet-2.0": {"pretrained_model_name_or_path": "hlky/Z-Image-Turbo-Fun-Controlnet-Union-2.0"},
|
||||
"z-image-turbo-controlnet-2.1": {"pretrained_model_name_or_path": "hlky/Z-Image-Turbo-Fun-Controlnet-Union-2.1"},
|
||||
}
|
||||
|
||||
# Use to configure model sample size when original config is provided
|
||||
@@ -727,10 +731,7 @@ def infer_diffusers_model_type(checkpoint):
|
||||
):
|
||||
model_type = "instruct-pix2pix"
|
||||
|
||||
elif (
|
||||
CHECKPOINT_KEY_NAMES["z-image-turbo"] in checkpoint
|
||||
and checkpoint[CHECKPOINT_KEY_NAMES["z-image-turbo"]].shape[0] == 2560
|
||||
):
|
||||
elif any(key in checkpoint for key in CHECKPOINT_KEY_NAMES["z-image-turbo"]):
|
||||
model_type = "z-image-turbo"
|
||||
|
||||
elif any(key in checkpoint for key in CHECKPOINT_KEY_NAMES["lumina2"]):
|
||||
@@ -784,7 +785,13 @@ def infer_diffusers_model_type(checkpoint):
|
||||
raise ValueError(f"Unexpected x_embedder shape: {x_embedder_shape} when loading Cosmos 2.0 model.")
|
||||
|
||||
elif CHECKPOINT_KEY_NAMES["z-image-turbo-controlnet-2.x"] in checkpoint:
|
||||
model_type = "z-image-turbo-controlnet-2.x"
|
||||
before_proj_weight = checkpoint.get("control_noise_refiner.0.before_proj.weight", None)
|
||||
if before_proj_weight is None:
|
||||
model_type = "z-image-turbo-controlnet-2.0"
|
||||
elif before_proj_weight is not None and torch.all(before_proj_weight == 0.0):
|
||||
model_type = "z-image-turbo-controlnet-2.0"
|
||||
else:
|
||||
model_type = "z-image-turbo-controlnet-2.1"
|
||||
|
||||
elif CHECKPOINT_KEY_NAMES["z-image-turbo-controlnet"] in checkpoint:
|
||||
model_type = "z-image-turbo-controlnet"
|
||||
@@ -3852,6 +3859,7 @@ def convert_z_image_transformer_checkpoint_to_diffusers(checkpoint, **kwargs):
|
||||
".attention.k_norm.weight": ".attention.norm_k.weight",
|
||||
".attention.q_norm.weight": ".attention.norm_q.weight",
|
||||
".attention.out.weight": ".attention.to_out.0.weight",
|
||||
"model.diffusion_model.": "",
|
||||
}
|
||||
|
||||
def convert_z_image_fused_attention(key: str, state_dict: dict[str, object]) -> None:
|
||||
@@ -3886,6 +3894,9 @@ def convert_z_image_transformer_checkpoint_to_diffusers(checkpoint, **kwargs):
|
||||
|
||||
update_state_dict(converted_state_dict, key, new_key)
|
||||
|
||||
if "norm_final.weight" in converted_state_dict.keys():
|
||||
_ = converted_state_dict.pop("norm_final.weight")
|
||||
|
||||
# Handle any special logic which can't be expressed by a simple 1:1 remapping with the handlers in
|
||||
# special_keys_remap
|
||||
for key in list(converted_state_dict.keys()):
|
||||
|
||||
@@ -27,7 +27,7 @@ from ...utils.accelerate_utils import apply_forward_hook
|
||||
from ..activations import get_activation
|
||||
from ..modeling_outputs import AutoencoderKLOutput
|
||||
from ..modeling_utils import ModelMixin
|
||||
from .vae import DecoderOutput, DiagonalGaussianDistribution
|
||||
from .vae import AutoencoderMixin, DecoderOutput, DiagonalGaussianDistribution
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
@@ -410,7 +410,7 @@ class HunyuanImageDecoder2D(nn.Module):
|
||||
return h
|
||||
|
||||
|
||||
class AutoencoderKLHunyuanImage(ModelMixin, ConfigMixin, FromOriginalModelMixin):
|
||||
class AutoencoderKLHunyuanImage(ModelMixin, AutoencoderMixin, ConfigMixin, FromOriginalModelMixin):
|
||||
r"""
|
||||
A VAE model for 2D images with spatial tiling support.
|
||||
|
||||
@@ -486,27 +486,6 @@ class AutoencoderKLHunyuanImage(ModelMixin, ConfigMixin, FromOriginalModelMixin)
|
||||
self.tile_overlap_factor = tile_overlap_factor or self.tile_overlap_factor
|
||||
self.tile_latent_min_size = self.tile_sample_min_size // self.config.spatial_compression_ratio
|
||||
|
||||
def disable_tiling(self) -> None:
|
||||
r"""
|
||||
Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
|
||||
decoding in one step.
|
||||
"""
|
||||
self.use_tiling = False
|
||||
|
||||
def enable_slicing(self) -> None:
|
||||
r"""
|
||||
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
||||
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
||||
"""
|
||||
self.use_slicing = True
|
||||
|
||||
def disable_slicing(self) -> None:
|
||||
r"""
|
||||
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
|
||||
decoding in one step.
|
||||
"""
|
||||
self.use_slicing = False
|
||||
|
||||
def _encode(self, x: torch.Tensor):
|
||||
|
||||
batch_size, num_channels, height, width = x.shape
|
||||
|
||||
@@ -26,7 +26,7 @@ from ...utils.accelerate_utils import apply_forward_hook
|
||||
from ..activations import get_activation
|
||||
from ..modeling_outputs import AutoencoderKLOutput
|
||||
from ..modeling_utils import ModelMixin
|
||||
from .vae import DecoderOutput, DiagonalGaussianDistribution
|
||||
from .vae import AutoencoderMixin, DecoderOutput, DiagonalGaussianDistribution
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
@@ -584,7 +584,7 @@ class HunyuanImageRefinerDecoder3D(nn.Module):
|
||||
return hidden_states
|
||||
|
||||
|
||||
class AutoencoderKLHunyuanImageRefiner(ModelMixin, ConfigMixin):
|
||||
class AutoencoderKLHunyuanImageRefiner(ModelMixin, AutoencoderMixin, ConfigMixin):
|
||||
r"""
|
||||
A VAE model with KL loss for encoding videos into latents and decoding latent representations into videos. Used for
|
||||
HunyuanImage-2.1 Refiner.
|
||||
@@ -685,27 +685,6 @@ class AutoencoderKLHunyuanImageRefiner(ModelMixin, ConfigMixin):
|
||||
self.tile_sample_stride_width = tile_sample_stride_width or self.tile_sample_stride_width
|
||||
self.tile_overlap_factor = tile_overlap_factor or self.tile_overlap_factor
|
||||
|
||||
def disable_tiling(self) -> None:
|
||||
r"""
|
||||
Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
|
||||
decoding in one step.
|
||||
"""
|
||||
self.use_tiling = False
|
||||
|
||||
def enable_slicing(self) -> None:
|
||||
r"""
|
||||
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
||||
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
||||
"""
|
||||
self.use_slicing = True
|
||||
|
||||
def disable_slicing(self) -> None:
|
||||
r"""
|
||||
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
|
||||
decoding in one step.
|
||||
"""
|
||||
self.use_slicing = False
|
||||
|
||||
def _encode(self, x: torch.Tensor) -> torch.Tensor:
|
||||
_, _, _, height, width = x.shape
|
||||
|
||||
|
||||
@@ -26,7 +26,7 @@ from ...utils.accelerate_utils import apply_forward_hook
|
||||
from ..activations import get_activation
|
||||
from ..modeling_outputs import AutoencoderKLOutput
|
||||
from ..modeling_utils import ModelMixin
|
||||
from .vae import DecoderOutput, DiagonalGaussianDistribution
|
||||
from .vae import AutoencoderMixin, DecoderOutput, DiagonalGaussianDistribution
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
@@ -625,7 +625,7 @@ class HunyuanVideo15Decoder3D(nn.Module):
|
||||
return hidden_states
|
||||
|
||||
|
||||
class AutoencoderKLHunyuanVideo15(ModelMixin, ConfigMixin):
|
||||
class AutoencoderKLHunyuanVideo15(ModelMixin, AutoencoderMixin, ConfigMixin):
|
||||
r"""
|
||||
A VAE model with KL loss for encoding videos into latents and decoding latent representations into videos. Used for
|
||||
HunyuanVideo-1.5.
|
||||
@@ -723,27 +723,6 @@ class AutoencoderKLHunyuanVideo15(ModelMixin, ConfigMixin):
|
||||
self.tile_latent_min_width = tile_latent_min_width or self.tile_latent_min_width
|
||||
self.tile_overlap_factor = tile_overlap_factor or self.tile_overlap_factor
|
||||
|
||||
def disable_tiling(self) -> None:
|
||||
r"""
|
||||
Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
|
||||
decoding in one step.
|
||||
"""
|
||||
self.use_tiling = False
|
||||
|
||||
def enable_slicing(self) -> None:
|
||||
r"""
|
||||
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
||||
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
||||
"""
|
||||
self.use_slicing = True
|
||||
|
||||
def disable_slicing(self) -> None:
|
||||
r"""
|
||||
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
|
||||
decoding in one step.
|
||||
"""
|
||||
self.use_slicing = False
|
||||
|
||||
def _encode(self, x: torch.Tensor) -> torch.Tensor:
|
||||
_, _, _, height, width = x.shape
|
||||
|
||||
|
||||
@@ -13,7 +13,7 @@
|
||||
# limitations under the License.
|
||||
|
||||
import math
|
||||
from typing import List, Literal, Optional
|
||||
from typing import List, Literal, Optional, Tuple
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
@@ -170,6 +170,21 @@ class FeedForward(nn.Module):
|
||||
return self.w2(self._forward_silu_gating(self.w1(x), self.w3(x)))
|
||||
|
||||
|
||||
# Copied from diffusers.models.transformers.transformer_z_image.select_per_token
|
||||
def select_per_token(
|
||||
value_noisy: torch.Tensor,
|
||||
value_clean: torch.Tensor,
|
||||
noise_mask: torch.Tensor,
|
||||
seq_len: int,
|
||||
) -> torch.Tensor:
|
||||
noise_mask_expanded = noise_mask.unsqueeze(-1) # (batch, seq_len, 1)
|
||||
return torch.where(
|
||||
noise_mask_expanded == 1,
|
||||
value_noisy.unsqueeze(1).expand(-1, seq_len, -1),
|
||||
value_clean.unsqueeze(1).expand(-1, seq_len, -1),
|
||||
)
|
||||
|
||||
|
||||
@maybe_allow_in_graph
|
||||
# Copied from diffusers.models.transformers.transformer_z_image.ZImageTransformerBlock
|
||||
class ZImageTransformerBlock(nn.Module):
|
||||
@@ -220,12 +235,37 @@ class ZImageTransformerBlock(nn.Module):
|
||||
attn_mask: torch.Tensor,
|
||||
freqs_cis: torch.Tensor,
|
||||
adaln_input: Optional[torch.Tensor] = None,
|
||||
noise_mask: Optional[torch.Tensor] = None,
|
||||
adaln_noisy: Optional[torch.Tensor] = None,
|
||||
adaln_clean: Optional[torch.Tensor] = None,
|
||||
):
|
||||
if self.modulation:
|
||||
assert adaln_input is not None
|
||||
scale_msa, gate_msa, scale_mlp, gate_mlp = self.adaLN_modulation(adaln_input).unsqueeze(1).chunk(4, dim=2)
|
||||
gate_msa, gate_mlp = gate_msa.tanh(), gate_mlp.tanh()
|
||||
scale_msa, scale_mlp = 1.0 + scale_msa, 1.0 + scale_mlp
|
||||
seq_len = x.shape[1]
|
||||
|
||||
if noise_mask is not None:
|
||||
# Per-token modulation: different modulation for noisy/clean tokens
|
||||
mod_noisy = self.adaLN_modulation(adaln_noisy)
|
||||
mod_clean = self.adaLN_modulation(adaln_clean)
|
||||
|
||||
scale_msa_noisy, gate_msa_noisy, scale_mlp_noisy, gate_mlp_noisy = mod_noisy.chunk(4, dim=1)
|
||||
scale_msa_clean, gate_msa_clean, scale_mlp_clean, gate_mlp_clean = mod_clean.chunk(4, dim=1)
|
||||
|
||||
gate_msa_noisy, gate_mlp_noisy = gate_msa_noisy.tanh(), gate_mlp_noisy.tanh()
|
||||
gate_msa_clean, gate_mlp_clean = gate_msa_clean.tanh(), gate_mlp_clean.tanh()
|
||||
|
||||
scale_msa_noisy, scale_mlp_noisy = 1.0 + scale_msa_noisy, 1.0 + scale_mlp_noisy
|
||||
scale_msa_clean, scale_mlp_clean = 1.0 + scale_msa_clean, 1.0 + scale_mlp_clean
|
||||
|
||||
scale_msa = select_per_token(scale_msa_noisy, scale_msa_clean, noise_mask, seq_len)
|
||||
scale_mlp = select_per_token(scale_mlp_noisy, scale_mlp_clean, noise_mask, seq_len)
|
||||
gate_msa = select_per_token(gate_msa_noisy, gate_msa_clean, noise_mask, seq_len)
|
||||
gate_mlp = select_per_token(gate_mlp_noisy, gate_mlp_clean, noise_mask, seq_len)
|
||||
else:
|
||||
# Global modulation: same modulation for all tokens (avoid double select)
|
||||
mod = self.adaLN_modulation(adaln_input)
|
||||
scale_msa, gate_msa, scale_mlp, gate_mlp = mod.unsqueeze(1).chunk(4, dim=2)
|
||||
gate_msa, gate_mlp = gate_msa.tanh(), gate_mlp.tanh()
|
||||
scale_msa, scale_mlp = 1.0 + scale_msa, 1.0 + scale_mlp
|
||||
|
||||
# Attention block
|
||||
attn_out = self.attention(
|
||||
@@ -493,112 +533,93 @@ class ZImageControlNetModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOrigi
|
||||
def create_coordinate_grid(size, start=None, device=None):
|
||||
if start is None:
|
||||
start = (0 for _ in size)
|
||||
|
||||
axes = [torch.arange(x0, x0 + span, dtype=torch.int32, device=device) for x0, span in zip(start, size)]
|
||||
grids = torch.meshgrid(axes, indexing="ij")
|
||||
return torch.stack(grids, dim=-1)
|
||||
|
||||
# Copied from diffusers.models.transformers.transformer_z_image.ZImageTransformer2DModel._patchify_image
|
||||
def _patchify_image(self, image: torch.Tensor, patch_size: int, f_patch_size: int):
|
||||
"""Patchify a single image tensor: (C, F, H, W) -> (num_patches, patch_dim)."""
|
||||
pH, pW, pF = patch_size, patch_size, f_patch_size
|
||||
C, F, H, W = image.size()
|
||||
F_tokens, H_tokens, W_tokens = F // pF, H // pH, W // pW
|
||||
image = image.view(C, F_tokens, pF, H_tokens, pH, W_tokens, pW)
|
||||
image = image.permute(1, 3, 5, 2, 4, 6, 0).reshape(F_tokens * H_tokens * W_tokens, pF * pH * pW * C)
|
||||
return image, (F, H, W), (F_tokens, H_tokens, W_tokens)
|
||||
|
||||
# Copied from diffusers.models.transformers.transformer_z_image.ZImageTransformer2DModel._pad_with_ids
|
||||
def _pad_with_ids(
|
||||
self,
|
||||
feat: torch.Tensor,
|
||||
pos_grid_size: Tuple,
|
||||
pos_start: Tuple,
|
||||
device: torch.device,
|
||||
noise_mask_val: Optional[int] = None,
|
||||
):
|
||||
"""Pad feature to SEQ_MULTI_OF, create position IDs and pad mask."""
|
||||
ori_len = len(feat)
|
||||
pad_len = (-ori_len) % SEQ_MULTI_OF
|
||||
total_len = ori_len + pad_len
|
||||
|
||||
# Pos IDs
|
||||
ori_pos_ids = self.create_coordinate_grid(size=pos_grid_size, start=pos_start, device=device).flatten(0, 2)
|
||||
if pad_len > 0:
|
||||
pad_pos_ids = (
|
||||
self.create_coordinate_grid(size=(1, 1, 1), start=(0, 0, 0), device=device)
|
||||
.flatten(0, 2)
|
||||
.repeat(pad_len, 1)
|
||||
)
|
||||
pos_ids = torch.cat([ori_pos_ids, pad_pos_ids], dim=0)
|
||||
padded_feat = torch.cat([feat, feat[-1:].repeat(pad_len, 1)], dim=0)
|
||||
pad_mask = torch.cat(
|
||||
[
|
||||
torch.zeros(ori_len, dtype=torch.bool, device=device),
|
||||
torch.ones(pad_len, dtype=torch.bool, device=device),
|
||||
]
|
||||
)
|
||||
else:
|
||||
pos_ids = ori_pos_ids
|
||||
padded_feat = feat
|
||||
pad_mask = torch.zeros(ori_len, dtype=torch.bool, device=device)
|
||||
|
||||
noise_mask = [noise_mask_val] * total_len if noise_mask_val is not None else None # token level
|
||||
return padded_feat, pos_ids, pad_mask, total_len, noise_mask
|
||||
|
||||
# Copied from diffusers.models.transformers.transformer_z_image.ZImageTransformer2DModel.patchify_and_embed
|
||||
def patchify_and_embed(
|
||||
self,
|
||||
all_image: List[torch.Tensor],
|
||||
all_cap_feats: List[torch.Tensor],
|
||||
patch_size: int,
|
||||
f_patch_size: int,
|
||||
self, all_image: List[torch.Tensor], all_cap_feats: List[torch.Tensor], patch_size: int, f_patch_size: int
|
||||
):
|
||||
pH = pW = patch_size
|
||||
pF = f_patch_size
|
||||
"""Patchify for basic mode: single image per batch item."""
|
||||
device = all_image[0].device
|
||||
all_img_out, all_img_size, all_img_pos_ids, all_img_pad_mask = [], [], [], []
|
||||
all_cap_out, all_cap_pos_ids, all_cap_pad_mask = [], [], []
|
||||
|
||||
all_image_out = []
|
||||
all_image_size = []
|
||||
all_image_pos_ids = []
|
||||
all_image_pad_mask = []
|
||||
all_cap_pos_ids = []
|
||||
all_cap_pad_mask = []
|
||||
all_cap_feats_out = []
|
||||
|
||||
for i, (image, cap_feat) in enumerate(zip(all_image, all_cap_feats)):
|
||||
### Process Caption
|
||||
cap_ori_len = len(cap_feat)
|
||||
cap_padding_len = (-cap_ori_len) % SEQ_MULTI_OF
|
||||
# padded position ids
|
||||
cap_padded_pos_ids = self.create_coordinate_grid(
|
||||
size=(cap_ori_len + cap_padding_len, 1, 1),
|
||||
start=(1, 0, 0),
|
||||
device=device,
|
||||
).flatten(0, 2)
|
||||
all_cap_pos_ids.append(cap_padded_pos_ids)
|
||||
# pad mask
|
||||
cap_pad_mask = torch.cat(
|
||||
[
|
||||
torch.zeros((cap_ori_len,), dtype=torch.bool, device=device),
|
||||
torch.ones((cap_padding_len,), dtype=torch.bool, device=device),
|
||||
],
|
||||
dim=0,
|
||||
)
|
||||
all_cap_pad_mask.append(
|
||||
cap_pad_mask if cap_padding_len > 0 else torch.zeros((cap_ori_len,), dtype=torch.bool, device=device)
|
||||
for image, cap_feat in zip(all_image, all_cap_feats):
|
||||
# Caption
|
||||
cap_out, cap_pos_ids, cap_pad_mask, cap_len, _ = self._pad_with_ids(
|
||||
cap_feat, (len(cap_feat) + (-len(cap_feat)) % SEQ_MULTI_OF, 1, 1), (1, 0, 0), device
|
||||
)
|
||||
all_cap_out.append(cap_out)
|
||||
all_cap_pos_ids.append(cap_pos_ids)
|
||||
all_cap_pad_mask.append(cap_pad_mask)
|
||||
|
||||
# padded feature
|
||||
cap_padded_feat = torch.cat([cap_feat, cap_feat[-1:].repeat(cap_padding_len, 1)], dim=0)
|
||||
all_cap_feats_out.append(cap_padded_feat)
|
||||
|
||||
### Process Image
|
||||
C, F, H, W = image.size()
|
||||
all_image_size.append((F, H, W))
|
||||
F_tokens, H_tokens, W_tokens = F // pF, H // pH, W // pW
|
||||
|
||||
image = image.view(C, F_tokens, pF, H_tokens, pH, W_tokens, pW)
|
||||
# "c f pf h ph w pw -> (f h w) (pf ph pw c)"
|
||||
image = image.permute(1, 3, 5, 2, 4, 6, 0).reshape(F_tokens * H_tokens * W_tokens, pF * pH * pW * C)
|
||||
|
||||
image_ori_len = len(image)
|
||||
image_padding_len = (-image_ori_len) % SEQ_MULTI_OF
|
||||
|
||||
image_ori_pos_ids = self.create_coordinate_grid(
|
||||
size=(F_tokens, H_tokens, W_tokens),
|
||||
start=(cap_ori_len + cap_padding_len + 1, 0, 0),
|
||||
device=device,
|
||||
).flatten(0, 2)
|
||||
image_padded_pos_ids = torch.cat(
|
||||
[
|
||||
image_ori_pos_ids,
|
||||
self.create_coordinate_grid(size=(1, 1, 1), start=(0, 0, 0), device=device)
|
||||
.flatten(0, 2)
|
||||
.repeat(image_padding_len, 1),
|
||||
],
|
||||
dim=0,
|
||||
# Image
|
||||
img_patches, size, (F_t, H_t, W_t) = self._patchify_image(image, patch_size, f_patch_size)
|
||||
img_out, img_pos_ids, img_pad_mask, _, _ = self._pad_with_ids(
|
||||
img_patches, (F_t, H_t, W_t), (cap_len + 1, 0, 0), device
|
||||
)
|
||||
all_image_pos_ids.append(image_padded_pos_ids if image_padding_len > 0 else image_ori_pos_ids)
|
||||
# pad mask
|
||||
image_pad_mask = torch.cat(
|
||||
[
|
||||
torch.zeros((image_ori_len,), dtype=torch.bool, device=device),
|
||||
torch.ones((image_padding_len,), dtype=torch.bool, device=device),
|
||||
],
|
||||
dim=0,
|
||||
)
|
||||
all_image_pad_mask.append(
|
||||
image_pad_mask
|
||||
if image_padding_len > 0
|
||||
else torch.zeros((image_ori_len,), dtype=torch.bool, device=device)
|
||||
)
|
||||
# padded feature
|
||||
image_padded_feat = torch.cat(
|
||||
[image, image[-1:].repeat(image_padding_len, 1)],
|
||||
dim=0,
|
||||
)
|
||||
all_image_out.append(image_padded_feat if image_padding_len > 0 else image)
|
||||
all_img_out.append(img_out)
|
||||
all_img_size.append(size)
|
||||
all_img_pos_ids.append(img_pos_ids)
|
||||
all_img_pad_mask.append(img_pad_mask)
|
||||
|
||||
return (
|
||||
all_image_out,
|
||||
all_cap_feats_out,
|
||||
all_image_size,
|
||||
all_image_pos_ids,
|
||||
all_img_out,
|
||||
all_cap_out,
|
||||
all_img_size,
|
||||
all_img_pos_ids,
|
||||
all_cap_pos_ids,
|
||||
all_image_pad_mask,
|
||||
all_img_pad_mask,
|
||||
all_cap_pad_mask,
|
||||
)
|
||||
|
||||
|
||||
@@ -134,7 +134,8 @@ class WanAttnProcessor:
|
||||
dropout_p=0.0,
|
||||
is_causal=False,
|
||||
backend=self._attention_backend,
|
||||
parallel_config=self._parallel_config,
|
||||
# Reference: https://github.com/huggingface/diffusers/pull/12909
|
||||
parallel_config=None,
|
||||
)
|
||||
hidden_states_img = hidden_states_img.flatten(2, 3)
|
||||
hidden_states_img = hidden_states_img.type_as(query)
|
||||
@@ -147,7 +148,8 @@ class WanAttnProcessor:
|
||||
dropout_p=0.0,
|
||||
is_causal=False,
|
||||
backend=self._attention_backend,
|
||||
parallel_config=self._parallel_config,
|
||||
# Reference: https://github.com/huggingface/diffusers/pull/12909
|
||||
parallel_config=(self._parallel_config if encoder_hidden_states is None else None),
|
||||
)
|
||||
hidden_states = hidden_states.flatten(2, 3)
|
||||
hidden_states = hidden_states.type_as(query)
|
||||
@@ -552,9 +554,11 @@ class WanTransformer3DModel(
|
||||
"blocks.0": {
|
||||
"hidden_states": ContextParallelInput(split_dim=1, expected_dims=3, split_output=False),
|
||||
},
|
||||
"blocks.*": {
|
||||
"encoder_hidden_states": ContextParallelInput(split_dim=1, expected_dims=3, split_output=False),
|
||||
},
|
||||
# Reference: https://github.com/huggingface/diffusers/pull/12909
|
||||
# We need to disable the splitting of encoder_hidden_states because the image_encoder
|
||||
# (Wan 2.1 I2V) consistently generates 257 tokens for image_embed. This causes the shape
|
||||
# of encoder_hidden_states—whose token count is always 769 (512 + 257) after concatenation
|
||||
# —to be indivisible by the number of devices in the CP.
|
||||
"proj_out": ContextParallelOutput(gather_dim=1, expected_dims=3),
|
||||
"": {
|
||||
"timestep": ContextParallelInput(split_dim=1, expected_dims=2, split_output=False),
|
||||
|
||||
@@ -609,7 +609,8 @@ class WanAttnProcessor:
|
||||
dropout_p=0.0,
|
||||
is_causal=False,
|
||||
backend=self._attention_backend,
|
||||
parallel_config=self._parallel_config,
|
||||
# Reference: https://github.com/huggingface/diffusers/pull/12909
|
||||
parallel_config=None,
|
||||
)
|
||||
hidden_states_img = hidden_states_img.flatten(2, 3)
|
||||
hidden_states_img = hidden_states_img.type_as(query)
|
||||
@@ -622,7 +623,8 @@ class WanAttnProcessor:
|
||||
dropout_p=0.0,
|
||||
is_causal=False,
|
||||
backend=self._attention_backend,
|
||||
parallel_config=self._parallel_config,
|
||||
# Reference: https://github.com/huggingface/diffusers/pull/12909
|
||||
parallel_config=(self._parallel_config if encoder_hidden_states is None else None),
|
||||
)
|
||||
hidden_states = hidden_states.flatten(2, 3)
|
||||
hidden_states = hidden_states.type_as(query)
|
||||
|
||||
@@ -13,7 +13,7 @@
|
||||
# limitations under the License.
|
||||
|
||||
import math
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
from typing import Dict, List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
@@ -32,6 +32,7 @@ from ..modeling_outputs import Transformer2DModelOutput
|
||||
|
||||
ADALN_EMBED_DIM = 256
|
||||
SEQ_MULTI_OF = 32
|
||||
X_PAD_DIM = 64
|
||||
|
||||
|
||||
class TimestepEmbedder(nn.Module):
|
||||
@@ -152,6 +153,20 @@ class ZSingleStreamAttnProcessor:
|
||||
return output
|
||||
|
||||
|
||||
def select_per_token(
|
||||
value_noisy: torch.Tensor,
|
||||
value_clean: torch.Tensor,
|
||||
noise_mask: torch.Tensor,
|
||||
seq_len: int,
|
||||
) -> torch.Tensor:
|
||||
noise_mask_expanded = noise_mask.unsqueeze(-1) # (batch, seq_len, 1)
|
||||
return torch.where(
|
||||
noise_mask_expanded == 1,
|
||||
value_noisy.unsqueeze(1).expand(-1, seq_len, -1),
|
||||
value_clean.unsqueeze(1).expand(-1, seq_len, -1),
|
||||
)
|
||||
|
||||
|
||||
class FeedForward(nn.Module):
|
||||
def __init__(self, dim: int, hidden_dim: int):
|
||||
super().__init__()
|
||||
@@ -215,12 +230,37 @@ class ZImageTransformerBlock(nn.Module):
|
||||
attn_mask: torch.Tensor,
|
||||
freqs_cis: torch.Tensor,
|
||||
adaln_input: Optional[torch.Tensor] = None,
|
||||
noise_mask: Optional[torch.Tensor] = None,
|
||||
adaln_noisy: Optional[torch.Tensor] = None,
|
||||
adaln_clean: Optional[torch.Tensor] = None,
|
||||
):
|
||||
if self.modulation:
|
||||
assert adaln_input is not None
|
||||
scale_msa, gate_msa, scale_mlp, gate_mlp = self.adaLN_modulation(adaln_input).unsqueeze(1).chunk(4, dim=2)
|
||||
gate_msa, gate_mlp = gate_msa.tanh(), gate_mlp.tanh()
|
||||
scale_msa, scale_mlp = 1.0 + scale_msa, 1.0 + scale_mlp
|
||||
seq_len = x.shape[1]
|
||||
|
||||
if noise_mask is not None:
|
||||
# Per-token modulation: different modulation for noisy/clean tokens
|
||||
mod_noisy = self.adaLN_modulation(adaln_noisy)
|
||||
mod_clean = self.adaLN_modulation(adaln_clean)
|
||||
|
||||
scale_msa_noisy, gate_msa_noisy, scale_mlp_noisy, gate_mlp_noisy = mod_noisy.chunk(4, dim=1)
|
||||
scale_msa_clean, gate_msa_clean, scale_mlp_clean, gate_mlp_clean = mod_clean.chunk(4, dim=1)
|
||||
|
||||
gate_msa_noisy, gate_mlp_noisy = gate_msa_noisy.tanh(), gate_mlp_noisy.tanh()
|
||||
gate_msa_clean, gate_mlp_clean = gate_msa_clean.tanh(), gate_mlp_clean.tanh()
|
||||
|
||||
scale_msa_noisy, scale_mlp_noisy = 1.0 + scale_msa_noisy, 1.0 + scale_mlp_noisy
|
||||
scale_msa_clean, scale_mlp_clean = 1.0 + scale_msa_clean, 1.0 + scale_mlp_clean
|
||||
|
||||
scale_msa = select_per_token(scale_msa_noisy, scale_msa_clean, noise_mask, seq_len)
|
||||
scale_mlp = select_per_token(scale_mlp_noisy, scale_mlp_clean, noise_mask, seq_len)
|
||||
gate_msa = select_per_token(gate_msa_noisy, gate_msa_clean, noise_mask, seq_len)
|
||||
gate_mlp = select_per_token(gate_mlp_noisy, gate_mlp_clean, noise_mask, seq_len)
|
||||
else:
|
||||
# Global modulation: same modulation for all tokens (avoid double select)
|
||||
mod = self.adaLN_modulation(adaln_input)
|
||||
scale_msa, gate_msa, scale_mlp, gate_mlp = mod.unsqueeze(1).chunk(4, dim=2)
|
||||
gate_msa, gate_mlp = gate_msa.tanh(), gate_mlp.tanh()
|
||||
scale_msa, scale_mlp = 1.0 + scale_msa, 1.0 + scale_mlp
|
||||
|
||||
# Attention block
|
||||
attn_out = self.attention(
|
||||
@@ -252,9 +292,21 @@ class FinalLayer(nn.Module):
|
||||
nn.Linear(min(hidden_size, ADALN_EMBED_DIM), hidden_size, bias=True),
|
||||
)
|
||||
|
||||
def forward(self, x, c):
|
||||
scale = 1.0 + self.adaLN_modulation(c)
|
||||
x = self.norm_final(x) * scale.unsqueeze(1)
|
||||
def forward(self, x, c=None, noise_mask=None, c_noisy=None, c_clean=None):
|
||||
seq_len = x.shape[1]
|
||||
|
||||
if noise_mask is not None:
|
||||
# Per-token modulation
|
||||
scale_noisy = 1.0 + self.adaLN_modulation(c_noisy)
|
||||
scale_clean = 1.0 + self.adaLN_modulation(c_clean)
|
||||
scale = select_per_token(scale_noisy, scale_clean, noise_mask, seq_len)
|
||||
else:
|
||||
# Original global modulation
|
||||
assert c is not None, "Either c or (c_noisy, c_clean) must be provided"
|
||||
scale = 1.0 + self.adaLN_modulation(c)
|
||||
scale = scale.unsqueeze(1)
|
||||
|
||||
x = self.norm_final(x) * scale
|
||||
x = self.linear(x)
|
||||
return x
|
||||
|
||||
@@ -325,6 +377,7 @@ class ZImageTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOr
|
||||
norm_eps=1e-5,
|
||||
qk_norm=True,
|
||||
cap_feat_dim=2560,
|
||||
siglip_feat_dim=None, # Optional: set to enable SigLIP support for Omni
|
||||
rope_theta=256.0,
|
||||
t_scale=1000.0,
|
||||
axes_dims=[32, 48, 48],
|
||||
@@ -386,6 +439,31 @@ class ZImageTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOr
|
||||
self.t_embedder = TimestepEmbedder(min(dim, ADALN_EMBED_DIM), mid_size=1024)
|
||||
self.cap_embedder = nn.Sequential(RMSNorm(cap_feat_dim, eps=norm_eps), nn.Linear(cap_feat_dim, dim, bias=True))
|
||||
|
||||
# Optional SigLIP components (for Omni variant)
|
||||
if siglip_feat_dim is not None:
|
||||
self.siglip_embedder = nn.Sequential(
|
||||
RMSNorm(siglip_feat_dim, eps=norm_eps), nn.Linear(siglip_feat_dim, dim, bias=True)
|
||||
)
|
||||
self.siglip_refiner = nn.ModuleList(
|
||||
[
|
||||
ZImageTransformerBlock(
|
||||
2000 + layer_id,
|
||||
dim,
|
||||
n_heads,
|
||||
n_kv_heads,
|
||||
norm_eps,
|
||||
qk_norm,
|
||||
modulation=False,
|
||||
)
|
||||
for layer_id in range(n_refiner_layers)
|
||||
]
|
||||
)
|
||||
self.siglip_pad_token = nn.Parameter(torch.empty((1, dim)))
|
||||
else:
|
||||
self.siglip_embedder = None
|
||||
self.siglip_refiner = None
|
||||
self.siglip_pad_token = None
|
||||
|
||||
self.x_pad_token = nn.Parameter(torch.empty((1, dim)))
|
||||
self.cap_pad_token = nn.Parameter(torch.empty((1, dim)))
|
||||
|
||||
@@ -402,259 +480,561 @@ class ZImageTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOr
|
||||
|
||||
self.rope_embedder = RopeEmbedder(theta=rope_theta, axes_dims=axes_dims, axes_lens=axes_lens)
|
||||
|
||||
def unpatchify(self, x: List[torch.Tensor], size: List[Tuple], patch_size, f_patch_size) -> List[torch.Tensor]:
|
||||
def unpatchify(
|
||||
self,
|
||||
x: List[torch.Tensor],
|
||||
size: List[Tuple],
|
||||
patch_size,
|
||||
f_patch_size,
|
||||
x_pos_offsets: Optional[List[Tuple[int, int]]] = None,
|
||||
) -> List[torch.Tensor]:
|
||||
pH = pW = patch_size
|
||||
pF = f_patch_size
|
||||
bsz = len(x)
|
||||
assert len(size) == bsz
|
||||
for i in range(bsz):
|
||||
F, H, W = size[i]
|
||||
ori_len = (F // pF) * (H // pH) * (W // pW)
|
||||
# "f h w pf ph pw c -> c (f pf) (h ph) (w pw)"
|
||||
x[i] = (
|
||||
x[i][:ori_len]
|
||||
.view(F // pF, H // pH, W // pW, pF, pH, pW, self.out_channels)
|
||||
.permute(6, 0, 3, 1, 4, 2, 5)
|
||||
.reshape(self.out_channels, F, H, W)
|
||||
)
|
||||
return x
|
||||
|
||||
if x_pos_offsets is not None:
|
||||
# Omni: extract target image from unified sequence (cond_images + target)
|
||||
result = []
|
||||
for i in range(bsz):
|
||||
unified_x = x[i][x_pos_offsets[i][0] : x_pos_offsets[i][1]]
|
||||
cu_len = 0
|
||||
x_item = None
|
||||
for j in range(len(size[i])):
|
||||
if size[i][j] is None:
|
||||
ori_len = 0
|
||||
pad_len = SEQ_MULTI_OF
|
||||
cu_len += pad_len + ori_len
|
||||
else:
|
||||
F, H, W = size[i][j]
|
||||
ori_len = (F // pF) * (H // pH) * (W // pW)
|
||||
pad_len = (-ori_len) % SEQ_MULTI_OF
|
||||
x_item = (
|
||||
unified_x[cu_len : cu_len + ori_len]
|
||||
.view(F // pF, H // pH, W // pW, pF, pH, pW, self.out_channels)
|
||||
.permute(6, 0, 3, 1, 4, 2, 5)
|
||||
.reshape(self.out_channels, F, H, W)
|
||||
)
|
||||
cu_len += ori_len + pad_len
|
||||
result.append(x_item) # Return only the last (target) image
|
||||
return result
|
||||
else:
|
||||
# Original mode: simple unpatchify
|
||||
for i in range(bsz):
|
||||
F, H, W = size[i]
|
||||
ori_len = (F // pF) * (H // pH) * (W // pW)
|
||||
# "f h w pf ph pw c -> c (f pf) (h ph) (w pw)"
|
||||
x[i] = (
|
||||
x[i][:ori_len]
|
||||
.view(F // pF, H // pH, W // pW, pF, pH, pW, self.out_channels)
|
||||
.permute(6, 0, 3, 1, 4, 2, 5)
|
||||
.reshape(self.out_channels, F, H, W)
|
||||
)
|
||||
return x
|
||||
|
||||
@staticmethod
|
||||
def create_coordinate_grid(size, start=None, device=None):
|
||||
if start is None:
|
||||
start = (0 for _ in size)
|
||||
|
||||
axes = [torch.arange(x0, x0 + span, dtype=torch.int32, device=device) for x0, span in zip(start, size)]
|
||||
grids = torch.meshgrid(axes, indexing="ij")
|
||||
return torch.stack(grids, dim=-1)
|
||||
|
||||
def patchify_and_embed(
|
||||
def _patchify_image(self, image: torch.Tensor, patch_size: int, f_patch_size: int):
|
||||
"""Patchify a single image tensor: (C, F, H, W) -> (num_patches, patch_dim)."""
|
||||
pH, pW, pF = patch_size, patch_size, f_patch_size
|
||||
C, F, H, W = image.size()
|
||||
F_tokens, H_tokens, W_tokens = F // pF, H // pH, W // pW
|
||||
image = image.view(C, F_tokens, pF, H_tokens, pH, W_tokens, pW)
|
||||
image = image.permute(1, 3, 5, 2, 4, 6, 0).reshape(F_tokens * H_tokens * W_tokens, pF * pH * pW * C)
|
||||
return image, (F, H, W), (F_tokens, H_tokens, W_tokens)
|
||||
|
||||
def _pad_with_ids(
|
||||
self,
|
||||
all_image: List[torch.Tensor],
|
||||
all_cap_feats: List[torch.Tensor],
|
||||
patch_size: int,
|
||||
f_patch_size: int,
|
||||
feat: torch.Tensor,
|
||||
pos_grid_size: Tuple,
|
||||
pos_start: Tuple,
|
||||
device: torch.device,
|
||||
noise_mask_val: Optional[int] = None,
|
||||
):
|
||||
pH = pW = patch_size
|
||||
pF = f_patch_size
|
||||
"""Pad feature to SEQ_MULTI_OF, create position IDs and pad mask."""
|
||||
ori_len = len(feat)
|
||||
pad_len = (-ori_len) % SEQ_MULTI_OF
|
||||
total_len = ori_len + pad_len
|
||||
|
||||
# Pos IDs
|
||||
ori_pos_ids = self.create_coordinate_grid(size=pos_grid_size, start=pos_start, device=device).flatten(0, 2)
|
||||
if pad_len > 0:
|
||||
pad_pos_ids = (
|
||||
self.create_coordinate_grid(size=(1, 1, 1), start=(0, 0, 0), device=device)
|
||||
.flatten(0, 2)
|
||||
.repeat(pad_len, 1)
|
||||
)
|
||||
pos_ids = torch.cat([ori_pos_ids, pad_pos_ids], dim=0)
|
||||
padded_feat = torch.cat([feat, feat[-1:].repeat(pad_len, 1)], dim=0)
|
||||
pad_mask = torch.cat(
|
||||
[
|
||||
torch.zeros(ori_len, dtype=torch.bool, device=device),
|
||||
torch.ones(pad_len, dtype=torch.bool, device=device),
|
||||
]
|
||||
)
|
||||
else:
|
||||
pos_ids = ori_pos_ids
|
||||
padded_feat = feat
|
||||
pad_mask = torch.zeros(ori_len, dtype=torch.bool, device=device)
|
||||
|
||||
noise_mask = [noise_mask_val] * total_len if noise_mask_val is not None else None # token level
|
||||
return padded_feat, pos_ids, pad_mask, total_len, noise_mask
|
||||
|
||||
def patchify_and_embed(
|
||||
self, all_image: List[torch.Tensor], all_cap_feats: List[torch.Tensor], patch_size: int, f_patch_size: int
|
||||
):
|
||||
"""Patchify for basic mode: single image per batch item."""
|
||||
device = all_image[0].device
|
||||
all_img_out, all_img_size, all_img_pos_ids, all_img_pad_mask = [], [], [], []
|
||||
all_cap_out, all_cap_pos_ids, all_cap_pad_mask = [], [], []
|
||||
|
||||
all_image_out = []
|
||||
all_image_size = []
|
||||
all_image_pos_ids = []
|
||||
all_image_pad_mask = []
|
||||
all_cap_pos_ids = []
|
||||
all_cap_pad_mask = []
|
||||
all_cap_feats_out = []
|
||||
|
||||
for i, (image, cap_feat) in enumerate(zip(all_image, all_cap_feats)):
|
||||
### Process Caption
|
||||
cap_ori_len = len(cap_feat)
|
||||
cap_padding_len = (-cap_ori_len) % SEQ_MULTI_OF
|
||||
# padded position ids
|
||||
cap_padded_pos_ids = self.create_coordinate_grid(
|
||||
size=(cap_ori_len + cap_padding_len, 1, 1),
|
||||
start=(1, 0, 0),
|
||||
device=device,
|
||||
).flatten(0, 2)
|
||||
all_cap_pos_ids.append(cap_padded_pos_ids)
|
||||
# pad mask
|
||||
cap_pad_mask = torch.cat(
|
||||
[
|
||||
torch.zeros((cap_ori_len,), dtype=torch.bool, device=device),
|
||||
torch.ones((cap_padding_len,), dtype=torch.bool, device=device),
|
||||
],
|
||||
dim=0,
|
||||
)
|
||||
all_cap_pad_mask.append(
|
||||
cap_pad_mask if cap_padding_len > 0 else torch.zeros((cap_ori_len,), dtype=torch.bool, device=device)
|
||||
for image, cap_feat in zip(all_image, all_cap_feats):
|
||||
# Caption
|
||||
cap_out, cap_pos_ids, cap_pad_mask, cap_len, _ = self._pad_with_ids(
|
||||
cap_feat, (len(cap_feat) + (-len(cap_feat)) % SEQ_MULTI_OF, 1, 1), (1, 0, 0), device
|
||||
)
|
||||
all_cap_out.append(cap_out)
|
||||
all_cap_pos_ids.append(cap_pos_ids)
|
||||
all_cap_pad_mask.append(cap_pad_mask)
|
||||
|
||||
# padded feature
|
||||
cap_padded_feat = torch.cat([cap_feat, cap_feat[-1:].repeat(cap_padding_len, 1)], dim=0)
|
||||
all_cap_feats_out.append(cap_padded_feat)
|
||||
|
||||
### Process Image
|
||||
C, F, H, W = image.size()
|
||||
all_image_size.append((F, H, W))
|
||||
F_tokens, H_tokens, W_tokens = F // pF, H // pH, W // pW
|
||||
|
||||
image = image.view(C, F_tokens, pF, H_tokens, pH, W_tokens, pW)
|
||||
# "c f pf h ph w pw -> (f h w) (pf ph pw c)"
|
||||
image = image.permute(1, 3, 5, 2, 4, 6, 0).reshape(F_tokens * H_tokens * W_tokens, pF * pH * pW * C)
|
||||
|
||||
image_ori_len = len(image)
|
||||
image_padding_len = (-image_ori_len) % SEQ_MULTI_OF
|
||||
|
||||
image_ori_pos_ids = self.create_coordinate_grid(
|
||||
size=(F_tokens, H_tokens, W_tokens),
|
||||
start=(cap_ori_len + cap_padding_len + 1, 0, 0),
|
||||
device=device,
|
||||
).flatten(0, 2)
|
||||
image_padded_pos_ids = torch.cat(
|
||||
[
|
||||
image_ori_pos_ids,
|
||||
self.create_coordinate_grid(size=(1, 1, 1), start=(0, 0, 0), device=device)
|
||||
.flatten(0, 2)
|
||||
.repeat(image_padding_len, 1),
|
||||
],
|
||||
dim=0,
|
||||
# Image
|
||||
img_patches, size, (F_t, H_t, W_t) = self._patchify_image(image, patch_size, f_patch_size)
|
||||
img_out, img_pos_ids, img_pad_mask, _, _ = self._pad_with_ids(
|
||||
img_patches, (F_t, H_t, W_t), (cap_len + 1, 0, 0), device
|
||||
)
|
||||
all_image_pos_ids.append(image_padded_pos_ids if image_padding_len > 0 else image_ori_pos_ids)
|
||||
# pad mask
|
||||
image_pad_mask = torch.cat(
|
||||
[
|
||||
torch.zeros((image_ori_len,), dtype=torch.bool, device=device),
|
||||
torch.ones((image_padding_len,), dtype=torch.bool, device=device),
|
||||
],
|
||||
dim=0,
|
||||
)
|
||||
all_image_pad_mask.append(
|
||||
image_pad_mask
|
||||
if image_padding_len > 0
|
||||
else torch.zeros((image_ori_len,), dtype=torch.bool, device=device)
|
||||
)
|
||||
# padded feature
|
||||
image_padded_feat = torch.cat(
|
||||
[image, image[-1:].repeat(image_padding_len, 1)],
|
||||
dim=0,
|
||||
)
|
||||
all_image_out.append(image_padded_feat if image_padding_len > 0 else image)
|
||||
all_img_out.append(img_out)
|
||||
all_img_size.append(size)
|
||||
all_img_pos_ids.append(img_pos_ids)
|
||||
all_img_pad_mask.append(img_pad_mask)
|
||||
|
||||
return (
|
||||
all_image_out,
|
||||
all_cap_feats_out,
|
||||
all_image_size,
|
||||
all_image_pos_ids,
|
||||
all_img_out,
|
||||
all_cap_out,
|
||||
all_img_size,
|
||||
all_img_pos_ids,
|
||||
all_cap_pos_ids,
|
||||
all_image_pad_mask,
|
||||
all_img_pad_mask,
|
||||
all_cap_pad_mask,
|
||||
)
|
||||
|
||||
def forward(
|
||||
def patchify_and_embed_omni(
|
||||
self,
|
||||
x: List[torch.Tensor],
|
||||
t,
|
||||
cap_feats: List[torch.Tensor],
|
||||
controlnet_block_samples: Optional[Dict[int, torch.Tensor]] = None,
|
||||
patch_size=2,
|
||||
f_patch_size=1,
|
||||
return_dict: bool = True,
|
||||
all_x: List[List[torch.Tensor]],
|
||||
all_cap_feats: List[List[torch.Tensor]],
|
||||
all_siglip_feats: List[List[torch.Tensor]],
|
||||
patch_size: int,
|
||||
f_patch_size: int,
|
||||
images_noise_mask: List[List[int]],
|
||||
):
|
||||
assert patch_size in self.all_patch_size
|
||||
assert f_patch_size in self.all_f_patch_size
|
||||
"""Patchify for omni mode: multiple images per batch item with noise masks."""
|
||||
bsz = len(all_x)
|
||||
device = all_x[0][-1].device
|
||||
dtype = all_x[0][-1].dtype
|
||||
|
||||
bsz = len(x)
|
||||
device = x[0].device
|
||||
t = t * self.t_scale
|
||||
t = self.t_embedder(t)
|
||||
all_x_out, all_x_size, all_x_pos_ids, all_x_pad_mask, all_x_len, all_x_noise_mask = [], [], [], [], [], []
|
||||
all_cap_out, all_cap_pos_ids, all_cap_pad_mask, all_cap_len, all_cap_noise_mask = [], [], [], [], []
|
||||
all_sig_out, all_sig_pos_ids, all_sig_pad_mask, all_sig_len, all_sig_noise_mask = [], [], [], [], []
|
||||
|
||||
(
|
||||
x,
|
||||
cap_feats,
|
||||
x_size,
|
||||
x_pos_ids,
|
||||
cap_pos_ids,
|
||||
x_inner_pad_mask,
|
||||
cap_inner_pad_mask,
|
||||
) = self.patchify_and_embed(x, cap_feats, patch_size, f_patch_size)
|
||||
for i in range(bsz):
|
||||
num_images = len(all_x[i])
|
||||
cap_feats_list, cap_pos_list, cap_mask_list, cap_lens, cap_noise = [], [], [], [], []
|
||||
cap_end_pos = []
|
||||
cap_cu_len = 1
|
||||
|
||||
# x embed & refine
|
||||
x_item_seqlens = [len(_) for _ in x]
|
||||
assert all(_ % SEQ_MULTI_OF == 0 for _ in x_item_seqlens)
|
||||
x_max_item_seqlen = max(x_item_seqlens)
|
||||
# Process captions
|
||||
for j, cap_item in enumerate(all_cap_feats[i]):
|
||||
noise_val = images_noise_mask[i][j] if j < len(images_noise_mask[i]) else 1
|
||||
cap_out, cap_pos, cap_mask, cap_len, cap_nm = self._pad_with_ids(
|
||||
cap_item,
|
||||
(len(cap_item) + (-len(cap_item)) % SEQ_MULTI_OF, 1, 1),
|
||||
(cap_cu_len, 0, 0),
|
||||
device,
|
||||
noise_val,
|
||||
)
|
||||
cap_feats_list.append(cap_out)
|
||||
cap_pos_list.append(cap_pos)
|
||||
cap_mask_list.append(cap_mask)
|
||||
cap_lens.append(cap_len)
|
||||
cap_noise.extend(cap_nm)
|
||||
cap_cu_len += len(cap_item)
|
||||
cap_end_pos.append(cap_cu_len)
|
||||
cap_cu_len += 2 # for image vae and siglip tokens
|
||||
|
||||
x = torch.cat(x, dim=0)
|
||||
x = self.all_x_embedder[f"{patch_size}-{f_patch_size}"](x)
|
||||
all_cap_out.append(torch.cat(cap_feats_list, dim=0))
|
||||
all_cap_pos_ids.append(torch.cat(cap_pos_list, dim=0))
|
||||
all_cap_pad_mask.append(torch.cat(cap_mask_list, dim=0))
|
||||
all_cap_len.append(cap_lens)
|
||||
all_cap_noise_mask.append(cap_noise)
|
||||
|
||||
# Match t_embedder output dtype to x for layerwise casting compatibility
|
||||
adaln_input = t.type_as(x)
|
||||
x[torch.cat(x_inner_pad_mask)] = self.x_pad_token
|
||||
x = list(x.split(x_item_seqlens, dim=0))
|
||||
x_freqs_cis = list(self.rope_embedder(torch.cat(x_pos_ids, dim=0)).split([len(_) for _ in x_pos_ids], dim=0))
|
||||
# Process images
|
||||
x_feats_list, x_pos_list, x_mask_list, x_lens, x_size, x_noise = [], [], [], [], [], []
|
||||
for j, x_item in enumerate(all_x[i]):
|
||||
noise_val = images_noise_mask[i][j]
|
||||
if x_item is not None:
|
||||
x_patches, size, (F_t, H_t, W_t) = self._patchify_image(x_item, patch_size, f_patch_size)
|
||||
x_out, x_pos, x_mask, x_len, x_nm = self._pad_with_ids(
|
||||
x_patches, (F_t, H_t, W_t), (cap_end_pos[j], 0, 0), device, noise_val
|
||||
)
|
||||
x_size.append(size)
|
||||
else:
|
||||
x_len = SEQ_MULTI_OF
|
||||
x_out = torch.zeros((x_len, X_PAD_DIM), dtype=dtype, device=device)
|
||||
x_pos = self.create_coordinate_grid((1, 1, 1), (0, 0, 0), device).flatten(0, 2).repeat(x_len, 1)
|
||||
x_mask = torch.ones(x_len, dtype=torch.bool, device=device)
|
||||
x_nm = [noise_val] * x_len
|
||||
x_size.append(None)
|
||||
x_feats_list.append(x_out)
|
||||
x_pos_list.append(x_pos)
|
||||
x_mask_list.append(x_mask)
|
||||
x_lens.append(x_len)
|
||||
x_noise.extend(x_nm)
|
||||
|
||||
x = pad_sequence(x, batch_first=True, padding_value=0.0)
|
||||
x_freqs_cis = pad_sequence(x_freqs_cis, batch_first=True, padding_value=0.0)
|
||||
# Clarify the length matches to satisfy Dynamo due to "Symbolic Shape Inference" to avoid compilation errors
|
||||
x_freqs_cis = x_freqs_cis[:, : x.shape[1]]
|
||||
all_x_out.append(torch.cat(x_feats_list, dim=0))
|
||||
all_x_pos_ids.append(torch.cat(x_pos_list, dim=0))
|
||||
all_x_pad_mask.append(torch.cat(x_mask_list, dim=0))
|
||||
all_x_size.append(x_size)
|
||||
all_x_len.append(x_lens)
|
||||
all_x_noise_mask.append(x_noise)
|
||||
|
||||
x_attn_mask = torch.zeros((bsz, x_max_item_seqlen), dtype=torch.bool, device=device)
|
||||
for i, seq_len in enumerate(x_item_seqlens):
|
||||
x_attn_mask[i, :seq_len] = 1
|
||||
# Process siglip
|
||||
if all_siglip_feats[i] is None:
|
||||
all_sig_len.append([0] * num_images)
|
||||
all_sig_out.append(None)
|
||||
else:
|
||||
sig_feats_list, sig_pos_list, sig_mask_list, sig_lens, sig_noise = [], [], [], [], []
|
||||
for j, sig_item in enumerate(all_siglip_feats[i]):
|
||||
noise_val = images_noise_mask[i][j]
|
||||
if sig_item is not None:
|
||||
sig_H, sig_W, sig_C = sig_item.size()
|
||||
sig_flat = sig_item.permute(2, 0, 1).reshape(sig_H * sig_W, sig_C)
|
||||
sig_out, sig_pos, sig_mask, sig_len, sig_nm = self._pad_with_ids(
|
||||
sig_flat, (1, sig_H, sig_W), (cap_end_pos[j] + 1, 0, 0), device, noise_val
|
||||
)
|
||||
# Scale position IDs to match x resolution
|
||||
if x_size[j] is not None:
|
||||
sig_pos = sig_pos.float()
|
||||
sig_pos[..., 1] = sig_pos[..., 1] / max(sig_H - 1, 1) * (x_size[j][1] - 1)
|
||||
sig_pos[..., 2] = sig_pos[..., 2] / max(sig_W - 1, 1) * (x_size[j][2] - 1)
|
||||
sig_pos = sig_pos.to(torch.int32)
|
||||
else:
|
||||
sig_len = SEQ_MULTI_OF
|
||||
sig_out = torch.zeros((sig_len, self.config.siglip_feat_dim), dtype=dtype, device=device)
|
||||
sig_pos = (
|
||||
self.create_coordinate_grid((1, 1, 1), (0, 0, 0), device).flatten(0, 2).repeat(sig_len, 1)
|
||||
)
|
||||
sig_mask = torch.ones(sig_len, dtype=torch.bool, device=device)
|
||||
sig_nm = [noise_val] * sig_len
|
||||
sig_feats_list.append(sig_out)
|
||||
sig_pos_list.append(sig_pos)
|
||||
sig_mask_list.append(sig_mask)
|
||||
sig_lens.append(sig_len)
|
||||
sig_noise.extend(sig_nm)
|
||||
|
||||
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
||||
for layer in self.noise_refiner:
|
||||
x = self._gradient_checkpointing_func(layer, x, x_attn_mask, x_freqs_cis, adaln_input)
|
||||
else:
|
||||
for layer in self.noise_refiner:
|
||||
x = layer(x, x_attn_mask, x_freqs_cis, adaln_input)
|
||||
all_sig_out.append(torch.cat(sig_feats_list, dim=0))
|
||||
all_sig_pos_ids.append(torch.cat(sig_pos_list, dim=0))
|
||||
all_sig_pad_mask.append(torch.cat(sig_mask_list, dim=0))
|
||||
all_sig_len.append(sig_lens)
|
||||
all_sig_noise_mask.append(sig_noise)
|
||||
|
||||
# cap embed & refine
|
||||
cap_item_seqlens = [len(_) for _ in cap_feats]
|
||||
cap_max_item_seqlen = max(cap_item_seqlens)
|
||||
# Compute x position offsets
|
||||
all_x_pos_offsets = [(sum(all_cap_len[i]), sum(all_cap_len[i]) + sum(all_x_len[i])) for i in range(bsz)]
|
||||
|
||||
cap_feats = torch.cat(cap_feats, dim=0)
|
||||
cap_feats = self.cap_embedder(cap_feats)
|
||||
cap_feats[torch.cat(cap_inner_pad_mask)] = self.cap_pad_token
|
||||
cap_feats = list(cap_feats.split(cap_item_seqlens, dim=0))
|
||||
cap_freqs_cis = list(
|
||||
self.rope_embedder(torch.cat(cap_pos_ids, dim=0)).split([len(_) for _ in cap_pos_ids], dim=0)
|
||||
return (
|
||||
all_x_out,
|
||||
all_cap_out,
|
||||
all_sig_out,
|
||||
all_x_size,
|
||||
all_x_pos_ids,
|
||||
all_cap_pos_ids,
|
||||
all_sig_pos_ids,
|
||||
all_x_pad_mask,
|
||||
all_cap_pad_mask,
|
||||
all_sig_pad_mask,
|
||||
all_x_pos_offsets,
|
||||
all_x_noise_mask,
|
||||
all_cap_noise_mask,
|
||||
all_sig_noise_mask,
|
||||
)
|
||||
|
||||
cap_feats = pad_sequence(cap_feats, batch_first=True, padding_value=0.0)
|
||||
cap_freqs_cis = pad_sequence(cap_freqs_cis, batch_first=True, padding_value=0.0)
|
||||
# Clarify the length matches to satisfy Dynamo due to "Symbolic Shape Inference" to avoid compilation errors
|
||||
cap_freqs_cis = cap_freqs_cis[:, : cap_feats.shape[1]]
|
||||
def _prepare_sequence(
|
||||
self,
|
||||
feats: List[torch.Tensor],
|
||||
pos_ids: List[torch.Tensor],
|
||||
inner_pad_mask: List[torch.Tensor],
|
||||
pad_token: torch.nn.Parameter,
|
||||
noise_mask: Optional[List[List[int]]] = None,
|
||||
device: torch.device = None,
|
||||
):
|
||||
"""Prepare sequence: apply pad token, RoPE embed, pad to batch, create attention mask."""
|
||||
item_seqlens = [len(f) for f in feats]
|
||||
max_seqlen = max(item_seqlens)
|
||||
bsz = len(feats)
|
||||
|
||||
cap_attn_mask = torch.zeros((bsz, cap_max_item_seqlen), dtype=torch.bool, device=device)
|
||||
for i, seq_len in enumerate(cap_item_seqlens):
|
||||
cap_attn_mask[i, :seq_len] = 1
|
||||
# Pad token
|
||||
feats_cat = torch.cat(feats, dim=0)
|
||||
feats_cat[torch.cat(inner_pad_mask)] = pad_token
|
||||
feats = list(feats_cat.split(item_seqlens, dim=0))
|
||||
|
||||
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
||||
for layer in self.context_refiner:
|
||||
cap_feats = self._gradient_checkpointing_func(layer, cap_feats, cap_attn_mask, cap_freqs_cis)
|
||||
else:
|
||||
for layer in self.context_refiner:
|
||||
cap_feats = layer(cap_feats, cap_attn_mask, cap_freqs_cis)
|
||||
# RoPE
|
||||
freqs_cis = list(self.rope_embedder(torch.cat(pos_ids, dim=0)).split([len(p) for p in pos_ids], dim=0))
|
||||
|
||||
# unified
|
||||
# Pad to batch
|
||||
feats = pad_sequence(feats, batch_first=True, padding_value=0.0)
|
||||
freqs_cis = pad_sequence(freqs_cis, batch_first=True, padding_value=0.0)[:, : feats.shape[1]]
|
||||
|
||||
# Attention mask
|
||||
attn_mask = torch.zeros((bsz, max_seqlen), dtype=torch.bool, device=device)
|
||||
for i, seq_len in enumerate(item_seqlens):
|
||||
attn_mask[i, :seq_len] = 1
|
||||
|
||||
# Noise mask
|
||||
noise_mask_tensor = None
|
||||
if noise_mask is not None:
|
||||
noise_mask_tensor = pad_sequence(
|
||||
[torch.tensor(m, dtype=torch.long, device=device) for m in noise_mask],
|
||||
batch_first=True,
|
||||
padding_value=0,
|
||||
)[:, : feats.shape[1]]
|
||||
|
||||
return feats, freqs_cis, attn_mask, item_seqlens, noise_mask_tensor
|
||||
|
||||
def _build_unified_sequence(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
x_freqs: torch.Tensor,
|
||||
x_seqlens: List[int],
|
||||
x_noise_mask: Optional[List[List[int]]],
|
||||
cap: torch.Tensor,
|
||||
cap_freqs: torch.Tensor,
|
||||
cap_seqlens: List[int],
|
||||
cap_noise_mask: Optional[List[List[int]]],
|
||||
siglip: Optional[torch.Tensor],
|
||||
siglip_freqs: Optional[torch.Tensor],
|
||||
siglip_seqlens: Optional[List[int]],
|
||||
siglip_noise_mask: Optional[List[List[int]]],
|
||||
omni_mode: bool,
|
||||
device: torch.device,
|
||||
):
|
||||
"""Build unified sequence: x, cap, and optionally siglip.
|
||||
Basic mode order: [x, cap]; Omni mode order: [cap, x, siglip]
|
||||
"""
|
||||
bsz = len(x_seqlens)
|
||||
unified = []
|
||||
unified_freqs_cis = []
|
||||
unified_freqs = []
|
||||
unified_noise_mask = []
|
||||
|
||||
for i in range(bsz):
|
||||
x_len = x_item_seqlens[i]
|
||||
cap_len = cap_item_seqlens[i]
|
||||
unified.append(torch.cat([x[i][:x_len], cap_feats[i][:cap_len]]))
|
||||
unified_freqs_cis.append(torch.cat([x_freqs_cis[i][:x_len], cap_freqs_cis[i][:cap_len]]))
|
||||
unified_item_seqlens = [a + b for a, b in zip(cap_item_seqlens, x_item_seqlens)]
|
||||
assert unified_item_seqlens == [len(_) for _ in unified]
|
||||
unified_max_item_seqlen = max(unified_item_seqlens)
|
||||
x_len, cap_len = x_seqlens[i], cap_seqlens[i]
|
||||
|
||||
unified = pad_sequence(unified, batch_first=True, padding_value=0.0)
|
||||
unified_freqs_cis = pad_sequence(unified_freqs_cis, batch_first=True, padding_value=0.0)
|
||||
unified_attn_mask = torch.zeros((bsz, unified_max_item_seqlen), dtype=torch.bool, device=device)
|
||||
for i, seq_len in enumerate(unified_item_seqlens):
|
||||
unified_attn_mask[i, :seq_len] = 1
|
||||
if omni_mode:
|
||||
# Omni: [cap, x, siglip]
|
||||
if siglip is not None and siglip_seqlens is not None:
|
||||
sig_len = siglip_seqlens[i]
|
||||
unified.append(torch.cat([cap[i][:cap_len], x[i][:x_len], siglip[i][:sig_len]]))
|
||||
unified_freqs.append(
|
||||
torch.cat([cap_freqs[i][:cap_len], x_freqs[i][:x_len], siglip_freqs[i][:sig_len]])
|
||||
)
|
||||
unified_noise_mask.append(
|
||||
torch.tensor(
|
||||
cap_noise_mask[i] + x_noise_mask[i] + siglip_noise_mask[i], dtype=torch.long, device=device
|
||||
)
|
||||
)
|
||||
else:
|
||||
unified.append(torch.cat([cap[i][:cap_len], x[i][:x_len]]))
|
||||
unified_freqs.append(torch.cat([cap_freqs[i][:cap_len], x_freqs[i][:x_len]]))
|
||||
unified_noise_mask.append(
|
||||
torch.tensor(cap_noise_mask[i] + x_noise_mask[i], dtype=torch.long, device=device)
|
||||
)
|
||||
else:
|
||||
# Basic: [x, cap]
|
||||
unified.append(torch.cat([x[i][:x_len], cap[i][:cap_len]]))
|
||||
unified_freqs.append(torch.cat([x_freqs[i][:x_len], cap_freqs[i][:cap_len]]))
|
||||
|
||||
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
||||
for layer_idx, layer in enumerate(self.layers):
|
||||
unified = self._gradient_checkpointing_func(
|
||||
layer, unified, unified_attn_mask, unified_freqs_cis, adaln_input
|
||||
)
|
||||
if controlnet_block_samples is not None:
|
||||
if layer_idx in controlnet_block_samples:
|
||||
unified = unified + controlnet_block_samples[layer_idx]
|
||||
# Compute unified seqlens
|
||||
if omni_mode:
|
||||
if siglip is not None and siglip_seqlens is not None:
|
||||
unified_seqlens = [a + b + c for a, b, c in zip(cap_seqlens, x_seqlens, siglip_seqlens)]
|
||||
else:
|
||||
unified_seqlens = [a + b for a, b in zip(cap_seqlens, x_seqlens)]
|
||||
else:
|
||||
for layer_idx, layer in enumerate(self.layers):
|
||||
unified = layer(unified, unified_attn_mask, unified_freqs_cis, adaln_input)
|
||||
if controlnet_block_samples is not None:
|
||||
if layer_idx in controlnet_block_samples:
|
||||
unified = unified + controlnet_block_samples[layer_idx]
|
||||
unified_seqlens = [a + b for a, b in zip(x_seqlens, cap_seqlens)]
|
||||
|
||||
unified = self.all_final_layer[f"{patch_size}-{f_patch_size}"](unified, adaln_input)
|
||||
unified = list(unified.unbind(dim=0))
|
||||
x = self.unpatchify(unified, x_size, patch_size, f_patch_size)
|
||||
max_seqlen = max(unified_seqlens)
|
||||
|
||||
if not return_dict:
|
||||
return (x,)
|
||||
# Pad to batch
|
||||
unified = pad_sequence(unified, batch_first=True, padding_value=0.0)
|
||||
unified_freqs = pad_sequence(unified_freqs, batch_first=True, padding_value=0.0)
|
||||
|
||||
return Transformer2DModelOutput(sample=x)
|
||||
# Attention mask
|
||||
attn_mask = torch.zeros((bsz, max_seqlen), dtype=torch.bool, device=device)
|
||||
for i, seq_len in enumerate(unified_seqlens):
|
||||
attn_mask[i, :seq_len] = 1
|
||||
|
||||
# Noise mask
|
||||
noise_mask_tensor = None
|
||||
if omni_mode:
|
||||
noise_mask_tensor = pad_sequence(unified_noise_mask, batch_first=True, padding_value=0)[
|
||||
:, : unified.shape[1]
|
||||
]
|
||||
|
||||
return unified, unified_freqs, attn_mask, noise_mask_tensor
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: Union[List[torch.Tensor], List[List[torch.Tensor]]],
|
||||
t,
|
||||
cap_feats: Union[List[torch.Tensor], List[List[torch.Tensor]]],
|
||||
return_dict: bool = True,
|
||||
controlnet_block_samples: Optional[Dict[int, torch.Tensor]] = None,
|
||||
siglip_feats: Optional[List[List[torch.Tensor]]] = None,
|
||||
image_noise_mask: Optional[List[List[int]]] = None,
|
||||
patch_size: int = 2,
|
||||
f_patch_size: int = 1,
|
||||
):
|
||||
"""
|
||||
Flow: patchify -> t_embed -> x_embed -> x_refine -> cap_embed -> cap_refine
|
||||
-> [siglip_embed -> siglip_refine] -> build_unified -> main_layers -> final_layer -> unpatchify
|
||||
"""
|
||||
assert patch_size in self.all_patch_size and f_patch_size in self.all_f_patch_size
|
||||
omni_mode = isinstance(x[0], list)
|
||||
device = x[0][-1].device if omni_mode else x[0].device
|
||||
|
||||
if omni_mode:
|
||||
# Dual embeddings: noisy (t) and clean (t=1)
|
||||
t_noisy = self.t_embedder(t * self.t_scale).type_as(x[0][-1])
|
||||
t_clean = self.t_embedder(torch.ones_like(t) * self.t_scale).type_as(x[0][-1])
|
||||
adaln_input = None
|
||||
else:
|
||||
# Single embedding for all tokens
|
||||
adaln_input = self.t_embedder(t * self.t_scale).type_as(x[0])
|
||||
t_noisy = t_clean = None
|
||||
|
||||
# Patchify
|
||||
if omni_mode:
|
||||
(
|
||||
x,
|
||||
cap_feats,
|
||||
siglip_feats,
|
||||
x_size,
|
||||
x_pos_ids,
|
||||
cap_pos_ids,
|
||||
siglip_pos_ids,
|
||||
x_pad_mask,
|
||||
cap_pad_mask,
|
||||
siglip_pad_mask,
|
||||
x_pos_offsets,
|
||||
x_noise_mask,
|
||||
cap_noise_mask,
|
||||
siglip_noise_mask,
|
||||
) = self.patchify_and_embed_omni(x, cap_feats, siglip_feats, patch_size, f_patch_size, image_noise_mask)
|
||||
else:
|
||||
(
|
||||
x,
|
||||
cap_feats,
|
||||
x_size,
|
||||
x_pos_ids,
|
||||
cap_pos_ids,
|
||||
x_pad_mask,
|
||||
cap_pad_mask,
|
||||
) = self.patchify_and_embed(x, cap_feats, patch_size, f_patch_size)
|
||||
x_pos_offsets = x_noise_mask = cap_noise_mask = siglip_noise_mask = None
|
||||
|
||||
# X embed & refine
|
||||
x_seqlens = [len(xi) for xi in x]
|
||||
x = self.all_x_embedder[f"{patch_size}-{f_patch_size}"](torch.cat(x, dim=0)) # embed
|
||||
x, x_freqs, x_mask, _, x_noise_tensor = self._prepare_sequence(
|
||||
list(x.split(x_seqlens, dim=0)), x_pos_ids, x_pad_mask, self.x_pad_token, x_noise_mask, device
|
||||
)
|
||||
|
||||
for layer in self.noise_refiner:
|
||||
x = (
|
||||
self._gradient_checkpointing_func(
|
||||
layer, x, x_mask, x_freqs, adaln_input, x_noise_tensor, t_noisy, t_clean
|
||||
)
|
||||
if torch.is_grad_enabled() and self.gradient_checkpointing
|
||||
else layer(x, x_mask, x_freqs, adaln_input, x_noise_tensor, t_noisy, t_clean)
|
||||
)
|
||||
|
||||
# Cap embed & refine
|
||||
cap_seqlens = [len(ci) for ci in cap_feats]
|
||||
cap_feats = self.cap_embedder(torch.cat(cap_feats, dim=0)) # embed
|
||||
cap_feats, cap_freqs, cap_mask, _, _ = self._prepare_sequence(
|
||||
list(cap_feats.split(cap_seqlens, dim=0)), cap_pos_ids, cap_pad_mask, self.cap_pad_token, None, device
|
||||
)
|
||||
|
||||
for layer in self.context_refiner:
|
||||
cap_feats = (
|
||||
self._gradient_checkpointing_func(layer, cap_feats, cap_mask, cap_freqs)
|
||||
if torch.is_grad_enabled() and self.gradient_checkpointing
|
||||
else layer(cap_feats, cap_mask, cap_freqs)
|
||||
)
|
||||
|
||||
# Siglip embed & refine
|
||||
siglip_seqlens = siglip_freqs = None
|
||||
if omni_mode and siglip_feats[0] is not None and self.siglip_embedder is not None:
|
||||
siglip_seqlens = [len(si) for si in siglip_feats]
|
||||
siglip_feats = self.siglip_embedder(torch.cat(siglip_feats, dim=0)) # embed
|
||||
siglip_feats, siglip_freqs, siglip_mask, _, _ = self._prepare_sequence(
|
||||
list(siglip_feats.split(siglip_seqlens, dim=0)),
|
||||
siglip_pos_ids,
|
||||
siglip_pad_mask,
|
||||
self.siglip_pad_token,
|
||||
None,
|
||||
device,
|
||||
)
|
||||
|
||||
for layer in self.siglip_refiner:
|
||||
siglip_feats = (
|
||||
self._gradient_checkpointing_func(layer, siglip_feats, siglip_mask, siglip_freqs)
|
||||
if torch.is_grad_enabled() and self.gradient_checkpointing
|
||||
else layer(siglip_feats, siglip_mask, siglip_freqs)
|
||||
)
|
||||
|
||||
# Unified sequence
|
||||
unified, unified_freqs, unified_mask, unified_noise_tensor = self._build_unified_sequence(
|
||||
x,
|
||||
x_freqs,
|
||||
x_seqlens,
|
||||
x_noise_mask,
|
||||
cap_feats,
|
||||
cap_freqs,
|
||||
cap_seqlens,
|
||||
cap_noise_mask,
|
||||
siglip_feats,
|
||||
siglip_freqs,
|
||||
siglip_seqlens,
|
||||
siglip_noise_mask,
|
||||
omni_mode,
|
||||
device,
|
||||
)
|
||||
|
||||
# Main transformer layers
|
||||
for layer_idx, layer in enumerate(self.layers):
|
||||
unified = (
|
||||
self._gradient_checkpointing_func(
|
||||
layer, unified, unified_mask, unified_freqs, adaln_input, unified_noise_tensor, t_noisy, t_clean
|
||||
)
|
||||
if torch.is_grad_enabled() and self.gradient_checkpointing
|
||||
else layer(unified, unified_mask, unified_freqs, adaln_input, unified_noise_tensor, t_noisy, t_clean)
|
||||
)
|
||||
if controlnet_block_samples is not None and layer_idx in controlnet_block_samples:
|
||||
unified = unified + controlnet_block_samples[layer_idx]
|
||||
|
||||
unified = (
|
||||
self.all_final_layer[f"{patch_size}-{f_patch_size}"](
|
||||
unified, noise_mask=unified_noise_tensor, c_noisy=t_noisy, c_clean=t_clean
|
||||
)
|
||||
if omni_mode
|
||||
else self.all_final_layer[f"{patch_size}-{f_patch_size}"](unified, c=adaln_input)
|
||||
)
|
||||
|
||||
# Unpatchify
|
||||
x = self.unpatchify(list(unified.unbind(dim=0)), x_size, patch_size, f_patch_size, x_pos_offsets)
|
||||
|
||||
return (x,) if not return_dict else Transformer2DModelOutput(sample=x)
|
||||
|
||||
@@ -411,6 +411,7 @@ else:
|
||||
"ZImagePipeline",
|
||||
"ZImageControlNetPipeline",
|
||||
"ZImageControlNetInpaintPipeline",
|
||||
"ZImageOmniPipeline",
|
||||
]
|
||||
_import_structure["skyreels_v2"] = [
|
||||
"SkyReelsV2DiffusionForcingPipeline",
|
||||
@@ -856,6 +857,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
ZImageControlNetInpaintPipeline,
|
||||
ZImageControlNetPipeline,
|
||||
ZImageImg2ImgPipeline,
|
||||
ZImageOmniPipeline,
|
||||
ZImagePipeline,
|
||||
)
|
||||
|
||||
|
||||
@@ -73,6 +73,7 @@ from .kandinsky3 import Kandinsky3Img2ImgPipeline, Kandinsky3Pipeline
|
||||
from .latent_consistency_models import LatentConsistencyModelImg2ImgPipeline, LatentConsistencyModelPipeline
|
||||
from .lumina import LuminaPipeline
|
||||
from .lumina2 import Lumina2Pipeline
|
||||
from .ovis_image import OvisImagePipeline
|
||||
from .pag import (
|
||||
HunyuanDiTPAGPipeline,
|
||||
PixArtSigmaPAGPipeline,
|
||||
@@ -119,7 +120,13 @@ from .stable_diffusion_xl import (
|
||||
)
|
||||
from .wan import WanImageToVideoPipeline, WanPipeline, WanVideoToVideoPipeline
|
||||
from .wuerstchen import WuerstchenCombinedPipeline, WuerstchenDecoderPipeline
|
||||
from .z_image import ZImageImg2ImgPipeline, ZImagePipeline
|
||||
from .z_image import (
|
||||
ZImageControlNetInpaintPipeline,
|
||||
ZImageControlNetPipeline,
|
||||
ZImageImg2ImgPipeline,
|
||||
ZImageOmniPipeline,
|
||||
ZImagePipeline,
|
||||
)
|
||||
|
||||
|
||||
AUTO_TEXT2IMAGE_PIPELINES_MAPPING = OrderedDict(
|
||||
@@ -164,6 +171,10 @@ AUTO_TEXT2IMAGE_PIPELINES_MAPPING = OrderedDict(
|
||||
("qwenimage", QwenImagePipeline),
|
||||
("qwenimage-controlnet", QwenImageControlNetPipeline),
|
||||
("z-image", ZImagePipeline),
|
||||
("z-image-controlnet", ZImageControlNetPipeline),
|
||||
("z-image-controlnet-inpaint", ZImageControlNetInpaintPipeline),
|
||||
("z-image-omni", ZImageOmniPipeline),
|
||||
("ovis", OvisImagePipeline),
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
@@ -17,7 +17,7 @@ from typing import Callable, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import BertModel, BertTokenizer, CLIPImageProcessor, MT5Tokenizer, T5EncoderModel
|
||||
from transformers import BertModel, BertTokenizer, CLIPImageProcessor, T5EncoderModel, T5Tokenizer
|
||||
|
||||
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
||||
|
||||
@@ -185,7 +185,7 @@ class HunyuanDiTControlNetPipeline(DiffusionPipeline):
|
||||
The HunyuanDiT model designed by Tencent Hunyuan.
|
||||
text_encoder_2 (`T5EncoderModel`):
|
||||
The mT5 embedder. Specifically, it is 't5-v1_1-xxl'.
|
||||
tokenizer_2 (`MT5Tokenizer`):
|
||||
tokenizer_2 (`T5Tokenizer`):
|
||||
The tokenizer for the mT5 embedder.
|
||||
scheduler ([`DDPMScheduler`]):
|
||||
A scheduler to be used in combination with HunyuanDiT to denoise the encoded image latents.
|
||||
@@ -229,7 +229,7 @@ class HunyuanDiTControlNetPipeline(DiffusionPipeline):
|
||||
HunyuanDiT2DMultiControlNetModel,
|
||||
],
|
||||
text_encoder_2: Optional[T5EncoderModel] = None,
|
||||
tokenizer_2: Optional[MT5Tokenizer] = None,
|
||||
tokenizer_2: Optional[T5Tokenizer] = None,
|
||||
requires_safety_checker: bool = True,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
@@ -76,7 +76,7 @@ EXAMPLE_DOC_STRING = """
|
||||
|
||||
>>> model_id = "nvidia/Cosmos-Predict2.5-2B"
|
||||
>>> pipe = Cosmos2_5_PredictBasePipeline.from_pretrained(
|
||||
... model_id, revision="diffusers/base/pre-trianed", torch_dtype=torch.bfloat16
|
||||
... model_id, revision="diffusers/base/post-trained", torch_dtype=torch.bfloat16
|
||||
... )
|
||||
>>> pipe = pipe.to("cuda")
|
||||
|
||||
@@ -133,7 +133,7 @@ EXAMPLE_DOC_STRING = """
|
||||
... num_frames=93,
|
||||
... generator=torch.Generator().manual_seed(1),
|
||||
... ).frames[0]
|
||||
>>> # export_to_video(video, "image2world.mp4", fps=16)
|
||||
>>> export_to_video(video, "image2world.mp4", fps=16)
|
||||
|
||||
>>> # Video2World: condition on an input clip and predict a 93-frame world video.
|
||||
>>> prompt = (
|
||||
|
||||
@@ -17,7 +17,7 @@ from typing import Callable, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import BertModel, BertTokenizer, CLIPImageProcessor, MT5Tokenizer, T5EncoderModel
|
||||
from transformers import BertModel, BertTokenizer, CLIPImageProcessor, T5EncoderModel, T5Tokenizer
|
||||
|
||||
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
||||
|
||||
@@ -169,7 +169,7 @@ class HunyuanDiTPipeline(DiffusionPipeline):
|
||||
The HunyuanDiT model designed by Tencent Hunyuan.
|
||||
text_encoder_2 (`T5EncoderModel`):
|
||||
The mT5 embedder. Specifically, it is 't5-v1_1-xxl'.
|
||||
tokenizer_2 (`MT5Tokenizer`):
|
||||
tokenizer_2 (`T5Tokenizer`):
|
||||
The tokenizer for the mT5 embedder.
|
||||
scheduler ([`DDPMScheduler`]):
|
||||
A scheduler to be used in combination with HunyuanDiT to denoise the encoded image latents.
|
||||
@@ -204,7 +204,7 @@ class HunyuanDiTPipeline(DiffusionPipeline):
|
||||
feature_extractor: CLIPImageProcessor,
|
||||
requires_safety_checker: bool = True,
|
||||
text_encoder_2: Optional[T5EncoderModel] = None,
|
||||
tokenizer_2: Optional[MT5Tokenizer] = None,
|
||||
tokenizer_2: Optional[T5Tokenizer] = None,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
|
||||
@@ -17,7 +17,7 @@ from typing import Callable, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import BertModel, BertTokenizer, CLIPImageProcessor, MT5Tokenizer, T5EncoderModel
|
||||
from transformers import BertModel, BertTokenizer, CLIPImageProcessor, T5EncoderModel, T5Tokenizer
|
||||
|
||||
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
||||
|
||||
@@ -173,7 +173,7 @@ class HunyuanDiTPAGPipeline(DiffusionPipeline, PAGMixin):
|
||||
The HunyuanDiT model designed by Tencent Hunyuan.
|
||||
text_encoder_2 (`T5EncoderModel`):
|
||||
The mT5 embedder. Specifically, it is 't5-v1_1-xxl'.
|
||||
tokenizer_2 (`MT5Tokenizer`):
|
||||
tokenizer_2 (`T5Tokenizer`):
|
||||
The tokenizer for the mT5 embedder.
|
||||
scheduler ([`DDPMScheduler`]):
|
||||
A scheduler to be used in combination with HunyuanDiT to denoise the encoded image latents.
|
||||
@@ -208,7 +208,7 @@ class HunyuanDiTPAGPipeline(DiffusionPipeline, PAGMixin):
|
||||
feature_extractor: Optional[CLIPImageProcessor] = None,
|
||||
requires_safety_checker: bool = True,
|
||||
text_encoder_2: Optional[T5EncoderModel] = None,
|
||||
tokenizer_2: Optional[MT5Tokenizer] = None,
|
||||
tokenizer_2: Optional[T5Tokenizer] = None,
|
||||
pag_applied_layers: Union[str, List[str]] = "blocks.1", # "blocks.16.attn1", "blocks.16", "16", 16
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
@@ -26,6 +26,7 @@ else:
|
||||
_import_structure["pipeline_z_image_controlnet"] = ["ZImageControlNetPipeline"]
|
||||
_import_structure["pipeline_z_image_controlnet_inpaint"] = ["ZImageControlNetInpaintPipeline"]
|
||||
_import_structure["pipeline_z_image_img2img"] = ["ZImageImg2ImgPipeline"]
|
||||
_import_structure["pipeline_z_image_omni"] = ["ZImageOmniPipeline"]
|
||||
|
||||
|
||||
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
@@ -41,7 +42,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
from .pipeline_z_image_controlnet import ZImageControlNetPipeline
|
||||
from .pipeline_z_image_controlnet_inpaint import ZImageControlNetInpaintPipeline
|
||||
from .pipeline_z_image_img2img import ZImageImg2ImgPipeline
|
||||
|
||||
from .pipeline_z_image_omni import ZImageOmniPipeline
|
||||
else:
|
||||
import sys
|
||||
|
||||
|
||||
@@ -58,14 +58,13 @@ EXAMPLE_DOC_STRING = """
|
||||
>>> # torch_dtype=torch.bfloat16,
|
||||
>>> # )
|
||||
|
||||
>>> # 2.0 - `config` is required
|
||||
>>> # 2.0
|
||||
>>> # controlnet = ZImageControlNetModel.from_single_file(
|
||||
>>> # hf_hub_download(
|
||||
>>> # "alibaba-pai/Z-Image-Turbo-Fun-Controlnet-Union-2.0",
|
||||
>>> # filename="Z-Image-Turbo-Fun-Controlnet-Union-2.0.safetensors",
|
||||
>>> # ),
|
||||
>>> # torch_dtype=torch.bfloat16,
|
||||
>>> # config="hlky/Z-Image-Turbo-Fun-Controlnet-Union-2.0",
|
||||
>>> # )
|
||||
|
||||
>>> pipe = ZImageControlNetPipeline.from_pretrained(
|
||||
|
||||
@@ -50,14 +50,13 @@ EXAMPLE_DOC_STRING = """
|
||||
... torch_dtype=torch.bfloat16,
|
||||
... )
|
||||
|
||||
>>> # 2.0 - `config` is required
|
||||
>>> # 2.0
|
||||
>>> # controlnet = ZImageControlNetModel.from_single_file(
|
||||
>>> # hf_hub_download(
|
||||
>>> # "alibaba-pai/Z-Image-Turbo-Fun-Controlnet-Union-2.0",
|
||||
>>> # filename="Z-Image-Turbo-Fun-Controlnet-Union-2.0.safetensors",
|
||||
>>> # ),
|
||||
>>> # torch_dtype=torch.bfloat16,
|
||||
>>> # config="hlky/Z-Image-Turbo-Fun-Controlnet-Union-2.0",
|
||||
>>> # )
|
||||
|
||||
>>> pipe = ZImageControlNetInpaintPipeline.from_pretrained(
|
||||
|
||||
742
src/diffusers/pipelines/z_image/pipeline_z_image_omni.py
Normal file
742
src/diffusers/pipelines/z_image/pipeline_z_image_omni.py
Normal file
@@ -0,0 +1,742 @@
|
||||
# Copyright 2025 Alibaba Z-Image Team and The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import inspect
|
||||
from typing import Any, Callable, Dict, List, Optional, Union
|
||||
|
||||
import PIL
|
||||
import torch
|
||||
from transformers import AutoTokenizer, PreTrainedModel, Siglip2ImageProcessorFast, Siglip2VisionModel
|
||||
|
||||
from ...loaders import FromSingleFileMixin, ZImageLoraLoaderMixin
|
||||
from ...models.autoencoders import AutoencoderKL
|
||||
from ...models.transformers import ZImageTransformer2DModel
|
||||
from ...pipelines.pipeline_utils import DiffusionPipeline
|
||||
from ...schedulers import FlowMatchEulerDiscreteScheduler
|
||||
from ...utils import logging, replace_example_docstring
|
||||
from ...utils.torch_utils import randn_tensor
|
||||
from ..flux2.image_processor import Flux2ImageProcessor
|
||||
from .pipeline_output import ZImagePipelineOutput
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
EXAMPLE_DOC_STRING = """
|
||||
Examples:
|
||||
```py
|
||||
>>> import torch
|
||||
>>> from diffusers import ZImageOmniPipeline
|
||||
|
||||
>>> pipe = ZImageOmniPipeline.from_pretrained("Z-a-o/Z-Image-Turbo", torch_dtype=torch.bfloat16)
|
||||
>>> pipe.to("cuda")
|
||||
|
||||
>>> # Optionally, set the attention backend to flash-attn 2 or 3, default is SDPA in PyTorch.
|
||||
>>> # (1) Use flash attention 2
|
||||
>>> # pipe.transformer.set_attention_backend("flash")
|
||||
>>> # (2) Use flash attention 3
|
||||
>>> # pipe.transformer.set_attention_backend("_flash_3")
|
||||
|
||||
>>> prompt = "一幅为名为“造相「Z-IMAGE-TURBO」”的项目设计的创意海报。画面巧妙地将文字概念视觉化:一辆复古蒸汽小火车化身为巨大的拉链头,正拉开厚厚的冬日积雪,展露出一个生机盎然的春天。"
|
||||
>>> image = pipe(
|
||||
... prompt,
|
||||
... height=1024,
|
||||
... width=1024,
|
||||
... num_inference_steps=9,
|
||||
... guidance_scale=0.0,
|
||||
... generator=torch.Generator("cuda").manual_seed(42),
|
||||
... ).images[0]
|
||||
>>> image.save("zimage.png")
|
||||
```
|
||||
"""
|
||||
|
||||
|
||||
# Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
|
||||
def calculate_shift(
|
||||
image_seq_len,
|
||||
base_seq_len: int = 256,
|
||||
max_seq_len: int = 4096,
|
||||
base_shift: float = 0.5,
|
||||
max_shift: float = 1.15,
|
||||
):
|
||||
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
|
||||
b = base_shift - m * base_seq_len
|
||||
mu = image_seq_len * m + b
|
||||
return mu
|
||||
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
||||
def retrieve_timesteps(
|
||||
scheduler,
|
||||
num_inference_steps: Optional[int] = None,
|
||||
device: Optional[Union[str, torch.device]] = None,
|
||||
timesteps: Optional[List[int]] = None,
|
||||
sigmas: Optional[List[float]] = None,
|
||||
**kwargs,
|
||||
):
|
||||
r"""
|
||||
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
||||
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
||||
|
||||
Args:
|
||||
scheduler (`SchedulerMixin`):
|
||||
The scheduler to get timesteps from.
|
||||
num_inference_steps (`int`):
|
||||
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
||||
must be `None`.
|
||||
device (`str` or `torch.device`, *optional*):
|
||||
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
||||
timesteps (`List[int]`, *optional*):
|
||||
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
||||
`num_inference_steps` and `sigmas` must be `None`.
|
||||
sigmas (`List[float]`, *optional*):
|
||||
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
||||
`num_inference_steps` and `timesteps` must be `None`.
|
||||
|
||||
Returns:
|
||||
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
||||
second element is the number of inference steps.
|
||||
"""
|
||||
if timesteps is not None and sigmas is not None:
|
||||
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
||||
if timesteps is not None:
|
||||
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
||||
if not accepts_timesteps:
|
||||
raise ValueError(
|
||||
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
||||
f" timestep schedules. Please check whether you are using the correct scheduler."
|
||||
)
|
||||
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
||||
timesteps = scheduler.timesteps
|
||||
num_inference_steps = len(timesteps)
|
||||
elif sigmas is not None:
|
||||
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
||||
if not accept_sigmas:
|
||||
raise ValueError(
|
||||
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
||||
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
||||
)
|
||||
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
||||
timesteps = scheduler.timesteps
|
||||
num_inference_steps = len(timesteps)
|
||||
else:
|
||||
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
||||
timesteps = scheduler.timesteps
|
||||
return timesteps, num_inference_steps
|
||||
|
||||
|
||||
class ZImageOmniPipeline(DiffusionPipeline, ZImageLoraLoaderMixin, FromSingleFileMixin):
|
||||
model_cpu_offload_seq = "text_encoder->transformer->vae"
|
||||
_optional_components = []
|
||||
_callback_tensor_inputs = ["latents", "prompt_embeds"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
scheduler: FlowMatchEulerDiscreteScheduler,
|
||||
vae: AutoencoderKL,
|
||||
text_encoder: PreTrainedModel,
|
||||
tokenizer: AutoTokenizer,
|
||||
transformer: ZImageTransformer2DModel,
|
||||
siglip: Siglip2VisionModel,
|
||||
siglip_processor: Siglip2ImageProcessorFast,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.register_modules(
|
||||
vae=vae,
|
||||
text_encoder=text_encoder,
|
||||
tokenizer=tokenizer,
|
||||
scheduler=scheduler,
|
||||
transformer=transformer,
|
||||
siglip=siglip,
|
||||
siglip_processor=siglip_processor,
|
||||
)
|
||||
self.vae_scale_factor = (
|
||||
2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
|
||||
)
|
||||
# self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
|
||||
self.image_processor = Flux2ImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
|
||||
|
||||
def encode_prompt(
|
||||
self,
|
||||
prompt: Union[str, List[str]],
|
||||
device: Optional[torch.device] = None,
|
||||
do_classifier_free_guidance: bool = True,
|
||||
negative_prompt: Optional[Union[str, List[str]]] = None,
|
||||
prompt_embeds: Optional[List[torch.FloatTensor]] = None,
|
||||
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
max_sequence_length: int = 512,
|
||||
num_condition_images: int = 0,
|
||||
):
|
||||
prompt = [prompt] if isinstance(prompt, str) else prompt
|
||||
prompt_embeds = self._encode_prompt(
|
||||
prompt=prompt,
|
||||
device=device,
|
||||
prompt_embeds=prompt_embeds,
|
||||
max_sequence_length=max_sequence_length,
|
||||
num_condition_images=num_condition_images,
|
||||
)
|
||||
|
||||
if do_classifier_free_guidance:
|
||||
if negative_prompt is None:
|
||||
negative_prompt = ["" for _ in prompt]
|
||||
else:
|
||||
negative_prompt = [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
|
||||
assert len(prompt) == len(negative_prompt)
|
||||
negative_prompt_embeds = self._encode_prompt(
|
||||
prompt=negative_prompt,
|
||||
device=device,
|
||||
prompt_embeds=negative_prompt_embeds,
|
||||
max_sequence_length=max_sequence_length,
|
||||
num_condition_images=num_condition_images,
|
||||
)
|
||||
else:
|
||||
negative_prompt_embeds = []
|
||||
return prompt_embeds, negative_prompt_embeds
|
||||
|
||||
def _encode_prompt(
|
||||
self,
|
||||
prompt: Union[str, List[str]],
|
||||
device: Optional[torch.device] = None,
|
||||
prompt_embeds: Optional[List[torch.FloatTensor]] = None,
|
||||
max_sequence_length: int = 512,
|
||||
num_condition_images: int = 0,
|
||||
) -> List[torch.FloatTensor]:
|
||||
device = device or self._execution_device
|
||||
|
||||
if prompt_embeds is not None:
|
||||
return prompt_embeds
|
||||
|
||||
if isinstance(prompt, str):
|
||||
prompt = [prompt]
|
||||
|
||||
for i, prompt_item in enumerate(prompt):
|
||||
if num_condition_images == 0:
|
||||
prompt[i] = ["<|im_start|>user\n" + prompt_item + "<|im_end|>\n<|im_start|>assistant\n"]
|
||||
elif num_condition_images > 0:
|
||||
prompt_list = ["<|im_start|>user\n<|vision_start|>"]
|
||||
prompt_list += ["<|vision_end|><|vision_start|>"] * (num_condition_images - 1)
|
||||
prompt_list += ["<|vision_end|>" + prompt_item + "<|im_end|>\n<|im_start|>assistant\n<|vision_start|>"]
|
||||
prompt_list += ["<|vision_end|><|im_end|>"]
|
||||
prompt[i] = prompt_list
|
||||
|
||||
flattened_prompt = []
|
||||
prompt_list_lengths = []
|
||||
|
||||
for i in range(len(prompt)):
|
||||
prompt_list_lengths.append(len(prompt[i]))
|
||||
flattened_prompt.extend(prompt[i])
|
||||
|
||||
text_inputs = self.tokenizer(
|
||||
flattened_prompt,
|
||||
padding="max_length",
|
||||
max_length=max_sequence_length,
|
||||
truncation=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
|
||||
text_input_ids = text_inputs.input_ids.to(device)
|
||||
prompt_masks = text_inputs.attention_mask.to(device).bool()
|
||||
|
||||
prompt_embeds = self.text_encoder(
|
||||
input_ids=text_input_ids,
|
||||
attention_mask=prompt_masks,
|
||||
output_hidden_states=True,
|
||||
).hidden_states[-2]
|
||||
|
||||
embeddings_list = []
|
||||
start_idx = 0
|
||||
for i in range(len(prompt_list_lengths)):
|
||||
batch_embeddings = []
|
||||
end_idx = start_idx + prompt_list_lengths[i]
|
||||
for j in range(start_idx, end_idx):
|
||||
batch_embeddings.append(prompt_embeds[j][prompt_masks[j]])
|
||||
embeddings_list.append(batch_embeddings)
|
||||
start_idx = end_idx
|
||||
|
||||
return embeddings_list
|
||||
|
||||
def prepare_latents(
|
||||
self,
|
||||
batch_size,
|
||||
num_channels_latents,
|
||||
height,
|
||||
width,
|
||||
dtype,
|
||||
device,
|
||||
generator,
|
||||
latents=None,
|
||||
):
|
||||
height = 2 * (int(height) // (self.vae_scale_factor * 2))
|
||||
width = 2 * (int(width) // (self.vae_scale_factor * 2))
|
||||
|
||||
shape = (batch_size, num_channels_latents, height, width)
|
||||
|
||||
if latents is None:
|
||||
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
||||
else:
|
||||
if latents.shape != shape:
|
||||
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
|
||||
latents = latents.to(device)
|
||||
return latents
|
||||
|
||||
def prepare_image_latents(
|
||||
self,
|
||||
images: List[torch.Tensor],
|
||||
batch_size,
|
||||
device,
|
||||
dtype,
|
||||
):
|
||||
image_latents = []
|
||||
for image in images:
|
||||
image = image.to(device=device, dtype=dtype)
|
||||
image_latent = (
|
||||
self.vae.encode(image.bfloat16()).latent_dist.mode()[0] - self.vae.config.shift_factor
|
||||
) * self.vae.config.scaling_factor
|
||||
image_latent = image_latent.unsqueeze(1).to(dtype)
|
||||
image_latents.append(image_latent) # (16, 128, 128)
|
||||
|
||||
# image_latents = [image_latents] * batch_size
|
||||
image_latents = [image_latents.copy() for _ in range(batch_size)]
|
||||
|
||||
return image_latents
|
||||
|
||||
def prepare_siglip_embeds(
|
||||
self,
|
||||
images: List[torch.Tensor],
|
||||
batch_size,
|
||||
device,
|
||||
dtype,
|
||||
):
|
||||
siglip_embeds = []
|
||||
for image in images:
|
||||
siglip_inputs = self.siglip_processor(images=[image], return_tensors="pt").to(device)
|
||||
shape = siglip_inputs.spatial_shapes[0]
|
||||
hidden_state = self.siglip(**siglip_inputs).last_hidden_state
|
||||
B, N, C = hidden_state.shape
|
||||
hidden_state = hidden_state[:, : shape[0] * shape[1]]
|
||||
hidden_state = hidden_state.view(shape[0], shape[1], C)
|
||||
siglip_embeds.append(hidden_state.to(dtype))
|
||||
|
||||
# siglip_embeds = [siglip_embeds] * batch_size
|
||||
siglip_embeds = [siglip_embeds.copy() for _ in range(batch_size)]
|
||||
|
||||
return siglip_embeds
|
||||
|
||||
@property
|
||||
def guidance_scale(self):
|
||||
return self._guidance_scale
|
||||
|
||||
@property
|
||||
def do_classifier_free_guidance(self):
|
||||
return self._guidance_scale > 1
|
||||
|
||||
@property
|
||||
def joint_attention_kwargs(self):
|
||||
return self._joint_attention_kwargs
|
||||
|
||||
@property
|
||||
def num_timesteps(self):
|
||||
return self._num_timesteps
|
||||
|
||||
@property
|
||||
def interrupt(self):
|
||||
return self._interrupt
|
||||
|
||||
@torch.no_grad()
|
||||
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
||||
def __call__(
|
||||
self,
|
||||
image: Optional[Union[List[PIL.Image.Image], PIL.Image.Image]] = None,
|
||||
prompt: Union[str, List[str]] = None,
|
||||
height: Optional[int] = None,
|
||||
width: Optional[int] = None,
|
||||
num_inference_steps: int = 50,
|
||||
sigmas: Optional[List[float]] = None,
|
||||
guidance_scale: float = 5.0,
|
||||
cfg_normalization: bool = False,
|
||||
cfg_truncation: float = 1.0,
|
||||
negative_prompt: Optional[Union[str, List[str]]] = None,
|
||||
num_images_per_prompt: Optional[int] = 1,
|
||||
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
||||
latents: Optional[torch.FloatTensor] = None,
|
||||
prompt_embeds: Optional[List[torch.FloatTensor]] = None,
|
||||
negative_prompt_embeds: Optional[List[torch.FloatTensor]] = None,
|
||||
output_type: Optional[str] = "pil",
|
||||
return_dict: bool = True,
|
||||
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
||||
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
||||
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
||||
max_sequence_length: int = 512,
|
||||
):
|
||||
r"""
|
||||
Function invoked when calling the pipeline for generation.
|
||||
|
||||
Args:
|
||||
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
|
||||
`Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
|
||||
numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list
|
||||
or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a
|
||||
list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image
|
||||
latents as `image`, but if passing latents directly it is not encoded again.
|
||||
prompt (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
||||
instead.
|
||||
height (`int`, *optional*, defaults to 1024):
|
||||
The height in pixels of the generated image.
|
||||
width (`int`, *optional*, defaults to 1024):
|
||||
The width in pixels of the generated image.
|
||||
num_inference_steps (`int`, *optional*, defaults to 50):
|
||||
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
||||
expense of slower inference.
|
||||
sigmas (`List[float]`, *optional*):
|
||||
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
||||
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
||||
will be used.
|
||||
guidance_scale (`float`, *optional*, defaults to 5.0):
|
||||
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
||||
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
||||
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
||||
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
||||
usually at the expense of lower image quality.
|
||||
cfg_normalization (`bool`, *optional*, defaults to False):
|
||||
Whether to apply configuration normalization.
|
||||
cfg_truncation (`float`, *optional*, defaults to 1.0):
|
||||
The truncation value for configuration.
|
||||
negative_prompt (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
||||
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
||||
less than `1`).
|
||||
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
||||
The number of images to generate per prompt.
|
||||
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
||||
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
||||
to make generation deterministic.
|
||||
latents (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
||||
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
||||
tensor will be generated by sampling using the supplied random `generator`.
|
||||
prompt_embeds (`List[torch.FloatTensor]`, *optional*):
|
||||
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
||||
provided, text embeddings will be generated from `prompt` input argument.
|
||||
negative_prompt_embeds (`List[torch.FloatTensor]`, *optional*):
|
||||
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
||||
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
||||
argument.
|
||||
output_type (`str`, *optional*, defaults to `"pil"`):
|
||||
The output format of the generate image. Choose between
|
||||
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to return a [`~pipelines.stable_diffusion.ZImagePipelineOutput`] instead of a plain
|
||||
tuple.
|
||||
joint_attention_kwargs (`dict`, *optional*):
|
||||
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
||||
`self.processor` in
|
||||
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
||||
callback_on_step_end (`Callable`, *optional*):
|
||||
A function that calls at the end of each denoising steps during the inference. The function is called
|
||||
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
||||
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
||||
`callback_on_step_end_tensor_inputs`.
|
||||
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
||||
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
||||
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
||||
`._callback_tensor_inputs` attribute of your pipeline class.
|
||||
max_sequence_length (`int`, *optional*, defaults to 512):
|
||||
Maximum sequence length to use with the `prompt`.
|
||||
|
||||
Examples:
|
||||
|
||||
Returns:
|
||||
[`~pipelines.z_image.ZImagePipelineOutput`] or `tuple`: [`~pipelines.z_image.ZImagePipelineOutput`] if
|
||||
`return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the
|
||||
generated images.
|
||||
"""
|
||||
|
||||
if image is not None and not isinstance(image, list):
|
||||
image = [image]
|
||||
num_condition_images = len(image) if image is not None else 0
|
||||
|
||||
device = self._execution_device
|
||||
|
||||
self._guidance_scale = guidance_scale
|
||||
self._joint_attention_kwargs = joint_attention_kwargs
|
||||
self._interrupt = False
|
||||
self._cfg_normalization = cfg_normalization
|
||||
self._cfg_truncation = cfg_truncation
|
||||
|
||||
# 2. Define call parameters
|
||||
if prompt is not None and isinstance(prompt, str):
|
||||
batch_size = 1
|
||||
elif prompt is not None and isinstance(prompt, list):
|
||||
batch_size = len(prompt)
|
||||
else:
|
||||
batch_size = len(prompt_embeds)
|
||||
|
||||
# If prompt_embeds is provided and prompt is None, skip encoding
|
||||
if prompt_embeds is not None and prompt is None:
|
||||
if self.do_classifier_free_guidance and negative_prompt_embeds is None:
|
||||
raise ValueError(
|
||||
"When `prompt_embeds` is provided without `prompt`, "
|
||||
"`negative_prompt_embeds` must also be provided for classifier-free guidance."
|
||||
)
|
||||
else:
|
||||
(
|
||||
prompt_embeds,
|
||||
negative_prompt_embeds,
|
||||
) = self.encode_prompt(
|
||||
prompt=prompt,
|
||||
negative_prompt=negative_prompt,
|
||||
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
||||
prompt_embeds=prompt_embeds,
|
||||
negative_prompt_embeds=negative_prompt_embeds,
|
||||
device=device,
|
||||
max_sequence_length=max_sequence_length,
|
||||
num_condition_images=num_condition_images,
|
||||
)
|
||||
|
||||
# 3. Process condition images. Copied from diffusers.pipelines.flux2.pipeline_flux2
|
||||
condition_images = []
|
||||
resized_images = []
|
||||
if image is not None:
|
||||
for img in image:
|
||||
self.image_processor.check_image_input(img)
|
||||
for img in image:
|
||||
image_width, image_height = img.size
|
||||
if image_width * image_height > 1024 * 1024:
|
||||
if height is not None and width is not None:
|
||||
img = self.image_processor._resize_to_target_area(img, height * width)
|
||||
else:
|
||||
img = self.image_processor._resize_to_target_area(img, 1024 * 1024)
|
||||
image_width, image_height = img.size
|
||||
resized_images.append(img)
|
||||
|
||||
multiple_of = self.vae_scale_factor * 2
|
||||
image_width = (image_width // multiple_of) * multiple_of
|
||||
image_height = (image_height // multiple_of) * multiple_of
|
||||
img = self.image_processor.preprocess(img, height=image_height, width=image_width, resize_mode="crop")
|
||||
condition_images.append(img)
|
||||
|
||||
if len(condition_images) > 0:
|
||||
height = height or image_height
|
||||
width = width or image_width
|
||||
|
||||
else:
|
||||
height = height or 1024
|
||||
width = width or 1024
|
||||
|
||||
vae_scale = self.vae_scale_factor * 2
|
||||
if height % vae_scale != 0:
|
||||
raise ValueError(
|
||||
f"Height must be divisible by {vae_scale} (got {height}). "
|
||||
f"Please adjust the height to a multiple of {vae_scale}."
|
||||
)
|
||||
if width % vae_scale != 0:
|
||||
raise ValueError(
|
||||
f"Width must be divisible by {vae_scale} (got {width}). "
|
||||
f"Please adjust the width to a multiple of {vae_scale}."
|
||||
)
|
||||
|
||||
# 4. Prepare latent variables
|
||||
num_channels_latents = self.transformer.in_channels
|
||||
|
||||
latents = self.prepare_latents(
|
||||
batch_size * num_images_per_prompt,
|
||||
num_channels_latents,
|
||||
height,
|
||||
width,
|
||||
torch.float32,
|
||||
device,
|
||||
generator,
|
||||
latents,
|
||||
)
|
||||
|
||||
condition_latents = self.prepare_image_latents(
|
||||
images=condition_images,
|
||||
batch_size=batch_size * num_images_per_prompt,
|
||||
device=device,
|
||||
dtype=torch.float32,
|
||||
)
|
||||
condition_latents = [[lat.to(self.transformer.dtype) for lat in lats] for lats in condition_latents]
|
||||
if self.do_classifier_free_guidance:
|
||||
negative_condition_latents = [[lat.clone() for lat in batch] for batch in condition_latents]
|
||||
|
||||
condition_siglip_embeds = self.prepare_siglip_embeds(
|
||||
images=resized_images,
|
||||
batch_size=batch_size * num_images_per_prompt,
|
||||
device=device,
|
||||
dtype=torch.float32,
|
||||
)
|
||||
condition_siglip_embeds = [[se.to(self.transformer.dtype) for se in sels] for sels in condition_siglip_embeds]
|
||||
if self.do_classifier_free_guidance:
|
||||
negative_condition_siglip_embeds = [[se.clone() for se in batch] for batch in condition_siglip_embeds]
|
||||
|
||||
# Repeat prompt_embeds for num_images_per_prompt
|
||||
if num_images_per_prompt > 1:
|
||||
prompt_embeds = [pe for pe in prompt_embeds for _ in range(num_images_per_prompt)]
|
||||
if self.do_classifier_free_guidance and negative_prompt_embeds:
|
||||
negative_prompt_embeds = [npe for npe in negative_prompt_embeds for _ in range(num_images_per_prompt)]
|
||||
|
||||
condition_siglip_embeds = [None if sels == [] else sels + [None] for sels in condition_siglip_embeds]
|
||||
negative_condition_siglip_embeds = [
|
||||
None if sels == [] else sels + [None] for sels in negative_condition_siglip_embeds
|
||||
]
|
||||
|
||||
actual_batch_size = batch_size * num_images_per_prompt
|
||||
image_seq_len = (latents.shape[2] // 2) * (latents.shape[3] // 2)
|
||||
|
||||
# 5. Prepare timesteps
|
||||
mu = calculate_shift(
|
||||
image_seq_len,
|
||||
self.scheduler.config.get("base_image_seq_len", 256),
|
||||
self.scheduler.config.get("max_image_seq_len", 4096),
|
||||
self.scheduler.config.get("base_shift", 0.5),
|
||||
self.scheduler.config.get("max_shift", 1.15),
|
||||
)
|
||||
self.scheduler.sigma_min = 0.0
|
||||
scheduler_kwargs = {"mu": mu}
|
||||
timesteps, num_inference_steps = retrieve_timesteps(
|
||||
self.scheduler,
|
||||
num_inference_steps,
|
||||
device,
|
||||
sigmas=sigmas,
|
||||
**scheduler_kwargs,
|
||||
)
|
||||
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
||||
self._num_timesteps = len(timesteps)
|
||||
|
||||
# 6. Denoising loop
|
||||
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
||||
for i, t in enumerate(timesteps):
|
||||
if self.interrupt:
|
||||
continue
|
||||
|
||||
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
||||
timestep = t.expand(latents.shape[0])
|
||||
timestep = (1000 - timestep) / 1000
|
||||
# Normalized time for time-aware config (0 at start, 1 at end)
|
||||
t_norm = timestep[0].item()
|
||||
|
||||
# Handle cfg truncation
|
||||
current_guidance_scale = self.guidance_scale
|
||||
if (
|
||||
self.do_classifier_free_guidance
|
||||
and self._cfg_truncation is not None
|
||||
and float(self._cfg_truncation) <= 1
|
||||
):
|
||||
if t_norm > self._cfg_truncation:
|
||||
current_guidance_scale = 0.0
|
||||
|
||||
# Run CFG only if configured AND scale is non-zero
|
||||
apply_cfg = self.do_classifier_free_guidance and current_guidance_scale > 0
|
||||
|
||||
if apply_cfg:
|
||||
latents_typed = latents.to(self.transformer.dtype)
|
||||
latent_model_input = latents_typed.repeat(2, 1, 1, 1)
|
||||
prompt_embeds_model_input = prompt_embeds + negative_prompt_embeds
|
||||
condition_latents_model_input = condition_latents + negative_condition_latents
|
||||
condition_siglip_embeds_model_input = condition_siglip_embeds + negative_condition_siglip_embeds
|
||||
timestep_model_input = timestep.repeat(2)
|
||||
else:
|
||||
latent_model_input = latents.to(self.transformer.dtype)
|
||||
prompt_embeds_model_input = prompt_embeds
|
||||
condition_latents_model_input = condition_latents
|
||||
condition_siglip_embeds_model_input = condition_siglip_embeds
|
||||
timestep_model_input = timestep
|
||||
|
||||
latent_model_input = latent_model_input.unsqueeze(2)
|
||||
latent_model_input_list = list(latent_model_input.unbind(dim=0))
|
||||
|
||||
# Combine condition latents with target latent
|
||||
current_batch_size = len(latent_model_input_list)
|
||||
x_combined = [
|
||||
condition_latents_model_input[i] + [latent_model_input_list[i]] for i in range(current_batch_size)
|
||||
]
|
||||
# Create noise mask: 0 for condition images (clean), 1 for target image (noisy)
|
||||
image_noise_mask = [
|
||||
[0] * len(condition_latents_model_input[i]) + [1] for i in range(current_batch_size)
|
||||
]
|
||||
|
||||
model_out_list = self.transformer(
|
||||
x=x_combined,
|
||||
t=timestep_model_input,
|
||||
cap_feats=prompt_embeds_model_input,
|
||||
siglip_feats=condition_siglip_embeds_model_input,
|
||||
image_noise_mask=image_noise_mask,
|
||||
return_dict=False,
|
||||
)[0]
|
||||
|
||||
if apply_cfg:
|
||||
# Perform CFG
|
||||
pos_out = model_out_list[:actual_batch_size]
|
||||
neg_out = model_out_list[actual_batch_size:]
|
||||
|
||||
noise_pred = []
|
||||
for j in range(actual_batch_size):
|
||||
pos = pos_out[j].float()
|
||||
neg = neg_out[j].float()
|
||||
|
||||
pred = pos + current_guidance_scale * (pos - neg)
|
||||
|
||||
# Renormalization
|
||||
if self._cfg_normalization and float(self._cfg_normalization) > 0.0:
|
||||
ori_pos_norm = torch.linalg.vector_norm(pos)
|
||||
new_pos_norm = torch.linalg.vector_norm(pred)
|
||||
max_new_norm = ori_pos_norm * float(self._cfg_normalization)
|
||||
if new_pos_norm > max_new_norm:
|
||||
pred = pred * (max_new_norm / new_pos_norm)
|
||||
|
||||
noise_pred.append(pred)
|
||||
|
||||
noise_pred = torch.stack(noise_pred, dim=0)
|
||||
else:
|
||||
noise_pred = torch.stack([t.float() for t in model_out_list], dim=0)
|
||||
|
||||
noise_pred = noise_pred.squeeze(2)
|
||||
noise_pred = -noise_pred
|
||||
|
||||
# compute the previous noisy sample x_t -> x_t-1
|
||||
latents = self.scheduler.step(noise_pred.to(torch.float32), t, latents, return_dict=False)[0]
|
||||
assert latents.dtype == torch.float32
|
||||
|
||||
if callback_on_step_end is not None:
|
||||
callback_kwargs = {}
|
||||
for k in callback_on_step_end_tensor_inputs:
|
||||
callback_kwargs[k] = locals()[k]
|
||||
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
||||
|
||||
latents = callback_outputs.pop("latents", latents)
|
||||
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
||||
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
||||
|
||||
# call the callback, if provided
|
||||
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
||||
progress_bar.update()
|
||||
|
||||
if output_type == "latent":
|
||||
image = latents
|
||||
|
||||
else:
|
||||
latents = latents.to(self.vae.dtype)
|
||||
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
||||
|
||||
image = self.vae.decode(latents, return_dict=False)[0]
|
||||
image = self.image_processor.postprocess(image, output_type=output_type)
|
||||
|
||||
# Offload all models
|
||||
self.maybe_free_model_hooks()
|
||||
|
||||
if not return_dict:
|
||||
return (image,)
|
||||
|
||||
return ZImagePipelineOutput(images=image)
|
||||
@@ -36,6 +36,9 @@ from ...utils import (
|
||||
from ..base import DiffusersQuantizer
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from ...models.modeling_utils import ModelMixin
|
||||
|
||||
@@ -83,11 +86,19 @@ def _update_torch_safe_globals():
|
||||
]
|
||||
try:
|
||||
from torchao.dtypes import NF4Tensor
|
||||
from torchao.dtypes.floatx.float8_layout import Float8AQTTensorImpl
|
||||
from torchao.dtypes.uintx.uint4_layout import UInt4Tensor
|
||||
from torchao.dtypes.uintx.uintx_layout import UintxAQTTensorImpl, UintxTensor
|
||||
|
||||
safe_globals.extend([UintxTensor, UInt4Tensor, UintxAQTTensorImpl, Float8AQTTensorImpl, NF4Tensor])
|
||||
safe_globals.extend([UintxTensor, UintxAQTTensorImpl, NF4Tensor])
|
||||
|
||||
# note: is_torchao_version(">=", "0.16.0") does not work correctly
|
||||
# with torchao nightly, so using a ">" check which does work correctly
|
||||
if is_torchao_version(">", "0.15.0"):
|
||||
pass
|
||||
else:
|
||||
from torchao.dtypes.floatx.float8_layout import Float8AQTTensorImpl
|
||||
from torchao.dtypes.uintx.uint4_layout import UInt4Tensor
|
||||
|
||||
safe_globals.extend([UInt4Tensor, Float8AQTTensorImpl])
|
||||
|
||||
except (ImportError, ModuleNotFoundError) as e:
|
||||
logger.warning(
|
||||
@@ -123,9 +134,6 @@ def fuzzy_match_size(config_name: str) -> Optional[str]:
|
||||
return None
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
def _quantization_type(weight):
|
||||
from torchao.dtypes import AffineQuantizedTensor
|
||||
from torchao.quantization.linear_activation_quantized_tensor import LinearActivationQuantizedTensor
|
||||
|
||||
@@ -3917,6 +3917,21 @@ class ZImageImg2ImgPipeline(metaclass=DummyObject):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class ZImageOmniPipeline(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class ZImagePipeline(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
|
||||
@@ -671,46 +671,44 @@ class TorchAoSerializationTest(unittest.TestCase):
|
||||
class TorchAoCompileTest(QuantCompileTests, unittest.TestCase):
|
||||
@property
|
||||
def quantization_config(self):
|
||||
from torchao.quantization import Int8WeightOnlyConfig
|
||||
|
||||
return PipelineQuantizationConfig(
|
||||
quant_mapping={
|
||||
"transformer": TorchAoConfig(Int8WeightOnlyConfig()),
|
||||
"transformer": TorchAoConfig(quant_type="int8_weight_only"),
|
||||
},
|
||||
)
|
||||
|
||||
# @unittest.skip(
|
||||
# "Changing the device of AQT tensor with module._apply (called from doing module.to() in accelerate) does not work "
|
||||
# "when compiling."
|
||||
# )
|
||||
# def test_torch_compile_with_cpu_offload(self):
|
||||
# # RuntimeError: _apply(): Couldn't swap Linear.weight
|
||||
# super().test_torch_compile_with_cpu_offload()
|
||||
@unittest.skip(
|
||||
"Changing the device of AQT tensor with module._apply (called from doing module.to() in accelerate) does not work "
|
||||
"when compiling."
|
||||
)
|
||||
def test_torch_compile_with_cpu_offload(self):
|
||||
# RuntimeError: _apply(): Couldn't swap Linear.weight
|
||||
super().test_torch_compile_with_cpu_offload()
|
||||
|
||||
# @parameterized.expand([False, True])
|
||||
# @unittest.skip(
|
||||
# """
|
||||
# For `use_stream=False`:
|
||||
# - Changing the device of AQT tensor, with `param.data = param.data.to(device)` as done in group offloading implementation
|
||||
# is unsupported in TorchAO. When compiling, FakeTensor device mismatch causes failure.
|
||||
# For `use_stream=True`:
|
||||
# Using non-default stream requires ability to pin tensors. AQT does not seem to support this yet in TorchAO.
|
||||
# """
|
||||
# )
|
||||
# def test_torch_compile_with_group_offload_leaf(self, use_stream):
|
||||
# # For use_stream=False:
|
||||
# # If we run group offloading without compilation, we will see:
|
||||
# # RuntimeError: Attempted to set the storage of a tensor on device "cpu" to a storage on different device "cuda:0". This is no longer allowed; the devices must match.
|
||||
# # When running with compilation, the error ends up being different:
|
||||
# # Dynamo failed to run FX node with fake tensors: call_function <built-in function linear>(*(FakeTensor(..., device='cuda:0', size=(s0, 256), dtype=torch.bfloat16), AffineQuantizedTensor(tensor_impl=PlainAQTTensorImpl(data=FakeTensor(..., size=(1536, 256), dtype=torch.int8)... , scale=FakeTensor(..., size=(1536,), dtype=torch.bfloat16)... , zero_point=FakeTensor(..., size=(1536,), dtype=torch.int64)... , _layout=PlainLayout()), block_size=(1, 256), shape=torch.Size([1536, 256]), device=cpu, dtype=torch.bfloat16, requires_grad=False), Parameter(FakeTensor(..., device='cuda:0', size=(1536,), dtype=torch.bfloat16,
|
||||
# # requires_grad=True))), **{}): got RuntimeError('Unhandled FakeTensor Device Propagation for aten.mm.default, found two different devices cuda:0, cpu')
|
||||
# # Looks like something that will have to be looked into upstream.
|
||||
# # for linear layers, weight.tensor_impl shows cuda... but:
|
||||
# # weight.tensor_impl.{data,scale,zero_point}.device will be cpu
|
||||
@parameterized.expand([False, True])
|
||||
@unittest.skip(
|
||||
"""
|
||||
For `use_stream=False`:
|
||||
- Changing the device of AQT tensor, with `param.data = param.data.to(device)` as done in group offloading implementation
|
||||
is unsupported in TorchAO. When compiling, FakeTensor device mismatch causes failure.
|
||||
For `use_stream=True`:
|
||||
Using non-default stream requires ability to pin tensors. AQT does not seem to support this yet in TorchAO.
|
||||
"""
|
||||
)
|
||||
def test_torch_compile_with_group_offload_leaf(self, use_stream):
|
||||
# For use_stream=False:
|
||||
# If we run group offloading without compilation, we will see:
|
||||
# RuntimeError: Attempted to set the storage of a tensor on device "cpu" to a storage on different device "cuda:0". This is no longer allowed; the devices must match.
|
||||
# When running with compilation, the error ends up being different:
|
||||
# Dynamo failed to run FX node with fake tensors: call_function <built-in function linear>(*(FakeTensor(..., device='cuda:0', size=(s0, 256), dtype=torch.bfloat16), AffineQuantizedTensor(tensor_impl=PlainAQTTensorImpl(data=FakeTensor(..., size=(1536, 256), dtype=torch.int8)... , scale=FakeTensor(..., size=(1536,), dtype=torch.bfloat16)... , zero_point=FakeTensor(..., size=(1536,), dtype=torch.int64)... , _layout=PlainLayout()), block_size=(1, 256), shape=torch.Size([1536, 256]), device=cpu, dtype=torch.bfloat16, requires_grad=False), Parameter(FakeTensor(..., device='cuda:0', size=(1536,), dtype=torch.bfloat16,
|
||||
# requires_grad=True))), **{}): got RuntimeError('Unhandled FakeTensor Device Propagation for aten.mm.default, found two different devices cuda:0, cpu')
|
||||
# Looks like something that will have to be looked into upstream.
|
||||
# for linear layers, weight.tensor_impl shows cuda... but:
|
||||
# weight.tensor_impl.{data,scale,zero_point}.device will be cpu
|
||||
|
||||
# # For use_stream=True:
|
||||
# # NotImplementedError: AffineQuantizedTensor dispatch: attempting to run unimplemented operator/function: func=<OpOverload(op='aten.is_pinned', overload='default')>, types=(<class 'torchao.dtypes.affine_quantized_tensor.AffineQuantizedTensor'>,), arg_types=(<class 'torchao.dtypes.affine_quantized_tensor.AffineQuantizedTensor'>,), kwarg_types={}
|
||||
# super()._test_torch_compile_with_group_offload_leaf(use_stream=use_stream)
|
||||
# For use_stream=True:
|
||||
# NotImplementedError: AffineQuantizedTensor dispatch: attempting to run unimplemented operator/function: func=<OpOverload(op='aten.is_pinned', overload='default')>, types=(<class 'torchao.dtypes.affine_quantized_tensor.AffineQuantizedTensor'>,), arg_types=(<class 'torchao.dtypes.affine_quantized_tensor.AffineQuantizedTensor'>,), kwarg_types={}
|
||||
super()._test_torch_compile_with_group_offload_leaf(use_stream=use_stream)
|
||||
|
||||
|
||||
# Slices for these tests have been obtained on our aws-g6e-xlarge-plus runners
|
||||
|
||||
Reference in New Issue
Block a user