Compare commits

..

1 Commits

Author SHA1 Message Date
Pauline Bailly-Masson
60cdb52f19 Add codeQL workflow
Updated CodeQL workflow to use reusable workflow from Hugging Face and simplified language matrix.
2026-01-06 16:34:57 +01:00
18 changed files with 79 additions and 2241 deletions

View File

@@ -136,7 +136,7 @@ export_to_video(video, "output.mp4", fps=24)
- The recommended dtype for the transformer, VAE, and text encoder is `torch.bfloat16`. The VAE and text encoder can also be `torch.float32` or `torch.float16`.
- For guidance-distilled variants of LTX-Video, set `guidance_scale` to `1.0`. The `guidance_scale` for any other model should be set higher, like `5.0`, for good generation quality.
- For timestep-aware VAE variants (LTX-Video 0.9.1 and above), set `decode_timestep` to `0.05` and `image_cond_noise_scale` to `0.025`.
- For variants that support interpolation between multiple conditioning images and videos (LTX-Video 0.9.5 and above), use similar images and videos for the best results. Divergence from the conditioning inputs may lead to abrupt transitions in the generated video.
- For variants that support interpolation between multiple conditioning images and videos (LTX-Video 0.9.5 and above), use similar images and videos for the best results. Divergence from the conditioning inputs may lead to abrupt transitionts in the generated video.
- LTX-Video 0.9.7 includes a spatial latent upscaler and a 13B parameter transformer. During inference, a low resolution video is quickly generated first and then upscaled and refined.
@@ -329,7 +329,7 @@ export_to_video(video, "output.mp4", fps=24)
<details>
<summary>Show example code</summary>
```python
import torch
from diffusers import LTXConditionPipeline, LTXLatentUpsamplePipeline
@@ -474,12 +474,6 @@ export_to_video(video, "output.mp4", fps=24)
</details>
## LTXI2VLongMultiPromptPipeline
[[autodoc]] LTXI2VLongMultiPromptPipeline
- all
- __call__
## LTXPipeline
[[autodoc]] LTXPipeline

View File

@@ -98,9 +98,6 @@ Flux.2 uses Mistral Small 3.1 as text encoder which is quite large and can take
This way, the text encoder model is not loaded into memory during training.
> [!NOTE]
> to enable remote text encoding you must either be logged in to your HuggingFace account (`hf auth login`) OR pass a token with `--hub_token`.
### FSDP Text Encoder
Flux.2 uses Mistral Small 3.1 as text encoder which is quite large and can take up a lot of memory. To mitigate this, we can use the `--fsdp_text_encoder` flag to enable distributed computation of the prompt embeddings.
This way, it distributes the memory cost across multiple nodes.
### CPU Offloading
To offload parts of the model to CPU memory, you can use `--offload` flag. This will offload the vae and text encoder to CPU memory and only move them to GPU when needed.
### Latent Caching
@@ -169,26 +166,6 @@ To better track our training experiments, we're using the following flags in the
> [!NOTE]
> If you want to train using long prompts with the T5 text encoder, you can use `--max_sequence_length` to set the token limit. The default is 77, but it can be increased to as high as 512. Note that this will use more resources and may slow down the training in some cases.
### FSDP on the transformer
By setting the accelerate configuration with FSDP, the transformer block will be wrapped automatically. E.g. set the configuration to:
```shell
distributed_type: FSDP
fsdp_config:
fsdp_version: 2
fsdp_offload_params: false
fsdp_sharding_strategy: HYBRID_SHARD
fsdp_auto_wrap_policy: TRANSFOMER_BASED_WRAP
fsdp_transformer_layer_cls_to_wrap: Flux2TransformerBlock, Flux2SingleTransformerBlock
fsdp_forward_prefetch: true
fsdp_sync_module_states: false
fsdp_state_dict_type: FULL_STATE_DICT
fsdp_use_orig_params: false
fsdp_activation_checkpointing: true
fsdp_reshard_after_forward: true
fsdp_cpu_ram_efficient_loading: false
```
## LoRA + DreamBooth
[LoRA](https://huggingface.co/docs/peft/conceptual_guides/adapter#low-rank-adaptation-lora) is a popular parameter-efficient fine-tuning technique that allows you to achieve full-finetuning like performance but with a fraction of learnable parameters.

View File

@@ -44,7 +44,6 @@ import shutil
import warnings
from contextlib import nullcontext
from pathlib import Path
from typing import Any
import numpy as np
import torch
@@ -76,16 +75,13 @@ from diffusers import (
from diffusers.optimization import get_scheduler
from diffusers.training_utils import (
_collate_lora_metadata,
_to_cpu_contiguous,
cast_training_params,
compute_density_for_timestep_sampling,
compute_loss_weighting_for_sd3,
find_nearest_bucket,
free_memory,
get_fsdp_kwargs_from_accelerator,
offload_models,
parse_buckets_string,
wrap_with_fsdp,
)
from diffusers.utils import (
check_min_version,
@@ -97,9 +93,6 @@ from diffusers.utils.import_utils import is_torch_npu_available
from diffusers.utils.torch_utils import is_compiled_module
if getattr(torch, "distributed", None) is not None:
import torch.distributed as dist
if is_wandb_available():
import wandb
@@ -729,7 +722,6 @@ def parse_args(input_args=None):
)
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
parser.add_argument("--enable_npu_flash_attention", action="store_true", help="Enabla Flash Attention for NPU")
parser.add_argument("--fsdp_text_encoder", action="store_true", help="Use FSDP for text encoder")
if input_args is not None:
args = parser.parse_args(input_args)
@@ -1227,11 +1219,7 @@ def main(args):
if args.bnb_quantization_config_path is not None
else {"device": accelerator.device, "dtype": weight_dtype}
)
is_fsdp = accelerator.state.fsdp_plugin is not None
if not is_fsdp:
transformer.to(**transformer_to_kwargs)
transformer.to(**transformer_to_kwargs)
if args.do_fp8_training:
convert_to_float8_training(
transformer, module_filter_fn=module_filter_fn, config=Float8LinearConfig(pad_inner_dim=True)
@@ -1275,42 +1263,17 @@ def main(args):
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
def save_model_hook(models, weights, output_dir):
transformer_cls = type(unwrap_model(transformer))
# 1) Validate and pick the transformer model
modules_to_save: dict[str, Any] = {}
transformer_model = None
for model in models:
if isinstance(unwrap_model(model), transformer_cls):
transformer_model = model
modules_to_save["transformer"] = model
else:
raise ValueError(f"unexpected save model: {model.__class__}")
if transformer_model is None:
raise ValueError("No transformer model found in 'models'")
# 2) Optionally gather FSDP state dict once
state_dict = accelerator.get_state_dict(model) if is_fsdp else None
# 3) Only main process materializes the LoRA state dict
transformer_lora_layers_to_save = None
if accelerator.is_main_process:
peft_kwargs = {}
if is_fsdp:
peft_kwargs["state_dict"] = state_dict
transformer_lora_layers_to_save = None
modules_to_save = {}
for model in models:
if isinstance(model, type(unwrap_model(transformer))):
transformer_lora_layers_to_save = get_peft_model_state_dict(model)
modules_to_save["transformer"] = model
else:
raise ValueError(f"unexpected save model: {model.__class__}")
transformer_lora_layers_to_save = get_peft_model_state_dict(
unwrap_model(transformer_model) if is_fsdp else transformer_model,
**peft_kwargs,
)
if is_fsdp:
transformer_lora_layers_to_save = _to_cpu_contiguous(transformer_lora_layers_to_save)
# make sure to pop weight so that corresponding model is not saved again
if weights:
# make sure to pop weight so that corresponding model is not saved again
weights.pop()
Flux2Pipeline.save_lora_weights(
@@ -1322,20 +1285,13 @@ def main(args):
def load_model_hook(models, input_dir):
transformer_ = None
if not is_fsdp:
while len(models) > 0:
model = models.pop()
while len(models) > 0:
model = models.pop()
if isinstance(unwrap_model(model), type(unwrap_model(transformer))):
transformer_ = unwrap_model(model)
else:
raise ValueError(f"unexpected save model: {model.__class__}")
else:
transformer_ = Flux2Transformer2DModel.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="transformer",
)
transformer_.add_adapter(transformer_lora_config)
if isinstance(model, type(unwrap_model(transformer))):
transformer_ = model
else:
raise ValueError(f"unexpected save model: {model.__class__}")
lora_state_dict = Flux2Pipeline.lora_state_dict(input_dir)
@@ -1551,21 +1507,6 @@ def main(args):
args.validation_prompt, text_encoding_pipeline
)
# Init FSDP for text encoder
if args.fsdp_text_encoder:
fsdp_kwargs = get_fsdp_kwargs_from_accelerator(accelerator)
text_encoder_fsdp = wrap_with_fsdp(
model=text_encoding_pipeline.text_encoder,
device=accelerator.device,
offload=args.offload,
limit_all_gathers=True,
use_orig_params=True,
fsdp_kwargs=fsdp_kwargs,
)
text_encoding_pipeline.text_encoder = text_encoder_fsdp
dist.barrier()
# If custom instance prompts are NOT provided (i.e. the instance prompt is used for all images),
# pack the statically computed variables appropriately here. This is so that we don't
# have to pass them to the dataloader.
@@ -1595,8 +1536,6 @@ def main(args):
if train_dataset.custom_instance_prompts:
if args.remote_text_encoder:
prompt_embeds, text_ids = compute_remote_text_embeddings(batch["prompts"])
elif args.fsdp_text_encoder:
prompt_embeds, text_ids = compute_text_embeddings(batch["prompts"], text_encoding_pipeline)
else:
with offload_models(text_encoding_pipeline, device=accelerator.device, offload=args.offload):
prompt_embeds, text_ids = compute_text_embeddings(batch["prompts"], text_encoding_pipeline)
@@ -1838,7 +1777,7 @@ def main(args):
progress_bar.update(1)
global_step += 1
if accelerator.is_main_process or is_fsdp:
if accelerator.is_main_process:
if global_step % args.checkpointing_steps == 0:
# _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
if args.checkpoints_total_limit is not None:
@@ -1897,41 +1836,15 @@ def main(args):
# Save the lora layers
accelerator.wait_for_everyone()
if is_fsdp:
transformer = unwrap_model(transformer)
state_dict = accelerator.get_state_dict(transformer)
if accelerator.is_main_process:
modules_to_save = {}
if is_fsdp:
if args.bnb_quantization_config_path is None:
if args.upcast_before_saving:
state_dict = {
k: v.to(torch.float32) if isinstance(v, torch.Tensor) else v for k, v in state_dict.items()
}
else:
state_dict = {
k: v.to(weight_dtype) if isinstance(v, torch.Tensor) else v for k, v in state_dict.items()
}
transformer_lora_layers = get_peft_model_state_dict(
transformer,
state_dict=state_dict,
)
transformer_lora_layers = {
k: v.detach().cpu().contiguous() if isinstance(v, torch.Tensor) else v
for k, v in transformer_lora_layers.items()
}
else:
transformer = unwrap_model(transformer)
if args.bnb_quantization_config_path is None:
if args.upcast_before_saving:
transformer.to(torch.float32)
else:
transformer = transformer.to(weight_dtype)
transformer_lora_layers = get_peft_model_state_dict(transformer)
transformer = unwrap_model(transformer)
if args.bnb_quantization_config_path is None:
if args.upcast_before_saving:
transformer.to(torch.float32)
else:
transformer = transformer.to(weight_dtype)
transformer_lora_layers = get_peft_model_state_dict(transformer)
modules_to_save["transformer"] = transformer
Flux2Pipeline.save_lora_weights(

View File

@@ -43,7 +43,6 @@ import random
import shutil
from contextlib import nullcontext
from pathlib import Path
from typing import Any
import numpy as np
import torch
@@ -75,16 +74,13 @@ from diffusers.optimization import get_scheduler
from diffusers.pipelines.flux2.image_processor import Flux2ImageProcessor
from diffusers.training_utils import (
_collate_lora_metadata,
_to_cpu_contiguous,
cast_training_params,
compute_density_for_timestep_sampling,
compute_loss_weighting_for_sd3,
find_nearest_bucket,
free_memory,
get_fsdp_kwargs_from_accelerator,
offload_models,
parse_buckets_string,
wrap_with_fsdp,
)
from diffusers.utils import (
check_min_version,
@@ -97,9 +93,6 @@ from diffusers.utils.import_utils import is_torch_npu_available
from diffusers.utils.torch_utils import is_compiled_module
if getattr(torch, "distributed", None) is not None:
import torch.distributed as dist
if is_wandb_available():
import wandb
@@ -698,7 +691,6 @@ def parse_args(input_args=None):
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
parser.add_argument("--enable_npu_flash_attention", action="store_true", help="Enabla Flash Attention for NPU")
parser.add_argument("--fsdp_text_encoder", action="store_true", help="Use FSDP for text encoder")
if input_args is not None:
args = parser.parse_args(input_args)
@@ -1164,11 +1156,7 @@ def main(args):
if args.bnb_quantization_config_path is not None
else {"device": accelerator.device, "dtype": weight_dtype}
)
is_fsdp = accelerator.state.fsdp_plugin is not None
if not is_fsdp:
transformer.to(**transformer_to_kwargs)
transformer.to(**transformer_to_kwargs)
if args.do_fp8_training:
convert_to_float8_training(
transformer, module_filter_fn=module_filter_fn, config=Float8LinearConfig(pad_inner_dim=True)
@@ -1212,42 +1200,17 @@ def main(args):
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
def save_model_hook(models, weights, output_dir):
transformer_cls = type(unwrap_model(transformer))
# 1) Validate and pick the transformer model
modules_to_save: dict[str, Any] = {}
transformer_model = None
for model in models:
if isinstance(unwrap_model(model), transformer_cls):
transformer_model = model
modules_to_save["transformer"] = model
else:
raise ValueError(f"unexpected save model: {model.__class__}")
if transformer_model is None:
raise ValueError("No transformer model found in 'models'")
# 2) Optionally gather FSDP state dict once
state_dict = accelerator.get_state_dict(model) if is_fsdp else None
# 3) Only main process materializes the LoRA state dict
transformer_lora_layers_to_save = None
if accelerator.is_main_process:
peft_kwargs = {}
if is_fsdp:
peft_kwargs["state_dict"] = state_dict
transformer_lora_layers_to_save = None
modules_to_save = {}
for model in models:
if isinstance(model, type(unwrap_model(transformer))):
transformer_lora_layers_to_save = get_peft_model_state_dict(model)
modules_to_save["transformer"] = model
else:
raise ValueError(f"unexpected save model: {model.__class__}")
transformer_lora_layers_to_save = get_peft_model_state_dict(
unwrap_model(transformer_model) if is_fsdp else transformer_model,
**peft_kwargs,
)
if is_fsdp:
transformer_lora_layers_to_save = _to_cpu_contiguous(transformer_lora_layers_to_save)
# make sure to pop weight so that corresponding model is not saved again
if weights:
# make sure to pop weight so that corresponding model is not saved again
weights.pop()
Flux2Pipeline.save_lora_weights(
@@ -1259,20 +1222,13 @@ def main(args):
def load_model_hook(models, input_dir):
transformer_ = None
if not is_fsdp:
while len(models) > 0:
model = models.pop()
while len(models) > 0:
model = models.pop()
if isinstance(unwrap_model(model), type(unwrap_model(transformer))):
transformer_ = unwrap_model(model)
else:
raise ValueError(f"unexpected save model: {model.__class__}")
else:
transformer_ = Flux2Transformer2DModel.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="transformer",
)
transformer_.add_adapter(transformer_lora_config)
if isinstance(model, type(unwrap_model(transformer))):
transformer_ = model
else:
raise ValueError(f"unexpected save model: {model.__class__}")
lora_state_dict = Flux2Pipeline.lora_state_dict(input_dir)
@@ -1474,21 +1430,6 @@ def main(args):
args.validation_prompt, text_encoding_pipeline
)
# Init FSDP for text encoder
if args.fsdp_text_encoder:
fsdp_kwargs = get_fsdp_kwargs_from_accelerator(accelerator)
text_encoder_fsdp = wrap_with_fsdp(
model=text_encoding_pipeline.text_encoder,
device=accelerator.device,
offload=args.offload,
limit_all_gathers=True,
use_orig_params=True,
fsdp_kwargs=fsdp_kwargs,
)
text_encoding_pipeline.text_encoder = text_encoder_fsdp
dist.barrier()
# If custom instance prompts are NOT provided (i.e. the instance prompt is used for all images),
# pack the statically computed variables appropriately here. This is so that we don't
# have to pass them to the dataloader.
@@ -1520,8 +1461,6 @@ def main(args):
if train_dataset.custom_instance_prompts:
if args.remote_text_encoder:
prompt_embeds, text_ids = compute_remote_text_embeddings(batch["prompts"])
elif args.fsdp_text_encoder:
prompt_embeds, text_ids = compute_text_embeddings(batch["prompts"], text_encoding_pipeline)
else:
with offload_models(text_encoding_pipeline, device=accelerator.device, offload=args.offload):
prompt_embeds, text_ids = compute_text_embeddings(batch["prompts"], text_encoding_pipeline)
@@ -1761,7 +1700,7 @@ def main(args):
progress_bar.update(1)
global_step += 1
if accelerator.is_main_process or is_fsdp:
if accelerator.is_main_process:
if global_step % args.checkpointing_steps == 0:
# _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
if args.checkpoints_total_limit is not None:
@@ -1820,41 +1759,15 @@ def main(args):
# Save the lora layers
accelerator.wait_for_everyone()
if is_fsdp:
transformer = unwrap_model(transformer)
state_dict = accelerator.get_state_dict(transformer)
if accelerator.is_main_process:
modules_to_save = {}
if is_fsdp:
if args.bnb_quantization_config_path is None:
if args.upcast_before_saving:
state_dict = {
k: v.to(torch.float32) if isinstance(v, torch.Tensor) else v for k, v in state_dict.items()
}
else:
state_dict = {
k: v.to(weight_dtype) if isinstance(v, torch.Tensor) else v for k, v in state_dict.items()
}
transformer_lora_layers = get_peft_model_state_dict(
transformer,
state_dict=state_dict,
)
transformer_lora_layers = {
k: v.detach().cpu().contiguous() if isinstance(v, torch.Tensor) else v
for k, v in transformer_lora_layers.items()
}
else:
transformer = unwrap_model(transformer)
if args.bnb_quantization_config_path is None:
if args.upcast_before_saving:
transformer.to(torch.float32)
else:
transformer = transformer.to(weight_dtype)
transformer_lora_layers = get_peft_model_state_dict(transformer)
transformer = unwrap_model(transformer)
if args.bnb_quantization_config_path is None:
if args.upcast_before_saving:
transformer.to(torch.float32)
else:
transformer = transformer.to(weight_dtype)
transformer_lora_layers = get_peft_model_state_dict(transformer)
modules_to_save["transformer"] = transformer
Flux2Pipeline.save_lora_weights(

View File

@@ -353,7 +353,6 @@ else:
"KDPM2AncestralDiscreteScheduler",
"KDPM2DiscreteScheduler",
"LCMScheduler",
"LTXEulerAncestralRFScheduler",
"PNDMScheduler",
"RePaintScheduler",
"SASolverScheduler",
@@ -539,7 +538,6 @@ else:
"LongCatImageEditPipeline",
"LongCatImagePipeline",
"LTXConditionPipeline",
"LTXI2VLongMultiPromptPipeline",
"LTXImageToVideoPipeline",
"LTXLatentUpsamplePipeline",
"LTXPipeline",
@@ -1090,7 +1088,6 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
KDPM2AncestralDiscreteScheduler,
KDPM2DiscreteScheduler,
LCMScheduler,
LTXEulerAncestralRFScheduler,
PNDMScheduler,
RePaintScheduler,
SASolverScheduler,
@@ -1255,7 +1252,6 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
LongCatImageEditPipeline,
LongCatImagePipeline,
LTXConditionPipeline,
LTXI2VLongMultiPromptPipeline,
LTXImageToVideoPipeline,
LTXLatentUpsamplePipeline,
LTXPipeline,

View File

@@ -1420,7 +1420,6 @@ def _flash_attention(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
dropout_p: float = 0.0,
is_causal: bool = False,
scale: Optional[float] = None,
@@ -1428,9 +1427,6 @@ def _flash_attention(
_parallel_config: Optional["ParallelConfig"] = None,
) -> torch.Tensor:
lse = None
if attn_mask is not None:
raise ValueError("`attn_mask` is not supported for flash-attn 2.")
if _parallel_config is None:
out = flash_attn_func(
q=query,
@@ -1473,7 +1469,6 @@ def _flash_attention_hub(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
dropout_p: float = 0.0,
is_causal: bool = False,
scale: Optional[float] = None,
@@ -1481,9 +1476,6 @@ def _flash_attention_hub(
_parallel_config: Optional["ParallelConfig"] = None,
) -> torch.Tensor:
lse = None
if attn_mask is not None:
raise ValueError("`attn_mask` is not supported for flash-attn 2.")
func = _HUB_KERNELS_REGISTRY[AttentionBackendName.FLASH_HUB].kernel_fn
out = func(
q=query,
@@ -1620,15 +1612,11 @@ def _flash_attention_3(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
scale: Optional[float] = None,
is_causal: bool = False,
return_lse: bool = False,
_parallel_config: Optional["ParallelConfig"] = None,
) -> torch.Tensor:
if attn_mask is not None:
raise ValueError("`attn_mask` is not supported for flash-attn 3.")
out, lse = _wrapped_flash_attn_3(
q=query,
k=key,
@@ -1648,7 +1636,6 @@ def _flash_attention_3_hub(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
scale: Optional[float] = None,
is_causal: bool = False,
window_size: Tuple[int, int] = (-1, -1),
@@ -1659,8 +1646,6 @@ def _flash_attention_3_hub(
) -> torch.Tensor:
if _parallel_config:
raise NotImplementedError(f"{AttentionBackendName._FLASH_3_HUB.value} is not implemented for parallelism yet.")
if attn_mask is not None:
raise ValueError("`attn_mask` is not supported for flash-attn 3.")
func = _HUB_KERNELS_REGISTRY[AttentionBackendName._FLASH_3_HUB].kernel_fn
out = func(
@@ -1800,16 +1785,12 @@ def _aiter_flash_attention(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
dropout_p: float = 0.0,
is_causal: bool = False,
scale: Optional[float] = None,
return_lse: bool = False,
_parallel_config: Optional["ParallelConfig"] = None,
) -> torch.Tensor:
if attn_mask is not None:
raise ValueError("`attn_mask` is not supported for aiter attention")
if not return_lse and torch.is_grad_enabled():
# aiter requires return_lse=True by assertion when gradients are enabled.
out, lse, *_ = aiter_flash_attn_func(
@@ -2047,7 +2028,6 @@ def _native_flash_attention(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
dropout_p: float = 0.0,
is_causal: bool = False,
scale: Optional[float] = None,
@@ -2055,9 +2035,6 @@ def _native_flash_attention(
return_lse: bool = False,
_parallel_config: Optional["ParallelConfig"] = None,
) -> torch.Tensor:
if attn_mask is not None:
raise ValueError("`attn_mask` is not supported for aiter attention")
lse = None
if _parallel_config is None and not return_lse:
query, key, value = (x.permute(0, 2, 1, 3) for x in (query, key, value))
@@ -2136,14 +2113,11 @@ def _native_npu_attention(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
dropout_p: float = 0.0,
scale: Optional[float] = None,
return_lse: bool = False,
_parallel_config: Optional["ParallelConfig"] = None,
) -> torch.Tensor:
if attn_mask is not None:
raise ValueError("`attn_mask` is not supported for NPU attention")
if return_lse:
raise ValueError("NPU attention backend does not support setting `return_lse=True`.")
query, key, value = (x.transpose(1, 2).contiguous() for x in (query, key, value))
@@ -2174,13 +2148,10 @@ def _native_xla_attention(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
is_causal: bool = False,
return_lse: bool = False,
_parallel_config: Optional["ParallelConfig"] = None,
) -> torch.Tensor:
if attn_mask is not None:
raise ValueError("`attn_mask` is not supported for XLA attention")
if return_lse:
raise ValueError("XLA attention backend does not support setting `return_lse=True`.")
query, key, value = (x.permute(0, 2, 1, 3) for x in (query, key, value))
@@ -2204,14 +2175,11 @@ def _sage_attention(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
is_causal: bool = False,
scale: Optional[float] = None,
return_lse: bool = False,
_parallel_config: Optional["ParallelConfig"] = None,
) -> torch.Tensor:
if attn_mask is not None:
raise ValueError("`attn_mask` is not supported for sage attention")
lse = None
if _parallel_config is None:
out = sageattn(
@@ -2255,14 +2223,11 @@ def _sage_attention_hub(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
is_causal: bool = False,
scale: Optional[float] = None,
return_lse: bool = False,
_parallel_config: Optional["ParallelConfig"] = None,
) -> torch.Tensor:
if attn_mask is not None:
raise ValueError("`attn_mask` is not supported for sage attention")
lse = None
func = _HUB_KERNELS_REGISTRY[AttentionBackendName.SAGE_HUB].kernel_fn
if _parallel_config is None:
@@ -2344,14 +2309,11 @@ def _sage_qk_int8_pv_fp8_cuda_attention(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
is_causal: bool = False,
scale: Optional[float] = None,
return_lse: bool = False,
_parallel_config: Optional["ParallelConfig"] = None,
) -> torch.Tensor:
if attn_mask is not None:
raise ValueError("`attn_mask` is not supported for sage attention")
return sageattn_qk_int8_pv_fp8_cuda(
q=query,
k=key,
@@ -2371,14 +2333,11 @@ def _sage_qk_int8_pv_fp8_cuda_sm90_attention(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
is_causal: bool = False,
scale: Optional[float] = None,
return_lse: bool = False,
_parallel_config: Optional["ParallelConfig"] = None,
) -> torch.Tensor:
if attn_mask is not None:
raise ValueError("`attn_mask` is not supported for sage attention")
return sageattn_qk_int8_pv_fp8_cuda_sm90(
q=query,
k=key,
@@ -2398,14 +2357,11 @@ def _sage_qk_int8_pv_fp16_cuda_attention(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
is_causal: bool = False,
scale: Optional[float] = None,
return_lse: bool = False,
_parallel_config: Optional["ParallelConfig"] = None,
) -> torch.Tensor:
if attn_mask is not None:
raise ValueError("`attn_mask` is not supported for sage attention")
return sageattn_qk_int8_pv_fp16_cuda(
q=query,
k=key,
@@ -2425,14 +2381,11 @@ def _sage_qk_int8_pv_fp16_triton_attention(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
is_causal: bool = False,
scale: Optional[float] = None,
return_lse: bool = False,
_parallel_config: Optional["ParallelConfig"] = None,
) -> torch.Tensor:
if attn_mask is not None:
raise ValueError("`attn_mask` is not supported for sage attention")
return sageattn_qk_int8_pv_fp16_triton(
q=query,
k=key,

View File

@@ -22,7 +22,7 @@ import torch.nn.functional as F
from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import FluxTransformer2DLoadersMixin, FromOriginalModelMixin, PeftAdapterMixin
from ...utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
from ...utils import USE_PEFT_BACKEND, is_torch_npu_available, logging, scale_lora_layers, unscale_lora_layers
from ...utils.torch_utils import maybe_allow_in_graph
from .._modeling_parallel import ContextParallelInput, ContextParallelOutput
from ..attention import AttentionMixin, AttentionModuleMixin, FeedForward
@@ -717,7 +717,11 @@ class FluxTransformer2DModel(
img_ids = img_ids[0]
ids = torch.cat((txt_ids, img_ids), dim=0)
image_rotary_emb = self.pos_embed(ids)
if is_torch_npu_available():
freqs_cos, freqs_sin = self.pos_embed(ids.cpu())
image_rotary_emb = (freqs_cos.npu(), freqs_sin.npu())
else:
image_rotary_emb = self.pos_embed(ids)
if joint_attention_kwargs is not None and "ip_adapter_image_embeds" in joint_attention_kwargs:
ip_adapter_image_embeds = joint_attention_kwargs.pop("ip_adapter_image_embeds")

View File

@@ -21,7 +21,7 @@ import torch.nn.functional as F
from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import FluxTransformer2DLoadersMixin, FromOriginalModelMixin, PeftAdapterMixin
from ...utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
from ...utils import USE_PEFT_BACKEND, is_torch_npu_available, logging, scale_lora_layers, unscale_lora_layers
from .._modeling_parallel import ContextParallelInput, ContextParallelOutput
from ..attention import AttentionMixin, AttentionModuleMixin
from ..attention_dispatch import dispatch_attention_fn
@@ -835,8 +835,14 @@ class Flux2Transformer2DModel(
if txt_ids.ndim == 3:
txt_ids = txt_ids[0]
image_rotary_emb = self.pos_embed(img_ids)
text_rotary_emb = self.pos_embed(txt_ids)
if is_torch_npu_available():
freqs_cos_image, freqs_sin_image = self.pos_embed(img_ids.cpu())
image_rotary_emb = (freqs_cos_image.npu(), freqs_sin_image.npu())
freqs_cos_text, freqs_sin_text = self.pos_embed(txt_ids.cpu())
text_rotary_emb = (freqs_cos_text.npu(), freqs_sin_text.npu())
else:
image_rotary_emb = self.pos_embed(img_ids)
text_rotary_emb = self.pos_embed(txt_ids)
concat_rotary_emb = (
torch.cat([text_rotary_emb[0], image_rotary_emb[0]], dim=0),
torch.cat([text_rotary_emb[1], image_rotary_emb[1]], dim=0),

View File

@@ -21,7 +21,7 @@ import torch.nn.functional as F
from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import FromOriginalModelMixin, PeftAdapterMixin
from ...utils import logging
from ...utils import is_torch_npu_available, logging
from ...utils.torch_utils import maybe_allow_in_graph
from ..attention import AttentionModuleMixin, FeedForward
from ..attention_dispatch import dispatch_attention_fn
@@ -499,7 +499,11 @@ class LongCatImageTransformer2DModel(
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
ids = torch.cat((txt_ids, img_ids), dim=0)
image_rotary_emb = self.pos_embed(ids)
if is_torch_npu_available():
freqs_cos, freqs_sin = self.pos_embed(ids.cpu())
image_rotary_emb = (freqs_cos.npu(), freqs_sin.npu())
else:
image_rotary_emb = self.pos_embed(ids)
for index_block, block in enumerate(self.transformer_blocks):
if torch.is_grad_enabled() and self.gradient_checkpointing and self.use_checkpoint[index_block]:

View File

@@ -21,7 +21,7 @@ import torch.nn.functional as F
from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import FromOriginalModelMixin, PeftAdapterMixin
from ...utils import logging
from ...utils import is_torch_npu_available, logging
from ...utils.torch_utils import maybe_allow_in_graph
from ..attention import AttentionModuleMixin, FeedForward
from ..attention_dispatch import dispatch_attention_fn
@@ -530,7 +530,11 @@ class OvisImageTransformer2DModel(
img_ids = img_ids[0]
ids = torch.cat((txt_ids, img_ids), dim=0)
image_rotary_emb = self.pos_embed(ids)
if is_torch_npu_available():
freqs_cos, freqs_sin = self.pos_embed(ids.cpu())
image_rotary_emb = (freqs_cos.npu(), freqs_sin.npu())
else:
image_rotary_emb = self.pos_embed(ids)
for index_block, block in enumerate(self.transformer_blocks):
if torch.is_grad_enabled() and self.gradient_checkpointing:

View File

@@ -288,7 +288,6 @@ else:
"LTXImageToVideoPipeline",
"LTXConditionPipeline",
"LTXLatentUpsamplePipeline",
"LTXI2VLongMultiPromptPipeline",
]
_import_structure["lumina"] = ["LuminaPipeline", "LuminaText2ImgPipeline"]
_import_structure["lumina2"] = ["Lumina2Pipeline", "Lumina2Text2ImgPipeline"]
@@ -730,13 +729,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
LEditsPPPipelineStableDiffusionXL,
)
from .longcat_image import LongCatImageEditPipeline, LongCatImagePipeline
from .ltx import (
LTXConditionPipeline,
LTXI2VLongMultiPromptPipeline,
LTXImageToVideoPipeline,
LTXLatentUpsamplePipeline,
LTXPipeline,
)
from .ltx import LTXConditionPipeline, LTXImageToVideoPipeline, LTXLatentUpsamplePipeline, LTXPipeline
from .lucy import LucyEditPipeline
from .lumina import LuminaPipeline, LuminaText2ImgPipeline
from .lumina2 import Lumina2Pipeline, Lumina2Text2ImgPipeline

View File

@@ -25,7 +25,6 @@ else:
_import_structure["modeling_latent_upsampler"] = ["LTXLatentUpsamplerModel"]
_import_structure["pipeline_ltx"] = ["LTXPipeline"]
_import_structure["pipeline_ltx_condition"] = ["LTXConditionPipeline"]
_import_structure["pipeline_ltx_i2v_long_multi_prompt"] = ["LTXI2VLongMultiPromptPipeline"]
_import_structure["pipeline_ltx_image2video"] = ["LTXImageToVideoPipeline"]
_import_structure["pipeline_ltx_latent_upsample"] = ["LTXLatentUpsamplePipeline"]
@@ -40,7 +39,6 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
from .modeling_latent_upsampler import LTXLatentUpsamplerModel
from .pipeline_ltx import LTXPipeline
from .pipeline_ltx_condition import LTXConditionPipeline
from .pipeline_ltx_i2v_long_multi_prompt import LTXI2VLongMultiPromptPipeline
from .pipeline_ltx_image2video import LTXImageToVideoPipeline
from .pipeline_ltx_latent_upsample import LTXLatentUpsamplePipeline

View File

@@ -66,7 +66,6 @@ else:
_import_structure["scheduling_k_dpm_2_ancestral_discrete"] = ["KDPM2AncestralDiscreteScheduler"]
_import_structure["scheduling_k_dpm_2_discrete"] = ["KDPM2DiscreteScheduler"]
_import_structure["scheduling_lcm"] = ["LCMScheduler"]
_import_structure["scheduling_ltx_euler_ancestral_rf"] = ["LTXEulerAncestralRFScheduler"]
_import_structure["scheduling_pndm"] = ["PNDMScheduler"]
_import_structure["scheduling_repaint"] = ["RePaintScheduler"]
_import_structure["scheduling_sasolver"] = ["SASolverScheduler"]
@@ -169,7 +168,6 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
from .scheduling_k_dpm_2_ancestral_discrete import KDPM2AncestralDiscreteScheduler
from .scheduling_k_dpm_2_discrete import KDPM2DiscreteScheduler
from .scheduling_lcm import LCMScheduler
from .scheduling_ltx_euler_ancestral_rf import LTXEulerAncestralRFScheduler
from .scheduling_pndm import PNDMScheduler
from .scheduling_repaint import RePaintScheduler
from .scheduling_sasolver import SASolverScheduler

View File

@@ -1,386 +0,0 @@
# Copyright 2025 Lightricks and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
LTXEulerAncestralRFScheduler
This scheduler implements a K-diffusion style Euler-Ancestral sampler specialized for flow / CONST parameterization,
closely mirroring ComfyUI's `sample_euler_ancestral_RF` implementation used for LTX-Video.
Reference implementation (ComfyUI):
comfy.k_diffusion.sampling.sample_euler_ancestral_RF
"""
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, logging
from ..utils.torch_utils import randn_tensor
from .scheduling_utils import SchedulerMixin
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
@dataclass
class LTXEulerAncestralRFSchedulerOutput(BaseOutput):
"""
Output class for the scheduler's `step` function output.
Args:
prev_sample (`torch.FloatTensor`):
Updated sample for the next step in the denoising process.
"""
prev_sample: torch.FloatTensor
class LTXEulerAncestralRFScheduler(SchedulerMixin, ConfigMixin):
"""
Euler-Ancestral scheduler for LTX-Video (RF / CONST parametrization).
This scheduler is intended for models where the network is trained with a CONST-like parameterization (as in LTXV /
FLUX). It approximates ComfyUI's `sample_euler_ancestral_RF` sampler and is useful when reproducing ComfyUI
workflows inside diffusers.
The scheduler can either:
- reuse the [`FlowMatchEulerDiscreteScheduler`] sigma / timestep logic when only `num_inference_steps` is provided
(default diffusers-style usage), or
- follow an explicit ComfyUI-style sigma schedule when `sigmas` (or `timesteps`) are passed to [`set_timesteps`].
Args:
num_train_timesteps (`int`, defaults to 1000):
Included for config compatibility; not used to build the schedule.
eta (`float`, defaults to 1.0):
Stochasticity parameter. `eta=0.0` yields deterministic DDIM-like sampling; `eta=1.0` matches ComfyUI's
default RF behavior.
s_noise (`float`, defaults to 1.0):
Global scaling factor for the stochastic noise term.
"""
# Allow config migration from the flow-match scheduler and back.
_compatibles = ["FlowMatchEulerDiscreteScheduler"]
order = 1
@register_to_config
def __init__(
self,
num_train_timesteps: int = 1000,
eta: float = 1.0,
s_noise: float = 1.0,
):
# Note: num_train_timesteps is kept only for config compatibility.
self.num_inference_steps: Optional[int] = None
self.sigmas: Optional[torch.Tensor] = None
self.timesteps: Optional[torch.Tensor] = None
self._step_index: Optional[int] = None
self._begin_index: Optional[int] = None
@property
def step_index(self) -> Optional[int]:
return self._step_index
@property
def begin_index(self) -> Optional[int]:
"""
The index for the first timestep. It can be set from a pipeline with `set_begin_index` to support
image-to-image like workflows that start denoising part-way through the schedule.
"""
return self._begin_index
def set_begin_index(self, begin_index: int = 0):
"""
Included for API compatibility; not strictly needed here but kept to allow pipelines that call
`set_begin_index`.
"""
self._begin_index = begin_index
def index_for_timestep(
self, timestep: Union[float, torch.Tensor], schedule_timesteps: Optional[torch.Tensor] = None
) -> int:
"""
Map a (continuous) `timestep` value to an index into `self.timesteps`.
This follows the convention used in other discrete schedulers: if the same timestep value appears multiple
times in the schedule (which can happen when starting in the middle of the schedule), the *second* occurrence
is used for the first `step` call so that no sigma is accidentally skipped.
"""
if schedule_timesteps is None:
if self.timesteps is None:
raise ValueError("Timesteps have not been set. Call `set_timesteps` first.")
schedule_timesteps = self.timesteps
if isinstance(timestep, torch.Tensor):
timestep = timestep.to(schedule_timesteps.device)
indices = (schedule_timesteps == timestep).nonzero()
# The sigma index that is taken for the **very** first `step`
# is always the second index (or the last index if there is only 1)
# This way we can ensure we don't accidentally skip a sigma in
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
pos = 1 if len(indices) > 1 else 0
if len(indices) == 0:
raise ValueError(
"Passed `timestep` is not in `self.timesteps`. Make sure to use values from `scheduler.timesteps`."
)
return indices[pos].item()
def _init_step_index(self, timestep: Union[float, torch.Tensor]):
"""
Initialize the internal step index based on a given timestep.
"""
if self.timesteps is None:
raise ValueError("Timesteps have not been set. Call `set_timesteps` first.")
if self.begin_index is None:
if isinstance(timestep, torch.Tensor):
timestep = timestep.to(self.timesteps.device)
self._step_index = self.index_for_timestep(timestep)
else:
self._step_index = self._begin_index
def set_timesteps(
self,
num_inference_steps: Optional[int] = None,
device: Union[str, torch.device, None] = None,
sigmas: Optional[Union[List[float], torch.Tensor]] = None,
timesteps: Optional[Union[List[float], torch.Tensor]] = None,
mu: Optional[float] = None,
**kwargs,
):
"""
Set the sigma / timestep schedule for sampling.
When `sigmas` or `timesteps` are provided explicitly, they are used as the RF sigma schedule (ComfyUI-style)
and are expected to include the terminal 0.0. When both are `None`, the scheduler reuses the
[`FlowMatchEulerDiscreteScheduler`] logic to generate sigmas from `num_inference_steps` and the stored config
(including any resolution-dependent shifting, Karras/beta schedules, etc.).
Args:
num_inference_steps (`int`, *optional*):
Number of denoising steps. If provided together with explicit `sigmas`/`timesteps`, they are expected
to be consistent and are otherwise ignored with a warning.
device (`str` or `torch.device`, *optional*):
Device to move the internal tensors to.
sigmas (`List[float]` or `torch.Tensor`, *optional*):
Explicit sigma schedule, e.g. `[1.0, 0.99, ..., 0.0]`.
timesteps (`List[float]` or `torch.Tensor`, *optional*):
Optional alias for `sigmas`. If `sigmas` is None and `timesteps` is provided, timesteps are treated as
sigmas.
mu (`float`, *optional*):
Optional shift parameter used when delegating to [`FlowMatchEulerDiscreteScheduler.set_timesteps`] and
`config.use_dynamic_shifting` is `True`.
"""
# 1. Auto-generate schedule (FlowMatch-style) when no explicit sigmas/timesteps are given
if sigmas is None and timesteps is None:
if num_inference_steps is None:
raise ValueError(
"LTXEulerAncestralRFScheduler.set_timesteps requires either explicit `sigmas`/`timesteps` "
"or a `num_inference_steps` value."
)
# We reuse FlowMatchEulerDiscreteScheduler to construct a sigma schedule that is
# consistent with the original LTX training setup (including optional time shifting,
# Karras / exponential / beta schedules, etc.).
from .scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler
base_scheduler = FlowMatchEulerDiscreteScheduler.from_config(self.config)
base_scheduler.set_timesteps(
num_inference_steps=num_inference_steps,
device=device,
sigmas=None,
mu=mu,
timesteps=None,
)
self.num_inference_steps = base_scheduler.num_inference_steps
# Keep sigmas / timesteps on the requested device so step() can operate on-device without
# extra transfers.
self.sigmas = base_scheduler.sigmas.to(device=device)
self.timesteps = base_scheduler.timesteps.to(device=device)
self._step_index = None
self._begin_index = None
return
# 2. Explicit sigma schedule (ComfyUI-style path)
if sigmas is None:
# `timesteps` is treated as sigmas in RF / flow-matching setups.
sigmas = timesteps
if isinstance(sigmas, list):
sigmas_tensor = torch.tensor(sigmas, dtype=torch.float32)
elif isinstance(sigmas, torch.Tensor):
sigmas_tensor = sigmas.to(dtype=torch.float32)
else:
raise TypeError(f"`sigmas` must be a list or torch.Tensor, got {type(sigmas)}.")
if sigmas_tensor.ndim != 1:
raise ValueError(f"`sigmas` must be a 1D tensor, got shape {tuple(sigmas_tensor.shape)}.")
if sigmas_tensor[-1].abs().item() > 1e-6:
logger.warning(
"The last sigma in the schedule is not zero (%.6f). "
"For best compatibility with ComfyUI's RF sampler, the terminal sigma "
"should be 0.0.",
sigmas_tensor[-1].item(),
)
# Move to device once, then derive timesteps.
if device is not None:
sigmas_tensor = sigmas_tensor.to(device)
# Internal sigma schedule stays in [0, 1] (as provided).
self.sigmas = sigmas_tensor
# Timesteps are scaled to match the training setup of LTX (FlowMatch-style),
# where the network expects timesteps on [0, num_train_timesteps].
# This keeps the transformer conditioning in the expected range while the RF
# scheduler still operates on the raw sigma values.
num_train = float(getattr(self.config, "num_train_timesteps", 1000))
self.timesteps = sigmas_tensor * num_train
if num_inference_steps is not None and num_inference_steps != len(sigmas) - 1:
logger.warning(
"Provided `num_inference_steps=%d` does not match `len(sigmas)-1=%d`. "
"Overriding `num_inference_steps` with `len(sigmas)-1`.",
num_inference_steps,
len(sigmas) - 1,
)
self.num_inference_steps = len(sigmas) - 1
self._step_index = None
self._begin_index = None
def _sigma_broadcast(self, sigma: torch.Tensor, sample: torch.Tensor) -> torch.Tensor:
"""
Helper to broadcast a scalar sigma to the shape of `sample`.
"""
while sigma.ndim < sample.ndim:
sigma = sigma.view(*sigma.shape, 1)
return sigma
def step(
self,
model_output: torch.FloatTensor,
timestep: Union[float, torch.Tensor],
sample: torch.FloatTensor,
generator: Optional[torch.Generator] = None,
return_dict: bool = True,
) -> Union[LTXEulerAncestralRFSchedulerOutput, Tuple[torch.FloatTensor]]:
"""
Perform a single Euler-Ancestral RF update step.
Args:
model_output (`torch.FloatTensor`):
Raw model output at the current step. Interpreted under the CONST parametrization as `v_t`, with
denoised state reconstructed as `x0 = x_t - sigma_t * v_t`.
timestep (`float` or `torch.Tensor`):
The current sigma value (must match one entry in `self.timesteps`).
sample (`torch.FloatTensor`):
Current latent sample `x_t`.
generator (`torch.Generator`, *optional*):
Optional generator for reproducible noise.
return_dict (`bool`):
If `True`, return a `LTXEulerAncestralRFSchedulerOutput`; otherwise return a tuple where the first
element is the updated sample.
"""
if isinstance(timestep, (int, torch.IntTensor, torch.LongTensor)):
raise ValueError(
(
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
" `LTXEulerAncestralRFScheduler.step()` is not supported. Make sure to pass"
" one of the `scheduler.timesteps` values as `timestep`."
),
)
if self.sigmas is None or self.timesteps is None:
raise ValueError("Scheduler has not been initialized. Call `set_timesteps` before `step`.")
if self._step_index is None:
self._init_step_index(timestep)
i = self._step_index
if i >= len(self.sigmas) - 1:
# Already at the end; simply return the current sample.
prev_sample = sample
else:
# Work in float32 for numerical stability
sample_f = sample.to(torch.float32)
model_output_f = model_output.to(torch.float32)
sigma = self.sigmas[i]
sigma_next = self.sigmas[i + 1]
sigma_b = self._sigma_broadcast(sigma.view(1), sample_f)
sigma_next_b = self._sigma_broadcast(sigma_next.view(1), sample_f)
# Approximate denoised x0 under CONST parametrization:
# x0 = x_t - sigma_t * v_t
denoised = sample_f - sigma_b * model_output_f
if sigma_next.abs().item() < 1e-8:
# Final denoising step
x = denoised
else:
eta = float(self.config.eta)
s_noise = float(self.config.s_noise)
# Downstep computation (ComfyUI RF variant)
downstep_ratio = 1.0 + (sigma_next / sigma - 1.0) * eta
sigma_down = sigma_next * downstep_ratio
alpha_ip1 = 1.0 - sigma_next
alpha_down = 1.0 - sigma_down
# Deterministic part (Euler step in (x, x0)-space)
sigma_down_b = self._sigma_broadcast(sigma_down.view(1), sample_f)
alpha_ip1_b = self._sigma_broadcast(alpha_ip1.view(1), sample_f)
alpha_down_b = self._sigma_broadcast(alpha_down.view(1), sample_f)
sigma_ratio = sigma_down_b / sigma_b
x = sigma_ratio * sample_f + (1.0 - sigma_ratio) * denoised
# Stochastic ancestral noise
if eta > 0.0 and s_noise > 0.0:
renoise_coeff = (
(sigma_next_b**2 - sigma_down_b**2 * alpha_ip1_b**2 / (alpha_down_b**2 + 1e-12))
.clamp(min=0.0)
.sqrt()
)
noise = randn_tensor(
sample_f.shape, generator=generator, device=sample_f.device, dtype=sample_f.dtype
)
x = (alpha_ip1_b / (alpha_down_b + 1e-12)) * x + noise * renoise_coeff * s_noise
prev_sample = x.to(sample.dtype)
# Advance internal step index
self._step_index = min(self._step_index + 1, len(self.sigmas) - 1)
if not return_dict:
return (prev_sample,)
return LTXEulerAncestralRFSchedulerOutput(prev_sample=prev_sample)
def __len__(self) -> int:
# For compatibility with other schedulers; used e.g. in some training
# utilities to infer the maximum number of training timesteps.
return int(getattr(self.config, "num_train_timesteps", 1000))

View File

@@ -6,18 +6,11 @@ import random
import re
import warnings
from contextlib import contextmanager
from functools import partial
from typing import Any, Dict, Iterable, List, Optional, Set, Tuple, Type, Union
from typing import Any, Dict, Iterable, List, Optional, Tuple, Union
import numpy as np
import torch
if getattr(torch, "distributed", None) is not None:
from torch.distributed.fsdp import CPUOffload, ShardingStrategy
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
from .models import UNet2DConditionModel
from .pipelines import DiffusionPipeline
from .schedulers import SchedulerMixin
@@ -25,7 +18,6 @@ from .utils import (
convert_state_dict_to_diffusers,
convert_state_dict_to_peft,
deprecate,
is_accelerate_available,
is_peft_available,
is_torch_npu_available,
is_torchvision_available,
@@ -39,9 +31,6 @@ if is_transformers_available():
if transformers.integrations.deepspeed.is_deepspeed_zero3_enabled():
import deepspeed
if is_accelerate_available():
from accelerate.logging import get_logger
if is_peft_available():
from peft import set_peft_model_state_dict
@@ -405,86 +394,6 @@ def find_nearest_bucket(h, w, bucket_options):
return best_bucket_idx
def _to_cpu_contiguous(state_dicts) -> dict:
return {k: v.detach().cpu().contiguous() if isinstance(v, torch.Tensor) else v for k, v in state_dicts.items()}
def get_fsdp_kwargs_from_accelerator(accelerator) -> dict:
"""
Extract and convert FSDP config from Accelerator into PyTorch FSDP kwargs.
"""
kwargs = {}
fsdp_state = getattr(accelerator.state, "fsdp_plugin", None)
if fsdp_state is None:
raise ValueError("Accelerate isn't configured to handle FSDP. Please update your installation.")
fsdp_plugin = accelerator.state.fsdp_plugin
if fsdp_plugin is None:
# FSDP not enabled in Accelerator
kwargs["sharding_strategy"] = ShardingStrategy.FULL_SHARD
else:
# FSDP is enabled → use plugin's strategy, or default if None
kwargs["sharding_strategy"] = fsdp_plugin.sharding_strategy or ShardingStrategy.FULL_SHARD
return kwargs
def wrap_with_fsdp(
model: torch.nn.Module,
device: Union[str, torch.device],
offload: bool = True,
use_orig_params: bool = True,
limit_all_gathers: bool = True,
fsdp_kwargs: Optional[Dict[str, Any]] = None,
transformer_layer_cls: Optional[Set[Type[torch.nn.Module]]] = None,
) -> FSDP:
"""
Wrap a model with FSDP using common defaults and optional transformer auto-wrapping.
Args:
model: Model to wrap
device: Target device (e.g., accelerator.device)
offload: Whether to enable CPU parameter offloading
use_orig_params: Whether to use original parameters
limit_all_gathers: Whether to limit all gathers
fsdp_kwargs: FSDP arguments (sharding_strategy, etc.) — usually from Accelerate config
transformer_layer_cls: Classes for auto-wrapping (if not using policy from fsdp_kwargs)
Returns:
FSDP-wrapped model
"""
logger = get_logger(__name__)
if transformer_layer_cls is None:
# Set the default layers if transformer_layer_cls is not provided
transformer_layer_cls = type(model.model.language_model.layers[0])
logger.info(f"transformer_layer_cls is not provided, auto-inferred as {transformer_layer_cls.__name__}")
# Add auto-wrap policy if transformer layers specified
auto_wrap_policy = partial(
transformer_auto_wrap_policy,
transformer_layer_cls={transformer_layer_cls},
)
config = {
"device_id": device,
"cpu_offload": CPUOffload(offload_params=offload) if offload else None,
"use_orig_params": use_orig_params,
"limit_all_gathers": limit_all_gathers,
"auto_wrap_policy": auto_wrap_policy,
}
if fsdp_kwargs:
config.update(fsdp_kwargs)
fsdp_model = FSDP(model, **config)
return fsdp_model
# Adapted from torch-ema https://github.com/fadel/pytorch_ema/blob/master/torch_ema/ema.py#L14
class EMAModel:
"""

View File

@@ -2634,21 +2634,6 @@ class LCMScheduler(metaclass=DummyObject):
requires_backends(cls, ["torch"])
class LTXEulerAncestralRFScheduler(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
class PNDMScheduler(metaclass=DummyObject):
_backends = ["torch"]

View File

@@ -1892,21 +1892,6 @@ class LTXConditionPipeline(metaclass=DummyObject):
requires_backends(cls, ["torch", "transformers"])
class LTXI2VLongMultiPromptPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
class LTXImageToVideoPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]