mirror of
https://github.com/huggingface/diffusers.git
synced 2025-12-07 04:54:47 +08:00
Compare commits
55 Commits
modular-di
...
mochi-qual
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
d80f4772ec | ||
|
|
50c5607e96 | ||
|
|
b75db11b9d | ||
|
|
952f6e91b0 | ||
|
|
cbbc54b050 | ||
|
|
142169196c | ||
|
|
2a6b82d047 | ||
|
|
4c800e3193 | ||
|
|
ccabe5e1cc | ||
|
|
09fe7ecd26 | ||
|
|
cc7b91d27b | ||
|
|
11ce6b8791 | ||
|
|
3c70b54117 | ||
|
|
bbc58926cc | ||
|
|
c39886ac13 | ||
|
|
7626a34362 | ||
|
|
ae57913fbb | ||
|
|
dc96890d7b | ||
|
|
a29891567e | ||
|
|
77f9d1905a | ||
|
|
53dbc37ea6 | ||
|
|
ba9c1850e8 | ||
|
|
b904325627 | ||
|
|
7854061ebd | ||
|
|
2881f2f986 | ||
|
|
7854bde901 | ||
|
|
d759516b2d | ||
|
|
9c5eb368c4 | ||
|
|
6e2011aa7d | ||
|
|
0e8f20db46 | ||
|
|
c17cef75be | ||
|
|
e6fe9f1a09 | ||
|
|
0fdef41d66 | ||
|
|
61001c8f8f | ||
|
|
fb4e175356 | ||
|
|
b7464e5828 | ||
|
|
8a5d03b903 | ||
|
|
f3fefaecad | ||
|
|
59c9f5d9fa | ||
|
|
883f5c8ef4 | ||
|
|
0b09231c76 | ||
|
|
900feadbc9 | ||
|
|
2cfca5e0d2 | ||
|
|
8b9d5b63ae | ||
|
|
d99234feac | ||
|
|
dded24364c | ||
|
|
3ffa711db1 | ||
|
|
66a5f59ca1 | ||
|
|
1782d0241a | ||
|
|
fcc59d01a9 | ||
|
|
21b09979dc | ||
|
|
79380ca719 | ||
|
|
10275feacd | ||
|
|
30dd9f6845 | ||
|
|
27f81bd54f |
@@ -906,6 +906,177 @@ class SanaMultiscaleLinearAttention(nn.Module):
|
||||
return self.processor(self, hidden_states)
|
||||
|
||||
|
||||
class MochiAttention(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
query_dim: int,
|
||||
added_kv_proj_dim: int,
|
||||
processor: "MochiAttnProcessor2_0",
|
||||
heads: int = 8,
|
||||
dim_head: int = 64,
|
||||
dropout: float = 0.0,
|
||||
bias: bool = False,
|
||||
added_proj_bias: bool = True,
|
||||
out_dim: Optional[int] = None,
|
||||
out_context_dim: Optional[int] = None,
|
||||
out_bias: bool = True,
|
||||
context_pre_only: bool = False,
|
||||
eps: float = 1e-5,
|
||||
):
|
||||
super().__init__()
|
||||
from .normalization import MochiRMSNorm
|
||||
|
||||
self.inner_dim = out_dim if out_dim is not None else dim_head * heads
|
||||
self.out_dim = out_dim if out_dim is not None else query_dim
|
||||
self.out_context_dim = out_context_dim if out_context_dim else query_dim
|
||||
self.context_pre_only = context_pre_only
|
||||
|
||||
self.heads = out_dim // dim_head if out_dim is not None else heads
|
||||
|
||||
self.norm_q = MochiRMSNorm(dim_head, eps, True)
|
||||
self.norm_k = MochiRMSNorm(dim_head, eps, True)
|
||||
self.norm_added_q = MochiRMSNorm(dim_head, eps, True)
|
||||
self.norm_added_k = MochiRMSNorm(dim_head, eps, True)
|
||||
|
||||
self.to_q = nn.Linear(query_dim, self.inner_dim, bias=bias)
|
||||
self.to_k = nn.Linear(query_dim, self.inner_dim, bias=bias)
|
||||
self.to_v = nn.Linear(query_dim, self.inner_dim, bias=bias)
|
||||
|
||||
self.add_k_proj = nn.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias)
|
||||
self.add_v_proj = nn.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias)
|
||||
if self.context_pre_only is not None:
|
||||
self.add_q_proj = nn.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias)
|
||||
|
||||
self.to_out = nn.ModuleList([])
|
||||
self.to_out.append(nn.Linear(self.inner_dim, self.out_dim, bias=out_bias))
|
||||
self.to_out.append(nn.Dropout(dropout))
|
||||
|
||||
if not self.context_pre_only:
|
||||
self.to_add_out = nn.Linear(self.inner_dim, self.out_context_dim, bias=out_bias)
|
||||
|
||||
self.processor = processor
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
encoder_hidden_states: Optional[torch.Tensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
**kwargs,
|
||||
):
|
||||
return self.processor(
|
||||
self,
|
||||
hidden_states,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
class MochiAttnProcessor2_0:
|
||||
"""Attention processor used in Mochi."""
|
||||
|
||||
def __init__(self):
|
||||
if not hasattr(F, "scaled_dot_product_attention"):
|
||||
raise ImportError("MochiAttnProcessor2_0 requires PyTorch 2.0. To use it, please upgrade PyTorch to 2.0.")
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
attn: "MochiAttention",
|
||||
hidden_states: torch.Tensor,
|
||||
encoder_hidden_states: torch.Tensor,
|
||||
attention_mask: torch.Tensor,
|
||||
image_rotary_emb: Optional[torch.Tensor] = None,
|
||||
) -> torch.Tensor:
|
||||
query = attn.to_q(hidden_states)
|
||||
key = attn.to_k(hidden_states)
|
||||
value = attn.to_v(hidden_states)
|
||||
|
||||
query = query.unflatten(2, (attn.heads, -1))
|
||||
key = key.unflatten(2, (attn.heads, -1))
|
||||
value = value.unflatten(2, (attn.heads, -1))
|
||||
|
||||
if attn.norm_q is not None:
|
||||
query = attn.norm_q(query)
|
||||
if attn.norm_k is not None:
|
||||
key = attn.norm_k(key)
|
||||
|
||||
encoder_query = attn.add_q_proj(encoder_hidden_states)
|
||||
encoder_key = attn.add_k_proj(encoder_hidden_states)
|
||||
encoder_value = attn.add_v_proj(encoder_hidden_states)
|
||||
|
||||
encoder_query = encoder_query.unflatten(2, (attn.heads, -1))
|
||||
encoder_key = encoder_key.unflatten(2, (attn.heads, -1))
|
||||
encoder_value = encoder_value.unflatten(2, (attn.heads, -1))
|
||||
|
||||
if attn.norm_added_q is not None:
|
||||
encoder_query = attn.norm_added_q(encoder_query)
|
||||
if attn.norm_added_k is not None:
|
||||
encoder_key = attn.norm_added_k(encoder_key)
|
||||
|
||||
if image_rotary_emb is not None:
|
||||
|
||||
def apply_rotary_emb(x, freqs_cos, freqs_sin):
|
||||
x_even = x[..., 0::2].float()
|
||||
x_odd = x[..., 1::2].float()
|
||||
|
||||
cos = (x_even * freqs_cos - x_odd * freqs_sin).to(x.dtype)
|
||||
sin = (x_even * freqs_sin + x_odd * freqs_cos).to(x.dtype)
|
||||
|
||||
return torch.stack([cos, sin], dim=-1).flatten(-2)
|
||||
|
||||
query = apply_rotary_emb(query, *image_rotary_emb)
|
||||
key = apply_rotary_emb(key, *image_rotary_emb)
|
||||
|
||||
query, key, value = query.transpose(1, 2), key.transpose(1, 2), value.transpose(1, 2)
|
||||
encoder_query, encoder_key, encoder_value = (
|
||||
encoder_query.transpose(1, 2),
|
||||
encoder_key.transpose(1, 2),
|
||||
encoder_value.transpose(1, 2),
|
||||
)
|
||||
|
||||
sequence_length = query.size(2)
|
||||
encoder_sequence_length = encoder_query.size(2)
|
||||
total_length = sequence_length + encoder_sequence_length
|
||||
|
||||
batch_size, heads, _, dim = query.shape
|
||||
attn_outputs = []
|
||||
for idx in range(batch_size):
|
||||
mask = attention_mask[idx][None, :]
|
||||
valid_prompt_token_indices = torch.nonzero(mask.flatten(), as_tuple=False).flatten()
|
||||
|
||||
valid_encoder_query = encoder_query[idx : idx + 1, :, valid_prompt_token_indices, :]
|
||||
valid_encoder_key = encoder_key[idx : idx + 1, :, valid_prompt_token_indices, :]
|
||||
valid_encoder_value = encoder_value[idx : idx + 1, :, valid_prompt_token_indices, :]
|
||||
|
||||
valid_query = torch.cat([query[idx : idx + 1], valid_encoder_query], dim=2)
|
||||
valid_key = torch.cat([key[idx : idx + 1], valid_encoder_key], dim=2)
|
||||
valid_value = torch.cat([value[idx : idx + 1], valid_encoder_value], dim=2)
|
||||
|
||||
attn_output = F.scaled_dot_product_attention(
|
||||
valid_query, valid_key, valid_value, dropout_p=0.0, is_causal=False
|
||||
)
|
||||
valid_sequence_length = attn_output.size(2)
|
||||
attn_output = F.pad(attn_output, (0, 0, 0, total_length - valid_sequence_length))
|
||||
attn_outputs.append(attn_output)
|
||||
|
||||
hidden_states = torch.cat(attn_outputs, dim=0)
|
||||
hidden_states = hidden_states.transpose(1, 2).flatten(2, 3)
|
||||
|
||||
hidden_states, encoder_hidden_states = hidden_states.split_with_sizes(
|
||||
(sequence_length, encoder_sequence_length), dim=1
|
||||
)
|
||||
|
||||
# linear proj
|
||||
hidden_states = attn.to_out[0](hidden_states)
|
||||
# dropout
|
||||
hidden_states = attn.to_out[1](hidden_states)
|
||||
|
||||
if hasattr(attn, "to_add_out"):
|
||||
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
||||
|
||||
return hidden_states, encoder_hidden_states
|
||||
|
||||
|
||||
class AttnProcessor:
|
||||
r"""
|
||||
Default processor for performing attention-related computations.
|
||||
@@ -3868,94 +4039,6 @@ class LuminaAttnProcessor2_0:
|
||||
return hidden_states
|
||||
|
||||
|
||||
class MochiAttnProcessor2_0:
|
||||
"""Attention processor used in Mochi."""
|
||||
|
||||
def __init__(self):
|
||||
if not hasattr(F, "scaled_dot_product_attention"):
|
||||
raise ImportError("MochiAttnProcessor2_0 requires PyTorch 2.0. To use it, please upgrade PyTorch to 2.0.")
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
attn: Attention,
|
||||
hidden_states: torch.Tensor,
|
||||
encoder_hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
image_rotary_emb: Optional[torch.Tensor] = None,
|
||||
) -> torch.Tensor:
|
||||
query = attn.to_q(hidden_states)
|
||||
key = attn.to_k(hidden_states)
|
||||
value = attn.to_v(hidden_states)
|
||||
|
||||
query = query.unflatten(2, (attn.heads, -1))
|
||||
key = key.unflatten(2, (attn.heads, -1))
|
||||
value = value.unflatten(2, (attn.heads, -1))
|
||||
|
||||
if attn.norm_q is not None:
|
||||
query = attn.norm_q(query)
|
||||
if attn.norm_k is not None:
|
||||
key = attn.norm_k(key)
|
||||
|
||||
encoder_query = attn.add_q_proj(encoder_hidden_states)
|
||||
encoder_key = attn.add_k_proj(encoder_hidden_states)
|
||||
encoder_value = attn.add_v_proj(encoder_hidden_states)
|
||||
|
||||
encoder_query = encoder_query.unflatten(2, (attn.heads, -1))
|
||||
encoder_key = encoder_key.unflatten(2, (attn.heads, -1))
|
||||
encoder_value = encoder_value.unflatten(2, (attn.heads, -1))
|
||||
|
||||
if attn.norm_added_q is not None:
|
||||
encoder_query = attn.norm_added_q(encoder_query)
|
||||
if attn.norm_added_k is not None:
|
||||
encoder_key = attn.norm_added_k(encoder_key)
|
||||
|
||||
if image_rotary_emb is not None:
|
||||
|
||||
def apply_rotary_emb(x, freqs_cos, freqs_sin):
|
||||
x_even = x[..., 0::2].float()
|
||||
x_odd = x[..., 1::2].float()
|
||||
|
||||
cos = (x_even * freqs_cos - x_odd * freqs_sin).to(x.dtype)
|
||||
sin = (x_even * freqs_sin + x_odd * freqs_cos).to(x.dtype)
|
||||
|
||||
return torch.stack([cos, sin], dim=-1).flatten(-2)
|
||||
|
||||
query = apply_rotary_emb(query, *image_rotary_emb)
|
||||
key = apply_rotary_emb(key, *image_rotary_emb)
|
||||
|
||||
query, key, value = query.transpose(1, 2), key.transpose(1, 2), value.transpose(1, 2)
|
||||
encoder_query, encoder_key, encoder_value = (
|
||||
encoder_query.transpose(1, 2),
|
||||
encoder_key.transpose(1, 2),
|
||||
encoder_value.transpose(1, 2),
|
||||
)
|
||||
|
||||
sequence_length = query.size(2)
|
||||
encoder_sequence_length = encoder_query.size(2)
|
||||
|
||||
query = torch.cat([query, encoder_query], dim=2)
|
||||
key = torch.cat([key, encoder_key], dim=2)
|
||||
value = torch.cat([value, encoder_value], dim=2)
|
||||
|
||||
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
|
||||
hidden_states = hidden_states.transpose(1, 2).flatten(2, 3)
|
||||
hidden_states = hidden_states.to(query.dtype)
|
||||
|
||||
hidden_states, encoder_hidden_states = hidden_states.split_with_sizes(
|
||||
(sequence_length, encoder_sequence_length), dim=1
|
||||
)
|
||||
|
||||
# linear proj
|
||||
hidden_states = attn.to_out[0](hidden_states)
|
||||
# dropout
|
||||
hidden_states = attn.to_out[1](hidden_states)
|
||||
|
||||
if getattr(attn, "to_add_out", None) is not None:
|
||||
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
||||
|
||||
return hidden_states, encoder_hidden_states
|
||||
|
||||
|
||||
class FusedAttnProcessor2_0:
|
||||
r"""
|
||||
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). It uses
|
||||
@@ -5668,13 +5751,13 @@ AttentionProcessor = Union[
|
||||
AttnProcessorNPU,
|
||||
AttnProcessor2_0,
|
||||
MochiVaeAttnProcessor2_0,
|
||||
MochiAttnProcessor2_0,
|
||||
StableAudioAttnProcessor2_0,
|
||||
HunyuanAttnProcessor2_0,
|
||||
FusedHunyuanAttnProcessor2_0,
|
||||
PAGHunyuanAttnProcessor2_0,
|
||||
PAGCFGHunyuanAttnProcessor2_0,
|
||||
LuminaAttnProcessor2_0,
|
||||
MochiAttnProcessor2_0,
|
||||
FusedAttnProcessor2_0,
|
||||
CustomDiffusionXFormersAttnProcessor,
|
||||
CustomDiffusionAttnProcessor2_0,
|
||||
|
||||
@@ -542,7 +542,6 @@ class PatchEmbed(nn.Module):
|
||||
height, width = latent.shape[-2:]
|
||||
else:
|
||||
height, width = latent.shape[-2] // self.patch_size, latent.shape[-1] // self.patch_size
|
||||
|
||||
latent = self.proj(latent)
|
||||
if self.flatten:
|
||||
latent = latent.flatten(2).transpose(1, 2) # BCHW -> BNC
|
||||
|
||||
@@ -234,33 +234,6 @@ class LuminaRMSNormZero(nn.Module):
|
||||
return x, gate_msa, scale_mlp, gate_mlp
|
||||
|
||||
|
||||
class MochiRMSNormZero(nn.Module):
|
||||
r"""
|
||||
Adaptive RMS Norm used in Mochi.
|
||||
|
||||
Parameters:
|
||||
embedding_dim (`int`): The size of each embedding vector.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, embedding_dim: int, hidden_dim: int, eps: float = 1e-5, elementwise_affine: bool = False
|
||||
) -> None:
|
||||
super().__init__()
|
||||
|
||||
self.silu = nn.SiLU()
|
||||
self.linear = nn.Linear(embedding_dim, hidden_dim)
|
||||
self.norm = RMSNorm(embedding_dim, eps=eps, elementwise_affine=elementwise_affine)
|
||||
|
||||
def forward(
|
||||
self, hidden_states: torch.Tensor, emb: torch.Tensor
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
emb = self.linear(self.silu(emb))
|
||||
scale_msa, gate_msa, scale_mlp, gate_mlp = emb.chunk(4, dim=1)
|
||||
hidden_states = self.norm(hidden_states) * (1 + scale_msa[:, None])
|
||||
|
||||
return hidden_states, gate_msa, scale_mlp, gate_mlp
|
||||
|
||||
|
||||
class AdaLayerNormSingle(nn.Module):
|
||||
r"""
|
||||
Norm layer adaptive layer norm single (adaLN-single).
|
||||
@@ -549,6 +522,36 @@ class RMSNorm(nn.Module):
|
||||
return hidden_states
|
||||
|
||||
|
||||
# TODO: (Dhruv) This can be replaced with regular RMSNorm in Mochi once `_keep_in_fp32_modules` is supported
|
||||
# for sharded checkpoints, see: https://github.com/huggingface/diffusers/issues/10013
|
||||
class MochiRMSNorm(nn.Module):
|
||||
def __init__(self, dim, eps: float, elementwise_affine: bool = True):
|
||||
super().__init__()
|
||||
|
||||
self.eps = eps
|
||||
|
||||
if isinstance(dim, numbers.Integral):
|
||||
dim = (dim,)
|
||||
|
||||
self.dim = torch.Size(dim)
|
||||
|
||||
if elementwise_affine:
|
||||
self.weight = nn.Parameter(torch.ones(dim))
|
||||
else:
|
||||
self.weight = None
|
||||
|
||||
def forward(self, hidden_states):
|
||||
input_dtype = hidden_states.dtype
|
||||
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
|
||||
hidden_states = hidden_states * torch.rsqrt(variance + self.eps)
|
||||
|
||||
if self.weight is not None:
|
||||
hidden_states = hidden_states * self.weight
|
||||
hidden_states = hidden_states.to(input_dtype)
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
class GlobalResponseNorm(nn.Module):
|
||||
# Taken from https://github.com/facebookresearch/ConvNeXt-V2/blob/3608f67cc1dae164790c5d0aead7bf2d73d9719b/models/utils.py#L105
|
||||
def __init__(self, dim):
|
||||
|
||||
@@ -23,16 +23,96 @@ from ...loaders import PeftAdapterMixin
|
||||
from ...utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
|
||||
from ...utils.torch_utils import maybe_allow_in_graph
|
||||
from ..attention import FeedForward
|
||||
from ..attention_processor import Attention, MochiAttnProcessor2_0
|
||||
from ..attention_processor import MochiAttention, MochiAttnProcessor2_0
|
||||
from ..embeddings import MochiCombinedTimestepCaptionEmbedding, PatchEmbed
|
||||
from ..modeling_outputs import Transformer2DModelOutput
|
||||
from ..modeling_utils import ModelMixin
|
||||
from ..normalization import AdaLayerNormContinuous, LuminaLayerNormContinuous, MochiRMSNormZero, RMSNorm
|
||||
from ..normalization import AdaLayerNormContinuous, RMSNorm
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
|
||||
class MochiModulatedRMSNorm(nn.Module):
|
||||
def __init__(self, eps: float):
|
||||
super().__init__()
|
||||
|
||||
self.eps = eps
|
||||
self.norm = RMSNorm(0, eps, False)
|
||||
|
||||
def forward(self, hidden_states, scale=None):
|
||||
hidden_states_dtype = hidden_states.dtype
|
||||
hidden_states = hidden_states.to(torch.float32)
|
||||
|
||||
hidden_states = self.norm(hidden_states)
|
||||
|
||||
if scale is not None:
|
||||
hidden_states = hidden_states * scale
|
||||
|
||||
hidden_states = hidden_states.to(hidden_states_dtype)
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
class MochiLayerNormContinuous(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
embedding_dim: int,
|
||||
conditioning_embedding_dim: int,
|
||||
eps=1e-5,
|
||||
bias=True,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
# AdaLN
|
||||
self.silu = nn.SiLU()
|
||||
self.linear_1 = nn.Linear(conditioning_embedding_dim, embedding_dim, bias=bias)
|
||||
self.norm = MochiModulatedRMSNorm(eps=eps)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
conditioning_embedding: torch.Tensor,
|
||||
) -> torch.Tensor:
|
||||
input_dtype = x.dtype
|
||||
|
||||
# convert back to the original dtype in case `conditioning_embedding`` is upcasted to float32 (needed for hunyuanDiT)
|
||||
scale = self.linear_1(self.silu(conditioning_embedding).to(x.dtype))
|
||||
x = self.norm(x, (1 + scale.unsqueeze(1).to(torch.float32)))
|
||||
|
||||
return x.to(input_dtype)
|
||||
|
||||
|
||||
class MochiRMSNormZero(nn.Module):
|
||||
r"""
|
||||
Adaptive RMS Norm used in Mochi.
|
||||
|
||||
Parameters:
|
||||
embedding_dim (`int`): The size of each embedding vector.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, embedding_dim: int, hidden_dim: int, eps: float = 1e-5, elementwise_affine: bool = False
|
||||
) -> None:
|
||||
super().__init__()
|
||||
|
||||
self.silu = nn.SiLU()
|
||||
self.linear = nn.Linear(embedding_dim, hidden_dim)
|
||||
self.norm = RMSNorm(0, eps, False)
|
||||
|
||||
def forward(
|
||||
self, hidden_states: torch.Tensor, emb: torch.Tensor
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
hidden_states_dtype = hidden_states.dtype
|
||||
|
||||
emb = self.linear(self.silu(emb))
|
||||
scale_msa, gate_msa, scale_mlp, gate_mlp = emb.chunk(4, dim=1)
|
||||
hidden_states = self.norm(hidden_states.to(torch.float32)) * (1 + scale_msa[:, None].to(torch.float32))
|
||||
hidden_states = hidden_states.to(hidden_states_dtype)
|
||||
|
||||
return hidden_states, gate_msa, scale_mlp, gate_mlp
|
||||
|
||||
|
||||
@maybe_allow_in_graph
|
||||
class MochiTransformerBlock(nn.Module):
|
||||
r"""
|
||||
@@ -77,38 +157,32 @@ class MochiTransformerBlock(nn.Module):
|
||||
if not context_pre_only:
|
||||
self.norm1_context = MochiRMSNormZero(dim, 4 * pooled_projection_dim, eps=eps, elementwise_affine=False)
|
||||
else:
|
||||
self.norm1_context = LuminaLayerNormContinuous(
|
||||
self.norm1_context = MochiLayerNormContinuous(
|
||||
embedding_dim=pooled_projection_dim,
|
||||
conditioning_embedding_dim=dim,
|
||||
eps=eps,
|
||||
elementwise_affine=False,
|
||||
norm_type="rms_norm",
|
||||
out_dim=None,
|
||||
)
|
||||
|
||||
self.attn1 = Attention(
|
||||
self.attn1 = MochiAttention(
|
||||
query_dim=dim,
|
||||
cross_attention_dim=None,
|
||||
heads=num_attention_heads,
|
||||
dim_head=attention_head_dim,
|
||||
bias=False,
|
||||
qk_norm=qk_norm,
|
||||
added_kv_proj_dim=pooled_projection_dim,
|
||||
added_proj_bias=False,
|
||||
out_dim=dim,
|
||||
out_context_dim=pooled_projection_dim,
|
||||
context_pre_only=context_pre_only,
|
||||
processor=MochiAttnProcessor2_0(),
|
||||
eps=eps,
|
||||
elementwise_affine=True,
|
||||
eps=1e-5,
|
||||
)
|
||||
|
||||
# TODO(aryan): norm_context layers are not needed when `context_pre_only` is True
|
||||
self.norm2 = RMSNorm(dim, eps=eps, elementwise_affine=False)
|
||||
self.norm2_context = RMSNorm(pooled_projection_dim, eps=eps, elementwise_affine=False)
|
||||
self.norm2 = MochiModulatedRMSNorm(eps=eps)
|
||||
self.norm2_context = MochiModulatedRMSNorm(eps=eps) if not self.context_pre_only else None
|
||||
|
||||
self.norm3 = RMSNorm(dim, eps=eps, elementwise_affine=False)
|
||||
self.norm3_context = RMSNorm(pooled_projection_dim, eps=eps, elementwise_affine=False)
|
||||
self.norm3 = MochiModulatedRMSNorm(eps)
|
||||
self.norm3_context = MochiModulatedRMSNorm(eps=eps) if not self.context_pre_only else None
|
||||
|
||||
self.ff = FeedForward(dim, inner_dim=self.ff_inner_dim, activation_fn=activation_fn, bias=False)
|
||||
self.ff_context = None
|
||||
@@ -120,14 +194,15 @@ class MochiTransformerBlock(nn.Module):
|
||||
bias=False,
|
||||
)
|
||||
|
||||
self.norm4 = RMSNorm(dim, eps=eps, elementwise_affine=False)
|
||||
self.norm4_context = RMSNorm(pooled_projection_dim, eps=eps, elementwise_affine=False)
|
||||
self.norm4 = MochiModulatedRMSNorm(eps=eps)
|
||||
self.norm4_context = MochiModulatedRMSNorm(eps=eps)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
encoder_hidden_states: torch.Tensor,
|
||||
temb: torch.Tensor,
|
||||
encoder_attention_mask: torch.Tensor,
|
||||
image_rotary_emb: Optional[torch.Tensor] = None,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
norm_hidden_states, gate_msa, scale_mlp, gate_mlp = self.norm1(hidden_states, temb)
|
||||
@@ -143,22 +218,25 @@ class MochiTransformerBlock(nn.Module):
|
||||
hidden_states=norm_hidden_states,
|
||||
encoder_hidden_states=norm_encoder_hidden_states,
|
||||
image_rotary_emb=image_rotary_emb,
|
||||
attention_mask=encoder_attention_mask,
|
||||
)
|
||||
|
||||
hidden_states = hidden_states + self.norm2(attn_hidden_states) * torch.tanh(gate_msa).unsqueeze(1)
|
||||
norm_hidden_states = self.norm3(hidden_states) * (1 + scale_mlp.unsqueeze(1))
|
||||
hidden_states = hidden_states + self.norm2(attn_hidden_states, torch.tanh(gate_msa).unsqueeze(1))
|
||||
norm_hidden_states = self.norm3(hidden_states, (1 + scale_mlp.unsqueeze(1).to(torch.float32)))
|
||||
ff_output = self.ff(norm_hidden_states)
|
||||
hidden_states = hidden_states + self.norm4(ff_output) * torch.tanh(gate_mlp).unsqueeze(1)
|
||||
hidden_states = hidden_states + self.norm4(ff_output, torch.tanh(gate_mlp).unsqueeze(1))
|
||||
|
||||
if not self.context_pre_only:
|
||||
encoder_hidden_states = encoder_hidden_states + self.norm2_context(
|
||||
context_attn_hidden_states
|
||||
) * torch.tanh(enc_gate_msa).unsqueeze(1)
|
||||
norm_encoder_hidden_states = self.norm3_context(encoder_hidden_states) * (1 + enc_scale_mlp.unsqueeze(1))
|
||||
context_attn_hidden_states, torch.tanh(enc_gate_msa).unsqueeze(1)
|
||||
)
|
||||
norm_encoder_hidden_states = self.norm3_context(
|
||||
encoder_hidden_states, (1 + enc_scale_mlp.unsqueeze(1).to(torch.float32))
|
||||
)
|
||||
context_ff_output = self.ff_context(norm_encoder_hidden_states)
|
||||
encoder_hidden_states = encoder_hidden_states + self.norm4_context(context_ff_output) * torch.tanh(
|
||||
enc_gate_mlp
|
||||
).unsqueeze(1)
|
||||
encoder_hidden_states = encoder_hidden_states + self.norm4_context(
|
||||
context_ff_output, torch.tanh(enc_gate_mlp).unsqueeze(1)
|
||||
)
|
||||
|
||||
return hidden_states, encoder_hidden_states
|
||||
|
||||
@@ -203,7 +281,10 @@ class MochiRoPE(nn.Module):
|
||||
return positions
|
||||
|
||||
def _create_rope(self, freqs: torch.Tensor, pos: torch.Tensor) -> torch.Tensor:
|
||||
freqs = torch.einsum("nd,dhf->nhf", pos, freqs.float())
|
||||
with torch.autocast(freqs.device.type, torch.float32):
|
||||
# Always run ROPE freqs computation in FP32
|
||||
freqs = torch.einsum("nd,dhf->nhf", pos.to(torch.float32), freqs.to(torch.float32))
|
||||
|
||||
freqs_cos = torch.cos(freqs)
|
||||
freqs_sin = torch.sin(freqs)
|
||||
return freqs_cos, freqs_sin
|
||||
@@ -309,7 +390,11 @@ class MochiTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
|
||||
)
|
||||
|
||||
self.norm_out = AdaLayerNormContinuous(
|
||||
inner_dim, inner_dim, elementwise_affine=False, eps=1e-6, norm_type="layer_norm"
|
||||
inner_dim,
|
||||
inner_dim,
|
||||
elementwise_affine=False,
|
||||
eps=1e-6,
|
||||
norm_type="layer_norm",
|
||||
)
|
||||
self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * out_channels)
|
||||
|
||||
@@ -350,7 +435,10 @@ class MochiTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
|
||||
post_patch_width = width // p
|
||||
|
||||
temb, encoder_hidden_states = self.time_embed(
|
||||
timestep, encoder_hidden_states, encoder_attention_mask, hidden_dtype=hidden_states.dtype
|
||||
timestep,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
hidden_dtype=hidden_states.dtype,
|
||||
)
|
||||
|
||||
hidden_states = hidden_states.permute(0, 2, 1, 3, 4).flatten(0, 1)
|
||||
@@ -381,6 +469,7 @@ class MochiTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
|
||||
hidden_states,
|
||||
encoder_hidden_states,
|
||||
temb,
|
||||
encoder_attention_mask,
|
||||
image_rotary_emb,
|
||||
**ckpt_kwargs,
|
||||
)
|
||||
@@ -389,9 +478,9 @@ class MochiTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
|
||||
hidden_states=hidden_states,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
temb=temb,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
image_rotary_emb=image_rotary_emb,
|
||||
)
|
||||
|
||||
hidden_states = self.norm_out(hidden_states, temb)
|
||||
hidden_states = self.proj_out(hidden_states)
|
||||
|
||||
|
||||
@@ -198,7 +198,6 @@ class LTXPipeline(DiffusionPipeline, FromSingleFileMixin, LTXVideoLoraLoaderMixi
|
||||
self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 128
|
||||
)
|
||||
|
||||
# Copied from diffusers.pipelines.mochi.pipeline_mochi.MochiPipeline._get_t5_prompt_embeds with 256->128
|
||||
def _get_t5_prompt_embeds(
|
||||
self,
|
||||
prompt: Union[str, List[str]] = None,
|
||||
|
||||
@@ -221,7 +221,6 @@ class LTXImageToVideoPipeline(DiffusionPipeline, FromSingleFileMixin, LTXVideoLo
|
||||
self.default_width = 704
|
||||
self.default_frames = 121
|
||||
|
||||
# Copied from diffusers.pipelines.mochi.pipeline_mochi.MochiPipeline._get_t5_prompt_embeds with 256->128
|
||||
def _get_t5_prompt_embeds(
|
||||
self,
|
||||
prompt: Union[str, List[str]] = None,
|
||||
|
||||
@@ -210,7 +210,6 @@ class MochiPipeline(DiffusionPipeline, Mochi1LoraLoaderMixin):
|
||||
self.default_height = 480
|
||||
self.default_width = 848
|
||||
|
||||
# Adapted from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline._get_t5_prompt_embeds
|
||||
def _get_t5_prompt_embeds(
|
||||
self,
|
||||
prompt: Union[str, List[str]] = None,
|
||||
@@ -233,9 +232,13 @@ class MochiPipeline(DiffusionPipeline, Mochi1LoraLoaderMixin):
|
||||
add_special_tokens=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
|
||||
text_input_ids = text_inputs.input_ids
|
||||
prompt_attention_mask = text_inputs.attention_mask
|
||||
prompt_attention_mask = prompt_attention_mask.bool().to(device)
|
||||
if prompt == "" or prompt[-1] == "":
|
||||
text_input_ids = torch.zeros_like(text_input_ids, device=device)
|
||||
prompt_attention_mask = torch.zeros_like(prompt_attention_mask, dtype=torch.bool, device=device)
|
||||
|
||||
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
||||
|
||||
@@ -246,7 +249,7 @@ class MochiPipeline(DiffusionPipeline, Mochi1LoraLoaderMixin):
|
||||
f" {max_sequence_length} tokens: {removed_text}"
|
||||
)
|
||||
|
||||
prompt_embeds = self.text_encoder(text_input_ids.to(device))[0]
|
||||
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=prompt_attention_mask)[0]
|
||||
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
||||
|
||||
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
||||
@@ -451,7 +454,8 @@ class MochiPipeline(DiffusionPipeline, Mochi1LoraLoaderMixin):
|
||||
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
||||
)
|
||||
|
||||
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
||||
latents = randn_tensor(shape, generator=generator, device=device, dtype=torch.float32)
|
||||
latents = latents.to(dtype)
|
||||
return latents
|
||||
|
||||
@property
|
||||
@@ -483,7 +487,7 @@ class MochiPipeline(DiffusionPipeline, Mochi1LoraLoaderMixin):
|
||||
height: Optional[int] = None,
|
||||
width: Optional[int] = None,
|
||||
num_frames: int = 19,
|
||||
num_inference_steps: int = 28,
|
||||
num_inference_steps: int = 64,
|
||||
timesteps: List[int] = None,
|
||||
guidance_scale: float = 4.5,
|
||||
num_videos_per_prompt: Optional[int] = 1,
|
||||
@@ -605,7 +609,6 @@ class MochiPipeline(DiffusionPipeline, Mochi1LoraLoaderMixin):
|
||||
batch_size = prompt_embeds.shape[0]
|
||||
|
||||
device = self._execution_device
|
||||
|
||||
# 3. Prepare text embeddings
|
||||
(
|
||||
prompt_embeds,
|
||||
@@ -624,10 +627,6 @@ class MochiPipeline(DiffusionPipeline, Mochi1LoraLoaderMixin):
|
||||
max_sequence_length=max_sequence_length,
|
||||
device=device,
|
||||
)
|
||||
if self.do_classifier_free_guidance:
|
||||
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
||||
prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0)
|
||||
|
||||
# 4. Prepare latent variables
|
||||
num_channels_latents = self.transformer.config.in_channels
|
||||
latents = self.prepare_latents(
|
||||
@@ -642,6 +641,10 @@ class MochiPipeline(DiffusionPipeline, Mochi1LoraLoaderMixin):
|
||||
latents,
|
||||
)
|
||||
|
||||
if self.do_classifier_free_guidance:
|
||||
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
||||
prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0)
|
||||
|
||||
# 5. Prepare timestep
|
||||
# from https://github.com/genmoai/models/blob/075b6e36db58f1242921deff83a1066887b9c9e1/src/mochi_preview/infer.py#L77
|
||||
threshold_noise = 0.025
|
||||
@@ -676,6 +679,8 @@ class MochiPipeline(DiffusionPipeline, Mochi1LoraLoaderMixin):
|
||||
attention_kwargs=attention_kwargs,
|
||||
return_dict=False,
|
||||
)[0]
|
||||
# Mochi CFG + Sampling runs in FP32
|
||||
noise_pred = noise_pred.to(torch.float32)
|
||||
|
||||
if self.do_classifier_free_guidance:
|
||||
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
||||
@@ -683,7 +688,8 @@ class MochiPipeline(DiffusionPipeline, Mochi1LoraLoaderMixin):
|
||||
|
||||
# compute the previous noisy sample x_t -> x_t-1
|
||||
latents_dtype = latents.dtype
|
||||
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
||||
latents = self.scheduler.step(noise_pred, t, latents.to(torch.float32), return_dict=False)[0]
|
||||
latents = latents.to(latents_dtype)
|
||||
|
||||
if latents.dtype != latents_dtype:
|
||||
if torch.backends.mps.is_available():
|
||||
|
||||
Reference in New Issue
Block a user