Compare commits

...

3 Commits

Author SHA1 Message Date
sayakpaul
b56112db6e use backend-agnostic cache and pass devide. 2025-04-09 11:48:26 +05:30
Sayak Paul
f50de75b69 Merge branch 'main' into fix-sd3-controlnet-validation 2025-04-09 11:14:43 +05:30
sayakpaul
579bb5f418 fix: SD3 ControlNet validation so that it runs on a A100. 2025-04-09 11:13:43 +05:30

View File

@@ -17,6 +17,7 @@ import argparse
import contextlib
import copy
import functools
import gc
import logging
import math
import os
@@ -52,6 +53,7 @@ from diffusers.optimization import get_scheduler
from diffusers.training_utils import compute_density_for_timestep_sampling, compute_loss_weighting_for_sd3, free_memory
from diffusers.utils import check_min_version, is_wandb_available, make_image_grid
from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card
from diffusers.utils.testing_utils import backend_empty_cache
from diffusers.utils.torch_utils import is_compiled_module
@@ -74,8 +76,9 @@ def log_validation(controlnet, args, accelerator, weight_dtype, step, is_final_v
pipeline = StableDiffusion3ControlNetPipeline.from_pretrained(
args.pretrained_model_name_or_path,
controlnet=controlnet,
controlnet=None,
safety_checker=None,
transformer=None,
revision=args.revision,
variant=args.variant,
torch_dtype=weight_dtype,
@@ -102,18 +105,55 @@ def log_validation(controlnet, args, accelerator, weight_dtype, step, is_final_v
"number of `args.validation_image` and `args.validation_prompt` should be checked in `parse_args`"
)
with torch.no_grad():
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = pipeline.encode_prompt(
validation_prompts,
prompt_2=None,
prompt_3=None,
)
del pipeline
gc.collect()
backend_empty_cache(accelerator.device.type)
pipeline = StableDiffusion3ControlNetPipeline.from_pretrained(
args.pretrained_model_name_or_path,
controlnet=controlnet,
safety_checker=None,
text_encoder=None,
text_encoder_2=None,
text_encoder_3=None,
revision=args.revision,
variant=args.variant,
torch_dtype=weight_dtype,
)
pipeline.enable_model_cpu_offload(device=accelerator.device.type)
pipeline.set_progress_bar_config(disable=True)
image_logs = []
inference_ctx = contextlib.nullcontext() if is_final_validation else torch.autocast(accelerator.device.type)
for validation_prompt, validation_image in zip(validation_prompts, validation_images):
for i, validation_image in enumerate(validation_images):
validation_image = Image.open(validation_image).convert("RGB")
validation_prompt = validation_prompts[i]
images = []
for _ in range(args.num_validation_images):
with inference_ctx:
image = pipeline(
validation_prompt, control_image=validation_image, num_inference_steps=20, generator=generator
prompt_embeds=prompt_embeds[i].unsqueeze(0),
negative_prompt_embeds=negative_prompt_embeds[i].unsqueeze(0),
pooled_prompt_embeds=pooled_prompt_embeds[i].unsqueeze(0),
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds[i].unsqueeze(0),
control_image=validation_image,
num_inference_steps=20,
generator=generator,
).images[0]
images.append(image)
@@ -655,6 +695,7 @@ def make_train_dataset(args, tokenizer_one, tokenizer_two, tokenizer_three, acce
dataset = load_dataset(
args.train_data_dir,
cache_dir=args.cache_dir,
trust_remote_code=True,
)
# See more about loading custom images at
# https://huggingface.co/docs/datasets/v2.0.0/en/dataset_script