mirror of
https://github.com/huggingface/diffusers.git
synced 2026-02-05 10:25:17 +08:00
Compare commits
2 Commits
flux-conti
...
main
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
03af690b60 | ||
|
|
90818e82b3 |
@@ -66,7 +66,7 @@ from diffusers import DiffusionPipeline, PipelineQuantizationConfig, TorchAoConf
|
||||
from torchao.quantization import Int4WeightOnlyConfig
|
||||
|
||||
pipeline_quant_config = PipelineQuantizationConfig(
|
||||
quant_mapping={"transformer": TorchAoConfig(Int4WeightOnlyConfig(group_size=128)))}
|
||||
quant_mapping={"transformer": TorchAoConfig(Int4WeightOnlyConfig(group_size=128))}
|
||||
)
|
||||
pipeline = DiffusionPipeline.from_pretrained(
|
||||
"black-forest-labs/FLUX.1-dev",
|
||||
|
||||
@@ -545,7 +545,9 @@ class CosineDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
|
||||
def index_for_timestep(
|
||||
self, timestep: Union[int, torch.Tensor], schedule_timesteps: Optional[torch.Tensor] = None
|
||||
self,
|
||||
timestep: Union[int, torch.Tensor],
|
||||
schedule_timesteps: Optional[torch.Tensor] = None,
|
||||
) -> int:
|
||||
"""
|
||||
Find the index for a given timestep in the schedule.
|
||||
|
||||
@@ -867,7 +867,9 @@ class DEISMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
|
||||
def index_for_timestep(
|
||||
self, timestep: Union[int, torch.Tensor], schedule_timesteps: Optional[torch.Tensor] = None
|
||||
self,
|
||||
timestep: Union[int, torch.Tensor],
|
||||
schedule_timesteps: Optional[torch.Tensor] = None,
|
||||
) -> int:
|
||||
"""
|
||||
Find the index for a given timestep in the schedule.
|
||||
|
||||
@@ -245,13 +245,26 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
):
|
||||
if self.config.use_beta_sigmas and not is_scipy_available():
|
||||
raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
|
||||
if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
|
||||
if (
|
||||
sum(
|
||||
[
|
||||
self.config.use_beta_sigmas,
|
||||
self.config.use_exponential_sigmas,
|
||||
self.config.use_karras_sigmas,
|
||||
]
|
||||
)
|
||||
> 1
|
||||
):
|
||||
raise ValueError(
|
||||
"Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
|
||||
)
|
||||
if algorithm_type in ["dpmsolver", "sde-dpmsolver"]:
|
||||
deprecation_message = f"algorithm_type {algorithm_type} is deprecated and will be removed in a future version. Choose from `dpmsolver++` or `sde-dpmsolver++` instead"
|
||||
deprecate("algorithm_types dpmsolver and sde-dpmsolver", "1.0.0", deprecation_message)
|
||||
deprecate(
|
||||
"algorithm_types dpmsolver and sde-dpmsolver",
|
||||
"1.0.0",
|
||||
deprecation_message,
|
||||
)
|
||||
|
||||
if trained_betas is not None:
|
||||
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
|
||||
@@ -259,7 +272,15 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
|
||||
elif beta_schedule == "scaled_linear":
|
||||
# this schedule is very specific to the latent diffusion model.
|
||||
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
|
||||
self.betas = (
|
||||
torch.linspace(
|
||||
beta_start**0.5,
|
||||
beta_end**0.5,
|
||||
num_train_timesteps,
|
||||
dtype=torch.float32,
|
||||
)
|
||||
** 2
|
||||
)
|
||||
elif beta_schedule == "squaredcos_cap_v2":
|
||||
# Glide cosine schedule
|
||||
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
||||
@@ -287,7 +308,12 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
self.init_noise_sigma = 1.0
|
||||
|
||||
# settings for DPM-Solver
|
||||
if algorithm_type not in ["dpmsolver", "dpmsolver++", "sde-dpmsolver", "sde-dpmsolver++"]:
|
||||
if algorithm_type not in [
|
||||
"dpmsolver",
|
||||
"dpmsolver++",
|
||||
"sde-dpmsolver",
|
||||
"sde-dpmsolver++",
|
||||
]:
|
||||
if algorithm_type == "deis":
|
||||
self.register_to_config(algorithm_type="dpmsolver++")
|
||||
else:
|
||||
@@ -724,7 +750,7 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
self,
|
||||
model_output: torch.Tensor,
|
||||
*args,
|
||||
sample: torch.Tensor = None,
|
||||
sample: Optional[torch.Tensor] = None,
|
||||
**kwargs,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
@@ -738,7 +764,7 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
Args:
|
||||
model_output (`torch.Tensor`):
|
||||
The direct output from the learned diffusion model.
|
||||
sample (`torch.Tensor`):
|
||||
sample (`torch.Tensor`, *optional*):
|
||||
A current instance of a sample created by the diffusion process.
|
||||
|
||||
Returns:
|
||||
@@ -822,7 +848,7 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
self,
|
||||
model_output: torch.Tensor,
|
||||
*args,
|
||||
sample: torch.Tensor = None,
|
||||
sample: Optional[torch.Tensor] = None,
|
||||
noise: Optional[torch.Tensor] = None,
|
||||
**kwargs,
|
||||
) -> torch.Tensor:
|
||||
@@ -832,8 +858,10 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
Args:
|
||||
model_output (`torch.Tensor`):
|
||||
The direct output from the learned diffusion model.
|
||||
sample (`torch.Tensor`):
|
||||
sample (`torch.Tensor`, *optional*):
|
||||
A current instance of a sample created by the diffusion process.
|
||||
noise (`torch.Tensor`, *optional*):
|
||||
The noise tensor.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
@@ -860,7 +888,10 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
"Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
|
||||
)
|
||||
|
||||
sigma_t, sigma_s = self.sigmas[self.step_index + 1], self.sigmas[self.step_index]
|
||||
sigma_t, sigma_s = (
|
||||
self.sigmas[self.step_index + 1],
|
||||
self.sigmas[self.step_index],
|
||||
)
|
||||
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
|
||||
alpha_s, sigma_s = self._sigma_to_alpha_sigma_t(sigma_s)
|
||||
lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
|
||||
@@ -891,7 +922,7 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
self,
|
||||
model_output_list: List[torch.Tensor],
|
||||
*args,
|
||||
sample: torch.Tensor = None,
|
||||
sample: Optional[torch.Tensor] = None,
|
||||
noise: Optional[torch.Tensor] = None,
|
||||
**kwargs,
|
||||
) -> torch.Tensor:
|
||||
@@ -901,7 +932,7 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
Args:
|
||||
model_output_list (`List[torch.Tensor]`):
|
||||
The direct outputs from learned diffusion model at current and latter timesteps.
|
||||
sample (`torch.Tensor`):
|
||||
sample (`torch.Tensor`, *optional*):
|
||||
A current instance of a sample created by the diffusion process.
|
||||
|
||||
Returns:
|
||||
@@ -1014,7 +1045,7 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
self,
|
||||
model_output_list: List[torch.Tensor],
|
||||
*args,
|
||||
sample: torch.Tensor = None,
|
||||
sample: Optional[torch.Tensor] = None,
|
||||
noise: Optional[torch.Tensor] = None,
|
||||
**kwargs,
|
||||
) -> torch.Tensor:
|
||||
@@ -1024,8 +1055,10 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
Args:
|
||||
model_output_list (`List[torch.Tensor]`):
|
||||
The direct outputs from learned diffusion model at current and latter timesteps.
|
||||
sample (`torch.Tensor`):
|
||||
sample (`torch.Tensor`, *optional*):
|
||||
A current instance of a sample created by diffusion process.
|
||||
noise (`torch.Tensor`, *optional*):
|
||||
The noise tensor.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
@@ -1106,7 +1139,9 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
return x_t
|
||||
|
||||
def index_for_timestep(
|
||||
self, timestep: Union[int, torch.Tensor], schedule_timesteps: Optional[torch.Tensor] = None
|
||||
self,
|
||||
timestep: Union[int, torch.Tensor],
|
||||
schedule_timesteps: Optional[torch.Tensor] = None,
|
||||
) -> int:
|
||||
"""
|
||||
Find the index for a given timestep in the schedule.
|
||||
@@ -1216,7 +1251,10 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
sample = sample.to(torch.float32)
|
||||
if self.config.algorithm_type in ["sde-dpmsolver", "sde-dpmsolver++"] and variance_noise is None:
|
||||
noise = randn_tensor(
|
||||
model_output.shape, generator=generator, device=model_output.device, dtype=torch.float32
|
||||
model_output.shape,
|
||||
generator=generator,
|
||||
device=model_output.device,
|
||||
dtype=torch.float32,
|
||||
)
|
||||
elif self.config.algorithm_type in ["sde-dpmsolver", "sde-dpmsolver++"]:
|
||||
noise = variance_noise.to(device=model_output.device, dtype=torch.float32)
|
||||
|
||||
@@ -141,6 +141,10 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
|
||||
use_beta_sigmas (`bool`, *optional*, defaults to `False`):
|
||||
Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to [Beta
|
||||
Sampling is All You Need](https://huggingface.co/papers/2407.12173) for more information.
|
||||
use_flow_sigmas (`bool`, *optional*, defaults to `False`):
|
||||
Whether to use flow sigmas for step sizes in the noise schedule during the sampling process.
|
||||
flow_shift (`float`, *optional*, defaults to 1.0):
|
||||
The flow shift factor. Valid only when `use_flow_sigmas=True`.
|
||||
lambda_min_clipped (`float`, defaults to `-inf`):
|
||||
Clipping threshold for the minimum value of `lambda(t)` for numerical stability. This is critical for the
|
||||
cosine (`squaredcos_cap_v2`) noise schedule.
|
||||
@@ -163,15 +167,15 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
|
||||
num_train_timesteps: int = 1000,
|
||||
beta_start: float = 0.0001,
|
||||
beta_end: float = 0.02,
|
||||
beta_schedule: str = "linear",
|
||||
beta_schedule: Literal["linear", "scaled_linear", "squaredcos_cap_v2"] = "linear",
|
||||
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
|
||||
solver_order: int = 2,
|
||||
prediction_type: str = "epsilon",
|
||||
prediction_type: Literal["epsilon", "sample", "v_prediction", "flow_prediction"] = "epsilon",
|
||||
thresholding: bool = False,
|
||||
dynamic_thresholding_ratio: float = 0.995,
|
||||
sample_max_value: float = 1.0,
|
||||
algorithm_type: str = "dpmsolver++",
|
||||
solver_type: str = "midpoint",
|
||||
algorithm_type: Literal["dpmsolver", "dpmsolver++", "sde-dpmsolver", "sde-dpmsolver++"] = "dpmsolver++",
|
||||
solver_type: Literal["midpoint", "heun"] = "midpoint",
|
||||
lower_order_final: bool = True,
|
||||
euler_at_final: bool = False,
|
||||
use_karras_sigmas: Optional[bool] = False,
|
||||
@@ -180,19 +184,32 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
|
||||
use_flow_sigmas: Optional[bool] = False,
|
||||
flow_shift: Optional[float] = 1.0,
|
||||
lambda_min_clipped: float = -float("inf"),
|
||||
variance_type: Optional[str] = None,
|
||||
timestep_spacing: str = "linspace",
|
||||
variance_type: Optional[Literal["learned", "learned_range"]] = None,
|
||||
timestep_spacing: Literal["linspace", "leading", "trailing"] = "linspace",
|
||||
steps_offset: int = 0,
|
||||
):
|
||||
if self.config.use_beta_sigmas and not is_scipy_available():
|
||||
raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
|
||||
if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
|
||||
if (
|
||||
sum(
|
||||
[
|
||||
self.config.use_beta_sigmas,
|
||||
self.config.use_exponential_sigmas,
|
||||
self.config.use_karras_sigmas,
|
||||
]
|
||||
)
|
||||
> 1
|
||||
):
|
||||
raise ValueError(
|
||||
"Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
|
||||
)
|
||||
if algorithm_type in ["dpmsolver", "sde-dpmsolver"]:
|
||||
deprecation_message = f"algorithm_type {algorithm_type} is deprecated and will be removed in a future version. Choose from `dpmsolver++` or `sde-dpmsolver++` instead"
|
||||
deprecate("algorithm_types dpmsolver and sde-dpmsolver", "1.0.0", deprecation_message)
|
||||
deprecate(
|
||||
"algorithm_types dpmsolver and sde-dpmsolver",
|
||||
"1.0.0",
|
||||
deprecation_message,
|
||||
)
|
||||
|
||||
if trained_betas is not None:
|
||||
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
|
||||
@@ -200,7 +217,15 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
|
||||
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
|
||||
elif beta_schedule == "scaled_linear":
|
||||
# this schedule is very specific to the latent diffusion model.
|
||||
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
|
||||
self.betas = (
|
||||
torch.linspace(
|
||||
beta_start**0.5,
|
||||
beta_end**0.5,
|
||||
num_train_timesteps,
|
||||
dtype=torch.float32,
|
||||
)
|
||||
** 2
|
||||
)
|
||||
elif beta_schedule == "squaredcos_cap_v2":
|
||||
# Glide cosine schedule
|
||||
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
||||
@@ -219,7 +244,12 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
|
||||
self.init_noise_sigma = 1.0
|
||||
|
||||
# settings for DPM-Solver
|
||||
if algorithm_type not in ["dpmsolver", "dpmsolver++", "sde-dpmsolver", "sde-dpmsolver++"]:
|
||||
if algorithm_type not in [
|
||||
"dpmsolver",
|
||||
"dpmsolver++",
|
||||
"sde-dpmsolver",
|
||||
"sde-dpmsolver++",
|
||||
]:
|
||||
if algorithm_type == "deis":
|
||||
self.register_to_config(algorithm_type="dpmsolver++")
|
||||
else:
|
||||
@@ -250,7 +280,11 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
|
||||
"""
|
||||
return self._step_index
|
||||
|
||||
def set_timesteps(self, num_inference_steps: int = None, device: Union[str, torch.device] = None):
|
||||
def set_timesteps(
|
||||
self,
|
||||
num_inference_steps: Optional[int] = None,
|
||||
device: Optional[Union[str, torch.device]] = None,
|
||||
):
|
||||
"""
|
||||
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
||||
|
||||
@@ -382,7 +416,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
|
||||
return sample
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
|
||||
def _sigma_to_t(self, sigma, log_sigmas):
|
||||
def _sigma_to_t(self, sigma: np.ndarray, log_sigmas: np.ndarray) -> np.ndarray:
|
||||
"""
|
||||
Convert sigma values to corresponding timestep values through interpolation.
|
||||
|
||||
@@ -419,7 +453,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
|
||||
return t
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._sigma_to_alpha_sigma_t
|
||||
def _sigma_to_alpha_sigma_t(self, sigma):
|
||||
def _sigma_to_alpha_sigma_t(self, sigma: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
Convert sigma values to alpha_t and sigma_t values.
|
||||
|
||||
@@ -441,7 +475,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
|
||||
return alpha_t, sigma_t
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
|
||||
def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
|
||||
def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
|
||||
"""
|
||||
Construct the noise schedule as proposed in [Elucidating the Design Space of Diffusion-Based Generative
|
||||
Models](https://huggingface.co/papers/2206.00364).
|
||||
@@ -567,7 +601,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
|
||||
self,
|
||||
model_output: torch.Tensor,
|
||||
*args,
|
||||
sample: torch.Tensor = None,
|
||||
sample: Optional[torch.Tensor] = None,
|
||||
**kwargs,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
@@ -581,7 +615,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
|
||||
Args:
|
||||
model_output (`torch.Tensor`):
|
||||
The direct output from the learned diffusion model.
|
||||
sample (`torch.Tensor`):
|
||||
sample (`torch.Tensor`, *optional*):
|
||||
A current instance of a sample created by the diffusion process.
|
||||
|
||||
Returns:
|
||||
@@ -666,7 +700,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
|
||||
self,
|
||||
model_output: torch.Tensor,
|
||||
*args,
|
||||
sample: torch.Tensor = None,
|
||||
sample: Optional[torch.Tensor] = None,
|
||||
noise: Optional[torch.Tensor] = None,
|
||||
**kwargs,
|
||||
) -> torch.Tensor:
|
||||
@@ -676,8 +710,10 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
|
||||
Args:
|
||||
model_output (`torch.Tensor`):
|
||||
The direct output from the learned diffusion model.
|
||||
sample (`torch.Tensor`):
|
||||
sample (`torch.Tensor`, *optional*):
|
||||
A current instance of a sample created by the diffusion process.
|
||||
noise (`torch.Tensor`, *optional*):
|
||||
The noise tensor.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
@@ -704,7 +740,10 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
|
||||
"Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
|
||||
)
|
||||
|
||||
sigma_t, sigma_s = self.sigmas[self.step_index + 1], self.sigmas[self.step_index]
|
||||
sigma_t, sigma_s = (
|
||||
self.sigmas[self.step_index + 1],
|
||||
self.sigmas[self.step_index],
|
||||
)
|
||||
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
|
||||
alpha_s, sigma_s = self._sigma_to_alpha_sigma_t(sigma_s)
|
||||
lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
|
||||
@@ -736,7 +775,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
|
||||
self,
|
||||
model_output_list: List[torch.Tensor],
|
||||
*args,
|
||||
sample: torch.Tensor = None,
|
||||
sample: Optional[torch.Tensor] = None,
|
||||
noise: Optional[torch.Tensor] = None,
|
||||
**kwargs,
|
||||
) -> torch.Tensor:
|
||||
@@ -746,7 +785,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
|
||||
Args:
|
||||
model_output_list (`List[torch.Tensor]`):
|
||||
The direct outputs from learned diffusion model at current and latter timesteps.
|
||||
sample (`torch.Tensor`):
|
||||
sample (`torch.Tensor`, *optional*):
|
||||
A current instance of a sample created by the diffusion process.
|
||||
|
||||
Returns:
|
||||
@@ -860,7 +899,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
|
||||
self,
|
||||
model_output_list: List[torch.Tensor],
|
||||
*args,
|
||||
sample: torch.Tensor = None,
|
||||
sample: Optional[torch.Tensor] = None,
|
||||
noise: Optional[torch.Tensor] = None,
|
||||
**kwargs,
|
||||
) -> torch.Tensor:
|
||||
@@ -870,8 +909,10 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
|
||||
Args:
|
||||
model_output_list (`List[torch.Tensor]`):
|
||||
The direct outputs from learned diffusion model at current and latter timesteps.
|
||||
sample (`torch.Tensor`):
|
||||
sample (`torch.Tensor`, *optional*):
|
||||
A current instance of a sample created by diffusion process.
|
||||
noise (`torch.Tensor`, *optional*):
|
||||
The noise tensor.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
@@ -951,7 +992,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
|
||||
)
|
||||
return x_t
|
||||
|
||||
def _init_step_index(self, timestep):
|
||||
def _init_step_index(self, timestep: Union[int, torch.Tensor]):
|
||||
if isinstance(timestep, torch.Tensor):
|
||||
timestep = timestep.to(self.timesteps.device)
|
||||
|
||||
@@ -975,7 +1016,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
|
||||
model_output: torch.Tensor,
|
||||
timestep: Union[int, torch.Tensor],
|
||||
sample: torch.Tensor,
|
||||
generator=None,
|
||||
generator: Optional[torch.Generator] = None,
|
||||
variance_noise: Optional[torch.Tensor] = None,
|
||||
return_dict: bool = True,
|
||||
) -> Union[SchedulerOutput, Tuple]:
|
||||
@@ -1027,7 +1068,10 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
|
||||
|
||||
if self.config.algorithm_type in ["sde-dpmsolver", "sde-dpmsolver++"] and variance_noise is None:
|
||||
noise = randn_tensor(
|
||||
model_output.shape, generator=generator, device=model_output.device, dtype=model_output.dtype
|
||||
model_output.shape,
|
||||
generator=generator,
|
||||
device=model_output.device,
|
||||
dtype=model_output.dtype,
|
||||
)
|
||||
elif self.config.algorithm_type in ["sde-dpmsolver", "sde-dpmsolver++"]:
|
||||
noise = variance_noise
|
||||
@@ -1074,6 +1118,21 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
|
||||
noise: torch.Tensor,
|
||||
timesteps: torch.IntTensor,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Add noise to the clean `original_samples` using the scheduler's equivalent function.
|
||||
|
||||
Args:
|
||||
original_samples (`torch.Tensor`):
|
||||
The original samples to add noise to.
|
||||
noise (`torch.Tensor`):
|
||||
The noise tensor.
|
||||
timesteps (`torch.IntTensor`):
|
||||
The timesteps at which to add noise.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
The noisy samples.
|
||||
"""
|
||||
# Make sure sigmas and timesteps have the same device and dtype as original_samples
|
||||
sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
|
||||
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
|
||||
@@ -1103,5 +1162,5 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
|
||||
noisy_samples = alpha_t * original_samples + sigma_t * noise
|
||||
return noisy_samples
|
||||
|
||||
def __len__(self):
|
||||
def __len__(self) -> int:
|
||||
return self.config.num_train_timesteps
|
||||
|
||||
@@ -1120,7 +1120,9 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
|
||||
def index_for_timestep(
|
||||
self, timestep: Union[int, torch.Tensor], schedule_timesteps: Optional[torch.Tensor] = None
|
||||
self,
|
||||
timestep: Union[int, torch.Tensor],
|
||||
schedule_timesteps: Optional[torch.Tensor] = None,
|
||||
) -> int:
|
||||
"""
|
||||
Find the index for a given timestep in the schedule.
|
||||
|
||||
@@ -662,7 +662,9 @@ class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
|
||||
def index_for_timestep(
|
||||
self, timestep: Union[int, torch.Tensor], schedule_timesteps: Optional[torch.Tensor] = None
|
||||
self,
|
||||
timestep: Union[int, torch.Tensor],
|
||||
schedule_timesteps: Optional[torch.Tensor] = None,
|
||||
) -> int:
|
||||
"""
|
||||
Find the index for a given timestep in the schedule.
|
||||
|
||||
@@ -1122,7 +1122,9 @@ class SASolverScheduler(SchedulerMixin, ConfigMixin):
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
|
||||
def index_for_timestep(
|
||||
self, timestep: Union[int, torch.Tensor], schedule_timesteps: Optional[torch.Tensor] = None
|
||||
self,
|
||||
timestep: Union[int, torch.Tensor],
|
||||
schedule_timesteps: Optional[torch.Tensor] = None,
|
||||
) -> int:
|
||||
"""
|
||||
Find the index for a given timestep in the schedule.
|
||||
|
||||
@@ -1083,7 +1083,9 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
|
||||
def index_for_timestep(
|
||||
self, timestep: Union[int, torch.Tensor], schedule_timesteps: Optional[torch.Tensor] = None
|
||||
self,
|
||||
timestep: Union[int, torch.Tensor],
|
||||
schedule_timesteps: Optional[torch.Tensor] = None,
|
||||
) -> int:
|
||||
"""
|
||||
Find the index for a given timestep in the schedule.
|
||||
|
||||
Reference in New Issue
Block a user