|
|
|
|
@@ -39,8 +39,11 @@ from .modular_pipeline_utils import (
|
|
|
|
|
InputParam,
|
|
|
|
|
InsertableDict,
|
|
|
|
|
OutputParam,
|
|
|
|
|
combine_inputs,
|
|
|
|
|
combine_outputs,
|
|
|
|
|
format_components,
|
|
|
|
|
format_configs,
|
|
|
|
|
format_workflow,
|
|
|
|
|
make_doc_string,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
@@ -243,6 +246,7 @@ class ModularPipelineBlocks(ConfigMixin, PushToHubMixin):
|
|
|
|
|
|
|
|
|
|
config_name = "modular_config.json"
|
|
|
|
|
model_name = None
|
|
|
|
|
_workflow_map = None
|
|
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
|
def _get_signature_keys(cls, obj):
|
|
|
|
|
@@ -298,6 +302,35 @@ class ModularPipelineBlocks(ConfigMixin, PushToHubMixin):
|
|
|
|
|
def outputs(self) -> List[OutputParam]:
|
|
|
|
|
return self._get_outputs()
|
|
|
|
|
|
|
|
|
|
# currentlyonly ConditionalPipelineBlocks and SequentialPipelineBlocks support `get_execution_blocks`
|
|
|
|
|
def get_execution_blocks(self, **kwargs):
|
|
|
|
|
"""
|
|
|
|
|
Get the block(s) that would execute given the inputs. Must be implemented by subclasses that support
|
|
|
|
|
conditional block selection.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
**kwargs: Input names and values. Only trigger inputs affect block selection.
|
|
|
|
|
"""
|
|
|
|
|
raise NotImplementedError(f"`get_execution_blocks` is not implemented for {self.__class__.__name__}")
|
|
|
|
|
|
|
|
|
|
# currently only SequentialPipelineBlocks support workflows
|
|
|
|
|
@property
|
|
|
|
|
def workflow_names(self):
|
|
|
|
|
"""
|
|
|
|
|
Returns a list of available workflow names. Must be implemented by subclasses that define `_workflow_map`.
|
|
|
|
|
"""
|
|
|
|
|
raise NotImplementedError(f"`workflow_names` is not implemented for {self.__class__.__name__}")
|
|
|
|
|
|
|
|
|
|
def get_workflow(self, workflow_name: str):
|
|
|
|
|
"""
|
|
|
|
|
Get the execution blocks for a specific workflow. Must be implemented by subclasses that define
|
|
|
|
|
`_workflow_map`.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
workflow_name: Name of the workflow to retrieve.
|
|
|
|
|
"""
|
|
|
|
|
raise NotImplementedError(f"`get_workflow` is not implemented for {self.__class__.__name__}")
|
|
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
|
def from_pretrained(
|
|
|
|
|
cls,
|
|
|
|
|
@@ -435,72 +468,6 @@ class ModularPipelineBlocks(ConfigMixin, PushToHubMixin):
|
|
|
|
|
if current_value is not param: # Using identity comparison to check if object was modified
|
|
|
|
|
state.set(param_name, param, input_param.kwargs_type)
|
|
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
|
def combine_inputs(*named_input_lists: List[Tuple[str, List[InputParam]]]) -> List[InputParam]:
|
|
|
|
|
"""
|
|
|
|
|
Combines multiple lists of InputParam objects from different blocks. For duplicate inputs, updates only if
|
|
|
|
|
current default value is None and new default value is not None. Warns if multiple non-None default values
|
|
|
|
|
exist for the same input.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
named_input_lists: List of tuples containing (block_name, input_param_list) pairs
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
List[InputParam]: Combined list of unique InputParam objects
|
|
|
|
|
"""
|
|
|
|
|
combined_dict = {} # name -> InputParam
|
|
|
|
|
value_sources = {} # name -> block_name
|
|
|
|
|
|
|
|
|
|
for block_name, inputs in named_input_lists:
|
|
|
|
|
for input_param in inputs:
|
|
|
|
|
if input_param.name is None and input_param.kwargs_type is not None:
|
|
|
|
|
input_name = "*_" + input_param.kwargs_type
|
|
|
|
|
else:
|
|
|
|
|
input_name = input_param.name
|
|
|
|
|
if input_name in combined_dict:
|
|
|
|
|
current_param = combined_dict[input_name]
|
|
|
|
|
if (
|
|
|
|
|
current_param.default is not None
|
|
|
|
|
and input_param.default is not None
|
|
|
|
|
and current_param.default != input_param.default
|
|
|
|
|
):
|
|
|
|
|
warnings.warn(
|
|
|
|
|
f"Multiple different default values found for input '{input_name}': "
|
|
|
|
|
f"{current_param.default} (from block '{value_sources[input_name]}') and "
|
|
|
|
|
f"{input_param.default} (from block '{block_name}'). Using {current_param.default}."
|
|
|
|
|
)
|
|
|
|
|
if current_param.default is None and input_param.default is not None:
|
|
|
|
|
combined_dict[input_name] = input_param
|
|
|
|
|
value_sources[input_name] = block_name
|
|
|
|
|
else:
|
|
|
|
|
combined_dict[input_name] = input_param
|
|
|
|
|
value_sources[input_name] = block_name
|
|
|
|
|
|
|
|
|
|
return list(combined_dict.values())
|
|
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
|
def combine_outputs(*named_output_lists: List[Tuple[str, List[OutputParam]]]) -> List[OutputParam]:
|
|
|
|
|
"""
|
|
|
|
|
Combines multiple lists of OutputParam objects from different blocks. For duplicate outputs, keeps the first
|
|
|
|
|
occurrence of each output name.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
named_output_lists: List of tuples containing (block_name, output_param_list) pairs
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
List[OutputParam]: Combined list of unique OutputParam objects
|
|
|
|
|
"""
|
|
|
|
|
combined_dict = {} # name -> OutputParam
|
|
|
|
|
|
|
|
|
|
for block_name, outputs in named_output_lists:
|
|
|
|
|
for output_param in outputs:
|
|
|
|
|
if (output_param.name not in combined_dict) or (
|
|
|
|
|
combined_dict[output_param.name].kwargs_type is None and output_param.kwargs_type is not None
|
|
|
|
|
):
|
|
|
|
|
combined_dict[output_param.name] = output_param
|
|
|
|
|
|
|
|
|
|
return list(combined_dict.values())
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def input_names(self) -> List[str]:
|
|
|
|
|
return [input_param.name for input_param in self.inputs if input_param.name is not None]
|
|
|
|
|
@@ -532,7 +499,8 @@ class ModularPipelineBlocks(ConfigMixin, PushToHubMixin):
|
|
|
|
|
class ConditionalPipelineBlocks(ModularPipelineBlocks):
|
|
|
|
|
"""
|
|
|
|
|
A Pipeline Blocks that conditionally selects a block to run based on the inputs. Subclasses must implement the
|
|
|
|
|
`select_block` method to define the logic for selecting the block.
|
|
|
|
|
`select_block` method to define the logic for selecting the block. Currently, we only support selection logic based
|
|
|
|
|
on the presence or absence of inputs (i.e., whether they are `None` or not)
|
|
|
|
|
|
|
|
|
|
This class inherits from [`ModularPipelineBlocks`]. Check the superclass documentation for the generic methods the
|
|
|
|
|
library implements for all the pipeline blocks (such as loading or saving etc.)
|
|
|
|
|
@@ -540,15 +508,20 @@ class ConditionalPipelineBlocks(ModularPipelineBlocks):
|
|
|
|
|
> [!WARNING] > This is an experimental feature and is likely to change in the future.
|
|
|
|
|
|
|
|
|
|
Attributes:
|
|
|
|
|
block_classes: List of block classes to be used
|
|
|
|
|
block_names: List of prefixes for each block
|
|
|
|
|
block_trigger_inputs: List of input names that select_block() uses to determine which block to run
|
|
|
|
|
block_classes: List of block classes to be used. Must have the same length as `block_names`.
|
|
|
|
|
block_names: List of names for each block. Must have the same length as `block_classes`.
|
|
|
|
|
block_trigger_inputs: List of input names that `select_block()` uses to determine which block to run.
|
|
|
|
|
For `ConditionalPipelineBlocks`, this does not need to correspond to `block_names` and `block_classes`. For
|
|
|
|
|
`AutoPipelineBlocks`, this must have the same length as `block_names` and `block_classes`, where each
|
|
|
|
|
element specifies the trigger input for the corresponding block.
|
|
|
|
|
default_block_name: Name of the default block to run when no trigger inputs match.
|
|
|
|
|
If None, this block can be skipped entirely when no trigger inputs are provided.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
block_classes = []
|
|
|
|
|
block_names = []
|
|
|
|
|
block_trigger_inputs = []
|
|
|
|
|
default_block_name = None # name of the default block if no trigger inputs are provided, if None, this block can be skipped if no trigger inputs are provided
|
|
|
|
|
default_block_name = None
|
|
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
|
sub_blocks = InsertableDict()
|
|
|
|
|
@@ -612,7 +585,7 @@ class ConditionalPipelineBlocks(ModularPipelineBlocks):
|
|
|
|
|
@property
|
|
|
|
|
def inputs(self) -> List[Tuple[str, Any]]:
|
|
|
|
|
named_inputs = [(name, block.inputs) for name, block in self.sub_blocks.items()]
|
|
|
|
|
combined_inputs = self.combine_inputs(*named_inputs)
|
|
|
|
|
combined_inputs = combine_inputs(*named_inputs)
|
|
|
|
|
# mark Required inputs only if that input is required by all the blocks
|
|
|
|
|
for input_param in combined_inputs:
|
|
|
|
|
if input_param.name in self.required_inputs:
|
|
|
|
|
@@ -624,15 +597,16 @@ class ConditionalPipelineBlocks(ModularPipelineBlocks):
|
|
|
|
|
@property
|
|
|
|
|
def intermediate_outputs(self) -> List[str]:
|
|
|
|
|
named_outputs = [(name, block.intermediate_outputs) for name, block in self.sub_blocks.items()]
|
|
|
|
|
combined_outputs = self.combine_outputs(*named_outputs)
|
|
|
|
|
combined_outputs = combine_outputs(*named_outputs)
|
|
|
|
|
return combined_outputs
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def outputs(self) -> List[str]:
|
|
|
|
|
named_outputs = [(name, block.outputs) for name, block in self.sub_blocks.items()]
|
|
|
|
|
combined_outputs = self.combine_outputs(*named_outputs)
|
|
|
|
|
combined_outputs = combine_outputs(*named_outputs)
|
|
|
|
|
return combined_outputs
|
|
|
|
|
|
|
|
|
|
# used for `__repr__`
|
|
|
|
|
def _get_trigger_inputs(self) -> set:
|
|
|
|
|
"""
|
|
|
|
|
Returns a set of all unique trigger input values found in this block and nested blocks.
|
|
|
|
|
@@ -661,11 +635,6 @@ class ConditionalPipelineBlocks(ModularPipelineBlocks):
|
|
|
|
|
|
|
|
|
|
return all_triggers
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def trigger_inputs(self):
|
|
|
|
|
"""All trigger inputs including from nested blocks."""
|
|
|
|
|
return self._get_trigger_inputs()
|
|
|
|
|
|
|
|
|
|
def select_block(self, **kwargs) -> Optional[str]:
|
|
|
|
|
"""
|
|
|
|
|
Select the block to run based on the trigger inputs. Subclasses must implement this method to define the logic
|
|
|
|
|
@@ -705,6 +674,39 @@ class ConditionalPipelineBlocks(ModularPipelineBlocks):
|
|
|
|
|
logger.error(error_msg)
|
|
|
|
|
raise
|
|
|
|
|
|
|
|
|
|
def get_execution_blocks(self, **kwargs) -> Optional["ModularPipelineBlocks"]:
|
|
|
|
|
"""
|
|
|
|
|
Get the block(s) that would execute given the inputs.
|
|
|
|
|
|
|
|
|
|
Recursively resolves nested ConditionalPipelineBlocks until reaching either:
|
|
|
|
|
- A leaf block (no sub_blocks) → returns single `ModularPipelineBlocks`
|
|
|
|
|
- A `SequentialPipelineBlocks` → delegates to its `get_execution_blocks()` which returns
|
|
|
|
|
a `SequentialPipelineBlocks` containing the resolved execution blocks
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
**kwargs: Input names and values. Only trigger inputs affect block selection.
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
- `ModularPipelineBlocks`: A leaf block or resolved `SequentialPipelineBlocks`
|
|
|
|
|
- `None`: If this block would be skipped (no trigger matched and no default)
|
|
|
|
|
"""
|
|
|
|
|
trigger_kwargs = {name: kwargs.get(name) for name in self.block_trigger_inputs if name is not None}
|
|
|
|
|
block_name = self.select_block(**trigger_kwargs)
|
|
|
|
|
|
|
|
|
|
if block_name is None:
|
|
|
|
|
block_name = self.default_block_name
|
|
|
|
|
|
|
|
|
|
if block_name is None:
|
|
|
|
|
return None
|
|
|
|
|
|
|
|
|
|
block = self.sub_blocks[block_name]
|
|
|
|
|
|
|
|
|
|
# Recursively resolve until we hit a leaf block or a SequentialPipelineBlocks
|
|
|
|
|
if block.sub_blocks:
|
|
|
|
|
return block.get_execution_blocks(**kwargs)
|
|
|
|
|
|
|
|
|
|
return block
|
|
|
|
|
|
|
|
|
|
def __repr__(self):
|
|
|
|
|
class_name = self.__class__.__name__
|
|
|
|
|
base_class = self.__class__.__bases__[0].__name__
|
|
|
|
|
@@ -712,11 +714,11 @@ class ConditionalPipelineBlocks(ModularPipelineBlocks):
|
|
|
|
|
f"{class_name}(\n Class: {base_class}\n" if base_class and base_class != "object" else f"{class_name}(\n"
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
if self.trigger_inputs:
|
|
|
|
|
if self._get_trigger_inputs():
|
|
|
|
|
header += "\n"
|
|
|
|
|
header += " " + "=" * 100 + "\n"
|
|
|
|
|
header += " This pipeline contains blocks that are selected at runtime based on inputs.\n"
|
|
|
|
|
header += f" Trigger Inputs: {sorted(self.trigger_inputs)}\n"
|
|
|
|
|
header += f" Trigger Inputs: {sorted(self._get_trigger_inputs())}\n"
|
|
|
|
|
header += " " + "=" * 100 + "\n\n"
|
|
|
|
|
|
|
|
|
|
# Format description with proper indentation
|
|
|
|
|
@@ -783,24 +785,56 @@ class ConditionalPipelineBlocks(ModularPipelineBlocks):
|
|
|
|
|
|
|
|
|
|
class AutoPipelineBlocks(ConditionalPipelineBlocks):
|
|
|
|
|
"""
|
|
|
|
|
A Pipeline Blocks that automatically selects a block to run based on the presence of trigger inputs.
|
|
|
|
|
A Pipeline Blocks that automatically selects a block to run based on the presence of trigger inputs.
|
|
|
|
|
|
|
|
|
|
This is a specialized version of `ConditionalPipelineBlocks` where:
|
|
|
|
|
- Each block has one corresponding trigger input (1:1 mapping)
|
|
|
|
|
- Block selection is automatic: the first block whose trigger input is present gets selected
|
|
|
|
|
- `block_trigger_inputs` must have the same length as `block_names` and `block_classes`
|
|
|
|
|
- Use `None` in `block_trigger_inputs` to specify the default block, i.e the block that will run if no trigger
|
|
|
|
|
inputs are present
|
|
|
|
|
|
|
|
|
|
Attributes:
|
|
|
|
|
block_classes:
|
|
|
|
|
List of block classes to be used. Must have the same length as `block_names` and
|
|
|
|
|
`block_trigger_inputs`.
|
|
|
|
|
block_names:
|
|
|
|
|
List of names for each block. Must have the same length as `block_classes` and `block_trigger_inputs`.
|
|
|
|
|
block_trigger_inputs:
|
|
|
|
|
List of input names where each element specifies the trigger input for the corresponding block. Use
|
|
|
|
|
`None` to mark the default block.
|
|
|
|
|
|
|
|
|
|
Example:
|
|
|
|
|
```python
|
|
|
|
|
class MyAutoBlock(AutoPipelineBlocks):
|
|
|
|
|
block_classes = [InpaintEncoderBlock, ImageEncoderBlock, TextEncoderBlock]
|
|
|
|
|
block_names = ["inpaint", "img2img", "text2img"]
|
|
|
|
|
block_trigger_inputs = ["mask_image", "image", None] # text2img is the default
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
With this definition:
|
|
|
|
|
- As long as `mask_image` is provided, "inpaint" block runs (regardless of `image` being provided or not)
|
|
|
|
|
- If `mask_image` is not provided but `image` is provided, "img2img" block runs
|
|
|
|
|
- Otherwise, "text2img" block runs (default, trigger is `None`)
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
|
|
if self.default_block_name is not None:
|
|
|
|
|
raise ValueError(
|
|
|
|
|
f"In {self.__class__.__name__}, do not set `default_block_name` for AutoPipelineBlocks. "
|
|
|
|
|
f"Use `None` in `block_trigger_inputs` to specify the default block."
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
if not (len(self.block_classes) == len(self.block_names) == len(self.block_trigger_inputs)):
|
|
|
|
|
raise ValueError(
|
|
|
|
|
f"In {self.__class__.__name__}, the number of block_classes, block_names, and block_trigger_inputs must be the same."
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def default_block_name(self) -> Optional[str]:
|
|
|
|
|
"""Derive default_block_name from block_trigger_inputs (None entry)."""
|
|
|
|
|
if None in self.block_trigger_inputs:
|
|
|
|
|
idx = self.block_trigger_inputs.index(None)
|
|
|
|
|
return self.block_names[idx]
|
|
|
|
|
return None
|
|
|
|
|
self.default_block_name = self.block_names[idx]
|
|
|
|
|
|
|
|
|
|
def select_block(self, **kwargs) -> Optional[str]:
|
|
|
|
|
"""Select block based on which trigger input is present (not None)."""
|
|
|
|
|
@@ -854,6 +888,29 @@ class SequentialPipelineBlocks(ModularPipelineBlocks):
|
|
|
|
|
expected_configs.append(config)
|
|
|
|
|
return expected_configs
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def workflow_names(self):
|
|
|
|
|
if self._workflow_map is None:
|
|
|
|
|
raise NotImplementedError(
|
|
|
|
|
f"workflows is not supported because _workflow_map is not set for {self.__class__.__name__}"
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
return list(self._workflow_map.keys())
|
|
|
|
|
|
|
|
|
|
def get_workflow(self, workflow_name: str):
|
|
|
|
|
if self._workflow_map is None:
|
|
|
|
|
raise NotImplementedError(
|
|
|
|
|
f"workflows is not supported because _workflow_map is not set for {self.__class__.__name__}"
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
if workflow_name not in self._workflow_map:
|
|
|
|
|
raise ValueError(f"Workflow {workflow_name} not found in {self.__class__.__name__}")
|
|
|
|
|
|
|
|
|
|
trigger_inputs = self._workflow_map[workflow_name]
|
|
|
|
|
workflow_blocks = self.get_execution_blocks(**trigger_inputs)
|
|
|
|
|
|
|
|
|
|
return workflow_blocks
|
|
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
|
def from_blocks_dict(
|
|
|
|
|
cls, blocks_dict: Dict[str, Any], description: Optional[str] = None
|
|
|
|
|
@@ -949,7 +1006,7 @@ class SequentialPipelineBlocks(ModularPipelineBlocks):
|
|
|
|
|
# filter out them here so they do not end up as intermediate_outputs
|
|
|
|
|
if name not in inp_names:
|
|
|
|
|
named_outputs.append((name, block.intermediate_outputs))
|
|
|
|
|
combined_outputs = self.combine_outputs(*named_outputs)
|
|
|
|
|
combined_outputs = combine_outputs(*named_outputs)
|
|
|
|
|
return combined_outputs
|
|
|
|
|
|
|
|
|
|
# YiYi TODO: I think we can remove the outputs property
|
|
|
|
|
@@ -973,6 +1030,7 @@ class SequentialPipelineBlocks(ModularPipelineBlocks):
|
|
|
|
|
raise
|
|
|
|
|
return pipeline, state
|
|
|
|
|
|
|
|
|
|
# used for `trigger_inputs` property
|
|
|
|
|
def _get_trigger_inputs(self):
|
|
|
|
|
"""
|
|
|
|
|
Returns a set of all unique trigger input values found in the blocks.
|
|
|
|
|
@@ -996,89 +1054,50 @@ class SequentialPipelineBlocks(ModularPipelineBlocks):
|
|
|
|
|
|
|
|
|
|
return fn_recursive_get_trigger(self.sub_blocks)
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def trigger_inputs(self):
|
|
|
|
|
return self._get_trigger_inputs()
|
|
|
|
|
|
|
|
|
|
def _traverse_trigger_blocks(self, active_inputs):
|
|
|
|
|
def get_execution_blocks(self, **kwargs) -> "SequentialPipelineBlocks":
|
|
|
|
|
"""
|
|
|
|
|
Traverse blocks and select which ones would run given the active inputs.
|
|
|
|
|
Get the blocks that would execute given the specified inputs.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
active_inputs: Dict of input names to values that are "present"
|
|
|
|
|
**kwargs: Input names and values. Only trigger inputs affect block selection.
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
OrderedDict of block_name -> block that would execute
|
|
|
|
|
SequentialPipelineBlocks containing only the blocks that would execute
|
|
|
|
|
"""
|
|
|
|
|
# Copy kwargs so we can add outputs as we traverse
|
|
|
|
|
active_inputs = dict(kwargs)
|
|
|
|
|
|
|
|
|
|
def fn_recursive_traverse(block, block_name, active_inputs):
|
|
|
|
|
result_blocks = OrderedDict()
|
|
|
|
|
|
|
|
|
|
# ConditionalPipelineBlocks (includes AutoPipelineBlocks)
|
|
|
|
|
if isinstance(block, ConditionalPipelineBlocks):
|
|
|
|
|
trigger_kwargs = {name: active_inputs.get(name) for name in block.block_trigger_inputs}
|
|
|
|
|
selected_block_name = block.select_block(**trigger_kwargs)
|
|
|
|
|
|
|
|
|
|
if selected_block_name is None:
|
|
|
|
|
selected_block_name = block.default_block_name
|
|
|
|
|
|
|
|
|
|
if selected_block_name is None:
|
|
|
|
|
block = block.get_execution_blocks(**active_inputs)
|
|
|
|
|
if block is None:
|
|
|
|
|
return result_blocks
|
|
|
|
|
|
|
|
|
|
selected_block = block.sub_blocks[selected_block_name]
|
|
|
|
|
|
|
|
|
|
if selected_block.sub_blocks:
|
|
|
|
|
result_blocks.update(fn_recursive_traverse(selected_block, block_name, active_inputs))
|
|
|
|
|
else:
|
|
|
|
|
result_blocks[block_name] = selected_block
|
|
|
|
|
if hasattr(selected_block, "outputs"):
|
|
|
|
|
for out in selected_block.outputs:
|
|
|
|
|
active_inputs[out.name] = True
|
|
|
|
|
|
|
|
|
|
return result_blocks
|
|
|
|
|
|
|
|
|
|
# SequentialPipelineBlocks or LoopSequentialPipelineBlocks
|
|
|
|
|
if block.sub_blocks:
|
|
|
|
|
# Has sub_blocks (SequentialPipelineBlocks/ConditionalPipelineBlocks)
|
|
|
|
|
if block.sub_blocks and not isinstance(block, LoopSequentialPipelineBlocks):
|
|
|
|
|
for sub_block_name, sub_block in block.sub_blocks.items():
|
|
|
|
|
blocks_to_update = fn_recursive_traverse(sub_block, sub_block_name, active_inputs)
|
|
|
|
|
blocks_to_update = {f"{block_name}.{k}": v for k, v in blocks_to_update.items()}
|
|
|
|
|
result_blocks.update(blocks_to_update)
|
|
|
|
|
nested_blocks = fn_recursive_traverse(sub_block, sub_block_name, active_inputs)
|
|
|
|
|
nested_blocks = {f"{block_name}.{k}": v for k, v in nested_blocks.items()}
|
|
|
|
|
result_blocks.update(nested_blocks)
|
|
|
|
|
else:
|
|
|
|
|
# Leaf block: single ModularPipelineBlocks or LoopSequentialPipelineBlocks
|
|
|
|
|
result_blocks[block_name] = block
|
|
|
|
|
if hasattr(block, "outputs"):
|
|
|
|
|
for out in block.outputs:
|
|
|
|
|
# Add outputs to active_inputs so subsequent blocks can use them as triggers
|
|
|
|
|
if hasattr(block, "intermediate_outputs"):
|
|
|
|
|
for out in block.intermediate_outputs:
|
|
|
|
|
active_inputs[out.name] = True
|
|
|
|
|
|
|
|
|
|
return result_blocks
|
|
|
|
|
|
|
|
|
|
all_blocks = OrderedDict()
|
|
|
|
|
for block_name, block in self.sub_blocks.items():
|
|
|
|
|
blocks_to_update = fn_recursive_traverse(block, block_name, active_inputs)
|
|
|
|
|
all_blocks.update(blocks_to_update)
|
|
|
|
|
return all_blocks
|
|
|
|
|
nested_blocks = fn_recursive_traverse(block, block_name, active_inputs)
|
|
|
|
|
all_blocks.update(nested_blocks)
|
|
|
|
|
|
|
|
|
|
def get_execution_blocks(self, **kwargs):
|
|
|
|
|
"""
|
|
|
|
|
Get the blocks that would execute given the specified inputs.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
**kwargs: Input names and values. Only trigger inputs affect block selection.
|
|
|
|
|
Pass any inputs that would be non-None at runtime.
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
SequentialPipelineBlocks containing only the blocks that would execute
|
|
|
|
|
|
|
|
|
|
Example:
|
|
|
|
|
# Get blocks for inpainting workflow blocks = pipeline.get_execution_blocks(prompt="a cat", mask=mask,
|
|
|
|
|
image=image)
|
|
|
|
|
|
|
|
|
|
# Get blocks for text2image workflow blocks = pipeline.get_execution_blocks(prompt="a cat")
|
|
|
|
|
"""
|
|
|
|
|
# Filter out None values
|
|
|
|
|
active_inputs = {k: v for k, v in kwargs.items() if v is not None}
|
|
|
|
|
|
|
|
|
|
blocks_triggered = self._traverse_trigger_blocks(active_inputs)
|
|
|
|
|
return SequentialPipelineBlocks.from_blocks_dict(blocks_triggered)
|
|
|
|
|
return SequentialPipelineBlocks.from_blocks_dict(all_blocks)
|
|
|
|
|
|
|
|
|
|
def __repr__(self):
|
|
|
|
|
class_name = self.__class__.__name__
|
|
|
|
|
@@ -1087,18 +1106,23 @@ class SequentialPipelineBlocks(ModularPipelineBlocks):
|
|
|
|
|
f"{class_name}(\n Class: {base_class}\n" if base_class and base_class != "object" else f"{class_name}(\n"
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
if self.trigger_inputs:
|
|
|
|
|
if self._workflow_map is None and self._get_trigger_inputs():
|
|
|
|
|
header += "\n"
|
|
|
|
|
header += " " + "=" * 100 + "\n"
|
|
|
|
|
header += " This pipeline contains blocks that are selected at runtime based on inputs.\n"
|
|
|
|
|
header += f" Trigger Inputs: {[inp for inp in self.trigger_inputs if inp is not None]}\n"
|
|
|
|
|
header += f" Trigger Inputs: {[inp for inp in self._get_trigger_inputs() if inp is not None]}\n"
|
|
|
|
|
# Get first trigger input as example
|
|
|
|
|
example_input = next(t for t in self.trigger_inputs if t is not None)
|
|
|
|
|
example_input = next(t for t in self._get_trigger_inputs() if t is not None)
|
|
|
|
|
header += f" Use `get_execution_blocks()` to see selected blocks (e.g. `get_execution_blocks({example_input}=...)`).\n"
|
|
|
|
|
header += " " + "=" * 100 + "\n\n"
|
|
|
|
|
|
|
|
|
|
description = self.description
|
|
|
|
|
if self._workflow_map is not None:
|
|
|
|
|
workflow_str = format_workflow(self._workflow_map)
|
|
|
|
|
description = f"{self.description}\n\n{workflow_str}"
|
|
|
|
|
|
|
|
|
|
# Format description with proper indentation
|
|
|
|
|
desc_lines = self.description.split("\n")
|
|
|
|
|
desc_lines = description.split("\n")
|
|
|
|
|
desc = []
|
|
|
|
|
# First line with "Description:" label
|
|
|
|
|
desc.append(f" Description: {desc_lines[0]}")
|
|
|
|
|
@@ -1146,10 +1170,15 @@ class SequentialPipelineBlocks(ModularPipelineBlocks):
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def doc(self):
|
|
|
|
|
description = self.description
|
|
|
|
|
if self._workflow_map is not None:
|
|
|
|
|
workflow_str = format_workflow(self._workflow_map)
|
|
|
|
|
description = f"{self.description}\n\n{workflow_str}"
|
|
|
|
|
|
|
|
|
|
return make_doc_string(
|
|
|
|
|
self.inputs,
|
|
|
|
|
self.outputs,
|
|
|
|
|
self.description,
|
|
|
|
|
description=description,
|
|
|
|
|
class_name=self.__class__.__name__,
|
|
|
|
|
expected_components=self.expected_components,
|
|
|
|
|
expected_configs=self.expected_configs,
|
|
|
|
|
@@ -1282,7 +1311,7 @@ class LoopSequentialPipelineBlocks(ModularPipelineBlocks):
|
|
|
|
|
@property
|
|
|
|
|
def intermediate_outputs(self) -> List[str]:
|
|
|
|
|
named_outputs = [(name, block.intermediate_outputs) for name, block in self.sub_blocks.items()]
|
|
|
|
|
combined_outputs = self.combine_outputs(*named_outputs)
|
|
|
|
|
combined_outputs = combine_outputs(*named_outputs)
|
|
|
|
|
for output in self.loop_intermediate_outputs:
|
|
|
|
|
if output.name not in {output.name for output in combined_outputs}:
|
|
|
|
|
combined_outputs.append(output)
|
|
|
|
|
|