Compare commits

...

1 Commits

Author SHA1 Message Date
Dhruv Nair
e90eb9de70 update 2026-02-17 11:21:51 +01:00
16 changed files with 87 additions and 32 deletions

View File

@@ -18,7 +18,7 @@ import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
from diffusers import AutoencoderKLCogVideoX, CogVideoXPipeline, CogVideoXTransformer3DModel, DDIMScheduler
@@ -117,7 +117,9 @@ class CogVideoXPipelineFastTests(
torch.manual_seed(0)
scheduler = DDIMScheduler()
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
config.tie_word_embeddings = False
text_encoder = T5EncoderModel(config)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
components = {

View File

@@ -19,7 +19,7 @@ import unittest
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
from transformers import AutoConfig, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
from diffusers import (
AutoencoderKL,
@@ -97,7 +97,9 @@ class FluxControlNetPipelineFastTests(unittest.TestCase, PipelineTesterMixin, Fl
text_encoder = CLIPTextModel(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
config.tie_word_embeddings = False
text_encoder_2 = T5EncoderModel(config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = T5TokenizerFast.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -18,7 +18,14 @@ import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel
from transformers import (
AutoConfig,
AutoTokenizer,
CLIPTextConfig,
CLIPTextModelWithProjection,
CLIPTokenizer,
T5EncoderModel,
)
from diffusers import (
AutoencoderKL,
@@ -117,7 +124,9 @@ class StableDiffusion3ControlNetPipelineFastTests(unittest.TestCase, PipelineTes
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
config.tie_word_embeddings = False
text_encoder_3 = T5EncoderModel(config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

View File

@@ -3,7 +3,7 @@ import unittest
import numpy as np
import torch
from PIL import Image
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, FluxControlPipeline, FluxTransformer2DModel
@@ -53,7 +53,9 @@ class FluxControlPipelineFastTests(unittest.TestCase, PipelineTesterMixin):
text_encoder = CLIPTextModel(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
config.tie_word_embeddings = False
text_encoder_2 = T5EncoderModel(config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -3,7 +3,7 @@ import unittest
import numpy as np
import torch
from PIL import Image
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from diffusers import (
AutoencoderKL,
@@ -57,7 +57,9 @@ class FluxControlImg2ImgPipelineFastTests(unittest.TestCase, PipelineTesterMixin
text_encoder = CLIPTextModel(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
config.tie_word_embeddings = False
text_encoder_2 = T5EncoderModel(config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -3,7 +3,7 @@ import unittest
import numpy as np
import torch
from PIL import Image
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from diffusers import (
AutoencoderKL,
@@ -58,7 +58,9 @@ class FluxControlInpaintPipelineFastTests(unittest.TestCase, PipelineTesterMixin
text_encoder = CLIPTextModel(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
config.tie_word_embeddings = False
text_encoder_2 = T5EncoderModel(config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -3,7 +3,7 @@ import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, FluxFillPipeline, FluxTransformer2DModel
@@ -58,7 +58,9 @@ class FluxFillPipelineFastTests(unittest.TestCase, PipelineTesterMixin):
text_encoder = CLIPTextModel(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
config.tie_word_embeddings = False
text_encoder_2 = T5EncoderModel(config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -3,7 +3,7 @@ import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, FluxImg2ImgPipeline, FluxTransformer2DModel
@@ -55,7 +55,9 @@ class FluxImg2ImgPipelineFastTests(unittest.TestCase, PipelineTesterMixin, FluxI
text_encoder = CLIPTextModel(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
config.tie_word_embeddings = False
text_encoder_2 = T5EncoderModel(config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -3,7 +3,7 @@ import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, FluxInpaintPipeline, FluxTransformer2DModel
@@ -55,7 +55,9 @@ class FluxInpaintPipelineFastTests(unittest.TestCase, PipelineTesterMixin, FluxI
text_encoder = CLIPTextModel(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
config.tie_word_embeddings = False
text_encoder_2 = T5EncoderModel(config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -3,7 +3,7 @@ import unittest
import numpy as np
import PIL.Image
import torch
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from diffusers import (
AutoencoderKL,
@@ -79,7 +79,9 @@ class FluxKontextPipelineFastTests(
text_encoder = CLIPTextModel(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
config.tie_word_embeddings = False
text_encoder_2 = T5EncoderModel(config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -3,7 +3,7 @@ import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from diffusers import (
AutoencoderKL,
@@ -79,7 +79,9 @@ class FluxKontextInpaintPipelineFastTests(
text_encoder = CLIPTextModel(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
config.tie_word_embeddings = False
text_encoder_2 = T5EncoderModel(config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -18,6 +18,7 @@ import unittest
import numpy as np
import torch
from transformers import (
AutoConfig,
AutoTokenizer,
CLIPTextConfig,
CLIPTextModelWithProjection,
@@ -94,7 +95,9 @@ class HiDreamImagePipelineFastTests(PipelineTesterMixin, unittest.TestCase):
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
config.tie_word_embeddings = False
text_encoder_3 = T5EncoderModel(config)
torch.manual_seed(0)
text_encoder_4 = LlamaForCausalLM.from_pretrained("hf-internal-testing/tiny-random-LlamaForCausalLM")

View File

@@ -19,7 +19,7 @@ import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, BertModel, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, BertModel, T5EncoderModel
from diffusers import AutoencoderKL, DDPMScheduler, HunyuanDiT2DModel, HunyuanDiTPipeline
@@ -74,7 +74,10 @@ class HunyuanDiTPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
scheduler = DDPMScheduler()
text_encoder = BertModel.from_pretrained("hf-internal-testing/tiny-random-BertModel")
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel")
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
config.tie_word_embeddings = False
text_encoder_2 = T5EncoderModel(config)
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
components = {

View File

@@ -17,7 +17,7 @@ import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
from diffusers import AutoencoderKLLTXVideo, FlowMatchEulerDiscreteScheduler, LTXPipeline, LTXVideoTransformer3DModel
@@ -88,7 +88,9 @@ class LTXPipelineFastTests(PipelineTesterMixin, FirstBlockCacheTesterMixin, unit
torch.manual_seed(0)
scheduler = FlowMatchEulerDiscreteScheduler()
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
config.tie_word_embeddings = False
text_encoder = T5EncoderModel(config)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
components = {

View File

@@ -4,7 +4,14 @@ import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel
from transformers import (
AutoConfig,
AutoTokenizer,
CLIPTextConfig,
CLIPTextModelWithProjection,
CLIPTokenizer,
T5EncoderModel,
)
from diffusers import (
AutoencoderKL,
@@ -73,7 +80,10 @@ class StableDiffusion3Img2ImgPipelineFastTests(PipelineLatentTesterMixin, unitte
torch.manual_seed(0)
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
config.tie_word_embeddings = False
text_encoder_3 = T5EncoderModel(config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

View File

@@ -18,7 +18,7 @@ import unittest
import numpy as np
import torch
from PIL import Image
from transformers import AutoTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
from diffusers import AutoencoderKLWan, UniPCMultistepScheduler, WanImageToVideoPipeline, WanTransformer3DModel
@@ -64,7 +64,11 @@ class Wan22ImageToVideoPipelineFastTests(PipelineTesterMixin, unittest.TestCase)
torch.manual_seed(0)
scheduler = UniPCMultistepScheduler(prediction_type="flow_prediction", use_flow_sigmas=True, flow_shift=3.0)
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
config.tie_word_embeddings = False
text_encoder = T5EncoderModel(config)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)
@@ -248,7 +252,11 @@ class Wan225BImageToVideoPipelineFastTests(PipelineTesterMixin, unittest.TestCas
torch.manual_seed(0)
scheduler = UniPCMultistepScheduler(prediction_type="flow_prediction", use_flow_sigmas=True, flow_shift=3.0)
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
config.tie_word_embeddings = False
text_encoder = T5EncoderModel(config)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)