Compare commits

...

328 Commits

Author SHA1 Message Date
sayakpaul
7d52558c15 Release: v0.26.2-patch 2024-02-06 07:36:31 +05:30
YiYi Xu
3efe355d52 add self.use_ada_layer_norm_* params back to BasicTransformerBlock (#6841)
fix sd reference community ppeline

Co-authored-by: yiyixuxu <yixu310@gmail,com>
2024-02-06 07:34:36 +05:30
sayakpaul
08e6558ab8 Release: v0.26.1-patch 2024-02-02 14:42:23 +05:30
YiYi Xu
1547720209 add is_torchvision_available (#6800)
* add

* remove transformer

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
2024-02-02 14:40:36 +05:30
Patrick von Platen
674d43fd68 fix torchvision import (#6796) 2024-02-01 00:15:09 +02:00
yiyixuxu
e7a16666ea Release: v0.26.0 2024-01-31 11:31:57 -10:00
Sayak Paul
04cd6adf8c [Feat] add I2VGenXL for image-to-video generation (#6665)
---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-01-31 10:38:51 -10:00
YiYi Xu
66722dbea7 [sdxl k-diffusion pipeline]move sigma to device (#6757)
move sigma to device

Co-authored-by: yiyixuxu <yixu310@gmail,com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-01-31 09:29:15 -10:00
YiYi Xu
2e8d18e699 [IP-Adapter] Support multiple IP-Adapters (#6573)
---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
Co-authored-by: Alvaro Somoza <somoza.alvaro@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2024-01-31 07:11:15 -10:00
Steven Liu
03373de0db [docs] Add missing parameter (#6775)
add missing param
2024-01-31 08:53:40 -08:00
Dhruv Nair
56bea6b4a1 Add PIA Model/Pipeline (#6698)
* update

* update

* updaet

* add tests and docs

* clean up

* add to toctree

* fix copies

* pr review feedback

* fix copies

* fix tests

* update docs

* update

* update

* update docs

* update

* update

* update

* update
2024-01-31 18:00:17 +02:00
Dhruv Nair
d7dc0ffd79 Fix setting scaling factor in VAE config (#6779)
fix
2024-01-31 19:47:22 +05:30
Kashif Rasul
97ee616971 add ipo, hinge and cpo loss to dpo trainer (#6788)
add ipo and hinge loss to dpo trainer
2024-01-31 16:41:31 +05:30
Sayak Paul
0fc62d1702 [Kandinsky tests] add is_flaky to test_model_cpu_offload_forward_pass (#6762)
* add is_flaky to test_model_cpu_offload_forward_pass

* style

* update

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2024-01-31 14:51:12 +05:30
Dhruv Nair
f4d3f913f4 Pin torch < 2.2.0 in test runners (#6780)
* update

* update

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-01-31 13:41:18 +05:30
Viet Nguyen
1cab64b3be Update train_diffusion_dpo.py (#6754)
* Update train_diffusion_dpo.py

Address #6702

* Update train_diffusion_dpo_sdxl.py

* Empty-Commit

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-01-31 12:46:23 +05:30
Sayak Paul
8d7dc85312 add note about serialization (#6764) 2024-01-31 12:45:40 +05:30
dg845
87a92f779c Fix bug in ResnetBlock2D.forward where LoRA Scale gets Overwritten (#6736)
Fix bug in ResnetBlock2D.forward when not USE_PEFT_BACKEND and using scale_shift for time emb where the lora scale  gets overwritten.

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-01-30 14:43:48 -10:00
Yunxuan Xiao
0db766ba77 [DDPMScheduler] Load alpha_cumprod to device to avoid redundant data movement. (#6704)
* load cumprod tensor to device

Signed-off-by: woshiyyya <xiaoyunxuan1998@gmail.com>

* fixing ci

Signed-off-by: woshiyyya <xiaoyunxuan1998@gmail.com>

* make fix-copies

Signed-off-by: woshiyyya <xiaoyunxuan1998@gmail.com>

---------

Signed-off-by: woshiyyya <xiaoyunxuan1998@gmail.com>
2024-01-30 13:19:37 -10:00
Dhruv Nair
8e94663503 Update export to video to support new tensor_to_vid function in video pipelines (#6715)
update
2024-01-30 19:43:33 +05:30
YiYi Xu
b09b90e24c udpate ip-adapter slow tests (#6760)
* udpate slices

* up

* hopefully last one

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
2024-01-29 17:55:41 -10:00
Sajad Norouzi
058b47553e Fix mixed precision fine-tuning for text-to-image-lora-sdxl example. (#6751)
* Fix mixed precision fine-tuning for text-to-image-lora-sdxl example.

* fix text_encoder_two bug.

---------

Co-authored-by: Sajad Norouzi <sajadn@dev-dsk-sajadn-2a-87239470.us-west-2.amazon.com>
2024-01-30 06:55:02 +05:30
xhedit
7f58a76f48 Update lora.md with a more accurate description of rank (#6724)
* Update lora.md with a more accurate description of rank

* Update docs/source/en/training/lora.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-01-29 09:41:51 -08:00
Sayak Paul
09b7bfce91 [Core] move transformer scripts to transformers modules (#6747)
* move transformer scripts to transformers modules

* move transformer model test

* move prior transformer test to  directory

* fix doc path

* correct doc path

* add: __init__.py
2024-01-29 22:28:28 +05:30
Fabio Rigano
5d8b1987ec Add unload_textual_inversion method (#6656)
* Add unload_textual_inversion

* Fix dicts in tokenizer

* Fix quality

* Apply suggestions from code review

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Fix variable name after last update

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-01-29 06:26:22 -10:00
Sayak Paul
acd1962769 correct hflip arg (#6743) 2024-01-28 17:42:34 +05:30
Stephen
5b1b80a5b6 Change os.path to pathlib Path (#6737)
Change os.path to pathlib
2024-01-28 10:24:13 +05:30
gzguevara
8581d9bce4 changed to posix unet (#6719)
changed to posix

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-01-27 16:31:52 +05:30
Yingtian Liu
c101066227 Correct SNR weighted loss in v-prediction case by only adding 1 to SNR on the denominator (#6307)
* fix minsnr implementation for v-prediction case

* format code

* always compute snr when snr_gamma is specified

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-01-27 09:18:09 +05:30
Sayak Paul
d4c7ab7bf1 [Hub] feat: explicitly tag to diffusers when using push_to_hub (#6678)
* feat: explicitly tag to diffusers when using push_to_hub

* remove tags.

* reset repo.

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* fix: tests

* fix: push_to_hub behaviour for tagging from save_pretrained

* Apply suggestions from code review

Co-authored-by: Lucain <lucainp@gmail.com>

* Apply suggestions from code review

Co-authored-by: Lucain <lucainp@gmail.com>

* import fixes.

* add library name to existing model card.

* add: standalone test for generate_model_card

* fix tests for standalone method

* moved library_name to a better place.

* merge create_model_card and generate_model_card.

* fix test

* address lucain's comments

* fix return identation

* Apply suggestions from code review

Co-authored-by: Lucain <lucainp@gmail.com>

* address further comments.

* Update src/diffusers/pipelines/pipeline_utils.py

Co-authored-by: Lucain <lucainp@gmail.com>

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Lucain <lucainp@gmail.com>
2024-01-26 23:01:48 +05:30
dg845
ea9dc3fa90 Add UFOGenScheduler to Community Examples (#6650)
* Add UFOGenScheduler with diffusers imports changed from relative to absolute.

* make style

* Add community README entry for UFOGenScheduler.
2024-01-26 15:11:14 +02:00
dg845
b4220e97b1 Add Community Example Consistency Training Script (#6717)
* initial commit for unconditional/class-conditional consistency training script

* make style

* Add entry for consistency training script in community README.

* Move consistency training script from community to research_projects/consistency_training

* Add requirements.txt and README to research_projects/consistency_training directory.

* Manually revert community README changes for consistency training.

* Fix path to script after moving script to research projects.

* Add option to load U-Net weights from pretrained model.

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2024-01-26 15:10:57 +02:00
Dhruv Nair
dc85b578c2 Move tests for SD inference variant pipelines into their own modules (#6707)
* update

* update

* update
2024-01-26 14:09:41 +02:00
Dhruv Nair
0d927c7542 Add IP Adapters to slow tests (#6714)
update
2024-01-25 19:52:50 -10:00
Andrew Ishutin
5b93338235 fix custom diffusion training with concept list (#6710)
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-01-26 11:17:51 +08:00
Aryan V S
7c1c705f60 fix community README (#6645) 2024-01-25 17:52:52 -08:00
Aryan V S
9e72016468 [docs] AnimateDiff Video-to-Video (#6712)
* add animatediff vid2vid to docs

* Update docs/source/en/api/pipelines/animatediff.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* apply suggestions from review

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-01-25 17:51:43 -08:00
Patrick von Platen
3e9716f22b Correct sigmas cpu settings (#6708) 2024-01-26 09:32:24 +08:00
Steven Liu
87bfbc320d [docs] UViT2D (#6643)
* uvit2d

* fix

* fix?

* add correct paper

* fix paths

* update abstract
2024-01-25 09:37:28 -08:00
Aryan V S
a517f665a4 AnimateDiff Video to Video (#6328)
* begin animatediff img2video and video2video

* revert animatediff to original implementation

* add img2video as pipeline

* update

* add vid2vid pipeline

* update imports

* update

* remove copied from line for check_inputs

* update

* update examples

* add multi-batch support

* fix __init__.py files

* move img2vid to community

* update community readme and examples

* fix

* make fix-copies

* add vid2vid batch params

* apply suggestions from review

Co-Authored-By: Dhruv Nair <dhruv.nair@gmail.com>

* add test for animatediff vid2vid

* torch.stack -> torch.cat

Co-Authored-By: Dhruv Nair <dhruv.nair@gmail.com>

* make style

* docs for vid2vid

* update

* fix prepare_latents

* fix docs

* remove img2vid

* update README to :main

* remove slow test

* refactor pipeline output

* update docs

* update docs

* merge community readme from :main

* final fix i promise

* add support for url in animatediff example

* update example

* update callbacks to latest implementation

* Update src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* fix merge

* Apply suggestions from code review

* remove callback and callback_steps as suggested in review

* Update tests/pipelines/animatediff/test_animatediff_video2video.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* fix import error caused due to unet refactor in #6630

* fix numpy import error after tensor2vid refactor in #6626

* make fix-copies

* fix numpy error

* fix progress bar test

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2024-01-24 18:22:26 +05:30
Brandon Strong
16748d1eba SD 1.5 Support For Advanced Lora Training (train_dreambooth_lora_sdxl_advanced.py) (#6449)
* sd1.5 support in separate script

A quick adaptation to support people interested in using this method on 1.5 models.

* sd15 prompt text encoding and unet conversions

as per @linoytsaban 's recommendations. Testing would be appreciated,

* Readability and quality improvements

Removed some mentions of SDXL, and some arguments that don't apply to sd 1.5, and cleaned up some comments.

* make style/quality commands

* tracker rename and run-it doc

* Update examples/advanced_diffusion_training/train_dreambooth_lora_sd15_advanced.py

* Update examples/advanced_diffusion_training/train_dreambooth_lora_sd15_advanced.py

---------

Co-authored-by: Linoy Tsaban <57615435+linoytsaban@users.noreply.github.com>
2024-01-24 11:20:08 +02:00
Haofan Wang
c9081a8abd [Fix bugs] pipeline_controlnet_sd_xl.py (#6653)
* Update pipeline_controlnet_sd_xl.py

* Update pipeline_controlnet_xs_sd_xl.py
2024-01-24 09:18:12 +05:30
Yasuna
0eb68d9ddb [Docs] update: tutorials ja | AUTOPIPELINE.md (#6629)
* add en file

* translate 1-118 lines

* add text

* add toctree

* fix

* fix typo

* fix link
2024-01-23 09:19:55 -08:00
Haofan Wang
9941b3f124 Add InstantID Pipeline (#6673)
* add instantid pipeline

* format

* Update README.md

* Update README.md

* format

---------

Co-authored-by: ResearcherXman <xhs.research@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-01-23 17:25:23 +05:30
Ayush Mangal
16b9f98b48 [WIP][Community Pipeline] InstaFlow! One-Step Stable Diffusion with Rectified Flow (#6057)
* Add instaflow community pipeline

* Make styling fixes

* Add lora

* Fix formatting

* Add docs

* Update README.md

* Update README.md

* Remove do LORA

* Update readme

* Update README.md

* Update README.md

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2024-01-23 13:52:50 +02:00
Dhruv Nair
fee93c81eb [Refactor] Update from single file (#6428)
* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update'

* update

* update

* update

* update

* update

* update

* up

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* up

* update

* update

* update

* update

* update'

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* clean

* update

* update

* clean up

* clean up

* update

* clean

* clean

* update

* updaet

* clean up

* fix docs

* update

* update

* Revert "update"

This reverts commit dbfb8f1ea9.

* update

* update

* update

* update

* fix controlnet

* fix scheduler

* fix controlnet tests
2024-01-23 14:42:03 +05:30
Sayak Paul
5308cce994 [Tests] Test for passing local config file to from_single_file() (#6638)
make config file local too.
2024-01-23 14:21:23 +05:30
YiYi Xu
318556b20e fix dpm related slow test failure (#6680)
fix

Co-authored-by: yiyixuxu <yixu310@gmail,com>
2024-01-22 18:52:05 -10:00
Dhruv Nair
6620eda357 Standardise outputs for video pipelines (#6626)
* update

* update

* update

* update

* update

* update

* update

* clean up

* clean up
2024-01-23 10:07:07 +05:30
Sayak Paul
1f0705adcf [Big refactor] move unets to unets module 🦋 (#6630)
* move unets to  module 🦋

* parameterize unet-level import.

* fix flax unet2dcondition model import

* models __init__

* mildly depcrecating models.unet_2d_blocks in favor of models.unets.unet_2d_blocks.

* noqa

* correct depcrecation behaviour

* inherit from the actual classes.

* Empty-Commit

* backwards compatibility for unet_2d.py

* backward compatibility for unet_2d_condition

* bc for unet_1d

* bc for unet_1d_blocks
2024-01-23 08:57:58 +05:30
M. Tolga Cangöz
5e96333cb2 Update README (#6669)
Update number of checkpoints and repositories in README
2024-01-22 08:08:07 -08:00
Sayak Paul
da95a28ff6 [Diffusion DPO] apply fixes from #6547 (#6668)
apply fixes from #6547
2024-01-22 20:14:54 +05:30
Dhruv Nair
d66d554dc2 Add tearDown method to LoRA tests. (#6660)
* update

* update
2024-01-22 14:00:37 +05:30
Junsong Chen
c7df846dec add Sa-Solver (#5975)
* add Sa-Solver



---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: scxue <xueshuchen17@mails.ucas.edu.cn>
Co-authored-by: jschen <chenjunsong4@h-partners.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: yiyixuxu <yixu310@gmail,com>
2024-01-21 21:37:44 -10:00
Vinh H. Pham
8e7bbfbe5a add padding_mask_crop to all inpaint pipelines (#6360)
* add padding_mask_crop
---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-01-21 19:42:22 -10:00
YiYi Xu
e2773c6255 fix SDXL-kdiffusion tests (#6647)
🤞🤞🤞

Co-authored-by: yiyixuxu <yixu310@gmail,com>
2024-01-19 17:37:29 -10:00
YiYi Xu
ac61eefc9f fix DPM Scheduler with use_karras_sigmas option (#6477)
* fix

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2024-01-19 07:08:22 -10:00
HelloWorldBeginner
f95615b823 Fixed the bug related to saving DeepSpeed models. (#6628)
* Fixed the bug related to saving DeepSpeed models.

* Add information about training SD models using DeepSpeed to the README.

* Apply suggestions from code review

---------

Co-authored-by: mhh001 <mahonghao1@huawei.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-01-19 19:21:57 +05:30
SangKim
a9288b49c9 Modularize InstructPix2Pix SDXL inferencing during and after training in examples (#6569) 2024-01-19 15:47:34 +05:30
elucida
c54419658b refactor: extract init/forward function in UNet2DConditionModel (#6478)
* - extract function for stage in UNet2DConditionModel init & forward
- Add new function get_mid_block() to unet_2d_blocks.py

* add type hint to get_mid_block aligned with get_up_block and get_down_block; rename _set_xxx function

* add type hint and  use keyword arguments

* remove `copy from` in versatile diffusion
2024-01-19 12:13:34 +02:00
Aryan V S
6382663dc8 [Community] Experimental AnimateDiff Image to Video (open to improvements) (#6509)
* add animatediff img2vid

* fix

* Update examples/community/README.md

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* fix code snippet between ip adapter face id and animatediff img2vid

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2024-01-19 12:05:41 +02:00
spezialspezial
58b8dce129 Update convert_from_ckpt.py / read checkpoint config yaml contents (#6633)
Update convert_from_ckpt.py / read config yaml contents

Added missing reading of config yaml file contents
2024-01-19 08:25:03 +05:30
Dhruv Nair
a65ca8a059 Fix failing tests due to Posix Path (#6627)
update
2024-01-18 19:19:57 +05:30
Steven Liu
5ca062e011 [docs] Fix missing API function (#6604)
fix?
2024-01-17 13:59:09 -08:00
Linoy Tsaban
619e3ab6f6 [bug fix] advanced dreambooth lora sdxl - fixes bugs described in #6486 (#6599)
* fixes bugs:
1. redundant retraction
2. param clone
3. stopping optimization of text encoder params

* param upscaling

* style
2024-01-17 20:11:45 +05:30
Patrick von Platen
9e2804f720 Update pr_test_peft_backend.yml to use 1 process for testing (#6613) 2024-01-17 19:25:30 +05:30
Aryan V S
9112028ed8 FreeInit (#6315)
* freeinit

* update freeinit implementation based on review

Co-Authored-By: Dhruv Nair <dhruv.nair@gmail.com>

* fix

* another fix

* refactor

* fix timesteps missing bug

* apply suggestions from review

Co-Authored-By: Dhruv Nair <dhruv.nair@gmail.com>

* add test for freeinit

* apply suggestions from review

Co-Authored-By: Dhruv Nair <dhruv.nair@gmail.com>

* refactor

* fix test

* fix tensor not on same device

* update

* remove return_intermediate_results

* fix broken freeinit test

* update animatediff docs

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2024-01-17 17:17:07 +05:30
Steve Rhoades
dce06680d2 Fixes torch.compile() compatible training (#6589)
resolve conflicts
2024-01-17 07:47:03 +05:30
Bhavay Malhotra
dd63168319 Update installation.md (#6438)
* Update installation.md

* Update installation.md

* Update installation.md
2024-01-16 13:41:38 -08:00
Celestial Phineas
1040dfd9cc [Fix] Multiple image conditionings in a single batch for StableDiffusionControlNetPipeline (#6334)
* [Fix] Multiple image conditionings in a single batch for `StableDiffusionControlNetPipeline`.

* Refactor `check_inputs` in `StableDiffusionControlNetPipeline` to avoid redundant codes.

* Make the behavior of MultiControlNetModel to be the same to the original ControlNetModel

* Keep the code change minimum for nested list support

* Add fast test `test_inference_nested_image_input`

* Remove redundant check for nested image condition in `check_inputs`

Remove `len(image) == len(prompt)` check out of `check_image()`

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Better `ValueError` message for incompatible nested image list size

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Fix syntax error in `check_inputs`

* Remove warning message for multi-ControlNets with multiple prompts

* Fix a typo in test_controlnet.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Add test case for multiple prompts, single image conditioning in `StableDiffusionMultiControlNetPipelineFastTests`

* Improved `ValueError` message for nested `controlnet_conditioning_scale`

* Documenting the behavior of image list as `StableDiffusionControlNetPipeline` input

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-01-16 10:40:55 -10:00
Sayak Paul
49a4b377c1 remove omegaconf from the residues 👋 (#6600)
remove omegaconf 👋
2024-01-16 21:55:41 +05:30
JuanCarlosPi
dff35a86e4 Change in ip-adapter docs. CLIPVisionModelWithProjection should be im… (#6597)
Change in ip-adapter docs. CLIPVisionModelWithProjection should be imported from transformers, not diffusers
2024-01-16 08:18:13 -08:00
Yondon Fu
8842bcadb9 [SVD] Return np.ndarray when output_type="np" (#6507)
[SVD] Fix output_type="np"
2024-01-16 14:51:36 +05:30
Steve Rhoades
181280baba Fixes training resuming: Advanced Dreambooth LoRa Training (#6566)
* Fixes #6418 Advanced Dreambooth LoRa Training

* change order of import to fix nit

* fix nit, use cast_training_params

* remove torch.compile fix, will move to a new PR

* remove unnecessary import
2024-01-16 14:30:49 +05:30
Charchit Sharma
53f498d2a4 Use of Posix to better support Windows compatibility in testing_utils (#6587)
* changes in utils

* removed loc
2024-01-16 10:27:29 +02:00
Charchit Sharma
990860911f change to posix for better Windows support for lora loaders (#6590)
* posix lora

* changes and style fix
2024-01-16 13:46:29 +05:30
Fabio Rigano
23eed39702 Fix path generation in IP Adapter (#6564)
* Fix path generation on Windows

* Update set_default_attn_processors

* Use pathlib

* Fix quality

* Fix copy

* Revert changes in set_default_attn_processors

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-01-16 11:25:22 +05:30
YiYi Xu
fefed44543 update slow test for SDXL k-diffusion pipeline (#6588)
update expected slice
2024-01-15 18:54:33 -10:00
Dong
814f56d2fe 🐛 fix ip-adapter controlnet img2img missing code (#6528)
* 🐛 fix ip-adapter controlnet img2img missing code

* 📝 edit test

* 📝 edit test

* 📝 run make style and quality

* 🎨 remove slow tests
2024-01-15 16:41:09 -10:00
SangKim
96d6e16550 Enable image resizing to adjust its height and width in StableDiffusionXLInstructPix2PixPipeline (#6581)
* Enable image resizing to adjust its height and width in StableDiffusionXLInstructPix2PixPipeline

* Ensure that validation is performed at every 'validation_step', not at every step
2024-01-16 07:50:34 +05:30
Aryan V S
c11de13588 [training] fix training resuming problem for fp16 (SD LoRA DreamBooth) (#6554)
* fix training resume

* update

* update
2024-01-16 07:27:06 +05:30
Patrick von Platen
357855f8fc [Docs] Fix controlnet indent (#6578) 2024-01-15 18:12:55 +02:00
Fabio Rigano
f825221b5d [Community Pipeline] IPAdapter FaceID (#6276)
* Add support for IPAdapter FaceID

* Add docs

* Move subfolder to kwargs

* Fix quality

* Fix image encoder loading

* Fix loading + add test

* Move to community folder

* Fix style

* Revert constant update

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-01-15 16:43:54 +02:00
Aryan V S
119d734f6e [AnimateDiff+Controlnet] Fix multicontrolnet support (#6551)
* fix multicontrolnet support

* update README with multicontrolnet example
2024-01-15 16:36:54 +02:00
Sayak Paul
cb4b3f0b78 [OmegaConf] replace it with yaml (#6488)
* remove omegaconf from convert_from_ckpt.

* remove from single_file.

* change to string based ubscription.

* style

* okay

* fix: vae_param

* no . indexing.

* style

* style

* turn getattrs into explicit if/else

* style

* propagate changes to ldm_uncond.

* propagate to gligen

* propagate to if.

* fix: quotes.

* propagate to audioldm.

* propagate to audioldm2

* propagate to musicldm.

* propagate to vq_diffusion

* propagate to zero123.

* remove omegaconf from diffusers codebase.
2024-01-15 20:02:10 +05:30
Haofan Wang
3d574b3bbe Fix a bug of flip in SDXL training script (#6547)
* Update train_text_to_image_sdxl.py

* Update train_text_to_image_lora_sdxl.py
2024-01-15 16:28:04 +02:00
Charchit Sharma
09903774d9 Make T2I Adapter SDXL Training Script torch.compile compatible (#6577)
update for t2i_adapter
2024-01-15 19:42:56 +05:30
dependabot[bot]
d6a70d8ba8 Bump jinja2 from 3.1.2 to 3.1.3 in /examples/research_projects/realfill (#6539)
Bumps [jinja2](https://github.com/pallets/jinja) from 3.1.2 to 3.1.3.
- [Release notes](https://github.com/pallets/jinja/releases)
- [Changelog](https://github.com/pallets/jinja/blob/main/CHANGES.rst)
- [Commits](https://github.com/pallets/jinja/compare/3.1.2...3.1.3)

---
updated-dependencies:
- dependency-name: jinja2
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-01-15 16:10:10 +02:00
Charchit Sharma
e3103e171f Make InstructPix2Pix SDXL Training Script torch.compile compatible (#6576)
* changes for pix2pix_sdxl

* style fix
2024-01-15 17:54:03 +05:30
Charchit Sharma
b053053ac9 Make InstructPix2Pix Training Script torch.compile compatible (#6558)
* added torch.compile for pix2pix

* required changes
2024-01-15 17:03:22 +05:30
Vinh H. Pham
08702fc1cb Make text-to-image SDXL LoRA Training Script torch.compile compatible (#6556)
make compile compatible
2024-01-15 16:58:16 +05:30
Vinh H. Pham
7ce89e979c Make text-to-image SD LoRA Training Script torch.compile compatible (#6555)
make compile compatible
2024-01-15 16:55:08 +05:30
gzguevara
05faf3263b SDXL text-to-image torch compatible (#6550)
* torch compatible

* code quality fix

* ruff style

* ruff format
2024-01-15 16:49:11 +05:30
Sayak Paul
a080f0d3a2 [Training Utils] create a utility for casting the lora params during training. (#6553)
create a utility for casting the lora params during training.
2024-01-15 13:51:13 +05:30
Sayak Paul
79df50388d [Training] fix training resuming problem when using FP16 (SDXL LoRA DreamBooth) (#6514)
* fix: training resume from fp16.

* add: comment

* remove residue from another branch.

* remove more residues.

* thanks to Younes; no hacks.

* style.

* clean things a bit and modularize _set_state_dict_into_text_encoder

* add comment about the fix detailed.
2024-01-12 17:11:06 +05:30
Vinh H. Pham
7d631825b0 Make Dreambooth SD Training Script torch.compile compatible (#6532)
* support compile

* make style

* move unwrap_model inside function

* change unwrap call

* run make style

* Update examples/dreambooth/train_dreambooth.py

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Revert "Update examples/dreambooth/train_dreambooth.py"

This reverts commit 70ab09732e.

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-01-12 12:50:15 +05:30
gzguevara
33d2b5b087 SD text-to-image torch compile compatible (#6519)
* added unwrapper

* fiz typo
2024-01-12 09:28:35 +05:30
Suvaditya Mukherjee
f486d34b04 Make ControlNet SD Training Script torch.compile compatible (#6525)
* update: make controlnet script torch compile compatible

Signed-off-by: Suvaditya Mukherjee <suvadityamuk@gmail.com>

* update: correct earlier mistakes for compilation

Signed-off-by: Suvaditya Mukherjee <suvadityamuk@gmail.com>

* update: fix code style issues

Signed-off-by: Suvaditya Mukherjee <suvadityamuk@gmail.com>

---------

Signed-off-by: Suvaditya Mukherjee <suvadityamuk@gmail.com>
2024-01-12 09:27:26 +05:30
Charchit Sharma
e44b205e0b Make ControlNet SDXL Training Script torch.compile compatible (#6526)
* make torch.compile compatible

* fix quality
2024-01-12 09:25:09 +05:30
Vinh H. Pham
60cb44323d Make Dreambooth SD LoRA Training Script torch.compile compatible (#6534)
support compile
2024-01-12 09:24:03 +05:30
Radamés Ajna
1dd0ac9401 [DPO Training] pass tracker name as argument (#6542)
pass tracker name as argumentw
2024-01-12 09:15:39 +05:30
Yassine El Boudouri
c6b04589b6 Remove conversion to RGB (#6479)
* Remove conversion to RGB

* Add a Conversion Function

* Add type hint for convert_method

* Update src/diffusers/utils/loading_utils.py

Update docstring

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update docstring

* Optimize imports

* Optimize imports (2)

* Reformat code

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-01-12 07:20:24 +05:30
Sayak Paul
5dc3471380 [SVD] support generators that are created on GPU (#6484)
* debug generator

* fix?

* fix?

* fix

* remove print.

* revert none check
2024-01-11 20:08:18 +05:30
Aryan V S
9df566e6da [Community] StyleAligned Pipeline (#6489)
* add stylealigned sdxl pipeline

* bugfix

* update docs

* remove einops dependency

* update README

* update example docstring
2024-01-11 14:35:55 +01:00
Sayak Paul
be0b425762 [Training] make checkpointing compatible when using torch.compile (part II) (#6511)
make checkpointing compatible when using torch.compile.
2024-01-11 18:37:30 +05:30
jquintanilla4
da843b3d53 .load_ip_adapter in StableDiffusionXLAdapterPipeline (#6246)
* Added testing notebook and .load_ip_adapter to XLAdapterPipeline

* Added annotations

* deleted testing notebook

* Update src/diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* code clean up

* Add feature_extractor and image_encoder to components

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-01-11 13:04:08 +05:30
dg845
17cece072a Fix bug in LCM Distillation Scripts when args.unet_time_cond_proj_dim is used (#6523)
* Fix bug where unet's time_cond_proj_dim is not set correctly if using args.unet_time_cond_proj_dim.

* make style
2024-01-11 08:21:07 +05:30
Steven Liu
a551ddf928 [docs] mask_blur and padding_mask_crop (#6498)
new inpaint features
2024-01-10 08:14:34 -08:00
Steven Liu
1d57892980 [docs] Callbacks (#6471)
edits
2024-01-10 08:14:07 -08:00
antoine-scenario
3e8b63216e Add IP-Adapter to StableDiffusionXLControlNetImg2ImgPipeline (#6293)
* add IP-Adapter to StableDiffusionXLControlNetImg2ImgPipeline

Update src/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

fix tests

* fix failing test

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-01-09 22:02:11 -10:00
YiYi Xu
dd4459ad79 [Refactor] splitingResnetBlock2D into multiple blocks (#6166)
---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-01-09 21:38:05 -10:00
YiYi Xu
6313645b6b add StableDiffusionXLKDiffusionPipeline (#6447)
---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2024-01-09 16:29:01 -10:00
Rahul Raman
2d1f2182cc example: Train Instruct pix2 pix with lora implementation (#6469)
* base template file - train_instruct_pix2pix.py

* additional import and parser argument requried for lora

* finetune only instructpix2pix model -- no need to include these layers

* inject lora layers

* freeze unet model -- only lora layers are trained

* training modifications to train only lora parameters

* store only lora parameters

* move train script to research project

* run quality and style code checks

* move train script to a new folder

* add README

* update README

* update references in README

---------

Co-authored-by: Rahul Raman <rahulraman@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-01-10 06:38:19 +05:30
Steven Liu
3be7c96e28 [docs] Stable video diffusion (#6472)
svd
2024-01-09 09:21:58 -08:00
Steven Liu
3c79dd9dbe [docs] PEFT adapter API (#6499)
follow up
2024-01-09 08:09:15 -08:00
Steven Liu
9d767916da [docs] Fast diffusion (#6470)
* edits

* fix

* feedback
2024-01-09 08:08:31 -08:00
Patrick von Platen
ae7cd5ad4c Link issue template to discussions 2024-01-09 17:00:15 +01:00
Sayak Paul
4497b3ec98 [Training] make DreamBooth SDXL LoRA training script compatible with torch.compile (#6483)
* make it torch.compile comaptible

* make the text encoder compatible too.

* style
2024-01-09 20:11:26 +05:30
Yifan Zhou
fc63ebdd3a [Community Pipeline] Rerender-A-Video: Zero-Shot Video-to-Video Translation (#6332)
* upload codes and doc

* lint

* lint

* lint

* update code

* remove blank lines

* Fix load url
2024-01-09 14:55:34 +01:00
Sayak Paul
8b6fae4ce5 [SVD] fix: vae type (#6475)
fix: vae type
2024-01-09 14:50:02 +01:00
jiqing-feng
aa1797e109 enable stable-xl textual inversion (#6421)
* enable stable-xl textual inversion

* check if optimizer_2 exists

* check text_encoder_2 before using

* add textual inversion for sdxl in a single file

* fix style

* fix example style

* reset for error changes

* add readme for sdxl

* fix style

* disable autocast as it will cause cast error when weight_dtype=bf16

* fix spelling error

* fix style and readme and 8bit optimizer

* add README_sdxl.md link

* add tracker key on log_validation

* run style

* rm the second center crop

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-01-09 15:12:33 +05:30
Patrick von Platen
5bacc2f5af [SAG] Support more schedulers, add better error message and make tests faster (#6465)
* finish

* finish

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-01-09 09:24:38 +05:30
Yasuna
6ae7e8112a [Docs] update: tutorials ja | INDEX.md, TUTORIAL_OVERVIEW.md, TOCTREE.yml (#6338)
* add tutorials to toctree.yml

* fix title

* fix words

* add overview ja

* fix diffusion to 拡散

* fix line 21

* add space

* delete supported pipline

* fix tutorial_overview.md

* fix space

* fix typo

* Delete docs/source/ja/tutorials/using_peft_for_inference.md

this file is not translated

* Delete docs/source/ja/tutorials/basic_training.md

this file is not translated

* Delete docs/source/ja/tutorials/autopipeline.md

this file is not translated

* fix toctree
2024-01-08 09:06:46 -08:00
Sayak Paul
e0f349c2b0 correct reviewers in PR template (#6485) 2024-01-08 19:12:04 +05:30
Sayak Paul
774f5c4581 minor changes to the SVD doc (#6466)
minor changes
2024-01-06 08:40:46 +05:30
Sayak Paul
a483a8eddf Rename REAMDE.md to README.md 2024-01-05 20:49:44 +05:30
Lucain
9a9daee724 Fix offline mode import (#6467) 2024-01-05 15:34:40 +01:00
Sayak Paul
585f941366 [Core] introduce PeftAdapterMixin module. (#6416)
* introduce integrations module.

* remove duplicate methods.

* better imports.

* move to loaders.py

* remove peftadaptermixin from modelmixin.

* add: peftadaptermixin selectively.

* add: entry to _toctree

* Empty-Commit
2024-01-05 18:18:28 +05:30
Dhruv Nair
86a26761ac Correctly handle creating model index json files when setting compiled modules in pipelines. (#6436)
update
2024-01-05 18:02:09 +05:30
Liang Hou
6ef2b8a92f Fix amused paper link (#6462) 2024-01-05 13:12:09 +01:00
Vinh H. Pham
3848606c7e [Community Pipeline] Add gluegen (#6433)
* init works

* add gluegen pipeline

* add gluegen code

* add another way to load language adapter

* make style

* Update README.md

* change doc
2024-01-05 13:05:40 +01:00
Sayak Paul
2a97067b84 [Experimental] Diffusion LoRA DPO training (#6422)
* add: experimental script for diffusion dpo training.

* random_crop cli.

* fix: caption tokenization.

* fix: pixel_values index.

* fix: grad?

* debug

* fix: reduction.

* fixes in the loss calculation.

* style

* fix: unwrap call.

* fix: validation inference.

* add: initial sdxl script

* debug

* make sure images in the tuple are of same res

* fix model_max_length

* report print

* boom

* fix: numerical issues.

* fix: resolution

* comment about resize.

* change the order of the training transformation.

* save call.

* debug

* remove print

* manually detaching necessary?

* use the same vae for validation.

* add: readme.
2024-01-05 16:40:06 +05:30
Sayak Paul
ae060fc4f1 [feat] introduce unload_lora(). (#6451)
* introduce unload_lora.

* fix-copies
2024-01-05 16:22:11 +05:30
Sayak Paul
9d945b2b90 0.25.0 post release (#6358)
* post release

* style

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2024-01-05 16:13:27 +05:30
Junsheng121
d184291c7d null-text-inversion-pipeline-implementation (#6329)
* null-text-inversion-implementation

* edited

* edited

* edited

* edited

* edited

* edit

* makestyle

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-01-05 11:35:21 +01:00
Sayak Paul
0a0bb526aa [LoRA depcrecation] LoRA depcrecation trilogy (#6450)
* edebug

* debug

* more debug

* more more debug

* remove tests for LoRAAttnProcessors.

* rename
2024-01-05 15:48:20 +05:30
Linoy Tsaban
2fada8dc1b [bug fix] fixes #6444 - checkpointing save issue in advanced dreambooth lora sdxl script (#6464)
* unwrap text encoder when saving hook only for full text encoder tuning

* unwrap text encoder when saving hook only for full text encoder tuning

* save embeddings in each checkpoint as well

* save embeddings in each checkpoint as well

* save embeddings in each checkpoint as well

* Update examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-01-05 15:35:24 +05:30
jiqing-feng
f2d51a28f7 Intel Gen 4 Xeon and later support bf16 (#6367)
* Intel Gen 4 Xeon and later support bf16

* fix bf16 notes
2024-01-05 11:47:28 +05:30
Horseee
811fd06292 [Doc] Add DeepCache in section optimization/General optimizations (#6390)
* add documentation for DeepCache

* fix typo

* add wandb url for DeepCache

* fix some typos

* add item in _toctree.yml

* update formats for arguments

* Update deepcache.md

* Update docs/source/en/optimization/deepcache.md

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* add StableDiffusionXLPipeline in doc

* Separate SDPipeline and SDXLPipeline

* Add the paper link of ablation experiments for hyper-parameters

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-01-05 09:57:08 +05:30
dg845
f3d1333e02 Improve LCM(-LoRA) Distillation Scripts (#6420)
* Make WDS pipeline interpolation type configurable.

* Make the VAE encoding batch size configurable.

* Make lora_alpha and lora_dropout configurable for LCM LoRA scripts.

* Generalize scalings_for_boundary_conditions function and make the timestep scaling configurable.

* Make LoRA target modules configurable for LCM-LoRA scripts.

* Move resolve_interpolation_mode to src/diffusers/training_utils.py and make interpolation type configurable in non-WDS script.

* apply suggestions from review
2024-01-05 06:55:13 +05:30
Steven Liu
acd926f4f2 [docs] Fix local links (#6440)
fix local links
2024-01-04 09:59:11 -08:00
Lucain
691d8d3e15 Respect offline mode when loading pipeline (#6456)
* Respect offline mode when loading model

* default to local entry if connectionerror
2024-01-04 17:05:55 +01:00
Sayak Paul
e7c0af5e71 add: amused paper link. (#6453) 2024-01-04 13:44:54 +05:30
Sayak Paul
107e02160a [LoRA tests] fix stuff related to assertions arising from the recent changes. (#6448)
* debug

* debug test_with_different_scales_fusion_equivalence

* use the right method.

* place it right.

* let's see.

* let's see again

* alright then.

* add a comment.
2024-01-04 12:55:15 +05:30
sayakpaul
6dbef45e6e Revert "debug"
This reverts commit 7715e6c31c.
2024-01-04 10:39:38 +05:30
sayakpaul
7715e6c31c debug 2024-01-04 10:39:00 +05:30
sayakpaul
05b3d36a25 Revert "debug"
This reverts commit fb4aec0ce3.
2024-01-04 10:38:04 +05:30
sayakpaul
fb4aec0ce3 debug 2024-01-04 10:37:28 +05:30
Sayak Paul
63de23e3db disable running peft non-peft lora test in the peft env. (#6437)
* disable running peft non-peft lora test in the peft env.

* Empty-Commit
2024-01-04 10:18:46 +05:30
Chi
2993257f2a Batter way to write binarize() function. (#6394)
* I added a new doc string to the class. This is more flexible to understanding other developers what are doing and where it's using.

* Update src/diffusers/models/unet_2d_blocks.py

This changes suggest by maintener.

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update src/diffusers/models/unet_2d_blocks.py

Add suggested text

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update unet_2d_blocks.py

I changed the Parameter to Args text.

* Update unet_2d_blocks.py

proper indentation set in this file.

* Update unet_2d_blocks.py

a little bit of change in the act_fun argument line.

* I run the black command to reformat style in the code

* Update unet_2d_blocks.py

similar doc-string add to have in the original diffusion repository.

* Batter way to write binarize function

* Solve check_code_quality error

* My mistake to run pull request but not reformated file

* Update image_processor.py

* remove extra variable and space

* Update image_processor.py

* Run ruff libarary to reformat my file

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-01-04 09:32:08 +05:30
Sayak Paul
aad18faa3e Update README_sdxl.md to update the LR (#6432)
Update README_sdxl.md
2024-01-03 20:55:51 +05:30
Sayak Paul
d700140076 [LoRA deprecation] handle rest of the stuff related to deprecated lora stuff. (#6426)
* handle rest of the stuff related to deprecated lora stuff.

* fix: copies

* don't modify the uNet in-place.

* fix: temporal autoencoder.

* manually remove lora layers.

* don't copy unet.

* alright

* remove lora attn processors from unet3d

* fix: unet3d.

* styl

* Empty-Commit
2024-01-03 20:54:09 +05:30
Sayak Paul
2e4dc3e25d [LoRA] add: test to check if peft loras are loadable in non-peft envs. (#6400)
* add: test to check if peft loras are loadable in non-peft envs.

* add torch_device approrpiately.

* fix: get_dummy_inputs().

* test logits.

* rename

* debug

* debug

* fix: generator

* new assertion values after fixing the seed.

* shape

* remove print statements and settle this.

* to update values.

* change values when lora config is initialized under a fixed seed.

* update colab link

* update notebook link

* sanity restored by getting the exact same values without peft.
2024-01-03 09:57:49 +05:30
YiYi Xu
3e2961f0b4 [doc] update inpaint doc to use apply_overlay (#6364)
add doc

Co-authored-by: yiyixuxu <yixu310@gmail,com>
2024-01-02 11:16:36 -10:00
Vinh H. Pham
79c380bc80 Correct how apply_overlay read crop_coords (#6417)
correct reading variables
2024-01-02 19:31:12 +01:00
Aryan V S
e30b661437 Update lpw_xl pipeline to latest diffusers (#6411)
* add clip_skip, freeu, qkv

* fix

* add ip-adapter support

* callback on step end

* update

* fix NoneType bug

* fix

* add guidance scale embedding

* add textual inversion
2024-01-02 16:28:45 +01:00
Linoy Tsaban
b4077af212 [bug fix] using snr gamma and prior preservation loss in the dreambooth lora sdxl training scripts (#6356)
* change timesteps used to calculate snr when --with_prior_preservation is enabled

* change timesteps used to calculate snr when --with_prior_preservation is enabled (canonical script)

* style

* revert canonical script to before snr gamma change

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-01-02 09:21:39 -06:00
Daniel Socek
9f2bff502e [svd] fix noise_aug_strength type in svd pipe (#6389) 2024-01-02 14:45:07 +01:00
CyrusVorwald
0cb92717f9 add StableDiffusionXLControlNetInpaintPipeline to auto pipeline (#6302)
* add StableDiffusionXLControlNetInpaintPipeline to auto pipeline

* fixed style
2024-01-02 14:44:48 +01:00
Fabio Rigano
86714b72d0 Add unload_ip_adapter method (#6192)
* Add unload_ip_adapter method

* Update attn_processors with original layers

* Add test

* Use set_default_attn_processor

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-01-02 14:40:46 +01:00
Sayak Paul
61f6c5472a [LoRA] Remove the use of depcrecated loRA functionalities such as LoRAAttnProcessor (#6369)
* start deprecating loraattn.

* fix

* wrap into unet_lora_state_dict

* utilize text_encoder_lora_params

* utilize text_encoder_attn_modules

* debug

* debug

* remove print

* don't use text encoder for test_stable_diffusion_lora

* load the procs.

* set_default_attn_processor

* fix: set_default_attn_processor call.

* fix: lora_components[unet_lora_params]

* checking for 3d.

* 3d.

* more fixes.

* debug

* debug

* debug

* debug

* more debug

* more debug

* more debug

* more debug

* more debug

* more debug

* hack.

* remove comments and prep for a PR.

* appropriate set_lora_weights()

* fix

* fix: test_unload_lora_sd

* fix: test_unload_lora_sd

* use dfault attebtion processors.

* debu

* debug nan

* debug nan

* debug nan

* use NaN instead of inf

* remove comments.

* fix: test_text_encoder_lora_state_dict_unchanged

* attention processor default

* default attention processors.

* default

* style
2024-01-02 18:14:04 +05:30
lookas
17546020fc Fix #6409 (#6410)
* Update value_guided_sampling.py

Fix #6409

* Comply code style

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-01-02 11:16:21 +05:30
2510
8a366b835c Fix gradient-checkpointing option is ignored in SDXL+LoRA training. (#6388) (#6402)
* Fix gradient-checkpointing option is ignored in SDXL+LoRA training. (#6388)

* Fix gradient-checkpointing option is ignored in SD+LoRA training.

* Fix gradient checkpoint is not applied to text encoders. (SDXL+LoRA)

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-01-01 08:51:04 +05:30
Sayak Paul
61d223c884 add: CUDA graph details. (#6408) 2023-12-31 13:43:26 +05:30
apolinário
bf725e044e Add new WebUI conversion state_dict_utils to __init__ utils (#6404)
* Add new state_dict_utils to __init__ utils

* style

---------

Co-authored-by: multimodalart <joaopaulo.passos+multimodal@gmail.com>
2023-12-30 09:31:39 -06:00
apolinário
1622265e13 Add WebUI format support to Advanced Training Script (#6403)
* Add WebUI format support to Advanced Training Script

* style

---------

Co-authored-by: multimodalart <joaopaulo.passos+multimodal@gmail.com>
2023-12-30 08:45:49 -06:00
apolinário
0b63ad5ad5 Create convert_diffusers_sdxl_lora_to_webui.py (#6395)
* Create convert_diffusers_sdxl_lora_to_webui.py

* Move some conversion logic to utils

* fix logging import

* Add usage example

---------

Co-authored-by: multimodalart <joaopaulo.passos+multimodal@gmail.com>
2023-12-30 08:15:11 -06:00
Sayak Paul
6a376ceea2 [LoRA] remove unnecessary components from lora peft test suite (#6401)
remove unnecessary components from lora peft suite/
2023-12-30 18:25:40 +05:30
gzguevara
9f283b01d2 changed w&b report link (#6387) 2023-12-29 19:49:11 +05:30
Sayak Paul
203724e9d9 [Docs] add note on fp16 in fast diffusion (#6380)
add note on fp16
2023-12-29 09:38:50 +05:30
gzguevara
e7044a4221 multi-subject-dreambooth-inpainting with 🤗 datasets (#6378)
* files added

* fixing code quality

* fixing code quality

* fixing code quality

* fixing code quality

* sorted import block

* seperated import wandb

* ruff on script

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-12-29 09:33:49 +05:30
Sayak Paul
034b39b8cb [docs] add details concerning diffusers-specific bits. (#6375)
add details concerning diffusers-specific bits.
2023-12-28 23:12:49 +05:30
Sayak Paul
2db73f4a50 remove delete documentation trigger workflows. (#6373) 2023-12-28 18:26:14 +05:30
Adrian Punga
84d7faebe4 Fix support for MPS in KDPM2AncestralDiscreteScheduler (#6365)
Fix support for MPS

MPS doesn't support float64
2023-12-28 10:22:02 +01:00
YiYi Xu
4c483deb90 [refactor embeddings] gligen + ip-adapter (#6244)
* refactor ip-adapter-imageproj, gligen

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
2023-12-27 18:48:42 -10:00
Sayak Paul
1ac07d8a8d [Training examples] Follow up of #6306 (#6346)
* add to dreambooth lora.

* add: t2i lora.

* add: sdxl t2i lora.

* style

* lcm lora sdxl.

* unwrap

* fix: enable_adapters().
2023-12-28 07:37:50 +05:30
apolinário
1fff527702 Fix keys for lora format on advanced training scripts (#6361)
fix keys for lora format on advanced training scripts
2023-12-27 11:38:03 -06:00
apolinário
645a62bf3b Add PEFT to advanced training script (#6294)
* Fix ProdigyOPT in SDXL Dreambooth script

* style

* style

* Add PEFT to Advanced Training Script

* style

* style

*  style 

* change order for logic operation

* add lora alpha

* style

* Align PEFT to new format

* Update train_dreambooth_lora_sdxl_advanced.py

Apply #6355 fix

---------

Co-authored-by: multimodalart <joaopaulo.passos+multimodal@gmail.com>
2023-12-27 10:00:32 -03:00
Dhruv Nair
6414d4e4f9 Fix chunking in SVD (#6350)
fix
2023-12-27 13:07:41 +01:00
Andy W
43672b4a22 Fix "push_to_hub only create repo in consistency model lora SDXL training script" (#6102)
* fix

* style fix

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-12-27 15:25:19 +05:30
dg845
9df3d84382 Fix LCM distillation bug when creating the guidance scale embeddings using multiple GPUs. (#6279)
Fix bug when creating the guidance embeddings using multiple GPUs.

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-12-27 14:25:21 +05:30
Jianqi Pan
c751449011 fix: use retrieve_latents (#6337) 2023-12-27 10:44:26 +05:30
Dhruv Nair
c1e8bdf1d4 Move ControlNetXS into Community Folder (#6316)
* update

* update

* update

* update

* update

* make style

* remove docs

* update

* move to research folder.

* fix-copies

* remove _toctree entry.

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-12-27 08:15:23 +05:30
Sayak Paul
78b87dc25a [LoRA] make LoRAs trained with peft loadable when peft isn't installed (#6306)
* spit diffusers-native format from the get go.

* rejig the peft_to_diffusers mapping.
2023-12-27 08:01:10 +05:30
Will Berman
0af12f1f8a amused update links to new repo (#6344)
* amused update links to new repo

* lint
2023-12-26 22:46:28 +01:00
Justin Ruan
6e123688dc Remove unused parameters and fixed FutureWarning (#6317)
* Remove unused parameters and fixed `FutureWarning`

* Fixed wrong config instance

* update unittest for `DDIMInverseScheduler`
2023-12-26 22:09:10 +01:00
YiYi Xu
f0a588b8e2 adding auto1111 features to inpainting pipeline (#6072)
* add inpaint_full_res

* fix

* update

* move get_crop_region to image processor

* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* move apply_overlay to image processor

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-12-26 10:20:29 -10:00
priprapre
fa31704420 [SDXL-IP2P] Update README_sdxl, Replace the link for wandb log with the correct run (#6270)
Replace the link for wandb log with the correct run
2023-12-26 21:13:11 +01:00
Sayak Paul
9d79991da0 [Docs] fix: video rendering on svd. (#6330)
fix: video rendering on svd.
2023-12-26 21:05:22 +01:00
Will Berman
7d865ac9c6 amused other pipelines docs (#6343)
other pipelines
2023-12-26 20:20:32 +01:00
Dhruv Nair
fb02316db8 Add AnimateDiff conversion scripts (#6340)
* add scripts

* update
2023-12-26 22:40:00 +05:30
Dhruv Nair
98a2b3d2d8 Update Animatediff docs (#6341)
* update

* update

* update
2023-12-26 22:39:46 +05:30
Dhruv Nair
2026ec0a02 Interruptable Pipelines (#5867)
* add interruptable pipelines

* add tests

* updatemsmq

* add interrupt property

* make fix copies

* Revert "make fix copies"

This reverts commit 914b35332b.

* add docs

* add tutorial

* Update docs/source/en/tutorials/interrupting_diffusion_process.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/tutorials/interrupting_diffusion_process.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* update

* fix quality issues

* fix

* update

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-12-26 22:39:26 +05:30
dg845
3706aa3305 Add rescale_betas_zero_snr Argument to DDPMScheduler (#6305)
* Add rescale_betas_zero_snr argument to DDPMScheduler.

* Propagate rescale_betas_zero_snr changes to DDPMParallelScheduler.

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-12-26 17:54:30 +01:00
Sayak Paul
d4f10ea362 [Diffusion fast] add doc for diffusion fast (#6311)
* add doc for diffusion fast

* add entry to _toctree

* Apply suggestions from code review

* fix titlew

* fix: title entry

* add note about fuse_qkv_projections
2023-12-26 22:19:55 +05:30
Younes Belkada
3aba99af8f [Peft / Lora] Add adapter_names in fuse_lora (#5823)
* add adapter_name in fuse

* add tesrt

* up

* fix CI

* adapt from suggestion

* Update src/diffusers/utils/testing_utils.py

Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>

* change to `require_peft_version_greater`

* change variable names in test

* Update src/diffusers/loaders/lora.py

Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>

* break into 2 lines

* final comments

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>
2023-12-26 16:54:47 +01:00
Sayak Paul
6683f97959 [Training] Add datasets version of LCM LoRA SDXL (#5778)
* add: script to train lcm lora for sdxl with 🤗 datasets

* suit up the args.

* remove comments.

* fix num_update_steps

* fix batch unmarshalling

* fix num_update_steps_per_epoch

* fix; dataloading.

* fix microconditions.

* unconditional predictions debug

* fix batch size.

* no need to use use_auth_token

* Apply suggestions from code review

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* make vae encoding batch size an arg

* final serialization in kohya

* style

* state dict rejigging

* feat: no separate teacher unet.

* debug

* fix state dict serialization

* debug

* debug

* debug

* remove prints.

* remove kohya utility and make style

* fix serialization

* fix

* add test

* add peft dependency.

* add: peft

* remove peft

* autocast device determination from accelerator

* autocast

* reduce lora rank.

* remove unneeded space

* Apply suggestions from code review

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* style

* remove prompt dropout.

* also save in native diffusers ckpt format.

* debug

* debug

* debug

* better formation of the null embeddings.

* remove space.

* autocast fixes.

* autocast fix.

* hacky

* remove lora_sayak

* Apply suggestions from code review

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* style

* make log validation leaner.

* move back enabled in.

* fix: log_validation call.

* add: checkpointing tests

* taking my chances to see if disabling autocasting has any effect?

* start debugging

* name

* name

* name

* more debug

* more debug

* index

* remove index.

* print length

* print length

* print length

* move unet.train() after add_adapter()

* disable some prints.

* enable_adapters() manually.

* remove prints.

* some changes.

* fix params_to_optimize

* more fixes

* debug

* debug

* remove print

* disable grad for certain contexts.

* Add support for IPAdapterFull (#5911)

* Add support for IPAdapterFull


Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Fix a bug in `add_noise` function  (#6085)

* fix

* copies

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>

* [Advanced Diffusion Script] Add Widget default text (#6100)

add widget

* [Advanced Training Script] Fix pipe example (#6106)

* IP-Adapter for StableDiffusionControlNetImg2ImgPipeline (#5901)

* adapter for StableDiffusionControlNetImg2ImgPipeline

* fix-copies

* fix-copies

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* IP adapter support for most pipelines (#5900)

* support ip-adapter in src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py

* support ip-adapter in src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_attend_and_excite.py

* support ip-adapter in src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py

* update tests

* support ip-adapter in src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_panorama.py

* support ip-adapter in src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_sag.py

* support ip-adapter in src/diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py

* support ip-adapter in src/diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py

* support ip-adapter in src/diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py

* support ip-adapter in src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_ldm3d.py

* revert changes to sd_attend_and_excite and sd_upscale

* make style

* fix broken tests

* update ip-adapter implementation to latest

* apply suggestions from review

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* fix: lora_alpha

* make vae casting conditional/

* param upcasting

* propagate comments from https://github.com/huggingface/diffusers/pull/6145

Co-authored-by: dg845 <dgu8957@gmail.com>

* [Peft] fix saving / loading when unet is not "unet" (#6046)

* [Peft] fix saving / loading when unet is not "unet"

* Update src/diffusers/loaders/lora.py

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* undo stablediffusion-xl changes

* use unet_name to get unet for lora helpers

* use unet_name

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* [Wuerstchen] fix fp16 training and correct lora args (#6245)

fix fp16 training

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* [docs] fix: animatediff docs (#6339)

fix: animatediff docs

* add: note about the new script in readme_sdxl.

* Revert "[Peft] fix saving / loading when unet is not "unet" (#6046)"

This reverts commit 4c7e983bb5.

* Revert "[Wuerstchen] fix fp16 training and correct lora args (#6245)"

This reverts commit 0bb9cf0216.

* Revert "[docs] fix: animatediff docs (#6339)"

This reverts commit 11659a6f74.

* remove tokenize_prompt().

* assistive comments around enable_adapters() and diable_adapters().

---------

Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Fabio Rigano <57982783+fabiorigano@users.noreply.github.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: yiyixuxu <yixu310@gmail,com>
Co-authored-by: apolinário <joaopaulo.passos@gmail.com>
Co-authored-by: Charchit Sharma <charchitsharma11@gmail.com>
Co-authored-by: Aryan V S <contact.aryanvs@gmail.com>
Co-authored-by: dg845 <dgu8957@gmail.com>
Co-authored-by: Kashif Rasul <kashif.rasul@gmail.com>
2023-12-26 21:22:05 +05:30
Sayak Paul
4e7b0cb396 [docs] fix: animatediff docs (#6339)
fix: animatediff docs
2023-12-26 19:13:49 +05:30
Kashif Rasul
35b81fffae [Wuerstchen] fix fp16 training and correct lora args (#6245)
fix fp16 training

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-12-26 11:40:04 +01:00
Kashif Rasul
e0d8c910e9 [Peft] fix saving / loading when unet is not "unet" (#6046)
* [Peft] fix saving / loading when unet is not "unet"

* Update src/diffusers/loaders/lora.py

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* undo stablediffusion-xl changes

* use unet_name to get unet for lora helpers

* use unet_name

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-12-26 11:39:28 +01:00
dg845
a3d31e3a3e Change LCM-LoRA README Script Example Learning Rates to 1e-4 (#6304)
Change README LCM-LoRA example learning rates to 1e-4.
2023-12-25 21:29:20 +05:30
Jianqi Pan
84c403aedb fix: cannot set guidance_scale (#6326)
fix: set guidance_scale
2023-12-25 21:16:57 +05:30
Sayak Paul
f4b0b26f7e [Tests] Speed up example tests (#6319)
* remove validation args from textual onverson tests

* reduce number of train steps in textual inversion tests

* fix: directories.

* debig

* fix: directories.

* remove validation tests from textual onversion

* try reducing the time of test_text_to_image_checkpointing_use_ema

* fix: directories

* speed up test_text_to_image_checkpointing

* speed up test_text_to_image_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints

* fix

* speed up test_instruct_pix2pix_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints

* set checkpoints_total_limit to 2.

* test_text_to_image_lora_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints speed up

* speed up test_unconditional_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints

* debug

* fix: directories.

* speed up test_instruct_pix2pix_checkpointing_checkpoints_total_limit

* speed up: test_controlnet_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints

* speed up test_controlnet_sdxl

* speed up dreambooth tests

* speed up test_dreambooth_lora_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints

* speed up test_custom_diffusion_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints

* speed up test_text_to_image_lora_sdxl_text_encoder_checkpointing_checkpoints_total_limit

* speed up # checkpoint-2 should have been deleted

* speed up examples/text_to_image/test_text_to_image.py::TextToImage::test_text_to_image_checkpointing_checkpoints_total_limit

* additional speed ups

* style
2023-12-25 19:50:48 +05:30
Sayak Paul
89459a5d56 fix: lora peft dummy components (#6308)
* fix: lora peft dummy components

* fix: dummy components
2023-12-25 11:26:45 +05:30
Sayak Paul
008d9818a2 fix: t2i apdater paper link (#6314) 2023-12-25 10:45:14 +05:30
mwkldeveloper
2d43094ffc fix RuntimeError: Input type (float) and bias type (c10::Half) should be the same in train_text_to_image_lora.py (#6259)
* fix RuntimeError: Input type (float) and bias type (c10::Half) should be the same

* format source code

* format code

* remove the autocast blocks within the pipeline

* add autocast blocks to pipeline caller in train_text_to_image_lora.py
2023-12-24 14:34:35 +05:30
Celestial Phineas
7c05b975b7 Fix typos in the ValueError for a nested image list as StableDiffusionControlNetPipeline input. (#6286)
Fixed typos in the `ValueError` for a nested image list as input.
2023-12-24 14:32:24 +05:30
Dhruv Nair
fe574c8b29 LoRA Unfusion test fix (#6291)
update

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-12-24 14:31:48 +05:30
Sayak Paul
90b9479903 [LoRA PEFT] fix LoRA loading so that correct alphas are parsed (#6225)
* initialize alpha too.

* add: test

* remove config parsing

* store rank

* debug

* remove faulty test
2023-12-24 09:59:41 +05:30
apolinário
df76a39e1b Fix Prodigy optimizer in SDXL Dreambooth script (#6290)
* Fix ProdigyOPT in SDXL Dreambooth script

* style

* style
2023-12-22 06:42:04 -06:00
Bingxin Ke
3369bc810a [Community Pipeline] Add Marigold Monocular Depth Estimation (#6249)
* [Community Pipeline] Add Marigold Monocular Depth Estimation

- add single-file pipeline
- update README

* fix format - add one blank line

* format script with ruff

* use direct image link in example code

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-12-22 15:41:46 +05:30
Pedro Cuenca
7fe47596af Allow diffusers to load with Flax, w/o PyTorch (#6272) 2023-12-22 09:37:30 +01:00
Dhruv Nair
59d1caa238 Remove peft tests from old lora backend tests (#6273)
update
2023-12-22 13:35:52 +05:30
Dhruv Nair
c022e52923 Remove ONNX inpaint legacy (#6269)
update

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-12-22 13:35:21 +05:30
Will Berman
4039815276 open muse (#5437)
amused

rename

Update docs/source/en/api/pipelines/amused.md

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

AdaLayerNormContinuous default values

custom micro conditioning

micro conditioning docs

put lookup from codebook in constructor

fix conversion script

remove manual fused flash attn kernel

add training script

temp remove training script

add dummy gradient checkpointing func

clarify temperatures is an instance variable by setting it

remove additional SkipFF block args

hardcode norm args

rename tests folder

fix paths and samples

fix tests

add training script

training readme

lora saving and loading

non-lora saving/loading

some readme fixes

guards

Update docs/source/en/api/pipelines/amused.md

Co-authored-by: Suraj Patil <surajp815@gmail.com>

Update examples/amused/README.md

Co-authored-by: Suraj Patil <surajp815@gmail.com>

Update examples/amused/train_amused.py

Co-authored-by: Suraj Patil <surajp815@gmail.com>

vae upcasting

add fp16 integration tests

use tuple for micro cond

copyrights

remove casts

delegate to torch.nn.LayerNorm

move temperature to pipeline call

upsampling/downsampling changes
2023-12-21 11:40:55 -08:00
Sayak Paul
5b186b7128 [Refactor] move ldm3d out of stable_diffusion. (#6263)
ldm3d.
2023-12-21 18:59:55 +05:30
Sayak Paul
ab0459f2b7 [Deprecated pipelines] remove pix2pix zero from init (#6268)
remove pix2pix zero from init
2023-12-21 18:17:28 +05:30
Sayak Paul
9c7cc36011 [Refactor] move panorama out of stable_diffusion (#6262)
* move panorama out.

* fix: diffedit

* fix: import.

* fix: impirt
2023-12-21 18:17:05 +05:30
Sayak Paul
325f6c53ed [Refactor] move attend and excite out of stable_diffusion. (#6261)
* move attend and excite out.

* fix: import

* fix diffedit
2023-12-21 16:49:32 +05:30
Benjamin Bossan
43979c2890 TST Fix LoRA test that fails with PEFT >= 0.7.0 (#6216)
See #6185 for context.

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-12-21 11:50:05 +01:00
Sayak Paul
9ea6ac1b07 [Refactor] move sag out of stable_diffusion (#6264)
move sag out of .
2023-12-21 16:09:49 +05:30
Sayak Paul
2c34c7d6dd [Refactor] move gligen out of stable diffusion. (#6265)
* move gligen out of stable diffusion.

* fix: import

* fix import module
2023-12-21 15:26:52 +05:30
Sayak Paul
bffadde126 [Refactor] move k diffusion out of stable_diffusion (#6267)
move k diffusion out of stable_diffusion
2023-12-21 15:24:24 +05:30
YShow
35a969d297 [Training] remove depcreated method from lora scripts again (#6266)
* remove depcreated method from lora scripts

* check code quality
2023-12-21 14:17:52 +05:30
sayakpaul
c5ff469d0e Revert "move attend and excite out of stable_diffusion"
This reverts commit bcecfbc873.
2023-12-21 12:35:58 +05:30
sayakpaul
bcecfbc873 move attend and excite out of stable_diffusion 2023-12-21 12:35:09 +05:30
Sayak Paul
6269045c5b [Refactor] move diffedit out of stable_diffusion (#6260)
* move diffedit out of stable_diffuson

* fix: import

* style

* fix: import
2023-12-21 12:26:36 +05:30
lvzi
6ca9c4af05 fix: unscale fp16 gradient problem & potential error (#6086) (#6231)
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-12-21 09:09:26 +05:30
dependabot[bot]
0532cece97 Bump transformers from 4.34.0 to 4.36.0 in /examples/research_projects/realfill (#6255)
Bump transformers in /examples/research_projects/realfill

Bumps [transformers](https://github.com/huggingface/transformers) from 4.34.0 to 4.36.0.
- [Release notes](https://github.com/huggingface/transformers/releases)
- [Commits](https://github.com/huggingface/transformers/compare/v4.34.0...v4.36.0)

---
updated-dependencies:
- dependency-name: transformers
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-12-21 09:03:17 +05:30
Sayak Paul
22b45304bf [Refactor upsamplers and downsamplers] separate out upsamplers and downsamplers. (#6128)
* separate out upsamplers and downsamplers.

* import all the necessary blocks in resnet for backward comp.

* move upsample2d and downsample2d to utils.

* move downsample_2d to downsamplers.py

* apply feedback

* fix import

* samplers -> sampling
2023-12-20 21:01:33 +05:30
Beinsezii
457abdf2cf EulerAncestral add rescale_betas_zero_snr (#6187)
* EulerAncestral add `rescale_betas_zero_snr`

Uses same infinite sigma fix from EulerDiscrete. Interestingly the
ancestral version had the opposite problem: too much contrast instead of
too little.

* UT for EulerAncestral `rescale_betas_zero_snr`

* EulerAncestral upcast samples during step()

It helps this scheduler too, particularly when the model is using bf16.

While the noise dtype is still the model's it's automatically upcasted
for the add so all it affects is determinism.

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-12-20 13:09:25 +05:30
hako-mikan
ff43dba7ea [Fix] Fix Regional Prompting Pipeline (#6188)
* Update regional_prompting_stable_diffusion.py

* reformat

* reformat

* reformat

* reformat

* reformat

* reformat

* reformat

* regormat

* reformat

* reformat

* reformat

* reformat

* Update regional_prompting_stable_diffusion.py

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-12-20 10:37:19 +05:30
Steven Liu
5433962992 [docs] Batched seeds (#6237)
batched seed
2023-12-19 16:50:18 -08:00
raven
df476d9f63 [Docs] Fix a code example in the ControlNet Inpainting documentation (#6236)
fix document on masked image in inpainting controlnet
2023-12-19 13:14:37 -08:00
YiYi Xu
3e71a20650 [refactor embeddings]pixart-alpha (#6212)
pixart-alpha

Co-authored-by: yiyixuxu <yixu310@gmail,com>
2023-12-19 07:07:24 -10:00
Sayak Paul
bf40d7d82a add peft dependency to fast push tests (#6229)
* add peft dependency

* add peft dependency at the correct place.
2023-12-19 13:26:25 +05:30
Dhruv Nair
32ff4773d4 ControlNetXS fixes. (#6228)
update
2023-12-19 11:58:34 +05:30
Sayak Paul
288ceebea5 [T2I LoRA training] fix: unscale fp16 gradient problem (#6119)
* fix: unscale fp16 gradient problem

* fix for dreambooth lora sdxl

* make the type-casting conditional.

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-12-19 09:54:17 +05:30
Sayak Paul
9221da4063 fix: init for vae during pixart tests (#6215)
* fix: init for vae during pixart tests

* print the values

* add flatten

* correct assertion value for test_inference

* correct assertion values for test_inference_non_square_images

* run styling

* debug test_inference_with_multiple_images_per_prompt

* fix assertion values for test_inference_with_multiple_images_per_prompt
2023-12-18 18:16:57 -10:00
YiYi Xu
57fde871e1 offload the optional module image_encoder (#6151)
* offload image_encoder

* add test

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-12-18 15:10:01 -10:00
Fabio Rigano
68e962395c Add converter method for ip adapters (#6150)
* Add converter method for ip adapters

* Move converter method

* Update to image proj converter

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-12-18 13:46:43 -10:00
Dhruv Nair
781775ea56 Slow Test for Pipelines minor fixes (#6221)
update
2023-12-19 00:45:51 +05:30
Patrick von Platen
fa3c86beaf [SVD] Fix guidance scale (#6002)
* [SVD] Fix guidance scale

* make style
2023-12-18 19:33:24 +01:00
Haofan Wang
7d0a47f387 Update train_text_to_image_lora.py (#6144)
* Update train_text_to_image_lora.py

* Fix typo?

---------

Co-authored-by: M. Tolga Cangöz <46008593+standardAI@users.noreply.github.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-12-18 19:33:05 +01:00
Aryan V S
67b3d3267e Support img2img and inpaint in lpw-xl (#6114)
* add img2img and inpaint support to lpw-xl

* update community README

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-12-18 19:19:11 +01:00
TilmannR
4e77056885 Update README.md (#6191)
Typo: The script for LoRA training is `train_text_to_image_lora_prior.py` not `train_text_to_image_prior_lora.py`.

Alternatively you could rename the file and keep the README.md unchanged.
2023-12-18 19:08:29 +01:00
Dhruv Nair
a0c54828a1 Deprecate Pipelines (#6169)
* deprecate pipe

* make style

* update

* add deprecation message

* format

* remove tests for deprecated pipelines

* remove deprecation message

* make style

* fix copies

* clean up

* clean

* clean

* clean

* clean up

* clean up

* clean up toctree

* clean up

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-12-18 23:08:29 +05:30
Patrick von Platen
8d891e6e1b [Torch Compile] Fix torch compile for svd vae (#6217) 2023-12-18 18:21:17 +01:00
Patrick von Platen
cce1fe2d41 [Text-to-Video] Clean up pipeline (#6213)
* make style

* make style

* make style

* make style
2023-12-18 18:21:09 +01:00
Abin Thomas
d816bcb5e8 Fix t2i. blog url (#6205) 2023-12-18 09:12:28 -08:00
d8ahazard
6976cab7ca Fix possible re-conversion issues after extracting from safetensors (#6097)
* Fix possible re-conversion issues after extracting from diffusers

Properly rename specific vae keys.

* Whoops
2023-12-18 11:51:20 +01:00
Dhruv Nair
fcbed3fa79 Fix SDXL Inpainting from single file with Refiner Model (#6147)
* update

* update

* update
2023-12-18 11:45:37 +01:00
Sayak Paul
b98b314b7a [Training] remove depcreated method from lora scripts. (#6207)
remove depcreated method from lora scripts.
2023-12-18 15:52:43 +05:30
Omar Sanseviero
74558ff65b Nit fix to training params (#6200) 2023-12-18 11:06:16 +01:00
Yudong Jin
49644babd3 Fix the test script in examples/text_to_image/README.md (#6209)
* Update examples/text_to_image/README.md

* Update examples/text_to_image/README.md

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-12-18 15:36:00 +05:30
Sayak Paul
56b3b21693 [Refactor autoencoders] feat: introduce autoencoders module (#6129)
* feat: introduce autoencoders module

* more changes for styling and copy fixing

* path changes in the docs.

* fix: import structure in init.

* fix controlnetxs import
2023-12-18 12:42:15 +05:30
Sayak Paul
9cef07da5a [Benchmarks] fix: lcm benchmarking reporting (#6198)
* fix: lcm benchmarking reporting

* fix generate_csv_dict call.
2023-12-17 15:32:11 +05:30
Sayak Paul
2d94c7838e [Core] feat: enable fused attention projections for other SD and SDXL pipelines (#6179)
* feat: enable fused attention projections for other SD and SDXL pipelines

* add: test for SD fused projections.
2023-12-16 08:45:54 +05:30
Sayak Paul
a81334e3f0 [LoRA] add an error message when dealing with _best_guess_weight_name ofline (#6184)
* add an error message when dealing with _best_guess_weight_name ofline

* simplify condition
2023-12-16 08:36:08 +05:30
Dhruv Nair
d704a730cd Compile test fix (#6104)
* update

* update
2023-12-15 18:34:46 +05:30
dg845
49db233b35 Clean Up Comments in LCM(-LoRA) Distillation Scripts. (#6145)
* Clean up comments in LCM(-LoRA) distillation scripts.

* Calculate predicted source noise noise_pred correctly for all prediction_types.

* make style

* apply suggestions from review

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-12-15 18:18:16 +05:30
Dhruv Nair
93ea26f272 Add PEFT to training deps (#6148)
add peft to training deps

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-12-15 08:39:59 +05:30
Dhruv Nair
f5dfe2a8b0 LoRA test fixes (#6163)
* update

* update

* update

* update

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-12-15 08:39:41 +05:30
Patrick von Platen
4836cfad98 [Sigmas] Keep sigmas on CPU (#6173)
* correct

* Apply suggestions from code review

* make style
2023-12-15 07:43:18 +05:30
Kuba
1ccbfbb663 [docs] Add missing \ in lora.md (#6174) 2023-12-14 16:55:43 -08:00
Linoy Tsaban
29dfe22a8e [advanced dreambooth lora sdxl training script] load pipeline for inference only if validation prompt is used (#6171)
* load pipeline for inference only if validation prompt is used

* move things outside

* load pipeline for inference only if validation prompt is used

* fix readme when validation prompt is used

---------

Co-authored-by: linoytsaban <linoy@huggingface.co>
Co-authored-by: apolinário <joaopaulo.passos@gmail.com>
2023-12-14 11:45:33 -06:00
Aryan V S
56806cdbfd Add missing subclass docs, Fix broken example in SD_safe (#6116)
* fix broken example in pipeline_stable_diffusion_safe

* fix typo in pipeline_stable_diffusion_pix2pix_zero

* add missing docs

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-12-14 09:20:30 -08:00
Steven Liu
8ccc76ab37 [docs] IP-Adapter API doc (#6140)
add ip-adapter

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-12-14 09:19:37 -08:00
Monohydroxides
c46711e895 [Community] Add SDE Drag pipeline (#6105)
* Add community pipeline: sde_drag.py

* Update README.md

* Update README.md

Update example code and visual example

* Update sde_drag.py

Update code example.
2023-12-14 20:47:20 +05:30
Sayak Paul
1d686bac81 [feat: Benchmarking Workflow] add stuff for a benchmarking workflow (#5839)
* add poc for benchmarking workflow.

* import

* fix argument

* fix: argument

* fix: path

* fix

* fix

* path

* output csv files.

* workflow cleanup

* append token

* add utility to push to hf dataset

* fix: kw arg

* better reporting

* fix: headers

* better formatting of the numbers.

* better type annotation

* fix: formatting

* moentarily disable check

* push results.

* remove disable check

* introduce base classes.

* img2img class

* add inpainting pipeline

* intoduce base benchmark class.

* add img2img and inpainting

* feat: utility to compare changes

* fix

* fix import

* add args

* basepath

* better exception handling

* better path handling

* fix

* fix

* remove

* ifx

* fix

* add: support for controlnet.

* image_url -> url

* move images to huggingface hub

* correct urls.

* root_ckpt

* flush before benchmarking

* don't install accelerate from source

* add runner

* simplify Diffusers Benchmarking step

* change runner

* fix: subprocess call.

* filter percentage values

* fix controlnet benchmark

* add t2i adapters.

* fix filter columns

* fix t2i adapter benchmark

* fix init.

* fix

* remove safetensors flag

* fix args print

* fix

* feat: run_command

* add adapter resolution mapping

* benchmark t2i adapter fix.

* fix adapter input

* fix

* convert to L.

* add flush() add appropriate places

* better filtering

* okay

* get env for torch

* convert to float

* fix

* filter out nans.

* better coment

* sdxl

* sdxl for other benchmarks.

* fix: condition

* fix: condition for inpainting

* fix: mapping for resolution

* fix

* include kandinsky and wuerstchen

* fix: Wuerstchen

* Empty-Commit

* [Community] AnimateDiff + Controlnet Pipeline (#5928)

* begin work on animatediff + controlnet pipeline

* complete todos, uncomment multicontrolnet, input checks

Co-Authored-By: EdoardoBotta <botta.edoardo@gmail.com>

* update

Co-Authored-By: EdoardoBotta <botta.edoardo@gmail.com>

* add example

* update community README

* Update examples/community/README.md

---------

Co-authored-by: EdoardoBotta <botta.edoardo@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* EulerDiscreteScheduler add `rescale_betas_zero_snr` (#6024)

* EulerDiscreteScheduler add `rescale_betas_zero_snr`

* Revert "[Community] AnimateDiff + Controlnet Pipeline (#5928)"

This reverts commit 821726d7c0.

* Revert "EulerDiscreteScheduler add `rescale_betas_zero_snr` (#6024)"

This reverts commit 3dc2362b5a.

* add SDXL turbo

* add lcm lora to the mix as well.

* fix

* increase steps to 2 when running turbo i2i

* debug

* debug

* debug

* fix for good

* fix and isolate better

* fuse lora so that torch compile works with peft

* fix: LCMLoRA

* better identification for LCM

* change to cron job

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
Co-authored-by: Aryan V S <contact.aryanvs@gmail.com>
Co-authored-by: EdoardoBotta <botta.edoardo@gmail.com>
Co-authored-by: Beinsezii <39478211+Beinsezii@users.noreply.github.com>
2023-12-12 11:03:34 +05:30
M. Tolga Cangöz
0a401b95b7 [Docs] Fix typos (#6122)
Fix typos and trim trailing whitespaces
2023-12-11 10:55:28 -08:00
Edward Li
664e931bcb Correct type annotation for VaeImageProcessor.numpy_to_pil (#6111)
From `(np.ndarray) -> PIL.Image.Image` to `(np.ndarray) -> List[PIL.Image.Image]`.
2023-12-11 15:22:04 +05:30
Aryan V S
88bdd97ccd IP adapter support for most pipelines (#5900)
* support ip-adapter in src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py

* support ip-adapter in src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_attend_and_excite.py

* support ip-adapter in src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py

* update tests

* support ip-adapter in src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_panorama.py

* support ip-adapter in src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_sag.py

* support ip-adapter in src/diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py

* support ip-adapter in src/diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py

* support ip-adapter in src/diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py

* support ip-adapter in src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_ldm3d.py

* revert changes to sd_attend_and_excite and sd_upscale

* make style

* fix broken tests

* update ip-adapter implementation to latest

* apply suggestions from review

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-12-10 21:19:14 +05:30
Charchit Sharma
08b453e382 IP-Adapter for StableDiffusionControlNetImg2ImgPipeline (#5901)
* adapter for StableDiffusionControlNetImg2ImgPipeline

* fix-copies

* fix-copies

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-12-09 11:02:55 +05:30
apolinário
2a111bc9fe [Advanced Training Script] Fix pipe example (#6106) 2023-12-08 15:56:35 +01:00
apolinário
16e6997f0d [Advanced Diffusion Script] Add Widget default text (#6100)
add widget
2023-12-08 12:45:27 +01:00
YiYi Xu
3b9b98656e Fix a bug in add_noise function (#6085)
* fix

* copies

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
2023-12-07 11:35:28 -10:00
Fabio Rigano
b65928b556 Add support for IPAdapterFull (#5911)
* Add support for IPAdapterFull


Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-12-07 06:40:39 -10:00
Beinsezii
6bf1ca2c79 EulerDiscreteScheduler add rescale_betas_zero_snr (#6024)
* EulerDiscreteScheduler add `rescale_betas_zero_snr`
2023-12-06 21:51:04 -10:00
Aryan V S
978dec9014 [Community] AnimateDiff + Controlnet Pipeline (#5928)
* begin work on animatediff + controlnet pipeline

* complete todos, uncomment multicontrolnet, input checks

Co-Authored-By: EdoardoBotta <botta.edoardo@gmail.com>

* update

Co-Authored-By: EdoardoBotta <botta.edoardo@gmail.com>

* add example

* update community README

* Update examples/community/README.md

---------

Co-authored-by: EdoardoBotta <botta.edoardo@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-12-06 21:01:41 -10:00
Dhruv Nair
79a7ab92d1 Fix clearing backend cache from device agnostic testing (#6075)
update
2023-12-07 11:18:31 +05:30
Younes Belkada
c2717317f0 [PEFT] Adapt example scripts to use PEFT (#5388)
* adapt example scripts to use PEFT

* Update examples/text_to_image/train_text_to_image_lora.py

* fix

* add for SDXL

* oops

* make sure to install peft

* fix

* fix

* fix dreambooth and lora

* more fixes

* add peft to requirements.txt

* fix

* final fix

* add peft version in requirements

* remove comment

* change variable names

* add few lines in readme

* add to reqs

* style

* fix issues

* fix lora dreambooth xl tests

* init_lora_weights to gaussian and add out proj where missing

* ammend requirements.

* ammend requirements.txt

* add correct peft versions

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-12-07 09:39:29 +05:30
Ian
bf7f9b49a2 Fix typing inconsistency in Euler discrete scheduler (#6052) 2023-12-06 23:45:16 +01:00
UmerHA
e192ae08d3 Add ControlNet-XS support (#5827)
* Check in 23-10-05

* check-in 23-10-06

* check-in 23-10-07 2pm

* check-in 23-10-08

* check-in 231009T1200

* check-in 230109

* checkin 231010

* init + forward run

* checkin

* checkin

* ControlNetXSModel is now saveable+loadable

* Forward works

* checkin

* Pipeline works with `no_control=True`

* checkin

* debug: save intermediate outputs of resnet

* checkin

* Understood time error + fixed connection error

* checkin

* checkin 231106T1600

* turned off detailled debug prints

* time debug logs

* small fix

* Separated control_scale for connections/time

* simplified debug logging

* Full denoising works with control scale = 0

* aligned logs

* Added control_attention_head_dim param

* Passing n_heads instead of dim_head into ctrl unet

* Fixed ctrl midblock bug

* Cleanup

* Fixed time dtype bug

* checkin

* 1. from_unet, 2. base passed, 3. all unet params

* checkin

* Finished docstrings

* cleanup

* make style

* checkin

* more tests pass

* Fixed tests

* removed debug logs

* make style + quality

* make fix-copies

* fixed documentation

* added cnxs to doc toc

* added control start/end param

* Update controlnetxs_sdxl.md

* tried to fix copies..

* Fixed norm_num_groups in from_unet

* added sdxl-depth test

* created SD2.1 controlnet-xs pipeline

* re-added debug logs

* Adjusting group norm ; readded logs

* Added debug log statements

* removed debug logs ; started tests for sd2.1

* updated sd21 tests

* fixed tests

* fixed tests

* slightly increased error tolerance for 1 test

* make style & quality

* Added docs for CNXS-SD

* make fix-copies

* Fixed sd compile test ; fixed gradient ckpointing

* vae downs = cnxs conditioning downs; removed guess

* make style & quality

* Fixed tests

* fixed test

* Incorporated review feedback

* simplified control model surgery

* fixed tests & make style / quality

* Updated docs; deleted pip & cursor files

* Rolled back minimal change to resnet

* Update resnet.py

* Update resnet.py

* Update src/diffusers/models/controlnetxs.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/models/controlnetxs.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Incorporated review feedback

* Update docs/source/en/api/pipelines/controlnetxs_sdxl.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/api/pipelines/controlnetxs.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/api/pipelines/controlnetxs.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/api/pipelines/controlnetxs.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/diffusers/models/controlnetxs.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/diffusers/models/controlnetxs.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/api/pipelines/controlnetxs.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Incorporated doc feedback

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2023-12-06 23:33:47 +01:00
Steven Liu
87a09d66f3 [docs] SDXL Turbo (#6065)
api docs
2023-12-06 14:33:14 -08:00
Lucain
75ada25048 Harmonize HF environment variables + deprecate use_auth_token (#6066)
* Harmonize HF environment variables + deprecate use_auth_token

* fix import

* fix
2023-12-06 22:22:31 +01:00
Patrick von Platen
2243a59483 [Euler Discrete] Fix sigma (#6078)
* [Euler Discrete] Fix sigma

* make style
2023-12-06 19:59:38 +01:00
apolinário
466d32c442 [Advanced Diffusion Training] Cache latents to avoid VAE passes for every training step (#6076)
* add cache latents

* style
2023-12-06 14:46:53 +01:00
Dhruv Nair
20ba1fdbbd Disable Tests Fetcher (#6060)
update
2023-12-06 18:10:11 +05:30
Pedro Cuenca
ab6672fecd Use CC12M for LCM WDS training example (#5908)
* Fix SD scripts - there are only 2 items per batch

* Adjustments to make the SDXL scripts work with other datasets

* Use public webdataset dataset for examples

* make style

* Minor tweaks to the readmes.

* Stress that the database is illustrative.
2023-12-06 10:35:36 +01:00
Dhruv Nair
f90a5139a2 fix 2023-12-06 06:03:58 +00:00
Sayak Paul
a2bc2e14b9 [feat] allow SDXL pipeline to run with fused QKV projections (#6030)
* debug

* from step

* print

* turn sigma a list

* make str

* init_noise_sigma

* comment

* remove prints

* feat: introduce fused projections

* change to a better name

* no grad

* device.

* device

* dtype

* okay

* print

* more print

* fix: unbind -> split

* fix: qkv >-> k

* enable disable

* apply attention processor within the method

* attn processors

* _enable_fused_qkv_projections

* remove print

* add fused projection to vae

* add todos.

* add: documentation and cleanups.

* add: test for qkv projection fusion.

* relax assertions.

* relax further

* fix: docs

* fix-copies

* correct error message.

* Empty-Commit

* better conditioning on disable_fused_qkv_projections

* check

* check processor

* bfloat16 computation.

* check latent dtype

* style

* remove copy temporarily

* cast latent to bfloat16

* fix: vae -> self.vae

* remove print.

* add _change_to_group_norm_32

* comment out stuff that didn't work

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* reflect patrick's suggestions.

* fix imports

* fix: disable call.

* fix more

* fix device and dtype

* fix conditions.

* fix more

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-12-06 07:33:26 +05:30
Arsalan
f427345ab1 Device agnostic testing (#5612)
* utils and test modifications to enable device agnostic testing

* device for manual seed in unet1d

* fix generator condition in vae test

* consistency changes to testing

* make style

* add device agnostic testing changes to source and one model test

* make dtype check fns private, log cuda fp16 case

* remove dtype checks from import utils, move to testing_utils

* adding tests for most model classes and one pipeline

* fix vae import
2023-12-05 19:04:13 +05:30
apolinário
6e221334cd [advanced_dreambooth_lora_sdxl_tranining_script] save embeddings locally fix (#6058)
* Update train_dreambooth_lora_sdxl_advanced.py

* remove global function args from dreamboothdataset class

* style

* style

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-12-05 13:52:34 +01:00
Patrick von Platen
53bc30dd45 [From single file] remove depr warning (#6043) 2023-12-05 18:12:25 +05:30
Radamés Ajna
eacf5e34eb Fix demofusion (#6049)
* Update pipeline_demofusion_sdxl.py

* Update README.md
2023-12-05 18:10:46 +05:30
Dhruv Nair
4c05f7856a Ldm unet convert fix (#6038)
* fix

* fix ldm conversion

* fix linting
2023-12-05 18:01:02 +05:30
Dhruv Nair
bbd3572044 Pin Ruff Version (#6059)
pinn ruff
2023-12-05 17:51:37 +05:30
Dhruv Nair
f948778322 Move kandinsky convert script (#6047)
move kandinsky convert script
2023-12-05 15:12:37 +05:30
Steven Liu
4684ea2fe8 [docs] #Copied from mechanism (#6007)
* copied from section

* feedback
2023-12-04 10:12:52 -08:00
Steven Liu
b64f835ea7 [docs] Add Kandinsky 3 (#5988)
* add

* fix api docs

* edits
2023-12-04 10:11:15 -08:00
Linoy Tsaban
880c0fdd36 [advanced dreambooth lora training script][bug_fix] change token_abstraction type to str (#6040)
* improve help tags

* style fix

* changes token_abstraction type to string.
support multiple concepts for pivotal using a comma separated string.

* style fixup

* changed logger to warning (not yet available)

* moved the token_abstraction parsing to be in the same block as where we create the mapping of identifier to token

---------

Co-authored-by: Linoy <linoy@huggingface.co>
2023-12-04 18:38:44 +01:00
RuoyiDu
c36f1c3160 [Community Pipeline] DemoFusion: Democratising High-Resolution Image Generation With No $$$ (#6022)
* Add files via upload

* Update README.md

* Update pipeline_demofusion_sdxl.py

* Update pipeline_demofusion_sdxl.py

* Update examples/community/README.md

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-12-04 19:44:57 +05:30
takuoko
0a08d41961 [Feature] Support IP-Adapter Plus (#5915)
* Support IP-Adapter Plus

* fix format

* restore before black format

* restore before black format

* generic

* Refactor PerceiverAttention

* format

* fix test and refactor PerceiverAttention

* generic encode_image

* keep attention implementation

* merge tests

* encode_image backward compatible

* code quality

* fix controlnet inpaint pipeline

* refactor FFN

* refactor FFN

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2023-12-04 12:43:34 +01:00
Levi McCallum
e185084a5d Add variant argument to dreambooth lora sdxl advanced (#6021)
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-12-04 12:04:15 +01:00
Dhruv Nair
b21729225a Update Tests Fetcher (#5950)
* update setup and deps table

* update

* update

* update

* up

* up

* update

* up

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* quality fix

* fix failure reporting

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-12-04 12:59:41 +05:30
Parth38
8a812e4e14 Update value_guided_sampling.py (#6027)
* Update value_guided_sampling.py

Changed the scheduler step function as predict_epsilon parameter is not there in latest  DDPM Scheduler

* Update value_guided_sampling.md

Updated a link to a working notebook

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-12-04 10:36:25 +05:30
gujing
bf92e746c0 fix StableDiffusionTensorRT super args error (#6009) 2023-12-04 10:06:23 +05:30
Linoy Tsaban
b785a155d6 [advanced dreambooth lora sdxl training script] improve help tags (#6035)
* improve help tags

* style fix

---------

Co-authored-by: Linoy <linoy@huggingface.co>
2023-12-04 09:41:25 +05:30
Sayak Paul
d486f0e846 [LoRA serialization] fix: duplicate unet prefix problem. (#5991)
* fix: duplicate unet prefix problem.

* Update src/diffusers/loaders/lora.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-12-02 21:35:16 +05:30
Sayak Paul
3351270627 [PixArt Tests] remove fast tests from slow suite (#5945)
remove fast tests from slow suite
2023-12-02 20:58:27 +05:30
Junsong Chen
4520e1221a adapt PixArtAlphaPipeline for pixart-lcm model (#5974)
* adapt PixArtAlphaPipeline for pixart-lcm model

* remove original_inference_steps from __call__

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-12-02 13:30:40 +05:30
Long(Tony) Lian
618260409f LLMGroundedDiffusionPipeline: inherit from DiffusionPipeline and fix peft (#6023)
* LLMGroundedDiffusionPipeline: inherit from DiffusionPipeline and fix peft

* Use main in the revision in the examples

* Add "Copied from" statements in comments

* Fix formatting with ruff
2023-12-01 09:58:25 -10:00
Patrick von Platen
dadd55fb36 Post Release: v0.24.0 (#5985)
* Post Release: v0.24.0

* post pone deprecation

* post pone deprecation

* Add model_index.json
2023-12-01 18:43:44 +01:00
YiYi Xu
1b6c7ea74e [schedulers] create self.sigmas during __init__ (#6006)
* fix dpm
* all scheulers
2023-12-01 07:15:37 -10:00
YiYi Xu
b41f809a4e [Kandinsky 3.0] Follow-up TODOs (#5944)
clean-up kendinsky 3.0
2023-12-01 07:14:22 -10:00
Patrick von Platen
0f55c17e17 fix style 2023-12-01 15:59:34 +00:00
Charchit Sharma
5058d27f12 added attention_head_dim, attention_type, resolution_idx (#6011) 2023-12-01 16:26:58 +01:00
M. Tolga Cangöz
748c1b3ec7 [Docs] Update a link (#6014)
* Update the location of Python's version

* Trim trailing whitespace
2023-12-01 16:26:25 +01:00
M. Tolga Cangöz
523507034f [logging] Fix assertion bug (#6012)
Fix assertion bug
2023-12-01 16:26:04 +01:00
hako-mikan
46c751e970 [Community Pipeline] Regional Prompting Pipeline (#6015)
* Update README.md

* Update README.md

* Add files via upload

* Update README.md

* Update examples/community/README.md

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-12-01 16:22:59 +01:00
Patrick von Platen
bc1d28c888 [From Single File] Allow Text Encoder to be passed (#6020)
Allow text encoder to be passed
2023-12-01 16:19:04 +01:00
Sayak Paul
af378c1dd1 [Easy] minor edits to setup.py (#5996)
minor edits to setup
2023-12-01 20:38:46 +05:30
Steven Liu
6ba4c5395f [docs] Fix SVD video (#6004)
Update svd.md
2023-12-01 16:07:47 +01:00
Linoy Tsaban
c1e4529541 [advanced_dreambooth_lora_sdxl_tranining_script] readme fix (#6019)
readme
2023-12-01 15:14:57 +01:00
Linoy Tsaban
d29d97b616 [examples/advanced_diffusion_training] bug fixes and improvements for LoRA Dreambooth SDXL advanced training script (#5935)
* imports and readme bug fixes

* bug fix - ensures text_encoder params are dtype==float32 (when using pivotal tuning) even if the rest of the model is loaded in fp16

* added pivotal tuning to readme

* mapping token identifier to new inserted token in validation prompt (if used)

* correct default value of --train_text_encoder_frac

* change default value of  --adam_weight_decay_text_encoder

* validation prompt generations when using pivotal tuning bug fix

* style fix

* textual inversion embeddings name change

* style fix

* bug fix - stopping text encoder optimization halfway

* readme - will include token abstraction and new inserted tokens when using pivotal tuning
- added type to --num_new_tokens_per_abstraction

* style fix

---------

Co-authored-by: Linoy Tsaban <linoy@huggingface.co>
2023-12-01 14:18:43 +01:00
Jongho Choi
7d4a257c7f Remove a duplicated line? (#6010)
Update __init__.py
2023-12-01 15:49:36 +05:30
Kristian Mischke
141cd52d56 Fix LLMGroundedDiffusionPipeline super class arguments (#5993)
* make `requires_safety_checker` a kwarg instead of a positional argument as it's more future-proof

* apply `make style` formatting edits

* add image_encoder to arguments and pass to super constructor
2023-11-30 10:15:14 -10:00
557 changed files with 68720 additions and 19242 deletions

View File

@@ -1,4 +1,4 @@
contact_links:
- name: Forum
url: https://discuss.huggingface.co/c/discussion-related-to-httpsgithubcomhuggingfacediffusers/63
- name: Questions / Discussions
url: https://github.com/huggingface/diffusers/discussions
about: General usage questions and community discussions

View File

@@ -38,7 +38,7 @@ members/contributors who may be interested in your PR.
Core library:
- Schedulers: @williamberman and @patrickvonplaten
- Schedulers: @yiyixuxu and @patrickvonplaten
- Pipelines: @patrickvonplaten and @sayakpaul
- Training examples: @sayakpaul and @patrickvonplaten
- Docs: @stevhliu and @yiyixuxu

52
.github/workflows/benchmark.yml vendored Normal file
View File

@@ -0,0 +1,52 @@
name: Benchmarking tests
on:
schedule:
- cron: "30 1 1,15 * *" # every 2 weeks on the 1st and the 15th of every month at 1:30 AM
env:
DIFFUSERS_IS_CI: yes
HF_HOME: /mnt/cache
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
jobs:
torch_pipelines_cuda_benchmark_tests:
name: Torch Core Pipelines CUDA Benchmarking Tests
strategy:
fail-fast: false
max-parallel: 1
runs-on: [single-gpu, nvidia-gpu, a10, ci]
container:
image: diffusers/diffusers-pytorch-cuda
options: --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/ --gpus 0
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Install dependencies
run: |
apt-get update && apt-get install libsndfile1-dev libgl1 -y
python -m pip install -e .[quality,test]
python -m pip install pandas
- name: Environment
run: |
python utils/print_env.py
- name: Diffusers Benchmarking
env:
HUGGING_FACE_HUB_TOKEN: ${{ secrets.DIFFUSERS_BOT_TOKEN }}
BASE_PATH: benchmark_outputs
run: |
export TOTAL_GPU_MEMORY=$(python -c "import torch; print(torch.cuda.get_device_properties(0).total_memory / (1024**3))")
cd benchmarks && mkdir ${BASE_PATH} && python run_all.py && python push_results.py
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: benchmark_test_reports
path: benchmarks/benchmark_outputs

View File

@@ -1,14 +0,0 @@
name: Delete doc comment
on:
workflow_run:
workflows: ["Delete doc comment trigger"]
types:
- completed
jobs:
delete:
uses: huggingface/doc-builder/.github/workflows/delete_doc_comment.yml@main
secrets:
comment_bot_token: ${{ secrets.COMMENT_BOT_TOKEN }}

View File

@@ -1,12 +0,0 @@
name: Delete doc comment trigger
on:
pull_request:
types: [ closed ]
jobs:
delete:
uses: huggingface/doc-builder/.github/workflows/delete_doc_comment_trigger.yml@main
with:
pr_number: ${{ github.event.number }}

View File

@@ -1,12 +1,6 @@
name: Fast tests for PRs - Test Fetcher
on:
pull_request:
branches:
- main
push:
branches:
- ci-*
on: workflow_dispatch
env:
DIFFUSERS_IS_CI: yes
@@ -35,14 +29,15 @@ jobs:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
fetch-depth: 0
- name: Install dependencies
run: |
apt-get update && apt-get install libsndfile1-dev libgl1 -y
python -m pip install -e .
python -m pip install -e .[quality,test]
- name: Environment
run: |
python utils/print_env.py
echo $(git --version)
- name: Fetch Tests
run: |
python utils/tests_fetcher.py | tee test_preparation.txt
@@ -110,7 +105,7 @@ jobs:
continue-on-error: true
run: |
cat reports/${{ matrix.modules }}_tests_cpu_stats.txt
cat reports/${{ matrix.modules }}_tests_cpu/failures_short.txt
cat reports/${{ matrix.modules }}_tests_cpu_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}

View File

@@ -59,7 +59,7 @@ jobs:
- name: Run fast PyTorch LoRA CPU tests with PEFT backend
run: |
python -m pytest -n 2 --max-worker-restart=0 --dist=loadfile \
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v \
--make-reports=tests_${{ matrix.config.report }} \
tests/lora/test_lora_layers_peft.py

View File

@@ -113,6 +113,7 @@ jobs:
- name: Run example PyTorch CPU tests
if: ${{ matrix.config.framework == 'pytorch_examples' }}
run: |
python -m pip install peft
python -m pytest -n 2 --max-worker-restart=0 --dist=loadfile \
--make-reports=tests_${{ matrix.config.report }} \
examples

View File

@@ -189,7 +189,7 @@ jobs:
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
-s -v -k "not Flax and not Onnx and not PEFTLoRALoading" \
--make-reports=tests_peft_cuda \
tests/lora/

View File

@@ -98,6 +98,7 @@ jobs:
- name: Run example PyTorch CPU tests
if: ${{ matrix.config.framework == 'pytorch_examples' }}
run: |
python -m pip install peft
python -m pytest -n 2 --max-worker-restart=0 --dist=loadfile \
--make-reports=tests_${{ matrix.config.report }} \
examples

View File

@@ -355,7 +355,7 @@ You will need basic `git` proficiency to be able to contribute to
manual. Type `git --help` in a shell and enjoy. If you prefer books, [Pro
Git](https://git-scm.com/book/en/v2) is a very good reference.
Follow these steps to start contributing ([supported Python versions](https://github.com/huggingface/diffusers/blob/main/setup.py#L244)):
Follow these steps to start contributing ([supported Python versions](https://github.com/huggingface/diffusers/blob/main/setup.py#L265)):
1. Fork the [repository](https://github.com/huggingface/diffusers) by
clicking on the 'Fork' button on the repository's page. This creates a copy of the code

View File

@@ -3,7 +3,7 @@
# make sure to test the local checkout in scripts and not the pre-installed one (don't use quotes!)
export PYTHONPATH = src
check_dirs := examples scripts src tests utils
check_dirs := examples scripts src tests utils benchmarks
modified_only_fixup:
$(eval modified_py_files := $(shell python utils/get_modified_files.py $(check_dirs)))
@@ -41,7 +41,7 @@ repo-consistency:
quality:
ruff check $(check_dirs) setup.py
ruff format --check $(check_dirs) setup.py
ruff format --check $(check_dirs) setup.py
python utils/check_doc_toc.py
# Format source code automatically and check is there are any problems left that need manual fixing

View File

@@ -77,7 +77,7 @@ Please refer to the [How to use Stable Diffusion in Apple Silicon](https://huggi
## Quickstart
Generating outputs is super easy with 🤗 Diffusers. To generate an image from text, use the `from_pretrained` method to load any pretrained diffusion model (browse the [Hub](https://huggingface.co/models?library=diffusers&sort=downloads) for 15000+ checkpoints):
Generating outputs is super easy with 🤗 Diffusers. To generate an image from text, use the `from_pretrained` method to load any pretrained diffusion model (browse the [Hub](https://huggingface.co/models?library=diffusers&sort=downloads) for 19000+ checkpoints):
```python
from diffusers import DiffusionPipeline
@@ -219,7 +219,7 @@ Also, say 👋 in our public Discord channel <a href="https://discord.gg/G7tWnz9
- https://github.com/deep-floyd/IF
- https://github.com/bentoml/BentoML
- https://github.com/bmaltais/kohya_ss
- +6000 other amazing GitHub repositories 💪
- +8000 other amazing GitHub repositories 💪
Thank you for using us ❤️.

316
benchmarks/base_classes.py Normal file
View File

@@ -0,0 +1,316 @@
import os
import sys
import torch
from diffusers import (
AutoPipelineForImage2Image,
AutoPipelineForInpainting,
AutoPipelineForText2Image,
ControlNetModel,
LCMScheduler,
StableDiffusionAdapterPipeline,
StableDiffusionControlNetPipeline,
StableDiffusionXLAdapterPipeline,
StableDiffusionXLControlNetPipeline,
T2IAdapter,
WuerstchenCombinedPipeline,
)
from diffusers.utils import load_image
sys.path.append(".")
from utils import ( # noqa: E402
BASE_PATH,
PROMPT,
BenchmarkInfo,
benchmark_fn,
bytes_to_giga_bytes,
flush,
generate_csv_dict,
write_to_csv,
)
RESOLUTION_MAPPING = {
"runwayml/stable-diffusion-v1-5": (512, 512),
"lllyasviel/sd-controlnet-canny": (512, 512),
"diffusers/controlnet-canny-sdxl-1.0": (1024, 1024),
"TencentARC/t2iadapter_canny_sd14v1": (512, 512),
"TencentARC/t2i-adapter-canny-sdxl-1.0": (1024, 1024),
"stabilityai/stable-diffusion-2-1": (768, 768),
"stabilityai/stable-diffusion-xl-base-1.0": (1024, 1024),
"stabilityai/stable-diffusion-xl-refiner-1.0": (1024, 1024),
"stabilityai/sdxl-turbo": (512, 512),
}
class BaseBenchmak:
pipeline_class = None
def __init__(self, args):
super().__init__()
def run_inference(self, args):
raise NotImplementedError
def benchmark(self, args):
raise NotImplementedError
def get_result_filepath(self, args):
pipeline_class_name = str(self.pipe.__class__.__name__)
name = (
args.ckpt.replace("/", "_")
+ "_"
+ pipeline_class_name
+ f"-bs@{args.batch_size}-steps@{args.num_inference_steps}-mco@{args.model_cpu_offload}-compile@{args.run_compile}.csv"
)
filepath = os.path.join(BASE_PATH, name)
return filepath
class TextToImageBenchmark(BaseBenchmak):
pipeline_class = AutoPipelineForText2Image
def __init__(self, args):
pipe = self.pipeline_class.from_pretrained(args.ckpt, torch_dtype=torch.float16)
pipe = pipe.to("cuda")
if args.run_compile:
if not isinstance(pipe, WuerstchenCombinedPipeline):
pipe.unet.to(memory_format=torch.channels_last)
print("Run torch compile")
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
if hasattr(pipe, "movq") and getattr(pipe, "movq", None) is not None:
pipe.movq.to(memory_format=torch.channels_last)
pipe.movq = torch.compile(pipe.movq, mode="reduce-overhead", fullgraph=True)
else:
print("Run torch compile")
pipe.decoder = torch.compile(pipe.decoder, mode="reduce-overhead", fullgraph=True)
pipe.vqgan = torch.compile(pipe.vqgan, mode="reduce-overhead", fullgraph=True)
pipe.set_progress_bar_config(disable=True)
self.pipe = pipe
def run_inference(self, pipe, args):
_ = pipe(
prompt=PROMPT,
num_inference_steps=args.num_inference_steps,
num_images_per_prompt=args.batch_size,
)
def benchmark(self, args):
flush()
print(f"[INFO] {self.pipe.__class__.__name__}: Running benchmark with: {vars(args)}\n")
time = benchmark_fn(self.run_inference, self.pipe, args) # in seconds.
memory = bytes_to_giga_bytes(torch.cuda.max_memory_allocated()) # in GBs.
benchmark_info = BenchmarkInfo(time=time, memory=memory)
pipeline_class_name = str(self.pipe.__class__.__name__)
flush()
csv_dict = generate_csv_dict(
pipeline_cls=pipeline_class_name, ckpt=args.ckpt, args=args, benchmark_info=benchmark_info
)
filepath = self.get_result_filepath(args)
write_to_csv(filepath, csv_dict)
print(f"Logs written to: {filepath}")
flush()
class TurboTextToImageBenchmark(TextToImageBenchmark):
def __init__(self, args):
super().__init__(args)
def run_inference(self, pipe, args):
_ = pipe(
prompt=PROMPT,
num_inference_steps=args.num_inference_steps,
num_images_per_prompt=args.batch_size,
guidance_scale=0.0,
)
class LCMLoRATextToImageBenchmark(TextToImageBenchmark):
lora_id = "latent-consistency/lcm-lora-sdxl"
def __init__(self, args):
super().__init__(args)
self.pipe.load_lora_weights(self.lora_id)
self.pipe.fuse_lora()
self.pipe.scheduler = LCMScheduler.from_config(self.pipe.scheduler.config)
def get_result_filepath(self, args):
pipeline_class_name = str(self.pipe.__class__.__name__)
name = (
self.lora_id.replace("/", "_")
+ "_"
+ pipeline_class_name
+ f"-bs@{args.batch_size}-steps@{args.num_inference_steps}-mco@{args.model_cpu_offload}-compile@{args.run_compile}.csv"
)
filepath = os.path.join(BASE_PATH, name)
return filepath
def run_inference(self, pipe, args):
_ = pipe(
prompt=PROMPT,
num_inference_steps=args.num_inference_steps,
num_images_per_prompt=args.batch_size,
guidance_scale=1.0,
)
def benchmark(self, args):
flush()
print(f"[INFO] {self.pipe.__class__.__name__}: Running benchmark with: {vars(args)}\n")
time = benchmark_fn(self.run_inference, self.pipe, args) # in seconds.
memory = bytes_to_giga_bytes(torch.cuda.max_memory_allocated()) # in GBs.
benchmark_info = BenchmarkInfo(time=time, memory=memory)
pipeline_class_name = str(self.pipe.__class__.__name__)
flush()
csv_dict = generate_csv_dict(
pipeline_cls=pipeline_class_name, ckpt=self.lora_id, args=args, benchmark_info=benchmark_info
)
filepath = self.get_result_filepath(args)
write_to_csv(filepath, csv_dict)
print(f"Logs written to: {filepath}")
flush()
class ImageToImageBenchmark(TextToImageBenchmark):
pipeline_class = AutoPipelineForImage2Image
url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/benchmarking/1665_Girl_with_a_Pearl_Earring.jpg"
image = load_image(url).convert("RGB")
def __init__(self, args):
super().__init__(args)
self.image = self.image.resize(RESOLUTION_MAPPING[args.ckpt])
def run_inference(self, pipe, args):
_ = pipe(
prompt=PROMPT,
image=self.image,
num_inference_steps=args.num_inference_steps,
num_images_per_prompt=args.batch_size,
)
class TurboImageToImageBenchmark(ImageToImageBenchmark):
def __init__(self, args):
super().__init__(args)
def run_inference(self, pipe, args):
_ = pipe(
prompt=PROMPT,
image=self.image,
num_inference_steps=args.num_inference_steps,
num_images_per_prompt=args.batch_size,
guidance_scale=0.0,
strength=0.5,
)
class InpaintingBenchmark(ImageToImageBenchmark):
pipeline_class = AutoPipelineForInpainting
mask_url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/benchmarking/overture-creations-5sI6fQgYIuo_mask.png"
mask = load_image(mask_url).convert("RGB")
def __init__(self, args):
super().__init__(args)
self.image = self.image.resize(RESOLUTION_MAPPING[args.ckpt])
self.mask = self.mask.resize(RESOLUTION_MAPPING[args.ckpt])
def run_inference(self, pipe, args):
_ = pipe(
prompt=PROMPT,
image=self.image,
mask_image=self.mask,
num_inference_steps=args.num_inference_steps,
num_images_per_prompt=args.batch_size,
)
class ControlNetBenchmark(TextToImageBenchmark):
pipeline_class = StableDiffusionControlNetPipeline
aux_network_class = ControlNetModel
root_ckpt = "runwayml/stable-diffusion-v1-5"
url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/benchmarking/canny_image_condition.png"
image = load_image(url).convert("RGB")
def __init__(self, args):
aux_network = self.aux_network_class.from_pretrained(args.ckpt, torch_dtype=torch.float16)
pipe = self.pipeline_class.from_pretrained(self.root_ckpt, controlnet=aux_network, torch_dtype=torch.float16)
pipe = pipe.to("cuda")
pipe.set_progress_bar_config(disable=True)
self.pipe = pipe
if args.run_compile:
pipe.unet.to(memory_format=torch.channels_last)
pipe.controlnet.to(memory_format=torch.channels_last)
print("Run torch compile")
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
pipe.controlnet = torch.compile(pipe.controlnet, mode="reduce-overhead", fullgraph=True)
self.image = self.image.resize(RESOLUTION_MAPPING[args.ckpt])
def run_inference(self, pipe, args):
_ = pipe(
prompt=PROMPT,
image=self.image,
num_inference_steps=args.num_inference_steps,
num_images_per_prompt=args.batch_size,
)
class ControlNetSDXLBenchmark(ControlNetBenchmark):
pipeline_class = StableDiffusionXLControlNetPipeline
root_ckpt = "stabilityai/stable-diffusion-xl-base-1.0"
def __init__(self, args):
super().__init__(args)
class T2IAdapterBenchmark(ControlNetBenchmark):
pipeline_class = StableDiffusionAdapterPipeline
aux_network_class = T2IAdapter
root_ckpt = "CompVis/stable-diffusion-v1-4"
url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/benchmarking/canny_for_adapter.png"
image = load_image(url).convert("L")
def __init__(self, args):
aux_network = self.aux_network_class.from_pretrained(args.ckpt, torch_dtype=torch.float16)
pipe = self.pipeline_class.from_pretrained(self.root_ckpt, adapter=aux_network, torch_dtype=torch.float16)
pipe = pipe.to("cuda")
pipe.set_progress_bar_config(disable=True)
self.pipe = pipe
if args.run_compile:
pipe.unet.to(memory_format=torch.channels_last)
pipe.adapter.to(memory_format=torch.channels_last)
print("Run torch compile")
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
pipe.adapter = torch.compile(pipe.adapter, mode="reduce-overhead", fullgraph=True)
self.image = self.image.resize(RESOLUTION_MAPPING[args.ckpt])
class T2IAdapterSDXLBenchmark(T2IAdapterBenchmark):
pipeline_class = StableDiffusionXLAdapterPipeline
root_ckpt = "stabilityai/stable-diffusion-xl-base-1.0"
url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/benchmarking/canny_for_adapter_sdxl.png"
image = load_image(url)
def __init__(self, args):
super().__init__(args)

View File

@@ -0,0 +1,26 @@
import argparse
import sys
sys.path.append(".")
from base_classes import ControlNetBenchmark, ControlNetSDXLBenchmark # noqa: E402
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--ckpt",
type=str,
default="lllyasviel/sd-controlnet-canny",
choices=["lllyasviel/sd-controlnet-canny", "diffusers/controlnet-canny-sdxl-1.0"],
)
parser.add_argument("--batch_size", type=int, default=1)
parser.add_argument("--num_inference_steps", type=int, default=50)
parser.add_argument("--model_cpu_offload", action="store_true")
parser.add_argument("--run_compile", action="store_true")
args = parser.parse_args()
benchmark_pipe = (
ControlNetBenchmark(args) if args.ckpt == "lllyasviel/sd-controlnet-canny" else ControlNetSDXLBenchmark(args)
)
benchmark_pipe.benchmark(args)

View File

@@ -0,0 +1,29 @@
import argparse
import sys
sys.path.append(".")
from base_classes import ImageToImageBenchmark, TurboImageToImageBenchmark # noqa: E402
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--ckpt",
type=str,
default="runwayml/stable-diffusion-v1-5",
choices=[
"runwayml/stable-diffusion-v1-5",
"stabilityai/stable-diffusion-2-1",
"stabilityai/stable-diffusion-xl-refiner-1.0",
"stabilityai/sdxl-turbo",
],
)
parser.add_argument("--batch_size", type=int, default=1)
parser.add_argument("--num_inference_steps", type=int, default=50)
parser.add_argument("--model_cpu_offload", action="store_true")
parser.add_argument("--run_compile", action="store_true")
args = parser.parse_args()
benchmark_pipe = ImageToImageBenchmark(args) if "turbo" not in args.ckpt else TurboImageToImageBenchmark(args)
benchmark_pipe.benchmark(args)

View File

@@ -0,0 +1,28 @@
import argparse
import sys
sys.path.append(".")
from base_classes import InpaintingBenchmark # noqa: E402
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--ckpt",
type=str,
default="runwayml/stable-diffusion-v1-5",
choices=[
"runwayml/stable-diffusion-v1-5",
"stabilityai/stable-diffusion-2-1",
"stabilityai/stable-diffusion-xl-base-1.0",
],
)
parser.add_argument("--batch_size", type=int, default=1)
parser.add_argument("--num_inference_steps", type=int, default=50)
parser.add_argument("--model_cpu_offload", action="store_true")
parser.add_argument("--run_compile", action="store_true")
args = parser.parse_args()
benchmark_pipe = InpaintingBenchmark(args)
benchmark_pipe.benchmark(args)

View File

@@ -0,0 +1,28 @@
import argparse
import sys
sys.path.append(".")
from base_classes import T2IAdapterBenchmark, T2IAdapterSDXLBenchmark # noqa: E402
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--ckpt",
type=str,
default="TencentARC/t2iadapter_canny_sd14v1",
choices=["TencentARC/t2iadapter_canny_sd14v1", "TencentARC/t2i-adapter-canny-sdxl-1.0"],
)
parser.add_argument("--batch_size", type=int, default=1)
parser.add_argument("--num_inference_steps", type=int, default=50)
parser.add_argument("--model_cpu_offload", action="store_true")
parser.add_argument("--run_compile", action="store_true")
args = parser.parse_args()
benchmark_pipe = (
T2IAdapterBenchmark(args)
if args.ckpt == "TencentARC/t2iadapter_canny_sd14v1"
else T2IAdapterSDXLBenchmark(args)
)
benchmark_pipe.benchmark(args)

View File

@@ -0,0 +1,23 @@
import argparse
import sys
sys.path.append(".")
from base_classes import LCMLoRATextToImageBenchmark # noqa: E402
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--ckpt",
type=str,
default="stabilityai/stable-diffusion-xl-base-1.0",
)
parser.add_argument("--batch_size", type=int, default=1)
parser.add_argument("--num_inference_steps", type=int, default=4)
parser.add_argument("--model_cpu_offload", action="store_true")
parser.add_argument("--run_compile", action="store_true")
args = parser.parse_args()
benchmark_pipe = LCMLoRATextToImageBenchmark(args)
benchmark_pipe.benchmark(args)

View File

@@ -0,0 +1,40 @@
import argparse
import sys
sys.path.append(".")
from base_classes import TextToImageBenchmark, TurboTextToImageBenchmark # noqa: E402
ALL_T2I_CKPTS = [
"runwayml/stable-diffusion-v1-5",
"segmind/SSD-1B",
"stabilityai/stable-diffusion-xl-base-1.0",
"kandinsky-community/kandinsky-2-2-decoder",
"warp-ai/wuerstchen",
"stabilityai/sdxl-turbo",
]
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--ckpt",
type=str,
default="runwayml/stable-diffusion-v1-5",
choices=ALL_T2I_CKPTS,
)
parser.add_argument("--batch_size", type=int, default=1)
parser.add_argument("--num_inference_steps", type=int, default=50)
parser.add_argument("--model_cpu_offload", action="store_true")
parser.add_argument("--run_compile", action="store_true")
args = parser.parse_args()
benchmark_cls = None
if "turbo" in args.ckpt:
benchmark_cls = TurboTextToImageBenchmark
else:
benchmark_cls = TextToImageBenchmark
benchmark_pipe = benchmark_cls(args)
benchmark_pipe.benchmark(args)

View File

@@ -0,0 +1,72 @@
import glob
import sys
import pandas as pd
from huggingface_hub import hf_hub_download, upload_file
from huggingface_hub.utils._errors import EntryNotFoundError
sys.path.append(".")
from utils import BASE_PATH, FINAL_CSV_FILE, GITHUB_SHA, REPO_ID, collate_csv # noqa: E402
def has_previous_benchmark() -> str:
csv_path = None
try:
csv_path = hf_hub_download(repo_id=REPO_ID, repo_type="dataset", filename=FINAL_CSV_FILE)
except EntryNotFoundError:
csv_path = None
return csv_path
def filter_float(value):
if isinstance(value, str):
return float(value.split()[0])
return value
def push_to_hf_dataset():
all_csvs = sorted(glob.glob(f"{BASE_PATH}/*.csv"))
collate_csv(all_csvs, FINAL_CSV_FILE)
# If there's an existing benchmark file, we should report the changes.
csv_path = has_previous_benchmark()
if csv_path is not None:
current_results = pd.read_csv(FINAL_CSV_FILE)
previous_results = pd.read_csv(csv_path)
numeric_columns = current_results.select_dtypes(include=["float64", "int64"]).columns
numeric_columns = [
c for c in numeric_columns if c not in ["batch_size", "num_inference_steps", "actual_gpu_memory (gbs)"]
]
for column in numeric_columns:
previous_results[column] = previous_results[column].map(lambda x: filter_float(x))
# Calculate the percentage change
current_results[column] = current_results[column].astype(float)
previous_results[column] = previous_results[column].astype(float)
percent_change = ((current_results[column] - previous_results[column]) / previous_results[column]) * 100
# Format the values with '+' or '-' sign and append to original values
current_results[column] = current_results[column].map(str) + percent_change.map(
lambda x: f" ({'+' if x > 0 else ''}{x:.2f}%)"
)
# There might be newly added rows. So, filter out the NaNs.
current_results[column] = current_results[column].map(lambda x: x.replace(" (nan%)", ""))
# Overwrite the current result file.
current_results.to_csv(FINAL_CSV_FILE, index=False)
commit_message = f"upload from sha: {GITHUB_SHA}" if GITHUB_SHA is not None else "upload benchmark results"
upload_file(
repo_id=REPO_ID,
path_in_repo=FINAL_CSV_FILE,
path_or_fileobj=FINAL_CSV_FILE,
repo_type="dataset",
commit_message=commit_message,
)
if __name__ == "__main__":
push_to_hf_dataset()

97
benchmarks/run_all.py Normal file
View File

@@ -0,0 +1,97 @@
import glob
import subprocess
import sys
from typing import List
sys.path.append(".")
from benchmark_text_to_image import ALL_T2I_CKPTS # noqa: E402
PATTERN = "benchmark_*.py"
class SubprocessCallException(Exception):
pass
# Taken from `test_examples_utils.py`
def run_command(command: List[str], return_stdout=False):
"""
Runs `command` with `subprocess.check_output` and will potentially return the `stdout`. Will also properly capture
if an error occurred while running `command`
"""
try:
output = subprocess.check_output(command, stderr=subprocess.STDOUT)
if return_stdout:
if hasattr(output, "decode"):
output = output.decode("utf-8")
return output
except subprocess.CalledProcessError as e:
raise SubprocessCallException(
f"Command `{' '.join(command)}` failed with the following error:\n\n{e.output.decode()}"
) from e
def main():
python_files = glob.glob(PATTERN)
for file in python_files:
print(f"****** Running file: {file} ******")
# Run with canonical settings.
if file != "benchmark_text_to_image.py":
command = f"python {file}"
run_command(command.split())
command += " --run_compile"
run_command(command.split())
# Run variants.
for file in python_files:
if file == "benchmark_text_to_image.py":
for ckpt in ALL_T2I_CKPTS:
command = f"python {file} --ckpt {ckpt}"
if "turbo" in ckpt:
command += " --num_inference_steps 1"
run_command(command.split())
command += " --run_compile"
run_command(command.split())
elif file == "benchmark_sd_img.py":
for ckpt in ["stabilityai/stable-diffusion-xl-refiner-1.0", "stabilityai/sdxl-turbo"]:
command = f"python {file} --ckpt {ckpt}"
if ckpt == "stabilityai/sdxl-turbo":
command += " --num_inference_steps 2"
run_command(command.split())
command += " --run_compile"
run_command(command.split())
elif file == "benchmark_sd_inpainting.py":
sdxl_ckpt = "stabilityai/stable-diffusion-xl-base-1.0"
command = f"python {file} --ckpt {sdxl_ckpt}"
run_command(command.split())
command += " --run_compile"
run_command(command.split())
elif file in ["benchmark_controlnet.py", "benchmark_t2i_adapter.py"]:
sdxl_ckpt = (
"diffusers/controlnet-canny-sdxl-1.0"
if "controlnet" in file
else "TencentARC/t2i-adapter-canny-sdxl-1.0"
)
command = f"python {file} --ckpt {sdxl_ckpt}"
run_command(command.split())
command += " --run_compile"
run_command(command.split())
if __name__ == "__main__":
main()

98
benchmarks/utils.py Normal file
View File

@@ -0,0 +1,98 @@
import argparse
import csv
import gc
import os
from dataclasses import dataclass
from typing import Dict, List, Union
import torch
import torch.utils.benchmark as benchmark
GITHUB_SHA = os.getenv("GITHUB_SHA", None)
BENCHMARK_FIELDS = [
"pipeline_cls",
"ckpt_id",
"batch_size",
"num_inference_steps",
"model_cpu_offload",
"run_compile",
"time (secs)",
"memory (gbs)",
"actual_gpu_memory (gbs)",
"github_sha",
]
PROMPT = "ghibli style, a fantasy landscape with castles"
BASE_PATH = os.getenv("BASE_PATH", ".")
TOTAL_GPU_MEMORY = float(os.getenv("TOTAL_GPU_MEMORY", torch.cuda.get_device_properties(0).total_memory / (1024**3)))
REPO_ID = "diffusers/benchmarks"
FINAL_CSV_FILE = "collated_results.csv"
@dataclass
class BenchmarkInfo:
time: float
memory: float
def flush():
"""Wipes off memory."""
gc.collect()
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
def bytes_to_giga_bytes(bytes):
return f"{(bytes / 1024 / 1024 / 1024):.3f}"
def benchmark_fn(f, *args, **kwargs):
t0 = benchmark.Timer(
stmt="f(*args, **kwargs)",
globals={"args": args, "kwargs": kwargs, "f": f},
num_threads=torch.get_num_threads(),
)
return f"{(t0.blocked_autorange().mean):.3f}"
def generate_csv_dict(
pipeline_cls: str, ckpt: str, args: argparse.Namespace, benchmark_info: BenchmarkInfo
) -> Dict[str, Union[str, bool, float]]:
"""Packs benchmarking data into a dictionary for latter serialization."""
data_dict = {
"pipeline_cls": pipeline_cls,
"ckpt_id": ckpt,
"batch_size": args.batch_size,
"num_inference_steps": args.num_inference_steps,
"model_cpu_offload": args.model_cpu_offload,
"run_compile": args.run_compile,
"time (secs)": benchmark_info.time,
"memory (gbs)": benchmark_info.memory,
"actual_gpu_memory (gbs)": f"{(TOTAL_GPU_MEMORY):.3f}",
"github_sha": GITHUB_SHA,
}
return data_dict
def write_to_csv(file_name: str, data_dict: Dict[str, Union[str, bool, float]]):
"""Serializes a dictionary into a CSV file."""
with open(file_name, mode="w", newline="") as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=BENCHMARK_FIELDS)
writer.writeheader()
writer.writerow(data_dict)
def collate_csv(input_files: List[str], output_file: str):
"""Collates multiple identically structured CSVs into a single CSV file."""
with open(output_file, mode="w", newline="") as outfile:
writer = csv.DictWriter(outfile, fieldnames=BENCHMARK_FIELDS)
writer.writeheader()
for file in input_files:
with open(file, mode="r") as infile:
reader = csv.DictReader(infile)
for row in reader:
writer.writerow(row)

View File

@@ -24,9 +24,9 @@ ENV PATH="/opt/venv/bin:$PATH"
# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
RUN python3 -m pip install --no-cache-dir --upgrade pip && \
python3 -m pip install --no-cache-dir \
torch \
torchvision \
torchaudio \
torch==2.1.2 \
torchvision==0.16.2 \
torchaudio==2.1.2 \
onnxruntime \
--extra-index-url https://download.pytorch.org/whl/cpu && \
python3 -m pip install --no-cache-dir \

View File

@@ -24,9 +24,9 @@ ENV PATH="/opt/venv/bin:$PATH"
# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
RUN python3 -m pip install --no-cache-dir --upgrade pip && \
python3 -m pip install --no-cache-dir \
torch \
torchvision \
torchaudio \
torch==2.1.2 \
torchvision==0.16.2 \
torchaudio==2.1.2 \
"onnxruntime-gpu>=1.13.1" \
--extra-index-url https://download.pytorch.org/whl/cu117 && \
python3 -m pip install --no-cache-dir \

View File

@@ -26,9 +26,9 @@ ENV PATH="/opt/venv/bin:$PATH"
# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
RUN python3.9 -m pip install --no-cache-dir --upgrade pip && \
python3.9 -m pip install --no-cache-dir \
torch \
torchvision \
torchaudio \
torch==2.1.2 \
torchvision==0.16.2 \
torchaudio==2.1.2 \
invisible_watermark && \
python3.9 -m pip install --no-cache-dir \
accelerate \
@@ -40,7 +40,6 @@ RUN python3.9 -m pip install --no-cache-dir --upgrade pip && \
numpy \
scipy \
tensorboard \
transformers \
omegaconf
transformers
CMD ["/bin/bash"]

View File

@@ -25,9 +25,9 @@ ENV PATH="/opt/venv/bin:$PATH"
# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
RUN python3 -m pip install --no-cache-dir --upgrade pip && \
python3 -m pip install --no-cache-dir \
torch \
torchvision \
torchaudio \
torch==2.1.2 \
torchvision==0.16.2 \
torchaudio==2.1.2 \
invisible_watermark \
--extra-index-url https://download.pytorch.org/whl/cpu && \
python3 -m pip install --no-cache-dir \

View File

@@ -25,9 +25,9 @@ ENV PATH="/opt/venv/bin:$PATH"
# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
RUN python3 -m pip install --no-cache-dir --upgrade pip && \
python3 -m pip install --no-cache-dir \
torch \
torchvision \
torchaudio \
torch==2.1.2 \
torchvision==0.16.2 \
torchaudio==2.1.2 \
invisible_watermark && \
python3 -m pip install --no-cache-dir \
accelerate \
@@ -40,7 +40,6 @@ RUN python3 -m pip install --no-cache-dir --upgrade pip && \
scipy \
tensorboard \
transformers \
omegaconf \
pytorch-lightning
CMD ["/bin/bash"]

View File

@@ -25,9 +25,9 @@ ENV PATH="/opt/venv/bin:$PATH"
# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
RUN python3 -m pip install --no-cache-dir --upgrade pip && \
python3 -m pip install --no-cache-dir \
torch \
torchvision \
torchaudio \
torch==2.1.2 \
torchvision==0.16.2 \
torchaudio==2.1.2 \
invisible_watermark && \
python3 -m pip install --no-cache-dir \
accelerate \
@@ -40,7 +40,6 @@ RUN python3 -m pip install --no-cache-dir --upgrade pip && \
scipy \
tensorboard \
transformers \
omegaconf \
xformers
CMD ["/bin/bash"]

View File

@@ -19,6 +19,8 @@
title: Train a diffusion model
- local: tutorials/using_peft_for_inference
title: Inference with PEFT
- local: tutorials/fast_diffusion
title: Accelerate inference of text-to-image diffusion models
title: Tutorials
- sections:
- sections:
@@ -158,6 +160,8 @@
title: xFormers
- local: optimization/tome
title: Token merging
- local: optimization/deepcache
title: DeepCache
title: General optimizations
- sections:
- local: using-diffusers/stable_diffusion_jax_how_to
@@ -198,6 +202,8 @@
title: Outputs
title: Main Classes
- sections:
- local: api/loaders/ip_adapter
title: IP-Adapter
- local: api/loaders/lora
title: LoRA
- local: api/loaders/single_file
@@ -206,6 +212,8 @@
title: Textual Inversion
- local: api/loaders/unet
title: UNet
- local: api/loaders/peft
title: PEFT
title: Loaders
- sections:
- local: api/models/overview
@@ -220,6 +228,8 @@
title: UNet3DConditionModel
- local: api/models/unet-motion
title: UNetMotionModel
- local: api/models/uvit2d
title: UViT2DModel
- local: api/models/vq
title: VQModel
- local: api/models/autoencoderkl
@@ -242,14 +252,12 @@
- sections:
- local: api/pipelines/overview
title: Overview
- local: api/pipelines/alt_diffusion
title: AltDiffusion
- local: api/pipelines/amused
title: aMUSEd
- local: api/pipelines/animatediff
title: AnimateDiff
- local: api/pipelines/attend_and_excite
title: Attend-and-Excite
- local: api/pipelines/audio_diffusion
title: Audio Diffusion
- local: api/pipelines/audioldm
title: AudioLDM
- local: api/pipelines/audioldm2
@@ -264,8 +272,6 @@
title: ControlNet
- local: api/pipelines/controlnet_sdxl
title: ControlNet with Stable Diffusion XL
- local: api/pipelines/cycle_diffusion
title: Cycle Diffusion
- local: api/pipelines/dance_diffusion
title: Dance Diffusion
- local: api/pipelines/ddim
@@ -278,6 +284,8 @@
title: DiffEdit
- local: api/pipelines/dit
title: DiT
- local: api/pipelines/i2vgenxl
title: I2VGen-XL
- local: api/pipelines/pix2pix
title: InstructPix2Pix
- local: api/pipelines/kandinsky
@@ -296,26 +304,16 @@
title: MusicLDM
- local: api/pipelines/paint_by_example
title: Paint by Example
- local: api/pipelines/paradigms
title: Parallel Sampling of Diffusion Models
- local: api/pipelines/pix2pix_zero
title: Pix2Pix Zero
- local: api/pipelines/pia
title: Personalized Image Animator (PIA)
- local: api/pipelines/pixart
title: PixArt-α
- local: api/pipelines/pndm
title: PNDM
- local: api/pipelines/repaint
title: RePaint
- local: api/pipelines/score_sde_ve
title: Score SDE VE
- local: api/pipelines/self_attention_guidance
title: Self-Attention Guidance
- local: api/pipelines/semantic_stable_diffusion
title: Semantic Guidance
- local: api/pipelines/shap_e
title: Shap-E
- local: api/pipelines/spectrogram_diffusion
title: Spectrogram Diffusion
- sections:
- local: api/pipelines/stable_diffusion/overview
title: Overview
@@ -341,6 +339,8 @@
title: Latent upscaler
- local: api/pipelines/stable_diffusion/upscale
title: Super-resolution
- local: api/pipelines/stable_diffusion/k_diffusion
title: K-Diffusion
- local: api/pipelines/stable_diffusion/ldm3d_diffusion
title: LDM3D Text-to-(RGB, Depth), Text-to-(RGB-pano, Depth-pano), LDM3D Upscaler
- local: api/pipelines/stable_diffusion/adapter
@@ -350,26 +350,16 @@
title: Stable Diffusion
- local: api/pipelines/stable_unclip
title: Stable unCLIP
- local: api/pipelines/stochastic_karras_ve
title: Stochastic Karras VE
- local: api/pipelines/model_editing
title: Text-to-image model editing
- local: api/pipelines/text_to_video
title: Text-to-video
- local: api/pipelines/text_to_video_zero
title: Text2Video-Zero
- local: api/pipelines/unclip
title: unCLIP
- local: api/pipelines/latent_diffusion_uncond
title: Unconditional Latent Diffusion
- local: api/pipelines/unidiffuser
title: UniDiffuser
- local: api/pipelines/value_guided_sampling
title: Value-guided sampling
- local: api/pipelines/versatile_diffusion
title: Versatile Diffusion
- local: api/pipelines/vq_diffusion
title: VQ Diffusion
- local: api/pipelines/wuerstchen
title: Wuerstchen
title: Pipelines

View File

@@ -20,6 +20,9 @@ An attention processor is a class for applying different types of attention mech
## AttnProcessor2_0
[[autodoc]] models.attention_processor.AttnProcessor2_0
## FusedAttnProcessor2_0
[[autodoc]] models.attention_processor.FusedAttnProcessor2_0
## LoRAAttnProcessor
[[autodoc]] models.attention_processor.LoRAAttnProcessor

View File

@@ -0,0 +1,25 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# IP-Adapter
[IP-Adapter](https://hf.co/papers/2308.06721) is a lightweight adapter that enables prompting a diffusion model with an image. This method decouples the cross-attention layers of the image and text features. The image features are generated from an image encoder. Files generated from IP-Adapter are only ~100MBs.
<Tip>
Learn how to load an IP-Adapter checkpoint and image in the [IP-Adapter](../../using-diffusers/loading_adapters#ip-adapter) loading guide.
</Tip>
## IPAdapterMixin
[[autodoc]] loaders.ip_adapter.IPAdapterMixin

View File

@@ -0,0 +1,25 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# PEFT
Diffusers supports loading adapters such as [LoRA](../../using-diffusers/loading_adapters) with the [PEFT](https://huggingface.co/docs/peft/index) library with the [`~loaders.peft.PeftAdapterMixin`] class. This allows modeling classes in Diffusers like [`UNet2DConditionModel`] to load an adapter.
<Tip>
Refer to the [Inference with PEFT](../../tutorials/using_peft_for_inference.md) tutorial for an overview of how to use PEFT in Diffusers for inference.
</Tip>
## PeftAdapterMixin
[[autodoc]] loaders.peft.PeftAdapterMixin

View File

@@ -30,8 +30,8 @@ To learn more about how to load single file weights, see the [Load different Sta
## FromOriginalVAEMixin
[[autodoc]] loaders.single_file.FromOriginalVAEMixin
[[autodoc]] loaders.autoencoder.FromOriginalVAEMixin
## FromOriginalControlnetMixin
[[autodoc]] loaders.single_file.FromOriginalControlnetMixin
[[autodoc]] loaders.controlnet.FromOriginalControlNetMixin

View File

@@ -49,12 +49,12 @@ make_image_grid([original_image, mask_image, image], rows=1, cols=3)
## AsymmetricAutoencoderKL
[[autodoc]] models.autoencoder_asym_kl.AsymmetricAutoencoderKL
[[autodoc]] models.autoencoders.autoencoder_asym_kl.AsymmetricAutoencoderKL
## AutoencoderKLOutput
[[autodoc]] models.autoencoder_kl.AutoencoderKLOutput
[[autodoc]] models.autoencoders.autoencoder_kl.AutoencoderKLOutput
## DecoderOutput
[[autodoc]] models.vae.DecoderOutput
[[autodoc]] models.autoencoders.vae.DecoderOutput

View File

@@ -54,4 +54,4 @@ image
## AutoencoderTinyOutput
[[autodoc]] models.autoencoder_tiny.AutoencoderTinyOutput
[[autodoc]] models.autoencoders.autoencoder_tiny.AutoencoderTinyOutput

View File

@@ -33,14 +33,17 @@ model = AutoencoderKL.from_single_file(url)
## AutoencoderKL
[[autodoc]] AutoencoderKL
- decode
- encode
- all
## AutoencoderKLOutput
[[autodoc]] models.autoencoder_kl.AutoencoderKLOutput
[[autodoc]] models.autoencoders.autoencoder_kl.AutoencoderKLOutput
## DecoderOutput
[[autodoc]] models.vae.DecoderOutput
[[autodoc]] models.autoencoders.vae.DecoderOutput
## FlaxAutoencoderKL

View File

@@ -24,4 +24,4 @@ The abstract from the paper is:
## PriorTransformerOutput
[[autodoc]] models.prior_transformer.PriorTransformerOutput
[[autodoc]] models.transformers.prior_transformer.PriorTransformerOutput

View File

@@ -38,4 +38,4 @@ It is assumed one of the input classes is the masked latent pixel. The predicted
## Transformer2DModelOutput
[[autodoc]] models.transformer_2d.Transformer2DModelOutput
[[autodoc]] models.transformers.transformer_2d.Transformer2DModelOutput

View File

@@ -16,8 +16,8 @@ A Transformer model for video-like data.
## TransformerTemporalModel
[[autodoc]] models.transformer_temporal.TransformerTemporalModel
[[autodoc]] models.transformers.transformer_temporal.TransformerTemporalModel
## TransformerTemporalModelOutput
[[autodoc]] models.transformer_temporal.TransformerTemporalModelOutput
[[autodoc]] models.transformers.transformer_temporal.TransformerTemporalModelOutput

View File

@@ -22,4 +22,4 @@ The abstract from the paper is:
[[autodoc]] UNetMotionModel
## UNet3DConditionOutput
[[autodoc]] models.unet_3d_condition.UNet3DConditionOutput
[[autodoc]] models.unets.unet_3d_condition.UNet3DConditionOutput

View File

@@ -22,4 +22,4 @@ The abstract from the paper is:
[[autodoc]] UNet1DModel
## UNet1DOutput
[[autodoc]] models.unet_1d.UNet1DOutput
[[autodoc]] models.unets.unet_1d.UNet1DOutput

View File

@@ -22,10 +22,10 @@ The abstract from the paper is:
[[autodoc]] UNet2DConditionModel
## UNet2DConditionOutput
[[autodoc]] models.unet_2d_condition.UNet2DConditionOutput
[[autodoc]] models.unets.unet_2d_condition.UNet2DConditionOutput
## FlaxUNet2DConditionModel
[[autodoc]] models.unet_2d_condition_flax.FlaxUNet2DConditionModel
[[autodoc]] models.unets.unet_2d_condition_flax.FlaxUNet2DConditionModel
## FlaxUNet2DConditionOutput
[[autodoc]] models.unet_2d_condition_flax.FlaxUNet2DConditionOutput
[[autodoc]] models.unets.unet_2d_condition_flax.FlaxUNet2DConditionOutput

View File

@@ -22,4 +22,4 @@ The abstract from the paper is:
[[autodoc]] UNet2DModel
## UNet2DOutput
[[autodoc]] models.unet_2d.UNet2DOutput
[[autodoc]] models.unets.unet_2d.UNet2DOutput

View File

@@ -22,4 +22,4 @@ The abstract from the paper is:
[[autodoc]] UNet3DConditionModel
## UNet3DConditionOutput
[[autodoc]] models.unet_3d_condition.UNet3DConditionOutput
[[autodoc]] models.unets.unet_3d_condition.UNet3DConditionOutput

View File

@@ -0,0 +1,39 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# UVit2DModel
The [U-ViT](https://hf.co/papers/2301.11093) model is a vision transformer (ViT) based UNet. This model incorporates elements from ViT (considers all inputs such as time, conditions and noisy image patches as tokens) and a UNet (long skip connections between the shallow and deep layers). The skip connection is important for predicting pixel-level features. An additional 3x3 convolutional block is applied prior to the final output to improve image quality.
The abstract from the paper is:
*Currently, applying diffusion models in pixel space of high resolution images is difficult. Instead, existing approaches focus on diffusion in lower dimensional spaces (latent diffusion), or have multiple super-resolution levels of generation referred to as cascades. The downside is that these approaches add additional complexity to the diffusion framework. This paper aims to improve denoising diffusion for high resolution images while keeping the model as simple as possible. The paper is centered around the research question: How can one train a standard denoising diffusion models on high resolution images, and still obtain performance comparable to these alternate approaches? The four main findings are: 1) the noise schedule should be adjusted for high resolution images, 2) It is sufficient to scale only a particular part of the architecture, 3) dropout should be added at specific locations in the architecture, and 4) downsampling is an effective strategy to avoid high resolution feature maps. Combining these simple yet effective techniques, we achieve state-of-the-art on image generation among diffusion models without sampling modifiers on ImageNet.*
## UVit2DModel
[[autodoc]] UVit2DModel
## UVit2DConvEmbed
[[autodoc]] models.unets.uvit_2d.UVit2DConvEmbed
## UVitBlock
[[autodoc]] models.unets.uvit_2d.UVitBlock
## ConvNextBlock
[[autodoc]] models.unets.uvit_2d.ConvNextBlock
## ConvMlmLayer
[[autodoc]] models.unets.uvit_2d.ConvMlmLayer

View File

@@ -1,47 +0,0 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# AltDiffusion
AltDiffusion was proposed in [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://huggingface.co/papers/2211.06679) by Zhongzhi Chen, Guang Liu, Bo-Wen Zhang, Fulong Ye, Qinghong Yang, Ledell Wu.
The abstract from the paper is:
*In this work, we present a conceptually simple and effective method to train a strong bilingual/multilingual multimodal representation model. Starting from the pre-trained multimodal representation model CLIP released by OpenAI, we altered its text encoder with a pre-trained multilingual text encoder XLM-R, and aligned both languages and image representations by a two-stage training schema consisting of teacher learning and contrastive learning. We validate our method through evaluations of a wide range of tasks. We set new state-of-the-art performances on a bunch of tasks including ImageNet-CN, Flicker30k-CN, COCO-CN and XTD. Further, we obtain very close performances with CLIP on almost all tasks, suggesting that one can simply alter the text encoder in CLIP for extended capabilities such as multilingual understanding. Our models and code are available at [this https URL](https://github.com/FlagAI-Open/FlagAI).*
## Tips
`AltDiffusion` is conceptually the same as [Stable Diffusion](./stable_diffusion/overview).
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
## AltDiffusionPipeline
[[autodoc]] AltDiffusionPipeline
- all
- __call__
## AltDiffusionImg2ImgPipeline
[[autodoc]] AltDiffusionImg2ImgPipeline
- all
- __call__
## AltDiffusionPipelineOutput
[[autodoc]] pipelines.alt_diffusion.AltDiffusionPipelineOutput
- all
- __call__

View File

@@ -0,0 +1,48 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# aMUSEd
aMUSEd was introduced in [aMUSEd: An Open MUSE Reproduction](https://huggingface.co/papers/2401.01808) by Suraj Patil, William Berman, Robin Rombach, and Patrick von Platen.
Amused is a lightweight text to image model based off of the [MUSE](https://arxiv.org/abs/2301.00704) architecture. Amused is particularly useful in applications that require a lightweight and fast model such as generating many images quickly at once.
Amused is a vqvae token based transformer that can generate an image in fewer forward passes than many diffusion models. In contrast with muse, it uses the smaller text encoder CLIP-L/14 instead of t5-xxl. Due to its small parameter count and few forward pass generation process, amused can generate many images quickly. This benefit is seen particularly at larger batch sizes.
The abstract from the paper is:
*We present aMUSEd, an open-source, lightweight masked image model (MIM) for text-to-image generation based on MUSE. With 10 percent of MUSE's parameters, aMUSEd is focused on fast image generation. We believe MIM is under-explored compared to latent diffusion, the prevailing approach for text-to-image generation. Compared to latent diffusion, MIM requires fewer inference steps and is more interpretable. Additionally, MIM can be fine-tuned to learn additional styles with only a single image. We hope to encourage further exploration of MIM by demonstrating its effectiveness on large-scale text-to-image generation and releasing reproducible training code. We also release checkpoints for two models which directly produce images at 256x256 and 512x512 resolutions.*
| Model | Params |
|-------|--------|
| [amused-256](https://huggingface.co/amused/amused-256) | 603M |
| [amused-512](https://huggingface.co/amused/amused-512) | 608M |
## AmusedPipeline
[[autodoc]] AmusedPipeline
- __call__
- all
- enable_xformers_memory_efficient_attention
- disable_xformers_memory_efficient_attention
[[autodoc]] AmusedImg2ImgPipeline
- __call__
- all
- enable_xformers_memory_efficient_attention
- disable_xformers_memory_efficient_attention
[[autodoc]] AmusedInpaintPipeline
- __call__
- all
- enable_xformers_memory_efficient_attention
- disable_xformers_memory_efficient_attention

View File

@@ -25,6 +25,7 @@ The abstract of the paper is the following:
| Pipeline | Tasks | Demo
|---|---|:---:|
| [AnimateDiffPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/animatediff/pipeline_animatediff.py) | *Text-to-Video Generation with AnimateDiff* |
| [AnimateDiffVideoToVideoPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py) | *Video-to-Video Generation with AnimateDiff* |
## Available checkpoints
@@ -32,22 +33,29 @@ Motion Adapter checkpoints can be found under [guoyww](https://huggingface.co/gu
## Usage example
### AnimateDiffPipeline
AnimateDiff works with a MotionAdapter checkpoint and a Stable Diffusion model checkpoint. The MotionAdapter is a collection of Motion Modules that are responsible for adding coherent motion across image frames. These modules are applied after the Resnet and Attention blocks in Stable Diffusion UNet.
The following example demonstrates how to use a *MotionAdapter* checkpoint with Diffusers for inference based on StableDiffusion-1.4/1.5.
```python
import torch
from diffusers import MotionAdapter, AnimateDiffPipeline, DDIMScheduler
from diffusers import AnimateDiffPipeline, DDIMScheduler, MotionAdapter
from diffusers.utils import export_to_gif
# Load the motion adapter
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2")
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2", torch_dtype=torch.float16)
# load SD 1.5 based finetuned model
model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
pipe = AnimateDiffPipeline.from_pretrained(model_id, motion_adapter=adapter)
pipe = AnimateDiffPipeline.from_pretrained(model_id, motion_adapter=adapter, torch_dtype=torch.float16)
scheduler = DDIMScheduler.from_pretrained(
model_id, subfolder="scheduler", clip_sample=False, timestep_spacing="linspace", steps_offset=1
model_id,
subfolder="scheduler",
clip_sample=False,
timestep_spacing="linspace",
beta_schedule="linear",
steps_offset=1,
)
pipe.scheduler = scheduler
@@ -70,6 +78,7 @@ output = pipe(
)
frames = output.frames[0]
export_to_gif(frames, "animation.gif")
```
Here are some sample outputs:
@@ -88,28 +97,143 @@ Here are some sample outputs:
<Tip>
AnimateDiff tends to work better with finetuned Stable Diffusion models. If you plan on using a scheduler that can clip samples, make sure to disable it by setting `clip_sample=False` in the scheduler as this can also have an adverse effect on generated samples.
AnimateDiff tends to work better with finetuned Stable Diffusion models. If you plan on using a scheduler that can clip samples, make sure to disable it by setting `clip_sample=False` in the scheduler as this can also have an adverse effect on generated samples. Additionally, the AnimateDiff checkpoints can be sensitive to the beta schedule of the scheduler. We recommend setting this to `linear`.
</Tip>
### AnimateDiffVideoToVideoPipeline
AnimateDiff can also be used to generate visually similar videos or enable style/character/background or other edits starting from an initial video, allowing you to seamlessly explore creative possibilities.
```python
import imageio
import requests
import torch
from diffusers import AnimateDiffVideoToVideoPipeline, DDIMScheduler, MotionAdapter
from diffusers.utils import export_to_gif
from io import BytesIO
from PIL import Image
# Load the motion adapter
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2", torch_dtype=torch.float16)
# load SD 1.5 based finetuned model
model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
pipe = AnimateDiffVideoToVideoPipeline.from_pretrained(model_id, motion_adapter=adapter, torch_dtype=torch.float16).to("cuda")
scheduler = DDIMScheduler.from_pretrained(
model_id,
subfolder="scheduler",
clip_sample=False,
timestep_spacing="linspace",
beta_schedule="linear",
steps_offset=1,
)
pipe.scheduler = scheduler
# enable memory savings
pipe.enable_vae_slicing()
pipe.enable_model_cpu_offload()
# helper function to load videos
def load_video(file_path: str):
images = []
if file_path.startswith(('http://', 'https://')):
# If the file_path is a URL
response = requests.get(file_path)
response.raise_for_status()
content = BytesIO(response.content)
vid = imageio.get_reader(content)
else:
# Assuming it's a local file path
vid = imageio.get_reader(file_path)
for frame in vid:
pil_image = Image.fromarray(frame)
images.append(pil_image)
return images
video = load_video("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-vid2vid-input-1.gif")
output = pipe(
video = video,
prompt="panda playing a guitar, on a boat, in the ocean, high quality",
negative_prompt="bad quality, worse quality",
guidance_scale=7.5,
num_inference_steps=25,
strength=0.5,
generator=torch.Generator("cpu").manual_seed(42),
)
frames = output.frames[0]
export_to_gif(frames, "animation.gif")
```
Here are some sample outputs:
<table>
<tr>
<th align=center>Source Video</th>
<th align=center>Output Video</th>
</tr>
<tr>
<td align=center>
raccoon playing a guitar
<br />
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-vid2vid-input-1.gif"
alt="racoon playing a guitar"
style="width: 300px;" />
</td>
<td align=center>
panda playing a guitar
<br/>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-vid2vid-output-1.gif"
alt="panda playing a guitar"
style="width: 300px;" />
</td>
</tr>
<tr>
<td align=center>
closeup of margot robbie, fireworks in the background, high quality
<br />
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-vid2vid-input-2.gif"
alt="closeup of margot robbie, fireworks in the background, high quality"
style="width: 300px;" />
</td>
<td align=center>
closeup of tony stark, robert downey jr, fireworks
<br/>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-vid2vid-output-2.gif"
alt="closeup of tony stark, robert downey jr, fireworks"
style="width: 300px;" />
</td>
</tr>
</table>
## Using Motion LoRAs
Motion LoRAs are a collection of LoRAs that work with the `guoyww/animatediff-motion-adapter-v1-5-2` checkpoint. These LoRAs are responsible for adding specific types of motion to the animations.
```python
import torch
from diffusers import MotionAdapter, AnimateDiffPipeline, DDIMScheduler
from diffusers import AnimateDiffPipeline, DDIMScheduler, MotionAdapter
from diffusers.utils import export_to_gif
# Load the motion adapter
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2")
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2", torch_dtype=torch.float16)
# load SD 1.5 based finetuned model
model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
pipe = AnimateDiffPipeline.from_pretrained(model_id, motion_adapter=adapter)
pipe.load_lora_weights("guoyww/animatediff-motion-lora-zoom-out", adapter_name="zoom-out")
pipe = AnimateDiffPipeline.from_pretrained(model_id, motion_adapter=adapter, torch_dtype=torch.float16)
pipe.load_lora_weights(
"guoyww/animatediff-motion-lora-zoom-out", adapter_name="zoom-out"
)
scheduler = DDIMScheduler.from_pretrained(
model_id, subfolder="scheduler", clip_sample=False, timestep_spacing="linspace", steps_offset=1
model_id,
subfolder="scheduler",
clip_sample=False,
beta_schedule="linear",
timestep_spacing="linspace",
steps_offset=1,
)
pipe.scheduler = scheduler
@@ -132,6 +256,7 @@ output = pipe(
)
frames = output.frames[0]
export_to_gif(frames, "animation.gif")
```
<table>
@@ -160,21 +285,30 @@ Then you can use the following code to combine Motion LoRAs.
```python
import torch
from diffusers import MotionAdapter, AnimateDiffPipeline, DDIMScheduler
from diffusers import AnimateDiffPipeline, DDIMScheduler, MotionAdapter
from diffusers.utils import export_to_gif
# Load the motion adapter
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2")
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2", torch_dtype=torch.float16)
# load SD 1.5 based finetuned model
model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
pipe = AnimateDiffPipeline.from_pretrained(model_id, motion_adapter=adapter)
pipe = AnimateDiffPipeline.from_pretrained(model_id, motion_adapter=adapter, torch_dtype=torch.float16)
pipe.load_lora_weights("diffusers/animatediff-motion-lora-zoom-out", adapter_name="zoom-out")
pipe.load_lora_weights("diffusers/animatediff-motion-lora-pan-left", adapter_name="pan-left")
pipe.load_lora_weights(
"diffusers/animatediff-motion-lora-zoom-out", adapter_name="zoom-out",
)
pipe.load_lora_weights(
"diffusers/animatediff-motion-lora-pan-left", adapter_name="pan-left",
)
pipe.set_adapters(["zoom-out", "pan-left"], adapter_weights=[1.0, 1.0])
scheduler = DDIMScheduler.from_pretrained(
model_id, subfolder="scheduler", clip_sample=False, timestep_spacing="linspace", steps_offset=1
model_id,
subfolder="scheduler",
clip_sample=False,
timestep_spacing="linspace",
beta_schedule="linear",
steps_offset=1,
)
pipe.scheduler = scheduler
@@ -197,6 +331,7 @@ output = pipe(
)
frames = output.frames[0]
export_to_gif(frames, "animation.gif")
```
<table>
@@ -211,6 +346,62 @@ export_to_gif(frames, "animation.gif")
</tr>
</table>
## Using FreeInit
[FreeInit: Bridging Initialization Gap in Video Diffusion Models](https://arxiv.org/abs/2312.07537) by Tianxing Wu, Chenyang Si, Yuming Jiang, Ziqi Huang, Ziwei Liu.
FreeInit is an effective method that improves temporal consistency and overall quality of videos generated using video-diffusion-models without any addition training. It can be applied to AnimateDiff, ModelScope, VideoCrafter and various other video generation models seamlessly at inference time, and works by iteratively refining the latent-initialization noise. More details can be found it the paper.
The following example demonstrates the usage of FreeInit.
```python
import torch
from diffusers import MotionAdapter, AnimateDiffPipeline, DDIMScheduler
from diffusers.utils import export_to_gif
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2")
model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
pipe = AnimateDiffPipeline.from_pretrained(model_id, motion_adapter=adapter, torch_dtype=torch.float16).to("cuda")
pipe.scheduler = DDIMScheduler.from_pretrained(
model_id,
subfolder="scheduler",
beta_schedule="linear",
clip_sample=False,
timestep_spacing="linspace",
steps_offset=1
)
# enable memory savings
pipe.enable_vae_slicing()
pipe.enable_vae_tiling()
# enable FreeInit
# Refer to the enable_free_init documentation for a full list of configurable parameters
pipe.enable_free_init(method="butterworth", use_fast_sampling=True)
# run inference
output = pipe(
prompt="a panda playing a guitar, on a boat, in the ocean, high quality",
negative_prompt="bad quality, worse quality",
num_frames=16,
guidance_scale=7.5,
num_inference_steps=20,
generator=torch.Generator("cpu").manual_seed(666),
)
# disable FreeInit
pipe.disable_free_init()
frames = output.frames[0]
export_to_gif(frames, "animation.gif")
```
<Tip warning={true}>
FreeInit is not really free - the improved quality comes at the cost of extra computation. It requires sampling a few extra times depending on the `num_iters` parameter that is set when enabling it. Setting the `use_fast_sampling` parameter to `True` can improve the overall performance (at the cost of lower quality compared to when `use_fast_sampling=False` but still better results than vanilla video generation models).
</Tip>
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
@@ -220,14 +411,14 @@ Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers)
## AnimateDiffPipeline
[[autodoc]] AnimateDiffPipeline
- all
- __call__
- enable_freeu
- disable_freeu
- enable_vae_slicing
- disable_vae_slicing
- enable_vae_tiling
- disable_vae_tiling
- all
- __call__
## AnimateDiffVideoToVideoPipeline
[[autodoc]] AnimateDiffVideoToVideoPipeline
- all
- __call__
## AnimateDiffPipelineOutput

View File

@@ -1,35 +0,0 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Audio Diffusion
[Audio Diffusion](https://github.com/teticio/audio-diffusion) is by Robert Dargavel Smith, and it leverages the recent advances in image generation from diffusion models by converting audio samples to and from Mel spectrogram images.
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
## AudioDiffusionPipeline
[[autodoc]] AudioDiffusionPipeline
- all
- __call__
## AudioPipelineOutput
[[autodoc]] pipelines.AudioPipelineOutput
## ImagePipelineOutput
[[autodoc]] pipelines.ImagePipelineOutput
## Mel
[[autodoc]] Mel

View File

@@ -1,33 +0,0 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Cycle Diffusion
Cycle Diffusion is a text guided image-to-image generation model proposed in [Unifying Diffusion Models' Latent Space, with Applications to CycleDiffusion and Guidance](https://huggingface.co/papers/2210.05559) by Chen Henry Wu, Fernando De la Torre.
The abstract from the paper is:
*Diffusion models have achieved unprecedented performance in generative modeling. The commonly-adopted formulation of the latent code of diffusion models is a sequence of gradually denoised samples, as opposed to the simpler (e.g., Gaussian) latent space of GANs, VAEs, and normalizing flows. This paper provides an alternative, Gaussian formulation of the latent space of various diffusion models, as well as an invertible DPM-Encoder that maps images into the latent space. While our formulation is purely based on the definition of diffusion models, we demonstrate several intriguing consequences. (1) Empirically, we observe that a common latent space emerges from two diffusion models trained independently on related domains. In light of this finding, we propose CycleDiffusion, which uses DPM-Encoder for unpaired image-to-image translation. Furthermore, applying CycleDiffusion to text-to-image diffusion models, we show that large-scale text-to-image diffusion models can be used as zero-shot image-to-image editors. (2) One can guide pre-trained diffusion models and GANs by controlling the latent codes in a unified, plug-and-play formulation based on energy-based models. Using the CLIP model and a face recognition model as guidance, we demonstrate that diffusion models have better coverage of low-density sub-populations and individuals than GANs. The code is publicly available at [this https URL](https://github.com/ChenWu98/cycle-diffusion).*
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
## CycleDiffusionPipeline
[[autodoc]] CycleDiffusionPipeline
- all
- __call__
## StableDiffusionPiplineOutput
[[autodoc]] pipelines.stable_diffusion.StableDiffusionPipelineOutput

View File

@@ -0,0 +1,57 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# I2VGen-XL
[I2VGen-XL: High-Quality Image-to-Video Synthesis via Cascaded Diffusion Models](https://hf.co/papers/2311.04145.pdf) by Shiwei Zhang, Jiayu Wang, Yingya Zhang, Kang Zhao, Hangjie Yuan, Zhiwu Qin, Xiang Wang, Deli Zhao, and Jingren Zhou.
The abstract from the paper is:
*Video synthesis has recently made remarkable strides benefiting from the rapid development of diffusion models. However, it still encounters challenges in terms of semantic accuracy, clarity and spatio-temporal continuity. They primarily arise from the scarcity of well-aligned text-video data and the complex inherent structure of videos, making it difficult for the model to simultaneously ensure semantic and qualitative excellence. In this report, we propose a cascaded I2VGen-XL approach that enhances model performance by decoupling these two factors and ensures the alignment of the input data by utilizing static images as a form of crucial guidance. I2VGen-XL consists of two stages: i) the base stage guarantees coherent semantics and preserves content from input images by using two hierarchical encoders, and ii) the refinement stage enhances the video's details by incorporating an additional brief text and improves the resolution to 1280×720. To improve the diversity, we collect around 35 million single-shot text-video pairs and 6 billion text-image pairs to optimize the model. By this means, I2VGen-XL can simultaneously enhance the semantic accuracy, continuity of details and clarity of generated videos. Through extensive experiments, we have investigated the underlying principles of I2VGen-XL and compared it with current top methods, which can demonstrate its effectiveness on diverse data. The source code and models will be publicly available at [this https URL](https://i2vgen-xl.github.io/).*
The original codebase can be found [here](https://github.com/ali-vilab/i2vgen-xl/). The model checkpoints can be found [here](https://huggingface.co/ali-vilab/).
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines. Also, to know more about reducing the memory usage of this pipeline, refer to the ["Reduce memory usage"] section [here](../../using-diffusers/svd#reduce-memory-usage).
</Tip>
Sample output with I2VGenXL:
<table>
<tr>
<td><center>
masterpiece, bestquality, sunset.
<br>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/i2vgen-xl-example.gif"
alt="library"
style="width: 300px;" />
</center></td>
</tr>
</table>
## Notes
* I2VGenXL always uses a `clip_skip` value of 1. This means it leverages the penultimate layer representations from the text encoder of CLIP.
* It can generate videos of quality that is often on par with [Stable Video Diffusion](../../using-diffusers/svd) (SVD).
* Unlike SVD, it additionally accepts text prompts as inputs.
* It can generate higher resolution videos.
* When using the [`DDIMScheduler`] (which is default for this pipeline), less than 50 steps for inference leads to bad results.
## I2VGenXLPipeline
[[autodoc]] I2VGenXLPipeline
- all
- __call__
## I2VGenXLPipelineOutput
[[autodoc]] pipelines.i2vgen_xl.pipeline_i2vgen_xl.I2VGenXLPipelineOutput

View File

@@ -1,35 +0,0 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Unconditional Latent Diffusion
Unconditional Latent Diffusion was proposed in [High-Resolution Image Synthesis with Latent Diffusion Models](https://huggingface.co/papers/2112.10752) by Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, Björn Ommer.
The abstract from the paper is:
*By decomposing the image formation process into a sequential application of denoising autoencoders, diffusion models (DMs) achieve state-of-the-art synthesis results on image data and beyond. Additionally, their formulation allows for a guiding mechanism to control the image generation process without retraining. However, since these models typically operate directly in pixel space, optimization of powerful DMs often consumes hundreds of GPU days and inference is expensive due to sequential evaluations. To enable DM training on limited computational resources while retaining their quality and flexibility, we apply them in the latent space of powerful pretrained autoencoders. In contrast to previous work, training diffusion models on such a representation allows for the first time to reach a near-optimal point between complexity reduction and detail preservation, greatly boosting visual fidelity. By introducing cross-attention layers into the model architecture, we turn diffusion models into powerful and flexible generators for general conditioning inputs such as text or bounding boxes and high-resolution synthesis becomes possible in a convolutional manner. Our latent diffusion models (LDMs) achieve a new state of the art for image inpainting and highly competitive performance on various tasks, including unconditional image generation, semantic scene synthesis, and super-resolution, while significantly reducing computational requirements compared to pixel-based DMs.*
The original codebase can be found at [CompVis/latent-diffusion](https://github.com/CompVis/latent-diffusion).
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
## LDMPipeline
[[autodoc]] LDMPipeline
- all
- __call__
## ImagePipelineOutput
[[autodoc]] pipelines.ImagePipelineOutput

View File

@@ -1,35 +0,0 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Text-to-image model editing
[Editing Implicit Assumptions in Text-to-Image Diffusion Models](https://huggingface.co/papers/2303.08084) is by Hadas Orgad, Bahjat Kawar, and Yonatan Belinkov. This pipeline enables editing diffusion model weights, such that its assumptions of a given concept are changed. The resulting change is expected to take effect in all prompt generations related to the edited concept.
The abstract from the paper is:
*Text-to-image diffusion models often make implicit assumptions about the world when generating images. While some assumptions are useful (e.g., the sky is blue), they can also be outdated, incorrect, or reflective of social biases present in the training data. Thus, there is a need to control these assumptions without requiring explicit user input or costly re-training. In this work, we aim to edit a given implicit assumption in a pre-trained diffusion model. Our Text-to-Image Model Editing method, TIME for short, receives a pair of inputs: a "source" under-specified prompt for which the model makes an implicit assumption (e.g., "a pack of roses"), and a "destination" prompt that describes the same setting, but with a specified desired attribute (e.g., "a pack of blue roses"). TIME then updates the model's cross-attention layers, as these layers assign visual meaning to textual tokens. We edit the projection matrices in these layers such that the source prompt is projected close to the destination prompt. Our method is highly efficient, as it modifies a mere 2.2% of the model's parameters in under one second. To evaluate model editing approaches, we introduce TIMED (TIME Dataset), containing 147 source and destination prompt pairs from various domains. Our experiments (using Stable Diffusion) show that TIME is successful in model editing, generalizes well for related prompts unseen during editing, and imposes minimal effect on unrelated generations.*
You can find additional information about model editing on the [project page](https://time-diffusion.github.io/), [original codebase](https://github.com/bahjat-kawar/time-diffusion), and try it out in a [demo](https://huggingface.co/spaces/bahjat-kawar/time-diffusion).
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
## StableDiffusionModelEditingPipeline
[[autodoc]] StableDiffusionModelEditingPipeline
- __call__
- all
## StableDiffusionPipelineOutput
[[autodoc]] pipelines.stable_diffusion.StableDiffusionPipelineOutput

View File

@@ -40,6 +40,8 @@ The table below lists all the pipelines currently available in 🤗 Diffusers an
| [Consistency Models](consistency_models) | unconditional image generation |
| [ControlNet](controlnet) | text2image, image2image, inpainting |
| [ControlNet with Stable Diffusion XL](controlnet_sdxl) | text2image |
| [ControlNet-XS](controlnetxs) | text2image |
| [ControlNet-XS with Stable Diffusion XL](controlnetxs_sdxl) | text2image |
| [Cycle Diffusion](cycle_diffusion) | image2image |
| [Dance Diffusion](dance_diffusion) | unconditional audio generation |
| [DDIM](ddim) | unconditional image generation |
@@ -71,6 +73,7 @@ The table below lists all the pipelines currently available in 🤗 Diffusers an
| [Stable Diffusion](stable_diffusion/overview) | text2image, image2image, depth2image, inpainting, image variation, latent upscaler, super-resolution |
| [Stable Diffusion Model Editing](model_editing) | model editing |
| [Stable Diffusion XL](stable_diffusion/stable_diffusion_xl) | text2image, image2image, inpainting |
| [Stable Diffusion XL Turbo](stable_diffusion/sdxl_turbo) | text2image, image2image, inpainting |
| [Stable unCLIP](stable_unclip) | text2image, image variation |
| [Stochastic Karras VE](stochastic_karras_ve) | unconditional image generation |
| [T2I-Adapter](stable_diffusion/adapter) | text2image |

View File

@@ -1,51 +0,0 @@
<!--Copyright 2023 ParaDiGMS authors and The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Parallel Sampling of Diffusion Models
[Parallel Sampling of Diffusion Models](https://huggingface.co/papers/2305.16317) is by Andy Shih, Suneel Belkhale, Stefano Ermon, Dorsa Sadigh, Nima Anari.
The abstract from the paper is:
*Diffusion models are powerful generative models but suffer from slow sampling, often taking 1000 sequential denoising steps for one sample. As a result, considerable efforts have been directed toward reducing the number of denoising steps, but these methods hurt sample quality. Instead of reducing the number of denoising steps (trading quality for speed), in this paper we explore an orthogonal approach: can we run the denoising steps in parallel (trading compute for speed)? In spite of the sequential nature of the denoising steps, we show that surprisingly it is possible to parallelize sampling via Picard iterations, by guessing the solution of future denoising steps and iteratively refining until convergence. With this insight, we present ParaDiGMS, a novel method to accelerate the sampling of pretrained diffusion models by denoising multiple steps in parallel. ParaDiGMS is the first diffusion sampling method that enables trading compute for speed and is even compatible with existing fast sampling techniques such as DDIM and DPMSolver. Using ParaDiGMS, we improve sampling speed by 2-4x across a range of robotics and image generation models, giving state-of-the-art sampling speeds of 0.2s on 100-step DiffusionPolicy and 14.6s on 1000-step StableDiffusion-v2 with no measurable degradation of task reward, FID score, or CLIP score.*
The original codebase can be found at [AndyShih12/paradigms](https://github.com/AndyShih12/paradigms), and the pipeline was contributed by [AndyShih12](https://github.com/AndyShih12). ❤️
## Tips
This pipeline improves sampling speed by running denoising steps in parallel, at the cost of increased total FLOPs.
Therefore, it is better to call this pipeline when running on multiple GPUs. Otherwise, without enough GPU bandwidth
sampling may be even slower than sequential sampling.
The two parameters to play with are `parallel` (batch size) and `tolerance`.
- If it fits in memory, for a 1000-step DDPM you can aim for a batch size of around 100 (for example, 8 GPUs and `batch_per_device=12` to get `parallel=96`). A higher batch size may not fit in memory, and lower batch size gives less parallelism.
- For tolerance, using a higher tolerance may get better speedups but can risk sample quality degradation. If there is quality degradation with the default tolerance, then use a lower tolerance like `0.001`.
For a 1000-step DDPM on 8 A100 GPUs, you can expect around a 3x speedup from [`StableDiffusionParadigmsPipeline`] compared to the [`StableDiffusionPipeline`]
by setting `parallel=80` and `tolerance=0.1`.
🤗 Diffusers offers [distributed inference support](../../training/distributed_inference) for generating multiple prompts
in parallel on multiple GPUs. But [`StableDiffusionParadigmsPipeline`] is designed for speeding up sampling of a single prompt by using multiple GPUs.
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
## StableDiffusionParadigmsPipeline
[[autodoc]] StableDiffusionParadigmsPipeline
- __call__
- all
## StableDiffusionPipelineOutput
[[autodoc]] pipelines.stable_diffusion.StableDiffusionPipelineOutput

View File

@@ -0,0 +1,167 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Image-to-Video Generation with PIA (Personalized Image Animator)
## Overview
[PIA: Your Personalized Image Animator via Plug-and-Play Modules in Text-to-Image Models](https://arxiv.org/abs/2312.13964) by Yiming Zhang, Zhening Xing, Yanhong Zeng, Youqing Fang, Kai Chen
Recent advancements in personalized text-to-image (T2I) models have revolutionized content creation, empowering non-experts to generate stunning images with unique styles. While promising, adding realistic motions into these personalized images by text poses significant challenges in preserving distinct styles, high-fidelity details, and achieving motion controllability by text. In this paper, we present PIA, a Personalized Image Animator that excels in aligning with condition images, achieving motion controllability by text, and the compatibility with various personalized T2I models without specific tuning. To achieve these goals, PIA builds upon a base T2I model with well-trained temporal alignment layers, allowing for the seamless transformation of any personalized T2I model into an image animation model. A key component of PIA is the introduction of the condition module, which utilizes the condition frame and inter-frame affinity as input to transfer appearance information guided by the affinity hint for individual frame synthesis in the latent space. This design mitigates the challenges of appearance-related image alignment within and allows for a stronger focus on aligning with motion-related guidance.
[Project page](https://pi-animator.github.io/)
## Available Pipelines
| Pipeline | Tasks | Demo
|---|---|:---:|
| [PIAPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pia/pipeline_pia.py) | *Image-to-Video Generation with PIA* |
## Available checkpoints
Motion Adapter checkpoints for PIA can be found under the [OpenMMLab org](https://huggingface.co/openmmlab/PIA-condition-adapter). These checkpoints are meant to work with any model based on Stable Diffusion 1.5
## Usage example
PIA works with a MotionAdapter checkpoint and a Stable Diffusion 1.5 model checkpoint. The MotionAdapter is a collection of Motion Modules that are responsible for adding coherent motion across image frames. These modules are applied after the Resnet and Attention blocks in the Stable Diffusion UNet. In addition to the motion modules, PIA also replaces the input convolution layer of the SD 1.5 UNet model with a 9 channel input convolution layer.
The following example demonstrates how to use PIA to generate a video from a single image.
```python
import torch
from diffusers import (
EulerDiscreteScheduler,
MotionAdapter,
PIAPipeline,
)
from diffusers.utils import export_to_gif, load_image
adapter = MotionAdapter.from_pretrained("openmmlab/PIA-condition-adapter")
pipe = PIAPipeline.from_pretrained("SG161222/Realistic_Vision_V6.0_B1_noVAE", motion_adapter=adapter, torch_dtype=torch.float16)
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.enable_model_cpu_offload()
pipe.enable_vae_slicing()
image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/pix2pix/cat_6.png?download=true"
)
image = image.resize((512, 512))
prompt = "cat in a field"
negative_prompt = "wrong white balance, dark, sketches,worst quality,low quality"
generator = torch.Generator("cpu").manual_seed(0)
output = pipe(image=image, prompt=prompt, generator=generator)
frames = output.frames[0]
export_to_gif(frames, "pia-animation.gif")
```
Here are some sample outputs:
<table>
<tr>
<td><center>
masterpiece, bestquality, sunset.
<br>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/pia-default-output.gif"
alt="cat in a field"
style="width: 300px;" />
</center></td>
</tr>
</table>
<Tip>
If you plan on using a scheduler that can clip samples, make sure to disable it by setting `clip_sample=False` in the scheduler as this can also have an adverse effect on generated samples. Additionally, the PIA checkpoints can be sensitive to the beta schedule of the scheduler. We recommend setting this to `linear`.
</Tip>
## Using FreeInit
[FreeInit: Bridging Initialization Gap in Video Diffusion Models](https://arxiv.org/abs/2312.07537) by Tianxing Wu, Chenyang Si, Yuming Jiang, Ziqi Huang, Ziwei Liu.
FreeInit is an effective method that improves temporal consistency and overall quality of videos generated using video-diffusion-models without any addition training. It can be applied to PIA, AnimateDiff, ModelScope, VideoCrafter and various other video generation models seamlessly at inference time, and works by iteratively refining the latent-initialization noise. More details can be found it the paper.
The following example demonstrates the usage of FreeInit.
```python
import torch
from diffusers import (
DDIMScheduler,
MotionAdapter,
PIAPipeline,
)
from diffusers.utils import export_to_gif, load_image
adapter = MotionAdapter.from_pretrained("openmmlab/PIA-condition-adapter")
pipe = PIAPipeline.from_pretrained("SG161222/Realistic_Vision_V6.0_B1_noVAE", motion_adapter=adapter)
# enable FreeInit
# Refer to the enable_free_init documentation for a full list of configurable parameters
pipe.enable_free_init(method="butterworth", use_fast_sampling=True)
# Memory saving options
pipe.enable_model_cpu_offload()
pipe.enable_vae_slicing()
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/pix2pix/cat_6.png?download=true"
)
image = image.resize((512, 512))
prompt = "cat in a hat"
negative_prompt = "wrong white balance, dark, sketches,worst quality,low quality"
generator = torch.Generator("cpu").manual_seed(0)
output = pipe(image=image, prompt=prompt, generator=generator)
frames = output.frames[0]
export_to_gif(frames, "pia-freeinit-animation.gif")
```
<table>
<tr>
<td><center>
masterpiece, bestquality, sunset.
<br>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/pia-freeinit-output-cat.gif"
alt="cat in a field"
style="width: 300px;" />
</center></td>
</tr>
</table>
<Tip warning={true}>
FreeInit is not really free - the improved quality comes at the cost of extra computation. It requires sampling a few extra times depending on the `num_iters` parameter that is set when enabling it. Setting the `use_fast_sampling` parameter to `True` can improve the overall performance (at the cost of lower quality compared to when `use_fast_sampling=False` but still better results than vanilla video generation models).
</Tip>
## PIAPipeline
[[autodoc]] PIAPipeline
- all
- __call__
- enable_freeu
- disable_freeu
- enable_free_init
- disable_free_init
- enable_vae_slicing
- disable_vae_slicing
- enable_vae_tiling
- disable_vae_tiling
## PIAPipelineOutput
[[autodoc]] pipelines.pia.PIAPipelineOutput

View File

@@ -1,289 +0,0 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Pix2Pix Zero
[Zero-shot Image-to-Image Translation](https://huggingface.co/papers/2302.03027) is by Gaurav Parmar, Krishna Kumar Singh, Richard Zhang, Yijun Li, Jingwan Lu, and Jun-Yan Zhu.
The abstract from the paper is:
*Large-scale text-to-image generative models have shown their remarkable ability to synthesize diverse and high-quality images. However, it is still challenging to directly apply these models for editing real images for two reasons. First, it is hard for users to come up with a perfect text prompt that accurately describes every visual detail in the input image. Second, while existing models can introduce desirable changes in certain regions, they often dramatically alter the input content and introduce unexpected changes in unwanted regions. In this work, we propose pix2pix-zero, an image-to-image translation method that can preserve the content of the original image without manual prompting. We first automatically discover editing directions that reflect desired edits in the text embedding space. To preserve the general content structure after editing, we further propose cross-attention guidance, which aims to retain the cross-attention maps of the input image throughout the diffusion process. In addition, our method does not need additional training for these edits and can directly use the existing pre-trained text-to-image diffusion model. We conduct extensive experiments and show that our method outperforms existing and concurrent works for both real and synthetic image editing.*
You can find additional information about Pix2Pix Zero on the [project page](https://pix2pixzero.github.io/), [original codebase](https://github.com/pix2pixzero/pix2pix-zero), and try it out in a [demo](https://huggingface.co/spaces/pix2pix-zero-library/pix2pix-zero-demo).
## Tips
* The pipeline can be conditioned on real input images. Check out the code examples below to know more.
* The pipeline exposes two arguments namely `source_embeds` and `target_embeds`
that let you control the direction of the semantic edits in the final image to be generated. Let's say,
you wanted to translate from "cat" to "dog". In this case, the edit direction will be "cat -> dog". To reflect
this in the pipeline, you simply have to set the embeddings related to the phrases including "cat" to
`source_embeds` and "dog" to `target_embeds`. Refer to the code example below for more details.
* When you're using this pipeline from a prompt, specify the _source_ concept in the prompt. Taking
the above example, a valid input prompt would be: "a high resolution painting of a **cat** in the style of van gogh".
* If you wanted to reverse the direction in the example above, i.e., "dog -> cat", then it's recommended to:
* Swap the `source_embeds` and `target_embeds`.
* Change the input prompt to include "dog".
* To learn more about how the source and target embeddings are generated, refer to the [original paper](https://arxiv.org/abs/2302.03027). Below, we also provide some directions on how to generate the embeddings.
* Note that the quality of the outputs generated with this pipeline is dependent on how good the `source_embeds` and `target_embeds` are. Please, refer to [this discussion](#generating-source-and-target-embeddings) for some suggestions on the topic.
## Available Pipelines:
| Pipeline | Tasks | Demo
|---|---|:---:|
| [StableDiffusionPix2PixZeroPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_pix2pix_zero.py) | *Text-Based Image Editing* | [🤗 Space](https://huggingface.co/spaces/pix2pix-zero-library/pix2pix-zero-demo) |
<!-- TODO: add Colab -->
## Usage example
### Based on an image generated with the input prompt
```python
import requests
import torch
from diffusers import DDIMScheduler, StableDiffusionPix2PixZeroPipeline
def download(embedding_url, local_filepath):
r = requests.get(embedding_url)
with open(local_filepath, "wb") as f:
f.write(r.content)
model_ckpt = "CompVis/stable-diffusion-v1-4"
pipeline = StableDiffusionPix2PixZeroPipeline.from_pretrained(
model_ckpt, conditions_input_image=False, torch_dtype=torch.float16
)
pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)
pipeline.to("cuda")
prompt = "a high resolution painting of a cat in the style of van gogh"
src_embs_url = "https://github.com/pix2pixzero/pix2pix-zero/raw/main/assets/embeddings_sd_1.4/cat.pt"
target_embs_url = "https://github.com/pix2pixzero/pix2pix-zero/raw/main/assets/embeddings_sd_1.4/dog.pt"
for url in [src_embs_url, target_embs_url]:
download(url, url.split("/")[-1])
src_embeds = torch.load(src_embs_url.split("/")[-1])
target_embeds = torch.load(target_embs_url.split("/")[-1])
image = pipeline(
prompt,
source_embeds=src_embeds,
target_embeds=target_embeds,
num_inference_steps=50,
cross_attention_guidance_amount=0.15,
).images[0]
image
```
### Based on an input image
When the pipeline is conditioned on an input image, we first obtain an inverted
noise from it using a `DDIMInverseScheduler` with the help of a generated caption. Then the inverted noise is used to start the generation process.
First, let's load our pipeline:
```py
import torch
from transformers import BlipForConditionalGeneration, BlipProcessor
from diffusers import DDIMScheduler, DDIMInverseScheduler, StableDiffusionPix2PixZeroPipeline
captioner_id = "Salesforce/blip-image-captioning-base"
processor = BlipProcessor.from_pretrained(captioner_id)
model = BlipForConditionalGeneration.from_pretrained(captioner_id, torch_dtype=torch.float16, low_cpu_mem_usage=True)
sd_model_ckpt = "CompVis/stable-diffusion-v1-4"
pipeline = StableDiffusionPix2PixZeroPipeline.from_pretrained(
sd_model_ckpt,
caption_generator=model,
caption_processor=processor,
torch_dtype=torch.float16,
safety_checker=None,
)
pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)
pipeline.inverse_scheduler = DDIMInverseScheduler.from_config(pipeline.scheduler.config)
pipeline.enable_model_cpu_offload()
```
Then, we load an input image for conditioning and obtain a suitable caption for it:
```py
from diffusers.utils import load_image
img_url = "https://github.com/pix2pixzero/pix2pix-zero/raw/main/assets/test_images/cats/cat_6.png"
raw_image = load_image(url).resize((512, 512))
caption = pipeline.generate_caption(raw_image)
caption
```
Then we employ the generated caption and the input image to get the inverted noise:
```py
generator = torch.manual_seed(0)
inv_latents = pipeline.invert(caption, image=raw_image, generator=generator).latents
```
Now, generate the image with edit directions:
```py
# See the "Generating source and target embeddings" section below to
# automate the generation of these captions with a pre-trained model like Flan-T5 as explained below.
source_prompts = ["a cat sitting on the street", "a cat playing in the field", "a face of a cat"]
target_prompts = ["a dog sitting on the street", "a dog playing in the field", "a face of a dog"]
source_embeds = pipeline.get_embeds(source_prompts, batch_size=2)
target_embeds = pipeline.get_embeds(target_prompts, batch_size=2)
image = pipeline(
caption,
source_embeds=source_embeds,
target_embeds=target_embeds,
num_inference_steps=50,
cross_attention_guidance_amount=0.15,
generator=generator,
latents=inv_latents,
negative_prompt=caption,
).images[0]
image
```
## Generating source and target embeddings
The authors originally used the [GPT-3 API](https://openai.com/api/) to generate the source and target captions for discovering
edit directions. However, we can also leverage open source and public models for the same purpose.
Below, we provide an end-to-end example with the [Flan-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5) model
for generating captions and [CLIP](https://huggingface.co/docs/transformers/model_doc/clip) for
computing embeddings on the generated captions.
**1. Load the generation model**:
```py
import torch
from transformers import AutoTokenizer, T5ForConditionalGeneration
tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-xl")
model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-xl", device_map="auto", torch_dtype=torch.float16)
```
**2. Construct a starting prompt**:
```py
source_concept = "cat"
target_concept = "dog"
source_text = f"Provide a caption for images containing a {source_concept}. "
"The captions should be in English and should be no longer than 150 characters."
target_text = f"Provide a caption for images containing a {target_concept}. "
"The captions should be in English and should be no longer than 150 characters."
```
Here, we're interested in the "cat -> dog" direction.
**3. Generate captions**:
We can use a utility like so for this purpose.
```py
def generate_captions(input_prompt):
input_ids = tokenizer(input_prompt, return_tensors="pt").input_ids.to("cuda")
outputs = model.generate(
input_ids, temperature=0.8, num_return_sequences=16, do_sample=True, max_new_tokens=128, top_k=10
)
return tokenizer.batch_decode(outputs, skip_special_tokens=True)
```
And then we just call it to generate our captions:
```py
source_captions = generate_captions(source_text)
target_captions = generate_captions(target_concept)
print(source_captions, target_captions, sep='\n')
```
We encourage you to play around with the different parameters supported by the
`generate()` method ([documentation](https://huggingface.co/docs/transformers/main/en/main_classes/text_generation#transformers.generation_tf_utils.TFGenerationMixin.generate)) for the generation quality you are looking for.
**4. Load the embedding model**:
Here, we need to use the same text encoder model used by the subsequent Stable Diffusion model.
```py
from diffusers import StableDiffusionPix2PixZeroPipeline
pipeline = StableDiffusionPix2PixZeroPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16
)
pipeline = pipeline.to("cuda")
tokenizer = pipeline.tokenizer
text_encoder = pipeline.text_encoder
```
**5. Compute embeddings**:
```py
import torch
def embed_captions(sentences, tokenizer, text_encoder, device="cuda"):
with torch.no_grad():
embeddings = []
for sent in sentences:
text_inputs = tokenizer(
sent,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
prompt_embeds = text_encoder(text_input_ids.to(device), attention_mask=None)[0]
embeddings.append(prompt_embeds)
return torch.concatenate(embeddings, dim=0).mean(dim=0).unsqueeze(0)
source_embeddings = embed_captions(source_captions, tokenizer, text_encoder)
target_embeddings = embed_captions(target_captions, tokenizer, text_encoder)
```
And you're done! [Here](https://colab.research.google.com/drive/1tz2C1EdfZYAPlzXXbTnf-5PRBiR8_R1F?usp=sharing) is a Colab Notebook that you can use to interact with the entire process.
Now, you can use these embeddings directly while calling the pipeline:
```py
from diffusers import DDIMScheduler
pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)
image = pipeline(
prompt,
source_embeds=source_embeddings,
target_embeds=target_embeddings,
num_inference_steps=50,
cross_attention_guidance_amount=0.15,
).images[0]
image
```
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
## StableDiffusionPix2PixZeroPipeline
[[autodoc]] StableDiffusionPix2PixZeroPipeline
- __call__
- all

View File

@@ -1,35 +0,0 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# PNDM
[Pseudo Numerical Methods for Diffusion Models on Manifolds](https://huggingface.co/papers/2202.09778) (PNDM) is by Luping Liu, Yi Ren, Zhijie Lin and Zhou Zhao.
The abstract from the paper is:
*Denoising Diffusion Probabilistic Models (DDPMs) can generate high-quality samples such as image and audio samples. However, DDPMs require hundreds to thousands of iterations to produce final samples. Several prior works have successfully accelerated DDPMs through adjusting the variance schedule (e.g., Improved Denoising Diffusion Probabilistic Models) or the denoising equation (e.g., Denoising Diffusion Implicit Models (DDIMs)). However, these acceleration methods cannot maintain the quality of samples and even introduce new noise at a high speedup rate, which limit their practicability. To accelerate the inference process while keeping the sample quality, we provide a fresh perspective that DDPMs should be treated as solving differential equations on manifolds. Under such a perspective, we propose pseudo numerical methods for diffusion models (PNDMs). Specifically, we figure out how to solve differential equations on manifolds and show that DDIMs are simple cases of pseudo numerical methods. We change several classical numerical methods to corresponding pseudo numerical methods and find that the pseudo linear multi-step method is the best in most situations. According to our experiments, by directly using pre-trained models on Cifar10, CelebA and LSUN, PNDMs can generate higher quality synthetic images with only 50 steps compared with 1000-step DDIMs (20x speedup), significantly outperform DDIMs with 250 steps (by around 0.4 in FID) and have good generalization on different variance schedules.*
The original codebase can be found at [luping-liu/PNDM](https://github.com/luping-liu/PNDM).
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
## PNDMPipeline
[[autodoc]] PNDMPipeline
- all
- __call__
## ImagePipelineOutput
[[autodoc]] pipelines.ImagePipelineOutput

View File

@@ -1,37 +0,0 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# RePaint
[RePaint: Inpainting using Denoising Diffusion Probabilistic Models](https://huggingface.co/papers/2201.09865) is by Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, Luc Van Gool.
The abstract from the paper is:
*Free-form inpainting is the task of adding new content to an image in the regions specified by an arbitrary binary mask. Most existing approaches train for a certain distribution of masks, which limits their generalization capabilities to unseen mask types. Furthermore, training with pixel-wise and perceptual losses often leads to simple textural extensions towards the missing areas instead of semantically meaningful generation. In this work, we propose RePaint: A Denoising Diffusion Probabilistic Model (DDPM) based inpainting approach that is applicable to even extreme masks. We employ a pretrained unconditional DDPM as the generative prior. To condition the generation process, we only alter the reverse diffusion iterations by sampling the unmasked regions using the given image information. Since this technique does not modify or condition the original DDPM network itself, the model produces high-quality and diverse output images for any inpainting form. We validate our method for both faces and general-purpose image inpainting using standard and extreme masks.
RePaint outperforms state-of-the-art Autoregressive, and GAN approaches for at least five out of six mask distributions.*
The original codebase can be found at [andreas128/RePaint](https://github.com/andreas128/RePaint).
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
## RePaintPipeline
[[autodoc]] RePaintPipeline
- all
- __call__
## ImagePipelineOutput
[[autodoc]] pipelines.ImagePipelineOutput

View File

@@ -1,35 +0,0 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Score SDE VE
[Score-Based Generative Modeling through Stochastic Differential Equations](https://huggingface.co/papers/2011.13456) (Score SDE) is by Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon and Ben Poole. This pipeline implements the variance expanding (VE) variant of the stochastic differential equation method.
The abstract from the paper is:
*Creating noise from data is easy; creating data from noise is generative modeling. We present a stochastic differential equation (SDE) that smoothly transforms a complex data distribution to a known prior distribution by slowly injecting noise, and a corresponding reverse-time SDE that transforms the prior distribution back into the data distribution by slowly removing the noise. Crucially, the reverse-time SDE depends only on the time-dependent gradient field (\aka, score) of the perturbed data distribution. By leveraging advances in score-based generative modeling, we can accurately estimate these scores with neural networks, and use numerical SDE solvers to generate samples. We show that this framework encapsulates previous approaches in score-based generative modeling and diffusion probabilistic modeling, allowing for new sampling procedures and new modeling capabilities. In particular, we introduce a predictor-corrector framework to correct errors in the evolution of the discretized reverse-time SDE. We also derive an equivalent neural ODE that samples from the same distribution as the SDE, but additionally enables exact likelihood computation, and improved sampling efficiency. In addition, we provide a new way to solve inverse problems with score-based models, as demonstrated with experiments on class-conditional generation, image inpainting, and colorization. Combined with multiple architectural improvements, we achieve record-breaking performance for unconditional image generation on CIFAR-10 with an Inception score of 9.89 and FID of 2.20, a competitive likelihood of 2.99 bits/dim, and demonstrate high fidelity generation of 1024 x 1024 images for the first time from a score-based generative model.*
The original codebase can be found at [yang-song/score_sde_pytorch](https://github.com/yang-song/score_sde_pytorch).
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
## ScoreSdeVePipeline
[[autodoc]] ScoreSdeVePipeline
- all
- __call__
## ImagePipelineOutput
[[autodoc]] pipelines.ImagePipelineOutput

View File

@@ -1,37 +0,0 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Spectrogram Diffusion
[Spectrogram Diffusion](https://huggingface.co/papers/2206.05408) is by Curtis Hawthorne, Ian Simon, Adam Roberts, Neil Zeghidour, Josh Gardner, Ethan Manilow, and Jesse Engel.
*An ideal music synthesizer should be both interactive and expressive, generating high-fidelity audio in realtime for arbitrary combinations of instruments and notes. Recent neural synthesizers have exhibited a tradeoff between domain-specific models that offer detailed control of only specific instruments, or raw waveform models that can train on any music but with minimal control and slow generation. In this work, we focus on a middle ground of neural synthesizers that can generate audio from MIDI sequences with arbitrary combinations of instruments in realtime. This enables training on a wide range of transcription datasets with a single model, which in turn offers note-level control of composition and instrumentation across a wide range of instruments. We use a simple two-stage process: MIDI to spectrograms with an encoder-decoder Transformer, then spectrograms to audio with a generative adversarial network (GAN) spectrogram inverter. We compare training the decoder as an autoregressive model and as a Denoising Diffusion Probabilistic Model (DDPM) and find that the DDPM approach is superior both qualitatively and as measured by audio reconstruction and Fréchet distance metrics. Given the interactivity and generality of this approach, we find this to be a promising first step towards interactive and expressive neural synthesis for arbitrary combinations of instruments and notes.*
The original codebase can be found at [magenta/music-spectrogram-diffusion](https://github.com/magenta/music-spectrogram-diffusion).
![img](https://storage.googleapis.com/music-synthesis-with-spectrogram-diffusion/architecture.png)
As depicted above the model takes as input a MIDI file and tokenizes it into a sequence of 5 second intervals. Each tokenized interval then together with positional encodings is passed through the Note Encoder and its representation is concatenated with the previous window's generated spectrogram representation obtained via the Context Encoder. For the initial 5 second window this is set to zero. The resulting context is then used as conditioning to sample the denoised Spectrogram from the MIDI window and we concatenate this spectrogram to the final output as well as use it for the context of the next MIDI window. The process repeats till we have gone over all the MIDI inputs. Finally a MelGAN decoder converts the potentially long spectrogram to audio which is the final result of this pipeline.
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
## SpectrogramDiffusionPipeline
[[autodoc]] SpectrogramDiffusionPipeline
- all
- __call__
## AudioPipelineOutput
[[autodoc]] pipelines.AudioPipelineOutput

View File

@@ -0,0 +1,27 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# K-Diffusion
[k-diffusion](https://github.com/crowsonkb/k-diffusion) is a popular library created by [Katherine Crowson](https://github.com/crowsonkb/). We provide `StableDiffusionKDiffusionPipeline` and `StableDiffusionXLKDiffusionPipeline` that allow you to run Stable DIffusion with samplers from k-diffusion.
Note that most the samplers from k-diffusion are implemented in Diffusers and we recommend using existing schedulers. You can find a mapping between k-diffusion samplers and schedulers in Diffusers [here](https://huggingface.co/docs/diffusers/api/schedulers/overview)
## StableDiffusionKDiffusionPipeline
[[autodoc]] StableDiffusionKDiffusionPipeline
## StableDiffusionXLKDiffusionPipeline
[[autodoc]] StableDiffusionXLKDiffusionPipeline

View File

@@ -31,14 +31,14 @@ Make sure to check out the Stable Diffusion [Tips](overview#tips) section to lea
## StableDiffusionLDM3DPipeline
[[autodoc]] pipelines.stable_diffusion.pipeline_stable_diffusion_ldm3d.StableDiffusionLDM3DPipeline
[[autodoc]] pipelines.stable_diffusion_ldm3d.pipeline_stable_diffusion_ldm3d.StableDiffusionLDM3DPipeline
- all
- __call__
## LDM3DPipelineOutput
[[autodoc]] pipelines.stable_diffusion.pipeline_stable_diffusion_ldm3d.LDM3DPipelineOutput
[[autodoc]] pipelines.stable_diffusion_ldm3d.pipeline_stable_diffusion_ldm3d.LDM3DPipelineOutput
- all
- __call__

View File

@@ -20,7 +20,7 @@ The abstract from the paper is:
## Tips
- SDXL Turbo uses the exact same architecture as [SDXL](./stable_diffusion_xl).
- SDXL Turbo uses the exact same architecture as [SDXL](./stable_diffusion_xl), which means it also has the same API. Please refer to the [SDXL](./stable_diffusion_xl) API reference for more details.
- SDXL Turbo should disable guidance scale by setting `guidance_scale=0.0`
- SDXL Turbo should use `timestep_spacing='trailing'` for the scheduler and use between 1 and 4 steps.
- SDXL Turbo has been trained to generate images of size 512x512.
@@ -28,26 +28,8 @@ The abstract from the paper is:
<Tip>
To learn how to use SDXL Turbo for various tasks, how to optimize performance, and other usage examples, take a look at the [Stable Diffusion XL](../../../using-diffusers/sdxl_turbo) guide.
To learn how to use SDXL Turbo for various tasks, how to optimize performance, and other usage examples, take a look at the [SDXL Turbo](../../../using-diffusers/sdxl_turbo) guide.
Check out the [Stability AI](https://huggingface.co/stabilityai) Hub organization for the official base and refiner model checkpoints!
</Tip>
## StableDiffusionXLPipeline
[[autodoc]] StableDiffusionXLPipeline
- all
- __call__
## StableDiffusionXLImg2ImgPipeline
[[autodoc]] StableDiffusionXLImg2ImgPipeline
- all
- __call__
## StableDiffusionXLInpaintPipeline
[[autodoc]] StableDiffusionXLInpaintPipeline
- all
- __call__

View File

@@ -1,33 +0,0 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Stochastic Karras VE
[Elucidating the Design Space of Diffusion-Based Generative Models](https://huggingface.co/papers/2206.00364) is by Tero Karras, Miika Aittala, Timo Aila and Samuli Laine. This pipeline implements the stochastic sampling tailored to variance expanding (VE) models.
The abstract from the paper:
*We argue that the theory and practice of diffusion-based generative models are currently unnecessarily convoluted and seek to remedy the situation by presenting a design space that clearly separates the concrete design choices. This lets us identify several changes to both the sampling and training processes, as well as preconditioning of the score networks. Together, our improvements yield new state-of-the-art FID of 1.79 for CIFAR-10 in a class-conditional setting and 1.97 in an unconditional setting, with much faster sampling (35 network evaluations per image) than prior designs. To further demonstrate their modular nature, we show that our design changes dramatically improve both the efficiency and quality obtainable with pre-trained score networks from previous work, including improving the FID of a previously trained ImageNet-64 model from 2.07 to near-SOTA 1.55, and after re-training with our proposed improvements to a new SOTA of 1.36.*
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
## KarrasVePipeline
[[autodoc]] KarrasVePipeline
- all
- __call__
## ImagePipelineOutput
[[autodoc]] pipelines.ImagePipelineOutput

View File

@@ -24,7 +24,7 @@ The abstract from the paper is:
*Model-based reinforcement learning methods often use learning only for the purpose of estimating an approximate dynamics model, offloading the rest of the decision-making work to classical trajectory optimizers. While conceptually simple, this combination has a number of empirical shortcomings, suggesting that learned models may not be well-suited to standard trajectory optimization. In this paper, we consider what it would look like to fold as much of the trajectory optimization pipeline as possible into the modeling problem, such that sampling from the model and planning with it become nearly identical. The core of our technical approach lies in a diffusion probabilistic model that plans by iteratively denoising trajectories. We show how classifier-guided sampling and image inpainting can be reinterpreted as coherent planning strategies, explore the unusual and useful properties of diffusion-based planning methods, and demonstrate the effectiveness of our framework in control settings that emphasize long-horizon decision-making and test-time flexibility.*
You can find additional information about the model on the [project page](https://diffusion-planning.github.io/), the [original codebase](https://github.com/jannerm/diffuser), or try it out in a demo [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/reinforcement_learning_with_diffusers.ipynb).
You can find additional information about the model on the [project page](https://diffusion-planning.github.io/), the [original codebase](https://github.com/jannerm/diffuser), or try it out in a demo [notebook](https://colab.research.google.com/drive/1rXm8CX4ZdN5qivjJ2lhwhkOmt_m0CvU0#scrollTo=6HXJvhyqcITc&uniqifier=1).
The script to run the model is available [here](https://github.com/huggingface/diffusers/tree/main/examples/reinforcement_learning).

View File

@@ -1,54 +0,0 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Versatile Diffusion
Versatile Diffusion was proposed in [Versatile Diffusion: Text, Images and Variations All in One Diffusion Model](https://huggingface.co/papers/2211.08332) by Xingqian Xu, Zhangyang Wang, Eric Zhang, Kai Wang, Humphrey Shi.
The abstract from the paper is:
*Recent advances in diffusion models have set an impressive milestone in many generation tasks, and trending works such as DALL-E2, Imagen, and Stable Diffusion have attracted great interest. Despite the rapid landscape changes, recent new approaches focus on extensions and performance rather than capacity, thus requiring separate models for separate tasks. In this work, we expand the existing single-flow diffusion pipeline into a multi-task multimodal network, dubbed Versatile Diffusion (VD), that handles multiple flows of text-to-image, image-to-text, and variations in one unified model. The pipeline design of VD instantiates a unified multi-flow diffusion framework, consisting of sharable and swappable layer modules that enable the crossmodal generality beyond images and text. Through extensive experiments, we demonstrate that VD successfully achieves the following: a) VD outperforms the baseline approaches and handles all its base tasks with competitive quality; b) VD enables novel extensions such as disentanglement of style and semantics, dual- and multi-context blending, etc.; c) The success of our multi-flow multimodal framework over images and text may inspire further diffusion-based universal AI research.*
## Tips
You can load the more memory intensive "all-in-one" [`VersatileDiffusionPipeline`] that supports all the tasks or use the individual pipelines which are more memory efficient.
| **Pipeline** | **Supported tasks** |
|------------------------------------------------------|-----------------------------------|
| [`VersatileDiffusionPipeline`] | all of the below |
| [`VersatileDiffusionTextToImagePipeline`] | text-to-image |
| [`VersatileDiffusionImageVariationPipeline`] | image variation |
| [`VersatileDiffusionDualGuidedPipeline`] | image-text dual guided generation |
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
## VersatileDiffusionPipeline
[[autodoc]] VersatileDiffusionPipeline
## VersatileDiffusionTextToImagePipeline
[[autodoc]] VersatileDiffusionTextToImagePipeline
- all
- __call__
## VersatileDiffusionImageVariationPipeline
[[autodoc]] VersatileDiffusionImageVariationPipeline
- all
- __call__
## VersatileDiffusionDualGuidedPipeline
[[autodoc]] VersatileDiffusionDualGuidedPipeline
- all
- __call__

View File

@@ -1,35 +0,0 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# VQ Diffusion
[Vector Quantized Diffusion Model for Text-to-Image Synthesis](https://huggingface.co/papers/2111.14822) is by Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo Zhang, Dongdong Chen, Lu Yuan, Baining Guo.
The abstract from the paper is:
*We present the vector quantized diffusion (VQ-Diffusion) model for text-to-image generation. This method is based on a vector quantized variational autoencoder (VQ-VAE) whose latent space is modeled by a conditional variant of the recently developed Denoising Diffusion Probabilistic Model (DDPM). We find that this latent-space method is well-suited for text-to-image generation tasks because it not only eliminates the unidirectional bias with existing methods but also allows us to incorporate a mask-and-replace diffusion strategy to avoid the accumulation of errors, which is a serious problem with existing methods. Our experiments show that the VQ-Diffusion produces significantly better text-to-image generation results when compared with conventional autoregressive (AR) models with similar numbers of parameters. Compared with previous GAN-based text-to-image methods, our VQ-Diffusion can handle more complex scenes and improve the synthesized image quality by a large margin. Finally, we show that the image generation computation in our method can be made highly efficient by reparameterization. With traditional AR methods, the text-to-image generation time increases linearly with the output image resolution and hence is quite time consuming even for normal size images. The VQ-Diffusion allows us to achieve a better trade-off between quality and speed. Our experiments indicate that the VQ-Diffusion model with the reparameterization is fifteen times faster than traditional AR methods while achieving a better image quality.*
The original codebase can be found at [microsoft/VQ-Diffusion](https://github.com/microsoft/VQ-Diffusion).
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
## VQDiffusionPipeline
[[autodoc]] VQDiffusionPipeline
- all
- __call__
## ImagePipelineOutput
[[autodoc]] pipelines.ImagePipelineOutput

View File

@@ -297,17 +297,37 @@ if you don't know yet what specific component you would like to add:
- [Model or pipeline](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+pipeline%2Fmodel%22)
- [Scheduler](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+scheduler%22)
Before adding any of the three components, it is strongly recommended that you give the [Philosophy guide](philosophy) a read to better understand the design of any of the three components. Please be aware that
we cannot merge model, scheduler, or pipeline additions that strongly diverge from our design philosophy
as it will lead to API inconsistencies. If you fundamentally disagree with a design choice, please
open a [Feedback issue](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=&template=feedback.md&title=) instead so that it can be discussed whether a certain design
pattern/design choice shall be changed everywhere in the library and whether we shall update our design philosophy. Consistency across the library is very important for us.
Before adding any of the three components, it is strongly recommended that you give the [Philosophy guide](philosophy) a read to better understand the design of any of the three components. Please be aware that we cannot merge model, scheduler, or pipeline additions that strongly diverge from our design philosophy
as it will lead to API inconsistencies. If you fundamentally disagree with a design choice, please open a [Feedback issue](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=&template=feedback.md&title=) instead so that it can be discussed whether a certain design pattern/design choice shall be changed everywhere in the library and whether we shall update our design philosophy. Consistency across the library is very important for us.
Please make sure to add links to the original codebase/paper to the PR and ideally also ping the
original author directly on the PR so that they can follow the progress and potentially help with questions.
Please make sure to add links to the original codebase/paper to the PR and ideally also ping the original author directly on the PR so that they can follow the progress and potentially help with questions.
If you are unsure or stuck in the PR, don't hesitate to leave a message to ask for a first review or help.
#### Copied from mechanism
A unique and important feature to understand when adding any pipeline, model or scheduler code is the `# Copied from` mechanism. You'll see this all over the Diffusers codebase, and the reason we use it is to keep the codebase easy to understand and maintain. Marking code with the `# Copied from` mechanism forces the marked code to be identical to the code it was copied from. This makes it easy to update and propagate changes across many files whenever you run `make fix-copies`.
For example, in the code example below, [`~diffusers.pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is the original code and `AltDiffusionPipelineOutput` uses the `# Copied from` mechanism to copy it. The only difference is changing the class prefix from `Stable` to `Alt`.
```py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_output.StableDiffusionPipelineOutput with Stable->Alt
class AltDiffusionPipelineOutput(BaseOutput):
"""
Output class for Alt Diffusion pipelines.
Args:
images (`List[PIL.Image.Image]` or `np.ndarray`)
List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width,
num_channels)`.
nsfw_content_detected (`List[bool]`)
List indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content or
`None` if safety checking could not be performed.
"""
```
To learn more, read this section of the [~Don't~ Repeat Yourself*](https://huggingface.co/blog/transformers-design-philosophy#4-machine-learning-models-are-static) blog post.
## How to write a good issue
**The better your issue is written, the higher the chances that it will be quickly resolved.**

View File

@@ -37,8 +37,10 @@ source .env/bin/activate
You should also install 🤗 Transformers because 🤗 Diffusers relies on its models:
<frameworkcontent>
<pt>
Note - PyTorch only supports Python 3.8 - 3.11 on Windows.
```bash
pip install diffusers["torch"] transformers
```

View File

@@ -0,0 +1,62 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# DeepCache
[DeepCache](https://huggingface.co/papers/2312.00858) accelerates [`StableDiffusionPipeline`] and [`StableDiffusionXLPipeline`] by strategically caching and reusing high-level features while efficiently updating low-level features by taking advantage of the U-Net architecture.
Start by installing [DeepCache](https://github.com/horseee/DeepCache):
```bash
pip install DeepCache
```
Then load and enable the [`DeepCacheSDHelper`](https://github.com/horseee/DeepCache#usage):
```diff
import torch
from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5', torch_dtype=torch.float16).to("cuda")
+ from DeepCache import DeepCacheSDHelper
+ helper = DeepCacheSDHelper(pipe=pipe)
+ helper.set_params(
+ cache_interval=3,
+ cache_branch_id=0,
+ )
+ helper.enable()
image = pipe("a photo of an astronaut on a moon").images[0]
```
The `set_params` method accepts two arguments: `cache_interval` and `cache_branch_id`. `cache_interval` means the frequency of feature caching, specified as the number of steps between each cache operation. `cache_branch_id` identifies which branch of the network (ordered from the shallowest to the deepest layer) is responsible for executing the caching processes.
Opting for a lower `cache_branch_id` or a larger `cache_interval` can lead to faster inference speed at the expense of reduced image quality (ablation experiments of these two hyperparameters can be found in the [paper](https://arxiv.org/abs/2312.00858)). Once those arguments are set, use the `enable` or `disable` methods to activate or deactivate the `DeepCacheSDHelper`.
<div class="flex justify-center">
<img src="https://github.com/horseee/Diffusion_DeepCache/raw/master/static/images/example.png">
</div>
You can find more generated samples (original pipeline vs DeepCache) and the corresponding inference latency in the [WandB report](https://wandb.ai/horseee/DeepCache/runs/jwlsqqgt?workspace=user-horseee). The prompts are randomly selected from the [MS-COCO 2017](https://cocodataset.org/#home) dataset.
## Benchmark
We tested how much faster DeepCache accelerates [Stable Diffusion v2.1](https://huggingface.co/stabilityai/stable-diffusion-2-1) with 50 inference steps on an NVIDIA RTX A5000, using different configurations for resolution, batch size, cache interval (I), and cache branch (B).
| **Resolution** | **Batch size** | **Original** | **DeepCache(I=3, B=0)** | **DeepCache(I=5, B=0)** | **DeepCache(I=5, B=1)** |
|----------------|----------------|--------------|-------------------------|-------------------------|-------------------------|
| 512| 8| 15.96| 6.88(2.32x)| 5.03(3.18x)| 7.27(2.20x)|
| | 4| 8.39| 3.60(2.33x)| 2.62(3.21x)| 3.75(2.24x)|
| | 1| 2.61| 1.12(2.33x)| 0.81(3.24x)| 1.11(2.35x)|
| 768| 8| 43.58| 18.99(2.29x)| 13.96(3.12x)| 21.27(2.05x)|
| | 4| 22.24| 9.67(2.30x)| 7.10(3.13x)| 10.74(2.07x)|
| | 1| 6.33| 2.72(2.33x)| 1.97(3.21x)| 2.98(2.12x)|
| 1024| 8| 101.95| 45.57(2.24x)| 33.72(3.02x)| 53.00(1.92x)|
| | 4| 49.25| 21.86(2.25x)| 16.19(3.04x)| 25.78(1.91x)|
| | 1| 13.83| 6.07(2.28x)| 4.43(3.12x)| 7.15(1.93x)|

View File

@@ -104,7 +104,7 @@ accelerate launch train_text_to_image_lora.py \
Many of the basic and important parameters are described in the [Text-to-image](text2image#script-parameters) training guide, so this guide just focuses on the LoRA relevant parameters:
- `--rank`: the number of low-rank matrices to train
- `--rank`: the inner dimension of the low-rank matrices to train; a higher rank means more trainable parameters
- `--learning_rate`: the default learning rate is 1e-4, but with LoRA, you can use a higher learning rate
## Training script
@@ -179,7 +179,7 @@ accelerate launch --mixed_precision="fp16" train_text_to_image_lora.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--dataset_name=$DATASET_NAME \
--dataloader_num_workers=8 \
--resolution=512
--resolution=512 \
--center_crop \
--random_flip \
--train_batch_size=1 \
@@ -214,4 +214,4 @@ image = pipeline("A pokemon with blue eyes").images[0]
Congratulations on training a new model with LoRA! To learn more about how to use your new model, the following guides may be helpful:
- Learn how to [load different LoRA formats](../using-diffusers/loading_adapters#LoRA) trained using community trainers like Kohya and TheLastBen.
- Learn how to use and [combine multiple LoRA's](../tutorials/using_peft_for_inference) with PEFT for inference.
- Learn how to use and [combine multiple LoRA's](../tutorials/using_peft_for_inference) with PEFT for inference.

View File

@@ -12,7 +12,7 @@ specific language governing permissions and limitations under the License.
# T2I-Adapter
[T2I-Adapter]((https://hf.co/papers/2302.08453)) is a lightweight adapter model that provides an additional conditioning input image (line art, canny, sketch, depth, pose) to better control image generation. It is similar to a ControlNet, but it is a lot smaller (~77M parameters and ~300MB file size) because its only inserts weights into the UNet instead of copying and training it.
[T2I-Adapter](https://hf.co/papers/2302.08453) is a lightweight adapter model that provides an additional conditioning input image (line art, canny, sketch, depth, pose) to better control image generation. It is similar to a ControlNet, but it is a lot smaller (~77M parameters and ~300MB file size) because its only inserts weights into the UNet instead of copying and training it.
The T2I-Adapter is only available for training with the Stable Diffusion XL (SDXL) model.
@@ -224,4 +224,4 @@ image.save("./output.png")
Congratulations on training a T2I-Adapter model! 🎉 To learn more:
- Read the [Efficient Controllable Generation for SDXL with T2I-Adapters](https://www.cs.cmu.edu/~custom-diffusion/) blog post to learn more details about the experimental results from the T2I-Adapter team.
- Read the [Efficient Controllable Generation for SDXL with T2I-Adapters](https://huggingface.co/blog/t2i-sdxl-adapters) blog post to learn more details about the experimental results from the T2I-Adapter team.

View File

@@ -186,7 +186,7 @@ accelerate launch train_unconditional.py \
If you're training with more than one GPU, add the `--multi_gpu` parameter to the training command:
```bash
accelerate launch --mixed_precision="fp16" --multi_gpu train_unconditional.py \
accelerate launch --multi_gpu train_unconditional.py \
--dataset_name="huggan/flowers-102-categories" \
--output_dir="ddpm-ema-flowers-64" \
--mixed_precision="fp16" \

View File

@@ -0,0 +1,322 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Accelerate inference of text-to-image diffusion models
Diffusion models are slower than their GAN counterparts because of the iterative and sequential reverse diffusion process. There are several techniques that can address this limitation such as progressive timestep distillation ([LCM LoRA](../using-diffusers/inference_with_lcm_lora)), model compression ([SSD-1B](https://huggingface.co/segmind/SSD-1B)), and reusing adjacent features of the denoiser ([DeepCache](../optimization/deepcache)).
However, you don't necessarily need to use these techniques to speed up inference. With PyTorch 2 alone, you can accelerate the inference latency of text-to-image diffusion pipelines by up to 3x. This tutorial will show you how to progressively apply the optimizations found in PyTorch 2 to reduce inference latency. You'll use the [Stable Diffusion XL (SDXL)](../using-diffusers/sdxl) pipeline in this tutorial, but these techniques are applicable to other text-to-image diffusion pipelines too.
Make sure you're using the latest version of Diffusers:
```bash
pip install -U diffusers
```
Then upgrade the other required libraries too:
```bash
pip install -U transformers accelerate peft
```
Install [PyTorch nightly](https://pytorch.org/) to benefit from the latest and fastest kernels:
```bash
pip3 install --pre torch --index-url https://download.pytorch.org/whl/nightly/cu121
```
<Tip>
The results reported below are from a 80GB 400W A100 with its clock rate set to the maximum. <br>
If you're interested in the full benchmarking code, take a look at [huggingface/diffusion-fast](https://github.com/huggingface/diffusion-fast).
</Tip>
## Baseline
Let's start with a baseline. Disable reduced precision and the [`scaled_dot_product_attention` (SDPA)](../optimization/torch2.0#scaled-dot-product-attention) function which is automatically used by Diffusers:
```python
from diffusers import StableDiffusionXLPipeline
# Load the pipeline in full-precision and place its model components on CUDA.
pipe = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0"
).to("cuda")
# Run the attention ops without SDPA.
pipe.unet.set_default_attn_processor()
pipe.vae.set_default_attn_processor()
prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"
image = pipe(prompt, num_inference_steps=30).images[0]
```
This default setup takes 7.36 seconds.
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/progressive-acceleration-sdxl/SDXL%2C_Batch_Size%3A_1%2C_Steps%3A_30_0.png" width=500>
</div>
## bfloat16
Enable the first optimization, reduced precision or more specifically bfloat16. There are several benefits of using reduced precision:
* Using a reduced numerical precision (such as float16 or bfloat16) for inference doesnt affect the generation quality but significantly improves latency.
* The benefits of using bfloat16 compared to float16 are hardware dependent, but modern GPUs tend to favor bfloat16.
* bfloat16 is much more resilient when used with quantization compared to float16, but more recent versions of the quantization library ([torchao](https://github.com/pytorch-labs/ao)) we used don't have numerical issues with float16.
```python
from diffusers import StableDiffusionXLPipeline
import torch
pipe = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.bfloat16
).to("cuda")
# Run the attention ops without SDPA.
pipe.unet.set_default_attn_processor()
pipe.vae.set_default_attn_processor()
prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"
image = pipe(prompt, num_inference_steps=30).images[0]
```
bfloat16 reduces the latency from 7.36 seconds to 4.63 seconds.
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/progressive-acceleration-sdxl/SDXL%2C_Batch_Size%3A_1%2C_Steps%3A_30_1.png" width=500>
</div>
<Tip>
In our later experiments with float16, recent versions of torchao do not incur numerical problems from float16.
</Tip>
Take a look at the [Speed up inference](../optimization/fp16) guide to learn more about running inference with reduced precision.
## SDPA
Attention blocks are intensive to run. But with PyTorch's [`scaled_dot_product_attention`](../optimization/torch2.0#scaled-dot-product-attention) function, it is a lot more efficient. This function is used by default in Diffusers so you don't need to make any changes to the code.
```python
from diffusers import StableDiffusionXLPipeline
import torch
pipe = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.bfloat16
).to("cuda")
prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"
image = pipe(prompt, num_inference_steps=30).images[0]
```
Scaled dot product attention improves the latency from 4.63 seconds to 3.31 seconds.
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/progressive-acceleration-sdxl/SDXL%2C_Batch_Size%3A_1%2C_Steps%3A_30_2.png" width=500>
</div>
## torch.compile
PyTorch 2 includes `torch.compile` which uses fast and optimized kernels. In Diffusers, the UNet and VAE are usually compiled because these are the most compute-intensive modules. First, configure a few compiler flags (refer to the [full list](https://github.com/pytorch/pytorch/blob/main/torch/_inductor/config.py) for more options):
```python
from diffusers import StableDiffusionXLPipeline
import torch
torch._inductor.config.conv_1x1_as_mm = True
torch._inductor.config.coordinate_descent_tuning = True
torch._inductor.config.epilogue_fusion = False
torch._inductor.config.coordinate_descent_check_all_directions = True
```
It is also important to change the UNet and VAE's memory layout to "channels_last" when compiling them to ensure maximum speed.
```python
pipe.unet.to(memory_format=torch.channels_last)
pipe.vae.to(memory_format=torch.channels_last)
```
Now compile and perform inference:
```python
# Compile the UNet and VAE.
pipe.unet = torch.compile(pipe.unet, mode="max-autotune", fullgraph=True)
pipe.vae.decode = torch.compile(pipe.vae.decode, mode="max-autotune", fullgraph=True)
prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"
# First call to `pipe` is slow, subsequent ones are faster.
image = pipe(prompt, num_inference_steps=30).images[0]
```
`torch.compile` offers different backends and modes. For maximum inference speed, use "max-autotune" for the inductor backend. “max-autotune” uses CUDA graphs and optimizes the compilation graph specifically for latency. CUDA graphs greatly reduces the overhead of launching GPU operations by using a mechanism to launch multiple GPU operations through a single CPU operation.
Using SDPA attention and compiling both the UNet and VAE cuts the latency from 3.31 seconds to 2.54 seconds.
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/progressive-acceleration-sdxl/SDXL%2C_Batch_Size%3A_1%2C_Steps%3A_30_3.png" width=500>
</div>
### Prevent graph breaks
Specifying `fullgraph=True` ensures there are no graph breaks in the underlying model to take full advantage of `torch.compile` without any performance degradation. For the UNet and VAE, this means changing how you access the return variables.
```diff
- latents = unet(
- latents, timestep=timestep, encoder_hidden_states=prompt_embeds
-).sample
+ latents = unet(
+ latents, timestep=timestep, encoder_hidden_states=prompt_embeds, return_dict=False
+)[0]
```
### Remove GPU sync after compilation
During the iterative reverse diffusion process, the `step()` function is [called](https://github.com/huggingface/diffusers/blob/1d686bac8146037e97f3fd8c56e4063230f71751/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py#L1228) on the scheduler each time after the denoiser predicts the less noisy latent embeddings. Inside `step()`, the `sigmas` variable is [indexed](https://github.com/huggingface/diffusers/blob/1d686bac8146037e97f3fd8c56e4063230f71751/src/diffusers/schedulers/scheduling_euler_discrete.py#L476) which when placed on the GPU, causes a communication sync between the CPU and GPU. This introduces latency and it becomes more evident when the denoiser has already been compiled.
But if the `sigmas` array always [stays on the CPU](https://github.com/huggingface/diffusers/blob/35a969d297cba69110d175ee79c59312b9f49e1e/src/diffusers/schedulers/scheduling_euler_discrete.py#L240), the CPU and GPU sync doesnt occur and you don't get any latency. In general, any CPU and GPU communication sync should be none or be kept to a bare minimum because it can impact inference latency.
## Combine the attention block's projection matrices
The UNet and VAE in SDXL use Transformer-like blocks which consists of attention blocks and feed-forward blocks.
In an attention block, the input is projected into three sub-spaces using three different projection matrices Q, K, and V. These projections are performed separately on the input. But we can horizontally combine the projection matrices into a single matrix and perform the projection in one step. This increases the size of the matrix multiplications of the input projections and improves the impact of quantization.
You can combine the projection matrices with just a single line of code:
```python
pipe.fuse_qkv_projections()
```
This provides a minor improvement from 2.54 seconds to 2.52 seconds.
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/progressive-acceleration-sdxl/SDXL%2C_Batch_Size%3A_1%2C_Steps%3A_30_4.png" width=500>
</div>
<Tip warning={true}>
Support for [`~StableDiffusionXLPipeline.fuse_qkv_projections`] is limited and experimental. It's not available for many non-Stable Diffusion pipelines such as [Kandinsky](../using-diffusers/kandinsky). You can refer to this [PR](https://github.com/huggingface/diffusers/pull/6179) to get an idea about how to enable this for the other pipelines.
</Tip>
## Dynamic quantization
You can also use the ultra-lightweight PyTorch quantization library, [torchao](https://github.com/pytorch-labs/ao) (commit SHA `54bcd5a10d0abbe7b0c045052029257099f83fd9`), to apply [dynamic int8 quantization](https://pytorch.org/tutorials/recipes/recipes/dynamic_quantization.html) to the UNet and VAE. Quantization adds additional conversion overhead to the model that is hopefully made up for by faster matmuls (dynamic quantization). If the matmuls are too small, these techniques may degrade performance.
First, configure all the compiler tags:
```python
from diffusers import StableDiffusionXLPipeline
import torch
# Notice the two new flags at the end.
torch._inductor.config.conv_1x1_as_mm = True
torch._inductor.config.coordinate_descent_tuning = True
torch._inductor.config.epilogue_fusion = False
torch._inductor.config.coordinate_descent_check_all_directions = True
torch._inductor.config.force_fuse_int_mm_with_mul = True
torch._inductor.config.use_mixed_mm = True
```
Certain linear layers in the UNet and VAE dont benefit from dynamic int8 quantization. You can filter out those layers with the [`dynamic_quant_filter_fn`](https://github.com/huggingface/diffusion-fast/blob/0f169640b1db106fe6a479f78c1ed3bfaeba3386/utils/pipeline_utils.py#L16) shown below.
```python
def dynamic_quant_filter_fn(mod, *args):
return (
isinstance(mod, torch.nn.Linear)
and mod.in_features > 16
and (mod.in_features, mod.out_features)
not in [
(1280, 640),
(1920, 1280),
(1920, 640),
(2048, 1280),
(2048, 2560),
(2560, 1280),
(256, 128),
(2816, 1280),
(320, 640),
(512, 1536),
(512, 256),
(512, 512),
(640, 1280),
(640, 1920),
(640, 320),
(640, 5120),
(640, 640),
(960, 320),
(960, 640),
]
)
def conv_filter_fn(mod, *args):
return (
isinstance(mod, torch.nn.Conv2d) and mod.kernel_size == (1, 1) and 128 in [mod.in_channels, mod.out_channels]
)
```
Finally, apply all the optimizations discussed so far:
```python
# SDPA + bfloat16.
pipe = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.bfloat16
).to("cuda")
# Combine attention projection matrices.
pipe.fuse_qkv_projections()
# Change the memory layout.
pipe.unet.to(memory_format=torch.channels_last)
pipe.vae.to(memory_format=torch.channels_last)
```
Since dynamic quantization is only limited to the linear layers, convert the appropriate pointwise convolution layers into linear layers to maximize its benefit.
```python
from torchao import swap_conv2d_1x1_to_linear
swap_conv2d_1x1_to_linear(pipe.unet, conv_filter_fn)
swap_conv2d_1x1_to_linear(pipe.vae, conv_filter_fn)
```
Apply dynamic quantization:
```python
from torchao import apply_dynamic_quant
apply_dynamic_quant(pipe.unet, dynamic_quant_filter_fn)
apply_dynamic_quant(pipe.vae, dynamic_quant_filter_fn)
```
Finally, compile and perform inference:
```python
pipe.unet = torch.compile(pipe.unet, mode="max-autotune", fullgraph=True)
pipe.vae.decode = torch.compile(pipe.vae.decode, mode="max-autotune", fullgraph=True)
prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"
image = pipe(prompt, num_inference_steps=30).images[0]
```
Applying dynamic quantization improves the latency from 2.52 seconds to 2.43 seconds.
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/progressive-acceleration-sdxl/SDXL%2C_Batch_Size%3A_1%2C_Steps%3A_30_5.png" width=500>
</div>

View File

@@ -183,3 +183,36 @@ image = pipe(prompt, num_inference_steps=30, generator=torch.manual_seed(0)).ima
# Gets the Unet back to the original state
pipe.unfuse_lora()
```
You can also fuse some adapters using `adapter_names` for faster generation:
```py
pipe.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
pipe.load_lora_weights("CiroN2022/toy-face", weight_name="toy_face_sdxl.safetensors", adapter_name="toy")
pipe.set_adapters(["pixel"], adapter_weights=[0.5, 1.0])
# Fuses the LoRAs into the Unet
pipe.fuse_lora(adapter_names=["pixel"])
prompt = "a hacker with a hoodie, pixel art"
image = pipe(prompt, num_inference_steps=30, generator=torch.manual_seed(0)).images[0]
# Gets the Unet back to the original state
pipe.unfuse_lora()
# Fuse all adapters
pipe.fuse_lora(adapter_names=["pixel", "toy"])
prompt = "toy_face of a hacker with a hoodie, pixel art"
image = pipe(prompt, num_inference_steps=30, generator=torch.manual_seed(0)).images[0]
```
## Saving a pipeline after fusing the adapters
To properly save a pipeline after it's been loaded with the adapters, it should be serialized like so:
```python
pipe.fuse_lora(lora_scale=1.0)
pipe.unload_lora_weights()
pipe.save_pretrained("path-to-pipeline")
```

View File

@@ -63,3 +63,38 @@ With callbacks, you can implement features such as dynamic CFG without having to
🤗 Diffusers currently only supports `callback_on_step_end`, but feel free to open a [feature request](https://github.com/huggingface/diffusers/issues/new/choose) if you have a cool use-case and require a callback function with a different execution point!
</Tip>
## Interrupt the diffusion process
Interrupting the diffusion process is particularly useful when building UIs that work with Diffusers because it allows users to stop the generation process if they're unhappy with the intermediate results. You can incorporate this into your pipeline with a callback.
<Tip>
The interruption callback is supported for text-to-image, image-to-image, and inpainting for the [StableDiffusionPipeline](../api/pipelines/stable_diffusion/overview) and [StableDiffusionXLPipeline](../api/pipelines/stable_diffusion/stable_diffusion_xl).
</Tip>
This callback function should take the following arguments: `pipe`, `i`, `t`, and `callback_kwargs` (this must be returned). Set the pipeline's `_interrupt` attribute to `True` to stop the diffusion process after a certain number of steps. You are also free to implement your own custom stopping logic inside the callback.
In this example, the diffusion process is stopped after 10 steps even though `num_inference_steps` is set to 50.
```python
from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
pipe.enable_model_cpu_offload()
num_inference_steps = 50
def interrupt_callback(pipe, i, t, callback_kwargs):
stop_idx = 10
if i == stop_idx:
pipe._interrupt = True
return callback_kwargs
pipe(
"A photo of a cat",
num_inference_steps=num_inference_steps,
callback_on_step_end=interrupt_callback,
)
```

View File

@@ -203,7 +203,7 @@ def make_inpaint_condition(image, image_mask):
image_mask = np.array(image_mask.convert("L")).astype(np.float32) / 255.0
assert image.shape[0:1] == image_mask.shape[0:1]
image[image_mask > 0.5] = 1.0 # set as masked pixel
image[image_mask > 0.5] = -1.0 # set as masked pixel
image = np.expand_dims(image, 0).transpose(0, 3, 1, 2)
image = torch.from_numpy(image)
return image
@@ -429,7 +429,7 @@ image = pipe(
make_image_grid([original_image, canny_image, image], rows=1, cols=3)
```
### MultiControlNet
## MultiControlNet
<Tip>

View File

@@ -77,12 +77,42 @@ Throughout this guide, the mask image is provided in all of the code examples fo
Upload a base image to inpaint on and use the sketch tool to draw a mask. Once you're done, click **Run** to generate and download the mask image.
<iframe
src="https://stevhliu-inpaint-mask-maker.hf.space"
frameborder="0"
width="850"
height="450"
src="https://stevhliu-inpaint-mask-maker.hf.space"
frameborder="0"
width="850"
height="450"
></iframe>
### Mask blur
The [`~VaeImageProcessor.blur`] method provides an option for how to blend the original image and inpaint area. The amount of blur is determined by the `blur_factor` parameter. Increasing the `blur_factor` increases the amount of blur applied to the mask edges, softening the transition between the original image and inpaint area. A low or zero `blur_factor` preserves the sharper edges of the mask.
To use this, create a blurred mask with the image processor.
```py
import torch
from diffusers import AutoPipelineForInpainting
from diffusers.utils import load_image
from PIL import Image
pipeline = AutoPipelineForInpainting.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16).to('cuda')
mask = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/seashore_mask.png")
blurred_mask = pipeline.mask_processor.blur(mask, blur_factor=33)
blurred_mask
```
<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/seashore_mask.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">mask with no blur</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/mask_blurred.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">mask with blur applied</figcaption>
</div>
</div>
## Popular models
[Stable Diffusion Inpainting](https://huggingface.co/runwayml/stable-diffusion-inpainting), [Stable Diffusion XL (SDXL) Inpainting](https://huggingface.co/diffusers/stable-diffusion-xl-1.0-inpainting-0.1), and [Kandinsky 2.2 Inpainting](https://huggingface.co/kandinsky-community/kandinsky-2-2-decoder-inpaint) are among the most popular models for inpainting. SDXL typically produces higher resolution images than Stable Diffusion v1.5, and Kandinsky 2.2 is also capable of generating high-quality images.
@@ -318,7 +348,7 @@ make_image_grid([init_image, image], rows=1, cols=2)
The trade-off of using a non-inpaint specific checkpoint is the overall image quality may be lower, but it generally tends to preserve the mask area (that is why you can see the mask outline). The inpaint specific checkpoints are intentionally trained to generate higher quality inpainted images, and that includes creating a more natural transition between the masked and unmasked areas. As a result, these checkpoints are more likely to change your unmasked area.
If preserving the unmasked area is important for your task, you can use the code below to force the unmasked area of an image to remain the same at the expense of some more unnatural transitions between the masked and unmasked areas.
If preserving the unmasked area is important for your task, you can use the [`VaeImageProcessor.apply_overlay`] method to force the unmasked area of an image to remain the same at the expense of some more unnatural transitions between the masked and unmasked areas.
```py
import PIL
@@ -345,18 +375,7 @@ prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
repainted_image = pipeline(prompt=prompt, image=init_image, mask_image=mask_image).images[0]
repainted_image.save("repainted_image.png")
# Convert mask to grayscale NumPy array
mask_image_arr = np.array(mask_image.convert("L"))
# Add a channel dimension to the end of the grayscale mask
mask_image_arr = mask_image_arr[:, :, None]
# Binarize the mask: 1s correspond to the pixels which are repainted
mask_image_arr = mask_image_arr.astype(np.float32) / 255.0
mask_image_arr[mask_image_arr < 0.5] = 0
mask_image_arr[mask_image_arr >= 0.5] = 1
# Take the masked pixels from the repainted image and the unmasked pixels from the initial image
unmasked_unchanged_image_arr = (1 - mask_image_arr) * init_image + mask_image_arr * repainted_image
unmasked_unchanged_image = PIL.Image.fromarray(unmasked_unchanged_image_arr.round().astype("uint8"))
unmasked_unchanged_image = pipeline.image_processor.apply_overlay(mask_image, init_image, repainted_image)
unmasked_unchanged_image.save("force_unmasked_unchanged.png")
make_image_grid([init_image, mask_image, repainted_image, unmasked_unchanged_image], rows=2, cols=2)
```
@@ -486,6 +505,39 @@ make_image_grid([init_image, mask_image, image], rows=1, cols=3)
</figure>
</div>
### Padding mask crop
A method for increasing the inpainting image quality is to use the [`padding_mask_crop`](https://huggingface.co/docs/diffusers/v0.25.0/en/api/pipelines/stable_diffusion/inpaint#diffusers.StableDiffusionInpaintPipeline.__call__.padding_mask_crop) parameter. When enabled, this option crops the masked area with some user-specified padding and it'll also crop the same area from the original image. Both the image and mask are upscaled to a higher resolution for inpainting, and then overlaid on the original image. This is a quick and easy way to improve image quality without using a separate pipeline like [`StableDiffusionUpscalePipeline`].
Add the `padding_mask_crop` parameter to the pipeline call and set it to the desired padding value.
```py
import torch
from diffusers import AutoPipelineForInpainting
from diffusers.utils import load_image
from PIL import Image
generator = torch.Generator(device='cuda').manual_seed(0)
pipeline = AutoPipelineForInpainting.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16).to('cuda')
base = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/seashore.png")
mask = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/seashore_mask.png")
image = pipeline("boat", image=base, mask_image=mask, strength=0.75, generator=generator, padding_mask_crop=32).images[0]
image
```
<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/baseline_inpaint.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">default inpaint image</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/padding_mask_crop_inpaint.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">inpaint image with `padding_mask_crop` enabled</figcaption>
</div>
</div>
## Chained inpainting pipelines
[`AutoPipelineForInpainting`] can be chained with other 🤗 Diffusers pipelines to edit their outputs. This is often useful for improving the output quality from your other diffusion pipelines, and if you're using multiple pipelines, it can be more memory-efficient to chain them together to keep the outputs in latent space and reuse the same pipeline components.

View File

@@ -20,6 +20,8 @@ The Kandinsky models are a series of multilingual text-to-image generation model
[Kandinsky 2.2](../api/pipelines/kandinsky_v22) improves on the previous model by replacing the image encoder of the image prior model with a larger CLIP-ViT-G model to improve quality. The image prior model was also retrained on images with different resolutions and aspect ratios to generate higher-resolution images and different image sizes.
[Kandinsky 3](../api/pipelines/kandinsky3) simplifies the architecture and shifts away from the two-stage generation process involving the prior model and diffusion model. Instead, Kandinsky 3 uses [Flan-UL2](https://huggingface.co/google/flan-ul2) to encode text, a UNet with [BigGan-deep](https://hf.co/papers/1809.11096) blocks, and [Sber-MoVQGAN](https://github.com/ai-forever/MoVQGAN) to decode the latents into images. Text understanding and generated image quality are primarily achieved by using a larger text encoder and UNet.
This guide will show you how to use the Kandinsky models for text-to-image, image-to-image, inpainting, interpolation, and more.
Before you begin, make sure you have the following libraries installed:
@@ -33,6 +35,10 @@ Before you begin, make sure you have the following libraries installed:
Kandinsky 2.1 and 2.2 usage is very similar! The only difference is Kandinsky 2.2 doesn't accept `prompt` as an input when decoding the latents. Instead, Kandinsky 2.2 only accepts `image_embeds` during decoding.
<br>
Kandinsky 3 has a more concise architecture and it doesn't require a prior model. This means it's usage is identical to other diffusion models like [Stable Diffusion XL](sdxl).
</Tip>
## Text-to-image
@@ -91,6 +97,23 @@ image
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/kandinsky-text-to-image.png"/>
</div>
</hfoption>
<hfoption id="Kandinsky 3">
Kandinsky 3 doesn't require a prior model so you can directly load the [`Kandinsky3Pipeline`] and pass a prompt to generate an image:
```py
from diffusers import Kandinsky3Pipeline
import torch
pipeline = Kandinsky3Pipeline.from_pretrained("kandinsky-community/kandinsky-3", variant="fp16", torch_dtype=torch.float16)
pipeline.enable_model_cpu_offload()
prompt = "A alien cheeseburger creature eating itself, claymation, cinematic, moody lighting"
image = pipeline(prompt).images[0]
image
```
</hfoption>
</hfoptions>
@@ -161,6 +184,20 @@ prior_pipeline = KandinskyPriorPipeline.from_pretrained("kandinsky-community/kan
pipeline = KandinskyV22Img2ImgPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16, use_safetensors=True).to("cuda")
```
</hfoption>
<hfoption id="Kandinsky 3">
Kandinsky 3 doesn't require a prior model so you can directly load the image-to-image pipeline:
```py
from diffusers import Kandinsky3Img2ImgPipeline
from diffusers.utils import load_image
import torch
pipeline = Kandinsky3Img2ImgPipeline.from_pretrained("kandinsky-community/kandinsky-3", variant="fp16", torch_dtype=torch.float16)
pipeline.enable_model_cpu_offload()
```
</hfoption>
</hfoptions>
@@ -218,6 +255,14 @@ make_image_grid([original_image.resize((512, 512)), image.resize((512, 512))], r
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/kandinsky-image-to-image.png"/>
</div>
</hfoption>
<hfoption id="Kandinsky 3">
```py
image = pipeline(prompt, negative_prompt=negative_prompt, image=image, strength=0.75, num_inference_steps=25).images[0]
image
```
</hfoption>
</hfoptions>

View File

@@ -344,7 +344,8 @@ pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-a
IP-Adapter relies on an image encoder to generate the image features, if your IP-Adapter weights folder contains a "image_encoder" subfolder, the image encoder will be automatically loaded and registered to the pipeline. Otherwise you can so load a [`~transformers.CLIPVisionModelWithProjection`] model and pass it to a Stable Diffusion pipeline when you create it.
```py
from diffusers import AutoPipelineForText2Image, CLIPVisionModelWithProjection
from diffusers import AutoPipelineForText2Image
from transformers import CLIPVisionModelWithProjection
import torch
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
@@ -485,6 +486,118 @@ image.save("sdxl_t2i.png")
</div>
</div>
You can use the IP-Adapter face model to apply specific faces to your images. It is an effective way to maintain consistent characters in your image generations.
Weights are loaded with the same method used for the other IP-Adapters.
```python
# Load ip-adapter-full-face_sd15.bin
pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter-full-face_sd15.bin")
```
<Tip>
It is recommended to use `DDIMScheduler` and `EulerDiscreteScheduler` for face model.
</Tip>
```python
import torch
from diffusers import StableDiffusionPipeline, DDIMScheduler
from diffusers.utils import load_image
pipeline = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16,
).to("cuda")
pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)
pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter-full-face_sd15.bin")
pipeline.set_ip_adapter_scale(0.7)
image = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/ai_face2.png")
generator = torch.Generator(device="cpu").manual_seed(33)
image = pipeline(
prompt="A photo of a girl wearing a black dress, holding red roses in hand, upper body, behind is the Eiffel Tower",
ip_adapter_image=image,
negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality",
num_inference_steps=50, num_images_per_prompt=1, width=512, height=704,
generator=generator,
).images[0]
```
<div class="flex flex-row gap-4">
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/ai_face2.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">input image</figcaption>
</div>
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ipadapter_full_face_output.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">output image</figcaption>
</div>
</div>
You can load multiple IP-Adapter models and use multiple reference images at the same time. In this example we use IP-Adapter-Plus face model to create a consistent character and also use IP-Adapter-Plus model along with 10 images to create a coherent style in the image we generate.
```python
import torch
from diffusers import AutoPipelineForText2Image, DDIMScheduler
from transformers import CLIPVisionModelWithProjection
from diffusers.utils import load_image
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
"h94/IP-Adapter",
subfolder="models/image_encoder",
torch_dtype=torch.float16,
)
pipeline = AutoPipelineForText2Image.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16,
image_encoder=image_encoder,
)
pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)
pipeline.load_ip_adapter(
"h94/IP-Adapter",
subfolder="sdxl_models",
weight_name=["ip-adapter-plus_sdxl_vit-h.safetensors", "ip-adapter-plus-face_sdxl_vit-h.safetensors"]
)
pipeline.set_ip_adapter_scale([0.7, 0.3])
pipeline.enable_model_cpu_offload()
face_image = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/women_input.png")
style_folder = "https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/style_ziggy"
style_images = [load_image(f"{style_folder}/img{i}.png") for i in range(10)]
generator = torch.Generator(device="cpu").manual_seed(0)
image = pipeline(
prompt="wonderwoman",
ip_adapter_image=[style_images, face_image],
negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality",
num_inference_steps=50, num_images_per_prompt=1,
generator=generator,
).images[0]
```
<div class="flex justify-center">
    <img src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/ip_style_grid.png" />
<figcaption class="mt-2 text-center text-sm text-gray-500">style input image</figcaption>
</div>
<div class="flex flex-row gap-4">
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/women_input.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">face input image</figcaption>
</div>
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/ip_multi_out.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">output image</figcaption>
</div>
</div>
### LCM-Lora

View File

@@ -174,10 +174,4 @@ Set `private=True` in the [`~diffusers.utils.PushToHubMixin.push_to_hub`] functi
controlnet.push_to_hub("my-controlnet-model-private", private=True)
```
Private repositories are only visible to you, and other users won't be able to clone the repository and your repository won't appear in search results. Even if a user has the URL to your private repository, they'll receive a `404 - Sorry, we can't find the page you are looking for.`
To load a model, scheduler, or pipeline from private or gated repositories, set `use_auth_token=True`:
```py
model = ControlNetModel.from_pretrained("your-namespace/my-controlnet-model-private", use_auth_token=True)
```
Private repositories are only visible to you, and other users won't be able to clone the repository and your repository won't appear in search results. Even if a user has the URL to your private repository, they'll receive a `404 - Sorry, we can't find the page you are looking for`. You must be [logged in](https://huggingface.co/docs/huggingface_hub/quick-start#login) to load a model from a private repository.

View File

@@ -41,6 +41,20 @@ Now, define four different `Generator`s and assign each `Generator` a seed (`0`
generator = [torch.Generator(device="cuda").manual_seed(i) for i in range(4)]
```
<Tip warning={true}>
To create a batched seed, you should use a list comprehension that iterates over the length specified in `range()`. This creates a unique `Generator` object for each image in the batch. If you only multiply the `Generator` by the batch size, this only creates one `Generator` object that is used sequentially for each image in the batch.
For example, if you want to use the same seed to create 4 identical images:
```py
[torch.Generator().manual_seed(seed)] * 4
[torch.Generator().manual_seed(seed) for _ in range(4)]
```
</Tip>
Generate the images and have a look:
```python

View File

@@ -26,7 +26,7 @@ Before you begin, make sure you have the following libraries installed:
```py
# uncomment to install the necessary libraries in Colab
#!pip install -q diffusers transformers accelerate omegaconf invisible-watermark>=0.2.0
#!pip install -q diffusers transformers accelerate invisible-watermark>=0.2.0
```
<Tip warning={true}>

View File

@@ -23,7 +23,7 @@ Before you begin, make sure you have the following libraries installed:
```py
# uncomment to install the necessary libraries in Colab
#!pip install -q diffusers transformers accelerate omegaconf
#!pip install -q diffusers transformers accelerate
```
## Load model checkpoints

View File

@@ -14,9 +14,9 @@ specific language governing permissions and limitations under the License.
[[open-in-colab]]
[Stable Video Diffusion](https://static1.squarespace.com/static/6213c340453c3f502425776e/t/655ce779b9d47d342a93c890/1700587395994/stable_video_diffusion.pdf) is a powerful image-to-video generation model that can generate high resolution (576x1024) 2-4 second videos conditioned on the input image.
[Stable Video Diffusion (SVD)](https://huggingface.co/papers/2311.15127) is a powerful image-to-video generation model that can generate 2-4 second high resolution (576x1024) videos conditioned on an input image.
This guide will show you how to use SVD to short generate videos from images.
This guide will show you how to use SVD to generate short videos from images.
Before you begin, make sure you have the following libraries installed:
@@ -24,13 +24,9 @@ Before you begin, make sure you have the following libraries installed:
!pip install -q -U diffusers transformers accelerate
```
## Image to Video Generation
The are two variants of this model, [SVD](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid) and [SVD-XT](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt). The SVD checkpoint is trained to generate 14 frames and the SVD-XT checkpoint is further finetuned to generate 25 frames.
The are two variants of SVD. [SVD](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid)
and [SVD-XT](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt). The svd checkpoint is trained to generate 14 frames and the svd-xt checkpoint is further
finetuned to generate 25 frames.
We will use the `svd-xt` checkpoint for this guide.
You'll use the SVD-XT checkpoint for this guide.
```python
import torch
@@ -44,7 +40,7 @@ pipe = StableVideoDiffusionPipeline.from_pretrained(
pipe.enable_model_cpu_offload()
# Load the conditioning image
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/svd/rocket.png?download=true")
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/svd/rocket.png")
image = image.resize((1024, 576))
generator = torch.manual_seed(42)
@@ -53,21 +49,20 @@ frames = pipe(image, decode_chunk_size=8, generator=generator).frames[0]
export_to_video(frames, "generated.mp4", fps=7)
```
<video width="1024" height="576" controls>
<source src="https://i.imgur.com/jJzVDKw.mp4" type="video/mp4">
</video>
<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/svd/rocket.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">"source image of a rocket"</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/svd/output_rocket.gif"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">"generated video from source image"</figcaption>
</div>
</div>
<Tip>
Since generating videos is more memory intensive we can use the `decode_chunk_size` argument to control how many frames are decoded at once. This will reduce the memory usage. It's recommended to tweak this value based on your GPU memory.
Setting `decode_chunk_size=1` will decode one frame at a time and will use the least amount of memory but the video might have some flickering.
## torch.compile
Additionally, we also use [model cpu offloading](../../optimization/memory#model-offloading) to reduce the memory usage.
</Tip>
### Torch.compile
You can achieve a 20-25% speed-up at the expense of slightly increased memory by compiling the UNet as follows:
You can gain a 20-25% speedup at the expense of slightly increased memory by [compiling](../optimization/torch2.0#torchcompile) the UNet.
```diff
- pipe.enable_model_cpu_offload()
@@ -75,37 +70,33 @@ You can achieve a 20-25% speed-up at the expense of slightly increased memory by
+ pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
```
### Low-memory
## Reduce memory usage
Video generation is very memory intensive as we have to essentially generate `num_frames` all at once. The mechanism is very comparable to text-to-image generation with a high batch size. To reduce the memory requirement you have multiple options. The following options trade inference speed against lower memory requirement:
- enable model offloading: Each component of the pipeline is offloaded to CPU once it's not needed anymore.
- enable feed-forward chunking: The feed-forward layer runs in a loop instead of running with a single huge feed-forward batch size
- reduce `decode_chunk_size`: This means that the VAE decodes frames in chunks instead of decoding them all together. **Note**: In addition to leading to a small slowdown, this method also slightly leads to video quality deterioration
Video generation is very memory intensive because you're essentially generating `num_frames` all at once, similar to text-to-image generation with a high batch size. To reduce the memory requirement, there are multiple options that trade-off inference speed for lower memory requirement:
You can enable them as follows:
- enable model offloading: each component of the pipeline is offloaded to the CPU once it's not needed anymore.
- enable feed-forward chunking: the feed-forward layer runs in a loop instead of running a single feed-forward with a huge batch size.
- reduce `decode_chunk_size`: the VAE decodes frames in chunks instead of decoding them all together. Setting `decode_chunk_size=1` decodes one frame at a time and uses the least amount of memory (we recommend adjusting this value based on your GPU memory) but the video might have some flickering.
```diff
-pipe.enable_model_cpu_offload()
-frames = pipe(image, decode_chunk_size=8, generator=generator).frames[0]
+pipe.enable_model_cpu_offload()
+pipe.unet.enable_forward_chunking()
+frames = pipe(image, decode_chunk_size=2, generator=generator, num_frames=25).frames[0]
- pipe.enable_model_cpu_offload()
- frames = pipe(image, decode_chunk_size=8, generator=generator).frames[0]
+ pipe.enable_model_cpu_offload()
+ pipe.unet.enable_forward_chunking()
+ frames = pipe(image, decode_chunk_size=2, generator=generator, num_frames=25).frames[0]
```
Using all these tricks togethere should lower the memory requirement to less than 8GB VRAM.
Including all these tricks should lower the memory requirement to less than 8GB VRAM.
## Micro-conditioning
### Micro-conditioning
Stable Diffusion Video also accepts micro-conditioning, in addition to the conditioning image, which allows more control over the generated video:
Along with conditioning image Stable Diffusion Video also allows providing micro-conditioning that allows more control over the generated video.
It accepts the following arguments:
- `fps`: The frames per second of the generated video.
- `motion_bucket_id`: The motion bucket id to use for the generated video. This can be used to control the motion of the generated video. Increasing the motion bucket id will increase the motion of the generated video.
- `noise_aug_strength`: The amount of noise added to the conditioning image. The higher the values the less the video will resemble the conditioning image. Increasing this value will also increase the motion of the generated video.
Here is an example of using micro-conditioning to generate a video with more motion.
- `fps`: the frames per second of the generated video.
- `motion_bucket_id`: the motion bucket id to use for the generated video. This can be used to control the motion of the generated video. Increasing the motion bucket id increases the motion of the generated video.
- `noise_aug_strength`: the amount of noise added to the conditioning image. The higher the values the less the video resembles the conditioning image. Increasing this value also increases the motion of the generated video.
For example, to generate a video with more motion, use the `motion_bucket_id` and `noise_aug_strength` micro-conditioning parameters:
```python
import torch
@@ -119,7 +110,7 @@ pipe = StableVideoDiffusionPipeline.from_pretrained(
pipe.enable_model_cpu_offload()
# Load the conditioning image
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/svd/rocket.png?download=true")
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/svd/rocket.png")
image = image.resize((1024, 576))
generator = torch.manual_seed(42)
@@ -127,7 +118,4 @@ frames = pipe(image, decode_chunk_size=8, generator=generator, motion_bucket_id=
export_to_video(frames, "generated.mp4", fps=7)
```
<video width="1024" height="576" controls>
<source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/svd/rocket_generated_motion.mp4" type="video/mp4">
</video>
![](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/svd/output_rocket_with_conditions.gif)

View File

@@ -2,9 +2,15 @@
- local: index
title: 🧨 Diffusers
- local: quicktour
title: 簡単な案内
title: クイックツアー
- local: stable_diffusion
title: 効果的で効率的な拡散モデル
title: 有効で効率の良い拡散モデル
- local: installation
title: インストール
title: はじめに
title: はじめに
- sections:
- local: tutorials/tutorial_overview
title: 概要
- local: tutorials/autopipeline
title: AutoPipeline
title: チュートリアル

View File

@@ -18,82 +18,31 @@ specific language governing permissions and limitations under the License.
# Diffusers
🤗 Diffusers は、画像や音声、さらには分子の3D構造を生成するための、最先端の事前学習済みDiffusion Model(拡散モデル)を提供するライブラリです。シンプルな生成ソリューションをお探しの場合でも、独自の拡散モデルをトレーニングしたい場合でも、🤗 Diffusers はその両方をサポートするモジュール式のツールボックスです。我々のライブラリは、[性能より使いやすさ](conceptual/philosophy#usability-over-performance)、[簡単よりシンプル](conceptual/philosophy#simple-over-easy)、[抽象化よりカスタマイズ性](conceptual/philosophy#tweakable-contributorfriendly-over-abstraction)に重点を置いて設計されています。
🤗 Diffusers は、画像や音声、さらには分子の3D構造を生成するための、最先端の事前学習済みDiffusion Model(拡散モデル)を提供するライブラリです。シンプルな生成ソリューションをお探しの場合でも、独自の拡散モデルをトレーニングしたい場合でも、🤗 Diffusers はその両方をサポートするモジュール式のツールボックスです。私たちのライブラリは、[性能より使いやすさ](conceptual/philosophy#usability-over-performance)、[簡単よりシンプル](conceptual/philosophy#simple-over-easy)、[抽象化よりカスタマイズ性](conceptual/philosophy#tweakable-contributorfriendly-over-abstraction)に重点を置いて設計されています。
このライブラリには3つの主要コンポーネントがあります:
- 最先端の[拡散パイプライン](api/pipelines/overview)で数行のコードで生成が可能です
- 交換可能な[ノイズスケジューラ](api/schedulers/overview)で生成速度と品質のトレードオフのバランスをとれます。
- 事前に訓練された[モデル](api/models)は、ビルディングブロックとして使用することができ、スケジューラと組み合わせることで、独自のエンドツーエンドの拡散システムを作成することができます。
- 数行のコードで推論可能な最先端の[拡散パイプライン](api/pipelines/overview)。Diffusersには多くのパイプラインがあります。利用可能なパイプラインを網羅したリストと、それらが解決するタスクについては、パイプラインの[概要](https://huggingface.co/docs/diffusers/api/pipelines/overview)の表をご覧ください
- 生成速度と品質のトレードオフのバランスを取る交換可能な[ノイズスケジューラ](api/schedulers/overview)
- ビルディングブロックとして使用することができ、スケジューラと組み合わせることで、エンドツーエンドの拡散モデルを構築可能な事前学習済み[モデル](api/models)
<div class="mt-10">
<div class="w-full flex flex-col space-y-4 md:space-y-0 md:grid md:grid-cols-2 md:gap-y-4 md:gap-x-5">
<a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="./tutorials/tutorial_overview"
><div class="w-full text-center bg-gradient-to-br from-blue-400 to-blue-500 rounded-lg py-1.5 font-semibold mb-5 text-white text-lg leading-relaxed">チュートリアル</div>
<p class="text-gray-700">出力の生成、独自の拡散システムの構築、拡散モデルのトレーニングを開始するために必要な基本的なスキルを学ぶことができます。初めて🤗Diffusersを使用する場合は、ここから始めることをおめします!</p>
<p class="text-gray-700">出力の生成、独自の拡散システムの構築、拡散モデルのトレーニングを開始するために必要な基本的なスキルを学ぶことができます。初めて 🤗Diffusersを使用する場合は、ここから始めることをおすすめします!</p>
</a>
<a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="./using-diffusers/loading_overview"
><div class="w-full text-center bg-gradient-to-br from-indigo-400 to-indigo-500 rounded-lg py-1.5 font-semibold mb-5 text-white text-lg leading-relaxed">ガイド</div>
<p class="text-gray-700">パイプライン、モデル、スケジューラのロードに役立つ実践的なガイドです。また、特定のタスクにパイプラインを使用する方法、出力の生成方法を制御する方法、生成速度を最適化する方法、さまざまなトレーニング手法についても学ぶことができます。</p>
<p class="text-gray-700">パイプライン、モデル、スケジューラの読み込みに役立つ実践的なガイドです。また、特定のタスクにパイプラインを使用する方法、出力の生成方法を制御する方法、生成速度を最適化する方法、さまざまなトレーニング手法についても学ぶことができます。</p>
</a>
<a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="./conceptual/philosophy"
><div class="w-full text-center bg-gradient-to-br from-pink-400 to-pink-500 rounded-lg py-1.5 font-semibold mb-5 text-white text-lg leading-relaxed">Conceptual guides</div>
<p class="text-gray-700">ライブラリがなぜこのように設計されたのかを理解し、ライブラリを利用する際の倫理的ガイドラインや安全対策について詳しく学べます。</p>
</a>
<a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="./api/models/overview"
><div class="w-full text-center bg-gradient-to-br from-purple-400 to-purple-500 rounded-lg py-1.5 font-semibold mb-5 text-white text-lg leading-relaxed">Reference</div>
><div class="w-full text-center bg-gradient-to-br from-purple-400 to-purple-500 rounded-lg py-1.5 font-semibold mb-5 text-white text-lg leading-relaxed">リファレンス</div>
<p class="text-gray-700">🤗 Diffusersのクラスとメソッドがどのように機能するかについての技術的な説明です。</p>
</a>
</div>
</div>
## Supported pipelines
| Pipeline | Paper/Repository | Tasks |
|---|---|:---:|
| [alt_diffusion](./api/pipelines/alt_diffusion) | [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) | Image-to-Image Text-Guided Generation |
| [audio_diffusion](./api/pipelines/audio_diffusion) | [Audio Diffusion](https://github.com/teticio/audio-diffusion.git) | Unconditional Audio Generation |
| [controlnet](./api/pipelines/controlnet) | [Adding Conditional Control to Text-to-Image Diffusion Models](https://arxiv.org/abs/2302.05543) | Image-to-Image Text-Guided Generation |
| [cycle_diffusion](./api/pipelines/cycle_diffusion) | [Unifying Diffusion Models' Latent Space, with Applications to CycleDiffusion and Guidance](https://arxiv.org/abs/2210.05559) | Image-to-Image Text-Guided Generation |
| [dance_diffusion](./api/pipelines/dance_diffusion) | [Dance Diffusion](https://github.com/williamberman/diffusers.git) | Unconditional Audio Generation |
| [ddpm](./api/pipelines/ddpm) | [Denoising Diffusion Probabilistic Models](https://arxiv.org/abs/2006.11239) | Unconditional Image Generation |
| [ddim](./api/pipelines/ddim) | [Denoising Diffusion Implicit Models](https://arxiv.org/abs/2010.02502) | Unconditional Image Generation |
| [if](./if) | [**IF**](./api/pipelines/if) | Image Generation |
| [if_img2img](./if) | [**IF**](./api/pipelines/if) | Image-to-Image Generation |
| [if_inpainting](./if) | [**IF**](./api/pipelines/if) | Image-to-Image Generation |
| [latent_diffusion](./api/pipelines/latent_diffusion) | [High-Resolution Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752)| Text-to-Image Generation |
| [latent_diffusion](./api/pipelines/latent_diffusion) | [High-Resolution Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752)| Super Resolution Image-to-Image |
| [latent_diffusion_uncond](./api/pipelines/latent_diffusion_uncond) | [High-Resolution Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) | Unconditional Image Generation |
| [paint_by_example](./api/pipelines/paint_by_example) | [Paint by Example: Exemplar-based Image Editing with Diffusion Models](https://arxiv.org/abs/2211.13227) | Image-Guided Image Inpainting |
| [pndm](./api/pipelines/pndm) | [Pseudo Numerical Methods for Diffusion Models on Manifolds](https://arxiv.org/abs/2202.09778) | Unconditional Image Generation |
| [score_sde_ve](./api/pipelines/score_sde_ve) | [Score-Based Generative Modeling through Stochastic Differential Equations](https://openreview.net/forum?id=PxTIG12RRHS) | Unconditional Image Generation |
| [score_sde_vp](./api/pipelines/score_sde_vp) | [Score-Based Generative Modeling through Stochastic Differential Equations](https://openreview.net/forum?id=PxTIG12RRHS) | Unconditional Image Generation |
| [semantic_stable_diffusion](./api/pipelines/semantic_stable_diffusion) | [Semantic Guidance](https://arxiv.org/abs/2301.12247) | Text-Guided Generation |
| [stable_diffusion_adapter](./api/pipelines/stable_diffusion/adapter) | [**T2I-Adapter**](https://arxiv.org/abs/2302.08453) | Image-to-Image Text-Guided Generation | -
| [stable_diffusion_text2img](./api/pipelines/stable_diffusion/text2img) | [Stable Diffusion](https://stability.ai/blog/stable-diffusion-public-release) | Text-to-Image Generation |
| [stable_diffusion_img2img](./api/pipelines/stable_diffusion/img2img) | [Stable Diffusion](https://stability.ai/blog/stable-diffusion-public-release) | Image-to-Image Text-Guided Generation |
| [stable_diffusion_inpaint](./api/pipelines/stable_diffusion/inpaint) | [Stable Diffusion](https://stability.ai/blog/stable-diffusion-public-release) | Text-Guided Image Inpainting |
| [stable_diffusion_panorama](./api/pipelines/stable_diffusion/panorama) | [MultiDiffusion](https://multidiffusion.github.io/) | Text-to-Panorama Generation |
| [stable_diffusion_pix2pix](./api/pipelines/stable_diffusion/pix2pix) | [InstructPix2Pix: Learning to Follow Image Editing Instructions](https://arxiv.org/abs/2211.09800) | Text-Guided Image Editing|
| [stable_diffusion_pix2pix_zero](./api/pipelines/stable_diffusion/pix2pix_zero) | [Zero-shot Image-to-Image Translation](https://pix2pixzero.github.io/) | Text-Guided Image Editing |
| [stable_diffusion_attend_and_excite](./api/pipelines/stable_diffusion/attend_and_excite) | [Attend-and-Excite: Attention-Based Semantic Guidance for Text-to-Image Diffusion Models](https://arxiv.org/abs/2301.13826) | Text-to-Image Generation |
| [stable_diffusion_self_attention_guidance](./api/pipelines/stable_diffusion/self_attention_guidance) | [Improving Sample Quality of Diffusion Models Using Self-Attention Guidance](https://arxiv.org/abs/2210.00939) | Text-to-Image Generation Unconditional Image Generation |
| [stable_diffusion_image_variation](./stable_diffusion/image_variation) | [Stable Diffusion Image Variations](https://github.com/LambdaLabsML/lambda-diffusers#stable-diffusion-image-variations) | Image-to-Image Generation |
| [stable_diffusion_latent_upscale](./stable_diffusion/latent_upscale) | [Stable Diffusion Latent Upscaler](https://twitter.com/StabilityAI/status/1590531958815064065) | Text-Guided Super Resolution Image-to-Image |
| [stable_diffusion_model_editing](./api/pipelines/stable_diffusion/model_editing) | [Editing Implicit Assumptions in Text-to-Image Diffusion Models](https://time-diffusion.github.io/) | Text-to-Image Model Editing |
| [stable_diffusion_2](./api/pipelines/stable_diffusion_2) | [Stable Diffusion 2](https://stability.ai/blog/stable-diffusion-v2-release) | Text-to-Image Generation |
| [stable_diffusion_2](./api/pipelines/stable_diffusion_2) | [Stable Diffusion 2](https://stability.ai/blog/stable-diffusion-v2-release) | Text-Guided Image Inpainting |
| [stable_diffusion_2](./api/pipelines/stable_diffusion_2) | [Depth-Conditional Stable Diffusion](https://github.com/Stability-AI/stablediffusion#depth-conditional-stable-diffusion) | Depth-to-Image Generation |
| [stable_diffusion_2](./api/pipelines/stable_diffusion_2) | [Stable Diffusion 2](https://stability.ai/blog/stable-diffusion-v2-release) | Text-Guided Super Resolution Image-to-Image |
| [stable_diffusion_safe](./api/pipelines/stable_diffusion_safe) | [Safe Stable Diffusion](https://arxiv.org/abs/2211.05105) | Text-Guided Generation |
| [stable_unclip](./stable_unclip) | Stable unCLIP | Text-to-Image Generation |
| [stable_unclip](./stable_unclip) | Stable unCLIP | Image-to-Image Text-Guided Generation |
| [stochastic_karras_ve](./api/pipelines/stochastic_karras_ve) | [Elucidating the Design Space of Diffusion-Based Generative Models](https://arxiv.org/abs/2206.00364) | Unconditional Image Generation |
| [text_to_video_sd](./api/pipelines/text_to_video) | [Modelscope's Text-to-video-synthesis Model in Open Domain](https://modelscope.cn/models/damo/text-to-video-synthesis/summary) | Text-to-Video Generation |
| [unclip](./api/pipelines/unclip) | [Hierarchical Text-Conditional Image Generation with CLIP Latents](https://arxiv.org/abs/2204.06125)(implementation by [kakaobrain](https://github.com/kakaobrain/karlo)) | Text-to-Image Generation |
| [versatile_diffusion](./api/pipelines/versatile_diffusion) | [Versatile Diffusion: Text, Images and Variations All in One Diffusion Model](https://arxiv.org/abs/2211.08332) | Text-to-Image Generation |
| [versatile_diffusion](./api/pipelines/versatile_diffusion) | [Versatile Diffusion: Text, Images and Variations All in One Diffusion Model](https://arxiv.org/abs/2211.08332) | Image Variations Generation |
| [versatile_diffusion](./api/pipelines/versatile_diffusion) | [Versatile Diffusion: Text, Images and Variations All in One Diffusion Model](https://arxiv.org/abs/2211.08332) | Dual Image and Text Guided Generation |
| [vq_diffusion](./api/pipelines/vq_diffusion) | [Vector Quantized Diffusion Model for Text-to-Image Synthesis](https://arxiv.org/abs/2111.14822) | Text-to-Image Generation |
| [stable_diffusion_ldm3d](./api/pipelines/stable_diffusion/ldm3d_diffusion) | [LDM3D: Latent Diffusion Model for 3D](https://arxiv.org/abs/2305.10853) | Text to Image and Depth Generation |
| [stable_diffusion_upscaler_ldm3d](./api/pipelines/stable_diffusion/ldm3d_diffusion) | [LDM3D-VR: Latent Diffusion Model for 3D VR](https://arxiv.org/pdf/2311.03226) | Image and Depth Upscaling |
</div>

View File

@@ -0,0 +1,168 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# AutoPipeline
Diffusersは様々なタスクをこなすことができ、テキストから画像、画像から画像、画像の修復など、複数のタスクに対して同じように事前学習された重みを再利用することができます。しかし、ライブラリや拡散モデルに慣れていない場合、どのタスクにどのパイプラインを使えばいいのかがわかりにくいかもしれません。例えば、 [runwayml/stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) チェックポイントをテキストから画像に変換するために使用している場合、それぞれ[`StableDiffusionImg2ImgPipeline`]クラスと[`StableDiffusionInpaintPipeline`]クラスでチェックポイントをロードすることで、画像から画像や画像の修復にも使えることを知らない可能性もあります。
`AutoPipeline` クラスは、🤗 Diffusers の様々なパイプラインをよりシンプルするために設計されています。この汎用的でタスク重視のパイプラインによってタスクそのものに集中することができます。`AutoPipeline` は、使用するべき正しいパイプラインクラスを自動的に検出するため、特定のパイプラインクラス名を知らなくても、タスクのチェックポイントを簡単にロードできます。
<Tip>
どのタスクがサポートされているかは、[AutoPipeline](../api/pipelines/auto_pipeline) のリファレンスをご覧ください。現在、text-to-image、image-to-image、inpaintingをサポートしています。
</Tip>
このチュートリアルでは、`AutoPipeline` を使用して、事前に学習された重みが与えられたときに、特定のタスクを読み込むためのパイプラインクラスを自動的に推測する方法を示します。
## タスクに合わせてAutoPipeline を選択する
まずはチェックポイントを選ぶことから始めましょう。例えば、 [runwayml/stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) チェックポイントでテキストから画像への変換したいなら、[`AutoPipelineForText2Image`]を使います:
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained(
"runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True
).to("cuda")
prompt = "peasant and dragon combat, wood cutting style, viking era, bevel with rune"
image = pipeline(prompt, num_inference_steps=25).images[0]
image
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/autopipeline-text2img.png" alt="generated image of peasant fighting dragon in wood cutting style"/>
</div>
[`AutoPipelineForText2Image`] を具体的に見ていきましょう:
1. [`model_index.json`](https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/model_index.json) ファイルから `"stable-diffusion"` クラスを自動的に検出します。
2. `"stable-diffusion"` のクラス名に基づいて、テキストから画像へ変換する [`StableDiffusionPipeline`] を読み込みます。
同様に、画像から画像へ変換する場合、[`AutoPipelineForImage2Image`] は `model_index.json` ファイルから `"stable-diffusion"` チェックポイントを検出し、対応する [`StableDiffusionImg2ImgPipeline`] を読み込みます。また、入力画像にノイズの量やバリエーションの追加を決めるための強さなど、パイプラインクラスに固有の追加引数を渡すこともできます:
```py
from diffusers import AutoPipelineForImage2Image
import torch
import requests
from PIL import Image
from io import BytesIO
pipeline = AutoPipelineForImage2Image.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16,
use_safetensors=True,
).to("cuda")
prompt = "a portrait of a dog wearing a pearl earring"
url = "https://upload.wikimedia.org/wikipedia/commons/thumb/0/0f/1665_Girl_with_a_Pearl_Earring.jpg/800px-1665_Girl_with_a_Pearl_Earring.jpg"
response = requests.get(url)
image = Image.open(BytesIO(response.content)).convert("RGB")
image.thumbnail((768, 768))
image = pipeline(prompt, image, num_inference_steps=200, strength=0.75, guidance_scale=10.5).images[0]
image
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/autopipeline-img2img.png" alt="generated image of a vermeer portrait of a dog wearing a pearl earring"/>
</div>
また、画像の修復を行いたい場合は、 [`AutoPipelineForInpainting`] が、同様にベースとなる[`StableDiffusionInpaintPipeline`]クラスを読み込みます:
```py
from diffusers import AutoPipelineForInpainting
from diffusers.utils import load_image
import torch
pipeline = AutoPipelineForInpainting.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, use_safetensors=True
).to("cuda")
img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
init_image = load_image(img_url).convert("RGB")
mask_image = load_image(mask_url).convert("RGB")
prompt = "A majestic tiger sitting on a bench"
image = pipeline(prompt, image=init_image, mask_image=mask_image, num_inference_steps=50, strength=0.80).images[0]
image
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/autopipeline-inpaint.png" alt="generated image of a tiger sitting on a bench"/>
</div>
サポートされていないチェックポイントを読み込もうとすると、エラーになります:
```py
from diffusers import AutoPipelineForImage2Image
import torch
pipeline = AutoPipelineForImage2Image.from_pretrained(
"openai/shap-e-img2img", torch_dtype=torch.float16, use_safetensors=True
)
"ValueError: AutoPipeline can't find a pipeline linked to ShapEImg2ImgPipeline for None"
```
## 複数のパイプラインを使用する
いくつかのワークフローや多くのパイプラインを読み込む場合、不要なメモリを使ってしまう再読み込みをするよりも、チェックポイントから同じコンポーネントを再利用する方がメモリ効率が良いです。たとえば、テキストから画像への変換にチェックポイントを使い、画像から画像への変換にまたチェックポイントを使いたい場合、[from_pipe()](https://huggingface.co/docs/diffusers/v0.25.1/en/api/pipelines/auto_pipeline#diffusers.AutoPipelineForImage2Image.from_pipe) メソッドを使用します。このメソッドは、以前読み込まれたパイプラインのコンポーネントを使うことで追加のメモリを消費することなく、新しいパイプラインを作成します。
[from_pipe()](https://huggingface.co/docs/diffusers/v0.25.1/en/api/pipelines/auto_pipeline#diffusers.AutoPipelineForImage2Image.from_pipe) メソッドは、元のパイプラインクラスを検出し、実行したいタスクに対応する新しいパイプラインクラスにマッピングします。例えば、テキストから画像への`"stable-diffusion"` クラスのパイプラインを読み込む場合:
```py
from diffusers import AutoPipelineForText2Image, AutoPipelineForImage2Image
import torch
pipeline_text2img = AutoPipelineForText2Image.from_pretrained(
"runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True
)
print(type(pipeline_text2img))
"<class 'diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline'>"
```
そして、[from_pipe()] (https://huggingface.co/docs/diffusers/v0.25.1/en/api/pipelines/auto_pipeline#diffusers.AutoPipelineForImage2Image.from_pipe)は、もとの`"stable-diffusion"` パイプラインのクラスである [`StableDiffusionImg2ImgPipeline`] にマップします:
```py
pipeline_img2img = AutoPipelineForImage2Image.from_pipe(pipeline_text2img)
print(type(pipeline_img2img))
"<class 'diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline'>"
```
元のパイプラインにオプションとして引数(セーフティチェッカーの無効化など)を渡した場合、この引数も新しいパイプラインに渡されます:
```py
from diffusers import AutoPipelineForText2Image, AutoPipelineForImage2Image
import torch
pipeline_text2img = AutoPipelineForText2Image.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16,
use_safetensors=True,
requires_safety_checker=False,
).to("cuda")
pipeline_img2img = AutoPipelineForImage2Image.from_pipe(pipeline_text2img)
print(pipeline_img2img.config.requires_safety_checker)
"False"
```
新しいパイプラインの動作を変更したい場合は、元のパイプラインの引数や設定を上書きすることができます。例えば、セーフティチェッカーをオンに戻し、`strength` 引数を追加します:
```py
pipeline_img2img = AutoPipelineForImage2Image.from_pipe(pipeline_text2img, requires_safety_checker=True, strength=0.3)
print(pipeline_img2img.config.requires_safety_checker)
"True"
```

View File

@@ -0,0 +1,23 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Overview
ようこそ 🧨Diffusersへ拡散モデル(diffusion models)や生成AIの初心者で、さらに学びたいのであれば、このチュートリアルが最適です。この初心者向けのチュートリアルは、拡散モデルについて丁寧に解説し、ライブラリの基礎核となるコンポーネントと 🧨Diffusersの使用方法を理解することを目的としています。
まず、推論のためのパイプラインを使って、素早く生成する方法を学んでいきます。次に、独自の拡散システムを構築するためのモジュラーツールボックスとしてライブラリをどのように使えば良いかを理解するために、そのパイプラインを分解してみましょう。次のレッスンでは、あなたの欲しいものを生成できるように拡散モデルをトレーニングする方法を学びましょう。
このチュートリアルがすべて完了したら、ライブラリを自分で調べ、自分のプロジェクトやアプリケーションにどのように使えるかを知るために必要なスキルを身につけることができます。
そして、 [Discord](https://discord.com/invite/JfAtkvEtRb) や [forums](https://discuss.huggingface.co/c/discussion-related-to-httpsgithubcomhuggingfacediffusers/63) でDiffusersコミュニティに参加してユーザーや開発者と繋がって協力していきましょう。
さあ、「拡散」をはじめていきましょう!🧨

View File

@@ -18,8 +18,7 @@ limitations under the License.
Diffusers examples are a collection of scripts to demonstrate how to effectively use the `diffusers` library
for a variety of use cases involving training or fine-tuning.
**Note**: If you are looking for **official** examples on how to use `diffusers` for inference,
please have a look at [src/diffusers/pipelines](https://github.com/huggingface/diffusers/tree/main/src/diffusers/pipelines).
**Note**: If you are looking for **official** examples on how to use `diffusers` for inference, please have a look at [src/diffusers/pipelines](https://github.com/huggingface/diffusers/tree/main/src/diffusers/pipelines).
Our examples aspire to be **self-contained**, **easy-to-tweak**, **beginner-friendly** and for **one-purpose-only**.
More specifically, this means:
@@ -27,11 +26,10 @@ More specifically, this means:
- **Self-contained**: An example script shall only depend on "pip-install-able" Python packages that can be found in a `requirements.txt` file. Example scripts shall **not** depend on any local files. This means that one can simply download an example script, *e.g.* [train_unconditional.py](https://github.com/huggingface/diffusers/blob/main/examples/unconditional_image_generation/train_unconditional.py), install the required dependencies, *e.g.* [requirements.txt](https://github.com/huggingface/diffusers/blob/main/examples/unconditional_image_generation/requirements.txt) and execute the example script.
- **Easy-to-tweak**: While we strive to present as many use cases as possible, the example scripts are just that - examples. It is expected that they won't work out-of-the box on your specific problem and that you will be required to change a few lines of code to adapt them to your needs. To help you with that, most of the examples fully expose the preprocessing of the data and the training loop to allow you to tweak and edit them as required.
- **Beginner-friendly**: We do not aim for providing state-of-the-art training scripts for the newest models, but rather examples that can be used as a way to better understand diffusion models and how to use them with the `diffusers` library. We often purposefully leave out certain state-of-the-art methods if we consider them too complex for beginners.
- **One-purpose-only**: Examples should show one task and one task only. Even if a task is from a modeling
point of view very similar, *e.g.* image super-resolution and image modification tend to use the same model and training method, we want examples to showcase only one task to keep them as readable and easy-to-understand as possible.
- **One-purpose-only**: Examples should show one task and one task only. Even if a task is from a modeling point of view very similar, *e.g.* image super-resolution and image modification tend to use the same model and training method, we want examples to showcase only one task to keep them as readable and easy-to-understand as possible.
We provide **official** examples that cover the most popular tasks of diffusion models.
*Official* examples are **actively** maintained by the `diffusers` maintainers and we try to rigorously follow our example philosophy as defined above.
*Official* examples are **actively** maintained by the `diffusers` maintainers and we try to rigorously follow our example philosophy as defined above.
If you feel like another important example should exist, we are more than happy to welcome a [Feature Request](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=&template=feature_request.md&title=) or directly a [Pull Request](https://github.com/huggingface/diffusers/compare) from you!
Training examples show how to pretrain or fine-tune diffusion models for a variety of tasks. Currently we support:
@@ -39,7 +37,7 @@ Training examples show how to pretrain or fine-tune diffusion models for a varie
| Task | 🤗 Accelerate | 🤗 Datasets | Colab
|---|---|:---:|:---:|
| [**Unconditional Image Generation**](./unconditional_image_generation) | ✅ | ✅ | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/training_example.ipynb)
| [**Text-to-Image fine-tuning**](./text_to_image) | ✅ | ✅ |
| [**Text-to-Image fine-tuning**](./text_to_image) | ✅ | ✅ |
| [**Textual Inversion**](./textual_inversion) | ✅ | - | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb)
| [**Dreambooth**](./dreambooth) | ✅ | - | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb)
| [**ControlNet**](./controlnet) | ✅ | ✅ | -

File diff suppressed because it is too large Load Diff

326
examples/amused/README.md Normal file
View File

@@ -0,0 +1,326 @@
## Amused training
Amused can be finetuned on simple datasets relatively cheaply and quickly. Using 8bit optimizers, lora, and gradient accumulation, amused can be finetuned with as little as 5.5 GB. Here are a set of examples for finetuning amused on some relatively simple datasets. These training recipies are aggressively oriented towards minimal resources and fast verification -- i.e. the batch sizes are quite low and the learning rates are quite high. For optimal quality, you will probably want to increase the batch sizes and decrease learning rates.
All training examples use fp16 mixed precision and gradient checkpointing. We don't show 8 bit adam + lora as its about the same memory use as just using lora (bitsandbytes uses full precision optimizer states for weights below a minimum size).
### Finetuning the 256 checkpoint
These examples finetune on this [nouns](https://huggingface.co/datasets/m1guelpf/nouns) dataset.
Example results:
![noun1](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/amused/noun1.png) ![noun2](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/amused/noun2.png) ![noun3](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/amused/noun3.png)
#### Full finetuning
Batch size: 8, Learning rate: 1e-4, Gives decent results in 750-1000 steps
| Batch Size | Gradient Accumulation Steps | Effective Total Batch Size | Memory Used |
|------------|-----------------------------|------------------|-------------|
| 8 | 1 | 8 | 19.7 GB |
| 4 | 2 | 8 | 18.3 GB |
| 1 | 8 | 8 | 17.9 GB |
```sh
accelerate launch train_amused.py \
--output_dir <output path> \
--train_batch_size <batch size> \
--gradient_accumulation_steps <gradient accumulation steps> \
--learning_rate 1e-4 \
--pretrained_model_name_or_path amused/amused-256 \
--instance_data_dataset 'm1guelpf/nouns' \
--image_key image \
--prompt_key text \
--resolution 256 \
--mixed_precision fp16 \
--lr_scheduler constant \
--validation_prompts \
'a pixel art character with square red glasses, a baseball-shaped head and a orange-colored body on a dark background' \
'a pixel art character with square orange glasses, a lips-shaped head and a red-colored body on a light background' \
'a pixel art character with square blue glasses, a microwave-shaped head and a purple-colored body on a sunny background' \
'a pixel art character with square red glasses, a baseball-shaped head and a blue-colored body on an orange background' \
'a pixel art character with square red glasses' \
'a pixel art character' \
'square red glasses on a pixel art character' \
'square red glasses on a pixel art character with a baseball-shaped head' \
--max_train_steps 10000 \
--checkpointing_steps 500 \
--validation_steps 250 \
--gradient_checkpointing
```
#### Full finetuning + 8 bit adam
Note that this training config keeps the batch size low and the learning rate high to get results fast with low resources. However, due to 8 bit adam, it will diverge eventually. If you want to train for longer, you will have to up the batch size and lower the learning rate.
Batch size: 16, Learning rate: 2e-5, Gives decent results in ~750 steps
| Batch Size | Gradient Accumulation Steps | Effective Total Batch Size | Memory Used |
|------------|-----------------------------|------------------|-------------|
| 16 | 1 | 16 | 20.1 GB |
| 8 | 2 | 16 | 15.6 GB |
| 1 | 16 | 16 | 10.7 GB |
```sh
accelerate launch train_amused.py \
--output_dir <output path> \
--train_batch_size <batch size> \
--gradient_accumulation_steps <gradient accumulation steps> \
--learning_rate 2e-5 \
--use_8bit_adam \
--pretrained_model_name_or_path amused/amused-256 \
--instance_data_dataset 'm1guelpf/nouns' \
--image_key image \
--prompt_key text \
--resolution 256 \
--mixed_precision fp16 \
--lr_scheduler constant \
--validation_prompts \
'a pixel art character with square red glasses, a baseball-shaped head and a orange-colored body on a dark background' \
'a pixel art character with square orange glasses, a lips-shaped head and a red-colored body on a light background' \
'a pixel art character with square blue glasses, a microwave-shaped head and a purple-colored body on a sunny background' \
'a pixel art character with square red glasses, a baseball-shaped head and a blue-colored body on an orange background' \
'a pixel art character with square red glasses' \
'a pixel art character' \
'square red glasses on a pixel art character' \
'square red glasses on a pixel art character with a baseball-shaped head' \
--max_train_steps 10000 \
--checkpointing_steps 500 \
--validation_steps 250 \
--gradient_checkpointing
```
#### Full finetuning + lora
Batch size: 16, Learning rate: 8e-4, Gives decent results in 1000-1250 steps
| Batch Size | Gradient Accumulation Steps | Effective Total Batch Size | Memory Used |
|------------|-----------------------------|------------------|-------------|
| 16 | 1 | 16 | 14.1 GB |
| 8 | 2 | 16 | 10.1 GB |
| 1 | 16 | 16 | 6.5 GB |
```sh
accelerate launch train_amused.py \
--output_dir <output path> \
--train_batch_size <batch size> \
--gradient_accumulation_steps <gradient accumulation steps> \
--learning_rate 8e-4 \
--use_lora \
--pretrained_model_name_or_path amused/amused-256 \
--instance_data_dataset 'm1guelpf/nouns' \
--image_key image \
--prompt_key text \
--resolution 256 \
--mixed_precision fp16 \
--lr_scheduler constant \
--validation_prompts \
'a pixel art character with square red glasses, a baseball-shaped head and a orange-colored body on a dark background' \
'a pixel art character with square orange glasses, a lips-shaped head and a red-colored body on a light background' \
'a pixel art character with square blue glasses, a microwave-shaped head and a purple-colored body on a sunny background' \
'a pixel art character with square red glasses, a baseball-shaped head and a blue-colored body on an orange background' \
'a pixel art character with square red glasses' \
'a pixel art character' \
'square red glasses on a pixel art character' \
'square red glasses on a pixel art character with a baseball-shaped head' \
--max_train_steps 10000 \
--checkpointing_steps 500 \
--validation_steps 250 \
--gradient_checkpointing
```
### Finetuning the 512 checkpoint
These examples finetune on this [minecraft](https://huggingface.co/monadical-labs/minecraft-preview) dataset.
Example results:
![minecraft1](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/amused/minecraft1.png) ![minecraft2](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/amused/minecraft2.png) ![minecraft3](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/amused/minecraft3.png)
#### Full finetuning
Batch size: 8, Learning rate: 8e-5, Gives decent results in 500-1000 steps
| Batch Size | Gradient Accumulation Steps | Effective Total Batch Size | Memory Used |
|------------|-----------------------------|------------------|-------------|
| 8 | 1 | 8 | 24.2 GB |
| 4 | 2 | 8 | 19.7 GB |
| 1 | 8 | 8 | 16.99 GB |
```sh
accelerate launch train_amused.py \
--output_dir <output path> \
--train_batch_size <batch size> \
--gradient_accumulation_steps <gradient accumulation steps> \
--learning_rate 8e-5 \
--pretrained_model_name_or_path amused/amused-512 \
--instance_data_dataset 'monadical-labs/minecraft-preview' \
--prompt_prefix 'minecraft ' \
--image_key image \
--prompt_key text \
--resolution 512 \
--mixed_precision fp16 \
--lr_scheduler constant \
--validation_prompts \
'minecraft Avatar' \
'minecraft character' \
'minecraft' \
'minecraft president' \
'minecraft pig' \
--max_train_steps 10000 \
--checkpointing_steps 500 \
--validation_steps 250 \
--gradient_checkpointing
```
#### Full finetuning + 8 bit adam
Batch size: 8, Learning rate: 5e-6, Gives decent results in 500-1000 steps
| Batch Size | Gradient Accumulation Steps | Effective Total Batch Size | Memory Used |
|------------|-----------------------------|------------------|-------------|
| 8 | 1 | 8 | 21.2 GB |
| 4 | 2 | 8 | 13.3 GB |
| 1 | 8 | 8 | 9.9 GB |
```sh
accelerate launch train_amused.py \
--output_dir <output path> \
--train_batch_size <batch size> \
--gradient_accumulation_steps <gradient accumulation steps> \
--learning_rate 5e-6 \
--pretrained_model_name_or_path amused/amused-512 \
--instance_data_dataset 'monadical-labs/minecraft-preview' \
--prompt_prefix 'minecraft ' \
--image_key image \
--prompt_key text \
--resolution 512 \
--mixed_precision fp16 \
--lr_scheduler constant \
--validation_prompts \
'minecraft Avatar' \
'minecraft character' \
'minecraft' \
'minecraft president' \
'minecraft pig' \
--max_train_steps 10000 \
--checkpointing_steps 500 \
--validation_steps 250 \
--gradient_checkpointing
```
#### Full finetuning + lora
Batch size: 8, Learning rate: 1e-4, Gives decent results in 500-1000 steps
| Batch Size | Gradient Accumulation Steps | Effective Total Batch Size | Memory Used |
|------------|-----------------------------|------------------|-------------|
| 8 | 1 | 8 | 12.7 GB |
| 4 | 2 | 8 | 9.0 GB |
| 1 | 8 | 8 | 5.6 GB |
```sh
accelerate launch train_amused.py \
--output_dir <output path> \
--train_batch_size <batch size> \
--gradient_accumulation_steps <gradient accumulation steps> \
--learning_rate 1e-4 \
--use_lora \
--pretrained_model_name_or_path amused/amused-512 \
--instance_data_dataset 'monadical-labs/minecraft-preview' \
--prompt_prefix 'minecraft ' \
--image_key image \
--prompt_key text \
--resolution 512 \
--mixed_precision fp16 \
--lr_scheduler constant \
--validation_prompts \
'minecraft Avatar' \
'minecraft character' \
'minecraft' \
'minecraft president' \
'minecraft pig' \
--max_train_steps 10000 \
--checkpointing_steps 500 \
--validation_steps 250 \
--gradient_checkpointing
```
### Styledrop
[Styledrop](https://arxiv.org/abs/2306.00983) is an efficient finetuning method for learning a new style from just one or very few images. It has an optional first stage to generate human picked additional training samples. The additional training samples can be used to augment the initial images. Our examples exclude the optional additional image selection stage and instead we just finetune on a single image.
This is our example style image:
![example](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/amused/A%20mushroom%20in%20%5BV%5D%20style.png)
Download it to your local directory with
```sh
wget https://huggingface.co/datasets/diffusers/docs-images/resolve/main/amused/A%20mushroom%20in%20%5BV%5D%20style.png
```
#### 256
Example results:
![glowing_256_1](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/amused/glowing_256_1.png) ![glowing_256_2](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/amused/glowing_256_2.png) ![glowing_256_3](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/amused/glowing_256_3.png)
Learning rate: 4e-4, Gives decent results in 1500-2000 steps
Memory used: 6.5 GB
```sh
accelerate launch train_amused.py \
--output_dir <output path> \
--mixed_precision fp16 \
--report_to wandb \
--use_lora \
--pretrained_model_name_or_path amused/amused-256 \
--train_batch_size 1 \
--lr_scheduler constant \
--learning_rate 4e-4 \
--validation_prompts \
'A chihuahua walking on the street in [V] style' \
'A banana on the table in [V] style' \
'A church on the street in [V] style' \
'A tabby cat walking in the forest in [V] style' \
--instance_data_image 'A mushroom in [V] style.png' \
--max_train_steps 10000 \
--checkpointing_steps 500 \
--validation_steps 100 \
--resolution 256
```
#### 512
Example results:
![glowing_512_1](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/amused/glowing_512_1.png) ![glowing_512_2](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/amused/glowing_512_2.png) ![glowing_512_3](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/amused/glowing_512_3.png)
Learning rate: 1e-3, Lora alpha 1, Gives decent results in 1500-2000 steps
Memory used: 5.6 GB
```
accelerate launch train_amused.py \
--output_dir <output path> \
--mixed_precision fp16 \
--report_to wandb \
--use_lora \
--pretrained_model_name_or_path amused/amused-512 \
--train_batch_size 1 \
--lr_scheduler constant \
--learning_rate 1e-3 \
--validation_prompts \
'A chihuahua walking on the street in [V] style' \
'A banana on the table in [V] style' \
'A church on the street in [V] style' \
'A tabby cat walking in the forest in [V] style' \
--instance_data_image 'A mushroom in [V] style.png' \
--max_train_steps 100000 \
--checkpointing_steps 500 \
--validation_steps 100 \
--resolution 512 \
--lora_alpha 1
```

View File

@@ -0,0 +1,972 @@
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import copy
import logging
import math
import os
import shutil
from contextlib import nullcontext
from pathlib import Path
import torch
import torch.nn.functional as F
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration, set_seed
from datasets import load_dataset
from peft import LoraConfig
from peft.utils import get_peft_model_state_dict
from PIL import Image
from PIL.ImageOps import exif_transpose
from torch.utils.data import DataLoader, Dataset, default_collate
from torchvision import transforms
from transformers import (
CLIPTextModelWithProjection,
CLIPTokenizer,
)
import diffusers.optimization
from diffusers import AmusedPipeline, AmusedScheduler, EMAModel, UVit2DModel, VQModel
from diffusers.loaders import LoraLoaderMixin
from diffusers.utils import is_wandb_available
if is_wandb_available():
import wandb
logger = get_logger(__name__, log_level="INFO")
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--revision",
type=str,
default=None,
required=False,
help="Revision of pretrained model identifier from huggingface.co/models.",
)
parser.add_argument(
"--variant",
type=str,
default=None,
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16",
)
parser.add_argument(
"--instance_data_dataset",
type=str,
default=None,
required=False,
help="A Hugging Face dataset containing the training images",
)
parser.add_argument(
"--instance_data_dir",
type=str,
default=None,
required=False,
help="A folder containing the training data of instance images.",
)
parser.add_argument(
"--instance_data_image", type=str, default=None, required=False, help="A single training image"
)
parser.add_argument(
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
)
parser.add_argument(
"--dataloader_num_workers",
type=int,
default=0,
help=(
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
),
)
parser.add_argument(
"--allow_tf32",
action="store_true",
help=(
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
),
)
parser.add_argument("--use_ema", action="store_true", help="Whether to use EMA model.")
parser.add_argument("--ema_decay", type=float, default=0.9999)
parser.add_argument("--ema_update_after_step", type=int, default=0)
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
parser.add_argument(
"--output_dir",
type=str,
default="muse_training",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help=(
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
),
)
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--checkpointing_steps",
type=int,
default=500,
help=(
"Save a checkpoint of the training state every X updates. Checkpoints can be used for resuming training via `--resume_from_checkpoint`. "
"In the case that the checkpoint is better than the final trained model, the checkpoint can also be used for inference."
"Using a checkpoint for inference requires separate loading of the original pipeline and the individual checkpointed model components."
"See https://huggingface.co/docs/diffusers/main/en/training/dreambooth#performing-inference-using-a-saved-checkpoint for step by step"
"instructions."
),
)
parser.add_argument(
"--logging_steps",
type=int,
default=50,
)
parser.add_argument(
"--checkpoints_total_limit",
type=int,
default=None,
help=(
"Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`."
" See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state"
" for more details"
),
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help=(
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
),
)
parser.add_argument(
"--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=0.0003,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--scale_lr",
action="store_true",
default=False,
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="constant",
help=(
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
' "constant", "constant_with_warmup"]'
),
)
parser.add_argument(
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument(
"--validation_steps",
type=int,
default=100,
help=(
"Run validation every X steps. Validation consists of running the prompt"
" `args.validation_prompt` multiple times: `args.num_validation_images`"
" and logging the images."
),
)
parser.add_argument(
"--mixed_precision",
type=str,
default=None,
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
),
)
parser.add_argument(
"--report_to",
type=str,
default="wandb",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
),
)
parser.add_argument("--validation_prompts", type=str, nargs="*")
parser.add_argument(
"--resolution",
type=int,
default=512,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument("--split_vae_encode", type=int, required=False, default=None)
parser.add_argument("--min_masking_rate", type=float, default=0.0)
parser.add_argument("--cond_dropout_prob", type=float, default=0.0)
parser.add_argument("--max_grad_norm", default=None, type=float, help="Max gradient norm.", required=False)
parser.add_argument("--use_lora", action="store_true", help="Fine tune the model using LoRa")
parser.add_argument("--text_encoder_use_lora", action="store_true", help="Fine tune the model using LoRa")
parser.add_argument("--lora_r", default=16, type=int)
parser.add_argument("--lora_alpha", default=32, type=int)
parser.add_argument("--lora_target_modules", default=["to_q", "to_k", "to_v"], type=str, nargs="+")
parser.add_argument("--text_encoder_lora_r", default=16, type=int)
parser.add_argument("--text_encoder_lora_alpha", default=32, type=int)
parser.add_argument("--text_encoder_lora_target_modules", default=["to_q", "to_k", "to_v"], type=str, nargs="+")
parser.add_argument("--train_text_encoder", action="store_true")
parser.add_argument("--image_key", type=str, required=False)
parser.add_argument("--prompt_key", type=str, required=False)
parser.add_argument(
"--gradient_checkpointing",
action="store_true",
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
)
parser.add_argument("--prompt_prefix", type=str, required=False, default=None)
args = parser.parse_args()
if args.report_to == "wandb":
if not is_wandb_available():
raise ImportError("Make sure to install wandb if you want to use it for logging during training.")
num_datasources = sum(
[x is not None for x in [args.instance_data_dir, args.instance_data_image, args.instance_data_dataset]]
)
if num_datasources != 1:
raise ValueError(
"provide one and only one of `--instance_data_dir`, `--instance_data_image`, or `--instance_data_dataset`"
)
if args.instance_data_dir is not None:
if not os.path.exists(args.instance_data_dir):
raise ValueError(f"Does not exist: `--args.instance_data_dir` {args.instance_data_dir}")
if args.instance_data_image is not None:
if not os.path.exists(args.instance_data_image):
raise ValueError(f"Does not exist: `--args.instance_data_image` {args.instance_data_image}")
if args.instance_data_dataset is not None and (args.image_key is None or args.prompt_key is None):
raise ValueError("`--instance_data_dataset` requires setting `--image_key` and `--prompt_key`")
return args
class InstanceDataRootDataset(Dataset):
def __init__(
self,
instance_data_root,
tokenizer,
size=512,
):
self.size = size
self.tokenizer = tokenizer
self.instance_images_path = list(Path(instance_data_root).iterdir())
def __len__(self):
return len(self.instance_images_path)
def __getitem__(self, index):
image_path = self.instance_images_path[index % len(self.instance_images_path)]
instance_image = Image.open(image_path)
rv = process_image(instance_image, self.size)
prompt = os.path.splitext(os.path.basename(image_path))[0]
rv["prompt_input_ids"] = tokenize_prompt(self.tokenizer, prompt)[0]
return rv
class InstanceDataImageDataset(Dataset):
def __init__(
self,
instance_data_image,
train_batch_size,
size=512,
):
self.value = process_image(Image.open(instance_data_image), size)
self.train_batch_size = train_batch_size
def __len__(self):
# Needed so a full batch of the data can be returned. Otherwise will return
# batches of size 1
return self.train_batch_size
def __getitem__(self, index):
return self.value
class HuggingFaceDataset(Dataset):
def __init__(
self,
hf_dataset,
tokenizer,
image_key,
prompt_key,
prompt_prefix=None,
size=512,
):
self.size = size
self.image_key = image_key
self.prompt_key = prompt_key
self.tokenizer = tokenizer
self.hf_dataset = hf_dataset
self.prompt_prefix = prompt_prefix
def __len__(self):
return len(self.hf_dataset)
def __getitem__(self, index):
item = self.hf_dataset[index]
rv = process_image(item[self.image_key], self.size)
prompt = item[self.prompt_key]
if self.prompt_prefix is not None:
prompt = self.prompt_prefix + prompt
rv["prompt_input_ids"] = tokenize_prompt(self.tokenizer, prompt)[0]
return rv
def process_image(image, size):
image = exif_transpose(image)
if not image.mode == "RGB":
image = image.convert("RGB")
orig_height = image.height
orig_width = image.width
image = transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR)(image)
c_top, c_left, _, _ = transforms.RandomCrop.get_params(image, output_size=(size, size))
image = transforms.functional.crop(image, c_top, c_left, size, size)
image = transforms.ToTensor()(image)
micro_conds = torch.tensor(
[orig_width, orig_height, c_top, c_left, 6.0],
)
return {"image": image, "micro_conds": micro_conds}
def tokenize_prompt(tokenizer, prompt):
return tokenizer(
prompt,
truncation=True,
padding="max_length",
max_length=77,
return_tensors="pt",
).input_ids
def encode_prompt(text_encoder, input_ids):
outputs = text_encoder(input_ids, return_dict=True, output_hidden_states=True)
encoder_hidden_states = outputs.hidden_states[-2]
cond_embeds = outputs[0]
return encoder_hidden_states, cond_embeds
def main(args):
if args.allow_tf32:
torch.backends.cuda.matmul.allow_tf32 = True
logging_dir = Path(args.output_dir, args.logging_dir)
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with=args.report_to,
project_config=accelerator_project_config,
)
if accelerator.is_main_process:
os.makedirs(args.output_dir, exist_ok=True)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_main_process:
accelerator.init_trackers("amused", config=vars(copy.deepcopy(args)))
if args.seed is not None:
set_seed(args.seed)
# TODO - will have to fix loading if training text encoder
text_encoder = CLIPTextModelWithProjection.from_pretrained(
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant
)
tokenizer = CLIPTokenizer.from_pretrained(
args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision, variant=args.variant
)
vq_model = VQModel.from_pretrained(
args.pretrained_model_name_or_path, subfolder="vqvae", revision=args.revision, variant=args.variant
)
if args.train_text_encoder:
if args.text_encoder_use_lora:
lora_config = LoraConfig(
r=args.text_encoder_lora_r,
lora_alpha=args.text_encoder_lora_alpha,
target_modules=args.text_encoder_lora_target_modules,
)
text_encoder.add_adapter(lora_config)
text_encoder.train()
text_encoder.requires_grad_(True)
else:
text_encoder.eval()
text_encoder.requires_grad_(False)
vq_model.requires_grad_(False)
model = UVit2DModel.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="transformer",
revision=args.revision,
variant=args.variant,
)
if args.use_lora:
lora_config = LoraConfig(
r=args.lora_r,
lora_alpha=args.lora_alpha,
target_modules=args.lora_target_modules,
)
model.add_adapter(lora_config)
model.train()
if args.gradient_checkpointing:
model.enable_gradient_checkpointing()
if args.train_text_encoder:
text_encoder.gradient_checkpointing_enable()
if args.use_ema:
ema = EMAModel(
model.parameters(),
decay=args.ema_decay,
update_after_step=args.ema_update_after_step,
model_cls=UVit2DModel,
model_config=model.config,
)
def save_model_hook(models, weights, output_dir):
if accelerator.is_main_process:
transformer_lora_layers_to_save = None
text_encoder_lora_layers_to_save = None
for model_ in models:
if isinstance(model_, type(accelerator.unwrap_model(model))):
if args.use_lora:
transformer_lora_layers_to_save = get_peft_model_state_dict(model_)
else:
model_.save_pretrained(os.path.join(output_dir, "transformer"))
elif isinstance(model_, type(accelerator.unwrap_model(text_encoder))):
if args.text_encoder_use_lora:
text_encoder_lora_layers_to_save = get_peft_model_state_dict(model_)
else:
model_.save_pretrained(os.path.join(output_dir, "text_encoder"))
else:
raise ValueError(f"unexpected save model: {model_.__class__}")
# make sure to pop weight so that corresponding model is not saved again
weights.pop()
if transformer_lora_layers_to_save is not None or text_encoder_lora_layers_to_save is not None:
LoraLoaderMixin.save_lora_weights(
output_dir,
transformer_lora_layers=transformer_lora_layers_to_save,
text_encoder_lora_layers=text_encoder_lora_layers_to_save,
)
if args.use_ema:
ema.save_pretrained(os.path.join(output_dir, "ema_model"))
def load_model_hook(models, input_dir):
transformer = None
text_encoder_ = None
while len(models) > 0:
model_ = models.pop()
if isinstance(model_, type(accelerator.unwrap_model(model))):
if args.use_lora:
transformer = model_
else:
load_model = UVit2DModel.from_pretrained(os.path.join(input_dir, "transformer"))
model_.load_state_dict(load_model.state_dict())
del load_model
elif isinstance(model, type(accelerator.unwrap_model(text_encoder))):
if args.text_encoder_use_lora:
text_encoder_ = model_
else:
load_model = CLIPTextModelWithProjection.from_pretrained(os.path.join(input_dir, "text_encoder"))
model_.load_state_dict(load_model.state_dict())
del load_model
else:
raise ValueError(f"unexpected save model: {model.__class__}")
if transformer is not None or text_encoder_ is not None:
lora_state_dict, network_alphas = LoraLoaderMixin.lora_state_dict(input_dir)
LoraLoaderMixin.load_lora_into_text_encoder(
lora_state_dict, network_alphas=network_alphas, text_encoder=text_encoder_
)
LoraLoaderMixin.load_lora_into_transformer(
lora_state_dict, network_alphas=network_alphas, transformer=transformer
)
if args.use_ema:
load_from = EMAModel.from_pretrained(os.path.join(input_dir, "ema_model"), model_cls=UVit2DModel)
ema.load_state_dict(load_from.state_dict())
del load_from
accelerator.register_load_state_pre_hook(load_model_hook)
accelerator.register_save_state_pre_hook(save_model_hook)
if args.scale_lr:
args.learning_rate = (
args.learning_rate * args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
)
if args.use_8bit_adam:
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError(
"Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`"
)
optimizer_cls = bnb.optim.AdamW8bit
else:
optimizer_cls = torch.optim.AdamW
# no decay on bias and layernorm and embedding
no_decay = ["bias", "layer_norm.weight", "mlm_ln.weight", "embeddings.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.adam_weight_decay,
},
{
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
]
if args.train_text_encoder:
optimizer_grouped_parameters.append(
{"params": text_encoder.parameters(), "weight_decay": args.adam_weight_decay}
)
optimizer = optimizer_cls(
optimizer_grouped_parameters,
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
logger.info("Creating dataloaders and lr_scheduler")
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
if args.instance_data_dir is not None:
dataset = InstanceDataRootDataset(
instance_data_root=args.instance_data_dir,
tokenizer=tokenizer,
size=args.resolution,
)
elif args.instance_data_image is not None:
dataset = InstanceDataImageDataset(
instance_data_image=args.instance_data_image,
train_batch_size=args.train_batch_size,
size=args.resolution,
)
elif args.instance_data_dataset is not None:
dataset = HuggingFaceDataset(
hf_dataset=load_dataset(args.instance_data_dataset, split="train"),
tokenizer=tokenizer,
image_key=args.image_key,
prompt_key=args.prompt_key,
prompt_prefix=args.prompt_prefix,
size=args.resolution,
)
else:
assert False
train_dataloader = DataLoader(
dataset,
batch_size=args.train_batch_size,
shuffle=True,
num_workers=args.dataloader_num_workers,
collate_fn=default_collate,
)
train_dataloader.num_batches = len(train_dataloader)
lr_scheduler = diffusers.optimization.get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_training_steps=args.max_train_steps * accelerator.num_processes,
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
)
logger.info("Preparing model, optimizer and dataloaders")
if args.train_text_encoder:
model, optimizer, lr_scheduler, train_dataloader, text_encoder = accelerator.prepare(
model, optimizer, lr_scheduler, train_dataloader, text_encoder
)
else:
model, optimizer, lr_scheduler, train_dataloader = accelerator.prepare(
model, optimizer, lr_scheduler, train_dataloader
)
train_dataloader.num_batches = len(train_dataloader)
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
if not args.train_text_encoder:
text_encoder.to(device=accelerator.device, dtype=weight_dtype)
vq_model.to(device=accelerator.device)
if args.use_ema:
ema.to(accelerator.device)
with nullcontext() if args.train_text_encoder else torch.no_grad():
empty_embeds, empty_clip_embeds = encode_prompt(
text_encoder, tokenize_prompt(tokenizer, "").to(text_encoder.device, non_blocking=True)
)
# There is a single image, we can just pre-encode the single prompt
if args.instance_data_image is not None:
prompt = os.path.splitext(os.path.basename(args.instance_data_image))[0]
encoder_hidden_states, cond_embeds = encode_prompt(
text_encoder, tokenize_prompt(tokenizer, prompt).to(text_encoder.device, non_blocking=True)
)
encoder_hidden_states = encoder_hidden_states.repeat(args.train_batch_size, 1, 1)
cond_embeds = cond_embeds.repeat(args.train_batch_size, 1)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(train_dataloader.num_batches / args.gradient_accumulation_steps)
# Afterwards we recalculate our number of training epochs.
# Note: We are not doing epoch based training here, but just using this for book keeping and being able to
# reuse the same training loop with other datasets/loaders.
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# Train!
logger.info("***** Running training *****")
logger.info(f" Num training steps = {args.max_train_steps}")
logger.info(f" Instantaneous batch size per device = { args.train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
resume_from_checkpoint = args.resume_from_checkpoint
if resume_from_checkpoint:
if resume_from_checkpoint == "latest":
# Get the most recent checkpoint
dirs = os.listdir(args.output_dir)
dirs = [d for d in dirs if d.startswith("checkpoint")]
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
if len(dirs) > 0:
resume_from_checkpoint = os.path.join(args.output_dir, dirs[-1])
else:
resume_from_checkpoint = None
if resume_from_checkpoint is None:
accelerator.print(
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
)
else:
accelerator.print(f"Resuming from checkpoint {resume_from_checkpoint}")
if resume_from_checkpoint is None:
global_step = 0
first_epoch = 0
else:
accelerator.load_state(resume_from_checkpoint)
global_step = int(os.path.basename(resume_from_checkpoint).split("-")[1])
first_epoch = global_step // num_update_steps_per_epoch
# As stated above, we are not doing epoch based training here, but just using this for book keeping and being able to
# reuse the same training loop with other datasets/loaders.
for epoch in range(first_epoch, num_train_epochs):
for batch in train_dataloader:
with torch.no_grad():
micro_conds = batch["micro_conds"].to(accelerator.device, non_blocking=True)
pixel_values = batch["image"].to(accelerator.device, non_blocking=True)
batch_size = pixel_values.shape[0]
split_batch_size = args.split_vae_encode if args.split_vae_encode is not None else batch_size
num_splits = math.ceil(batch_size / split_batch_size)
image_tokens = []
for i in range(num_splits):
start_idx = i * split_batch_size
end_idx = min((i + 1) * split_batch_size, batch_size)
bs = pixel_values.shape[0]
image_tokens.append(
vq_model.quantize(vq_model.encode(pixel_values[start_idx:end_idx]).latents)[2][2].reshape(
bs, -1
)
)
image_tokens = torch.cat(image_tokens, dim=0)
batch_size, seq_len = image_tokens.shape
timesteps = torch.rand(batch_size, device=image_tokens.device)
mask_prob = torch.cos(timesteps * math.pi * 0.5)
mask_prob = mask_prob.clip(args.min_masking_rate)
num_token_masked = (seq_len * mask_prob).round().clamp(min=1)
batch_randperm = torch.rand(batch_size, seq_len, device=image_tokens.device).argsort(dim=-1)
mask = batch_randperm < num_token_masked.unsqueeze(-1)
mask_id = accelerator.unwrap_model(model).config.vocab_size - 1
input_ids = torch.where(mask, mask_id, image_tokens)
labels = torch.where(mask, image_tokens, -100)
if args.cond_dropout_prob > 0.0:
assert encoder_hidden_states is not None
batch_size = encoder_hidden_states.shape[0]
mask = (
torch.zeros((batch_size, 1, 1), device=encoder_hidden_states.device).float().uniform_(0, 1)
< args.cond_dropout_prob
)
empty_embeds_ = empty_embeds.expand(batch_size, -1, -1)
encoder_hidden_states = torch.where(
(encoder_hidden_states * mask).bool(), encoder_hidden_states, empty_embeds_
)
empty_clip_embeds_ = empty_clip_embeds.expand(batch_size, -1)
cond_embeds = torch.where((cond_embeds * mask.squeeze(-1)).bool(), cond_embeds, empty_clip_embeds_)
bs = input_ids.shape[0]
vae_scale_factor = 2 ** (len(vq_model.config.block_out_channels) - 1)
resolution = args.resolution // vae_scale_factor
input_ids = input_ids.reshape(bs, resolution, resolution)
if "prompt_input_ids" in batch:
with nullcontext() if args.train_text_encoder else torch.no_grad():
encoder_hidden_states, cond_embeds = encode_prompt(
text_encoder, batch["prompt_input_ids"].to(accelerator.device, non_blocking=True)
)
# Train Step
with accelerator.accumulate(model):
codebook_size = accelerator.unwrap_model(model).config.codebook_size
logits = (
model(
input_ids=input_ids,
encoder_hidden_states=encoder_hidden_states,
micro_conds=micro_conds,
pooled_text_emb=cond_embeds,
)
.reshape(bs, codebook_size, -1)
.permute(0, 2, 1)
.reshape(-1, codebook_size)
)
loss = F.cross_entropy(
logits,
labels.view(-1),
ignore_index=-100,
reduction="mean",
)
# Gather the losses across all processes for logging (if we use distributed training).
avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean()
avg_masking_rate = accelerator.gather(mask_prob.repeat(args.train_batch_size)).mean()
accelerator.backward(loss)
if args.max_grad_norm is not None and accelerator.sync_gradients:
accelerator.clip_grad_norm_(model.parameters(), args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad(set_to_none=True)
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
if args.use_ema:
ema.step(model.parameters())
if (global_step + 1) % args.logging_steps == 0:
logs = {
"step_loss": avg_loss.item(),
"lr": lr_scheduler.get_last_lr()[0],
"avg_masking_rate": avg_masking_rate.item(),
}
accelerator.log(logs, step=global_step + 1)
logger.info(
f"Step: {global_step + 1} "
f"Loss: {avg_loss.item():0.4f} "
f"LR: {lr_scheduler.get_last_lr()[0]:0.6f}"
)
if (global_step + 1) % args.checkpointing_steps == 0:
save_checkpoint(args, accelerator, global_step + 1)
if (global_step + 1) % args.validation_steps == 0 and accelerator.is_main_process:
if args.use_ema:
ema.store(model.parameters())
ema.copy_to(model.parameters())
with torch.no_grad():
logger.info("Generating images...")
model.eval()
if args.train_text_encoder:
text_encoder.eval()
scheduler = AmusedScheduler.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="scheduler",
revision=args.revision,
variant=args.variant,
)
pipe = AmusedPipeline(
transformer=accelerator.unwrap_model(model),
tokenizer=tokenizer,
text_encoder=text_encoder,
vqvae=vq_model,
scheduler=scheduler,
)
pil_images = pipe(prompt=args.validation_prompts).images
wandb_images = [
wandb.Image(image, caption=args.validation_prompts[i])
for i, image in enumerate(pil_images)
]
wandb.log({"generated_images": wandb_images}, step=global_step + 1)
model.train()
if args.train_text_encoder:
text_encoder.train()
if args.use_ema:
ema.restore(model.parameters())
global_step += 1
# Stop training if max steps is reached
if global_step >= args.max_train_steps:
break
# End for
accelerator.wait_for_everyone()
# Evaluate and save checkpoint at the end of training
save_checkpoint(args, accelerator, global_step)
# Save the final trained checkpoint
if accelerator.is_main_process:
model = accelerator.unwrap_model(model)
if args.use_ema:
ema.copy_to(model.parameters())
model.save_pretrained(args.output_dir)
accelerator.end_training()
def save_checkpoint(args, accelerator, global_step):
output_dir = args.output_dir
# _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
if accelerator.is_main_process and args.checkpoints_total_limit is not None:
checkpoints = os.listdir(output_dir)
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))
# before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
if len(checkpoints) >= args.checkpoints_total_limit:
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
removing_checkpoints = checkpoints[0:num_to_remove]
logger.info(
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
)
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")
for removing_checkpoint in removing_checkpoints:
removing_checkpoint = os.path.join(output_dir, removing_checkpoint)
shutil.rmtree(removing_checkpoint)
save_path = Path(output_dir) / f"checkpoint-{global_step}"
accelerator.save_state(save_path)
logger.info(f"Saved state to {save_path}")
if __name__ == "__main__":
main(parse_args())

File diff suppressed because it is too large Load Diff

View File

@@ -5,10 +5,11 @@ from typing import Dict, List, Union
import safetensors.torch
import torch
from huggingface_hub import snapshot_download
from huggingface_hub.utils import validate_hf_hub_args
from diffusers import DiffusionPipeline, __version__
from diffusers.schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
from diffusers.utils import CONFIG_NAME, DIFFUSERS_CACHE, ONNX_WEIGHTS_NAME, WEIGHTS_NAME
from diffusers.utils import CONFIG_NAME, ONNX_WEIGHTS_NAME, WEIGHTS_NAME
class CheckpointMergerPipeline(DiffusionPipeline):
@@ -57,6 +58,7 @@ class CheckpointMergerPipeline(DiffusionPipeline):
return (temp_dict, meta_keys)
@torch.no_grad()
@validate_hf_hub_args
def merge(self, pretrained_model_name_or_path_list: List[Union[str, os.PathLike]], **kwargs):
"""
Returns a new pipeline object of the class 'DiffusionPipeline' with the merged checkpoints(weights) of the models passed
@@ -69,7 +71,7 @@ class CheckpointMergerPipeline(DiffusionPipeline):
**kwargs:
Supports all the default DiffusionPipeline.get_config_dict kwargs viz..
cache_dir, resume_download, force_download, proxies, local_files_only, use_auth_token, revision, torch_dtype, device_map.
cache_dir, resume_download, force_download, proxies, local_files_only, token, revision, torch_dtype, device_map.
alpha - The interpolation parameter. Ranges from 0 to 1. It affects the ratio in which the checkpoints are merged. A 0.8 alpha
would mean that the first model checkpoints would affect the final result far less than an alpha of 0.2
@@ -81,12 +83,12 @@ class CheckpointMergerPipeline(DiffusionPipeline):
"""
# Default kwargs from DiffusionPipeline
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
cache_dir = kwargs.pop("cache_dir", None)
resume_download = kwargs.pop("resume_download", False)
force_download = kwargs.pop("force_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", False)
use_auth_token = kwargs.pop("use_auth_token", None)
token = kwargs.pop("token", None)
revision = kwargs.pop("revision", None)
torch_dtype = kwargs.pop("torch_dtype", None)
device_map = kwargs.pop("device_map", None)
@@ -123,7 +125,7 @@ class CheckpointMergerPipeline(DiffusionPipeline):
force_download=force_download,
proxies=proxies,
local_files_only=local_files_only,
use_auth_token=use_auth_token,
token=token,
revision=revision,
)
config_dicts.append(config_dict)
@@ -159,7 +161,7 @@ class CheckpointMergerPipeline(DiffusionPipeline):
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
use_auth_token=use_auth_token,
token=token,
revision=revision,
allow_patterns=allow_patterns,
user_agent=user_agent,

View File

@@ -0,0 +1,865 @@
import inspect
from typing import Any, Dict, List, Optional, Union
import torch
import torch.nn as nn
from transformers import AutoModel, AutoTokenizer, CLIPImageProcessor
from diffusers import DiffusionPipeline
from diffusers.image_processor import VaeImageProcessor
from diffusers.loaders import LoraLoaderMixin
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.models.lora import adjust_lora_scale_text_encoder
from diffusers.pipelines.stable_diffusion.pipeline_output import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import (
USE_PEFT_BACKEND,
logging,
scale_lora_layers,
unscale_lora_layers,
)
from diffusers.utils.torch_utils import randn_tensor
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class TranslatorBase(nn.Module):
def __init__(self, num_tok, dim, dim_out, mult=2):
super().__init__()
self.dim_in = dim
self.dim_out = dim_out
self.net_tok = nn.Sequential(
nn.Linear(num_tok, int(num_tok * mult)),
nn.LayerNorm(int(num_tok * mult)),
nn.GELU(),
nn.Linear(int(num_tok * mult), int(num_tok * mult)),
nn.LayerNorm(int(num_tok * mult)),
nn.GELU(),
nn.Linear(int(num_tok * mult), num_tok),
nn.LayerNorm(num_tok),
)
self.net_sen = nn.Sequential(
nn.Linear(dim, int(dim * mult)),
nn.LayerNorm(int(dim * mult)),
nn.GELU(),
nn.Linear(int(dim * mult), int(dim * mult)),
nn.LayerNorm(int(dim * mult)),
nn.GELU(),
nn.Linear(int(dim * mult), dim_out),
nn.LayerNorm(dim_out),
)
def forward(self, x):
if self.dim_in == self.dim_out:
indentity_0 = x
x = self.net_sen(x)
x += indentity_0
x = x.transpose(1, 2)
indentity_1 = x
x = self.net_tok(x)
x += indentity_1
x = x.transpose(1, 2)
else:
x = self.net_sen(x)
x = x.transpose(1, 2)
x = self.net_tok(x)
x = x.transpose(1, 2)
return x
class TranslatorBaseNoLN(nn.Module):
def __init__(self, num_tok, dim, dim_out, mult=2):
super().__init__()
self.dim_in = dim
self.dim_out = dim_out
self.net_tok = nn.Sequential(
nn.Linear(num_tok, int(num_tok * mult)),
nn.GELU(),
nn.Linear(int(num_tok * mult), int(num_tok * mult)),
nn.GELU(),
nn.Linear(int(num_tok * mult), num_tok),
)
self.net_sen = nn.Sequential(
nn.Linear(dim, int(dim * mult)),
nn.GELU(),
nn.Linear(int(dim * mult), int(dim * mult)),
nn.GELU(),
nn.Linear(int(dim * mult), dim_out),
)
def forward(self, x):
if self.dim_in == self.dim_out:
indentity_0 = x
x = self.net_sen(x)
x += indentity_0
x = x.transpose(1, 2)
indentity_1 = x
x = self.net_tok(x)
x += indentity_1
x = x.transpose(1, 2)
else:
x = self.net_sen(x)
x = x.transpose(1, 2)
x = self.net_tok(x)
x = x.transpose(1, 2)
return x
class TranslatorNoLN(nn.Module):
def __init__(self, num_tok, dim, dim_out, mult=2, depth=5):
super().__init__()
self.blocks = nn.ModuleList([TranslatorBase(num_tok, dim, dim, mult=2) for d in range(depth)])
self.gelu = nn.GELU()
self.tail = TranslatorBaseNoLN(num_tok, dim, dim_out, mult=2)
def forward(self, x):
for block in self.blocks:
x = block(x) + x
x = self.gelu(x)
x = self.tail(x)
return x
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
"""
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
"""
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
# rescale the results from guidance (fixes overexposure)
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
return noise_cfg
def retrieve_timesteps(
scheduler,
num_inference_steps: Optional[int] = None,
device: Optional[Union[str, torch.device]] = None,
timesteps: Optional[List[int]] = None,
**kwargs,
):
"""
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
Args:
scheduler (`SchedulerMixin`):
The scheduler to get timesteps from.
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model. If used,
`timesteps` must be `None`.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
timesteps (`List[int]`, *optional*):
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
must be `None`.
Returns:
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
second element is the number of inference steps.
"""
if timesteps is not None:
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accepts_timesteps:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" timestep schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
else:
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
timesteps = scheduler.timesteps
return timesteps, num_inference_steps
class GlueGenStableDiffusionPipeline(DiffusionPipeline, LoraLoaderMixin):
def __init__(
self,
vae: AutoencoderKL,
text_encoder: AutoModel,
tokenizer: AutoTokenizer,
unet: UNet2DConditionModel,
scheduler: KarrasDiffusionSchedulers,
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPImageProcessor,
language_adapter: TranslatorNoLN = None,
tensor_norm: torch.FloatTensor = None,
requires_safety_checker: bool = True,
):
super().__init__()
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
language_adapter=language_adapter,
tensor_norm=tensor_norm,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
self.register_to_config(requires_safety_checker=requires_safety_checker)
def load_language_adapter(
self,
model_path: str,
num_token: int,
dim: int,
dim_out: int,
tensor_norm: torch.FloatTensor,
mult: int = 2,
depth: int = 5,
):
device = self._execution_device
self.tensor_norm = tensor_norm.to(device)
self.language_adapter = TranslatorNoLN(num_tok=num_token, dim=dim, dim_out=dim_out, mult=mult, depth=depth).to(
device
)
self.language_adapter.load_state_dict(torch.load(model_path))
def enable_vae_slicing(self):
r"""
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
"""
self.vae.enable_slicing()
def disable_vae_slicing(self):
r"""
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
computing decoding in one step.
"""
self.vae.disable_slicing()
def enable_vae_tiling(self):
r"""
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
processing larger images.
"""
self.vae.enable_tiling()
def disable_vae_tiling(self):
r"""
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
computing decoding in one step.
"""
self.vae.disable_tiling()
def _adapt_language(self, prompt_embeds: torch.FloatTensor):
prompt_embeds = prompt_embeds / 3
prompt_embeds = self.language_adapter(prompt_embeds) * (self.tensor_norm / 2)
return prompt_embeds
def encode_prompt(
self,
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt=None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
lora_scale: Optional[float] = None,
clip_skip: Optional[int] = None,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
device: (`torch.device`):
torch device
num_images_per_prompt (`int`):
number of images that should be generated per prompt
do_classifier_free_guidance (`bool`):
whether to use classifier free guidance or not
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
lora_scale (`float`, *optional*):
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
clip_skip (`int`, *optional*):
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
the output of the pre-final layer will be used for computing the prompt embeddings.
"""
# set lora scale so that monkey patched LoRA
# function of text encoder can correctly access it
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
self._lora_scale = lora_scale
# dynamically adjust the LoRA scale
if not USE_PEFT_BACKEND:
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
else:
scale_lora_layers(self.text_encoder, lora_scale)
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if prompt_embeds is None:
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
text_input_ids, untruncated_ids
):
removed_text = self.tokenizer.batch_decode(
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
)
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = text_inputs.attention_mask.to(device)
elif self.language_adapter is not None:
attention_mask = text_inputs.attention_mask.to(device)
else:
attention_mask = None
if clip_skip is None:
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
prompt_embeds = prompt_embeds[0]
else:
prompt_embeds = self.text_encoder(
text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
)
# Access the `hidden_states` first, that contains a tuple of
# all the hidden states from the encoder layers. Then index into
# the tuple to access the hidden states from the desired layer.
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
# We also need to apply the final LayerNorm here to not mess with the
# representations. The `last_hidden_states` that we typically use for
# obtaining the final prompt representations passes through the LayerNorm
# layer.
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
# Run prompt language adapter
if self.language_adapter is not None:
prompt_embeds = self._adapt_language(prompt_embeds)
if self.text_encoder is not None:
prompt_embeds_dtype = self.text_encoder.dtype
elif self.unet is not None:
prompt_embeds_dtype = self.unet.dtype
else:
prompt_embeds_dtype = prompt_embeds.dtype
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
bs_embed, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance and negative_prompt_embeds is None:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif prompt is not None and type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
max_length = prompt_embeds.shape[1]
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = uncond_input.attention_mask.to(device)
else:
attention_mask = None
negative_prompt_embeds = self.text_encoder(
uncond_input.input_ids.to(device),
attention_mask=attention_mask,
)
negative_prompt_embeds = negative_prompt_embeds[0]
# Run negative prompt language adapter
if self.language_adapter is not None:
negative_prompt_embeds = self._adapt_language(negative_prompt_embeds)
if do_classifier_free_guidance:
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND:
# Retrieve the original scale by scaling back the LoRA layers
unscale_lora_layers(self.text_encoder, lora_scale)
return prompt_embeds, negative_prompt_embeds
def run_safety_checker(self, image, device, dtype):
if self.safety_checker is None:
has_nsfw_concept = None
else:
if torch.is_tensor(image):
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
else:
feature_extractor_input = self.image_processor.numpy_to_pil(image)
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
image, has_nsfw_concept = self.safety_checker(
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
)
return image, has_nsfw_concept
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def check_inputs(
self,
prompt,
height,
width,
negative_prompt=None,
prompt_embeds=None,
negative_prompt_embeds=None,
):
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if prompt_embeds is not None and negative_prompt_embeds is not None:
if prompt_embeds.shape != negative_prompt_embeds.shape:
raise ValueError(
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
f" {negative_prompt_embeds.shape}."
)
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
latents = latents.to(device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
return latents
def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497.
The suffixes after the scaling factors represent the stages where they are being applied.
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values
that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
Args:
s1 (`float`):
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
mitigate "oversmoothing effect" in the enhanced denoising process.
s2 (`float`):
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
mitigate "oversmoothing effect" in the enhanced denoising process.
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
"""
if not hasattr(self, "unet"):
raise ValueError("The pipeline must have `unet` for using FreeU.")
self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2)
def disable_freeu(self):
"""Disables the FreeU mechanism if enabled."""
self.unet.disable_freeu()
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
"""
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
Args:
timesteps (`torch.Tensor`):
generate embedding vectors at these timesteps
embedding_dim (`int`, *optional*, defaults to 512):
dimension of the embeddings to generate
dtype:
data type of the generated embeddings
Returns:
`torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
"""
assert len(w.shape) == 1
w = w * 1000.0
half_dim = embedding_dim // 2
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
emb = w.to(dtype)[:, None] * emb[None, :]
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
if embedding_dim % 2 == 1: # zero pad
emb = torch.nn.functional.pad(emb, (0, 1))
assert emb.shape == (w.shape[0], embedding_dim)
return emb
@property
def guidance_scale(self):
return self._guidance_scale
@property
def guidance_rescale(self):
return self._guidance_rescale
@property
def clip_skip(self):
return self._clip_skip
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
@property
def do_classifier_free_guidance(self):
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
@property
def cross_attention_kwargs(self):
return self._cross_attention_kwargs
@property
def num_timesteps(self):
return self._num_timesteps
@property
def interrupt(self):
return self._interrupt
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
timesteps: List[int] = None,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
guidance_rescale: float = 0.0,
clip_skip: Optional[int] = None,
**kwargs,
):
r"""
The call function to the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
timesteps (`List[int]`, *optional*):
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
passed will be used. Must be in descending order.
guidance_scale (`float`, *optional*, defaults to 7.5):
A higher guidance scale value encourages the model to generate images closely linked to the text
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor is generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
provided, text embeddings are generated from the `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
guidance_rescale (`float`, *optional*, defaults to 0.0):
Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when
using zero terminal SNR.
clip_skip (`int`, *optional*):
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
the output of the pre-final layer will be used for computing the prompt embeddings.
Examples:
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
otherwise a `tuple` is returned where the first element is a list with the generated images and the
second element is a list of `bool`s indicating whether the corresponding generated image contains
"not-safe-for-work" (nsfw) content.
"""
# 0. Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
# to deal with lora scaling and other possible forward hooks
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
height,
width,
negative_prompt,
prompt_embeds,
negative_prompt_embeds,
)
self._guidance_scale = guidance_scale
self._guidance_rescale = guidance_rescale
self._clip_skip = clip_skip
self._cross_attention_kwargs = cross_attention_kwargs
self._interrupt = False
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# 3. Encode input prompt
lora_scale = (
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
)
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
prompt,
device,
num_images_per_prompt,
self.do_classifier_free_guidance,
negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
lora_scale=lora_scale,
clip_skip=self.clip_skip,
)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
if self.do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
# 4. Prepare timesteps
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
# 5. Prepare latent variables
num_channels_latents = self.unet.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 6.2 Optionally get Guidance Scale Embedding
timestep_cond = None
if self.unet.config.time_cond_proj_dim is not None:
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
timestep_cond = self.get_guidance_scale_embedding(
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
).to(device=device, dtype=latents.dtype)
# 7. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
self._num_timesteps = len(timesteps)
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
timestep_cond=timestep_cond,
cross_attention_kwargs=self.cross_attention_kwargs,
return_dict=False,
)[0]
# perform guidance
if self.do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if not output_type == "latent":
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[
0
]
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
else:
image = latents
has_nsfw_concept = None
if has_nsfw_concept is None:
do_denormalize = [True] * image.shape[0]
else:
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)

View File

@@ -0,0 +1,707 @@
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
from typing import Any, Callable, Dict, List, Optional, Union
import torch
from packaging import version
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers.configuration_utils import FrozenDict
from diffusers.image_processor import VaeImageProcessor
from diffusers.loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.models.lora import adjust_lora_scale_text_encoder
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import (
deprecate,
logging,
)
from diffusers.utils.torch_utils import randn_tensor
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
"""
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
"""
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
# rescale the results from guidance (fixes overexposure)
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
return noise_cfg
class InstaFlowPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, FromSingleFileMixin):
r"""
Pipeline for text-to-image generation using Rectified Flow and Euler discretization.
This customized pipeline is based on StableDiffusionPipeline from the official Diffusers library (0.21.4)
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
The pipeline also inherits the following loading methods:
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
- [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
- [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
text_encoder ([`~transformers.CLIPTextModel`]):
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
tokenizer ([`~transformers.CLIPTokenizer`]):
A `CLIPTokenizer` to tokenize text.
unet ([`UNet2DConditionModel`]):
A `UNet2DConditionModel` to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
about a model's potential harms.
feature_extractor ([`~transformers.CLIPImageProcessor`]):
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
"""
model_cpu_offload_seq = "text_encoder->unet->vae"
_optional_components = ["safety_checker", "feature_extractor"]
_exclude_from_cpu_offload = ["safety_checker"]
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: KarrasDiffusionSchedulers,
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPImageProcessor,
requires_safety_checker: bool = True,
):
super().__init__()
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
" file"
)
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
new_config = dict(scheduler.config)
new_config["steps_offset"] = 1
scheduler._internal_dict = FrozenDict(new_config)
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
" `clip_sample` should be set to False in the configuration file. Please make sure to update the"
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
)
deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
new_config = dict(scheduler.config)
new_config["clip_sample"] = False
scheduler._internal_dict = FrozenDict(new_config)
if safety_checker is None and requires_safety_checker:
logger.warning(
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
)
if safety_checker is not None and feature_extractor is None:
raise ValueError(
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
)
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
version.parse(unet.config._diffusers_version).base_version
) < version.parse("0.9.0.dev0")
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
deprecation_message = (
"The configuration file of the unet has set the default `sample_size` to smaller than"
" 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
" in the config might lead to incorrect results in future versions. If you have downloaded this"
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
" the `unet/config.json` file"
)
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
new_config = dict(unet.config)
new_config["sample_size"] = 64
unet._internal_dict = FrozenDict(new_config)
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
self.register_to_config(requires_safety_checker=requires_safety_checker)
def enable_vae_slicing(self):
r"""
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
"""
self.vae.enable_slicing()
def disable_vae_slicing(self):
r"""
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
computing decoding in one step.
"""
self.vae.disable_slicing()
def enable_vae_tiling(self):
r"""
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
processing larger images.
"""
self.vae.enable_tiling()
def disable_vae_tiling(self):
r"""
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
computing decoding in one step.
"""
self.vae.disable_tiling()
def _encode_prompt(
self,
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt=None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
lora_scale: Optional[float] = None,
):
deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple."
deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)
prompt_embeds_tuple = self.encode_prompt(
prompt=prompt,
device=device,
num_images_per_prompt=num_images_per_prompt,
do_classifier_free_guidance=do_classifier_free_guidance,
negative_prompt=negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
lora_scale=lora_scale,
)
# concatenate for backwards comp
prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]])
return prompt_embeds
def encode_prompt(
self,
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt=None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
lora_scale: Optional[float] = None,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
device: (`torch.device`):
torch device
num_images_per_prompt (`int`):
number of images that should be generated per prompt
do_classifier_free_guidance (`bool`):
whether to use classifier free guidance or not
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
lora_scale (`float`, *optional*):
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
"""
# set lora scale so that monkey patched LoRA
# function of text encoder can correctly access it
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
self._lora_scale = lora_scale
# dynamically adjust the LoRA scale
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if prompt_embeds is None:
# textual inversion: procecss multi-vector tokens if necessary
if isinstance(self, TextualInversionLoaderMixin):
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
text_input_ids, untruncated_ids
):
removed_text = self.tokenizer.batch_decode(
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
)
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = text_inputs.attention_mask.to(device)
else:
attention_mask = None
prompt_embeds = self.text_encoder(
text_input_ids.to(device),
attention_mask=attention_mask,
)
prompt_embeds = prompt_embeds[0]
if self.text_encoder is not None:
prompt_embeds_dtype = self.text_encoder.dtype
elif self.unet is not None:
prompt_embeds_dtype = self.unet.dtype
else:
prompt_embeds_dtype = prompt_embeds.dtype
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
bs_embed, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance and negative_prompt_embeds is None:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif prompt is not None and type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
# textual inversion: procecss multi-vector tokens if necessary
if isinstance(self, TextualInversionLoaderMixin):
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
max_length = prompt_embeds.shape[1]
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = uncond_input.attention_mask.to(device)
else:
attention_mask = None
negative_prompt_embeds = self.text_encoder(
uncond_input.input_ids.to(device),
attention_mask=attention_mask,
)
negative_prompt_embeds = negative_prompt_embeds[0]
if do_classifier_free_guidance:
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
return prompt_embeds, negative_prompt_embeds
def run_safety_checker(self, image, device, dtype):
if self.safety_checker is None:
has_nsfw_concept = None
else:
if torch.is_tensor(image):
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
else:
feature_extractor_input = self.image_processor.numpy_to_pil(image)
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
image, has_nsfw_concept = self.safety_checker(
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
)
return image, has_nsfw_concept
def decode_latents(self, latents):
deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)
latents = 1 / self.vae.config.scaling_factor * latents
image = self.vae.decode(latents, return_dict=False)[0]
image = (image / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
return image
def merge_dW_to_unet(pipe, dW_dict, alpha=1.0):
_tmp_sd = pipe.unet.state_dict()
for key in dW_dict.keys():
_tmp_sd[key] += dW_dict[key] * alpha
pipe.unet.load_state_dict(_tmp_sd, strict=False)
return pipe
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def check_inputs(
self,
prompt,
height,
width,
callback_steps,
negative_prompt=None,
prompt_embeds=None,
negative_prompt_embeds=None,
):
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if prompt_embeds is not None and negative_prompt_embeds is not None:
if prompt_embeds.shape != negative_prompt_embeds.shape:
raise ValueError(
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
f" {negative_prompt_embeds.shape}."
)
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
latents = latents.to(device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
return latents
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
guidance_rescale: float = 0.0,
):
r"""
The call function to the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
A higher guidance scale value encourages the model to generate images closely linked to the text
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor is generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
provided, text embeddings are generated from the `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
callback (`Callable`, *optional*):
A function that calls every `callback_steps` steps during inference. The function is called with the
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function is called. If not specified, the callback is called at
every step.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
guidance_rescale (`float`, *optional*, defaults to 0.7):
Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when
using zero terminal SNR.
Examples:
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
otherwise a `tuple` is returned where the first element is a list with the generated images and the
second element is a list of `bool`s indicating whether the corresponding generated image contains
"not-safe-for-work" (nsfw) content.
"""
# 0. Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds
)
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input prompt
text_encoder_lora_scale = (
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
)
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
lora_scale=text_encoder_lora_scale,
)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
if do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
# 4. Prepare timesteps
timesteps = [(1.0 - i / num_inference_steps) * 1000.0 for i in range(num_inference_steps)]
# 5. Prepare latent variables
num_channels_latents = self.unet.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
dt = 1.0 / num_inference_steps
# 7. Denoising loop of Euler discretization from t = 0 to t = 1
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
vec_t = torch.ones((latent_model_input.shape[0],), device=latents.device) * t
v_pred = self.unet(latent_model_input, vec_t, encoder_hidden_states=prompt_embeds).sample
# perform guidance
if do_classifier_free_guidance:
v_pred_neg, v_pred_text = v_pred.chunk(2)
v_pred = v_pred_neg + guidance_scale * (v_pred_text - v_pred_neg)
latents = latents + dt * v_pred
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
step_idx = i // getattr(self.scheduler, "order", 1)
callback(step_idx, t, latents)
if not output_type == "latent":
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
else:
image = latents
has_nsfw_concept = None
if has_nsfw_concept is None:
do_denormalize = [True] * image.shape[0]
else:
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)

Some files were not shown because too many files have changed in this diff Show More