[OmegaConf] replace it with yaml (#6488)

* remove omegaconf from convert_from_ckpt.

* remove from single_file.

* change to string based ubscription.

* style

* okay

* fix: vae_param

* no . indexing.

* style

* style

* turn getattrs into explicit if/else

* style

* propagate changes to ldm_uncond.

* propagate to gligen

* propagate to if.

* fix: quotes.

* propagate to audioldm.

* propagate to audioldm2

* propagate to musicldm.

* propagate to vq_diffusion

* propagate to zero123.

* remove omegaconf from diffusers codebase.
This commit is contained in:
Sayak Paul
2024-01-15 20:02:10 +05:30
committed by GitHub
parent 3d574b3bbe
commit cb4b3f0b78
15 changed files with 358 additions and 423 deletions

View File

@@ -1,13 +1,13 @@
import argparse
import OmegaConf
import torch
import yaml
from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel
def convert_ldm_original(checkpoint_path, config_path, output_path):
config = OmegaConf.load(config_path)
config = yaml.safe_load(config_path)
state_dict = torch.load(checkpoint_path, map_location="cpu")["model"]
keys = list(state_dict.keys())
@@ -25,8 +25,8 @@ def convert_ldm_original(checkpoint_path, config_path, output_path):
if key.startswith(unet_key):
unet_state_dict[key.replace(unet_key, "")] = state_dict[key]
vqvae_init_args = config.model.params.first_stage_config.params
unet_init_args = config.model.params.unet_config.params
vqvae_init_args = config["model"]["params"]["first_stage_config"]["params"]
unet_init_args = config["model"]["params"]["unet_config"]["params"]
vqvae = VQModel(**vqvae_init_args).eval()
vqvae.load_state_dict(first_stage_dict)
@@ -35,10 +35,10 @@ def convert_ldm_original(checkpoint_path, config_path, output_path):
unet.load_state_dict(unet_state_dict)
noise_scheduler = DDIMScheduler(
timesteps=config.model.params.timesteps,
timesteps=config["model"]["params"]["timesteps"],
beta_schedule="scaled_linear",
beta_start=config.model.params.linear_start,
beta_end=config.model.params.linear_end,
beta_start=config["model"]["params"]["linear_start"],
beta_end=config["model"]["params"]["linear_end"],
clip_sample=False,
)

View File

@@ -2,6 +2,7 @@ import argparse
import re
import torch
import yaml
from transformers import (
CLIPProcessor,
CLIPTextModel,
@@ -28,8 +29,6 @@ from diffusers.pipelines.stable_diffusion.convert_from_ckpt import (
textenc_conversion_map,
textenc_pattern,
)
from diffusers.utils import is_omegaconf_available
from diffusers.utils.import_utils import BACKENDS_MAPPING
def convert_open_clip_checkpoint(checkpoint):
@@ -370,52 +369,52 @@ def convert_gligen_unet_checkpoint(checkpoint, config, path=None, extract_ema=Fa
def create_vae_config(original_config, image_size: int):
vae_params = original_config.autoencoder.params.ddconfig
_ = original_config.autoencoder.params.embed_dim
vae_params = original_config["autoencoder"]["params"]["ddconfig"]
_ = original_config["autoencoder"]["params"]["embed_dim"]
block_out_channels = [vae_params.ch * mult for mult in vae_params.ch_mult]
block_out_channels = [vae_params["ch"] * mult for mult in vae_params["ch_mult"]]
down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels)
up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels)
config = {
"sample_size": image_size,
"in_channels": vae_params.in_channels,
"out_channels": vae_params.out_ch,
"in_channels": vae_params["in_channels"],
"out_channels": vae_params["out_ch"],
"down_block_types": tuple(down_block_types),
"up_block_types": tuple(up_block_types),
"block_out_channels": tuple(block_out_channels),
"latent_channels": vae_params.z_channels,
"layers_per_block": vae_params.num_res_blocks,
"latent_channels": vae_params["z_channels"],
"layers_per_block": vae_params["num_res_blocks"],
}
return config
def create_unet_config(original_config, image_size: int, attention_type):
unet_params = original_config.model.params
vae_params = original_config.autoencoder.params.ddconfig
unet_params = original_config["model"]["params"]
vae_params = original_config["autoencoder"]["params"]["ddconfig"]
block_out_channels = [unet_params.model_channels * mult for mult in unet_params.channel_mult]
block_out_channels = [unet_params["model_channels"] * mult for mult in unet_params["channel_mult"]]
down_block_types = []
resolution = 1
for i in range(len(block_out_channels)):
block_type = "CrossAttnDownBlock2D" if resolution in unet_params.attention_resolutions else "DownBlock2D"
block_type = "CrossAttnDownBlock2D" if resolution in unet_params["attention_resolutions"] else "DownBlock2D"
down_block_types.append(block_type)
if i != len(block_out_channels) - 1:
resolution *= 2
up_block_types = []
for i in range(len(block_out_channels)):
block_type = "CrossAttnUpBlock2D" if resolution in unet_params.attention_resolutions else "UpBlock2D"
block_type = "CrossAttnUpBlock2D" if resolution in unet_params["attention_resolutions"] else "UpBlock2D"
up_block_types.append(block_type)
resolution //= 2
vae_scale_factor = 2 ** (len(vae_params.ch_mult) - 1)
vae_scale_factor = 2 ** (len(vae_params["ch_mult"]) - 1)
head_dim = unet_params.num_heads if "num_heads" in unet_params else None
head_dim = unet_params["num_heads"] if "num_heads" in unet_params else None
use_linear_projection = (
unet_params.use_linear_in_transformer if "use_linear_in_transformer" in unet_params else False
unet_params["use_linear_in_transformer"] if "use_linear_in_transformer" in unet_params else False
)
if use_linear_projection:
if head_dim is None:
@@ -423,11 +422,11 @@ def create_unet_config(original_config, image_size: int, attention_type):
config = {
"sample_size": image_size // vae_scale_factor,
"in_channels": unet_params.in_channels,
"in_channels": unet_params["in_channels"],
"down_block_types": tuple(down_block_types),
"block_out_channels": tuple(block_out_channels),
"layers_per_block": unet_params.num_res_blocks,
"cross_attention_dim": unet_params.context_dim,
"layers_per_block": unet_params["num_res_blocks"],
"cross_attention_dim": unet_params["context_dim"],
"attention_head_dim": head_dim,
"use_linear_projection": use_linear_projection,
"attention_type": attention_type,
@@ -445,11 +444,6 @@ def convert_gligen_to_diffusers(
num_in_channels: int = None,
device: str = None,
):
if not is_omegaconf_available():
raise ValueError(BACKENDS_MAPPING["omegaconf"][1])
from omegaconf import OmegaConf
if device is None:
device = "cuda" if torch.cuda.is_available() else "cpu"
checkpoint = torch.load(checkpoint_path, map_location=device)
@@ -461,14 +455,14 @@ def convert_gligen_to_diffusers(
else:
print("global_step key not found in model")
original_config = OmegaConf.load(original_config_file)
original_config = yaml.safe_load(original_config_file)
if num_in_channels is not None:
original_config["model"]["params"]["in_channels"] = num_in_channels
num_train_timesteps = original_config.diffusion.params.timesteps
beta_start = original_config.diffusion.params.linear_start
beta_end = original_config.diffusion.params.linear_end
num_train_timesteps = original_config["diffusion"]["params"]["timesteps"]
beta_start = original_config["diffusion"]["params"]["linear_start"]
beta_end = original_config["diffusion"]["params"]["linear_end"]
scheduler = DDIMScheduler(
beta_end=beta_end,

View File

@@ -4,6 +4,7 @@ import os
import numpy as np
import torch
import yaml
from torch.nn import functional as F
from transformers import CLIPConfig, CLIPImageProcessor, CLIPVisionModelWithProjection, T5EncoderModel, T5Tokenizer
@@ -11,14 +12,6 @@ from diffusers import DDPMScheduler, IFPipeline, IFSuperResolutionPipeline, UNet
from diffusers.pipelines.deepfloyd_if.safety_checker import IFSafetyChecker
try:
from omegaconf import OmegaConf
except ImportError:
raise ImportError(
"OmegaConf is required to convert the IF checkpoints. Please install it with `pip install" " OmegaConf`."
)
def parse_args():
parser = argparse.ArgumentParser()
@@ -143,8 +136,8 @@ def convert_super_res_pipeline(tokenizer, text_encoder, feature_extractor, safet
def get_stage_1_unet(unet_config, unet_checkpoint_path):
original_unet_config = OmegaConf.load(unet_config)
original_unet_config = original_unet_config.params
original_unet_config = yaml.safe_load(unet_config)
original_unet_config = original_unet_config["params"]
unet_diffusers_config = create_unet_diffusers_config(original_unet_config)
@@ -215,11 +208,11 @@ def convert_safety_checker(p_head_path, w_head_path):
def create_unet_diffusers_config(original_unet_config, class_embed_type=None):
attention_resolutions = parse_list(original_unet_config.attention_resolutions)
attention_resolutions = [original_unet_config.image_size // int(res) for res in attention_resolutions]
attention_resolutions = parse_list(original_unet_config["attention_resolutions"])
attention_resolutions = [original_unet_config["image_size"] // int(res) for res in attention_resolutions]
channel_mult = parse_list(original_unet_config.channel_mult)
block_out_channels = [original_unet_config.model_channels * mult for mult in channel_mult]
channel_mult = parse_list(original_unet_config["channel_mult"])
block_out_channels = [original_unet_config["model_channels"] * mult for mult in channel_mult]
down_block_types = []
resolution = 1
@@ -227,7 +220,7 @@ def create_unet_diffusers_config(original_unet_config, class_embed_type=None):
for i in range(len(block_out_channels)):
if resolution in attention_resolutions:
block_type = "SimpleCrossAttnDownBlock2D"
elif original_unet_config.resblock_updown:
elif original_unet_config["resblock_updown"]:
block_type = "ResnetDownsampleBlock2D"
else:
block_type = "DownBlock2D"
@@ -241,17 +234,17 @@ def create_unet_diffusers_config(original_unet_config, class_embed_type=None):
for i in range(len(block_out_channels)):
if resolution in attention_resolutions:
block_type = "SimpleCrossAttnUpBlock2D"
elif original_unet_config.resblock_updown:
elif original_unet_config["resblock_updown"]:
block_type = "ResnetUpsampleBlock2D"
else:
block_type = "UpBlock2D"
up_block_types.append(block_type)
resolution //= 2
head_dim = original_unet_config.num_head_channels
head_dim = original_unet_config["num_head_channels"]
use_linear_projection = (
original_unet_config.use_linear_in_transformer
original_unet_config["use_linear_in_transformer"]
if "use_linear_in_transformer" in original_unet_config
else False
)
@@ -264,27 +257,27 @@ def create_unet_diffusers_config(original_unet_config, class_embed_type=None):
if class_embed_type is None:
if "num_classes" in original_unet_config:
if original_unet_config.num_classes == "sequential":
if original_unet_config["num_classes"] == "sequential":
class_embed_type = "projection"
assert "adm_in_channels" in original_unet_config
projection_class_embeddings_input_dim = original_unet_config.adm_in_channels
projection_class_embeddings_input_dim = original_unet_config["adm_in_channels"]
else:
raise NotImplementedError(
f"Unknown conditional unet num_classes config: {original_unet_config.num_classes}"
f"Unknown conditional unet num_classes config: {original_unet_config['num_classes']}"
)
config = {
"sample_size": original_unet_config.image_size,
"in_channels": original_unet_config.in_channels,
"sample_size": original_unet_config["image_size"],
"in_channels": original_unet_config["in_channels"],
"down_block_types": tuple(down_block_types),
"block_out_channels": tuple(block_out_channels),
"layers_per_block": original_unet_config.num_res_blocks,
"cross_attention_dim": original_unet_config.encoder_channels,
"layers_per_block": original_unet_config["num_res_blocks"],
"cross_attention_dim": original_unet_config["encoder_channels"],
"attention_head_dim": head_dim,
"use_linear_projection": use_linear_projection,
"class_embed_type": class_embed_type,
"projection_class_embeddings_input_dim": projection_class_embeddings_input_dim,
"out_channels": original_unet_config.out_channels,
"out_channels": original_unet_config["out_channels"],
"up_block_types": tuple(up_block_types),
"upcast_attention": False, # TODO: guessing
"cross_attention_norm": "group_norm",
@@ -293,11 +286,11 @@ def create_unet_diffusers_config(original_unet_config, class_embed_type=None):
"act_fn": "gelu",
}
if original_unet_config.use_scale_shift_norm:
if original_unet_config["use_scale_shift_norm"]:
config["resnet_time_scale_shift"] = "scale_shift"
if "encoder_dim" in original_unet_config:
config["encoder_hid_dim"] = original_unet_config.encoder_dim
config["encoder_hid_dim"] = original_unet_config["encoder_dim"]
return config
@@ -725,15 +718,15 @@ def parse_list(value):
def get_super_res_unet(unet_checkpoint_path, verify_param_count=True, sample_size=None):
orig_path = unet_checkpoint_path
original_unet_config = OmegaConf.load(os.path.join(orig_path, "config.yml"))
original_unet_config = original_unet_config.params
original_unet_config = yaml.safe_load(os.path.join(orig_path, "config.yml"))
original_unet_config = original_unet_config["params"]
unet_diffusers_config = superres_create_unet_diffusers_config(original_unet_config)
unet_diffusers_config["time_embedding_dim"] = original_unet_config.model_channels * int(
original_unet_config.channel_mult.split(",")[-1]
unet_diffusers_config["time_embedding_dim"] = original_unet_config["model_channels"] * int(
original_unet_config["channel_mult"].split(",")[-1]
)
if original_unet_config.encoder_dim != original_unet_config.encoder_channels:
unet_diffusers_config["encoder_hid_dim"] = original_unet_config.encoder_dim
if original_unet_config["encoder_dim"] != original_unet_config["encoder_channels"]:
unet_diffusers_config["encoder_hid_dim"] = original_unet_config["encoder_dim"]
unet_diffusers_config["class_embed_type"] = "timestep"
unet_diffusers_config["addition_embed_type"] = "text"
@@ -742,16 +735,16 @@ def get_super_res_unet(unet_checkpoint_path, verify_param_count=True, sample_siz
unet_diffusers_config["resnet_out_scale_factor"] = 1 / 0.7071
unet_diffusers_config["mid_block_scale_factor"] = 1 / 0.7071
unet_diffusers_config["only_cross_attention"] = (
bool(original_unet_config.disable_self_attentions)
bool(original_unet_config["disable_self_attentions"])
if (
"disable_self_attentions" in original_unet_config
and isinstance(original_unet_config.disable_self_attentions, int)
and isinstance(original_unet_config["disable_self_attentions"], int)
)
else True
)
if sample_size is None:
unet_diffusers_config["sample_size"] = original_unet_config.image_size
unet_diffusers_config["sample_size"] = original_unet_config["image_size"]
else:
# The second upscaler unet's sample size is incorrectly specified
# in the config and is instead hardcoded in source
@@ -783,11 +776,11 @@ def get_super_res_unet(unet_checkpoint_path, verify_param_count=True, sample_siz
def superres_create_unet_diffusers_config(original_unet_config):
attention_resolutions = parse_list(original_unet_config.attention_resolutions)
attention_resolutions = [original_unet_config.image_size // int(res) for res in attention_resolutions]
attention_resolutions = parse_list(original_unet_config["attention_resolutions"])
attention_resolutions = [original_unet_config["image_size"] // int(res) for res in attention_resolutions]
channel_mult = parse_list(original_unet_config.channel_mult)
block_out_channels = [original_unet_config.model_channels * mult for mult in channel_mult]
channel_mult = parse_list(original_unet_config["channel_mult"])
block_out_channels = [original_unet_config["model_channels"] * mult for mult in channel_mult]
down_block_types = []
resolution = 1
@@ -795,7 +788,7 @@ def superres_create_unet_diffusers_config(original_unet_config):
for i in range(len(block_out_channels)):
if resolution in attention_resolutions:
block_type = "SimpleCrossAttnDownBlock2D"
elif original_unet_config.resblock_updown:
elif original_unet_config["resblock_updown"]:
block_type = "ResnetDownsampleBlock2D"
else:
block_type = "DownBlock2D"
@@ -809,16 +802,16 @@ def superres_create_unet_diffusers_config(original_unet_config):
for i in range(len(block_out_channels)):
if resolution in attention_resolutions:
block_type = "SimpleCrossAttnUpBlock2D"
elif original_unet_config.resblock_updown:
elif original_unet_config["resblock_updown"]:
block_type = "ResnetUpsampleBlock2D"
else:
block_type = "UpBlock2D"
up_block_types.append(block_type)
resolution //= 2
head_dim = original_unet_config.num_head_channels
head_dim = original_unet_config["num_head_channels"]
use_linear_projection = (
original_unet_config.use_linear_in_transformer
original_unet_config["use_linear_in_transformer"]
if "use_linear_in_transformer" in original_unet_config
else False
)
@@ -831,26 +824,26 @@ def superres_create_unet_diffusers_config(original_unet_config):
projection_class_embeddings_input_dim = None
if "num_classes" in original_unet_config:
if original_unet_config.num_classes == "sequential":
if original_unet_config["num_classes"] == "sequential":
class_embed_type = "projection"
assert "adm_in_channels" in original_unet_config
projection_class_embeddings_input_dim = original_unet_config.adm_in_channels
projection_class_embeddings_input_dim = original_unet_config["adm_in_channels"]
else:
raise NotImplementedError(
f"Unknown conditional unet num_classes config: {original_unet_config.num_classes}"
f"Unknown conditional unet num_classes config: {original_unet_config['num_classes']}"
)
config = {
"in_channels": original_unet_config.in_channels,
"in_channels": original_unet_config["in_channels"],
"down_block_types": tuple(down_block_types),
"block_out_channels": tuple(block_out_channels),
"layers_per_block": tuple(original_unet_config.num_res_blocks),
"cross_attention_dim": original_unet_config.encoder_channels,
"layers_per_block": tuple(original_unet_config["num_res_blocks"]),
"cross_attention_dim": original_unet_config["encoder_channels"],
"attention_head_dim": head_dim,
"use_linear_projection": use_linear_projection,
"class_embed_type": class_embed_type,
"projection_class_embeddings_input_dim": projection_class_embeddings_input_dim,
"out_channels": original_unet_config.out_channels,
"out_channels": original_unet_config["out_channels"],
"up_block_types": tuple(up_block_types),
"upcast_attention": False, # TODO: guessing
"cross_attention_norm": "group_norm",
@@ -858,7 +851,7 @@ def superres_create_unet_diffusers_config(original_unet_config):
"act_fn": "gelu",
}
if original_unet_config.use_scale_shift_norm:
if original_unet_config["use_scale_shift_norm"]:
config["resnet_time_scale_shift"] = "scale_shift"
return config

View File

@@ -19,6 +19,7 @@ import re
from typing import List, Union
import torch
import yaml
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
@@ -45,7 +46,7 @@ from diffusers import (
LMSDiscreteScheduler,
PNDMScheduler,
)
from diffusers.utils import is_omegaconf_available, is_safetensors_available
from diffusers.utils import is_safetensors_available
from diffusers.utils.import_utils import BACKENDS_MAPPING
@@ -212,41 +213,41 @@ def create_unet_diffusers_config(original_config, image_size: int):
"""
Creates a UNet config for diffusers based on the config of the original AudioLDM2 model.
"""
unet_params = original_config.model.params.unet_config.params
vae_params = original_config.model.params.first_stage_config.params.ddconfig
unet_params = original_config["model"]["params"]["unet_config"]["params"]
vae_params = original_config["model"]["params"]["first_stage_config"]["params"]["ddconfig"]
block_out_channels = [unet_params.model_channels * mult for mult in unet_params.channel_mult]
block_out_channels = [unet_params["model_channels"] * mult for mult in unet_params["channel_mult"]]
down_block_types = []
resolution = 1
for i in range(len(block_out_channels)):
block_type = "CrossAttnDownBlock2D" if resolution in unet_params.attention_resolutions else "DownBlock2D"
block_type = "CrossAttnDownBlock2D" if resolution in unet_params["attention_resolutions"] else "DownBlock2D"
down_block_types.append(block_type)
if i != len(block_out_channels) - 1:
resolution *= 2
up_block_types = []
for i in range(len(block_out_channels)):
block_type = "CrossAttnUpBlock2D" if resolution in unet_params.attention_resolutions else "UpBlock2D"
block_type = "CrossAttnUpBlock2D" if resolution in unet_params["attention_resolutions"] else "UpBlock2D"
up_block_types.append(block_type)
resolution //= 2
vae_scale_factor = 2 ** (len(vae_params.ch_mult) - 1)
vae_scale_factor = 2 ** (len(vae_params["ch_mult"]) - 1)
cross_attention_dim = list(unet_params.context_dim) if "context_dim" in unet_params else block_out_channels
cross_attention_dim = list(unet_params["context_dim"]) if "context_dim" in unet_params else block_out_channels
if len(cross_attention_dim) > 1:
# require two or more cross-attention layers per-block, each of different dimension
cross_attention_dim = [cross_attention_dim for _ in range(len(block_out_channels))]
config = {
"sample_size": image_size // vae_scale_factor,
"in_channels": unet_params.in_channels,
"out_channels": unet_params.out_channels,
"in_channels": unet_params["in_channels"],
"out_channels": unet_params["out_channels"],
"down_block_types": tuple(down_block_types),
"up_block_types": tuple(up_block_types),
"block_out_channels": tuple(block_out_channels),
"layers_per_block": unet_params.num_res_blocks,
"transformer_layers_per_block": unet_params.transformer_depth,
"layers_per_block": unet_params["num_res_blocks"],
"transformer_layers_per_block": unet_params["transformer_depth"],
"cross_attention_dim": tuple(cross_attention_dim),
}
@@ -259,24 +260,24 @@ def create_vae_diffusers_config(original_config, checkpoint, image_size: int):
Creates a VAE config for diffusers based on the config of the original AudioLDM2 model. Compared to the original
Stable Diffusion conversion, this function passes a *learnt* VAE scaling factor to the diffusers VAE.
"""
vae_params = original_config.model.params.first_stage_config.params.ddconfig
_ = original_config.model.params.first_stage_config.params.embed_dim
vae_params = original_config["model"]["params"]["first_stage_config"]["params"]["ddconfig"]
_ = original_config["model"]["params"]["first_stage_config"]["params"]["embed_dim"]
block_out_channels = [vae_params.ch * mult for mult in vae_params.ch_mult]
block_out_channels = [vae_params["ch"] * mult for mult in vae_params["ch_mult"]]
down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels)
up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels)
scaling_factor = checkpoint["scale_factor"] if "scale_by_std" in original_config.model.params else 0.18215
scaling_factor = checkpoint["scale_factor"] if "scale_by_std" in original_config["model"]["params"] else 0.18215
config = {
"sample_size": image_size,
"in_channels": vae_params.in_channels,
"out_channels": vae_params.out_ch,
"in_channels": vae_params["in_channels"],
"out_channels": vae_params["out_ch"],
"down_block_types": tuple(down_block_types),
"up_block_types": tuple(up_block_types),
"block_out_channels": tuple(block_out_channels),
"latent_channels": vae_params.z_channels,
"layers_per_block": vae_params.num_res_blocks,
"latent_channels": vae_params["z_channels"],
"layers_per_block": vae_params["num_res_blocks"],
"scaling_factor": float(scaling_factor),
}
return config
@@ -285,9 +286,9 @@ def create_vae_diffusers_config(original_config, checkpoint, image_size: int):
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.create_diffusers_schedular
def create_diffusers_schedular(original_config):
schedular = DDIMScheduler(
num_train_timesteps=original_config.model.params.timesteps,
beta_start=original_config.model.params.linear_start,
beta_end=original_config.model.params.linear_end,
num_train_timesteps=original_config["model"]["params"]["timesteps"],
beta_start=original_config["model"]["params"]["linear_start"],
beta_end=original_config["model"]["params"]["linear_end"],
beta_schedule="scaled_linear",
)
return schedular
@@ -692,17 +693,17 @@ def create_transformers_vocoder_config(original_config):
"""
Creates a config for transformers SpeechT5HifiGan based on the config of the vocoder model.
"""
vocoder_params = original_config.model.params.vocoder_config.params
vocoder_params = original_config["model"]["params"]["vocoder_config"]["params"]
config = {
"model_in_dim": vocoder_params.num_mels,
"sampling_rate": vocoder_params.sampling_rate,
"upsample_initial_channel": vocoder_params.upsample_initial_channel,
"upsample_rates": list(vocoder_params.upsample_rates),
"upsample_kernel_sizes": list(vocoder_params.upsample_kernel_sizes),
"resblock_kernel_sizes": list(vocoder_params.resblock_kernel_sizes),
"model_in_dim": vocoder_params["num_mels"],
"sampling_rate": vocoder_params["sampling_rate"],
"upsample_initial_channel": vocoder_params["upsample_initial_channel"],
"upsample_rates": list(vocoder_params["upsample_rates"]),
"upsample_kernel_sizes": list(vocoder_params["upsample_kernel_sizes"]),
"resblock_kernel_sizes": list(vocoder_params["resblock_kernel_sizes"]),
"resblock_dilation_sizes": [
list(resblock_dilation) for resblock_dilation in vocoder_params.resblock_dilation_sizes
list(resblock_dilation) for resblock_dilation in vocoder_params["resblock_dilation_sizes"]
],
"normalize_before": False,
}
@@ -876,11 +877,6 @@ def load_pipeline_from_original_AudioLDM2_ckpt(
return: An AudioLDM2Pipeline object representing the passed-in `.ckpt`/`.safetensors` file.
"""
if not is_omegaconf_available():
raise ValueError(BACKENDS_MAPPING["omegaconf"][1])
from omegaconf import OmegaConf
if from_safetensors:
if not is_safetensors_available():
raise ValueError(BACKENDS_MAPPING["safetensors"][1])
@@ -903,9 +899,8 @@ def load_pipeline_from_original_AudioLDM2_ckpt(
if original_config_file is None:
original_config = DEFAULT_CONFIG
original_config = OmegaConf.create(original_config)
else:
original_config = OmegaConf.load(original_config_file)
original_config = yaml.safe_load(original_config_file)
if image_size is not None:
original_config["model"]["params"]["unet_config"]["params"]["image_size"] = image_size
@@ -926,9 +921,9 @@ def load_pipeline_from_original_AudioLDM2_ckpt(
if prediction_type is None:
prediction_type = "epsilon"
num_train_timesteps = original_config.model.params.timesteps
beta_start = original_config.model.params.linear_start
beta_end = original_config.model.params.linear_end
num_train_timesteps = original_config["model"]["params"]["timesteps"]
beta_start = original_config["model"]["params"]["linear_start"]
beta_end = original_config["model"]["params"]["linear_end"]
scheduler = DDIMScheduler(
beta_end=beta_end,
@@ -1026,9 +1021,9 @@ def load_pipeline_from_original_AudioLDM2_ckpt(
# Convert the GPT2 encoder model: AudioLDM2 uses the same configuration as the original GPT2 base model
gpt2_config = GPT2Config.from_pretrained("gpt2")
gpt2_model = GPT2Model(gpt2_config)
gpt2_model.config.max_new_tokens = (
original_config.model.params.cond_stage_config.crossattn_audiomae_generated.params.sequence_gen_length
)
gpt2_model.config.max_new_tokens = original_config["model"]["params"]["cond_stage_config"][
"crossattn_audiomae_generated"
]["params"]["sequence_gen_length"]
converted_gpt2_checkpoint = extract_sub_model(checkpoint, key_prefix="cond_stage_models.0.model.")
gpt2_model.load_state_dict(converted_gpt2_checkpoint)

View File

@@ -18,6 +18,7 @@ import argparse
import re
import torch
import yaml
from transformers import (
AutoTokenizer,
ClapTextConfig,
@@ -38,8 +39,6 @@ from diffusers import (
PNDMScheduler,
UNet2DConditionModel,
)
from diffusers.utils import is_omegaconf_available
from diffusers.utils.import_utils import BACKENDS_MAPPING
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.shave_segments
@@ -215,45 +214,45 @@ def create_unet_diffusers_config(original_config, image_size: int):
"""
Creates a UNet config for diffusers based on the config of the original AudioLDM model.
"""
unet_params = original_config.model.params.unet_config.params
vae_params = original_config.model.params.first_stage_config.params.ddconfig
unet_params = original_config["model"]["params"]["unet_config"]["params"]
vae_params = original_config["model"]["params"]["first_stage_config"]["params"]["ddconfig"]
block_out_channels = [unet_params.model_channels * mult for mult in unet_params.channel_mult]
block_out_channels = [unet_params["model_channels"] * mult for mult in unet_params["channel_mult"]]
down_block_types = []
resolution = 1
for i in range(len(block_out_channels)):
block_type = "CrossAttnDownBlock2D" if resolution in unet_params.attention_resolutions else "DownBlock2D"
block_type = "CrossAttnDownBlock2D" if resolution in unet_params["attention_resolutions"] else "DownBlock2D"
down_block_types.append(block_type)
if i != len(block_out_channels) - 1:
resolution *= 2
up_block_types = []
for i in range(len(block_out_channels)):
block_type = "CrossAttnUpBlock2D" if resolution in unet_params.attention_resolutions else "UpBlock2D"
block_type = "CrossAttnUpBlock2D" if resolution in unet_params["attention_resolutions"] else "UpBlock2D"
up_block_types.append(block_type)
resolution //= 2
vae_scale_factor = 2 ** (len(vae_params.ch_mult) - 1)
vae_scale_factor = 2 ** (len(vae_params["ch_mult"]) - 1)
cross_attention_dim = (
unet_params.cross_attention_dim if "cross_attention_dim" in unet_params else block_out_channels
unet_params["cross_attention_dim"] if "cross_attention_dim" in unet_params else block_out_channels
)
class_embed_type = "simple_projection" if "extra_film_condition_dim" in unet_params else None
projection_class_embeddings_input_dim = (
unet_params.extra_film_condition_dim if "extra_film_condition_dim" in unet_params else None
unet_params["extra_film_condition_dim"] if "extra_film_condition_dim" in unet_params else None
)
class_embeddings_concat = unet_params.extra_film_use_concat if "extra_film_use_concat" in unet_params else None
class_embeddings_concat = unet_params["extra_film_use_concat"] if "extra_film_use_concat" in unet_params else None
config = {
"sample_size": image_size // vae_scale_factor,
"in_channels": unet_params.in_channels,
"out_channels": unet_params.out_channels,
"in_channels": unet_params["in_channels"],
"out_channels": unet_params["out_channels"],
"down_block_types": tuple(down_block_types),
"up_block_types": tuple(up_block_types),
"block_out_channels": tuple(block_out_channels),
"layers_per_block": unet_params.num_res_blocks,
"layers_per_block": unet_params["num_res_blocks"],
"cross_attention_dim": cross_attention_dim,
"class_embed_type": class_embed_type,
"projection_class_embeddings_input_dim": projection_class_embeddings_input_dim,
@@ -269,24 +268,24 @@ def create_vae_diffusers_config(original_config, checkpoint, image_size: int):
Creates a VAE config for diffusers based on the config of the original AudioLDM model. Compared to the original
Stable Diffusion conversion, this function passes a *learnt* VAE scaling factor to the diffusers VAE.
"""
vae_params = original_config.model.params.first_stage_config.params.ddconfig
_ = original_config.model.params.first_stage_config.params.embed_dim
vae_params = original_config["model"]["params"]["first_stage_config"]["params"]["ddconfig"]
_ = original_config["model"]["params"]["first_stage_config"]["params"]["embed_dim"]
block_out_channels = [vae_params.ch * mult for mult in vae_params.ch_mult]
block_out_channels = [vae_params["ch"] * mult for mult in vae_params["ch_mult"]]
down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels)
up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels)
scaling_factor = checkpoint["scale_factor"] if "scale_by_std" in original_config.model.params else 0.18215
scaling_factor = checkpoint["scale_factor"] if "scale_by_std" in original_config["model"]["params"] else 0.18215
config = {
"sample_size": image_size,
"in_channels": vae_params.in_channels,
"out_channels": vae_params.out_ch,
"in_channels": vae_params["in_channels"],
"out_channels": vae_params["out_ch"],
"down_block_types": tuple(down_block_types),
"up_block_types": tuple(up_block_types),
"block_out_channels": tuple(block_out_channels),
"latent_channels": vae_params.z_channels,
"layers_per_block": vae_params.num_res_blocks,
"latent_channels": vae_params["z_channels"],
"layers_per_block": vae_params["num_res_blocks"],
"scaling_factor": float(scaling_factor),
}
return config
@@ -295,9 +294,9 @@ def create_vae_diffusers_config(original_config, checkpoint, image_size: int):
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.create_diffusers_schedular
def create_diffusers_schedular(original_config):
schedular = DDIMScheduler(
num_train_timesteps=original_config.model.params.timesteps,
beta_start=original_config.model.params.linear_start,
beta_end=original_config.model.params.linear_end,
num_train_timesteps=original_config["model"]["params"]["timesteps"],
beta_start=original_config["model"]["params"]["linear_start"],
beta_end=original_config["model"]["params"]["linear_end"],
beta_schedule="scaled_linear",
)
return schedular
@@ -668,17 +667,17 @@ def create_transformers_vocoder_config(original_config):
"""
Creates a config for transformers SpeechT5HifiGan based on the config of the vocoder model.
"""
vocoder_params = original_config.model.params.vocoder_config.params
vocoder_params = original_config["model"]["params"]["vocoder_config"]["params"]
config = {
"model_in_dim": vocoder_params.num_mels,
"sampling_rate": vocoder_params.sampling_rate,
"upsample_initial_channel": vocoder_params.upsample_initial_channel,
"upsample_rates": list(vocoder_params.upsample_rates),
"upsample_kernel_sizes": list(vocoder_params.upsample_kernel_sizes),
"resblock_kernel_sizes": list(vocoder_params.resblock_kernel_sizes),
"model_in_dim": vocoder_params["num_mels"],
"sampling_rate": vocoder_params["sampling_rate"],
"upsample_initial_channel": vocoder_params["upsample_initial_channel"],
"upsample_rates": list(vocoder_params["upsample_rates"]),
"upsample_kernel_sizes": list(vocoder_params["upsample_kernel_sizes"]),
"resblock_kernel_sizes": list(vocoder_params["resblock_kernel_sizes"]),
"resblock_dilation_sizes": [
list(resblock_dilation) for resblock_dilation in vocoder_params.resblock_dilation_sizes
list(resblock_dilation) for resblock_dilation in vocoder_params["resblock_dilation_sizes"]
],
"normalize_before": False,
}
@@ -818,11 +817,6 @@ def load_pipeline_from_original_audioldm_ckpt(
return: An AudioLDMPipeline object representing the passed-in `.ckpt`/`.safetensors` file.
"""
if not is_omegaconf_available():
raise ValueError(BACKENDS_MAPPING["omegaconf"][1])
from omegaconf import OmegaConf
if from_safetensors:
from safetensors import safe_open
@@ -842,9 +836,8 @@ def load_pipeline_from_original_audioldm_ckpt(
if original_config_file is None:
original_config = DEFAULT_CONFIG
original_config = OmegaConf.create(original_config)
else:
original_config = OmegaConf.load(original_config_file)
original_config = yaml.safe_load(original_config_file)
if num_in_channels is not None:
original_config["model"]["params"]["unet_config"]["params"]["in_channels"] = num_in_channels
@@ -868,9 +861,9 @@ def load_pipeline_from_original_audioldm_ckpt(
if image_size is None:
image_size = 512
num_train_timesteps = original_config.model.params.timesteps
beta_start = original_config.model.params.linear_start
beta_end = original_config.model.params.linear_end
num_train_timesteps = original_config["model"]["params"]["timesteps"]
beta_start = original_config["model"]["params"]["linear_start"]
beta_end = original_config["model"]["params"]["linear_end"]
scheduler = DDIMScheduler(
beta_end=beta_end,

View File

@@ -18,6 +18,7 @@ import argparse
import re
import torch
import yaml
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
@@ -39,8 +40,6 @@ from diffusers import (
PNDMScheduler,
UNet2DConditionModel,
)
from diffusers.utils import is_omegaconf_available
from diffusers.utils.import_utils import BACKENDS_MAPPING
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.shave_segments
@@ -212,45 +211,45 @@ def create_unet_diffusers_config(original_config, image_size: int):
"""
Creates a UNet config for diffusers based on the config of the original MusicLDM model.
"""
unet_params = original_config.model.params.unet_config.params
vae_params = original_config.model.params.first_stage_config.params.ddconfig
unet_params = original_config["model"]["params"]["unet_config"]["params"]
vae_params = original_config["model"]["params"]["first_stage_config"]["params"]["ddconfig"]
block_out_channels = [unet_params.model_channels * mult for mult in unet_params.channel_mult]
block_out_channels = [unet_params["model_channels"] * mult for mult in unet_params["channel_mult"]]
down_block_types = []
resolution = 1
for i in range(len(block_out_channels)):
block_type = "CrossAttnDownBlock2D" if resolution in unet_params.attention_resolutions else "DownBlock2D"
block_type = "CrossAttnDownBlock2D" if resolution in unet_params["attention_resolutions"] else "DownBlock2D"
down_block_types.append(block_type)
if i != len(block_out_channels) - 1:
resolution *= 2
up_block_types = []
for i in range(len(block_out_channels)):
block_type = "CrossAttnUpBlock2D" if resolution in unet_params.attention_resolutions else "UpBlock2D"
block_type = "CrossAttnUpBlock2D" if resolution in unet_params["attention_resolutions"] else "UpBlock2D"
up_block_types.append(block_type)
resolution //= 2
vae_scale_factor = 2 ** (len(vae_params.ch_mult) - 1)
vae_scale_factor = 2 ** (len(vae_params["ch_mult"]) - 1)
cross_attention_dim = (
unet_params.cross_attention_dim if "cross_attention_dim" in unet_params else block_out_channels
unet_params["cross_attention_dim"] if "cross_attention_dim" in unet_params else block_out_channels
)
class_embed_type = "simple_projection" if "extra_film_condition_dim" in unet_params else None
projection_class_embeddings_input_dim = (
unet_params.extra_film_condition_dim if "extra_film_condition_dim" in unet_params else None
unet_params["extra_film_condition_dim"] if "extra_film_condition_dim" in unet_params else None
)
class_embeddings_concat = unet_params.extra_film_use_concat if "extra_film_use_concat" in unet_params else None
class_embeddings_concat = unet_params["extra_film_use_concat"] if "extra_film_use_concat" in unet_params else None
config = {
"sample_size": image_size // vae_scale_factor,
"in_channels": unet_params.in_channels,
"out_channels": unet_params.out_channels,
"in_channels": unet_params["in_channels"],
"out_channels": unet_params["out_channels"],
"down_block_types": tuple(down_block_types),
"up_block_types": tuple(up_block_types),
"block_out_channels": tuple(block_out_channels),
"layers_per_block": unet_params.num_res_blocks,
"layers_per_block": unet_params["num_res_blocks"],
"cross_attention_dim": cross_attention_dim,
"class_embed_type": class_embed_type,
"projection_class_embeddings_input_dim": projection_class_embeddings_input_dim,
@@ -266,24 +265,24 @@ def create_vae_diffusers_config(original_config, checkpoint, image_size: int):
Creates a VAE config for diffusers based on the config of the original MusicLDM model. Compared to the original
Stable Diffusion conversion, this function passes a *learnt* VAE scaling factor to the diffusers VAE.
"""
vae_params = original_config.model.params.first_stage_config.params.ddconfig
_ = original_config.model.params.first_stage_config.params.embed_dim
vae_params = original_config["model"]["params"]["first_stage_config"]["params"]["ddconfig"]
_ = original_config["model"]["params"]["first_stage_config"]["params"]["embed_dim"]
block_out_channels = [vae_params.ch * mult for mult in vae_params.ch_mult]
block_out_channels = [vae_params["ch"] * mult for mult in vae_params["ch_mult"]]
down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels)
up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels)
scaling_factor = checkpoint["scale_factor"] if "scale_by_std" in original_config.model.params else 0.18215
scaling_factor = checkpoint["scale_factor"] if "scale_by_std" in original_config["model"]["params"] else 0.18215
config = {
"sample_size": image_size,
"in_channels": vae_params.in_channels,
"out_channels": vae_params.out_ch,
"in_channels": vae_params["in_channels"],
"out_channels": vae_params["out_ch"],
"down_block_types": tuple(down_block_types),
"up_block_types": tuple(up_block_types),
"block_out_channels": tuple(block_out_channels),
"latent_channels": vae_params.z_channels,
"layers_per_block": vae_params.num_res_blocks,
"latent_channels": vae_params["z_channels"],
"layers_per_block": vae_params["num_res_blocks"],
"scaling_factor": float(scaling_factor),
}
return config
@@ -292,9 +291,9 @@ def create_vae_diffusers_config(original_config, checkpoint, image_size: int):
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.create_diffusers_schedular
def create_diffusers_schedular(original_config):
schedular = DDIMScheduler(
num_train_timesteps=original_config.model.params.timesteps,
beta_start=original_config.model.params.linear_start,
beta_end=original_config.model.params.linear_end,
num_train_timesteps=original_config["model"]["params"]["timesteps"],
beta_start=original_config["model"]["params"]["linear_start"],
beta_end=original_config["model"]["params"]["linear_end"],
beta_schedule="scaled_linear",
)
return schedular
@@ -674,17 +673,17 @@ def create_transformers_vocoder_config(original_config):
"""
Creates a config for transformers SpeechT5HifiGan based on the config of the vocoder model.
"""
vocoder_params = original_config.model.params.vocoder_config.params
vocoder_params = original_config["model"]["params"]["vocoder_config"]["params"]
config = {
"model_in_dim": vocoder_params.num_mels,
"sampling_rate": vocoder_params.sampling_rate,
"upsample_initial_channel": vocoder_params.upsample_initial_channel,
"upsample_rates": list(vocoder_params.upsample_rates),
"upsample_kernel_sizes": list(vocoder_params.upsample_kernel_sizes),
"resblock_kernel_sizes": list(vocoder_params.resblock_kernel_sizes),
"model_in_dim": vocoder_params["num_mels"],
"sampling_rate": vocoder_params["sampling_rate"],
"upsample_initial_channel": vocoder_params["upsample_initial_channel"],
"upsample_rates": list(vocoder_params["upsample_rates"]),
"upsample_kernel_sizes": list(vocoder_params["upsample_kernel_sizes"]),
"resblock_kernel_sizes": list(vocoder_params["resblock_kernel_sizes"]),
"resblock_dilation_sizes": [
list(resblock_dilation) for resblock_dilation in vocoder_params.resblock_dilation_sizes
list(resblock_dilation) for resblock_dilation in vocoder_params["resblock_dilation_sizes"]
],
"normalize_before": False,
}
@@ -823,12 +822,6 @@ def load_pipeline_from_original_MusicLDM_ckpt(
If `checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.
return: An MusicLDMPipeline object representing the passed-in `.ckpt`/`.safetensors` file.
"""
if not is_omegaconf_available():
raise ValueError(BACKENDS_MAPPING["omegaconf"][1])
from omegaconf import OmegaConf
if from_safetensors:
from safetensors import safe_open
@@ -848,9 +841,8 @@ def load_pipeline_from_original_MusicLDM_ckpt(
if original_config_file is None:
original_config = DEFAULT_CONFIG
original_config = OmegaConf.create(original_config)
else:
original_config = OmegaConf.load(original_config_file)
original_config = yaml.safe_load(original_config_file)
if num_in_channels is not None:
original_config["model"]["params"]["unet_config"]["params"]["in_channels"] = num_in_channels
@@ -874,9 +866,9 @@ def load_pipeline_from_original_MusicLDM_ckpt(
if image_size is None:
image_size = 512
num_train_timesteps = original_config.model.params.timesteps
beta_start = original_config.model.params.linear_start
beta_end = original_config.model.params.linear_end
num_train_timesteps = original_config["model"]["params"]["timesteps"]
beta_start = original_config["model"]["params"]["linear_start"]
beta_end = original_config["model"]["params"]["linear_end"]
scheduler = DDIMScheduler(
beta_end=beta_end,

View File

@@ -3,7 +3,7 @@ import io
import requests
import torch
from omegaconf import OmegaConf
import yaml
from diffusers import AutoencoderKL
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import (
@@ -126,7 +126,7 @@ def vae_pt_to_vae_diffuser(
)
io_obj = io.BytesIO(r.content)
original_config = OmegaConf.load(io_obj)
original_config = yaml.safe_load(io_obj)
image_size = 512
device = "cuda" if torch.cuda.is_available() else "cpu"
if checkpoint_path.endswith("safetensors"):

View File

@@ -45,51 +45,45 @@ from diffusers import Transformer2DModel, VQDiffusionPipeline, VQDiffusionSchedu
from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings
try:
from omegaconf import OmegaConf
except ImportError:
raise ImportError(
"OmegaConf is required to convert the VQ Diffusion checkpoints. Please install it with `pip install"
" OmegaConf`."
)
# vqvae model
PORTED_VQVAES = ["image_synthesis.modeling.codecs.image_codec.patch_vqgan.PatchVQGAN"]
def vqvae_model_from_original_config(original_config):
assert original_config.target in PORTED_VQVAES, f"{original_config.target} has not yet been ported to diffusers."
assert (
original_config["target"] in PORTED_VQVAES
), f"{original_config['target']} has not yet been ported to diffusers."
original_config = original_config.params
original_config = original_config["params"]
original_encoder_config = original_config.encoder_config.params
original_decoder_config = original_config.decoder_config.params
original_encoder_config = original_config["encoder_config"]["params"]
original_decoder_config = original_config["decoder_config"]["params"]
in_channels = original_encoder_config.in_channels
out_channels = original_decoder_config.out_ch
in_channels = original_encoder_config["in_channels"]
out_channels = original_decoder_config["out_ch"]
down_block_types = get_down_block_types(original_encoder_config)
up_block_types = get_up_block_types(original_decoder_config)
assert original_encoder_config.ch == original_decoder_config.ch
assert original_encoder_config.ch_mult == original_decoder_config.ch_mult
assert original_encoder_config["ch"] == original_decoder_config["ch"]
assert original_encoder_config["ch_mult"] == original_decoder_config["ch_mult"]
block_out_channels = tuple(
[original_encoder_config.ch * a_ch_mult for a_ch_mult in original_encoder_config.ch_mult]
[original_encoder_config["ch"] * a_ch_mult for a_ch_mult in original_encoder_config["ch_mult"]]
)
assert original_encoder_config.num_res_blocks == original_decoder_config.num_res_blocks
layers_per_block = original_encoder_config.num_res_blocks
assert original_encoder_config["num_res_blocks"] == original_decoder_config["num_res_blocks"]
layers_per_block = original_encoder_config["num_res_blocks"]
assert original_encoder_config.z_channels == original_decoder_config.z_channels
latent_channels = original_encoder_config.z_channels
assert original_encoder_config["z_channels"] == original_decoder_config["z_channels"]
latent_channels = original_encoder_config["z_channels"]
num_vq_embeddings = original_config.n_embed
num_vq_embeddings = original_config["n_embed"]
# Hard coded value for ResnetBlock.GoupNorm(num_groups) in VQ-diffusion
norm_num_groups = 32
e_dim = original_config.embed_dim
e_dim = original_config["embed_dim"]
model = VQModel(
in_channels=in_channels,
@@ -108,9 +102,9 @@ def vqvae_model_from_original_config(original_config):
def get_down_block_types(original_encoder_config):
attn_resolutions = coerce_attn_resolutions(original_encoder_config.attn_resolutions)
num_resolutions = len(original_encoder_config.ch_mult)
resolution = coerce_resolution(original_encoder_config.resolution)
attn_resolutions = coerce_attn_resolutions(original_encoder_config["attn_resolutions"])
num_resolutions = len(original_encoder_config["ch_mult"])
resolution = coerce_resolution(original_encoder_config["resolution"])
curr_res = resolution
down_block_types = []
@@ -129,9 +123,9 @@ def get_down_block_types(original_encoder_config):
def get_up_block_types(original_decoder_config):
attn_resolutions = coerce_attn_resolutions(original_decoder_config.attn_resolutions)
num_resolutions = len(original_decoder_config.ch_mult)
resolution = coerce_resolution(original_decoder_config.resolution)
attn_resolutions = coerce_attn_resolutions(original_decoder_config["attn_resolutions"])
num_resolutions = len(original_decoder_config["ch_mult"])
resolution = coerce_resolution(original_decoder_config["resolution"])
curr_res = [r // 2 ** (num_resolutions - 1) for r in resolution]
up_block_types = []
@@ -150,7 +144,7 @@ def get_up_block_types(original_decoder_config):
def coerce_attn_resolutions(attn_resolutions):
attn_resolutions = OmegaConf.to_object(attn_resolutions)
attn_resolutions = list(attn_resolutions)
attn_resolutions_ = []
for ar in attn_resolutions:
if isinstance(ar, (list, tuple)):
@@ -161,7 +155,6 @@ def coerce_attn_resolutions(attn_resolutions):
def coerce_resolution(resolution):
resolution = OmegaConf.to_object(resolution)
if isinstance(resolution, int):
resolution = [resolution, resolution] # H, W
elif isinstance(resolution, (tuple, list)):
@@ -472,18 +465,18 @@ def transformer_model_from_original_config(
original_diffusion_config, original_transformer_config, original_content_embedding_config
):
assert (
original_diffusion_config.target in PORTED_DIFFUSIONS
), f"{original_diffusion_config.target} has not yet been ported to diffusers."
original_diffusion_config["target"] in PORTED_DIFFUSIONS
), f"{original_diffusion_config['target']} has not yet been ported to diffusers."
assert (
original_transformer_config.target in PORTED_TRANSFORMERS
), f"{original_transformer_config.target} has not yet been ported to diffusers."
original_transformer_config["target"] in PORTED_TRANSFORMERS
), f"{original_transformer_config['target']} has not yet been ported to diffusers."
assert (
original_content_embedding_config.target in PORTED_CONTENT_EMBEDDINGS
), f"{original_content_embedding_config.target} has not yet been ported to diffusers."
original_content_embedding_config["target"] in PORTED_CONTENT_EMBEDDINGS
), f"{original_content_embedding_config['target']} has not yet been ported to diffusers."
original_diffusion_config = original_diffusion_config.params
original_transformer_config = original_transformer_config.params
original_content_embedding_config = original_content_embedding_config.params
original_diffusion_config = original_diffusion_config["params"]
original_transformer_config = original_transformer_config["params"]
original_content_embedding_config = original_content_embedding_config["params"]
inner_dim = original_transformer_config["n_embd"]
@@ -689,13 +682,11 @@ def transformer_feedforward_to_diffusers_checkpoint(checkpoint, *, diffusers_fee
def read_config_file(filename):
# The yaml file contains annotations that certain values should
# loaded as tuples. By default, OmegaConf will panic when reading
# these. Instead, we can manually read the yaml with the FullLoader and then
# construct the OmegaConf object.
# loaded as tuples.
with open(filename) as f:
original_config = yaml.load(f, FullLoader)
return OmegaConf.create(original_config)
return original_config
# We take separate arguments for the vqvae because the ITHQ vqvae config file
@@ -792,9 +783,9 @@ if __name__ == "__main__":
original_config = read_config_file(args.original_config_file).model
diffusion_config = original_config.params.diffusion_config
transformer_config = original_config.params.diffusion_config.params.transformer_config
content_embedding_config = original_config.params.diffusion_config.params.content_emb_config
diffusion_config = original_config["params"]["diffusion_config"]
transformer_config = original_config["params"]["diffusion_config"]["params"]["transformer_config"]
content_embedding_config = original_config["params"]["diffusion_config"]["params"]["content_emb_config"]
pre_checkpoint = torch.load(args.checkpoint_path, map_location=checkpoint_map_location)
@@ -831,7 +822,7 @@ if __name__ == "__main__":
# The learned embeddings are stored on the transformer in the original VQ-diffusion. We store them on a separate
# model, so we pull them off the checkpoint before the checkpoint is deleted.
learnable_classifier_free_sampling_embeddings = diffusion_config.params.learnable_cf
learnable_classifier_free_sampling_embeddings = diffusion_config["params"].learnable_cf
if learnable_classifier_free_sampling_embeddings:
learned_classifier_free_sampling_embeddings_embeddings = checkpoint["transformer.empty_text_embed"]

View File

@@ -14,6 +14,7 @@ $ python convert_zero123_to_diffusers.py \
import argparse
import torch
import yaml
from accelerate import init_empty_weights
from accelerate.utils import set_module_tensor_to_device
from pipeline_zero1to3 import CCProjection, Zero1to3StableDiffusionPipeline
@@ -38,51 +39,54 @@ def create_unet_diffusers_config(original_config, image_size: int, controlnet=Fa
Creates a config for the diffusers based on the config of the LDM model.
"""
if controlnet:
unet_params = original_config.model.params.control_stage_config.params
unet_params = original_config["model"]["params"]["control_stage_config"]["params"]
else:
if "unet_config" in original_config.model.params and original_config.model.params.unet_config is not None:
unet_params = original_config.model.params.unet_config.params
if (
"unet_config" in original_config["model"]["params"]
and original_config["model"]["params"]["unet_config"] is not None
):
unet_params = original_config["model"]["params"]["unet_config"]["params"]
else:
unet_params = original_config.model.params.network_config.params
unet_params = original_config["model"]["params"]["network_config"]["params"]
vae_params = original_config.model.params.first_stage_config.params.ddconfig
vae_params = original_config["model"]["params"]["first_stage_config"]["params"]["ddconfig"]
block_out_channels = [unet_params.model_channels * mult for mult in unet_params.channel_mult]
block_out_channels = [unet_params["model_channels"] * mult for mult in unet_params["channel_mult"]]
down_block_types = []
resolution = 1
for i in range(len(block_out_channels)):
block_type = "CrossAttnDownBlock2D" if resolution in unet_params.attention_resolutions else "DownBlock2D"
block_type = "CrossAttnDownBlock2D" if resolution in unet_params["attention_resolutions"] else "DownBlock2D"
down_block_types.append(block_type)
if i != len(block_out_channels) - 1:
resolution *= 2
up_block_types = []
for i in range(len(block_out_channels)):
block_type = "CrossAttnUpBlock2D" if resolution in unet_params.attention_resolutions else "UpBlock2D"
block_type = "CrossAttnUpBlock2D" if resolution in unet_params["attention_resolutions"] else "UpBlock2D"
up_block_types.append(block_type)
resolution //= 2
if unet_params.transformer_depth is not None:
if unet_params["transformer_depth"] is not None:
transformer_layers_per_block = (
unet_params.transformer_depth
if isinstance(unet_params.transformer_depth, int)
else list(unet_params.transformer_depth)
unet_params["transformer_depth"]
if isinstance(unet_params["transformer_depth"], int)
else list(unet_params["transformer_depth"])
)
else:
transformer_layers_per_block = 1
vae_scale_factor = 2 ** (len(vae_params.ch_mult) - 1)
vae_scale_factor = 2 ** (len(vae_params["ch_mult"]) - 1)
head_dim = unet_params.num_heads if "num_heads" in unet_params else None
head_dim = unet_params["num_heads"] if "num_heads" in unet_params else None
use_linear_projection = (
unet_params.use_linear_in_transformer if "use_linear_in_transformer" in unet_params else False
unet_params["use_linear_in_transformer"] if "use_linear_in_transformer" in unet_params else False
)
if use_linear_projection:
# stable diffusion 2-base-512 and 2-768
if head_dim is None:
head_dim_mult = unet_params.model_channels // unet_params.num_head_channels
head_dim = [head_dim_mult * c for c in list(unet_params.channel_mult)]
head_dim_mult = unet_params["model_channels"] // unet_params["num_head_channels"]
head_dim = [head_dim_mult * c for c in list(unet_params["channel_mult"])]
class_embed_type = None
addition_embed_type = None
@@ -90,13 +94,15 @@ def create_unet_diffusers_config(original_config, image_size: int, controlnet=Fa
projection_class_embeddings_input_dim = None
context_dim = None
if unet_params.context_dim is not None:
if unet_params["context_dim"] is not None:
context_dim = (
unet_params.context_dim if isinstance(unet_params.context_dim, int) else unet_params.context_dim[0]
unet_params["context_dim"]
if isinstance(unet_params["context_dim"], int)
else unet_params["context_dim"][0]
)
if "num_classes" in unet_params:
if unet_params.num_classes == "sequential":
if unet_params["num_classes"] == "sequential":
if context_dim in [2048, 1280]:
# SDXL
addition_embed_type = "text_time"
@@ -104,16 +110,16 @@ def create_unet_diffusers_config(original_config, image_size: int, controlnet=Fa
else:
class_embed_type = "projection"
assert "adm_in_channels" in unet_params
projection_class_embeddings_input_dim = unet_params.adm_in_channels
projection_class_embeddings_input_dim = unet_params["adm_in_channels"]
else:
raise NotImplementedError(f"Unknown conditional unet num_classes config: {unet_params.num_classes}")
raise NotImplementedError(f"Unknown conditional unet num_classes config: {unet_params["num_classes"]}")
config = {
"sample_size": image_size // vae_scale_factor,
"in_channels": unet_params.in_channels,
"in_channels": unet_params["in_channels"],
"down_block_types": tuple(down_block_types),
"block_out_channels": tuple(block_out_channels),
"layers_per_block": unet_params.num_res_blocks,
"layers_per_block": unet_params["num_res_blocks"],
"cross_attention_dim": context_dim,
"attention_head_dim": head_dim,
"use_linear_projection": use_linear_projection,
@@ -125,9 +131,9 @@ def create_unet_diffusers_config(original_config, image_size: int, controlnet=Fa
}
if controlnet:
config["conditioning_channels"] = unet_params.hint_channels
config["conditioning_channels"] = unet_params["hint_channels"]
else:
config["out_channels"] = unet_params.out_channels
config["out_channels"] = unet_params["out_channels"]
config["up_block_types"] = tuple(up_block_types)
return config
@@ -487,22 +493,22 @@ def create_vae_diffusers_config(original_config, image_size: int):
"""
Creates a config for the diffusers based on the config of the LDM model.
"""
vae_params = original_config.model.params.first_stage_config.params.ddconfig
_ = original_config.model.params.first_stage_config.params.embed_dim
vae_params = original_config["model"]["params"]["first_stage_config"]["params"]["ddconfig"]
_ = original_config["model"]["params"]["first_stage_config"]["params"]["embed_dim"]
block_out_channels = [vae_params.ch * mult for mult in vae_params.ch_mult]
block_out_channels = [vae_params["ch"] * mult for mult in vae_params["ch_mult"]]
down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels)
up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels)
config = {
"sample_size": image_size,
"in_channels": vae_params.in_channels,
"out_channels": vae_params.out_ch,
"in_channels": vae_params["in_channels"],
"out_channels": vae_params["out_ch"],
"down_block_types": tuple(down_block_types),
"up_block_types": tuple(up_block_types),
"block_out_channels": tuple(block_out_channels),
"latent_channels": vae_params.z_channels,
"layers_per_block": vae_params.num_res_blocks,
"latent_channels": vae_params["z_channels"],
"layers_per_block": vae_params["num_res_blocks"],
}
return config
@@ -679,18 +685,16 @@ def convert_from_original_zero123_ckpt(checkpoint_path, original_config_file, ex
del ckpt
torch.cuda.empty_cache()
from omegaconf import OmegaConf
original_config = OmegaConf.load(original_config_file)
original_config.model.params.cond_stage_config.target.split(".")[-1]
original_config = yaml.safe_load(original_config_file)
original_config["model"]["params"]["cond_stage_config"]["target"].split(".")[-1]
num_in_channels = 8
original_config["model"]["params"]["unet_config"]["params"]["in_channels"] = num_in_channels
prediction_type = "epsilon"
image_size = 256
num_train_timesteps = getattr(original_config.model.params, "timesteps", None) or 1000
num_train_timesteps = getattr(original_config["model"]["params"], "timesteps", None) or 1000
beta_start = getattr(original_config.model.params, "linear_start", None) or 0.02
beta_end = getattr(original_config.model.params, "linear_end", None) or 0.085
beta_start = getattr(original_config["model"]["params"], "linear_start", None) or 0.02
beta_end = getattr(original_config["model"]["params"], "linear_end", None) or 0.085
scheduler = DDIMScheduler(
beta_end=beta_end,
beta_schedule="scaled_linear",
@@ -721,10 +725,10 @@ def convert_from_original_zero123_ckpt(checkpoint_path, original_config_file, ex
if (
"model" in original_config
and "params" in original_config.model
and "scale_factor" in original_config.model.params
and "params" in original_config["model"]
and "scale_factor" in original_config["model"]["params"]
):
vae_scaling_factor = original_config.model.params.scale_factor
vae_scaling_factor = original_config["model"]["params"]["scale_factor"]
else:
vae_scaling_factor = 0.18215 # default SD scaling factor

View File

@@ -110,7 +110,6 @@ _deps = [
"note_seq",
"librosa",
"numpy",
"omegaconf",
"parameterized",
"peft>=0.6.0",
"protobuf>=3.20.3,<4",
@@ -213,7 +212,6 @@ extras["test"] = deps_list(
"invisible-watermark",
"k-diffusion",
"librosa",
"omegaconf",
"parameterized",
"pytest",
"pytest-timeout",

View File

@@ -22,7 +22,6 @@ deps = {
"note_seq": "note_seq",
"librosa": "librosa",
"numpy": "numpy",
"omegaconf": "omegaconf",
"parameterized": "parameterized",
"peft": "peft>=0.6.0",
"protobuf": "protobuf>=3.20.3,<4",

View File

@@ -17,17 +17,11 @@ from pathlib import Path
import requests
import torch
import yaml
from huggingface_hub import hf_hub_download
from huggingface_hub.utils import validate_hf_hub_args
from ..utils import (
deprecate,
is_accelerate_available,
is_omegaconf_available,
is_transformers_available,
logging,
)
from ..utils.import_utils import BACKENDS_MAPPING
from ..utils import deprecate, is_accelerate_available, is_transformers_available, logging
if is_transformers_available():
@@ -370,11 +364,6 @@ class FromOriginalVAEMixin:
model = AutoencoderKL.from_single_file(url)
```
"""
if not is_omegaconf_available():
raise ValueError(BACKENDS_MAPPING["omegaconf"][1])
from omegaconf import OmegaConf
from ..models import AutoencoderKL
# import here to avoid circular dependency
@@ -452,7 +441,7 @@ class FromOriginalVAEMixin:
config_url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml"
config_file = BytesIO(requests.get(config_url).content)
original_config = OmegaConf.load(config_file)
original_config = yaml.safe_load(config_file)
# default to sd-v1-5
image_size = image_size or 512
@@ -463,10 +452,10 @@ class FromOriginalVAEMixin:
if scaling_factor is None:
if (
"model" in original_config
and "params" in original_config.model
and "scale_factor" in original_config.model.params
and "params" in original_config["model"]
and "scale_factor" in original_config["model"]["params"]
):
vae_scaling_factor = original_config.model.params.scale_factor
vae_scaling_factor = original_config["model"]["params"]["scale_factor"]
else:
vae_scaling_factor = 0.18215 # default SD scaling factor

View File

@@ -21,6 +21,7 @@ from typing import Dict, Optional, Union
import requests
import torch
import yaml
from transformers import (
AutoFeatureExtractor,
BertTokenizerFast,
@@ -50,8 +51,7 @@ from ...schedulers import (
PNDMScheduler,
UnCLIPScheduler,
)
from ...utils import is_accelerate_available, is_omegaconf_available, logging
from ...utils.import_utils import BACKENDS_MAPPING
from ...utils import is_accelerate_available, logging
from ..latent_diffusion.pipeline_latent_diffusion import LDMBertConfig, LDMBertModel
from ..paint_by_example import PaintByExampleImageEncoder
from ..pipeline_utils import DiffusionPipeline
@@ -237,51 +237,54 @@ def create_unet_diffusers_config(original_config, image_size: int, controlnet=Fa
Creates a config for the diffusers based on the config of the LDM model.
"""
if controlnet:
unet_params = original_config.model.params.control_stage_config.params
unet_params = original_config["model"]["params"]["control_stage_config"]["params"]
else:
if "unet_config" in original_config.model.params and original_config.model.params.unet_config is not None:
unet_params = original_config.model.params.unet_config.params
if (
"unet_config" in original_config["model"]["params"]
and original_config["model"]["params"]["unet_config"] is not None
):
unet_params = original_config["model"]["params"]["unet_config"]["params"]
else:
unet_params = original_config.model.params.network_config.params
unet_params = original_config["model"]["params"]["network_config"]["params"]
vae_params = original_config.model.params.first_stage_config.params.ddconfig
vae_params = original_config["model"]["params"]["first_stage_config"]["params"]["ddconfig"]
block_out_channels = [unet_params.model_channels * mult for mult in unet_params.channel_mult]
block_out_channels = [unet_params["model_channels"] * mult for mult in unet_params["channel_mult"]]
down_block_types = []
resolution = 1
for i in range(len(block_out_channels)):
block_type = "CrossAttnDownBlock2D" if resolution in unet_params.attention_resolutions else "DownBlock2D"
block_type = "CrossAttnDownBlock2D" if resolution in unet_params["attention_resolutions"] else "DownBlock2D"
down_block_types.append(block_type)
if i != len(block_out_channels) - 1:
resolution *= 2
up_block_types = []
for i in range(len(block_out_channels)):
block_type = "CrossAttnUpBlock2D" if resolution in unet_params.attention_resolutions else "UpBlock2D"
block_type = "CrossAttnUpBlock2D" if resolution in unet_params["attention_resolutions"] else "UpBlock2D"
up_block_types.append(block_type)
resolution //= 2
if unet_params.transformer_depth is not None:
if unet_params["transformer_depth"] is not None:
transformer_layers_per_block = (
unet_params.transformer_depth
if isinstance(unet_params.transformer_depth, int)
else list(unet_params.transformer_depth)
unet_params["transformer_depth"]
if isinstance(unet_params["transformer_depth"], int)
else list(unet_params["transformer_depth"])
)
else:
transformer_layers_per_block = 1
vae_scale_factor = 2 ** (len(vae_params.ch_mult) - 1)
vae_scale_factor = 2 ** (len(vae_params["ch_mult"]) - 1)
head_dim = unet_params.num_heads if "num_heads" in unet_params else None
head_dim = unet_params["num_heads"] if "num_heads" in unet_params else None
use_linear_projection = (
unet_params.use_linear_in_transformer if "use_linear_in_transformer" in unet_params else False
unet_params["use_linear_in_transformer"] if "use_linear_in_transformer" in unet_params else False
)
if use_linear_projection:
# stable diffusion 2-base-512 and 2-768
if head_dim is None:
head_dim_mult = unet_params.model_channels // unet_params.num_head_channels
head_dim = [head_dim_mult * c for c in list(unet_params.channel_mult)]
head_dim_mult = unet_params["model_channels"] // unet_params["num_head_channels"]
head_dim = [head_dim_mult * c for c in list(unet_params["channel_mult"])]
class_embed_type = None
addition_embed_type = None
@@ -289,13 +292,15 @@ def create_unet_diffusers_config(original_config, image_size: int, controlnet=Fa
projection_class_embeddings_input_dim = None
context_dim = None
if unet_params.context_dim is not None:
if unet_params["context_dim"] is not None:
context_dim = (
unet_params.context_dim if isinstance(unet_params.context_dim, int) else unet_params.context_dim[0]
unet_params["context_dim"]
if isinstance(unet_params["context_dim"], int)
else unet_params["context_dim"][0]
)
if "num_classes" in unet_params:
if unet_params.num_classes == "sequential":
if unet_params["num_classes"] == "sequential":
if context_dim in [2048, 1280]:
# SDXL
addition_embed_type = "text_time"
@@ -303,14 +308,14 @@ def create_unet_diffusers_config(original_config, image_size: int, controlnet=Fa
else:
class_embed_type = "projection"
assert "adm_in_channels" in unet_params
projection_class_embeddings_input_dim = unet_params.adm_in_channels
projection_class_embeddings_input_dim = unet_params["adm_in_channels"]
config = {
"sample_size": image_size // vae_scale_factor,
"in_channels": unet_params.in_channels,
"in_channels": unet_params["in_channels"],
"down_block_types": tuple(down_block_types),
"block_out_channels": tuple(block_out_channels),
"layers_per_block": unet_params.num_res_blocks,
"layers_per_block": unet_params["num_res_blocks"],
"cross_attention_dim": context_dim,
"attention_head_dim": head_dim,
"use_linear_projection": use_linear_projection,
@@ -322,15 +327,15 @@ def create_unet_diffusers_config(original_config, image_size: int, controlnet=Fa
}
if "disable_self_attentions" in unet_params:
config["only_cross_attention"] = unet_params.disable_self_attentions
config["only_cross_attention"] = unet_params["disable_self_attentions"]
if "num_classes" in unet_params and isinstance(unet_params.num_classes, int):
config["num_class_embeds"] = unet_params.num_classes
if "num_classes" in unet_params and isinstance(unet_params["num_classes"], int):
config["num_class_embeds"] = unet_params["num_classes"]
if controlnet:
config["conditioning_channels"] = unet_params.hint_channels
config["conditioning_channels"] = unet_params["hint_channels"]
else:
config["out_channels"] = unet_params.out_channels
config["out_channels"] = unet_params["out_channels"]
config["up_block_types"] = tuple(up_block_types)
return config
@@ -340,38 +345,38 @@ def create_vae_diffusers_config(original_config, image_size: int):
"""
Creates a config for the diffusers based on the config of the LDM model.
"""
vae_params = original_config.model.params.first_stage_config.params.ddconfig
_ = original_config.model.params.first_stage_config.params.embed_dim
vae_params = original_config["model"]["params"]["first_stage_config"]["params"]["ddconfig"]
_ = original_config["model"]["params"]["first_stage_config"]["params"]["embed_dim"]
block_out_channels = [vae_params.ch * mult for mult in vae_params.ch_mult]
block_out_channels = [vae_params["ch"] * mult for mult in vae_params["ch_mult"]]
down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels)
up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels)
config = {
"sample_size": image_size,
"in_channels": vae_params.in_channels,
"out_channels": vae_params.out_ch,
"in_channels": vae_params["in_channels"],
"out_channels": vae_params["out_ch"],
"down_block_types": tuple(down_block_types),
"up_block_types": tuple(up_block_types),
"block_out_channels": tuple(block_out_channels),
"latent_channels": vae_params.z_channels,
"layers_per_block": vae_params.num_res_blocks,
"latent_channels": vae_params["z_channels"],
"layers_per_block": vae_params["num_res_blocks"],
}
return config
def create_diffusers_schedular(original_config):
schedular = DDIMScheduler(
num_train_timesteps=original_config.model.params.timesteps,
beta_start=original_config.model.params.linear_start,
beta_end=original_config.model.params.linear_end,
num_train_timesteps=original_config["model"]["params"]["timesteps"],
beta_start=original_config["model"]["params"]["linear_start"],
beta_end=original_config["model"]["params"]["linear_end"],
beta_schedule="scaled_linear",
)
return schedular
def create_ldm_bert_config(original_config):
bert_params = original_config.model.params.cond_stage_config.params
bert_params = original_config["model"]["params"]["cond_stage_config"]["params"]
config = LDMBertConfig(
d_model=bert_params.n_embed,
encoder_layers=bert_params.n_layer,
@@ -1006,9 +1011,9 @@ def stable_unclip_image_encoder(original_config, local_files_only=False):
encoders.
"""
image_embedder_config = original_config.model.params.embedder_config
image_embedder_config = original_config["model"]["params"]["embedder_config"]
sd_clip_image_embedder_class = image_embedder_config.target
sd_clip_image_embedder_class = image_embedder_config["target"]
sd_clip_image_embedder_class = sd_clip_image_embedder_class.split(".")[-1]
if sd_clip_image_embedder_class == "ClipImageEmbedder":
@@ -1047,8 +1052,8 @@ def stable_unclip_image_noising_components(
If the noise augmentor config specifies a clip stats path, the `clip_stats_path` must be provided.
"""
noise_aug_config = original_config.model.params.noise_aug_config
noise_aug_class = noise_aug_config.target
noise_aug_config = original_config["model"]["params"]["noise_aug_config"]
noise_aug_class = noise_aug_config["target"]
noise_aug_class = noise_aug_class.split(".")[-1]
if noise_aug_class == "CLIPEmbeddingNoiseAugmentation":
@@ -1245,11 +1250,6 @@ def download_from_original_stable_diffusion_ckpt(
if prediction_type == "v-prediction":
prediction_type = "v_prediction"
if not is_omegaconf_available():
raise ValueError(BACKENDS_MAPPING["omegaconf"][1])
from omegaconf import OmegaConf
if isinstance(checkpoint_path_or_dict, str):
if from_safetensors:
from safetensors.torch import load_file as safe_load
@@ -1318,18 +1318,18 @@ def download_from_original_stable_diffusion_ckpt(
if config_url is not None:
original_config_file = BytesIO(requests.get(config_url).content)
original_config = OmegaConf.load(original_config_file)
original_config = yaml.safe_load(original_config_file)
# Convert the text model.
if (
model_type is None
and "cond_stage_config" in original_config.model.params
and original_config.model.params.cond_stage_config is not None
and "cond_stage_config" in original_config["model"]["params"]
and original_config["model"]["params"]["cond_stage_config"] is not None
):
model_type = original_config.model.params.cond_stage_config.target.split(".")[-1]
model_type = original_config["model"]["params"]["cond_stage_config"]["target"].split(".")[-1]
logger.debug(f"no `model_type` given, `model_type` inferred as: {model_type}")
elif model_type is None and original_config.model.params.network_config is not None:
if original_config.model.params.network_config.params.context_dim == 2048:
elif model_type is None and original_config["model"]["params"]["network_config"] is not None:
if original_config["model"]["params"]["network_config"]["params"]["context_dim"] == 2048:
model_type = "SDXL"
else:
model_type = "SDXL-Refiner"
@@ -1354,7 +1354,7 @@ def download_from_original_stable_diffusion_ckpt(
elif num_in_channels is None:
num_in_channels = 4
if "unet_config" in original_config.model.params:
if "unet_config" in original_config["model"]["params"]:
original_config["model"]["params"]["unet_config"]["params"]["in_channels"] = num_in_channels
if (
@@ -1375,13 +1375,16 @@ def download_from_original_stable_diffusion_ckpt(
if image_size is None:
image_size = 512
if controlnet is None and "control_stage_config" in original_config.model.params:
if controlnet is None and "control_stage_config" in original_config["model"]["params"]:
path = checkpoint_path_or_dict if isinstance(checkpoint_path_or_dict, str) else ""
controlnet = convert_controlnet_checkpoint(
checkpoint, original_config, path, image_size, upcast_attention, extract_ema
)
num_train_timesteps = getattr(original_config.model.params, "timesteps", None) or 1000
if "timesteps" in original_config["model"]["params"]:
num_train_timesteps = original_config["model"]["params"]["timesteps"]
else:
num_train_timesteps = 1000
if model_type in ["SDXL", "SDXL-Refiner"]:
scheduler_dict = {
@@ -1400,8 +1403,15 @@ def download_from_original_stable_diffusion_ckpt(
scheduler = EulerDiscreteScheduler.from_config(scheduler_dict)
scheduler_type = "euler"
else:
beta_start = getattr(original_config.model.params, "linear_start", None) or 0.02
beta_end = getattr(original_config.model.params, "linear_end", None) or 0.085
if "linear_start" in original_config["model"]["params"]:
beta_start = original_config["model"]["params"]["linear_start"]
else:
beta_start = 0.02
if "linear_end" in original_config["model"]["params"]:
beta_end = original_config["model"]["params"]["linear_end"]
else:
beta_end = 0.085
scheduler = DDIMScheduler(
beta_end=beta_end,
beta_schedule="scaled_linear",
@@ -1435,7 +1445,7 @@ def download_from_original_stable_diffusion_ckpt(
raise ValueError(f"Scheduler of type {scheduler_type} doesn't exist!")
if pipeline_class == StableDiffusionUpscalePipeline:
image_size = original_config.model.params.unet_config.params.image_size
image_size = original_config["model"]["params"]["unet_config"]["params"]["image_size"]
# Convert the UNet2DConditionModel model.
unet_config = create_unet_diffusers_config(original_config, image_size=image_size)
@@ -1464,10 +1474,10 @@ def download_from_original_stable_diffusion_ckpt(
if (
"model" in original_config
and "params" in original_config.model
and "scale_factor" in original_config.model.params
and "params" in original_config["model"]
and "scale_factor" in original_config["model"]["params"]
):
vae_scaling_factor = original_config.model.params.scale_factor
vae_scaling_factor = original_config["model"]["params"]["scale_factor"]
else:
vae_scaling_factor = 0.18215 # default SD scaling factor
@@ -1803,11 +1813,6 @@ def download_controlnet_from_original_ckpt(
use_linear_projection: Optional[bool] = None,
cross_attention_dim: Optional[bool] = None,
) -> DiffusionPipeline:
if not is_omegaconf_available():
raise ValueError(BACKENDS_MAPPING["omegaconf"][1])
from omegaconf import OmegaConf
if from_safetensors:
from safetensors import safe_open
@@ -1827,12 +1832,12 @@ def download_controlnet_from_original_ckpt(
while "state_dict" in checkpoint:
checkpoint = checkpoint["state_dict"]
original_config = OmegaConf.load(original_config_file)
original_config = yaml.safe_load(original_config_file)
if num_in_channels is not None:
original_config["model"]["params"]["unet_config"]["params"]["in_channels"] = num_in_channels
if "control_stage_config" not in original_config.model.params:
if "control_stage_config" not in original_config["model"]["params"]:
raise ValueError("`control_stage_config` not present in original config")
controlnet = convert_controlnet_checkpoint(

View File

@@ -66,7 +66,6 @@ from .import_utils import (
is_k_diffusion_version,
is_librosa_available,
is_note_seq_available,
is_omegaconf_available,
is_onnx_available,
is_peft_available,
is_scipy_available,

View File

@@ -223,12 +223,6 @@ try:
except importlib_metadata.PackageNotFoundError:
_wandb_available = False
_omegaconf_available = importlib.util.find_spec("omegaconf") is not None
try:
_omegaconf_version = importlib_metadata.version("omegaconf")
logger.debug(f"Successfully imported omegaconf version {_omegaconf_version}")
except importlib_metadata.PackageNotFoundError:
_omegaconf_available = False
_tensorboard_available = importlib.util.find_spec("tensorboard")
try:
@@ -345,10 +339,6 @@ def is_wandb_available():
return _wandb_available
def is_omegaconf_available():
return _omegaconf_available
def is_tensorboard_available():
return _tensorboard_available
@@ -449,12 +439,6 @@ WANDB_IMPORT_ERROR = """
install wandb`
"""
# docstyle-ignore
OMEGACONF_IMPORT_ERROR = """
{0} requires the omegaconf library but it was not found in your environment. You can install it with pip: `pip
install omegaconf`
"""
# docstyle-ignore
TENSORBOARD_IMPORT_ERROR = """
{0} requires the tensorboard library but it was not found in your environment. You can install it with pip: `pip
@@ -506,7 +490,6 @@ BACKENDS_MAPPING = OrderedDict(
("k_diffusion", (is_k_diffusion_available, K_DIFFUSION_IMPORT_ERROR)),
("note_seq", (is_note_seq_available, NOTE_SEQ_IMPORT_ERROR)),
("wandb", (is_wandb_available, WANDB_IMPORT_ERROR)),
("omegaconf", (is_omegaconf_available, OMEGACONF_IMPORT_ERROR)),
("tensorboard", (is_tensorboard_available, TENSORBOARD_IMPORT_ERROR)),
("compel", (is_compel_available, COMPEL_IMPORT_ERROR)),
("ftfy", (is_ftfy_available, FTFY_IMPORT_ERROR)),