Compare commits

...

14 Commits

Author SHA1 Message Date
sayakpaul
5e87c38b29 remove non-hub attention backends. 2026-02-22 12:25:59 +05:30
Álvaro Somoza
a80b19218b Support Flux Klein peft (fal) lora format (#13169)
peft (fal) lora format
2026-02-21 10:31:18 +05:30
Animesh Jain
01de02e8b4 [gguf][torch.compile time] Convert to plain tensor earlier in dequantize_gguf_tensor (#13166)
[gguf] Convert to plain tensor earlier in dequantize_gguf_tensor

Once dequantize_gguf_tensor fetches the quant_type attributed from the
GGUFParamter tensor subclass, there is no further need of running the
actual dequantize operations on the Tensor subclass, we can just convert
to plain tensor right away.

This not only makes PyTorch eager faster, but reduces torch.compile
tracer compile time from 36 seconds to 10 seconds, because there is lot
less code to trace now.
2026-02-20 09:31:52 +05:30
Dhruv Nair
db2d7e7bc4 [CI] Fix new LoRAHotswap tests (#13163)
update

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2026-02-20 09:01:20 +05:30
Sayak Paul
f8d3db9ca7 remove deps related to test from ci (#13164) 2026-02-20 08:35:35 +05:30
Sayak Paul
99daaa802d [core] Enable CP for kernels-based attention backends (#12812)
* up

* up

* up

* up

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2026-02-19 18:16:50 +05:30
dg845
fe78a7b7c6 Fix ftfy import for PRX Pipeline (#13154)
* Guard ftfy import with is_ftfy_available

* Remove xfail for PRX pipeline tests as they appear to work on transformers>4.57.1

* make style and make quality
2026-02-18 20:44:33 -08:00
dg845
53e1d0e458 [CI] Revert setuptools CI Fix as the Failing Pipelines are Deprecated (#13149)
* Pin setuptools version for dependencies which explicitly depend on pkg_resources

* Revert setuptools pin as k-diffusion pipelines are now deprecated

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2026-02-18 20:34:00 -08:00
dxqb
a577ec36df Flux2: Tensor tuples can cause issues for checkpointing (#12777)
* split tensors inside the transformer blocks to avoid checkpointing issues

* clean up, fix type hints

* fix merge error

* Apply style fixes

---------

Co-authored-by: s <you@example.com>
Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2026-02-18 17:03:22 -08:00
Steven Liu
6875490c3b [docs] add docs for qwenimagelayered (#13158)
* add example

* feedback
2026-02-18 11:02:15 -08:00
David El Malih
64734b2115 docs: improve docstring scheduling_flow_match_lcm.py (#13160)
Improve docstring scheduling flow match lcm
2026-02-18 10:52:02 -08:00
Dhruv Nair
f81e653197 [CI] Add ftfy as a test dependency (#13155)
* update

* update

* update

* update

* update

* update
2026-02-18 22:51:10 +05:30
zhangtao0408
bcbbded7c3 [Bug] Fix QwenImageEditPlus Series on NPU (#13017)
* [Bug Fix][Qwen-Image-Edit] Fix Qwen-Image-Edit series on NPU

* Enhance NPU attention handling by converting attention mask to boolean and refining mask checks.

* Refine attention mask handling in NPU attention function to improve validation and conversion logic.

* Clean Code

* Refine attention mask processing in NPU attention functions to enhance performance and validation.

* Remove item() ops on npu fa backend.

* Reuse NPU attention mask by `_maybe_modify_attn_mask_npu`

* Apply style fixes

* Update src/diffusers/models/attention_dispatch.py

---------

Co-authored-by: zhangtao <zhangtao529@huawei.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2026-02-17 09:10:40 +05:30
Sayak Paul
35086ac06a [core] support device type device_maps to work with offloading. (#12811)
* support device type device_maps to work with offloading.

* add tests.

* fix tests

* skip tests where it's not supported.

* empty

* up

* up

* fix allegro.
2026-02-16 16:31:45 +05:30
25 changed files with 529 additions and 702 deletions

View File

@@ -199,11 +199,6 @@ jobs:
- name: Install dependencies
run: |
# Install pkgs which depend on setuptools<81 for pkg_resources first with no build isolation
uv pip install pip==25.2 setuptools==80.10.2
uv pip install --no-build-isolation k-diffusion==0.0.12
uv pip install --upgrade pip setuptools
# Install the rest as normal
uv pip install -e ".[quality]"
uv pip install peft@git+https://github.com/huggingface/peft.git
uv pip uninstall accelerate && uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git

View File

@@ -126,11 +126,6 @@ jobs:
- name: Install dependencies
run: |
# Install pkgs which depend on setuptools<81 for pkg_resources first with no build isolation
uv pip install pip==25.2 setuptools==80.10.2
uv pip install --no-build-isolation k-diffusion==0.0.12
uv pip install --upgrade pip setuptools
# Install the rest as normal
uv pip install -e ".[quality]"
uv pip install peft@git+https://github.com/huggingface/peft.git
uv pip uninstall accelerate && uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git

View File

@@ -41,7 +41,7 @@ jobs:
shell: arch -arch arm64 bash {0}
run: |
${CONDA_RUN} python -m pip install --upgrade pip uv
${CONDA_RUN} python -m uv pip install -e ".[quality,test]"
${CONDA_RUN} python -m uv pip install -e ".[quality]"
${CONDA_RUN} python -m uv pip install torch torchvision torchaudio
${CONDA_RUN} python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate.git
${CONDA_RUN} python -m uv pip install transformers --upgrade

View File

@@ -29,7 +29,7 @@ Qwen-Image comes in the following variants:
| Qwen-Image-Edit Plus | [Qwen/Qwen-Image-Edit-2509](https://huggingface.co/Qwen/Qwen-Image-Edit-2509) |
> [!TIP]
> [Caching](../../optimization/cache) may also speed up inference by storing and reusing intermediate outputs.
> See the [Caching](../../optimization/cache) guide to speed up inference by storing and reusing intermediate outputs.
## LoRA for faster inference
@@ -190,6 +190,12 @@ For detailed benchmark scripts and results, see [this gist](https://gist.github.
- all
- __call__
## QwenImageLayeredPipeline
[[autodoc]] QwenImageLayeredPipeline
- all
- __call__
## QwenImagePipelineOutput
[[autodoc]] pipelines.qwenimage.pipeline_output.QwenImagePipelineOutput

View File

@@ -101,6 +101,7 @@ _deps = [
"datasets",
"filelock",
"flax>=0.4.1",
"ftfy",
"hf-doc-builder>=0.3.0",
"httpx<1.0.0",
"huggingface-hub>=0.34.0,<2.0",
@@ -221,12 +222,14 @@ extras["docs"] = deps_list("hf-doc-builder")
extras["training"] = deps_list("accelerate", "datasets", "protobuf", "tensorboard", "Jinja2", "peft", "timm")
extras["test"] = deps_list(
"compel",
"ftfy",
"GitPython",
"datasets",
"Jinja2",
"invisible-watermark",
"librosa",
"parameterized",
"protobuf",
"pytest",
"pytest-timeout",
"pytest-xdist",
@@ -235,6 +238,7 @@ extras["test"] = deps_list(
"sentencepiece",
"scipy",
"tiktoken",
"torchsde",
"torchvision",
"transformers",
"phonemizer",

View File

@@ -8,6 +8,7 @@ deps = {
"datasets": "datasets",
"filelock": "filelock",
"flax": "flax>=0.4.1",
"ftfy": "ftfy",
"hf-doc-builder": "hf-doc-builder>=0.3.0",
"httpx": "httpx<1.0.0",
"huggingface-hub": "huggingface-hub>=0.34.0,<2.0",

View File

@@ -5472,6 +5472,10 @@ class Flux2LoraLoaderMixin(LoraBaseMixin):
logger.warning(warn_msg)
state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}
is_peft_format = any(k.startswith("base_model.model.") for k in state_dict)
if is_peft_format:
state_dict = {k.replace("base_model.model.", "diffusion_model."): v for k, v in state_dict.items()}
is_ai_toolkit = any(k.startswith("diffusion_model.") for k in state_dict)
if is_ai_toolkit:
state_dict = _convert_non_diffusers_flux2_lora_to_diffusers(state_dict)

File diff suppressed because it is too large Load Diff

View File

@@ -424,7 +424,7 @@ class Flux2SingleTransformerBlock(nn.Module):
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor | None,
temb_mod_params: tuple[torch.Tensor, torch.Tensor, torch.Tensor],
temb_mod: torch.Tensor,
image_rotary_emb: tuple[torch.Tensor, torch.Tensor] | None = None,
joint_attention_kwargs: dict[str, Any] | None = None,
split_hidden_states: bool = False,
@@ -436,7 +436,7 @@ class Flux2SingleTransformerBlock(nn.Module):
text_seq_len = encoder_hidden_states.shape[1]
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
mod_shift, mod_scale, mod_gate = temb_mod_params
mod_shift, mod_scale, mod_gate = Flux2Modulation.split(temb_mod, 1)[0]
norm_hidden_states = self.norm(hidden_states)
norm_hidden_states = (1 + mod_scale) * norm_hidden_states + mod_shift
@@ -498,16 +498,18 @@ class Flux2TransformerBlock(nn.Module):
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
temb_mod_params_img: tuple[tuple[torch.Tensor, torch.Tensor, torch.Tensor], ...],
temb_mod_params_txt: tuple[tuple[torch.Tensor, torch.Tensor, torch.Tensor], ...],
temb_mod_img: torch.Tensor,
temb_mod_txt: torch.Tensor,
image_rotary_emb: tuple[torch.Tensor, torch.Tensor] | None = None,
joint_attention_kwargs: dict[str, Any] | None = None,
) -> tuple[torch.Tensor, torch.Tensor]:
joint_attention_kwargs = joint_attention_kwargs or {}
# Modulation parameters shape: [1, 1, self.dim]
(shift_msa, scale_msa, gate_msa), (shift_mlp, scale_mlp, gate_mlp) = temb_mod_params_img
(c_shift_msa, c_scale_msa, c_gate_msa), (c_shift_mlp, c_scale_mlp, c_gate_mlp) = temb_mod_params_txt
(shift_msa, scale_msa, gate_msa), (shift_mlp, scale_mlp, gate_mlp) = Flux2Modulation.split(temb_mod_img, 2)
(c_shift_msa, c_scale_msa, c_gate_msa), (c_shift_mlp, c_scale_mlp, c_gate_mlp) = Flux2Modulation.split(
temb_mod_txt, 2
)
# Img stream
norm_hidden_states = self.norm1(hidden_states)
@@ -627,15 +629,19 @@ class Flux2Modulation(nn.Module):
self.linear = nn.Linear(dim, dim * 3 * self.mod_param_sets, bias=bias)
self.act_fn = nn.SiLU()
def forward(self, temb: torch.Tensor) -> tuple[tuple[torch.Tensor, torch.Tensor, torch.Tensor], ...]:
def forward(self, temb: torch.Tensor) -> torch.Tensor:
mod = self.act_fn(temb)
mod = self.linear(mod)
return mod
@staticmethod
# split inside the transformer blocks, to avoid passing tuples into checkpoints https://github.com/huggingface/diffusers/issues/12776
def split(mod: torch.Tensor, mod_param_sets: int) -> tuple[tuple[torch.Tensor, torch.Tensor, torch.Tensor], ...]:
if mod.ndim == 2:
mod = mod.unsqueeze(1)
mod_params = torch.chunk(mod, 3 * self.mod_param_sets, dim=-1)
mod_params = torch.chunk(mod, 3 * mod_param_sets, dim=-1)
# Return tuple of 3-tuples of modulation params shift/scale/gate
return tuple(mod_params[3 * i : 3 * (i + 1)] for i in range(self.mod_param_sets))
return tuple(mod_params[3 * i : 3 * (i + 1)] for i in range(mod_param_sets))
class Flux2Transformer2DModel(
@@ -824,7 +830,7 @@ class Flux2Transformer2DModel(
double_stream_mod_img = self.double_stream_modulation_img(temb)
double_stream_mod_txt = self.double_stream_modulation_txt(temb)
single_stream_mod = self.single_stream_modulation(temb)[0]
single_stream_mod = self.single_stream_modulation(temb)
# 2. Input projection for image (hidden_states) and conditioning text (encoder_hidden_states)
hidden_states = self.x_embedder(hidden_states)
@@ -861,8 +867,8 @@ class Flux2Transformer2DModel(
encoder_hidden_states, hidden_states = block(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
temb_mod_params_img=double_stream_mod_img,
temb_mod_params_txt=double_stream_mod_txt,
temb_mod_img=double_stream_mod_img,
temb_mod_txt=double_stream_mod_txt,
image_rotary_emb=concat_rotary_emb,
joint_attention_kwargs=joint_attention_kwargs,
)
@@ -884,7 +890,7 @@ class Flux2Transformer2DModel(
hidden_states = block(
hidden_states=hidden_states,
encoder_hidden_states=None,
temb_mod_params=single_stream_mod,
temb_mod=single_stream_mod,
image_rotary_emb=concat_rotary_emb,
joint_attention_kwargs=joint_attention_kwargs,
)

View File

@@ -164,7 +164,11 @@ def compute_text_seq_len_from_mask(
position_ids = torch.arange(text_seq_len, device=encoder_hidden_states.device, dtype=torch.long)
active_positions = torch.where(encoder_hidden_states_mask, position_ids, position_ids.new_zeros(()))
has_active = encoder_hidden_states_mask.any(dim=1)
per_sample_len = torch.where(has_active, active_positions.max(dim=1).values + 1, torch.as_tensor(text_seq_len))
per_sample_len = torch.where(
has_active,
active_positions.max(dim=1).values + 1,
torch.as_tensor(text_seq_len, device=encoder_hidden_states.device),
)
return text_seq_len, per_sample_len, encoder_hidden_states_mask

View File

@@ -112,7 +112,7 @@ LIBRARIES = []
for library in LOADABLE_CLASSES:
LIBRARIES.append(library)
SUPPORTED_DEVICE_MAP = ["balanced"] + [get_device()]
SUPPORTED_DEVICE_MAP = ["balanced"] + [get_device(), "cpu"]
logger = logging.get_logger(__name__)
@@ -468,8 +468,7 @@ class DiffusionPipeline(ConfigMixin, PushToHubMixin):
pipeline_is_sequentially_offloaded = any(
module_is_sequentially_offloaded(module) for _, module in self.components.items()
)
is_pipeline_device_mapped = self.hf_device_map is not None and len(self.hf_device_map) > 1
is_pipeline_device_mapped = self._is_pipeline_device_mapped()
if is_pipeline_device_mapped:
raise ValueError(
"It seems like you have activated a device mapping strategy on the pipeline which doesn't allow explicit device placement using `to()`. You can call `reset_device_map()` to remove the existing device map from the pipeline."
@@ -1188,7 +1187,7 @@ class DiffusionPipeline(ConfigMixin, PushToHubMixin):
"""
self._maybe_raise_error_if_group_offload_active(raise_error=True)
is_pipeline_device_mapped = self.hf_device_map is not None and len(self.hf_device_map) > 1
is_pipeline_device_mapped = self._is_pipeline_device_mapped()
if is_pipeline_device_mapped:
raise ValueError(
"It seems like you have activated a device mapping strategy on the pipeline so calling `enable_model_cpu_offload() isn't allowed. You can call `reset_device_map()` first and then call `enable_model_cpu_offload()`."
@@ -1312,7 +1311,7 @@ class DiffusionPipeline(ConfigMixin, PushToHubMixin):
raise ImportError("`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher")
self.remove_all_hooks()
is_pipeline_device_mapped = self.hf_device_map is not None and len(self.hf_device_map) > 1
is_pipeline_device_mapped = self._is_pipeline_device_mapped()
if is_pipeline_device_mapped:
raise ValueError(
"It seems like you have activated a device mapping strategy on the pipeline so calling `enable_sequential_cpu_offload() isn't allowed. You can call `reset_device_map()` first and then call `enable_sequential_cpu_offload()`."
@@ -2228,6 +2227,21 @@ class DiffusionPipeline(ConfigMixin, PushToHubMixin):
return True
return False
def _is_pipeline_device_mapped(self):
# We support passing `device_map="cuda"`, for example. This is helpful, in case
# users want to pass `device_map="cpu"` when initializing a pipeline. This explicit declaration is desirable
# in limited VRAM environments because quantized models often initialize directly on the accelerator.
device_map = self.hf_device_map
is_device_type_map = False
if isinstance(device_map, str):
try:
torch.device(device_map)
is_device_type_map = True
except RuntimeError:
pass
return not is_device_type_map and isinstance(device_map, dict) and len(device_map) > 1
class StableDiffusionMixin:
r"""

View File

@@ -18,7 +18,6 @@ import re
import urllib.parse as ul
from typing import Callable
import ftfy
import torch
from transformers import (
AutoTokenizer,
@@ -34,13 +33,13 @@ from diffusers.models.transformers.transformer_prx import PRXTransformer2DModel
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.prx.pipeline_output import PRXPipelineOutput
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
from diffusers.utils import (
logging,
replace_example_docstring,
)
from diffusers.utils import is_ftfy_available, logging, replace_example_docstring
from diffusers.utils.torch_utils import randn_tensor
if is_ftfy_available():
import ftfy
DEFAULT_RESOLUTION = 512
ASPECT_RATIO_256_BIN = {

View File

@@ -516,6 +516,9 @@ def dequantize_gguf_tensor(tensor):
block_size, type_size = GGML_QUANT_SIZES[quant_type]
# Conver to plain tensor to avoid unnecessary __torch_function__ overhead.
tensor = tensor.as_tensor()
tensor = tensor.view(torch.uint8)
shape = _quant_shape_from_byte_shape(tensor.shape, type_size, block_size)
@@ -525,7 +528,7 @@ def dequantize_gguf_tensor(tensor):
dequant = dequant_fn(blocks, block_size, type_size)
dequant = dequant.reshape(shape)
return dequant.as_tensor()
return dequant
class GGUFParameter(torch.nn.Parameter):

View File

@@ -14,6 +14,7 @@
import math
from dataclasses import dataclass
from typing import Literal
import numpy as np
import torch
@@ -41,7 +42,7 @@ class FlowMatchLCMSchedulerOutput(BaseOutput):
denoising loop.
"""
prev_sample: torch.FloatTensor
prev_sample: torch.Tensor
class FlowMatchLCMScheduler(SchedulerMixin, ConfigMixin):
@@ -79,11 +80,11 @@ class FlowMatchLCMScheduler(SchedulerMixin, ConfigMixin):
use_beta_sigmas (`bool`, defaults to False):
Whether to use beta sigmas for step sizes in the noise schedule during sampling.
time_shift_type (`str`, defaults to "exponential"):
The type of dynamic resolution-dependent timestep shifting to apply. Either "exponential" or "linear".
scale_factors ('list', defaults to None)
The type of dynamic resolution-dependent timestep shifting to apply.
scale_factors (`list[float]`, *optional*, defaults to `None`):
It defines how to scale the latents at which predictions are made.
upscale_mode ('str', defaults to 'bicubic')
Upscaling method, applied if scale-wise generation is considered
upscale_mode (`str`, *optional*, defaults to "bicubic"):
Upscaling method, applied if scale-wise generation is considered.
"""
_compatibles = []
@@ -101,16 +102,33 @@ class FlowMatchLCMScheduler(SchedulerMixin, ConfigMixin):
max_image_seq_len: int = 4096,
invert_sigmas: bool = False,
shift_terminal: float | None = None,
use_karras_sigmas: bool = False,
use_exponential_sigmas: bool = False,
use_beta_sigmas: bool = False,
time_shift_type: str = "exponential",
use_karras_sigmas: bool | None = False,
use_exponential_sigmas: bool | None = False,
use_beta_sigmas: bool | None = False,
time_shift_type: Literal["exponential", "linear"] = "exponential",
scale_factors: list[float] | None = None,
upscale_mode: str = "bicubic",
upscale_mode: Literal[
"nearest",
"linear",
"bilinear",
"bicubic",
"trilinear",
"area",
"nearest-exact",
] = "bicubic",
):
if self.config.use_beta_sigmas and not is_scipy_available():
raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
if (
sum(
[
self.config.use_beta_sigmas,
self.config.use_exponential_sigmas,
self.config.use_karras_sigmas,
]
)
> 1
):
raise ValueError(
"Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
)
@@ -162,7 +180,7 @@ class FlowMatchLCMScheduler(SchedulerMixin, ConfigMixin):
return self._begin_index
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
def set_begin_index(self, begin_index: int = 0):
def set_begin_index(self, begin_index: int = 0) -> None:
"""
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
@@ -172,18 +190,18 @@ class FlowMatchLCMScheduler(SchedulerMixin, ConfigMixin):
"""
self._begin_index = begin_index
def set_shift(self, shift: float):
def set_shift(self, shift: float) -> None:
self._shift = shift
def set_scale_factors(self, scale_factors: list, upscale_mode):
def set_scale_factors(self, scale_factors: list[float], upscale_mode: str) -> None:
"""
Sets scale factors for a scale-wise generation regime.
Args:
scale_factors (`list`):
The scale factors for each step
scale_factors (`list[float]`):
The scale factors for each step.
upscale_mode (`str`):
Upscaling method
Upscaling method.
"""
self._scale_factors = scale_factors
self._upscale_mode = upscale_mode
@@ -238,16 +256,18 @@ class FlowMatchLCMScheduler(SchedulerMixin, ConfigMixin):
return sample
def _sigma_to_t(self, sigma):
def _sigma_to_t(self, sigma: float | torch.FloatTensor) -> float | torch.FloatTensor:
return sigma * self.config.num_train_timesteps
def time_shift(self, mu: float, sigma: float, t: torch.Tensor):
def time_shift(
self, mu: float, sigma: float, t: float | np.ndarray | torch.Tensor
) -> float | np.ndarray | torch.Tensor:
if self.config.time_shift_type == "exponential":
return self._time_shift_exponential(mu, sigma, t)
elif self.config.time_shift_type == "linear":
return self._time_shift_linear(mu, sigma, t)
def stretch_shift_to_terminal(self, t: torch.Tensor) -> torch.Tensor:
def stretch_shift_to_terminal(self, t: np.ndarray | torch.Tensor) -> np.ndarray | torch.Tensor:
r"""
Stretches and shifts the timestep schedule to ensure it terminates at the configured `shift_terminal` config
value.
@@ -256,12 +276,13 @@ class FlowMatchLCMScheduler(SchedulerMixin, ConfigMixin):
https://github.com/Lightricks/LTX-Video/blob/a01a171f8fe3d99dce2728d60a73fecf4d4238ae/ltx_video/schedulers/rf.py#L51
Args:
t (`torch.Tensor`):
A tensor of timesteps to be stretched and shifted.
t (`torch.Tensor` or `np.ndarray`):
A tensor or numpy array of timesteps to be stretched and shifted.
Returns:
`torch.Tensor`:
A tensor of adjusted timesteps such that the final value equals `self.config.shift_terminal`.
`torch.Tensor` or `np.ndarray`:
A tensor or numpy array of adjusted timesteps such that the final value equals
`self.config.shift_terminal`.
"""
one_minus_z = 1 - t
scale_factor = one_minus_z[-1] / (1 - self.config.shift_terminal)
@@ -270,12 +291,12 @@ class FlowMatchLCMScheduler(SchedulerMixin, ConfigMixin):
def set_timesteps(
self,
num_inference_steps: int = None,
device: str | torch.device = None,
num_inference_steps: int | None = None,
device: str | torch.device | None = None,
sigmas: list[float] | None = None,
mu: float = None,
mu: float | None = None,
timesteps: list[float] | None = None,
):
) -> None:
"""
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
@@ -317,43 +338,45 @@ class FlowMatchLCMScheduler(SchedulerMixin, ConfigMixin):
is_timesteps_provided = timesteps is not None
if is_timesteps_provided:
timesteps = np.array(timesteps).astype(np.float32)
timesteps = np.array(timesteps).astype(np.float32) # type: ignore
if sigmas is None:
if timesteps is None:
timesteps = np.linspace(
self._sigma_to_t(self.sigma_max), self._sigma_to_t(self.sigma_min), num_inference_steps
timesteps = np.linspace( # type: ignore
self._sigma_to_t(self.sigma_max),
self._sigma_to_t(self.sigma_min),
num_inference_steps,
)
sigmas = timesteps / self.config.num_train_timesteps
sigmas = timesteps / self.config.num_train_timesteps # type: ignore
else:
sigmas = np.array(sigmas).astype(np.float32)
sigmas = np.array(sigmas).astype(np.float32) # type: ignore
num_inference_steps = len(sigmas)
# 2. Perform timestep shifting. Either no shifting is applied, or resolution-dependent shifting of
# "exponential" or "linear" type is applied
if self.config.use_dynamic_shifting:
sigmas = self.time_shift(mu, 1.0, sigmas)
sigmas = self.time_shift(mu, 1.0, sigmas) # type: ignore
else:
sigmas = self.shift * sigmas / (1 + (self.shift - 1) * sigmas)
sigmas = self.shift * sigmas / (1 + (self.shift - 1) * sigmas) # type: ignore
# 3. If required, stretch the sigmas schedule to terminate at the configured `shift_terminal` value
if self.config.shift_terminal:
sigmas = self.stretch_shift_to_terminal(sigmas)
sigmas = self.stretch_shift_to_terminal(sigmas) # type: ignore
# 4. If required, convert sigmas to one of karras, exponential, or beta sigma schedules
if self.config.use_karras_sigmas:
sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps) # type: ignore
elif self.config.use_exponential_sigmas:
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps) # type: ignore
elif self.config.use_beta_sigmas:
sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps) # type: ignore
# 5. Convert sigmas and timesteps to tensors and move to specified device
sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device)
sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device) # type: ignore
if not is_timesteps_provided:
timesteps = sigmas * self.config.num_train_timesteps
timesteps = sigmas * self.config.num_train_timesteps # type: ignore
else:
timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32, device=device)
timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32, device=device) # type: ignore
# 6. Append the terminal sigma value.
# If a model requires inverted sigma schedule for denoising but timesteps without inversion, the
@@ -370,7 +393,11 @@ class FlowMatchLCMScheduler(SchedulerMixin, ConfigMixin):
self._step_index = None
self._begin_index = None
def index_for_timestep(self, timestep, schedule_timesteps=None):
def index_for_timestep(
self,
timestep: float | torch.Tensor,
schedule_timesteps: torch.Tensor | None = None,
) -> int:
if schedule_timesteps is None:
schedule_timesteps = self.timesteps
@@ -382,9 +409,9 @@ class FlowMatchLCMScheduler(SchedulerMixin, ConfigMixin):
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
pos = 1 if len(indices) > 1 else 0
return indices[pos].item()
return int(indices[pos].item())
def _init_step_index(self, timestep):
def _init_step_index(self, timestep: float | torch.Tensor) -> None:
if self.begin_index is None:
if isinstance(timestep, torch.Tensor):
timestep = timestep.to(self.timesteps.device)
@@ -459,7 +486,12 @@ class FlowMatchLCMScheduler(SchedulerMixin, ConfigMixin):
size = [round(self._scale_factors[self._step_index] * size) for size in self._init_size]
x0_pred = torch.nn.functional.interpolate(x0_pred, size=size, mode=self._upscale_mode)
noise = randn_tensor(x0_pred.shape, generator=generator, device=x0_pred.device, dtype=x0_pred.dtype)
noise = randn_tensor(
x0_pred.shape,
generator=generator,
device=x0_pred.device,
dtype=x0_pred.dtype,
)
prev_sample = (1 - sigma_next) * x0_pred + sigma_next * noise
# upon completion increase step index by one
@@ -473,7 +505,7 @@ class FlowMatchLCMScheduler(SchedulerMixin, ConfigMixin):
return FlowMatchLCMSchedulerOutput(prev_sample=prev_sample)
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
"""
Construct the noise schedule as proposed in [Elucidating the Design Space of Diffusion-Based Generative
Models](https://huggingface.co/papers/2206.00364).
@@ -594,11 +626,15 @@ class FlowMatchLCMScheduler(SchedulerMixin, ConfigMixin):
)
return sigmas
def _time_shift_exponential(self, mu, sigma, t):
def _time_shift_exponential(
self, mu: float, sigma: float, t: float | np.ndarray | torch.Tensor
) -> float | np.ndarray | torch.Tensor:
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
def _time_shift_linear(self, mu, sigma, t):
def _time_shift_linear(
self, mu: float, sigma: float, t: float | np.ndarray | torch.Tensor
) -> float | np.ndarray | torch.Tensor:
return mu / (mu + (1 / t - 1) ** sigma)
def __len__(self):
def __len__(self) -> int:
return self.config.num_train_timesteps

View File

@@ -375,7 +375,7 @@ class LoraHotSwappingForModelTesterMixin:
# additionally check if dynamic compilation works.
if different_shapes is not None:
for height, width in different_shapes:
new_inputs_dict = self.prepare_dummy_input(height=height, width=width)
new_inputs_dict = self.get_dummy_inputs(height=height, width=width)
_ = model(**new_inputs_dict)
else:
output0_after = model(**inputs_dict)["sample"]
@@ -390,7 +390,7 @@ class LoraHotSwappingForModelTesterMixin:
with torch.inference_mode():
if different_shapes is not None:
for height, width in different_shapes:
new_inputs_dict = self.prepare_dummy_input(height=height, width=width)
new_inputs_dict = self.get_dummy_inputs(height=height, width=width)
_ = model(**new_inputs_dict)
else:
output1_after = model(**inputs_dict)["sample"]

View File

@@ -628,6 +628,21 @@ class BitsAndBytesTesterMixin(BitsAndBytesConfigMixin, QuantizationTesterMixin):
"""Test that quantized models can be used for training with adapters."""
self._test_quantization_training(BitsAndBytesConfigMixin.BNB_CONFIGS["4bit_nf4"])
@pytest.mark.parametrize(
"config_name",
list(BitsAndBytesConfigMixin.BNB_CONFIGS.keys()),
ids=list(BitsAndBytesConfigMixin.BNB_CONFIGS.keys()),
)
def test_cpu_device_map(self, config_name):
config_kwargs = BitsAndBytesConfigMixin.BNB_CONFIGS[config_name]
model_quantized = self._create_quantized_model(config_kwargs, device_map="cpu")
assert hasattr(model_quantized, "hf_device_map"), "Model should have hf_device_map attribute"
assert model_quantized.hf_device_map is not None, "hf_device_map should not be None"
assert model_quantized.device == torch.device("cpu"), (
f"Model should be on CPU, but is on {model_quantized.device}"
)
@is_quantization
@is_quanto

View File

@@ -158,6 +158,10 @@ class AllegroPipelineFastTests(PipelineTesterMixin, PyramidAttentionBroadcastTes
def test_save_load_optional_components(self):
pass
@unittest.skip("Decoding without tiling is not yet implemented")
def test_pipeline_with_accelerator_device_map(self):
pass
def test_inference(self):
device = "cpu"

View File

@@ -34,9 +34,7 @@ enable_full_determinism()
class KandinskyPipelineCombinedFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = KandinskyCombinedPipeline
params = [
"prompt",
]
params = ["prompt"]
batch_params = ["prompt", "negative_prompt"]
required_optional_params = [
"generator",
@@ -148,6 +146,10 @@ class KandinskyPipelineCombinedFastTests(PipelineTesterMixin, unittest.TestCase)
def test_dict_tuple_outputs_equivalent(self):
super().test_dict_tuple_outputs_equivalent(expected_max_difference=5e-4)
@unittest.skip("Test not supported.")
def test_pipeline_with_accelerator_device_map(self):
pass
class KandinskyPipelineImg2ImgCombinedFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = KandinskyImg2ImgCombinedPipeline
@@ -264,6 +266,10 @@ class KandinskyPipelineImg2ImgCombinedFastTests(PipelineTesterMixin, unittest.Te
def test_save_load_optional_components(self):
super().test_save_load_optional_components(expected_max_difference=5e-4)
@unittest.skip("Test not supported.")
def test_pipeline_with_accelerator_device_map(self):
pass
class KandinskyPipelineInpaintCombinedFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = KandinskyInpaintCombinedPipeline
@@ -384,3 +390,7 @@ class KandinskyPipelineInpaintCombinedFastTests(PipelineTesterMixin, unittest.Te
def test_save_load_local(self):
super().test_save_load_local(expected_max_difference=5e-3)
@unittest.skip("Test not supported.")
def test_pipeline_with_accelerator_device_map(self):
pass

View File

@@ -36,9 +36,7 @@ enable_full_determinism()
class KandinskyV22PipelineCombinedFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = KandinskyV22CombinedPipeline
params = [
"prompt",
]
params = ["prompt"]
batch_params = ["prompt", "negative_prompt"]
required_optional_params = [
"generator",
@@ -70,12 +68,7 @@ class KandinskyV22PipelineCombinedFastTests(PipelineTesterMixin, unittest.TestCa
def get_dummy_inputs(self, device, seed=0):
prior_dummy = PriorDummies()
inputs = prior_dummy.get_dummy_inputs(device=device, seed=seed)
inputs.update(
{
"height": 64,
"width": 64,
}
)
inputs.update({"height": 64, "width": 64})
return inputs
def test_kandinsky(self):
@@ -155,12 +148,18 @@ class KandinskyV22PipelineCombinedFastTests(PipelineTesterMixin, unittest.TestCa
def test_save_load_optional_components(self):
super().test_save_load_optional_components(expected_max_difference=5e-3)
@unittest.skip("Test not supported.")
def test_callback_inputs(self):
pass
@unittest.skip("Test not supported.")
def test_callback_cfg(self):
pass
@unittest.skip("Test not supported.")
def test_pipeline_with_accelerator_device_map(self):
pass
class KandinskyV22PipelineImg2ImgCombinedFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = KandinskyV22Img2ImgCombinedPipeline
@@ -279,12 +278,18 @@ class KandinskyV22PipelineImg2ImgCombinedFastTests(PipelineTesterMixin, unittest
def save_load_local(self):
super().test_save_load_local(expected_max_difference=5e-3)
@unittest.skip("Test not supported.")
def test_callback_inputs(self):
pass
@unittest.skip("Test not supported.")
def test_callback_cfg(self):
pass
@unittest.skip("Test not supported.")
def test_pipeline_with_accelerator_device_map(self):
pass
class KandinskyV22PipelineInpaintCombinedFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = KandinskyV22InpaintCombinedPipeline
@@ -411,3 +416,7 @@ class KandinskyV22PipelineInpaintCombinedFastTests(PipelineTesterMixin, unittest
def test_callback_cfg(self):
pass
@unittest.skip("`device_map` is not yet supported for connected pipelines.")
def test_pipeline_with_accelerator_device_map(self):
pass

View File

@@ -296,6 +296,9 @@ class KandinskyV22InpaintPipelineFastTests(PipelineTesterMixin, unittest.TestCas
output = pipe(**inputs)[0]
assert output.abs().sum() == 0
def test_pipeline_with_accelerator_device_map(self):
super().test_pipeline_with_accelerator_device_map(expected_max_difference=5e-3)
@slow
@require_torch_accelerator

View File

@@ -194,6 +194,9 @@ class Kandinsky3Img2ImgPipelineFastTests(PipelineTesterMixin, unittest.TestCase)
def test_save_load_dduf(self):
super().test_save_load_dduf(atol=1e-3, rtol=1e-3)
def test_pipeline_with_accelerator_device_map(self):
super().test_pipeline_with_accelerator_device_map(expected_max_difference=5e-3)
@slow
@require_torch_accelerator

View File

@@ -1,7 +1,6 @@
import unittest
import numpy as np
import pytest
import torch
from transformers import AutoTokenizer
from transformers.models.t5gemma.configuration_t5gemma import T5GemmaConfig, T5GemmaModuleConfig
@@ -11,17 +10,11 @@ from diffusers.models import AutoencoderDC, AutoencoderKL
from diffusers.models.transformers.transformer_prx import PRXTransformer2DModel
from diffusers.pipelines.prx.pipeline_prx import PRXPipeline
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
from diffusers.utils import is_transformers_version
from ..pipeline_params import TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
@pytest.mark.xfail(
condition=is_transformers_version(">", "4.57.1"),
reason="See https://github.com/huggingface/diffusers/pull/12456#issuecomment-3424228544",
strict=False,
)
class PRXPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = PRXPipeline
params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"}

View File

@@ -2355,7 +2355,6 @@ class PipelineTesterMixin:
f"Component '{name}' has dtype {component.dtype} but expected {expected_dtype}",
)
@require_torch_accelerator
def test_pipeline_with_accelerator_device_map(self, expected_max_difference=1e-4):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)

View File

@@ -342,3 +342,7 @@ class VisualClozePipelineFastTests(unittest.TestCase, PipelineTesterMixin):
self.assertLess(
max_diff, expected_max_diff, "The output of the fp16 pipeline changed after saving and loading."
)
@unittest.skip("Test not supported.")
def test_pipeline_with_accelerator_device_map(self):
pass

View File

@@ -310,3 +310,7 @@ class VisualClozeGenerationPipelineFastTests(unittest.TestCase, PipelineTesterMi
@unittest.skip("Skipped due to missing layout_prompt. Needs further investigation.")
def test_encode_prompt_works_in_isolation(self, extra_required_param_value_dict=None, atol=0.0001, rtol=0.0001):
pass
@unittest.skip("Needs to be revisited later.")
def test_pipeline_with_accelerator_device_map(self, expected_max_difference=0.0001):
pass