mirror of
https://github.com/huggingface/diffusers.git
synced 2026-02-23 03:10:34 +08:00
Compare commits
11 Commits
requiremen
...
remove-non
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
5e87c38b29 | ||
|
|
a80b19218b | ||
|
|
01de02e8b4 | ||
|
|
db2d7e7bc4 | ||
|
|
f8d3db9ca7 | ||
|
|
99daaa802d | ||
|
|
fe78a7b7c6 | ||
|
|
53e1d0e458 | ||
|
|
a577ec36df | ||
|
|
6875490c3b | ||
|
|
64734b2115 |
2
.github/workflows/pr_modular_tests.yml
vendored
2
.github/workflows/pr_modular_tests.yml
vendored
@@ -117,7 +117,7 @@ jobs:
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
uv pip install -e ".[quality,test]"
|
||||
uv pip install -e ".[quality]"
|
||||
#uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
|
||||
uv pip uninstall transformers huggingface_hub && uv pip install transformers==4.57.1
|
||||
uv pip uninstall accelerate && uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git --no-deps
|
||||
|
||||
6
.github/workflows/pr_tests.yml
vendored
6
.github/workflows/pr_tests.yml
vendored
@@ -114,7 +114,7 @@ jobs:
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
uv pip install -e ".[quality,test]"
|
||||
uv pip install -e ".[quality]"
|
||||
#uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
|
||||
uv pip uninstall transformers huggingface_hub && uv pip install transformers==4.57.1
|
||||
uv pip uninstall accelerate && uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git --no-deps
|
||||
@@ -191,7 +191,7 @@ jobs:
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
uv pip install -e ".[quality,test]"
|
||||
uv pip install -e ".[quality]"
|
||||
|
||||
- name: Environment
|
||||
run: |
|
||||
@@ -242,7 +242,7 @@ jobs:
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
uv pip install -e ".[quality,test]"
|
||||
uv pip install -e ".[quality]"
|
||||
# TODO (sayakpaul, DN6): revisit `--no-deps`
|
||||
uv pip install -U peft@git+https://github.com/huggingface/peft.git --no-deps
|
||||
uv pip install -U tokenizers
|
||||
|
||||
5
.github/workflows/pr_tests_gpu.yml
vendored
5
.github/workflows/pr_tests_gpu.yml
vendored
@@ -199,11 +199,6 @@ jobs:
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
# Install pkgs which depend on setuptools<81 for pkg_resources first with no build isolation
|
||||
uv pip install pip==25.2 setuptools==80.10.2
|
||||
uv pip install --no-build-isolation k-diffusion==0.0.12
|
||||
uv pip install --upgrade pip setuptools
|
||||
# Install the rest as normal
|
||||
uv pip install -e ".[quality]"
|
||||
uv pip install peft@git+https://github.com/huggingface/peft.git
|
||||
uv pip uninstall accelerate && uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
|
||||
|
||||
5
.github/workflows/push_tests.yml
vendored
5
.github/workflows/push_tests.yml
vendored
@@ -126,11 +126,6 @@ jobs:
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
# Install pkgs which depend on setuptools<81 for pkg_resources first with no build isolation
|
||||
uv pip install pip==25.2 setuptools==80.10.2
|
||||
uv pip install --no-build-isolation k-diffusion==0.0.12
|
||||
uv pip install --upgrade pip setuptools
|
||||
# Install the rest as normal
|
||||
uv pip install -e ".[quality]"
|
||||
uv pip install peft@git+https://github.com/huggingface/peft.git
|
||||
uv pip uninstall accelerate && uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
|
||||
|
||||
2
.github/workflows/push_tests_mps.yml
vendored
2
.github/workflows/push_tests_mps.yml
vendored
@@ -41,7 +41,7 @@ jobs:
|
||||
shell: arch -arch arm64 bash {0}
|
||||
run: |
|
||||
${CONDA_RUN} python -m pip install --upgrade pip uv
|
||||
${CONDA_RUN} python -m uv pip install -e ".[quality,test]"
|
||||
${CONDA_RUN} python -m uv pip install -e ".[quality]"
|
||||
${CONDA_RUN} python -m uv pip install torch torchvision torchaudio
|
||||
${CONDA_RUN} python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate.git
|
||||
${CONDA_RUN} python -m uv pip install transformers --upgrade
|
||||
|
||||
@@ -29,7 +29,7 @@ Qwen-Image comes in the following variants:
|
||||
| Qwen-Image-Edit Plus | [Qwen/Qwen-Image-Edit-2509](https://huggingface.co/Qwen/Qwen-Image-Edit-2509) |
|
||||
|
||||
> [!TIP]
|
||||
> [Caching](../../optimization/cache) may also speed up inference by storing and reusing intermediate outputs.
|
||||
> See the [Caching](../../optimization/cache) guide to speed up inference by storing and reusing intermediate outputs.
|
||||
|
||||
## LoRA for faster inference
|
||||
|
||||
@@ -190,6 +190,12 @@ For detailed benchmark scripts and results, see [this gist](https://gist.github.
|
||||
- all
|
||||
- __call__
|
||||
|
||||
## QwenImageLayeredPipeline
|
||||
|
||||
[[autodoc]] QwenImageLayeredPipeline
|
||||
- all
|
||||
- __call__
|
||||
|
||||
## QwenImagePipelineOutput
|
||||
|
||||
[[autodoc]] pipelines.qwenimage.pipeline_output.QwenImagePipelineOutput
|
||||
@@ -5472,6 +5472,10 @@ class Flux2LoraLoaderMixin(LoraBaseMixin):
|
||||
logger.warning(warn_msg)
|
||||
state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}
|
||||
|
||||
is_peft_format = any(k.startswith("base_model.model.") for k in state_dict)
|
||||
if is_peft_format:
|
||||
state_dict = {k.replace("base_model.model.", "diffusion_model."): v for k, v in state_dict.items()}
|
||||
|
||||
is_ai_toolkit = any(k.startswith("diffusion_model.") for k in state_dict)
|
||||
if is_ai_toolkit:
|
||||
state_dict = _convert_non_diffusers_flux2_lora_to_diffusers(state_dict)
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -424,7 +424,7 @@ class Flux2SingleTransformerBlock(nn.Module):
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
encoder_hidden_states: torch.Tensor | None,
|
||||
temb_mod_params: tuple[torch.Tensor, torch.Tensor, torch.Tensor],
|
||||
temb_mod: torch.Tensor,
|
||||
image_rotary_emb: tuple[torch.Tensor, torch.Tensor] | None = None,
|
||||
joint_attention_kwargs: dict[str, Any] | None = None,
|
||||
split_hidden_states: bool = False,
|
||||
@@ -436,7 +436,7 @@ class Flux2SingleTransformerBlock(nn.Module):
|
||||
text_seq_len = encoder_hidden_states.shape[1]
|
||||
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
||||
|
||||
mod_shift, mod_scale, mod_gate = temb_mod_params
|
||||
mod_shift, mod_scale, mod_gate = Flux2Modulation.split(temb_mod, 1)[0]
|
||||
|
||||
norm_hidden_states = self.norm(hidden_states)
|
||||
norm_hidden_states = (1 + mod_scale) * norm_hidden_states + mod_shift
|
||||
@@ -498,16 +498,18 @@ class Flux2TransformerBlock(nn.Module):
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
encoder_hidden_states: torch.Tensor,
|
||||
temb_mod_params_img: tuple[tuple[torch.Tensor, torch.Tensor, torch.Tensor], ...],
|
||||
temb_mod_params_txt: tuple[tuple[torch.Tensor, torch.Tensor, torch.Tensor], ...],
|
||||
temb_mod_img: torch.Tensor,
|
||||
temb_mod_txt: torch.Tensor,
|
||||
image_rotary_emb: tuple[torch.Tensor, torch.Tensor] | None = None,
|
||||
joint_attention_kwargs: dict[str, Any] | None = None,
|
||||
) -> tuple[torch.Tensor, torch.Tensor]:
|
||||
joint_attention_kwargs = joint_attention_kwargs or {}
|
||||
|
||||
# Modulation parameters shape: [1, 1, self.dim]
|
||||
(shift_msa, scale_msa, gate_msa), (shift_mlp, scale_mlp, gate_mlp) = temb_mod_params_img
|
||||
(c_shift_msa, c_scale_msa, c_gate_msa), (c_shift_mlp, c_scale_mlp, c_gate_mlp) = temb_mod_params_txt
|
||||
(shift_msa, scale_msa, gate_msa), (shift_mlp, scale_mlp, gate_mlp) = Flux2Modulation.split(temb_mod_img, 2)
|
||||
(c_shift_msa, c_scale_msa, c_gate_msa), (c_shift_mlp, c_scale_mlp, c_gate_mlp) = Flux2Modulation.split(
|
||||
temb_mod_txt, 2
|
||||
)
|
||||
|
||||
# Img stream
|
||||
norm_hidden_states = self.norm1(hidden_states)
|
||||
@@ -627,15 +629,19 @@ class Flux2Modulation(nn.Module):
|
||||
self.linear = nn.Linear(dim, dim * 3 * self.mod_param_sets, bias=bias)
|
||||
self.act_fn = nn.SiLU()
|
||||
|
||||
def forward(self, temb: torch.Tensor) -> tuple[tuple[torch.Tensor, torch.Tensor, torch.Tensor], ...]:
|
||||
def forward(self, temb: torch.Tensor) -> torch.Tensor:
|
||||
mod = self.act_fn(temb)
|
||||
mod = self.linear(mod)
|
||||
return mod
|
||||
|
||||
@staticmethod
|
||||
# split inside the transformer blocks, to avoid passing tuples into checkpoints https://github.com/huggingface/diffusers/issues/12776
|
||||
def split(mod: torch.Tensor, mod_param_sets: int) -> tuple[tuple[torch.Tensor, torch.Tensor, torch.Tensor], ...]:
|
||||
if mod.ndim == 2:
|
||||
mod = mod.unsqueeze(1)
|
||||
mod_params = torch.chunk(mod, 3 * self.mod_param_sets, dim=-1)
|
||||
mod_params = torch.chunk(mod, 3 * mod_param_sets, dim=-1)
|
||||
# Return tuple of 3-tuples of modulation params shift/scale/gate
|
||||
return tuple(mod_params[3 * i : 3 * (i + 1)] for i in range(self.mod_param_sets))
|
||||
return tuple(mod_params[3 * i : 3 * (i + 1)] for i in range(mod_param_sets))
|
||||
|
||||
|
||||
class Flux2Transformer2DModel(
|
||||
@@ -824,7 +830,7 @@ class Flux2Transformer2DModel(
|
||||
|
||||
double_stream_mod_img = self.double_stream_modulation_img(temb)
|
||||
double_stream_mod_txt = self.double_stream_modulation_txt(temb)
|
||||
single_stream_mod = self.single_stream_modulation(temb)[0]
|
||||
single_stream_mod = self.single_stream_modulation(temb)
|
||||
|
||||
# 2. Input projection for image (hidden_states) and conditioning text (encoder_hidden_states)
|
||||
hidden_states = self.x_embedder(hidden_states)
|
||||
@@ -861,8 +867,8 @@ class Flux2Transformer2DModel(
|
||||
encoder_hidden_states, hidden_states = block(
|
||||
hidden_states=hidden_states,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
temb_mod_params_img=double_stream_mod_img,
|
||||
temb_mod_params_txt=double_stream_mod_txt,
|
||||
temb_mod_img=double_stream_mod_img,
|
||||
temb_mod_txt=double_stream_mod_txt,
|
||||
image_rotary_emb=concat_rotary_emb,
|
||||
joint_attention_kwargs=joint_attention_kwargs,
|
||||
)
|
||||
@@ -884,7 +890,7 @@ class Flux2Transformer2DModel(
|
||||
hidden_states = block(
|
||||
hidden_states=hidden_states,
|
||||
encoder_hidden_states=None,
|
||||
temb_mod_params=single_stream_mod,
|
||||
temb_mod=single_stream_mod,
|
||||
image_rotary_emb=concat_rotary_emb,
|
||||
joint_attention_kwargs=joint_attention_kwargs,
|
||||
)
|
||||
|
||||
@@ -18,7 +18,6 @@ import re
|
||||
import urllib.parse as ul
|
||||
from typing import Callable
|
||||
|
||||
import ftfy
|
||||
import torch
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
@@ -34,13 +33,13 @@ from diffusers.models.transformers.transformer_prx import PRXTransformer2DModel
|
||||
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
||||
from diffusers.pipelines.prx.pipeline_output import PRXPipelineOutput
|
||||
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
|
||||
from diffusers.utils import (
|
||||
logging,
|
||||
replace_example_docstring,
|
||||
)
|
||||
from diffusers.utils import is_ftfy_available, logging, replace_example_docstring
|
||||
from diffusers.utils.torch_utils import randn_tensor
|
||||
|
||||
|
||||
if is_ftfy_available():
|
||||
import ftfy
|
||||
|
||||
DEFAULT_RESOLUTION = 512
|
||||
|
||||
ASPECT_RATIO_256_BIN = {
|
||||
|
||||
@@ -516,6 +516,9 @@ def dequantize_gguf_tensor(tensor):
|
||||
|
||||
block_size, type_size = GGML_QUANT_SIZES[quant_type]
|
||||
|
||||
# Conver to plain tensor to avoid unnecessary __torch_function__ overhead.
|
||||
tensor = tensor.as_tensor()
|
||||
|
||||
tensor = tensor.view(torch.uint8)
|
||||
shape = _quant_shape_from_byte_shape(tensor.shape, type_size, block_size)
|
||||
|
||||
@@ -525,7 +528,7 @@ def dequantize_gguf_tensor(tensor):
|
||||
dequant = dequant_fn(blocks, block_size, type_size)
|
||||
dequant = dequant.reshape(shape)
|
||||
|
||||
return dequant.as_tensor()
|
||||
return dequant
|
||||
|
||||
|
||||
class GGUFParameter(torch.nn.Parameter):
|
||||
|
||||
@@ -14,6 +14,7 @@
|
||||
|
||||
import math
|
||||
from dataclasses import dataclass
|
||||
from typing import Literal
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
@@ -41,7 +42,7 @@ class FlowMatchLCMSchedulerOutput(BaseOutput):
|
||||
denoising loop.
|
||||
"""
|
||||
|
||||
prev_sample: torch.FloatTensor
|
||||
prev_sample: torch.Tensor
|
||||
|
||||
|
||||
class FlowMatchLCMScheduler(SchedulerMixin, ConfigMixin):
|
||||
@@ -79,11 +80,11 @@ class FlowMatchLCMScheduler(SchedulerMixin, ConfigMixin):
|
||||
use_beta_sigmas (`bool`, defaults to False):
|
||||
Whether to use beta sigmas for step sizes in the noise schedule during sampling.
|
||||
time_shift_type (`str`, defaults to "exponential"):
|
||||
The type of dynamic resolution-dependent timestep shifting to apply. Either "exponential" or "linear".
|
||||
scale_factors ('list', defaults to None)
|
||||
The type of dynamic resolution-dependent timestep shifting to apply.
|
||||
scale_factors (`list[float]`, *optional*, defaults to `None`):
|
||||
It defines how to scale the latents at which predictions are made.
|
||||
upscale_mode ('str', defaults to 'bicubic')
|
||||
Upscaling method, applied if scale-wise generation is considered
|
||||
upscale_mode (`str`, *optional*, defaults to "bicubic"):
|
||||
Upscaling method, applied if scale-wise generation is considered.
|
||||
"""
|
||||
|
||||
_compatibles = []
|
||||
@@ -101,16 +102,33 @@ class FlowMatchLCMScheduler(SchedulerMixin, ConfigMixin):
|
||||
max_image_seq_len: int = 4096,
|
||||
invert_sigmas: bool = False,
|
||||
shift_terminal: float | None = None,
|
||||
use_karras_sigmas: bool = False,
|
||||
use_exponential_sigmas: bool = False,
|
||||
use_beta_sigmas: bool = False,
|
||||
time_shift_type: str = "exponential",
|
||||
use_karras_sigmas: bool | None = False,
|
||||
use_exponential_sigmas: bool | None = False,
|
||||
use_beta_sigmas: bool | None = False,
|
||||
time_shift_type: Literal["exponential", "linear"] = "exponential",
|
||||
scale_factors: list[float] | None = None,
|
||||
upscale_mode: str = "bicubic",
|
||||
upscale_mode: Literal[
|
||||
"nearest",
|
||||
"linear",
|
||||
"bilinear",
|
||||
"bicubic",
|
||||
"trilinear",
|
||||
"area",
|
||||
"nearest-exact",
|
||||
] = "bicubic",
|
||||
):
|
||||
if self.config.use_beta_sigmas and not is_scipy_available():
|
||||
raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
|
||||
if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
|
||||
if (
|
||||
sum(
|
||||
[
|
||||
self.config.use_beta_sigmas,
|
||||
self.config.use_exponential_sigmas,
|
||||
self.config.use_karras_sigmas,
|
||||
]
|
||||
)
|
||||
> 1
|
||||
):
|
||||
raise ValueError(
|
||||
"Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
|
||||
)
|
||||
@@ -162,7 +180,7 @@ class FlowMatchLCMScheduler(SchedulerMixin, ConfigMixin):
|
||||
return self._begin_index
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
|
||||
def set_begin_index(self, begin_index: int = 0):
|
||||
def set_begin_index(self, begin_index: int = 0) -> None:
|
||||
"""
|
||||
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
|
||||
|
||||
@@ -172,18 +190,18 @@ class FlowMatchLCMScheduler(SchedulerMixin, ConfigMixin):
|
||||
"""
|
||||
self._begin_index = begin_index
|
||||
|
||||
def set_shift(self, shift: float):
|
||||
def set_shift(self, shift: float) -> None:
|
||||
self._shift = shift
|
||||
|
||||
def set_scale_factors(self, scale_factors: list, upscale_mode):
|
||||
def set_scale_factors(self, scale_factors: list[float], upscale_mode: str) -> None:
|
||||
"""
|
||||
Sets scale factors for a scale-wise generation regime.
|
||||
|
||||
Args:
|
||||
scale_factors (`list`):
|
||||
The scale factors for each step
|
||||
scale_factors (`list[float]`):
|
||||
The scale factors for each step.
|
||||
upscale_mode (`str`):
|
||||
Upscaling method
|
||||
Upscaling method.
|
||||
"""
|
||||
self._scale_factors = scale_factors
|
||||
self._upscale_mode = upscale_mode
|
||||
@@ -238,16 +256,18 @@ class FlowMatchLCMScheduler(SchedulerMixin, ConfigMixin):
|
||||
|
||||
return sample
|
||||
|
||||
def _sigma_to_t(self, sigma):
|
||||
def _sigma_to_t(self, sigma: float | torch.FloatTensor) -> float | torch.FloatTensor:
|
||||
return sigma * self.config.num_train_timesteps
|
||||
|
||||
def time_shift(self, mu: float, sigma: float, t: torch.Tensor):
|
||||
def time_shift(
|
||||
self, mu: float, sigma: float, t: float | np.ndarray | torch.Tensor
|
||||
) -> float | np.ndarray | torch.Tensor:
|
||||
if self.config.time_shift_type == "exponential":
|
||||
return self._time_shift_exponential(mu, sigma, t)
|
||||
elif self.config.time_shift_type == "linear":
|
||||
return self._time_shift_linear(mu, sigma, t)
|
||||
|
||||
def stretch_shift_to_terminal(self, t: torch.Tensor) -> torch.Tensor:
|
||||
def stretch_shift_to_terminal(self, t: np.ndarray | torch.Tensor) -> np.ndarray | torch.Tensor:
|
||||
r"""
|
||||
Stretches and shifts the timestep schedule to ensure it terminates at the configured `shift_terminal` config
|
||||
value.
|
||||
@@ -256,12 +276,13 @@ class FlowMatchLCMScheduler(SchedulerMixin, ConfigMixin):
|
||||
https://github.com/Lightricks/LTX-Video/blob/a01a171f8fe3d99dce2728d60a73fecf4d4238ae/ltx_video/schedulers/rf.py#L51
|
||||
|
||||
Args:
|
||||
t (`torch.Tensor`):
|
||||
A tensor of timesteps to be stretched and shifted.
|
||||
t (`torch.Tensor` or `np.ndarray`):
|
||||
A tensor or numpy array of timesteps to be stretched and shifted.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
A tensor of adjusted timesteps such that the final value equals `self.config.shift_terminal`.
|
||||
`torch.Tensor` or `np.ndarray`:
|
||||
A tensor or numpy array of adjusted timesteps such that the final value equals
|
||||
`self.config.shift_terminal`.
|
||||
"""
|
||||
one_minus_z = 1 - t
|
||||
scale_factor = one_minus_z[-1] / (1 - self.config.shift_terminal)
|
||||
@@ -270,12 +291,12 @@ class FlowMatchLCMScheduler(SchedulerMixin, ConfigMixin):
|
||||
|
||||
def set_timesteps(
|
||||
self,
|
||||
num_inference_steps: int = None,
|
||||
device: str | torch.device = None,
|
||||
num_inference_steps: int | None = None,
|
||||
device: str | torch.device | None = None,
|
||||
sigmas: list[float] | None = None,
|
||||
mu: float = None,
|
||||
mu: float | None = None,
|
||||
timesteps: list[float] | None = None,
|
||||
):
|
||||
) -> None:
|
||||
"""
|
||||
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
||||
|
||||
@@ -317,43 +338,45 @@ class FlowMatchLCMScheduler(SchedulerMixin, ConfigMixin):
|
||||
is_timesteps_provided = timesteps is not None
|
||||
|
||||
if is_timesteps_provided:
|
||||
timesteps = np.array(timesteps).astype(np.float32)
|
||||
timesteps = np.array(timesteps).astype(np.float32) # type: ignore
|
||||
|
||||
if sigmas is None:
|
||||
if timesteps is None:
|
||||
timesteps = np.linspace(
|
||||
self._sigma_to_t(self.sigma_max), self._sigma_to_t(self.sigma_min), num_inference_steps
|
||||
timesteps = np.linspace( # type: ignore
|
||||
self._sigma_to_t(self.sigma_max),
|
||||
self._sigma_to_t(self.sigma_min),
|
||||
num_inference_steps,
|
||||
)
|
||||
sigmas = timesteps / self.config.num_train_timesteps
|
||||
sigmas = timesteps / self.config.num_train_timesteps # type: ignore
|
||||
else:
|
||||
sigmas = np.array(sigmas).astype(np.float32)
|
||||
sigmas = np.array(sigmas).astype(np.float32) # type: ignore
|
||||
num_inference_steps = len(sigmas)
|
||||
|
||||
# 2. Perform timestep shifting. Either no shifting is applied, or resolution-dependent shifting of
|
||||
# "exponential" or "linear" type is applied
|
||||
if self.config.use_dynamic_shifting:
|
||||
sigmas = self.time_shift(mu, 1.0, sigmas)
|
||||
sigmas = self.time_shift(mu, 1.0, sigmas) # type: ignore
|
||||
else:
|
||||
sigmas = self.shift * sigmas / (1 + (self.shift - 1) * sigmas)
|
||||
sigmas = self.shift * sigmas / (1 + (self.shift - 1) * sigmas) # type: ignore
|
||||
|
||||
# 3. If required, stretch the sigmas schedule to terminate at the configured `shift_terminal` value
|
||||
if self.config.shift_terminal:
|
||||
sigmas = self.stretch_shift_to_terminal(sigmas)
|
||||
sigmas = self.stretch_shift_to_terminal(sigmas) # type: ignore
|
||||
|
||||
# 4. If required, convert sigmas to one of karras, exponential, or beta sigma schedules
|
||||
if self.config.use_karras_sigmas:
|
||||
sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
|
||||
sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps) # type: ignore
|
||||
elif self.config.use_exponential_sigmas:
|
||||
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
|
||||
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps) # type: ignore
|
||||
elif self.config.use_beta_sigmas:
|
||||
sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
|
||||
sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps) # type: ignore
|
||||
|
||||
# 5. Convert sigmas and timesteps to tensors and move to specified device
|
||||
sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device)
|
||||
sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device) # type: ignore
|
||||
if not is_timesteps_provided:
|
||||
timesteps = sigmas * self.config.num_train_timesteps
|
||||
timesteps = sigmas * self.config.num_train_timesteps # type: ignore
|
||||
else:
|
||||
timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32, device=device)
|
||||
timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32, device=device) # type: ignore
|
||||
|
||||
# 6. Append the terminal sigma value.
|
||||
# If a model requires inverted sigma schedule for denoising but timesteps without inversion, the
|
||||
@@ -370,7 +393,11 @@ class FlowMatchLCMScheduler(SchedulerMixin, ConfigMixin):
|
||||
self._step_index = None
|
||||
self._begin_index = None
|
||||
|
||||
def index_for_timestep(self, timestep, schedule_timesteps=None):
|
||||
def index_for_timestep(
|
||||
self,
|
||||
timestep: float | torch.Tensor,
|
||||
schedule_timesteps: torch.Tensor | None = None,
|
||||
) -> int:
|
||||
if schedule_timesteps is None:
|
||||
schedule_timesteps = self.timesteps
|
||||
|
||||
@@ -382,9 +409,9 @@ class FlowMatchLCMScheduler(SchedulerMixin, ConfigMixin):
|
||||
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
|
||||
pos = 1 if len(indices) > 1 else 0
|
||||
|
||||
return indices[pos].item()
|
||||
return int(indices[pos].item())
|
||||
|
||||
def _init_step_index(self, timestep):
|
||||
def _init_step_index(self, timestep: float | torch.Tensor) -> None:
|
||||
if self.begin_index is None:
|
||||
if isinstance(timestep, torch.Tensor):
|
||||
timestep = timestep.to(self.timesteps.device)
|
||||
@@ -459,7 +486,12 @@ class FlowMatchLCMScheduler(SchedulerMixin, ConfigMixin):
|
||||
size = [round(self._scale_factors[self._step_index] * size) for size in self._init_size]
|
||||
x0_pred = torch.nn.functional.interpolate(x0_pred, size=size, mode=self._upscale_mode)
|
||||
|
||||
noise = randn_tensor(x0_pred.shape, generator=generator, device=x0_pred.device, dtype=x0_pred.dtype)
|
||||
noise = randn_tensor(
|
||||
x0_pred.shape,
|
||||
generator=generator,
|
||||
device=x0_pred.device,
|
||||
dtype=x0_pred.dtype,
|
||||
)
|
||||
prev_sample = (1 - sigma_next) * x0_pred + sigma_next * noise
|
||||
|
||||
# upon completion increase step index by one
|
||||
@@ -473,7 +505,7 @@ class FlowMatchLCMScheduler(SchedulerMixin, ConfigMixin):
|
||||
return FlowMatchLCMSchedulerOutput(prev_sample=prev_sample)
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
|
||||
def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
|
||||
def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
|
||||
"""
|
||||
Construct the noise schedule as proposed in [Elucidating the Design Space of Diffusion-Based Generative
|
||||
Models](https://huggingface.co/papers/2206.00364).
|
||||
@@ -594,11 +626,15 @@ class FlowMatchLCMScheduler(SchedulerMixin, ConfigMixin):
|
||||
)
|
||||
return sigmas
|
||||
|
||||
def _time_shift_exponential(self, mu, sigma, t):
|
||||
def _time_shift_exponential(
|
||||
self, mu: float, sigma: float, t: float | np.ndarray | torch.Tensor
|
||||
) -> float | np.ndarray | torch.Tensor:
|
||||
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
|
||||
|
||||
def _time_shift_linear(self, mu, sigma, t):
|
||||
def _time_shift_linear(
|
||||
self, mu: float, sigma: float, t: float | np.ndarray | torch.Tensor
|
||||
) -> float | np.ndarray | torch.Tensor:
|
||||
return mu / (mu + (1 / t - 1) ** sigma)
|
||||
|
||||
def __len__(self):
|
||||
def __len__(self) -> int:
|
||||
return self.config.num_train_timesteps
|
||||
|
||||
@@ -375,7 +375,7 @@ class LoraHotSwappingForModelTesterMixin:
|
||||
# additionally check if dynamic compilation works.
|
||||
if different_shapes is not None:
|
||||
for height, width in different_shapes:
|
||||
new_inputs_dict = self.prepare_dummy_input(height=height, width=width)
|
||||
new_inputs_dict = self.get_dummy_inputs(height=height, width=width)
|
||||
_ = model(**new_inputs_dict)
|
||||
else:
|
||||
output0_after = model(**inputs_dict)["sample"]
|
||||
@@ -390,7 +390,7 @@ class LoraHotSwappingForModelTesterMixin:
|
||||
with torch.inference_mode():
|
||||
if different_shapes is not None:
|
||||
for height, width in different_shapes:
|
||||
new_inputs_dict = self.prepare_dummy_input(height=height, width=width)
|
||||
new_inputs_dict = self.get_dummy_inputs(height=height, width=width)
|
||||
_ = model(**new_inputs_dict)
|
||||
else:
|
||||
output1_after = model(**inputs_dict)["sample"]
|
||||
|
||||
@@ -1,7 +1,6 @@
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
import torch
|
||||
from transformers import AutoTokenizer
|
||||
from transformers.models.t5gemma.configuration_t5gemma import T5GemmaConfig, T5GemmaModuleConfig
|
||||
@@ -11,17 +10,11 @@ from diffusers.models import AutoencoderDC, AutoencoderKL
|
||||
from diffusers.models.transformers.transformer_prx import PRXTransformer2DModel
|
||||
from diffusers.pipelines.prx.pipeline_prx import PRXPipeline
|
||||
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
|
||||
from diffusers.utils import is_transformers_version
|
||||
|
||||
from ..pipeline_params import TEXT_TO_IMAGE_PARAMS
|
||||
from ..test_pipelines_common import PipelineTesterMixin
|
||||
|
||||
|
||||
@pytest.mark.xfail(
|
||||
condition=is_transformers_version(">", "4.57.1"),
|
||||
reason="See https://github.com/huggingface/diffusers/pull/12456#issuecomment-3424228544",
|
||||
strict=False,
|
||||
)
|
||||
class PRXPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
pipeline_class = PRXPipeline
|
||||
params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"}
|
||||
|
||||
Reference in New Issue
Block a user