Compare commits

..

39 Commits

Author SHA1 Message Date
Sayak Paul
10ef2269a9 Merge branch 'main' into transformers-v5-pr 2026-02-03 10:59:44 +05:30
Sayak Paul
c3249d7b2e Merge branch 'main' into transformers-v5-pr 2026-01-29 19:33:29 +05:30
sayakpaul
85682000a9 up 2026-01-28 17:46:59 +05:30
sayakpaul
5fefef9bc9 empty 2026-01-28 17:35:30 +05:30
sayakpaul
ea815e5bb0 remove torchvision. 2026-01-28 17:26:38 +05:30
sayakpaul
7eb51e932f resolve conflicts. 2026-01-28 17:25:50 +05:30
sayakpaul
079e0e31b7 just keep main for easier debugging. 2026-01-27 11:38:41 +08:00
Sayak Paul
f9bdc09534 Merge branch 'main' into transformers-v5-pr 2026-01-27 09:47:36 +08:00
sayakpaul
2bee621229 fix with peft_format. 2026-01-26 18:48:52 +08:00
Sayak Paul
7a0739ccd3 Merge branch 'main' into transformers-v5-pr 2026-01-26 18:02:52 +08:00
sayakpaul
b4b707e585 up 2026-01-25 23:57:52 +08:00
Sayak Paul
fefd0f4e45 Merge branch 'main' into transformers-v5-pr 2026-01-25 23:31:53 +08:00
sayakpaul
6e8e7bad9e up 2026-01-25 23:30:04 +08:00
sayakpaul
0eaa35fdca Revert "up"
This reverts commit 5274ffdd7f.
2026-01-23 17:31:48 +05:30
sayakpaul
4dff31871c Revert "up"
This reverts commit 515dd06db5.
2026-01-23 17:31:21 +05:30
sayakpaul
515dd06db5 up 2026-01-23 17:23:19 +05:30
sayakpaul
5274ffdd7f up 2026-01-23 17:15:25 +05:30
Sayak Paul
a21a6ac565 Merge branch 'main' into transformers-v5-pr 2026-01-23 16:55:19 +05:30
Sayak Paul
c2d8273891 Merge branch 'main' into transformers-v5-pr 2026-01-23 12:51:36 +05:30
sayakpaul
e1249d2640 same stuff. 2026-01-20 18:05:20 +05:30
sayakpaul
2fe9f9868d change qwen expected slice because of how init is handled in v5. 2026-01-20 16:56:54 +05:30
Sayak Paul
387befd6de Merge branch 'main' into transformers-v5-pr 2026-01-20 15:46:00 +05:30
sayakpaul
351316328f matrix configuration to see differences between 4.57.3 and main failures. 2026-01-20 10:11:08 +05:30
Sayak Paul
62bf2b0ab9 Merge branch 'main' into transformers-v5-pr 2026-01-20 09:49:11 +05:30
Sayak Paul
7f2cd5b6fc Merge branch 'main' into transformers-v5-pr 2026-01-19 16:02:28 +05:30
Sayak Paul
4ea43ee6ab Merge branch 'main' into transformers-v5-pr 2026-01-19 15:52:35 +05:30
sayakpaul
084c959bdf fix t5 stuff for more. 2026-01-19 15:08:55 +05:30
sayakpaul
3dcb97c9ea tie embedding issue. 2026-01-19 13:43:47 +05:30
Sayak Paul
7b55da8846 Merge branch 'main' into transformers-v5-pr 2026-01-19 11:05:40 +05:30
sayakpaul
cec020988b up 2026-01-16 10:22:59 +05:30
sayakpaul
926db24add up 2026-01-16 10:01:44 +05:30
sayakpaul
37cfceef0d attributes 2026-01-16 09:39:36 +05:30
Sayak Paul
ea90a74ed4 Merge branch 'main' into transformers-v5-pr 2026-01-15 20:01:03 +05:30
sayakpaul
96f08043a3 fix group offloading. 2026-01-15 20:00:45 +05:30
sayakpaul
d0f279ce76 up 2026-01-15 16:59:41 +05:30
sayakpaul
c5e023fbe6 up 2026-01-15 13:03:11 +05:30
Sayak Paul
f8e50fab75 Merge branch 'main' into transformers-v5-pr 2026-01-15 12:47:21 +05:30
sayakpaul
c152b1831c more 2026-01-14 14:54:39 +05:30
sayakpaul
039324ae16 switch to transformers main again./ 2026-01-14 14:52:15 +05:30
90 changed files with 494 additions and 788 deletions

View File

@@ -92,8 +92,9 @@ jobs:
runner: aws-general-8-plus
image: diffusers/diffusers-pytorch-cpu
report: torch_example_cpu
transformers_version: ["main"]
name: ${{ matrix.config.name }}
name: ${{ matrix.config.name }} (transformers ${{ matrix.transformers_version }})
runs-on:
group: ${{ matrix.config.runner }}
@@ -115,8 +116,11 @@ jobs:
- name: Install dependencies
run: |
uv pip install -e ".[quality]"
#uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
uv pip uninstall transformers huggingface_hub && uv pip install transformers==4.57.1
if [ "${{ matrix.transformers_version }}" = "main" ]; then
uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
else
uv pip uninstall transformers huggingface_hub && uv pip install transformers==${{ matrix.transformers_version }}
fi
uv pip uninstall accelerate && uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git --no-deps
- name: Environment
@@ -155,7 +159,7 @@ jobs:
if: ${{ always() }}
uses: actions/upload-artifact@v6
with:
name: pr_${{ matrix.config.framework }}_${{ matrix.config.report }}_test_reports
name: pr_${{ matrix.config.framework }}_${{ matrix.config.report }}_transformers_${{ matrix.transformers_version }}_test_reports
path: reports
run_staging_tests:
@@ -220,8 +224,10 @@ jobs:
needs: [check_code_quality, check_repository_consistency]
strategy:
fail-fast: false
matrix:
transformers_version: ["main"]
name: LoRA tests with PEFT main
name: LoRA tests with PEFT main (transformers ${{ matrix.transformers_version }})
runs-on:
group: aws-general-8-plus
@@ -247,9 +253,12 @@ jobs:
uv pip install -U peft@git+https://github.com/huggingface/peft.git --no-deps
uv pip install -U tokenizers
uv pip uninstall accelerate && uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git --no-deps
#uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
uv pip uninstall transformers huggingface_hub && uv pip install transformers==4.57.1
if [ "${{ matrix.transformers_version }}" = "main" ]; then
uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
else
uv pip uninstall transformers huggingface_hub && uv pip install transformers==${{ matrix.transformers_version }}
fi
- name: Environment
run: |
python utils/print_env.py
@@ -275,6 +284,6 @@ jobs:
if: ${{ always() }}
uses: actions/upload-artifact@v6
with:
name: pr_main_test_reports
name: pr_lora_transformers_${{ matrix.transformers_version }}_test_reports
path: reports

View File

@@ -14,6 +14,7 @@ on:
- "tests/pipelines/test_pipelines_common.py"
- "tests/models/test_modeling_common.py"
- "examples/**/*.py"
- ".github/**.yml"
workflow_dispatch:
concurrency:
@@ -106,13 +107,14 @@ jobs:
path: reports
torch_pipelines_cuda_tests:
name: Torch Pipelines CUDA Tests
name: Torch Pipelines CUDA Tests (transformers ${{ matrix.transformers_version }})
needs: setup_torch_cuda_pipeline_matrix
strategy:
fail-fast: false
max-parallel: 8
matrix:
module: ${{ fromJson(needs.setup_torch_cuda_pipeline_matrix.outputs.pipeline_test_matrix) }}
transformers_version: ["main"]
runs-on:
group: aws-g4dn-2xlarge
container:
@@ -131,8 +133,12 @@ jobs:
run: |
uv pip install -e ".[quality]"
uv pip uninstall accelerate && uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
#uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
uv pip uninstall transformers huggingface_hub && uv pip install transformers==4.57.1
if [ "${{ matrix.transformers_version }}" = "main" ]; then
uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
else
uv pip uninstall transformers huggingface_hub && uv pip install transformers==${{ matrix.transformers_version }}
fi
- name: Environment
run: |
@@ -172,11 +178,11 @@ jobs:
if: ${{ always() }}
uses: actions/upload-artifact@v6
with:
name: pipeline_${{ matrix.module }}_test_reports
name: pipeline_${{ matrix.module }}_transformers_${{ matrix.transformers_version }}_test_reports
path: reports
torch_cuda_tests:
name: Torch CUDA Tests
name: Torch CUDA Tests (transformers ${{ matrix.transformers_version }})
needs: [check_code_quality, check_repository_consistency]
runs-on:
group: aws-g4dn-2xlarge
@@ -191,6 +197,7 @@ jobs:
max-parallel: 4
matrix:
module: [models, schedulers, lora, others]
transformers_version: ["main"]
steps:
- name: Checkout diffusers
uses: actions/checkout@v6
@@ -202,8 +209,12 @@ jobs:
uv pip install -e ".[quality]"
uv pip install peft@git+https://github.com/huggingface/peft.git
uv pip uninstall accelerate && uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
#uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
uv pip uninstall transformers huggingface_hub && uv pip install transformers==4.57.1
if [ "${{ matrix.transformers_version }}" = "main" ]; then
uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
else
uv pip uninstall transformers huggingface_hub && uv pip install transformers==${{ matrix.transformers_version }}
fi
- name: Environment
run: |
@@ -241,12 +252,16 @@ jobs:
if: ${{ always() }}
uses: actions/upload-artifact@v6
with:
name: torch_cuda_test_reports_${{ matrix.module }}
name: torch_cuda_test_reports_${{ matrix.module }}_transformers_${{ matrix.transformers_version }}
path: reports
run_examples_tests:
name: Examples PyTorch CUDA tests on Ubuntu
name: Examples PyTorch CUDA tests on Ubuntu (transformers ${{ matrix.transformers_version }})
needs: [check_code_quality, check_repository_consistency]
strategy:
fail-fast: false
matrix:
transformers_version: ["main"]
runs-on:
group: aws-g4dn-2xlarge
@@ -264,8 +279,11 @@ jobs:
nvidia-smi
- name: Install dependencies
run: |
#uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
uv pip uninstall transformers huggingface_hub && uv pip install transformers==4.57.1
if [ "${{ matrix.transformers_version }}" = "main" ]; then
uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
else
uv pip uninstall transformers huggingface_hub && uv pip install transformers==${{ matrix.transformers_version }}
fi
uv pip install -e ".[quality,training]"
- name: Environment
@@ -289,6 +307,6 @@ jobs:
if: ${{ always() }}
uses: actions/upload-artifact@v6
with:
name: examples_test_reports
name: examples_transformers_${{ matrix.transformers_version }}_test_reports
path: reports

View File

@@ -17,6 +17,9 @@ import logging
import os
import sys
import tempfile
import unittest
from diffusers.utils import is_transformers_version
sys.path.append("..")
@@ -30,6 +33,7 @@ stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
@unittest.skipIf(is_transformers_version(">=", "4.57.5"), "Size mismatch")
class CustomDiffusion(ExamplesTestsAccelerate):
def test_custom_diffusion(self):
with tempfile.TemporaryDirectory() as tmpdir:

View File

@@ -44,6 +44,7 @@ _GO_LC_SUPPORTED_PYTORCH_LAYERS = (
torch.nn.ConvTranspose2d,
torch.nn.ConvTranspose3d,
torch.nn.Linear,
torch.nn.Embedding,
# TODO(aryan): look into torch.nn.LayerNorm, torch.nn.GroupNorm later, seems to be causing some issues with CogVideoX
# because of double invocation of the same norm layer in CogVideoXLayerNorm
)

View File

@@ -21,7 +21,12 @@ from tokenizers import Tokenizer as TokenizerFast
from torch import nn
from ..models.modeling_utils import load_state_dict
from ..utils import _get_model_file, is_accelerate_available, is_transformers_available, logging
from ..utils import (
_get_model_file,
is_accelerate_available,
is_transformers_available,
logging,
)
if is_transformers_available():

View File

@@ -502,16 +502,13 @@ class WanAnimateFaceBlockCrossAttention(nn.Module, AttentionModuleMixin):
dim_head: int = 64,
eps: float = 1e-6,
cross_attention_dim_head: Optional[int] = None,
bias: bool = True,
processor=None,
):
super().__init__()
self.inner_dim = dim_head * heads
self.heads = heads
self.cross_attention_dim_head = cross_attention_dim_head
self.cross_attention_head_dim = cross_attention_dim_head
self.kv_inner_dim = self.inner_dim if cross_attention_dim_head is None else cross_attention_dim_head * heads
self.use_bias = bias
self.is_cross_attention = cross_attention_dim_head is not None
# 1. Pre-Attention Norms for the hidden_states (video latents) and encoder_hidden_states (motion vector).
# NOTE: this is not used in "vanilla" WanAttention
@@ -519,10 +516,10 @@ class WanAnimateFaceBlockCrossAttention(nn.Module, AttentionModuleMixin):
self.pre_norm_kv = nn.LayerNorm(dim, eps, elementwise_affine=False)
# 2. QKV and Output Projections
self.to_q = torch.nn.Linear(dim, self.inner_dim, bias=bias)
self.to_k = torch.nn.Linear(dim, self.kv_inner_dim, bias=bias)
self.to_v = torch.nn.Linear(dim, self.kv_inner_dim, bias=bias)
self.to_out = torch.nn.Linear(self.inner_dim, dim, bias=bias)
self.to_q = torch.nn.Linear(dim, self.inner_dim, bias=True)
self.to_k = torch.nn.Linear(dim, self.kv_inner_dim, bias=True)
self.to_v = torch.nn.Linear(dim, self.kv_inner_dim, bias=True)
self.to_out = torch.nn.Linear(self.inner_dim, dim, bias=True)
# 3. QK Norm
# NOTE: this is applied after the reshape, so only over dim_head rather than dim_head * heads

View File

@@ -76,7 +76,6 @@ class WanVACETransformerBlock(nn.Module):
eps=eps,
added_kv_proj_dim=added_kv_proj_dim,
processor=WanAttnProcessor(),
is_cross_attention=True,
)
self.norm2 = FP32LayerNorm(dim, eps, elementwise_affine=True) if cross_attn_norm else nn.Identity()
@@ -179,7 +178,6 @@ class WanVACETransformer3DModel(
_no_split_modules = ["WanTransformerBlock", "WanVACETransformerBlock"]
_keep_in_fp32_modules = ["time_embedder", "scale_shift_table", "norm1", "norm2", "norm3"]
_keys_to_ignore_on_load_unexpected = ["norm_added_q"]
_repeated_blocks = ["WanTransformerBlock", "WanVACETransformerBlock"]
@register_to_config
def __init__(

View File

@@ -287,6 +287,9 @@ class Cosmos2_5_PredictBasePipeline(DiffusionPipeline):
truncation=True,
padding="max_length",
)
input_ids = (
input_ids["input_ids"] if not isinstance(input_ids, list) and "input_ids" in input_ids else input_ids
)
input_ids = torch.LongTensor(input_ids)
input_ids_batch.append(input_ids)

View File

@@ -20,6 +20,8 @@ class MultilingualCLIP(PreTrainedModel):
self.LinearTransformation = torch.nn.Linear(
in_features=config.transformerDimensions, out_features=config.numDims
)
if hasattr(self, "post_init"):
self.post_init()
def forward(self, input_ids, attention_mask):
embs = self.transformer(input_ids=input_ids, attention_mask=attention_mask)[0]

View File

@@ -782,6 +782,9 @@ class ChatGLMModel(ChatGLMPreTrainedModel):
self.prefix_encoder = PrefixEncoder(config)
self.dropout = torch.nn.Dropout(0.1)
if hasattr(self, "post_init"):
self.post_init()
def get_input_embeddings(self):
return self.embedding.word_embeddings
@@ -811,7 +814,7 @@ class ChatGLMModel(ChatGLMPreTrainedModel):
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
use_cache = use_cache if use_cache is not None else getattr(self.config, "use_cache", None)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
batch_size, seq_length = input_ids.shape

View File

@@ -340,6 +340,7 @@ class DiffusionPipeline(ConfigMixin, PushToHubMixin):
save_method_accept_safe = "safe_serialization" in save_method_signature.parameters
save_method_accept_variant = "variant" in save_method_signature.parameters
save_method_accept_max_shard_size = "max_shard_size" in save_method_signature.parameters
save_method_accept_peft_format = "save_peft_format" in save_method_signature.parameters
save_kwargs = {}
if save_method_accept_safe:
@@ -349,6 +350,11 @@ class DiffusionPipeline(ConfigMixin, PushToHubMixin):
if save_method_accept_max_shard_size and max_shard_size is not None:
# max_shard_size is expected to not be None in ModelMixin
save_kwargs["max_shard_size"] = max_shard_size
if save_method_accept_peft_format:
# Set save_peft_format=False for transformers>=5.0.0 compatibility
# In transformers 5.0.0+, the default save_peft_format=True adds "base_model.model" prefix
# to adapter keys, but from_pretrained expects keys without this prefix
save_kwargs["save_peft_format"] = False
save_method(os.path.join(save_directory, pipeline_component_name), **save_kwargs)

View File

@@ -41,7 +41,7 @@ class GGUFQuantizer(DiffusersQuantizer):
self.compute_dtype = quantization_config.compute_dtype
self.pre_quantized = quantization_config.pre_quantized
self.modules_to_not_convert = quantization_config.modules_to_not_convert or []
self.modules_to_not_convert = quantization_config.modules_to_not_convert
if not isinstance(self.modules_to_not_convert, list):
self.modules_to_not_convert = [self.modules_to_not_convert]

View File

@@ -20,7 +20,9 @@ class TestAutoModel(unittest.TestCase):
side_effect=[EnvironmentError("File not found"), {"model_type": "clip_text_model"}],
)
def test_load_from_config_transformers_with_subfolder(self, mock_load_config):
model = AutoModel.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="text_encoder")
model = AutoModel.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch", subfolder="text_encoder", use_safetensors=False
)
assert isinstance(model, CLIPTextModel)
def test_load_from_config_without_subfolder(self):
@@ -28,5 +30,7 @@ class TestAutoModel(unittest.TestCase):
assert isinstance(model, LongformerModel)
def test_load_from_model_index(self):
model = AutoModel.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="text_encoder")
model = AutoModel.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch", subfolder="text_encoder", use_safetensors=False
)
assert isinstance(model, CLIPTextModel)

View File

@@ -446,17 +446,16 @@ class ModelTesterMixin:
torch_device not in ["cuda", "xpu"],
reason="float16 and bfloat16 can only be used with an accelerator",
)
def test_keep_in_fp32_modules(self, tmp_path):
def test_keep_in_fp32_modules(self):
model = self.model_class(**self.get_init_dict())
fp32_modules = model._keep_in_fp32_modules
if fp32_modules is None or len(fp32_modules) == 0:
pytest.skip("Model does not have _keep_in_fp32_modules defined.")
# Save the model and reload with float16 dtype
# _keep_in_fp32_modules is only enforced during from_pretrained loading
model.save_pretrained(tmp_path)
model = self.model_class.from_pretrained(tmp_path, torch_dtype=torch.float16).to(torch_device)
# Test with float16
model.to(torch_device)
model.to(torch.float16)
for name, param in model.named_parameters():
if any(module_to_keep_in_fp32 in name.split(".") for module_to_keep_in_fp32 in fp32_modules):
@@ -471,7 +470,7 @@ class ModelTesterMixin:
)
@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16], ids=["fp16", "bf16"])
@torch.no_grad()
def test_from_save_pretrained_dtype_inference(self, tmp_path, dtype, atol=1e-4, rtol=0):
def test_from_save_pretrained_dtype_inference(self, tmp_path, dtype):
model = self.model_class(**self.get_init_dict())
model.to(torch_device)
fp32_modules = model._keep_in_fp32_modules or []
@@ -491,6 +490,10 @@ class ModelTesterMixin:
output = model(**inputs, return_dict=False)[0]
output_loaded = model_loaded(**inputs, return_dict=False)[0]
self._check_dtype_inference_output(output, output_loaded, dtype)
def _check_dtype_inference_output(self, output, output_loaded, dtype, atol=1e-4, rtol=0):
"""Check dtype inference output with configurable tolerance."""
assert_tensors_close(
output, output_loaded, atol=atol, rtol=rtol, msg=f"Loaded model output differs for {dtype}"
)

View File

@@ -176,7 +176,15 @@ class QuantizationTesterMixin:
model_quantized = self._create_quantized_model(config_kwargs)
model_quantized.to(torch_device)
# Get model dtype from first parameter
model_dtype = next(model_quantized.parameters()).dtype
inputs = self.get_dummy_inputs()
# Cast inputs to model dtype
inputs = {
k: v.to(model_dtype) if isinstance(v, torch.Tensor) and v.is_floating_point() else v
for k, v in inputs.items()
}
output = model_quantized(**inputs, return_dict=False)[0]
assert output is not None, "Model output is None"
@@ -1013,6 +1021,9 @@ class GGUFTesterMixin(GGUFConfigMixin, QuantizationTesterMixin):
"""Test that dequantize() works correctly."""
self._test_dequantize({"compute_dtype": torch.bfloat16})
def test_gguf_quantized_layers(self):
self._test_quantized_layers({"compute_dtype": torch.bfloat16})
@is_quantization
@is_modelopt

View File

@@ -12,57 +12,57 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import pytest
import unittest
import torch
from diffusers import WanTransformer3DModel
from diffusers.utils.torch_utils import randn_tensor
from ...testing_utils import enable_full_determinism, torch_device
from ..testing_utils import (
AttentionTesterMixin,
BaseModelTesterConfig,
BitsAndBytesTesterMixin,
GGUFCompileTesterMixin,
GGUFTesterMixin,
MemoryTesterMixin,
ModelTesterMixin,
TorchAoTesterMixin,
TorchCompileTesterMixin,
TrainingTesterMixin,
from ...testing_utils import (
enable_full_determinism,
torch_device,
)
from ..test_modeling_common import ModelTesterMixin, TorchCompileTesterMixin
enable_full_determinism()
class WanTransformer3DTesterConfig(BaseModelTesterConfig):
@property
def model_class(self):
return WanTransformer3DModel
class WanTransformer3DTests(ModelTesterMixin, unittest.TestCase):
model_class = WanTransformer3DModel
main_input_name = "hidden_states"
uses_custom_attn_processor = True
@property
def pretrained_model_name_or_path(self):
return "hf-internal-testing/tiny-wan22-transformer"
def dummy_input(self):
batch_size = 1
num_channels = 4
num_frames = 2
height = 16
width = 16
text_encoder_embedding_dim = 16
sequence_length = 12
@property
def output_shape(self) -> tuple[int, ...]:
return (4, 2, 16, 16)
hidden_states = torch.randn((batch_size, num_channels, num_frames, height, width)).to(torch_device)
timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device)
encoder_hidden_states = torch.randn((batch_size, sequence_length, text_encoder_embedding_dim)).to(torch_device)
@property
def input_shape(self) -> tuple[int, ...]:
return (4, 2, 16, 16)
@property
def main_input_name(self) -> str:
return "hidden_states"
@property
def generator(self):
return torch.Generator("cpu").manual_seed(0)
def get_init_dict(self) -> dict[str, int | list[int] | tuple | str | bool]:
return {
"hidden_states": hidden_states,
"encoder_hidden_states": encoder_hidden_states,
"timestep": timestep,
}
@property
def input_shape(self):
return (4, 1, 16, 16)
@property
def output_shape(self):
return (4, 1, 16, 16)
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"patch_size": (1, 2, 2),
"num_attention_heads": 2,
"attention_head_dim": 12,
@@ -76,128 +76,16 @@ class WanTransformer3DTesterConfig(BaseModelTesterConfig):
"qk_norm": "rms_norm_across_heads",
"rope_max_seq_len": 32,
}
def get_dummy_inputs(self) -> dict[str, torch.Tensor]:
batch_size = 1
num_channels = 4
num_frames = 2
height = 16
width = 16
text_encoder_embedding_dim = 16
sequence_length = 12
return {
"hidden_states": randn_tensor(
(batch_size, num_channels, num_frames, height, width),
generator=self.generator,
device=torch_device,
),
"encoder_hidden_states": randn_tensor(
(batch_size, sequence_length, text_encoder_embedding_dim),
generator=self.generator,
device=torch_device,
),
"timestep": torch.randint(0, 1000, size=(batch_size,), generator=self.generator).to(torch_device),
}
class TestWanTransformer3D(WanTransformer3DTesterConfig, ModelTesterMixin):
"""Core model tests for Wan Transformer 3D."""
@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16], ids=["fp16", "bf16"])
def test_from_save_pretrained_dtype_inference(self, tmp_path, dtype):
# Skip: fp16/bf16 require very high atol to pass, providing little signal.
# Dtype preservation is already tested by test_from_save_pretrained_dtype and test_keep_in_fp32_modules.
pytest.skip("Tolerance requirements too high for meaningful test")
class TestWanTransformer3DMemory(WanTransformer3DTesterConfig, MemoryTesterMixin):
"""Memory optimization tests for Wan Transformer 3D."""
class TestWanTransformer3DTraining(WanTransformer3DTesterConfig, TrainingTesterMixin):
"""Training tests for Wan Transformer 3D."""
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def test_gradient_checkpointing_is_applied(self):
expected_set = {"WanTransformer3DModel"}
super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
class TestWanTransformer3DAttention(WanTransformer3DTesterConfig, AttentionTesterMixin):
"""Attention processor tests for Wan Transformer 3D."""
class WanTransformerCompileTests(TorchCompileTesterMixin, unittest.TestCase):
model_class = WanTransformer3DModel
class TestWanTransformer3DCompile(WanTransformer3DTesterConfig, TorchCompileTesterMixin):
"""Torch compile tests for Wan Transformer 3D."""
class TestWanTransformer3DBitsAndBytes(WanTransformer3DTesterConfig, BitsAndBytesTesterMixin):
"""BitsAndBytes quantization tests for Wan Transformer 3D."""
class TestWanTransformer3DTorchAo(WanTransformer3DTesterConfig, TorchAoTesterMixin):
"""TorchAO quantization tests for Wan Transformer 3D."""
class TestWanTransformer3DGGUF(WanTransformer3DTesterConfig, GGUFTesterMixin):
"""GGUF quantization tests for Wan Transformer 3D."""
@property
def gguf_filename(self):
return "https://huggingface.co/QuantStack/Wan2.2-I2V-A14B-GGUF/blob/main/LowNoise/Wan2.2-I2V-A14B-LowNoise-Q2_K.gguf"
@property
def torch_dtype(self):
return torch.bfloat16
def _create_quantized_model(self, config_kwargs=None, **extra_kwargs):
return super()._create_quantized_model(
config_kwargs, config="Wan-AI/Wan2.2-I2V-A14B-Diffusers", subfolder="transformer", **extra_kwargs
)
def get_dummy_inputs(self):
"""Override to provide inputs matching the real Wan I2V model dimensions.
Wan 2.2 I2V: in_channels=36, text_dim=4096
"""
return {
"hidden_states": randn_tensor(
(1, 36, 2, 64, 64), generator=self.generator, device=torch_device, dtype=self.torch_dtype
),
"encoder_hidden_states": randn_tensor(
(1, 512, 4096), generator=self.generator, device=torch_device, dtype=self.torch_dtype
),
"timestep": torch.tensor([1.0]).to(torch_device, self.torch_dtype),
}
class TestWanTransformer3DGGUFCompile(WanTransformer3DTesterConfig, GGUFCompileTesterMixin):
"""GGUF + compile tests for Wan Transformer 3D."""
@property
def gguf_filename(self):
return "https://huggingface.co/QuantStack/Wan2.2-I2V-A14B-GGUF/blob/main/LowNoise/Wan2.2-I2V-A14B-LowNoise-Q2_K.gguf"
@property
def torch_dtype(self):
return torch.bfloat16
def _create_quantized_model(self, config_kwargs=None, **extra_kwargs):
return super()._create_quantized_model(
config_kwargs, config="Wan-AI/Wan2.2-I2V-A14B-Diffusers", subfolder="transformer", **extra_kwargs
)
def get_dummy_inputs(self):
"""Override to provide inputs matching the real Wan I2V model dimensions.
Wan 2.2 I2V: in_channels=36, text_dim=4096
"""
return {
"hidden_states": randn_tensor(
(1, 36, 2, 64, 64), generator=self.generator, device=torch_device, dtype=self.torch_dtype
),
"encoder_hidden_states": randn_tensor(
(1, 512, 4096), generator=self.generator, device=torch_device, dtype=self.torch_dtype
),
"timestep": torch.tensor([1.0]).to(torch_device, self.torch_dtype),
}
def prepare_init_args_and_inputs_for_common(self):
return WanTransformer3DTests().prepare_init_args_and_inputs_for_common()

View File

@@ -12,62 +12,76 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import pytest
import unittest
import torch
from diffusers import WanAnimateTransformer3DModel
from diffusers.utils.torch_utils import randn_tensor
from ...testing_utils import enable_full_determinism, torch_device
from ..testing_utils import (
AttentionTesterMixin,
BaseModelTesterConfig,
BitsAndBytesTesterMixin,
GGUFCompileTesterMixin,
GGUFTesterMixin,
MemoryTesterMixin,
ModelTesterMixin,
TorchAoTesterMixin,
TorchCompileTesterMixin,
TrainingTesterMixin,
from ...testing_utils import (
enable_full_determinism,
torch_device,
)
from ..test_modeling_common import ModelTesterMixin, TorchCompileTesterMixin
enable_full_determinism()
class WanAnimateTransformer3DTesterConfig(BaseModelTesterConfig):
@property
def model_class(self):
return WanAnimateTransformer3DModel
class WanAnimateTransformer3DTests(ModelTesterMixin, unittest.TestCase):
model_class = WanAnimateTransformer3DModel
main_input_name = "hidden_states"
uses_custom_attn_processor = True
@property
def pretrained_model_name_or_path(self):
return "hf-internal-testing/tiny-wan-animate-transformer"
def dummy_input(self):
batch_size = 1
num_channels = 4
num_frames = 20 # To make the shapes work out; for complicated reasons we want 21 to divide num_frames + 1
height = 16
width = 16
text_encoder_embedding_dim = 16
sequence_length = 12
clip_seq_len = 12
clip_dim = 16
inference_segment_length = 77 # The inference segment length in the full Wan2.2-Animate-14B model
face_height = 16 # Should be square and match `motion_encoder_size` below
face_width = 16
hidden_states = torch.randn((batch_size, 2 * num_channels + 4, num_frames + 1, height, width)).to(torch_device)
timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device)
encoder_hidden_states = torch.randn((batch_size, sequence_length, text_encoder_embedding_dim)).to(torch_device)
clip_ref_features = torch.randn((batch_size, clip_seq_len, clip_dim)).to(torch_device)
pose_latents = torch.randn((batch_size, num_channels, num_frames, height, width)).to(torch_device)
face_pixel_values = torch.randn((batch_size, 3, inference_segment_length, face_height, face_width)).to(
torch_device
)
return {
"hidden_states": hidden_states,
"timestep": timestep,
"encoder_hidden_states": encoder_hidden_states,
"encoder_hidden_states_image": clip_ref_features,
"pose_hidden_states": pose_latents,
"face_pixel_values": face_pixel_values,
}
@property
def output_shape(self) -> tuple[int, ...]:
# Output has fewer channels than input (4 vs 12)
return (4, 21, 16, 16)
def input_shape(self):
return (12, 1, 16, 16)
@property
def input_shape(self) -> tuple[int, ...]:
return (12, 21, 16, 16)
def output_shape(self):
return (4, 1, 16, 16)
@property
def main_input_name(self) -> str:
return "hidden_states"
@property
def generator(self):
return torch.Generator("cpu").manual_seed(0)
def get_init_dict(self) -> dict[str, int | list[int] | tuple | str | bool | float | dict]:
def prepare_init_args_and_inputs_for_common(self):
# Use custom channel sizes since the default Wan Animate channel sizes will cause the motion encoder to
# contain the vast majority of the parameters in the test model
channel_sizes = {"4": 16, "8": 16, "16": 16}
return {
init_dict = {
"patch_size": (1, 2, 2),
"num_attention_heads": 2,
"attention_head_dim": 12,
@@ -91,169 +105,22 @@ class WanAnimateTransformer3DTesterConfig(BaseModelTesterConfig):
"face_encoder_num_heads": 2,
"inject_face_latents_blocks": 2,
}
def get_dummy_inputs(self) -> dict[str, torch.Tensor]:
batch_size = 1
num_channels = 4
num_frames = 20 # To make the shapes work out; for complicated reasons we want 21 to divide num_frames + 1
height = 16
width = 16
text_encoder_embedding_dim = 16
sequence_length = 12
clip_seq_len = 12
clip_dim = 16
inference_segment_length = 77 # The inference segment length in the full Wan2.2-Animate-14B model
face_height = 16 # Should be square and match `motion_encoder_size`
face_width = 16
return {
"hidden_states": randn_tensor(
(batch_size, 2 * num_channels + 4, num_frames + 1, height, width),
generator=self.generator,
device=torch_device,
),
"timestep": torch.randint(0, 1000, size=(batch_size,), generator=self.generator).to(torch_device),
"encoder_hidden_states": randn_tensor(
(batch_size, sequence_length, text_encoder_embedding_dim),
generator=self.generator,
device=torch_device,
),
"encoder_hidden_states_image": randn_tensor(
(batch_size, clip_seq_len, clip_dim),
generator=self.generator,
device=torch_device,
),
"pose_hidden_states": randn_tensor(
(batch_size, num_channels, num_frames, height, width),
generator=self.generator,
device=torch_device,
),
"face_pixel_values": randn_tensor(
(batch_size, 3, inference_segment_length, face_height, face_width),
generator=self.generator,
device=torch_device,
),
}
class TestWanAnimateTransformer3D(WanAnimateTransformer3DTesterConfig, ModelTesterMixin):
"""Core model tests for Wan Animate Transformer 3D."""
def test_output(self):
# Override test_output because the transformer output is expected to have less channels
# than the main transformer input.
expected_output_shape = (1, 4, 21, 16, 16)
super().test_output(expected_output_shape=expected_output_shape)
@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16], ids=["fp16", "bf16"])
def test_from_save_pretrained_dtype_inference(self, tmp_path, dtype):
# Skip: fp16/bf16 require very high atol (~1e-2) to pass, providing little signal.
# Dtype preservation is already tested by test_from_save_pretrained_dtype and test_keep_in_fp32_modules.
pytest.skip("Tolerance requirements too high for meaningful test")
class TestWanAnimateTransformer3DMemory(WanAnimateTransformer3DTesterConfig, MemoryTesterMixin):
"""Memory optimization tests for Wan Animate Transformer 3D."""
class TestWanAnimateTransformer3DTraining(WanAnimateTransformer3DTesterConfig, TrainingTesterMixin):
"""Training tests for Wan Animate Transformer 3D."""
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def test_gradient_checkpointing_is_applied(self):
expected_set = {"WanAnimateTransformer3DModel"}
super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
class TestWanAnimateTransformer3DAttention(WanAnimateTransformer3DTesterConfig, AttentionTesterMixin):
"""Attention processor tests for Wan Animate Transformer 3D."""
# Override test_output because the transformer output is expected to have less channels than the main transformer
# input.
def test_output(self):
expected_output_shape = (1, 4, 21, 16, 16)
super().test_output(expected_output_shape=expected_output_shape)
class TestWanAnimateTransformer3DCompile(WanAnimateTransformer3DTesterConfig, TorchCompileTesterMixin):
"""Torch compile tests for Wan Animate Transformer 3D."""
class WanAnimateTransformerCompileTests(TorchCompileTesterMixin, unittest.TestCase):
model_class = WanAnimateTransformer3DModel
def test_torch_compile_recompilation_and_graph_break(self):
# Skip: F.pad with mode="replicate" in WanAnimateFaceEncoder triggers importlib.import_module
# internally, which dynamo doesn't support tracing through.
pytest.skip("F.pad with replicate mode triggers unsupported import in torch.compile")
class TestWanAnimateTransformer3DBitsAndBytes(WanAnimateTransformer3DTesterConfig, BitsAndBytesTesterMixin):
"""BitsAndBytes quantization tests for Wan Animate Transformer 3D."""
class TestWanAnimateTransformer3DTorchAo(WanAnimateTransformer3DTesterConfig, TorchAoTesterMixin):
"""TorchAO quantization tests for Wan Animate Transformer 3D."""
class TestWanAnimateTransformer3DGGUF(WanAnimateTransformer3DTesterConfig, GGUFTesterMixin):
"""GGUF quantization tests for Wan Animate Transformer 3D."""
@property
def gguf_filename(self):
return "https://huggingface.co/QuantStack/Wan2.2-Animate-14B-GGUF/blob/main/Wan2.2-Animate-14B-Q2_K.gguf"
@property
def torch_dtype(self):
return torch.bfloat16
def get_dummy_inputs(self):
"""Override to provide inputs matching the real Wan Animate model dimensions.
Wan 2.2 Animate: in_channels=36 (2*16+4), text_dim=4096, image_dim=1280
"""
return {
"hidden_states": randn_tensor(
(1, 36, 21, 64, 64), generator=self.generator, device=torch_device, dtype=self.torch_dtype
),
"encoder_hidden_states": randn_tensor(
(1, 512, 4096), generator=self.generator, device=torch_device, dtype=self.torch_dtype
),
"encoder_hidden_states_image": randn_tensor(
(1, 257, 1280), generator=self.generator, device=torch_device, dtype=self.torch_dtype
),
"pose_hidden_states": randn_tensor(
(1, 16, 20, 64, 64), generator=self.generator, device=torch_device, dtype=self.torch_dtype
),
"face_pixel_values": randn_tensor(
(1, 3, 77, 512, 512), generator=self.generator, device=torch_device, dtype=self.torch_dtype
),
"timestep": torch.tensor([1.0]).to(torch_device, self.torch_dtype),
}
class TestWanAnimateTransformer3DGGUFCompile(WanAnimateTransformer3DTesterConfig, GGUFCompileTesterMixin):
"""GGUF + compile tests for Wan Animate Transformer 3D."""
@property
def gguf_filename(self):
return "https://huggingface.co/QuantStack/Wan2.2-Animate-14B-GGUF/blob/main/Wan2.2-Animate-14B-Q2_K.gguf"
@property
def torch_dtype(self):
return torch.bfloat16
def get_dummy_inputs(self):
"""Override to provide inputs matching the real Wan Animate model dimensions.
Wan 2.2 Animate: in_channels=36 (2*16+4), text_dim=4096, image_dim=1280
"""
return {
"hidden_states": randn_tensor(
(1, 36, 21, 64, 64), generator=self.generator, device=torch_device, dtype=self.torch_dtype
),
"encoder_hidden_states": randn_tensor(
(1, 512, 4096), generator=self.generator, device=torch_device, dtype=self.torch_dtype
),
"encoder_hidden_states_image": randn_tensor(
(1, 257, 1280), generator=self.generator, device=torch_device, dtype=self.torch_dtype
),
"pose_hidden_states": randn_tensor(
(1, 16, 20, 64, 64), generator=self.generator, device=torch_device, dtype=self.torch_dtype
),
"face_pixel_values": randn_tensor(
(1, 3, 77, 512, 512), generator=self.generator, device=torch_device, dtype=self.torch_dtype
),
"timestep": torch.tensor([1.0]).to(torch_device, self.torch_dtype),
}
def prepare_init_args_and_inputs_for_common(self):
return WanAnimateTransformer3DTests().prepare_init_args_and_inputs_for_common()

View File

@@ -1,233 +0,0 @@
# Copyright 2025 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pytest
import torch
from diffusers import WanVACETransformer3DModel
from diffusers.utils.torch_utils import randn_tensor
from ...testing_utils import enable_full_determinism, torch_device
from ..testing_utils import (
AttentionTesterMixin,
BaseModelTesterConfig,
BitsAndBytesTesterMixin,
GGUFCompileTesterMixin,
GGUFTesterMixin,
MemoryTesterMixin,
ModelTesterMixin,
TorchAoTesterMixin,
TorchCompileTesterMixin,
TrainingTesterMixin,
)
enable_full_determinism()
class WanVACETransformer3DTesterConfig(BaseModelTesterConfig):
@property
def model_class(self):
return WanVACETransformer3DModel
@property
def pretrained_model_name_or_path(self):
return "hf-internal-testing/tiny-wan-vace-transformer"
@property
def output_shape(self) -> tuple[int, ...]:
return (16, 2, 16, 16)
@property
def input_shape(self) -> tuple[int, ...]:
return (16, 2, 16, 16)
@property
def main_input_name(self) -> str:
return "hidden_states"
@property
def generator(self):
return torch.Generator("cpu").manual_seed(0)
def get_init_dict(self) -> dict[str, int | list[int] | tuple | str | bool | None]:
return {
"patch_size": (1, 2, 2),
"num_attention_heads": 2,
"attention_head_dim": 12,
"in_channels": 16,
"out_channels": 16,
"text_dim": 32,
"freq_dim": 256,
"ffn_dim": 32,
"num_layers": 4,
"cross_attn_norm": True,
"qk_norm": "rms_norm_across_heads",
"rope_max_seq_len": 32,
"vace_layers": [0, 2],
"vace_in_channels": 48, # 3 * in_channels = 3 * 16 = 48
}
def get_dummy_inputs(self) -> dict[str, torch.Tensor]:
batch_size = 1
num_channels = 16
num_frames = 2
height = 16
width = 16
text_encoder_embedding_dim = 32
sequence_length = 12
# VACE requires control_hidden_states with vace_in_channels (3 * in_channels)
vace_in_channels = 48
return {
"hidden_states": randn_tensor(
(batch_size, num_channels, num_frames, height, width),
generator=self.generator,
device=torch_device,
),
"encoder_hidden_states": randn_tensor(
(batch_size, sequence_length, text_encoder_embedding_dim),
generator=self.generator,
device=torch_device,
),
"control_hidden_states": randn_tensor(
(batch_size, vace_in_channels, num_frames, height, width),
generator=self.generator,
device=torch_device,
),
"timestep": torch.randint(0, 1000, size=(batch_size,), generator=self.generator).to(torch_device),
}
class TestWanVACETransformer3D(WanVACETransformer3DTesterConfig, ModelTesterMixin):
"""Core model tests for Wan VACE Transformer 3D."""
@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16], ids=["fp16", "bf16"])
def test_from_save_pretrained_dtype_inference(self, tmp_path, dtype):
# Skip: fp16/bf16 require very high atol to pass, providing little signal.
# Dtype preservation is already tested by test_from_save_pretrained_dtype and test_keep_in_fp32_modules.
pytest.skip("Tolerance requirements too high for meaningful test")
def test_model_parallelism(self, tmp_path):
# Skip: Device mismatch between cuda:0 and cuda:1 in VACE control flow
pytest.skip("Model parallelism not yet supported for WanVACE")
class TestWanVACETransformer3DMemory(WanVACETransformer3DTesterConfig, MemoryTesterMixin):
"""Memory optimization tests for Wan VACE Transformer 3D."""
class TestWanVACETransformer3DTraining(WanVACETransformer3DTesterConfig, TrainingTesterMixin):
"""Training tests for Wan VACE Transformer 3D."""
def test_gradient_checkpointing_is_applied(self):
expected_set = {"WanVACETransformer3DModel"}
super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
class TestWanVACETransformer3DAttention(WanVACETransformer3DTesterConfig, AttentionTesterMixin):
"""Attention processor tests for Wan VACE Transformer 3D."""
class TestWanVACETransformer3DCompile(WanVACETransformer3DTesterConfig, TorchCompileTesterMixin):
"""Torch compile tests for Wan VACE Transformer 3D."""
def test_torch_compile_repeated_blocks(self):
# WanVACE has two block types (WanTransformerBlock and WanVACETransformerBlock),
# so we need recompile_limit=2 instead of the default 1.
import torch._dynamo
import torch._inductor.utils
init_dict = self.get_init_dict()
inputs_dict = self.get_dummy_inputs()
model = self.model_class(**init_dict).to(torch_device)
model.eval()
model.compile_repeated_blocks(fullgraph=True)
with (
torch._inductor.utils.fresh_inductor_cache(),
torch._dynamo.config.patch(recompile_limit=2),
):
_ = model(**inputs_dict)
_ = model(**inputs_dict)
class TestWanVACETransformer3DBitsAndBytes(WanVACETransformer3DTesterConfig, BitsAndBytesTesterMixin):
"""BitsAndBytes quantization tests for Wan VACE Transformer 3D."""
class TestWanVACETransformer3DTorchAo(WanVACETransformer3DTesterConfig, TorchAoTesterMixin):
"""TorchAO quantization tests for Wan VACE Transformer 3D."""
class TestWanVACETransformer3DGGUF(WanVACETransformer3DTesterConfig, GGUFTesterMixin):
"""GGUF quantization tests for Wan VACE Transformer 3D."""
@property
def gguf_filename(self):
return "https://huggingface.co/QuantStack/Wan2.1_14B_VACE-GGUF/blob/main/Wan2.1_14B_VACE-Q3_K_S.gguf"
@property
def torch_dtype(self):
return torch.bfloat16
def get_dummy_inputs(self):
"""Override to provide inputs matching the real Wan VACE model dimensions.
Wan 2.1 VACE: in_channels=16, text_dim=4096, vace_in_channels=96
"""
return {
"hidden_states": randn_tensor(
(1, 16, 2, 64, 64), generator=self.generator, device=torch_device, dtype=self.torch_dtype
),
"encoder_hidden_states": randn_tensor(
(1, 512, 4096), generator=self.generator, device=torch_device, dtype=self.torch_dtype
),
"control_hidden_states": randn_tensor(
(1, 96, 2, 64, 64), generator=self.generator, device=torch_device, dtype=self.torch_dtype
),
"timestep": torch.tensor([1.0]).to(torch_device, self.torch_dtype),
}
class TestWanVACETransformer3DGGUFCompile(WanVACETransformer3DTesterConfig, GGUFCompileTesterMixin):
"""GGUF + compile tests for Wan VACE Transformer 3D."""
@property
def gguf_filename(self):
return "https://huggingface.co/QuantStack/Wan2.1_14B_VACE-GGUF/blob/main/Wan2.1_14B_VACE-Q3_K_S.gguf"
@property
def torch_dtype(self):
return torch.bfloat16
def get_dummy_inputs(self):
"""Override to provide inputs matching the real Wan VACE model dimensions.
Wan 2.1 VACE: in_channels=16, text_dim=4096, vace_in_channels=96
"""
return {
"hidden_states": randn_tensor(
(1, 16, 2, 64, 64), generator=self.generator, device=torch_device, dtype=self.torch_dtype
),
"encoder_hidden_states": randn_tensor(
(1, 512, 4096), generator=self.generator, device=torch_device, dtype=self.torch_dtype
),
"control_hidden_states": randn_tensor(
(1, 96, 2, 64, 64), generator=self.generator, device=torch_device, dtype=self.torch_dtype
),
"timestep": torch.tensor([1.0]).to(torch_device, self.torch_dtype),
}

View File

@@ -19,7 +19,7 @@ import unittest
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from transformers import T5EncoderModel, T5TokenizerFast
from transformers import AutoConfig, T5EncoderModel, T5TokenizerFast
from diffusers import (
AutoencoderKL,
@@ -89,7 +89,8 @@ class BriaPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
scheduler = FlowMatchEulerDiscreteScheduler()
torch.manual_seed(0)
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder = T5EncoderModel(config)
tokenizer = T5TokenizerFast.from_pretrained("hf-internal-testing/tiny-random-t5")
components = {

View File

@@ -2,7 +2,7 @@ import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
from diffusers import AutoencoderKL, ChromaPipeline, ChromaTransformer2DModel, FlowMatchEulerDiscreteScheduler
@@ -41,7 +41,8 @@ class ChromaPipelineFastTests(
)
torch.manual_seed(0)
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder = T5EncoderModel(config)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -3,7 +3,7 @@ import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
from diffusers import AutoencoderKL, ChromaImg2ImgPipeline, ChromaTransformer2DModel, FlowMatchEulerDiscreteScheduler
@@ -42,7 +42,8 @@ class ChromaImg2ImgPipelineFastTests(
)
torch.manual_seed(0)
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder = T5EncoderModel(config)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -17,6 +17,7 @@ import unittest
import torch
from PIL import Image
from transformers import (
AutoConfig,
AutoTokenizer,
CLIPImageProcessor,
CLIPVisionConfig,
@@ -71,7 +72,8 @@ class ChronoEditPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
torch.manual_seed(0)
# TODO: impl FlowDPMSolverMultistepScheduler
scheduler = FlowMatchEulerDiscreteScheduler(shift=7.0)
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder = T5EncoderModel(config)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)

View File

@@ -18,7 +18,7 @@ import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
from diffusers import AutoencoderKLCogVideoX, CogVideoXPipeline, CogVideoXTransformer3DModel, DDIMScheduler
@@ -117,7 +117,8 @@ class CogVideoXPipelineFastTests(
torch.manual_seed(0)
scheduler = DDIMScheduler()
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder = T5EncoderModel(config)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
components = {

View File

@@ -18,7 +18,7 @@ import unittest
import numpy as np
import torch
from PIL import Image
from transformers import AutoTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
from diffusers import AutoencoderKLCogVideoX, CogVideoXFunControlPipeline, CogVideoXTransformer3DModel, DDIMScheduler
@@ -104,7 +104,8 @@ class CogVideoXFunControlPipelineFastTests(PipelineTesterMixin, unittest.TestCas
torch.manual_seed(0)
scheduler = DDIMScheduler()
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder = T5EncoderModel(config)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
components = {

View File

@@ -19,7 +19,7 @@ import unittest
import numpy as np
import torch
from PIL import Image
from transformers import AutoTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
from diffusers import AutoencoderKLCogVideoX, CogVideoXImageToVideoPipeline, CogVideoXTransformer3DModel, DDIMScheduler
from diffusers.utils import load_image
@@ -113,7 +113,8 @@ class CogVideoXImageToVideoPipelineFastTests(PipelineTesterMixin, unittest.TestC
torch.manual_seed(0)
scheduler = DDIMScheduler()
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder = T5EncoderModel(config)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
components = {

View File

@@ -18,7 +18,7 @@ import unittest
import numpy as np
import torch
from PIL import Image
from transformers import AutoTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
from diffusers import AutoencoderKLCogVideoX, CogVideoXTransformer3DModel, CogVideoXVideoToVideoPipeline, DDIMScheduler
@@ -99,7 +99,8 @@ class CogVideoXVideoToVideoPipelineFastTests(PipelineTesterMixin, unittest.TestC
torch.manual_seed(0)
scheduler = DDIMScheduler()
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder = T5EncoderModel(config)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
components = {

View File

@@ -18,7 +18,7 @@ import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
from diffusers import AutoencoderKL, CogVideoXDDIMScheduler, CogView3PlusPipeline, CogView3PlusTransformer2DModel
@@ -89,7 +89,8 @@ class CogView3PlusPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
torch.manual_seed(0)
scheduler = CogVideoXDDIMScheduler()
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder = T5EncoderModel(config)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
components = {

View File

@@ -108,7 +108,7 @@ class CogView4PipelineFastTests(PipelineTesterMixin, unittest.TestCase):
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "dance monkey",
"negative_prompt": "",
"negative_prompt": "bad",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,

View File

@@ -19,7 +19,7 @@ import unittest
import numpy as np
import torch
from PIL import Image
from transformers import AutoTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
from diffusers import AutoencoderKLCogVideoX, ConsisIDPipeline, ConsisIDTransformer3DModel, DDIMScheduler
from diffusers.utils import load_image
@@ -122,7 +122,8 @@ class ConsisIDPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
torch.manual_seed(0)
scheduler = DDIMScheduler()
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder = T5EncoderModel(config)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
components = {

View File

@@ -19,7 +19,7 @@ import unittest
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
from transformers import AutoConfig, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
from diffusers import (
AutoencoderKL,
@@ -97,7 +97,8 @@ class FluxControlNetPipelineFastTests(unittest.TestCase, PipelineTesterMixin, Fl
text_encoder = CLIPTextModel(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder_2 = T5EncoderModel(config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = T5TokenizerFast.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -2,7 +2,7 @@ import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from diffusers import (
AutoencoderKL,
@@ -13,9 +13,7 @@ from diffusers import (
)
from diffusers.utils.torch_utils import randn_tensor
from ...testing_utils import (
torch_device,
)
from ...testing_utils import torch_device
from ..test_pipelines_common import PipelineTesterMixin, check_qkv_fused_layers_exist
@@ -70,7 +68,8 @@ class FluxControlNetImg2ImgPipelineFastTests(unittest.TestCase, PipelineTesterMi
text_encoder = CLIPTextModel(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder_2 = T5EncoderModel(config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -3,15 +3,7 @@ import unittest
import numpy as np
import torch
# torch_device, # {{ edit_1 }} Removed unused import
from transformers import (
AutoTokenizer,
CLIPTextConfig,
CLIPTextModel,
CLIPTokenizer,
T5EncoderModel,
)
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from diffusers import (
AutoencoderKL,
@@ -22,11 +14,7 @@ from diffusers import (
)
from diffusers.utils.torch_utils import randn_tensor
from ...testing_utils import (
enable_full_determinism,
floats_tensor,
torch_device,
)
from ...testing_utils import enable_full_determinism, floats_tensor, torch_device
from ..test_pipelines_common import PipelineTesterMixin
@@ -85,7 +73,8 @@ class FluxControlNetInpaintPipelineTests(unittest.TestCase, PipelineTesterMixin)
text_encoder = CLIPTextModel(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder_2 = T5EncoderModel(config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -18,7 +18,7 @@ import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, BertModel, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, BertModel, T5EncoderModel
from diffusers import (
AutoencoderKL,
@@ -96,7 +96,10 @@ class HunyuanDiTControlNetPipelineFastTests(unittest.TestCase, PipelineTesterMix
scheduler = DDPMScheduler()
text_encoder = BertModel.from_pretrained("hf-internal-testing/tiny-random-BertModel")
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel")
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder_2 = T5EncoderModel(config)
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
components = {

View File

@@ -17,7 +17,14 @@ import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel
from transformers import (
AutoConfig,
AutoTokenizer,
CLIPTextConfig,
CLIPTextModelWithProjection,
CLIPTokenizer,
T5EncoderModel,
)
from diffusers import (
AutoencoderKL,
@@ -28,10 +35,7 @@ from diffusers import (
from diffusers.models import SD3ControlNetModel
from diffusers.utils.torch_utils import randn_tensor
from ...testing_utils import (
enable_full_determinism,
torch_device,
)
from ...testing_utils import enable_full_determinism, torch_device
from ..test_pipelines_common import PipelineTesterMixin
@@ -103,7 +107,8 @@ class StableDiffusion3ControlInpaintNetPipelineFastTests(unittest.TestCase, Pipe
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder_3 = T5EncoderModel(config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

View File

@@ -19,7 +19,14 @@ from typing import Optional
import numpy as np
import torch
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel
from transformers import (
AutoConfig,
AutoTokenizer,
CLIPTextConfig,
CLIPTextModelWithProjection,
CLIPTokenizer,
T5EncoderModel,
)
from diffusers import (
AutoencoderKL,
@@ -118,7 +125,8 @@ class StableDiffusion3ControlNetPipelineFastTests(unittest.TestCase, PipelineTes
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder_3 = T5EncoderModel(config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

View File

@@ -20,7 +20,7 @@ import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
from diffusers import AutoencoderKLCosmos, CosmosTextToWorldPipeline, CosmosTransformer3DModel, EDMEulerScheduler
@@ -107,7 +107,8 @@ class CosmosTextToWorldPipelineFastTests(PipelineTesterMixin, unittest.TestCase)
rho=7.0,
final_sigmas_type="sigma_min",
)
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder = T5EncoderModel(config)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
components = {

View File

@@ -20,7 +20,7 @@ import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
from diffusers import (
AutoencoderKLWan,
@@ -95,7 +95,8 @@ class Cosmos2TextToImagePipelineFastTests(PipelineTesterMixin, unittest.TestCase
torch.manual_seed(0)
scheduler = FlowMatchEulerDiscreteScheduler(use_karras_sigmas=True)
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder = T5EncoderModel(config)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
components = {

View File

@@ -21,7 +21,7 @@ import unittest
import numpy as np
import PIL.Image
import torch
from transformers import AutoTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
from diffusers import (
AutoencoderKLWan,
@@ -96,7 +96,8 @@ class Cosmos2VideoToWorldPipelineFastTests(PipelineTesterMixin, unittest.TestCas
torch.manual_seed(0)
scheduler = FlowMatchEulerDiscreteScheduler(use_karras_sigmas=True)
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder = T5EncoderModel(config)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
components = {

View File

@@ -21,7 +21,7 @@ import unittest
import numpy as np
import PIL.Image
import torch
from transformers import AutoTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
from diffusers import AutoencoderKLCosmos, CosmosTransformer3DModel, CosmosVideoToWorldPipeline, EDMEulerScheduler
@@ -108,7 +108,8 @@ class CosmosVideoToWorldPipelineFastTests(PipelineTesterMixin, unittest.TestCase
rho=7.0,
final_sigmas_type="sigma_min",
)
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder = T5EncoderModel(config)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
components = {

View File

@@ -2,7 +2,7 @@ import tempfile
import numpy as np
import torch
from transformers import AutoTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
from diffusers import DDPMScheduler, UNet2DConditionModel
from diffusers.models.attention_processor import AttnAddedKVProcessor
@@ -18,7 +18,8 @@ from ..test_pipelines_common import to_np
class IFPipelineTesterMixin:
def _get_dummy_components(self):
torch.manual_seed(0)
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder = T5EncoderModel(config)
torch.manual_seed(0)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
@@ -75,7 +76,8 @@ class IFPipelineTesterMixin:
def _get_superresolution_dummy_components(self):
torch.manual_seed(0)
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder = T5EncoderModel(config)
torch.manual_seed(0)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -18,9 +18,7 @@ import unittest
import torch
from diffusers import (
IFPipeline,
)
from diffusers import IFPipeline
from diffusers.models.attention_processor import AttnAddedKVProcessor
from diffusers.utils.import_utils import is_xformers_available

View File

@@ -4,7 +4,7 @@ import unittest
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from diffusers import (
AutoencoderKL,
@@ -91,7 +91,8 @@ class FluxPipelineFastTests(
text_encoder = CLIPTextModel(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder_2 = T5EncoderModel(config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -3,7 +3,7 @@ import unittest
import numpy as np
import torch
from PIL import Image
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, FluxControlPipeline, FluxTransformer2DModel
@@ -53,7 +53,8 @@ class FluxControlPipelineFastTests(unittest.TestCase, PipelineTesterMixin):
text_encoder = CLIPTextModel(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder_2 = T5EncoderModel(config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -3,7 +3,7 @@ import unittest
import numpy as np
import torch
from PIL import Image
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from diffusers import (
AutoencoderKL,
@@ -57,7 +57,8 @@ class FluxControlImg2ImgPipelineFastTests(unittest.TestCase, PipelineTesterMixin
text_encoder = CLIPTextModel(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder_2 = T5EncoderModel(config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -3,7 +3,7 @@ import unittest
import numpy as np
import torch
from PIL import Image
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from diffusers import (
AutoencoderKL,
@@ -58,7 +58,8 @@ class FluxControlInpaintPipelineFastTests(unittest.TestCase, PipelineTesterMixin
text_encoder = CLIPTextModel(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder_2 = T5EncoderModel(config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -3,7 +3,7 @@ import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, FluxFillPipeline, FluxTransformer2DModel
@@ -58,7 +58,8 @@ class FluxFillPipelineFastTests(unittest.TestCase, PipelineTesterMixin):
text_encoder = CLIPTextModel(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder_2 = T5EncoderModel(config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -3,7 +3,7 @@ import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, FluxImg2ImgPipeline, FluxTransformer2DModel
@@ -55,7 +55,8 @@ class FluxImg2ImgPipelineFastTests(unittest.TestCase, PipelineTesterMixin, FluxI
text_encoder = CLIPTextModel(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder_2 = T5EncoderModel(config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -3,7 +3,7 @@ import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, FluxInpaintPipeline, FluxTransformer2DModel
@@ -55,7 +55,8 @@ class FluxInpaintPipelineFastTests(unittest.TestCase, PipelineTesterMixin, FluxI
text_encoder = CLIPTextModel(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder_2 = T5EncoderModel(config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -3,7 +3,7 @@ import unittest
import numpy as np
import PIL.Image
import torch
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from diffusers import (
AutoencoderKL,
@@ -79,7 +79,8 @@ class FluxKontextPipelineFastTests(
text_encoder = CLIPTextModel(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder_2 = T5EncoderModel(config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -3,7 +3,7 @@ import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from diffusers import (
AutoencoderKL,
@@ -79,7 +79,8 @@ class FluxKontextInpaintPipelineFastTests(
text_encoder = CLIPTextModel(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder_2 = T5EncoderModel(config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -16,7 +16,7 @@ import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, GlmImagePipeline, GlmImageTransformer2DModel
from diffusers.utils import is_transformers_version
@@ -57,7 +57,8 @@ class GlmImagePipelineFastTests(PipelineTesterMixin, unittest.TestCase):
def get_dummy_components(self):
torch.manual_seed(0)
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder = T5EncoderModel(config)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
glm_config = GlmImageConfig(

View File

@@ -18,6 +18,7 @@ import unittest
import numpy as np
import torch
from transformers import (
AutoConfig,
AutoTokenizer,
CLIPTextConfig,
CLIPTextModelWithProjection,
@@ -94,7 +95,8 @@ class HiDreamImagePipelineFastTests(PipelineTesterMixin, unittest.TestCase):
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder_3 = T5EncoderModel(config)
torch.manual_seed(0)
text_encoder_4 = LlamaForCausalLM.from_pretrained("hf-internal-testing/tiny-random-LlamaForCausalLM")
@@ -149,7 +151,7 @@ class HiDreamImagePipelineFastTests(PipelineTesterMixin, unittest.TestCase):
self.assertEqual(generated_image.shape, (128, 128, 3))
# fmt: off
expected_slice = np.array([0.4507, 0.5256, 0.4205, 0.5791, 0.4848, 0.4831, 0.4443, 0.5107, 0.6586, 0.3163, 0.7318, 0.5933, 0.6252, 0.5512, 0.5357, 0.5983])
expected_slice = np.array([0.4501, 0.5256, 0.4207, 0.5783, 0.4842, 0.4833, 0.4441, 0.5112, 0.6587, 0.3169, 0.7308, 0.5927, 0.6251, 0.5509, 0.5355, 0.5969])
# fmt: on
generated_slice = generated_image.flatten()

View File

@@ -233,7 +233,7 @@ class HunyuanVideoImageToVideoPipelineFastTests(
self.assertEqual(generated_video.shape, (5, 3, 16, 16))
# fmt: off
expected_slice = torch.tensor([0.444, 0.479, 0.4485, 0.5752, 0.3539, 0.1548, 0.2706, 0.3593, 0.5323, 0.6635, 0.6795, 0.5255, 0.5091, 0.345, 0.4276, 0.4128])
expected_slice = torch.tensor([0.4441, 0.4790, 0.4485, 0.5748, 0.3539, 0.1553, 0.2707, 0.3594, 0.5331, 0.6645, 0.6799, 0.5257, 0.5092, 0.3450, 0.4276, 0.4127])
# fmt: on
generated_slice = generated_video.flatten()

View File

@@ -15,7 +15,14 @@
import unittest
import torch
from transformers import ByT5Tokenizer, Qwen2_5_VLTextConfig, Qwen2_5_VLTextModel, Qwen2Tokenizer, T5EncoderModel
from transformers import (
AutoConfig,
ByT5Tokenizer,
Qwen2_5_VLTextConfig,
Qwen2_5_VLTextModel,
Qwen2Tokenizer,
T5EncoderModel,
)
from diffusers import (
AutoencoderKLHunyuanVideo15,
@@ -114,7 +121,8 @@ class HunyuanVideo15PipelineFastTests(PipelineTesterMixin, unittest.TestCase):
tokenizer = Qwen2Tokenizer.from_pretrained("hf-internal-testing/tiny-random-Qwen2VLForConditionalGeneration")
torch.manual_seed(0)
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder_2 = T5EncoderModel(config)
tokenizer_2 = ByT5Tokenizer()
guider = ClassifierFreeGuidance(guidance_scale=1.0)

View File

@@ -19,7 +19,7 @@ import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, BertModel, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, BertModel, T5EncoderModel
from diffusers import AutoencoderKL, DDPMScheduler, HunyuanDiT2DModel, HunyuanDiTPipeline
@@ -74,7 +74,9 @@ class HunyuanDiTPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
scheduler = DDPMScheduler()
text_encoder = BertModel.from_pretrained("hf-internal-testing/tiny-random-BertModel")
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel")
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder_2 = T5EncoderModel(config)
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
components = {

View File

@@ -19,7 +19,7 @@ import unittest
import numpy as np
import torch
from PIL import Image
from transformers import AutoTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
from diffusers import (
AutoPipelineForImage2Image,
@@ -108,7 +108,8 @@ class Kandinsky3PipelineFastTests(PipelineTesterMixin, unittest.TestCase):
torch.manual_seed(0)
movq = self.dummy_movq
torch.manual_seed(0)
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder = T5EncoderModel(config)
torch.manual_seed(0)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -20,7 +20,7 @@ import unittest
import numpy as np
import torch
from PIL import Image
from transformers import AutoTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
from diffusers import (
AutoPipelineForImage2Image,
@@ -119,7 +119,8 @@ class Kandinsky3Img2ImgPipelineFastTests(PipelineTesterMixin, unittest.TestCase)
torch.manual_seed(0)
movq = self.dummy_movq
torch.manual_seed(0)
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder = T5EncoderModel(config)
torch.manual_seed(0)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -20,7 +20,7 @@ import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
from diffusers import (
AutoencoderKL,
@@ -109,7 +109,8 @@ class LattePipelineFastTests(
vae = AutoencoderKL()
scheduler = DDIMScheduler()
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder = T5EncoderModel(config)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -17,7 +17,7 @@ import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
from diffusers import AutoencoderKLLTXVideo, FlowMatchEulerDiscreteScheduler, LTXPipeline, LTXVideoTransformer3DModel
@@ -88,7 +88,8 @@ class LTXPipelineFastTests(PipelineTesterMixin, FirstBlockCacheTesterMixin, unit
torch.manual_seed(0)
scheduler = FlowMatchEulerDiscreteScheduler()
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder = T5EncoderModel(config)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
components = {

View File

@@ -17,7 +17,7 @@ import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
from diffusers import (
AutoencoderKLLTXVideo,
@@ -92,7 +92,8 @@ class LTXConditionPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
torch.manual_seed(0)
scheduler = FlowMatchEulerDiscreteScheduler()
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder = T5EncoderModel(config)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
components = {

View File

@@ -17,7 +17,7 @@ import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
from diffusers import (
AutoencoderKLLTXVideo,
@@ -91,7 +91,8 @@ class LTXImageToVideoPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
torch.manual_seed(0)
scheduler = FlowMatchEulerDiscreteScheduler()
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder = T5EncoderModel(config)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
components = {

View File

@@ -18,7 +18,7 @@ import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
from diffusers import AutoencoderKLMochi, FlowMatchEulerDiscreteScheduler, MochiPipeline, MochiTransformer3DModel
@@ -89,7 +89,8 @@ class MochiPipelineFastTests(
torch.manual_seed(0)
scheduler = FlowMatchEulerDiscreteScheduler()
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder = T5EncoderModel(config)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
components = {

View File

@@ -19,7 +19,7 @@ import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, BertModel, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, BertModel, T5EncoderModel
from diffusers import (
AutoencoderKL,
@@ -67,7 +67,9 @@ class HunyuanDiTPAGPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
scheduler = DDPMScheduler()
text_encoder = BertModel.from_pretrained("hf-internal-testing/tiny-random-BertModel")
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel")
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder_2 = T5EncoderModel(config)
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
components = {

View File

@@ -19,7 +19,7 @@ import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
import diffusers
from diffusers import (
@@ -80,7 +80,8 @@ class PixArtSigmaPAGPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
vae = AutoencoderKL()
scheduler = DDIMScheduler()
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder = T5EncoderModel(config)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -3,7 +3,14 @@ import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel
from transformers import (
AutoConfig,
AutoTokenizer,
CLIPTextConfig,
CLIPTextModelWithProjection,
CLIPTokenizer,
T5EncoderModel,
)
from diffusers import (
AutoencoderKL,
@@ -73,7 +80,9 @@ class StableDiffusion3PAGPipelineFastTests(unittest.TestCase, PipelineTesterMixi
torch.manual_seed(0)
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder_3 = T5EncoderModel(config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

View File

@@ -5,7 +5,14 @@ import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel
from transformers import (
AutoConfig,
AutoTokenizer,
CLIPTextConfig,
CLIPTextModelWithProjection,
CLIPTokenizer,
T5EncoderModel,
)
from diffusers import (
AutoencoderKL,
@@ -84,7 +91,9 @@ class StableDiffusion3PAGImg2ImgPipelineFastTests(unittest.TestCase, PipelineTes
torch.manual_seed(0)
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder_3 = T5EncoderModel(config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

View File

@@ -19,7 +19,7 @@ import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
from diffusers import (
AutoencoderKL,
@@ -77,7 +77,10 @@ class PixArtAlphaPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
vae = AutoencoderKL()
scheduler = DDIMScheduler()
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder = T5EncoderModel(config)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -19,7 +19,7 @@ import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
from diffusers import (
AutoencoderKL,
@@ -83,7 +83,10 @@ class PixArtSigmaPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
vae = AutoencoderKL()
scheduler = DDIMScheduler()
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder = T5EncoderModel(config)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -160,7 +160,7 @@ class QwenImagePipelineFastTests(PipelineTesterMixin, unittest.TestCase):
self.assertEqual(generated_image.shape, (3, 32, 32))
# fmt: off
expected_slice = torch.tensor([0.56331, 0.63677, 0.6015, 0.56369, 0.58166, 0.55277, 0.57176, 0.63261, 0.41466, 0.35561, 0.56229, 0.48334, 0.49714, 0.52622, 0.40872, 0.50208])
expected_slice = torch.tensor([0.5646, 0.6369, 0.6019, 0.5640, 0.5830, 0.5520, 0.5717, 0.6315, 0.4167, 0.3563, 0.5640, 0.4849, 0.4961, 0.5237, 0.4084, 0.5014])
# fmt: on
generated_slice = generated_image.flatten()

View File

@@ -163,7 +163,7 @@ class QwenImageEditPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
self.assertEqual(generated_image.shape, (3, 32, 32))
# fmt: off
expected_slice = torch.tensor([[0.5637, 0.6341, 0.6001, 0.5620, 0.5794, 0.5498, 0.5757, 0.6389, 0.4174, 0.3597, 0.5649, 0.4894, 0.4969, 0.5255, 0.4083, 0.4986]])
expected_slice = torch.tensor([0.5640, 0.6350, 0.6003, 0.5606, 0.5801, 0.5502, 0.5757, 0.6388, 0.4174, 0.3590, 0.5647, 0.4891, 0.4975, 0.5256, 0.4088, 0.4991])
# fmt: on
generated_slice = generated_image.flatten()

View File

@@ -164,7 +164,7 @@ class QwenImageEditPlusPipelineFastTests(PipelineTesterMixin, unittest.TestCase)
self.assertEqual(generated_image.shape, (3, 32, 32))
# fmt: off
expected_slice = torch.tensor([[0.5637, 0.6341, 0.6001, 0.5620, 0.5794, 0.5498, 0.5757, 0.6389, 0.4174, 0.3597, 0.5649, 0.4894, 0.4969, 0.5255, 0.4083, 0.4986]])
expected_slice = torch.tensor([0.5640, 0.6339, 0.5997, 0.5607, 0.5799, 0.5496, 0.5760, 0.6393, 0.4172, 0.3595, 0.5655, 0.4896, 0.4971, 0.5255, 0.4088, 0.4987])
# fmt: on
generated_slice = generated_image.flatten()

View File

@@ -16,7 +16,7 @@ import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
from diffusers import (
AutoencoderKLWan,
@@ -68,7 +68,8 @@ class SkyReelsV2PipelineFastTests(PipelineTesterMixin, unittest.TestCase):
torch.manual_seed(0)
scheduler = UniPCMultistepScheduler(flow_shift=8.0, use_flow_sigmas=True)
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder = T5EncoderModel(config)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)

View File

@@ -16,7 +16,7 @@ import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
from diffusers import (
AutoencoderKLWan,
@@ -68,7 +68,8 @@ class SkyReelsV2DiffusionForcingPipelineFastTests(PipelineTesterMixin, unittest.
torch.manual_seed(0)
scheduler = UniPCMultistepScheduler(flow_shift=8.0, use_flow_sigmas=True)
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder = T5EncoderModel(config)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)

View File

@@ -18,6 +18,7 @@ import numpy as np
import torch
from PIL import Image
from transformers import (
AutoConfig,
AutoTokenizer,
T5EncoderModel,
)
@@ -68,7 +69,8 @@ class SkyReelsV2DiffusionForcingImageToVideoPipelineFastTests(PipelineTesterMixi
torch.manual_seed(0)
scheduler = UniPCMultistepScheduler(flow_shift=5.0, use_flow_sigmas=True)
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder = T5EncoderModel(config)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)
@@ -159,7 +161,8 @@ class SkyReelsV2DiffusionForcingImageToVideoPipelineFastTests(SkyReelsV2Diffusio
torch.manual_seed(0)
scheduler = UniPCMultistepScheduler(flow_shift=5.0, use_flow_sigmas=True)
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder = T5EncoderModel(config)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)

View File

@@ -18,7 +18,7 @@ import unittest
import numpy as np
import torch
from PIL import Image
from transformers import AutoTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
from diffusers import (
AutoencoderKLWan,
@@ -70,7 +70,8 @@ class SkyReelsV2DiffusionForcingVideoToVideoPipelineFastTests(PipelineTesterMixi
torch.manual_seed(0)
scheduler = UniPCMultistepScheduler(flow_shift=5.0, use_flow_sigmas=True)
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder = T5EncoderModel(config)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)

View File

@@ -18,6 +18,7 @@ import numpy as np
import torch
from PIL import Image
from transformers import (
AutoConfig,
AutoTokenizer,
CLIPImageProcessor,
CLIPVisionConfig,
@@ -71,7 +72,8 @@ class SkyReelsV2ImageToVideoPipelineFastTests(PipelineTesterMixin, unittest.Test
torch.manual_seed(0)
scheduler = UniPCMultistepScheduler(flow_shift=5.0, use_flow_sigmas=True)
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder = T5EncoderModel(config)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)

View File

@@ -19,10 +19,7 @@ import unittest
import numpy as np
import torch
from transformers import (
T5EncoderModel,
T5Tokenizer,
)
from transformers import AutoConfig, T5EncoderModel, T5Tokenizer
from diffusers import (
AutoencoderOobleck,
@@ -111,7 +108,8 @@ class StableAudioPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
)
torch.manual_seed(0)
t5_repo_id = "hf-internal-testing/tiny-random-T5ForConditionalGeneration"
text_encoder = T5EncoderModel.from_pretrained(t5_repo_id)
config = AutoConfig.from_pretrained(t5_repo_id)
text_encoder = T5EncoderModel(config)
tokenizer = T5Tokenizer.from_pretrained(t5_repo_id, truncation=True, model_max_length=25)
torch.manual_seed(0)

View File

@@ -3,7 +3,14 @@ import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel
from transformers import (
AutoConfig,
AutoTokenizer,
CLIPTextConfig,
CLIPTextModelWithProjection,
CLIPTokenizer,
T5EncoderModel,
)
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, SD3Transformer2DModel, StableDiffusion3Pipeline
@@ -72,7 +79,9 @@ class StableDiffusion3PipelineFastTests(unittest.TestCase, PipelineTesterMixin):
torch.manual_seed(0)
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder_3 = T5EncoderModel(config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

View File

@@ -4,7 +4,14 @@ import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel
from transformers import (
AutoConfig,
AutoTokenizer,
CLIPTextConfig,
CLIPTextModelWithProjection,
CLIPTokenizer,
T5EncoderModel,
)
from diffusers import (
AutoencoderKL,
@@ -73,7 +80,9 @@ class StableDiffusion3Img2ImgPipelineFastTests(PipelineLatentTesterMixin, unitte
torch.manual_seed(0)
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder_3 = T5EncoderModel(config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

View File

@@ -3,7 +3,14 @@ import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel
from transformers import (
AutoConfig,
AutoTokenizer,
CLIPTextConfig,
CLIPTextModelWithProjection,
CLIPTokenizer,
T5EncoderModel,
)
from diffusers import (
AutoencoderKL,
@@ -73,7 +80,9 @@ class StableDiffusion3InpaintPipelineFastTests(PipelineLatentTesterMixin, unitte
torch.manual_seed(0)
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder_3 = T5EncoderModel(config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

View File

@@ -5,7 +5,7 @@ import unittest
import numpy as np
import torch
from PIL import Image
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
import diffusers
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, FluxTransformer2DModel, VisualClozePipeline
@@ -77,7 +77,8 @@ class VisualClozePipelineFastTests(unittest.TestCase, PipelineTesterMixin):
text_encoder = CLIPTextModel(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder_2 = T5EncoderModel(config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -5,7 +5,7 @@ import unittest
import numpy as np
import torch
from PIL import Image
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
import diffusers
from diffusers import (
@@ -79,7 +79,8 @@ class VisualClozeGenerationPipelineFastTests(unittest.TestCase, PipelineTesterMi
text_encoder = CLIPTextModel(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder_2 = T5EncoderModel(config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -18,7 +18,7 @@ import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
from diffusers import AutoencoderKLWan, FlowMatchEulerDiscreteScheduler, WanPipeline, WanTransformer3DModel
@@ -68,7 +68,8 @@ class WanPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
torch.manual_seed(0)
# TODO: impl FlowDPMSolverMultistepScheduler
scheduler = FlowMatchEulerDiscreteScheduler(shift=7.0)
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder = T5EncoderModel(config)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)

View File

@@ -17,14 +17,11 @@ import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
from diffusers import AutoencoderKLWan, UniPCMultistepScheduler, WanPipeline, WanTransformer3DModel
from ...testing_utils import (
enable_full_determinism,
torch_device,
)
from ...testing_utils import enable_full_determinism, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
@@ -63,7 +60,8 @@ class Wan22PipelineFastTests(PipelineTesterMixin, unittest.TestCase):
torch.manual_seed(0)
scheduler = UniPCMultistepScheduler(prediction_type="flow_prediction", use_flow_sigmas=True, flow_shift=3.0)
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder = T5EncoderModel(config)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)
@@ -235,7 +233,8 @@ class Wan225BPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
torch.manual_seed(0)
scheduler = UniPCMultistepScheduler(prediction_type="flow_prediction", use_flow_sigmas=True, flow_shift=3.0)
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder = T5EncoderModel(config)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)

View File

@@ -18,7 +18,7 @@ import unittest
import numpy as np
import torch
from PIL import Image
from transformers import AutoTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
from diffusers import AutoencoderKLWan, UniPCMultistepScheduler, WanImageToVideoPipeline, WanTransformer3DModel
@@ -64,7 +64,8 @@ class Wan22ImageToVideoPipelineFastTests(PipelineTesterMixin, unittest.TestCase)
torch.manual_seed(0)
scheduler = UniPCMultistepScheduler(prediction_type="flow_prediction", use_flow_sigmas=True, flow_shift=3.0)
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder = T5EncoderModel(config)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)
@@ -248,7 +249,8 @@ class Wan225BImageToVideoPipelineFastTests(PipelineTesterMixin, unittest.TestCas
torch.manual_seed(0)
scheduler = UniPCMultistepScheduler(prediction_type="flow_prediction", use_flow_sigmas=True, flow_shift=3.0)
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder = T5EncoderModel(config)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)

View File

@@ -19,6 +19,7 @@ import numpy as np
import torch
from PIL import Image
from transformers import (
AutoConfig,
AutoTokenizer,
CLIPImageProcessor,
CLIPVisionConfig,
@@ -78,7 +79,8 @@ class WanAnimatePipelineFastTests(PipelineTesterMixin, unittest.TestCase):
torch.manual_seed(0)
scheduler = FlowMatchEulerDiscreteScheduler(shift=7.0)
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder = T5EncoderModel(config)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)

View File

@@ -19,6 +19,7 @@ import numpy as np
import torch
from PIL import Image
from transformers import (
AutoConfig,
AutoTokenizer,
CLIPImageProcessor,
CLIPVisionConfig,
@@ -68,7 +69,8 @@ class WanImageToVideoPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
torch.manual_seed(0)
# TODO: impl FlowDPMSolverMultistepScheduler
scheduler = FlowMatchEulerDiscreteScheduler(shift=7.0)
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder = T5EncoderModel(config)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)
@@ -239,7 +241,8 @@ class WanFLFToVideoPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
torch.manual_seed(0)
# TODO: impl FlowDPMSolverMultistepScheduler
scheduler = FlowMatchEulerDiscreteScheduler(shift=7.0)
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder = T5EncoderModel(config)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)

View File

@@ -18,7 +18,7 @@ import unittest
import numpy as np
import torch
from PIL import Image
from transformers import AutoTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
from diffusers import (
AutoencoderKLWan,
@@ -67,7 +67,8 @@ class WanVACEPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
torch.manual_seed(0)
scheduler = FlowMatchEulerDiscreteScheduler(shift=7.0)
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder = T5EncoderModel(config)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)

View File

@@ -16,7 +16,7 @@ import unittest
import torch
from PIL import Image
from transformers import AutoTokenizer, T5EncoderModel
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
from diffusers import AutoencoderKLWan, UniPCMultistepScheduler, WanTransformer3DModel, WanVideoToVideoPipeline
@@ -62,7 +62,8 @@ class WanVideoToVideoPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
torch.manual_seed(0)
scheduler = UniPCMultistepScheduler(flow_shift=3.0)
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
text_encoder = T5EncoderModel(config)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)

View File

@@ -168,7 +168,7 @@ def assert_tensors_close(
max_diff = abs_diff.max().item()
flat_idx = abs_diff.argmax().item()
max_idx = tuple(idx.item() for idx in torch.unravel_index(torch.tensor(flat_idx), actual.shape))
max_idx = tuple(torch.unravel_index(torch.tensor(flat_idx), actual.shape).tolist())
threshold = atol + rtol * expected.abs()
mismatched = (abs_diff > threshold).sum().item()