mirror of
https://github.com/huggingface/diffusers.git
synced 2026-02-04 01:45:15 +08:00
Compare commits
39 Commits
flux-test-
...
transforme
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
10ef2269a9 | ||
|
|
c3249d7b2e | ||
|
|
85682000a9 | ||
|
|
5fefef9bc9 | ||
|
|
ea815e5bb0 | ||
|
|
7eb51e932f | ||
|
|
079e0e31b7 | ||
|
|
f9bdc09534 | ||
|
|
2bee621229 | ||
|
|
7a0739ccd3 | ||
|
|
b4b707e585 | ||
|
|
fefd0f4e45 | ||
|
|
6e8e7bad9e | ||
|
|
0eaa35fdca | ||
|
|
4dff31871c | ||
|
|
515dd06db5 | ||
|
|
5274ffdd7f | ||
|
|
a21a6ac565 | ||
|
|
c2d8273891 | ||
|
|
e1249d2640 | ||
|
|
2fe9f9868d | ||
|
|
387befd6de | ||
|
|
351316328f | ||
|
|
62bf2b0ab9 | ||
|
|
7f2cd5b6fc | ||
|
|
4ea43ee6ab | ||
|
|
084c959bdf | ||
|
|
3dcb97c9ea | ||
|
|
7b55da8846 | ||
|
|
cec020988b | ||
|
|
926db24add | ||
|
|
37cfceef0d | ||
|
|
ea90a74ed4 | ||
|
|
96f08043a3 | ||
|
|
d0f279ce76 | ||
|
|
c5e023fbe6 | ||
|
|
f8e50fab75 | ||
|
|
c152b1831c | ||
|
|
039324ae16 |
27
.github/workflows/pr_tests.yml
vendored
27
.github/workflows/pr_tests.yml
vendored
@@ -92,8 +92,9 @@ jobs:
|
||||
runner: aws-general-8-plus
|
||||
image: diffusers/diffusers-pytorch-cpu
|
||||
report: torch_example_cpu
|
||||
transformers_version: ["main"]
|
||||
|
||||
name: ${{ matrix.config.name }}
|
||||
name: ${{ matrix.config.name }} (transformers ${{ matrix.transformers_version }})
|
||||
|
||||
runs-on:
|
||||
group: ${{ matrix.config.runner }}
|
||||
@@ -115,8 +116,11 @@ jobs:
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
uv pip install -e ".[quality]"
|
||||
#uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
|
||||
uv pip uninstall transformers huggingface_hub && uv pip install transformers==4.57.1
|
||||
if [ "${{ matrix.transformers_version }}" = "main" ]; then
|
||||
uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
|
||||
else
|
||||
uv pip uninstall transformers huggingface_hub && uv pip install transformers==${{ matrix.transformers_version }}
|
||||
fi
|
||||
uv pip uninstall accelerate && uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git --no-deps
|
||||
|
||||
- name: Environment
|
||||
@@ -155,7 +159,7 @@ jobs:
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v6
|
||||
with:
|
||||
name: pr_${{ matrix.config.framework }}_${{ matrix.config.report }}_test_reports
|
||||
name: pr_${{ matrix.config.framework }}_${{ matrix.config.report }}_transformers_${{ matrix.transformers_version }}_test_reports
|
||||
path: reports
|
||||
|
||||
run_staging_tests:
|
||||
@@ -220,8 +224,10 @@ jobs:
|
||||
needs: [check_code_quality, check_repository_consistency]
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
transformers_version: ["main"]
|
||||
|
||||
name: LoRA tests with PEFT main
|
||||
name: LoRA tests with PEFT main (transformers ${{ matrix.transformers_version }})
|
||||
|
||||
runs-on:
|
||||
group: aws-general-8-plus
|
||||
@@ -247,9 +253,12 @@ jobs:
|
||||
uv pip install -U peft@git+https://github.com/huggingface/peft.git --no-deps
|
||||
uv pip install -U tokenizers
|
||||
uv pip uninstall accelerate && uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git --no-deps
|
||||
#uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
|
||||
uv pip uninstall transformers huggingface_hub && uv pip install transformers==4.57.1
|
||||
|
||||
if [ "${{ matrix.transformers_version }}" = "main" ]; then
|
||||
uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
|
||||
else
|
||||
uv pip uninstall transformers huggingface_hub && uv pip install transformers==${{ matrix.transformers_version }}
|
||||
fi
|
||||
|
||||
- name: Environment
|
||||
run: |
|
||||
python utils/print_env.py
|
||||
@@ -275,6 +284,6 @@ jobs:
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v6
|
||||
with:
|
||||
name: pr_main_test_reports
|
||||
name: pr_lora_transformers_${{ matrix.transformers_version }}_test_reports
|
||||
path: reports
|
||||
|
||||
|
||||
42
.github/workflows/pr_tests_gpu.yml
vendored
42
.github/workflows/pr_tests_gpu.yml
vendored
@@ -14,6 +14,7 @@ on:
|
||||
- "tests/pipelines/test_pipelines_common.py"
|
||||
- "tests/models/test_modeling_common.py"
|
||||
- "examples/**/*.py"
|
||||
- ".github/**.yml"
|
||||
workflow_dispatch:
|
||||
|
||||
concurrency:
|
||||
@@ -106,13 +107,14 @@ jobs:
|
||||
path: reports
|
||||
|
||||
torch_pipelines_cuda_tests:
|
||||
name: Torch Pipelines CUDA Tests
|
||||
name: Torch Pipelines CUDA Tests (transformers ${{ matrix.transformers_version }})
|
||||
needs: setup_torch_cuda_pipeline_matrix
|
||||
strategy:
|
||||
fail-fast: false
|
||||
max-parallel: 8
|
||||
matrix:
|
||||
module: ${{ fromJson(needs.setup_torch_cuda_pipeline_matrix.outputs.pipeline_test_matrix) }}
|
||||
transformers_version: ["main"]
|
||||
runs-on:
|
||||
group: aws-g4dn-2xlarge
|
||||
container:
|
||||
@@ -131,8 +133,12 @@ jobs:
|
||||
run: |
|
||||
uv pip install -e ".[quality]"
|
||||
uv pip uninstall accelerate && uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
|
||||
#uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
|
||||
uv pip uninstall transformers huggingface_hub && uv pip install transformers==4.57.1
|
||||
if [ "${{ matrix.transformers_version }}" = "main" ]; then
|
||||
uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
|
||||
else
|
||||
uv pip uninstall transformers huggingface_hub && uv pip install transformers==${{ matrix.transformers_version }}
|
||||
fi
|
||||
|
||||
|
||||
- name: Environment
|
||||
run: |
|
||||
@@ -172,11 +178,11 @@ jobs:
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v6
|
||||
with:
|
||||
name: pipeline_${{ matrix.module }}_test_reports
|
||||
name: pipeline_${{ matrix.module }}_transformers_${{ matrix.transformers_version }}_test_reports
|
||||
path: reports
|
||||
|
||||
torch_cuda_tests:
|
||||
name: Torch CUDA Tests
|
||||
name: Torch CUDA Tests (transformers ${{ matrix.transformers_version }})
|
||||
needs: [check_code_quality, check_repository_consistency]
|
||||
runs-on:
|
||||
group: aws-g4dn-2xlarge
|
||||
@@ -191,6 +197,7 @@ jobs:
|
||||
max-parallel: 4
|
||||
matrix:
|
||||
module: [models, schedulers, lora, others]
|
||||
transformers_version: ["main"]
|
||||
steps:
|
||||
- name: Checkout diffusers
|
||||
uses: actions/checkout@v6
|
||||
@@ -202,8 +209,12 @@ jobs:
|
||||
uv pip install -e ".[quality]"
|
||||
uv pip install peft@git+https://github.com/huggingface/peft.git
|
||||
uv pip uninstall accelerate && uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
|
||||
#uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
|
||||
uv pip uninstall transformers huggingface_hub && uv pip install transformers==4.57.1
|
||||
if [ "${{ matrix.transformers_version }}" = "main" ]; then
|
||||
uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
|
||||
else
|
||||
uv pip uninstall transformers huggingface_hub && uv pip install transformers==${{ matrix.transformers_version }}
|
||||
fi
|
||||
|
||||
|
||||
- name: Environment
|
||||
run: |
|
||||
@@ -241,12 +252,16 @@ jobs:
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v6
|
||||
with:
|
||||
name: torch_cuda_test_reports_${{ matrix.module }}
|
||||
name: torch_cuda_test_reports_${{ matrix.module }}_transformers_${{ matrix.transformers_version }}
|
||||
path: reports
|
||||
|
||||
run_examples_tests:
|
||||
name: Examples PyTorch CUDA tests on Ubuntu
|
||||
name: Examples PyTorch CUDA tests on Ubuntu (transformers ${{ matrix.transformers_version }})
|
||||
needs: [check_code_quality, check_repository_consistency]
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
transformers_version: ["main"]
|
||||
runs-on:
|
||||
group: aws-g4dn-2xlarge
|
||||
|
||||
@@ -264,8 +279,11 @@ jobs:
|
||||
nvidia-smi
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
#uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
|
||||
uv pip uninstall transformers huggingface_hub && uv pip install transformers==4.57.1
|
||||
if [ "${{ matrix.transformers_version }}" = "main" ]; then
|
||||
uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
|
||||
else
|
||||
uv pip uninstall transformers huggingface_hub && uv pip install transformers==${{ matrix.transformers_version }}
|
||||
fi
|
||||
uv pip install -e ".[quality,training]"
|
||||
|
||||
- name: Environment
|
||||
@@ -289,6 +307,6 @@ jobs:
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v6
|
||||
with:
|
||||
name: examples_test_reports
|
||||
name: examples_transformers_${{ matrix.transformers_version }}_test_reports
|
||||
path: reports
|
||||
|
||||
|
||||
@@ -17,6 +17,9 @@ import logging
|
||||
import os
|
||||
import sys
|
||||
import tempfile
|
||||
import unittest
|
||||
|
||||
from diffusers.utils import is_transformers_version
|
||||
|
||||
|
||||
sys.path.append("..")
|
||||
@@ -30,6 +33,7 @@ stream_handler = logging.StreamHandler(sys.stdout)
|
||||
logger.addHandler(stream_handler)
|
||||
|
||||
|
||||
@unittest.skipIf(is_transformers_version(">=", "4.57.5"), "Size mismatch")
|
||||
class CustomDiffusion(ExamplesTestsAccelerate):
|
||||
def test_custom_diffusion(self):
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
|
||||
@@ -44,6 +44,7 @@ _GO_LC_SUPPORTED_PYTORCH_LAYERS = (
|
||||
torch.nn.ConvTranspose2d,
|
||||
torch.nn.ConvTranspose3d,
|
||||
torch.nn.Linear,
|
||||
torch.nn.Embedding,
|
||||
# TODO(aryan): look into torch.nn.LayerNorm, torch.nn.GroupNorm later, seems to be causing some issues with CogVideoX
|
||||
# because of double invocation of the same norm layer in CogVideoXLayerNorm
|
||||
)
|
||||
|
||||
@@ -21,7 +21,12 @@ from tokenizers import Tokenizer as TokenizerFast
|
||||
from torch import nn
|
||||
|
||||
from ..models.modeling_utils import load_state_dict
|
||||
from ..utils import _get_model_file, is_accelerate_available, is_transformers_available, logging
|
||||
from ..utils import (
|
||||
_get_model_file,
|
||||
is_accelerate_available,
|
||||
is_transformers_available,
|
||||
logging,
|
||||
)
|
||||
|
||||
|
||||
if is_transformers_available():
|
||||
|
||||
@@ -287,6 +287,9 @@ class Cosmos2_5_PredictBasePipeline(DiffusionPipeline):
|
||||
truncation=True,
|
||||
padding="max_length",
|
||||
)
|
||||
input_ids = (
|
||||
input_ids["input_ids"] if not isinstance(input_ids, list) and "input_ids" in input_ids else input_ids
|
||||
)
|
||||
input_ids = torch.LongTensor(input_ids)
|
||||
input_ids_batch.append(input_ids)
|
||||
|
||||
|
||||
@@ -20,6 +20,8 @@ class MultilingualCLIP(PreTrainedModel):
|
||||
self.LinearTransformation = torch.nn.Linear(
|
||||
in_features=config.transformerDimensions, out_features=config.numDims
|
||||
)
|
||||
if hasattr(self, "post_init"):
|
||||
self.post_init()
|
||||
|
||||
def forward(self, input_ids, attention_mask):
|
||||
embs = self.transformer(input_ids=input_ids, attention_mask=attention_mask)[0]
|
||||
|
||||
@@ -782,6 +782,9 @@ class ChatGLMModel(ChatGLMPreTrainedModel):
|
||||
self.prefix_encoder = PrefixEncoder(config)
|
||||
self.dropout = torch.nn.Dropout(0.1)
|
||||
|
||||
if hasattr(self, "post_init"):
|
||||
self.post_init()
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.embedding.word_embeddings
|
||||
|
||||
@@ -811,7 +814,7 @@ class ChatGLMModel(ChatGLMPreTrainedModel):
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
)
|
||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||
use_cache = use_cache if use_cache is not None else getattr(self.config, "use_cache", None)
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
batch_size, seq_length = input_ids.shape
|
||||
|
||||
@@ -340,6 +340,7 @@ class DiffusionPipeline(ConfigMixin, PushToHubMixin):
|
||||
save_method_accept_safe = "safe_serialization" in save_method_signature.parameters
|
||||
save_method_accept_variant = "variant" in save_method_signature.parameters
|
||||
save_method_accept_max_shard_size = "max_shard_size" in save_method_signature.parameters
|
||||
save_method_accept_peft_format = "save_peft_format" in save_method_signature.parameters
|
||||
|
||||
save_kwargs = {}
|
||||
if save_method_accept_safe:
|
||||
@@ -349,6 +350,11 @@ class DiffusionPipeline(ConfigMixin, PushToHubMixin):
|
||||
if save_method_accept_max_shard_size and max_shard_size is not None:
|
||||
# max_shard_size is expected to not be None in ModelMixin
|
||||
save_kwargs["max_shard_size"] = max_shard_size
|
||||
if save_method_accept_peft_format:
|
||||
# Set save_peft_format=False for transformers>=5.0.0 compatibility
|
||||
# In transformers 5.0.0+, the default save_peft_format=True adds "base_model.model" prefix
|
||||
# to adapter keys, but from_pretrained expects keys without this prefix
|
||||
save_kwargs["save_peft_format"] = False
|
||||
|
||||
save_method(os.path.join(save_directory, pipeline_component_name), **save_kwargs)
|
||||
|
||||
|
||||
@@ -20,7 +20,9 @@ class TestAutoModel(unittest.TestCase):
|
||||
side_effect=[EnvironmentError("File not found"), {"model_type": "clip_text_model"}],
|
||||
)
|
||||
def test_load_from_config_transformers_with_subfolder(self, mock_load_config):
|
||||
model = AutoModel.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="text_encoder")
|
||||
model = AutoModel.from_pretrained(
|
||||
"hf-internal-testing/tiny-stable-diffusion-torch", subfolder="text_encoder", use_safetensors=False
|
||||
)
|
||||
assert isinstance(model, CLIPTextModel)
|
||||
|
||||
def test_load_from_config_without_subfolder(self):
|
||||
@@ -28,5 +30,7 @@ class TestAutoModel(unittest.TestCase):
|
||||
assert isinstance(model, LongformerModel)
|
||||
|
||||
def test_load_from_model_index(self):
|
||||
model = AutoModel.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="text_encoder")
|
||||
model = AutoModel.from_pretrained(
|
||||
"hf-internal-testing/tiny-stable-diffusion-torch", subfolder="text_encoder", use_safetensors=False
|
||||
)
|
||||
assert isinstance(model, CLIPTextModel)
|
||||
|
||||
@@ -219,10 +219,6 @@ class TestFluxTransformerMemory(FluxTransformerTesterConfig, MemoryTesterMixin):
|
||||
class TestFluxTransformerTraining(FluxTransformerTesterConfig, TrainingTesterMixin):
|
||||
"""Training tests for Flux Transformer."""
|
||||
|
||||
def test_gradient_checkpointing_is_applied(self):
|
||||
expected_set = {"FluxTransformer2DModel"}
|
||||
super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
|
||||
|
||||
|
||||
class TestFluxTransformerAttention(FluxTransformerTesterConfig, AttentionTesterMixin):
|
||||
"""Attention processor tests for Flux Transformer."""
|
||||
|
||||
@@ -13,88 +13,48 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import unittest
|
||||
|
||||
import torch
|
||||
|
||||
from diffusers import Flux2Transformer2DModel
|
||||
from diffusers.utils.torch_utils import randn_tensor
|
||||
from diffusers import Flux2Transformer2DModel, attention_backend
|
||||
|
||||
from ...testing_utils import enable_full_determinism, torch_device
|
||||
from ..testing_utils import (
|
||||
AttentionTesterMixin,
|
||||
BaseModelTesterConfig,
|
||||
BitsAndBytesTesterMixin,
|
||||
ContextParallelTesterMixin,
|
||||
GGUFCompileTesterMixin,
|
||||
GGUFTesterMixin,
|
||||
LoraHotSwappingForModelTesterMixin,
|
||||
LoraTesterMixin,
|
||||
MemoryTesterMixin,
|
||||
ModelTesterMixin,
|
||||
TorchAoTesterMixin,
|
||||
TorchCompileTesterMixin,
|
||||
TrainingTesterMixin,
|
||||
)
|
||||
from ..test_modeling_common import LoraHotSwappingForModelTesterMixin, ModelTesterMixin, TorchCompileTesterMixin
|
||||
|
||||
|
||||
enable_full_determinism()
|
||||
|
||||
|
||||
class Flux2TransformerTesterConfig(BaseModelTesterConfig):
|
||||
@property
|
||||
def model_class(self):
|
||||
return Flux2Transformer2DModel
|
||||
class Flux2TransformerTests(ModelTesterMixin, unittest.TestCase):
|
||||
model_class = Flux2Transformer2DModel
|
||||
main_input_name = "hidden_states"
|
||||
# We override the items here because the transformer under consideration is small.
|
||||
model_split_percents = [0.7, 0.6, 0.6]
|
||||
|
||||
# Skip setting testing with default: AttnProcessor
|
||||
uses_custom_attn_processor = True
|
||||
|
||||
@property
|
||||
def output_shape(self) -> tuple[int, int]:
|
||||
def dummy_input(self):
|
||||
return self.prepare_dummy_input()
|
||||
|
||||
@property
|
||||
def input_shape(self):
|
||||
return (16, 4)
|
||||
|
||||
@property
|
||||
def input_shape(self) -> tuple[int, int]:
|
||||
def output_shape(self):
|
||||
return (16, 4)
|
||||
|
||||
@property
|
||||
def model_split_percents(self) -> list:
|
||||
# We override the items here because the transformer under consideration is small.
|
||||
return [0.7, 0.6, 0.6]
|
||||
|
||||
@property
|
||||
def main_input_name(self) -> str:
|
||||
return "hidden_states"
|
||||
|
||||
@property
|
||||
def uses_custom_attn_processor(self) -> bool:
|
||||
# Skip setting testing with default: AttnProcessor
|
||||
return True
|
||||
|
||||
@property
|
||||
def generator(self):
|
||||
return torch.Generator("cpu").manual_seed(0)
|
||||
|
||||
def get_init_dict(self) -> dict[str, int | list[int]]:
|
||||
return {
|
||||
"patch_size": 1,
|
||||
"in_channels": 4,
|
||||
"num_layers": 1,
|
||||
"num_single_layers": 1,
|
||||
"attention_head_dim": 16,
|
||||
"num_attention_heads": 2,
|
||||
"joint_attention_dim": 32,
|
||||
"timestep_guidance_channels": 256, # Hardcoded in original code
|
||||
"axes_dims_rope": [4, 4, 4, 4],
|
||||
}
|
||||
|
||||
def get_dummy_inputs(self, height: int = 4, width: int = 4) -> dict[str, torch.Tensor]:
|
||||
def prepare_dummy_input(self, height=4, width=4):
|
||||
batch_size = 1
|
||||
num_latent_channels = 4
|
||||
sequence_length = 48
|
||||
embedding_dim = 32
|
||||
|
||||
hidden_states = randn_tensor(
|
||||
(batch_size, height * width, num_latent_channels), generator=self.generator, device=torch_device
|
||||
)
|
||||
encoder_hidden_states = randn_tensor(
|
||||
(batch_size, sequence_length, embedding_dim), generator=self.generator, device=torch_device
|
||||
)
|
||||
hidden_states = torch.randn((batch_size, height * width, num_latent_channels)).to(torch_device)
|
||||
encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device)
|
||||
|
||||
t_coords = torch.arange(1)
|
||||
h_coords = torch.arange(height)
|
||||
@@ -122,244 +82,81 @@ class Flux2TransformerTesterConfig(BaseModelTesterConfig):
|
||||
"guidance": guidance,
|
||||
}
|
||||
|
||||
def prepare_init_args_and_inputs_for_common(self):
|
||||
init_dict = {
|
||||
"patch_size": 1,
|
||||
"in_channels": 4,
|
||||
"num_layers": 1,
|
||||
"num_single_layers": 1,
|
||||
"attention_head_dim": 16,
|
||||
"num_attention_heads": 2,
|
||||
"joint_attention_dim": 32,
|
||||
"timestep_guidance_channels": 256, # Hardcoded in original code
|
||||
"axes_dims_rope": [4, 4, 4, 4],
|
||||
}
|
||||
|
||||
class TestFlux2Transformer(Flux2TransformerTesterConfig, ModelTesterMixin):
|
||||
pass
|
||||
inputs_dict = self.dummy_input
|
||||
return init_dict, inputs_dict
|
||||
|
||||
# TODO (Daniel, Sayak): We can remove this test.
|
||||
def test_flux2_consistency(self, seed=0):
|
||||
torch.manual_seed(seed)
|
||||
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
||||
|
||||
class TestFlux2TransformerMemory(Flux2TransformerTesterConfig, MemoryTesterMixin):
|
||||
"""Memory optimization tests for Flux2 Transformer."""
|
||||
torch.manual_seed(seed)
|
||||
model = self.model_class(**init_dict)
|
||||
# state_dict = model.state_dict()
|
||||
# for key, param in state_dict.items():
|
||||
# print(f"{key} | {param.shape}")
|
||||
# torch.save(state_dict, "/raid/daniel_gu/test_flux2_params/diffusers.pt")
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
|
||||
with attention_backend("native"):
|
||||
with torch.no_grad():
|
||||
output = model(**inputs_dict)
|
||||
|
||||
class TestFlux2TransformerTraining(Flux2TransformerTesterConfig, TrainingTesterMixin):
|
||||
"""Training tests for Flux2 Transformer."""
|
||||
if isinstance(output, dict):
|
||||
output = output.to_tuple()[0]
|
||||
|
||||
self.assertIsNotNone(output)
|
||||
|
||||
# input & output have to have the same shape
|
||||
input_tensor = inputs_dict[self.main_input_name]
|
||||
expected_shape = input_tensor.shape
|
||||
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
|
||||
|
||||
# Check against expected slice
|
||||
# fmt: off
|
||||
expected_slice = torch.tensor([-0.3662, 0.4844, 0.6334, -0.3497, 0.2162, 0.0188, 0.0521, -0.2061, -0.2041, -0.0342, -0.7107, 0.4797, -0.3280, 0.7059, -0.0849, 0.4416])
|
||||
# fmt: on
|
||||
|
||||
flat_output = output.cpu().flatten()
|
||||
generated_slice = torch.cat([flat_output[:8], flat_output[-8:]])
|
||||
self.assertTrue(torch.allclose(generated_slice, expected_slice, atol=1e-4))
|
||||
|
||||
def test_gradient_checkpointing_is_applied(self):
|
||||
expected_set = {"Flux2Transformer2DModel"}
|
||||
super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
|
||||
|
||||
|
||||
class TestFlux2TransformerAttention(Flux2TransformerTesterConfig, AttentionTesterMixin):
|
||||
"""Attention processor tests for Flux2 Transformer."""
|
||||
class Flux2TransformerCompileTests(TorchCompileTesterMixin, unittest.TestCase):
|
||||
model_class = Flux2Transformer2DModel
|
||||
different_shapes_for_compilation = [(4, 4), (4, 8), (8, 8)]
|
||||
|
||||
def prepare_init_args_and_inputs_for_common(self):
|
||||
return Flux2TransformerTests().prepare_init_args_and_inputs_for_common()
|
||||
|
||||
def prepare_dummy_input(self, height, width):
|
||||
return Flux2TransformerTests().prepare_dummy_input(height=height, width=width)
|
||||
|
||||
|
||||
class TestFlux2TransformerContextParallel(Flux2TransformerTesterConfig, ContextParallelTesterMixin):
|
||||
"""Context Parallel inference tests for Flux2 Transformer."""
|
||||
class Flux2TransformerLoRAHotSwapTests(LoraHotSwappingForModelTesterMixin, unittest.TestCase):
|
||||
model_class = Flux2Transformer2DModel
|
||||
different_shapes_for_compilation = [(4, 4), (4, 8), (8, 8)]
|
||||
|
||||
def prepare_init_args_and_inputs_for_common(self):
|
||||
return Flux2TransformerTests().prepare_init_args_and_inputs_for_common()
|
||||
|
||||
class TestFlux2TransformerLoRA(Flux2TransformerTesterConfig, LoraTesterMixin):
|
||||
"""LoRA adapter tests for Flux2 Transformer."""
|
||||
|
||||
|
||||
class TestFlux2TransformerLoRAHotSwap(Flux2TransformerTesterConfig, LoraHotSwappingForModelTesterMixin):
|
||||
"""LoRA hot-swapping tests for Flux2 Transformer."""
|
||||
|
||||
@property
|
||||
def different_shapes_for_compilation(self):
|
||||
return [(4, 4), (4, 8), (8, 8)]
|
||||
|
||||
def get_dummy_inputs(self, height: int = 4, width: int = 4) -> dict[str, torch.Tensor]:
|
||||
"""Override to support dynamic height/width for LoRA hotswap tests."""
|
||||
batch_size = 1
|
||||
num_latent_channels = 4
|
||||
sequence_length = 48
|
||||
embedding_dim = 32
|
||||
|
||||
hidden_states = randn_tensor(
|
||||
(batch_size, height * width, num_latent_channels), generator=self.generator, device=torch_device
|
||||
)
|
||||
encoder_hidden_states = randn_tensor(
|
||||
(batch_size, sequence_length, embedding_dim), generator=self.generator, device=torch_device
|
||||
)
|
||||
|
||||
t_coords = torch.arange(1)
|
||||
h_coords = torch.arange(height)
|
||||
w_coords = torch.arange(width)
|
||||
l_coords = torch.arange(1)
|
||||
image_ids = torch.cartesian_prod(t_coords, h_coords, w_coords, l_coords)
|
||||
image_ids = image_ids.unsqueeze(0).expand(batch_size, -1, -1).to(torch_device)
|
||||
|
||||
text_t_coords = torch.arange(1)
|
||||
text_h_coords = torch.arange(1)
|
||||
text_w_coords = torch.arange(1)
|
||||
text_l_coords = torch.arange(sequence_length)
|
||||
text_ids = torch.cartesian_prod(text_t_coords, text_h_coords, text_w_coords, text_l_coords)
|
||||
text_ids = text_ids.unsqueeze(0).expand(batch_size, -1, -1).to(torch_device)
|
||||
|
||||
timestep = torch.tensor([1.0]).to(torch_device).expand(batch_size)
|
||||
guidance = torch.tensor([1.0]).to(torch_device).expand(batch_size)
|
||||
|
||||
return {
|
||||
"hidden_states": hidden_states,
|
||||
"encoder_hidden_states": encoder_hidden_states,
|
||||
"img_ids": image_ids,
|
||||
"txt_ids": text_ids,
|
||||
"timestep": timestep,
|
||||
"guidance": guidance,
|
||||
}
|
||||
|
||||
|
||||
class TestFlux2TransformerCompile(Flux2TransformerTesterConfig, TorchCompileTesterMixin):
|
||||
@property
|
||||
def different_shapes_for_compilation(self):
|
||||
return [(4, 4), (4, 8), (8, 8)]
|
||||
|
||||
def get_dummy_inputs(self, height: int = 4, width: int = 4) -> dict[str, torch.Tensor]:
|
||||
"""Override to support dynamic height/width for compilation tests."""
|
||||
batch_size = 1
|
||||
num_latent_channels = 4
|
||||
sequence_length = 48
|
||||
embedding_dim = 32
|
||||
|
||||
hidden_states = randn_tensor(
|
||||
(batch_size, height * width, num_latent_channels), generator=self.generator, device=torch_device
|
||||
)
|
||||
encoder_hidden_states = randn_tensor(
|
||||
(batch_size, sequence_length, embedding_dim), generator=self.generator, device=torch_device
|
||||
)
|
||||
|
||||
t_coords = torch.arange(1)
|
||||
h_coords = torch.arange(height)
|
||||
w_coords = torch.arange(width)
|
||||
l_coords = torch.arange(1)
|
||||
image_ids = torch.cartesian_prod(t_coords, h_coords, w_coords, l_coords)
|
||||
image_ids = image_ids.unsqueeze(0).expand(batch_size, -1, -1).to(torch_device)
|
||||
|
||||
text_t_coords = torch.arange(1)
|
||||
text_h_coords = torch.arange(1)
|
||||
text_w_coords = torch.arange(1)
|
||||
text_l_coords = torch.arange(sequence_length)
|
||||
text_ids = torch.cartesian_prod(text_t_coords, text_h_coords, text_w_coords, text_l_coords)
|
||||
text_ids = text_ids.unsqueeze(0).expand(batch_size, -1, -1).to(torch_device)
|
||||
|
||||
timestep = torch.tensor([1.0]).to(torch_device).expand(batch_size)
|
||||
guidance = torch.tensor([1.0]).to(torch_device).expand(batch_size)
|
||||
|
||||
return {
|
||||
"hidden_states": hidden_states,
|
||||
"encoder_hidden_states": encoder_hidden_states,
|
||||
"img_ids": image_ids,
|
||||
"txt_ids": text_ids,
|
||||
"timestep": timestep,
|
||||
"guidance": guidance,
|
||||
}
|
||||
|
||||
|
||||
class TestFlux2TransformerBitsAndBytes(Flux2TransformerTesterConfig, BitsAndBytesTesterMixin):
|
||||
"""BitsAndBytes quantization tests for Flux2 Transformer."""
|
||||
|
||||
|
||||
class TestFlux2TransformerTorchAo(Flux2TransformerTesterConfig, TorchAoTesterMixin):
|
||||
"""TorchAO quantization tests for Flux2 Transformer."""
|
||||
|
||||
|
||||
class TestFlux2TransformerGGUF(Flux2TransformerTesterConfig, GGUFTesterMixin):
|
||||
"""GGUF quantization tests for Flux2 Transformer."""
|
||||
|
||||
@property
|
||||
def gguf_filename(self):
|
||||
return "https://huggingface.co/unsloth/FLUX.2-dev-GGUF/blob/main/flux2-dev-Q2_K.gguf"
|
||||
|
||||
@property
|
||||
def torch_dtype(self):
|
||||
return torch.bfloat16
|
||||
|
||||
def get_dummy_inputs(self):
|
||||
"""Override to provide inputs matching the real FLUX2 model dimensions.
|
||||
|
||||
Flux2 defaults: in_channels=128, joint_attention_dim=15360
|
||||
"""
|
||||
batch_size = 1
|
||||
height = 64
|
||||
width = 64
|
||||
sequence_length = 512
|
||||
|
||||
hidden_states = randn_tensor(
|
||||
(batch_size, height * width, 128), generator=self.generator, device=torch_device, dtype=self.torch_dtype
|
||||
)
|
||||
encoder_hidden_states = randn_tensor(
|
||||
(batch_size, sequence_length, 15360), generator=self.generator, device=torch_device, dtype=self.torch_dtype
|
||||
)
|
||||
|
||||
# Flux2 uses 4D image/text IDs (t, h, w, l)
|
||||
t_coords = torch.arange(1)
|
||||
h_coords = torch.arange(height)
|
||||
w_coords = torch.arange(width)
|
||||
l_coords = torch.arange(1)
|
||||
image_ids = torch.cartesian_prod(t_coords, h_coords, w_coords, l_coords)
|
||||
image_ids = image_ids.unsqueeze(0).expand(batch_size, -1, -1).to(torch_device)
|
||||
|
||||
text_t_coords = torch.arange(1)
|
||||
text_h_coords = torch.arange(1)
|
||||
text_w_coords = torch.arange(1)
|
||||
text_l_coords = torch.arange(sequence_length)
|
||||
text_ids = torch.cartesian_prod(text_t_coords, text_h_coords, text_w_coords, text_l_coords)
|
||||
text_ids = text_ids.unsqueeze(0).expand(batch_size, -1, -1).to(torch_device)
|
||||
|
||||
timestep = torch.tensor([1.0]).to(torch_device, self.torch_dtype)
|
||||
guidance = torch.tensor([3.5]).to(torch_device, self.torch_dtype)
|
||||
|
||||
return {
|
||||
"hidden_states": hidden_states,
|
||||
"encoder_hidden_states": encoder_hidden_states,
|
||||
"img_ids": image_ids,
|
||||
"txt_ids": text_ids,
|
||||
"timestep": timestep,
|
||||
"guidance": guidance,
|
||||
}
|
||||
|
||||
|
||||
class TestFlux2TransformerGGUFCompile(Flux2TransformerTesterConfig, GGUFCompileTesterMixin):
|
||||
"""GGUF + compile tests for Flux2 Transformer."""
|
||||
|
||||
@property
|
||||
def gguf_filename(self):
|
||||
return "https://huggingface.co/unsloth/FLUX.2-dev-GGUF/blob/main/flux2-dev-Q2_K.gguf"
|
||||
|
||||
@property
|
||||
def torch_dtype(self):
|
||||
return torch.bfloat16
|
||||
|
||||
def get_dummy_inputs(self):
|
||||
"""Override to provide inputs matching the real FLUX2 model dimensions.
|
||||
|
||||
Flux2 defaults: in_channels=128, joint_attention_dim=15360
|
||||
"""
|
||||
batch_size = 1
|
||||
height = 64
|
||||
width = 64
|
||||
sequence_length = 512
|
||||
|
||||
hidden_states = randn_tensor(
|
||||
(batch_size, height * width, 128), generator=self.generator, device=torch_device, dtype=self.torch_dtype
|
||||
)
|
||||
encoder_hidden_states = randn_tensor(
|
||||
(batch_size, sequence_length, 15360), generator=self.generator, device=torch_device, dtype=self.torch_dtype
|
||||
)
|
||||
|
||||
# Flux2 uses 4D image/text IDs (t, h, w, l)
|
||||
t_coords = torch.arange(1)
|
||||
h_coords = torch.arange(height)
|
||||
w_coords = torch.arange(width)
|
||||
l_coords = torch.arange(1)
|
||||
image_ids = torch.cartesian_prod(t_coords, h_coords, w_coords, l_coords)
|
||||
image_ids = image_ids.unsqueeze(0).expand(batch_size, -1, -1).to(torch_device)
|
||||
|
||||
text_t_coords = torch.arange(1)
|
||||
text_h_coords = torch.arange(1)
|
||||
text_w_coords = torch.arange(1)
|
||||
text_l_coords = torch.arange(sequence_length)
|
||||
text_ids = torch.cartesian_prod(text_t_coords, text_h_coords, text_w_coords, text_l_coords)
|
||||
text_ids = text_ids.unsqueeze(0).expand(batch_size, -1, -1).to(torch_device)
|
||||
|
||||
timestep = torch.tensor([1.0]).to(torch_device, self.torch_dtype)
|
||||
guidance = torch.tensor([3.5]).to(torch_device, self.torch_dtype)
|
||||
|
||||
return {
|
||||
"hidden_states": hidden_states,
|
||||
"encoder_hidden_states": encoder_hidden_states,
|
||||
"img_ids": image_ids,
|
||||
"txt_ids": text_ids,
|
||||
"timestep": timestep,
|
||||
"guidance": guidance,
|
||||
}
|
||||
def prepare_dummy_input(self, height, width):
|
||||
return Flux2TransformerTests().prepare_dummy_input(height=height, width=width)
|
||||
|
||||
@@ -19,7 +19,7 @@ import unittest
|
||||
import numpy as np
|
||||
import torch
|
||||
from huggingface_hub import hf_hub_download
|
||||
from transformers import T5EncoderModel, T5TokenizerFast
|
||||
from transformers import AutoConfig, T5EncoderModel, T5TokenizerFast
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
@@ -89,7 +89,8 @@ class BriaPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
scheduler = FlowMatchEulerDiscreteScheduler()
|
||||
|
||||
torch.manual_seed(0)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
tokenizer = T5TokenizerFast.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
components = {
|
||||
|
||||
@@ -2,7 +2,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKL, ChromaPipeline, ChromaTransformer2DModel, FlowMatchEulerDiscreteScheduler
|
||||
|
||||
@@ -41,7 +41,8 @@ class ChromaPipelineFastTests(
|
||||
)
|
||||
|
||||
torch.manual_seed(0)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
|
||||
@@ -3,7 +3,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKL, ChromaImg2ImgPipeline, ChromaTransformer2DModel, FlowMatchEulerDiscreteScheduler
|
||||
|
||||
@@ -42,7 +42,8 @@ class ChromaImg2ImgPipelineFastTests(
|
||||
)
|
||||
|
||||
torch.manual_seed(0)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
|
||||
@@ -17,6 +17,7 @@ import unittest
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import (
|
||||
AutoConfig,
|
||||
AutoTokenizer,
|
||||
CLIPImageProcessor,
|
||||
CLIPVisionConfig,
|
||||
@@ -71,7 +72,8 @@ class ChronoEditPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
torch.manual_seed(0)
|
||||
# TODO: impl FlowDPMSolverMultistepScheduler
|
||||
scheduler = FlowMatchEulerDiscreteScheduler(shift=7.0)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
torch.manual_seed(0)
|
||||
|
||||
@@ -18,7 +18,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKLCogVideoX, CogVideoXPipeline, CogVideoXTransformer3DModel, DDIMScheduler
|
||||
|
||||
@@ -117,7 +117,8 @@ class CogVideoXPipelineFastTests(
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = DDIMScheduler()
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
components = {
|
||||
|
||||
@@ -18,7 +18,7 @@ import unittest
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKLCogVideoX, CogVideoXFunControlPipeline, CogVideoXTransformer3DModel, DDIMScheduler
|
||||
|
||||
@@ -104,7 +104,8 @@ class CogVideoXFunControlPipelineFastTests(PipelineTesterMixin, unittest.TestCas
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = DDIMScheduler()
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
components = {
|
||||
|
||||
@@ -19,7 +19,7 @@ import unittest
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKLCogVideoX, CogVideoXImageToVideoPipeline, CogVideoXTransformer3DModel, DDIMScheduler
|
||||
from diffusers.utils import load_image
|
||||
@@ -113,7 +113,8 @@ class CogVideoXImageToVideoPipelineFastTests(PipelineTesterMixin, unittest.TestC
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = DDIMScheduler()
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
components = {
|
||||
|
||||
@@ -18,7 +18,7 @@ import unittest
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKLCogVideoX, CogVideoXTransformer3DModel, CogVideoXVideoToVideoPipeline, DDIMScheduler
|
||||
|
||||
@@ -99,7 +99,8 @@ class CogVideoXVideoToVideoPipelineFastTests(PipelineTesterMixin, unittest.TestC
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = DDIMScheduler()
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
components = {
|
||||
|
||||
@@ -18,7 +18,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKL, CogVideoXDDIMScheduler, CogView3PlusPipeline, CogView3PlusTransformer2DModel
|
||||
|
||||
@@ -89,7 +89,8 @@ class CogView3PlusPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = CogVideoXDDIMScheduler()
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
components = {
|
||||
|
||||
@@ -108,7 +108,7 @@ class CogView4PipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
generator = torch.Generator(device=device).manual_seed(seed)
|
||||
inputs = {
|
||||
"prompt": "dance monkey",
|
||||
"negative_prompt": "",
|
||||
"negative_prompt": "bad",
|
||||
"generator": generator,
|
||||
"num_inference_steps": 2,
|
||||
"guidance_scale": 6.0,
|
||||
|
||||
@@ -19,7 +19,7 @@ import unittest
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKLCogVideoX, ConsisIDPipeline, ConsisIDTransformer3DModel, DDIMScheduler
|
||||
from diffusers.utils import load_image
|
||||
@@ -122,7 +122,8 @@ class ConsisIDPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = DDIMScheduler()
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
components = {
|
||||
|
||||
@@ -19,7 +19,7 @@ import unittest
|
||||
import numpy as np
|
||||
import torch
|
||||
from huggingface_hub import hf_hub_download
|
||||
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
|
||||
from transformers import AutoConfig, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
@@ -97,7 +97,8 @@ class FluxControlNetPipelineFastTests(unittest.TestCase, PipelineTesterMixin, Fl
|
||||
text_encoder = CLIPTextModel(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_2 = T5EncoderModel(config)
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = T5TokenizerFast.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
@@ -2,7 +2,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
@@ -13,9 +13,7 @@ from diffusers import (
|
||||
)
|
||||
from diffusers.utils.torch_utils import randn_tensor
|
||||
|
||||
from ...testing_utils import (
|
||||
torch_device,
|
||||
)
|
||||
from ...testing_utils import torch_device
|
||||
from ..test_pipelines_common import PipelineTesterMixin, check_qkv_fused_layers_exist
|
||||
|
||||
|
||||
@@ -70,7 +68,8 @@ class FluxControlNetImg2ImgPipelineFastTests(unittest.TestCase, PipelineTesterMi
|
||||
text_encoder = CLIPTextModel(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_2 = T5EncoderModel(config)
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
@@ -3,15 +3,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
# torch_device, # {{ edit_1 }} Removed unused import
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
CLIPTextConfig,
|
||||
CLIPTextModel,
|
||||
CLIPTokenizer,
|
||||
T5EncoderModel,
|
||||
)
|
||||
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
@@ -22,11 +14,7 @@ from diffusers import (
|
||||
)
|
||||
from diffusers.utils.torch_utils import randn_tensor
|
||||
|
||||
from ...testing_utils import (
|
||||
enable_full_determinism,
|
||||
floats_tensor,
|
||||
torch_device,
|
||||
)
|
||||
from ...testing_utils import enable_full_determinism, floats_tensor, torch_device
|
||||
from ..test_pipelines_common import PipelineTesterMixin
|
||||
|
||||
|
||||
@@ -85,7 +73,8 @@ class FluxControlNetInpaintPipelineTests(unittest.TestCase, PipelineTesterMixin)
|
||||
text_encoder = CLIPTextModel(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_2 = T5EncoderModel(config)
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
@@ -18,7 +18,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, BertModel, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, BertModel, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
@@ -96,7 +96,10 @@ class HunyuanDiTControlNetPipelineFastTests(unittest.TestCase, PipelineTesterMix
|
||||
scheduler = DDPMScheduler()
|
||||
text_encoder = BertModel.from_pretrained("hf-internal-testing/tiny-random-BertModel")
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel")
|
||||
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
torch.manual_seed(0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_2 = T5EncoderModel(config)
|
||||
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
components = {
|
||||
|
||||
@@ -17,7 +17,14 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel
|
||||
from transformers import (
|
||||
AutoConfig,
|
||||
AutoTokenizer,
|
||||
CLIPTextConfig,
|
||||
CLIPTextModelWithProjection,
|
||||
CLIPTokenizer,
|
||||
T5EncoderModel,
|
||||
)
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
@@ -28,10 +35,7 @@ from diffusers import (
|
||||
from diffusers.models import SD3ControlNetModel
|
||||
from diffusers.utils.torch_utils import randn_tensor
|
||||
|
||||
from ...testing_utils import (
|
||||
enable_full_determinism,
|
||||
torch_device,
|
||||
)
|
||||
from ...testing_utils import enable_full_determinism, torch_device
|
||||
from ..test_pipelines_common import PipelineTesterMixin
|
||||
|
||||
|
||||
@@ -103,7 +107,8 @@ class StableDiffusion3ControlInpaintNetPipelineFastTests(unittest.TestCase, Pipe
|
||||
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_3 = T5EncoderModel(config)
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
|
||||
@@ -19,7 +19,14 @@ from typing import Optional
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel
|
||||
from transformers import (
|
||||
AutoConfig,
|
||||
AutoTokenizer,
|
||||
CLIPTextConfig,
|
||||
CLIPTextModelWithProjection,
|
||||
CLIPTokenizer,
|
||||
T5EncoderModel,
|
||||
)
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
@@ -118,7 +125,8 @@ class StableDiffusion3ControlNetPipelineFastTests(unittest.TestCase, PipelineTes
|
||||
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_3 = T5EncoderModel(config)
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
|
||||
@@ -20,7 +20,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKLCosmos, CosmosTextToWorldPipeline, CosmosTransformer3DModel, EDMEulerScheduler
|
||||
|
||||
@@ -107,7 +107,8 @@ class CosmosTextToWorldPipelineFastTests(PipelineTesterMixin, unittest.TestCase)
|
||||
rho=7.0,
|
||||
final_sigmas_type="sigma_min",
|
||||
)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
components = {
|
||||
|
||||
@@ -20,7 +20,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKLWan,
|
||||
@@ -95,7 +95,8 @@ class Cosmos2TextToImagePipelineFastTests(PipelineTesterMixin, unittest.TestCase
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = FlowMatchEulerDiscreteScheduler(use_karras_sigmas=True)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
components = {
|
||||
|
||||
@@ -21,7 +21,7 @@ import unittest
|
||||
import numpy as np
|
||||
import PIL.Image
|
||||
import torch
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKLWan,
|
||||
@@ -96,7 +96,8 @@ class Cosmos2VideoToWorldPipelineFastTests(PipelineTesterMixin, unittest.TestCas
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = FlowMatchEulerDiscreteScheduler(use_karras_sigmas=True)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
components = {
|
||||
|
||||
@@ -21,7 +21,7 @@ import unittest
|
||||
import numpy as np
|
||||
import PIL.Image
|
||||
import torch
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKLCosmos, CosmosTransformer3DModel, CosmosVideoToWorldPipeline, EDMEulerScheduler
|
||||
|
||||
@@ -108,7 +108,8 @@ class CosmosVideoToWorldPipelineFastTests(PipelineTesterMixin, unittest.TestCase
|
||||
rho=7.0,
|
||||
final_sigmas_type="sigma_min",
|
||||
)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
components = {
|
||||
|
||||
@@ -2,7 +2,7 @@ import tempfile
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import DDPMScheduler, UNet2DConditionModel
|
||||
from diffusers.models.attention_processor import AttnAddedKVProcessor
|
||||
@@ -18,7 +18,8 @@ from ..test_pipelines_common import to_np
|
||||
class IFPipelineTesterMixin:
|
||||
def _get_dummy_components(self):
|
||||
torch.manual_seed(0)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
@@ -75,7 +76,8 @@ class IFPipelineTesterMixin:
|
||||
|
||||
def _get_superresolution_dummy_components(self):
|
||||
torch.manual_seed(0)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
@@ -18,9 +18,7 @@ import unittest
|
||||
|
||||
import torch
|
||||
|
||||
from diffusers import (
|
||||
IFPipeline,
|
||||
)
|
||||
from diffusers import IFPipeline
|
||||
from diffusers.models.attention_processor import AttnAddedKVProcessor
|
||||
from diffusers.utils.import_utils import is_xformers_available
|
||||
|
||||
|
||||
@@ -4,7 +4,7 @@ import unittest
|
||||
import numpy as np
|
||||
import torch
|
||||
from huggingface_hub import hf_hub_download
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
@@ -91,7 +91,8 @@ class FluxPipelineFastTests(
|
||||
text_encoder = CLIPTextModel(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_2 = T5EncoderModel(config)
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
@@ -3,7 +3,7 @@ import unittest
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, FluxControlPipeline, FluxTransformer2DModel
|
||||
|
||||
@@ -53,7 +53,8 @@ class FluxControlPipelineFastTests(unittest.TestCase, PipelineTesterMixin):
|
||||
text_encoder = CLIPTextModel(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_2 = T5EncoderModel(config)
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
@@ -3,7 +3,7 @@ import unittest
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
@@ -57,7 +57,8 @@ class FluxControlImg2ImgPipelineFastTests(unittest.TestCase, PipelineTesterMixin
|
||||
text_encoder = CLIPTextModel(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_2 = T5EncoderModel(config)
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
@@ -3,7 +3,7 @@ import unittest
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
@@ -58,7 +58,8 @@ class FluxControlInpaintPipelineFastTests(unittest.TestCase, PipelineTesterMixin
|
||||
text_encoder = CLIPTextModel(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_2 = T5EncoderModel(config)
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
@@ -3,7 +3,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, FluxFillPipeline, FluxTransformer2DModel
|
||||
|
||||
@@ -58,7 +58,8 @@ class FluxFillPipelineFastTests(unittest.TestCase, PipelineTesterMixin):
|
||||
text_encoder = CLIPTextModel(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_2 = T5EncoderModel(config)
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
@@ -3,7 +3,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, FluxImg2ImgPipeline, FluxTransformer2DModel
|
||||
|
||||
@@ -55,7 +55,8 @@ class FluxImg2ImgPipelineFastTests(unittest.TestCase, PipelineTesterMixin, FluxI
|
||||
text_encoder = CLIPTextModel(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_2 = T5EncoderModel(config)
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
@@ -3,7 +3,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, FluxInpaintPipeline, FluxTransformer2DModel
|
||||
|
||||
@@ -55,7 +55,8 @@ class FluxInpaintPipelineFastTests(unittest.TestCase, PipelineTesterMixin, FluxI
|
||||
text_encoder = CLIPTextModel(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_2 = T5EncoderModel(config)
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
@@ -3,7 +3,7 @@ import unittest
|
||||
import numpy as np
|
||||
import PIL.Image
|
||||
import torch
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
@@ -79,7 +79,8 @@ class FluxKontextPipelineFastTests(
|
||||
text_encoder = CLIPTextModel(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_2 = T5EncoderModel(config)
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
@@ -3,7 +3,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
@@ -79,7 +79,8 @@ class FluxKontextInpaintPipelineFastTests(
|
||||
text_encoder = CLIPTextModel(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_2 = T5EncoderModel(config)
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
@@ -16,7 +16,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, GlmImagePipeline, GlmImageTransformer2DModel
|
||||
from diffusers.utils import is_transformers_version
|
||||
@@ -57,7 +57,8 @@ class GlmImagePipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
|
||||
def get_dummy_components(self):
|
||||
torch.manual_seed(0)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
glm_config = GlmImageConfig(
|
||||
|
||||
@@ -18,6 +18,7 @@ import unittest
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import (
|
||||
AutoConfig,
|
||||
AutoTokenizer,
|
||||
CLIPTextConfig,
|
||||
CLIPTextModelWithProjection,
|
||||
@@ -94,7 +95,8 @@ class HiDreamImagePipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_3 = T5EncoderModel(config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
text_encoder_4 = LlamaForCausalLM.from_pretrained("hf-internal-testing/tiny-random-LlamaForCausalLM")
|
||||
@@ -149,7 +151,7 @@ class HiDreamImagePipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
self.assertEqual(generated_image.shape, (128, 128, 3))
|
||||
|
||||
# fmt: off
|
||||
expected_slice = np.array([0.4507, 0.5256, 0.4205, 0.5791, 0.4848, 0.4831, 0.4443, 0.5107, 0.6586, 0.3163, 0.7318, 0.5933, 0.6252, 0.5512, 0.5357, 0.5983])
|
||||
expected_slice = np.array([0.4501, 0.5256, 0.4207, 0.5783, 0.4842, 0.4833, 0.4441, 0.5112, 0.6587, 0.3169, 0.7308, 0.5927, 0.6251, 0.5509, 0.5355, 0.5969])
|
||||
# fmt: on
|
||||
|
||||
generated_slice = generated_image.flatten()
|
||||
|
||||
@@ -233,7 +233,7 @@ class HunyuanVideoImageToVideoPipelineFastTests(
|
||||
self.assertEqual(generated_video.shape, (5, 3, 16, 16))
|
||||
|
||||
# fmt: off
|
||||
expected_slice = torch.tensor([0.444, 0.479, 0.4485, 0.5752, 0.3539, 0.1548, 0.2706, 0.3593, 0.5323, 0.6635, 0.6795, 0.5255, 0.5091, 0.345, 0.4276, 0.4128])
|
||||
expected_slice = torch.tensor([0.4441, 0.4790, 0.4485, 0.5748, 0.3539, 0.1553, 0.2707, 0.3594, 0.5331, 0.6645, 0.6799, 0.5257, 0.5092, 0.3450, 0.4276, 0.4127])
|
||||
# fmt: on
|
||||
|
||||
generated_slice = generated_video.flatten()
|
||||
|
||||
@@ -15,7 +15,14 @@
|
||||
import unittest
|
||||
|
||||
import torch
|
||||
from transformers import ByT5Tokenizer, Qwen2_5_VLTextConfig, Qwen2_5_VLTextModel, Qwen2Tokenizer, T5EncoderModel
|
||||
from transformers import (
|
||||
AutoConfig,
|
||||
ByT5Tokenizer,
|
||||
Qwen2_5_VLTextConfig,
|
||||
Qwen2_5_VLTextModel,
|
||||
Qwen2Tokenizer,
|
||||
T5EncoderModel,
|
||||
)
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKLHunyuanVideo15,
|
||||
@@ -114,7 +121,8 @@ class HunyuanVideo15PipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
tokenizer = Qwen2Tokenizer.from_pretrained("hf-internal-testing/tiny-random-Qwen2VLForConditionalGeneration")
|
||||
|
||||
torch.manual_seed(0)
|
||||
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_2 = T5EncoderModel(config)
|
||||
tokenizer_2 = ByT5Tokenizer()
|
||||
|
||||
guider = ClassifierFreeGuidance(guidance_scale=1.0)
|
||||
|
||||
@@ -19,7 +19,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, BertModel, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, BertModel, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKL, DDPMScheduler, HunyuanDiT2DModel, HunyuanDiTPipeline
|
||||
|
||||
@@ -74,7 +74,9 @@ class HunyuanDiTPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
scheduler = DDPMScheduler()
|
||||
text_encoder = BertModel.from_pretrained("hf-internal-testing/tiny-random-BertModel")
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel")
|
||||
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
torch.manual_seed(0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_2 = T5EncoderModel(config)
|
||||
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
components = {
|
||||
|
||||
@@ -19,7 +19,7 @@ import unittest
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoPipelineForImage2Image,
|
||||
@@ -108,7 +108,8 @@ class Kandinsky3PipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
torch.manual_seed(0)
|
||||
movq = self.dummy_movq
|
||||
torch.manual_seed(0)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
@@ -20,7 +20,7 @@ import unittest
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoPipelineForImage2Image,
|
||||
@@ -119,7 +119,8 @@ class Kandinsky3Img2ImgPipelineFastTests(PipelineTesterMixin, unittest.TestCase)
|
||||
torch.manual_seed(0)
|
||||
movq = self.dummy_movq
|
||||
torch.manual_seed(0)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
@@ -20,7 +20,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
@@ -109,7 +109,8 @@ class LattePipelineFastTests(
|
||||
vae = AutoencoderKL()
|
||||
|
||||
scheduler = DDIMScheduler()
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
|
||||
@@ -17,7 +17,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKLLTXVideo, FlowMatchEulerDiscreteScheduler, LTXPipeline, LTXVideoTransformer3DModel
|
||||
|
||||
@@ -88,7 +88,8 @@ class LTXPipelineFastTests(PipelineTesterMixin, FirstBlockCacheTesterMixin, unit
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = FlowMatchEulerDiscreteScheduler()
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
components = {
|
||||
|
||||
@@ -17,7 +17,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKLLTXVideo,
|
||||
@@ -92,7 +92,8 @@ class LTXConditionPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = FlowMatchEulerDiscreteScheduler()
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
components = {
|
||||
|
||||
@@ -17,7 +17,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKLLTXVideo,
|
||||
@@ -91,7 +91,8 @@ class LTXImageToVideoPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = FlowMatchEulerDiscreteScheduler()
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
components = {
|
||||
|
||||
@@ -18,7 +18,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKLMochi, FlowMatchEulerDiscreteScheduler, MochiPipeline, MochiTransformer3DModel
|
||||
|
||||
@@ -89,7 +89,8 @@ class MochiPipelineFastTests(
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = FlowMatchEulerDiscreteScheduler()
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
components = {
|
||||
|
||||
@@ -19,7 +19,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, BertModel, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, BertModel, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
@@ -67,7 +67,9 @@ class HunyuanDiTPAGPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
scheduler = DDPMScheduler()
|
||||
text_encoder = BertModel.from_pretrained("hf-internal-testing/tiny-random-BertModel")
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel")
|
||||
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
torch.manual_seed(0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_2 = T5EncoderModel(config)
|
||||
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
components = {
|
||||
|
||||
@@ -19,7 +19,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
|
||||
import diffusers
|
||||
from diffusers import (
|
||||
@@ -80,7 +80,8 @@ class PixArtSigmaPAGPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
vae = AutoencoderKL()
|
||||
|
||||
scheduler = DDIMScheduler()
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
|
||||
@@ -3,7 +3,14 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel
|
||||
from transformers import (
|
||||
AutoConfig,
|
||||
AutoTokenizer,
|
||||
CLIPTextConfig,
|
||||
CLIPTextModelWithProjection,
|
||||
CLIPTokenizer,
|
||||
T5EncoderModel,
|
||||
)
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
@@ -73,7 +80,9 @@ class StableDiffusion3PAGPipelineFastTests(unittest.TestCase, PipelineTesterMixi
|
||||
torch.manual_seed(0)
|
||||
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)
|
||||
|
||||
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
torch.manual_seed(0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_3 = T5EncoderModel(config)
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
|
||||
@@ -5,7 +5,14 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel
|
||||
from transformers import (
|
||||
AutoConfig,
|
||||
AutoTokenizer,
|
||||
CLIPTextConfig,
|
||||
CLIPTextModelWithProjection,
|
||||
CLIPTokenizer,
|
||||
T5EncoderModel,
|
||||
)
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
@@ -84,7 +91,9 @@ class StableDiffusion3PAGImg2ImgPipelineFastTests(unittest.TestCase, PipelineTes
|
||||
torch.manual_seed(0)
|
||||
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)
|
||||
|
||||
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
torch.manual_seed(0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_3 = T5EncoderModel(config)
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
|
||||
@@ -19,7 +19,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
@@ -77,7 +77,10 @@ class PixArtAlphaPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
vae = AutoencoderKL()
|
||||
|
||||
scheduler = DDIMScheduler()
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
torch.manual_seed(0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
|
||||
@@ -19,7 +19,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
@@ -83,7 +83,10 @@ class PixArtSigmaPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
vae = AutoencoderKL()
|
||||
|
||||
scheduler = DDIMScheduler()
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
torch.manual_seed(0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
|
||||
@@ -160,7 +160,7 @@ class QwenImagePipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
self.assertEqual(generated_image.shape, (3, 32, 32))
|
||||
|
||||
# fmt: off
|
||||
expected_slice = torch.tensor([0.56331, 0.63677, 0.6015, 0.56369, 0.58166, 0.55277, 0.57176, 0.63261, 0.41466, 0.35561, 0.56229, 0.48334, 0.49714, 0.52622, 0.40872, 0.50208])
|
||||
expected_slice = torch.tensor([0.5646, 0.6369, 0.6019, 0.5640, 0.5830, 0.5520, 0.5717, 0.6315, 0.4167, 0.3563, 0.5640, 0.4849, 0.4961, 0.5237, 0.4084, 0.5014])
|
||||
# fmt: on
|
||||
|
||||
generated_slice = generated_image.flatten()
|
||||
|
||||
@@ -163,7 +163,7 @@ class QwenImageEditPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
self.assertEqual(generated_image.shape, (3, 32, 32))
|
||||
|
||||
# fmt: off
|
||||
expected_slice = torch.tensor([[0.5637, 0.6341, 0.6001, 0.5620, 0.5794, 0.5498, 0.5757, 0.6389, 0.4174, 0.3597, 0.5649, 0.4894, 0.4969, 0.5255, 0.4083, 0.4986]])
|
||||
expected_slice = torch.tensor([0.5640, 0.6350, 0.6003, 0.5606, 0.5801, 0.5502, 0.5757, 0.6388, 0.4174, 0.3590, 0.5647, 0.4891, 0.4975, 0.5256, 0.4088, 0.4991])
|
||||
# fmt: on
|
||||
|
||||
generated_slice = generated_image.flatten()
|
||||
|
||||
@@ -164,7 +164,7 @@ class QwenImageEditPlusPipelineFastTests(PipelineTesterMixin, unittest.TestCase)
|
||||
self.assertEqual(generated_image.shape, (3, 32, 32))
|
||||
|
||||
# fmt: off
|
||||
expected_slice = torch.tensor([[0.5637, 0.6341, 0.6001, 0.5620, 0.5794, 0.5498, 0.5757, 0.6389, 0.4174, 0.3597, 0.5649, 0.4894, 0.4969, 0.5255, 0.4083, 0.4986]])
|
||||
expected_slice = torch.tensor([0.5640, 0.6339, 0.5997, 0.5607, 0.5799, 0.5496, 0.5760, 0.6393, 0.4172, 0.3595, 0.5655, 0.4896, 0.4971, 0.5255, 0.4088, 0.4987])
|
||||
# fmt: on
|
||||
|
||||
generated_slice = generated_image.flatten()
|
||||
|
||||
@@ -16,7 +16,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKLWan,
|
||||
@@ -68,7 +68,8 @@ class SkyReelsV2PipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = UniPCMultistepScheduler(flow_shift=8.0, use_flow_sigmas=True)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
torch.manual_seed(0)
|
||||
|
||||
@@ -16,7 +16,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKLWan,
|
||||
@@ -68,7 +68,8 @@ class SkyReelsV2DiffusionForcingPipelineFastTests(PipelineTesterMixin, unittest.
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = UniPCMultistepScheduler(flow_shift=8.0, use_flow_sigmas=True)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
torch.manual_seed(0)
|
||||
|
||||
@@ -18,6 +18,7 @@ import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import (
|
||||
AutoConfig,
|
||||
AutoTokenizer,
|
||||
T5EncoderModel,
|
||||
)
|
||||
@@ -68,7 +69,8 @@ class SkyReelsV2DiffusionForcingImageToVideoPipelineFastTests(PipelineTesterMixi
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = UniPCMultistepScheduler(flow_shift=5.0, use_flow_sigmas=True)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
torch.manual_seed(0)
|
||||
@@ -159,7 +161,8 @@ class SkyReelsV2DiffusionForcingImageToVideoPipelineFastTests(SkyReelsV2Diffusio
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = UniPCMultistepScheduler(flow_shift=5.0, use_flow_sigmas=True)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
torch.manual_seed(0)
|
||||
|
||||
@@ -18,7 +18,7 @@ import unittest
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKLWan,
|
||||
@@ -70,7 +70,8 @@ class SkyReelsV2DiffusionForcingVideoToVideoPipelineFastTests(PipelineTesterMixi
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = UniPCMultistepScheduler(flow_shift=5.0, use_flow_sigmas=True)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
torch.manual_seed(0)
|
||||
|
||||
@@ -18,6 +18,7 @@ import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import (
|
||||
AutoConfig,
|
||||
AutoTokenizer,
|
||||
CLIPImageProcessor,
|
||||
CLIPVisionConfig,
|
||||
@@ -71,7 +72,8 @@ class SkyReelsV2ImageToVideoPipelineFastTests(PipelineTesterMixin, unittest.Test
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = UniPCMultistepScheduler(flow_shift=5.0, use_flow_sigmas=True)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
torch.manual_seed(0)
|
||||
|
||||
@@ -19,10 +19,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import (
|
||||
T5EncoderModel,
|
||||
T5Tokenizer,
|
||||
)
|
||||
from transformers import AutoConfig, T5EncoderModel, T5Tokenizer
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderOobleck,
|
||||
@@ -111,7 +108,8 @@ class StableAudioPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
)
|
||||
torch.manual_seed(0)
|
||||
t5_repo_id = "hf-internal-testing/tiny-random-T5ForConditionalGeneration"
|
||||
text_encoder = T5EncoderModel.from_pretrained(t5_repo_id)
|
||||
config = AutoConfig.from_pretrained(t5_repo_id)
|
||||
text_encoder = T5EncoderModel(config)
|
||||
tokenizer = T5Tokenizer.from_pretrained(t5_repo_id, truncation=True, model_max_length=25)
|
||||
|
||||
torch.manual_seed(0)
|
||||
|
||||
@@ -3,7 +3,14 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel
|
||||
from transformers import (
|
||||
AutoConfig,
|
||||
AutoTokenizer,
|
||||
CLIPTextConfig,
|
||||
CLIPTextModelWithProjection,
|
||||
CLIPTokenizer,
|
||||
T5EncoderModel,
|
||||
)
|
||||
|
||||
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, SD3Transformer2DModel, StableDiffusion3Pipeline
|
||||
|
||||
@@ -72,7 +79,9 @@ class StableDiffusion3PipelineFastTests(unittest.TestCase, PipelineTesterMixin):
|
||||
torch.manual_seed(0)
|
||||
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)
|
||||
|
||||
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
torch.manual_seed(0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_3 = T5EncoderModel(config)
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
|
||||
@@ -4,7 +4,14 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel
|
||||
from transformers import (
|
||||
AutoConfig,
|
||||
AutoTokenizer,
|
||||
CLIPTextConfig,
|
||||
CLIPTextModelWithProjection,
|
||||
CLIPTokenizer,
|
||||
T5EncoderModel,
|
||||
)
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
@@ -73,7 +80,9 @@ class StableDiffusion3Img2ImgPipelineFastTests(PipelineLatentTesterMixin, unitte
|
||||
torch.manual_seed(0)
|
||||
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)
|
||||
|
||||
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
torch.manual_seed(0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_3 = T5EncoderModel(config)
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
|
||||
@@ -3,7 +3,14 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel
|
||||
from transformers import (
|
||||
AutoConfig,
|
||||
AutoTokenizer,
|
||||
CLIPTextConfig,
|
||||
CLIPTextModelWithProjection,
|
||||
CLIPTokenizer,
|
||||
T5EncoderModel,
|
||||
)
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
@@ -73,7 +80,9 @@ class StableDiffusion3InpaintPipelineFastTests(PipelineLatentTesterMixin, unitte
|
||||
torch.manual_seed(0)
|
||||
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)
|
||||
|
||||
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
torch.manual_seed(0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_3 = T5EncoderModel(config)
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
|
||||
@@ -5,7 +5,7 @@ import unittest
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
|
||||
import diffusers
|
||||
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, FluxTransformer2DModel, VisualClozePipeline
|
||||
@@ -77,7 +77,8 @@ class VisualClozePipelineFastTests(unittest.TestCase, PipelineTesterMixin):
|
||||
text_encoder = CLIPTextModel(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_2 = T5EncoderModel(config)
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
@@ -5,7 +5,7 @@ import unittest
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
|
||||
import diffusers
|
||||
from diffusers import (
|
||||
@@ -79,7 +79,8 @@ class VisualClozeGenerationPipelineFastTests(unittest.TestCase, PipelineTesterMi
|
||||
text_encoder = CLIPTextModel(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_2 = T5EncoderModel(config)
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
@@ -18,7 +18,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKLWan, FlowMatchEulerDiscreteScheduler, WanPipeline, WanTransformer3DModel
|
||||
|
||||
@@ -68,7 +68,8 @@ class WanPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
torch.manual_seed(0)
|
||||
# TODO: impl FlowDPMSolverMultistepScheduler
|
||||
scheduler = FlowMatchEulerDiscreteScheduler(shift=7.0)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
torch.manual_seed(0)
|
||||
|
||||
@@ -17,14 +17,11 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKLWan, UniPCMultistepScheduler, WanPipeline, WanTransformer3DModel
|
||||
|
||||
from ...testing_utils import (
|
||||
enable_full_determinism,
|
||||
torch_device,
|
||||
)
|
||||
from ...testing_utils import enable_full_determinism, torch_device
|
||||
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
|
||||
from ..test_pipelines_common import PipelineTesterMixin
|
||||
|
||||
@@ -63,7 +60,8 @@ class Wan22PipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = UniPCMultistepScheduler(prediction_type="flow_prediction", use_flow_sigmas=True, flow_shift=3.0)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
torch.manual_seed(0)
|
||||
@@ -235,7 +233,8 @@ class Wan225BPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = UniPCMultistepScheduler(prediction_type="flow_prediction", use_flow_sigmas=True, flow_shift=3.0)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
torch.manual_seed(0)
|
||||
|
||||
@@ -18,7 +18,7 @@ import unittest
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKLWan, UniPCMultistepScheduler, WanImageToVideoPipeline, WanTransformer3DModel
|
||||
|
||||
@@ -64,7 +64,8 @@ class Wan22ImageToVideoPipelineFastTests(PipelineTesterMixin, unittest.TestCase)
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = UniPCMultistepScheduler(prediction_type="flow_prediction", use_flow_sigmas=True, flow_shift=3.0)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
torch.manual_seed(0)
|
||||
@@ -248,7 +249,8 @@ class Wan225BImageToVideoPipelineFastTests(PipelineTesterMixin, unittest.TestCas
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = UniPCMultistepScheduler(prediction_type="flow_prediction", use_flow_sigmas=True, flow_shift=3.0)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
torch.manual_seed(0)
|
||||
|
||||
@@ -19,6 +19,7 @@ import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import (
|
||||
AutoConfig,
|
||||
AutoTokenizer,
|
||||
CLIPImageProcessor,
|
||||
CLIPVisionConfig,
|
||||
@@ -78,7 +79,8 @@ class WanAnimatePipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = FlowMatchEulerDiscreteScheduler(shift=7.0)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
torch.manual_seed(0)
|
||||
|
||||
@@ -19,6 +19,7 @@ import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import (
|
||||
AutoConfig,
|
||||
AutoTokenizer,
|
||||
CLIPImageProcessor,
|
||||
CLIPVisionConfig,
|
||||
@@ -68,7 +69,8 @@ class WanImageToVideoPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
torch.manual_seed(0)
|
||||
# TODO: impl FlowDPMSolverMultistepScheduler
|
||||
scheduler = FlowMatchEulerDiscreteScheduler(shift=7.0)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
torch.manual_seed(0)
|
||||
@@ -239,7 +241,8 @@ class WanFLFToVideoPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
torch.manual_seed(0)
|
||||
# TODO: impl FlowDPMSolverMultistepScheduler
|
||||
scheduler = FlowMatchEulerDiscreteScheduler(shift=7.0)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
torch.manual_seed(0)
|
||||
|
||||
@@ -18,7 +18,7 @@ import unittest
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKLWan,
|
||||
@@ -67,7 +67,8 @@ class WanVACEPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = FlowMatchEulerDiscreteScheduler(shift=7.0)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
torch.manual_seed(0)
|
||||
|
||||
@@ -16,7 +16,7 @@ import unittest
|
||||
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKLWan, UniPCMultistepScheduler, WanTransformer3DModel, WanVideoToVideoPipeline
|
||||
|
||||
@@ -62,7 +62,8 @@ class WanVideoToVideoPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = UniPCMultistepScheduler(flow_shift=3.0)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
torch.manual_seed(0)
|
||||
|
||||
Reference in New Issue
Block a user