Compare commits

...

16 Commits

Author SHA1 Message Date
Sayak Paul
90eb7d7877 Merge branch 'main' into apply-lora-scale-decorator 2026-02-04 09:22:10 +05:30
YiYi Xu
6d4fc6baa0 [Modular] mellon doc etc (#13051)
* add metadata field to input/output param

* refactor mellonparam: move the template outside, add metaclass, define some generic template for custom node

* add from_custom_block

* style

* up up fix

* add mellon guide

* add to toctree

* style

* add mellon_types

* style

* mellon_type -> inpnt_types + output_types

* update doc

* add quant info to components manager

* fix more

* up up

* fix components manager

* update custom block guide

* update

* style

* add a warn for mellon and add new guides to overview

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/modular_diffusers/mellon.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* more update on custom block guide

* Update docs/source/en/modular_diffusers/mellon.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* a few mamual

* apply suggestion: turn into bullets

* support define mellon meta with MellonParam directly, and update doc

* add the video

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: yiyi@huggingface.co <yiyi@ip-26-0-160-103.ec2.internal>
2026-02-03 13:38:57 -10:00
YiYi Xu
ebd06f9b11 [Modular] loader related (#13025)
* tag loader_id from Automodel

* style

* load_components by default only load components that are not already loaded

* by default, skip loading the componeneets does not have the repo id
2026-02-03 05:34:33 -10:00
Sayak Paul
fc26162a64 Merge branch 'main' into apply-lora-scale-decorator 2026-02-02 20:36:58 +05:30
Sayak Paul
261b061616 Merge branch 'main' into apply-lora-scale-decorator 2026-02-02 19:42:19 +05:30
Sayak Paul
efd6d69044 Merge branch 'main' into apply-lora-scale-decorator 2026-01-29 19:22:55 +05:30
Sayak Paul
9b3947cf58 Merge branch 'main' into apply-lora-scale-decorator 2026-01-29 19:01:15 +05:30
sayakpaul
e5ebacb820 fix 2026-01-28 12:31:24 +05:30
sayakpaul
8c402d3a32 remove. 2026-01-28 12:16:39 +05:30
sayakpaul
458ac949a0 remove more. 2026-01-28 12:14:21 +05:30
sayakpaul
290f749bd5 up 2026-01-28 12:10:51 +05:30
sayakpaul
d6fcd78d0e apply to the rest. 2026-01-28 11:53:16 +05:30
Sayak Paul
9afafe5e26 Merge branch 'main' into apply-lora-scale-decorator 2026-01-28 09:30:36 +05:30
Sayak Paul
3cdce4d2e8 Merge branch 'main' into apply-lora-scale-decorator 2026-01-27 20:21:54 +08:00
Sayak Paul
835a087a47 Merge branch 'main' into apply-lora-scale-decorator 2026-01-20 10:44:21 +05:30
sayakpaul
afa4a23c6c feat: implement apply_lora_scale to remove boilerplate. 2026-01-19 10:04:24 +05:30
47 changed files with 1154 additions and 1552 deletions

View File

@@ -114,6 +114,8 @@
title: Guiders
- local: modular_diffusers/custom_blocks
title: Building Custom Blocks
- local: modular_diffusers/mellon
title: Using Custom Blocks with Mellon
title: Modular Diffusers
- isExpanded: false
sections:

View File

@@ -16,7 +16,7 @@ specific language governing permissions and limitations under the License.
[ModularPipelineBlocks](./pipeline_block) are the fundamental building blocks of a [`ModularPipeline`]. You can create custom blocks by defining their inputs, outputs, and computation logic. This guide demonstrates how to create and use a custom block.
> [!TIP]
> Explore the [Modular Diffusers Custom Blocks](https://huggingface.co/collections/diffusers/modular-diffusers-custom-blocks) collection for official custom modular blocks like Nano Banana.
> Explore the [Modular Diffusers Custom Blocks](https://huggingface.co/collections/diffusers/modular-diffusers-custom-blocks) collection for official custom blocks.
## Project Structure
@@ -31,18 +31,58 @@ Your custom block project should use the following structure:
- `block.py` contains the custom block implementation
- `modular_config.json` contains the metadata needed to load the block
## Example: Florence 2 Inpainting Block
## Quick Start with Template
In this example we will create a custom block that uses the [Florence 2](https://huggingface.co/docs/transformers/model_doc/florence2) model to process an input image and generate a mask for inpainting.
The fastest way to create a custom block is to start from our template. The template provides a pre-configured project structure with `block.py` and `modular_config.json` files, plus commented examples showing how to define components, inputs, outputs, and the `__call__` method—so you can focus on your custom logic instead of boilerplate setup.
The first step is to define the components that the block will use. In this case, we will need to use the `Florence2ForConditionalGeneration` model and its corresponding processor `AutoProcessor`. When defining components, we must specify the name of the component within our pipeline, model class via `type_hint`, and provide a `pretrained_model_name_or_path` for the component if we intend to load the model weights from a specific repository on the Hub.
### Download the template
```py
```python
from diffusers import ModularPipelineBlocks
model_id = "diffusers/custom-block-template"
local_dir = model_id.split("/")[-1]
blocks = ModularPipelineBlocks.from_pretrained(
model_id,
trust_remote_code=True,
local_dir=local_dir
)
```
This saves the template files to `custom-block-template/` locally or you could use `local_dir` to save to a specific location.
### Edit locally
Open `block.py` and implement your custom block. The template includes commented examples showing how to define each property. See the [Florence-2 example](#example-florence-2-image-annotator) below for a complete implementation.
### Test your block
```python
from diffusers import ModularPipelineBlocks
blocks = ModularPipelineBlocks.from_pretrained(local_dir, trust_remote_code=True)
pipeline = blocks.init_pipeline()
output = pipeline(...) # your inputs here
```
### Upload to the Hub
```python
pipeline.save_pretrained(local_dir, repo_id="your-username/your-block-name", push_to_hub=True)
```
## Example: Florence-2 Image Annotator
This example creates a custom block with [Florence-2](https://huggingface.co/docs/transformers/model_doc/florence2) to process an input image and generate a mask for inpainting.
### Define components
Define the components the block needs, `Florence2ForConditionalGeneration` and its processor. When defining components, specify the `name` (how you'll access it in code), `type_hint` (the model class), and `pretrained_model_name_or_path` (where to load weights from).
```python
# Inside block.py
from diffusers.modular_pipelines import (
ModularPipelineBlocks,
ComponentSpec,
)
from diffusers.modular_pipelines import ModularPipelineBlocks, ComponentSpec
from transformers import AutoProcessor, Florence2ForConditionalGeneration
@@ -64,40 +104,19 @@ class Florence2ImageAnnotatorBlock(ModularPipelineBlocks):
]
```
Next, we define the inputs and outputs of the block. The inputs include the image to be annotated, the annotation task, and the annotation prompt. The outputs include the generated mask image and annotations.
### Define inputs and outputs
```py
Inputs include the image, annotation task, and prompt. Outputs include the generated mask and annotations.
```python
from typing import List, Union
from PIL import Image, ImageDraw
import torch
import numpy as np
from diffusers.modular_pipelines import (
PipelineState,
ModularPipelineBlocks,
InputParam,
ComponentSpec,
OutputParam,
)
from transformers import AutoProcessor, Florence2ForConditionalGeneration
from PIL import Image
from diffusers.modular_pipelines import InputParam, OutputParam
class Florence2ImageAnnotatorBlock(ModularPipelineBlocks):
@property
def expected_components(self):
return [
ComponentSpec(
name="image_annotator",
type_hint=Florence2ForConditionalGeneration,
pretrained_model_name_or_path="florence-community/Florence-2-base-ft",
),
ComponentSpec(
name="image_annotator_processor",
type_hint=AutoProcessor,
pretrained_model_name_or_path="florence-community/Florence-2-base-ft",
),
]
# ... expected_components from above ...
@property
def inputs(self) -> List[InputParam]:
@@ -110,51 +129,21 @@ class Florence2ImageAnnotatorBlock(ModularPipelineBlocks):
),
InputParam(
"annotation_task",
type_hint=Union[str, List[str]],
required=True,
type_hint=str,
default="<REFERRING_EXPRESSION_SEGMENTATION>",
description="""Annotation Task to perform on the image.
Supported Tasks:
<OD>
<REFERRING_EXPRESSION_SEGMENTATION>
<CAPTION>
<DETAILED_CAPTION>
<MORE_DETAILED_CAPTION>
<DENSE_REGION_CAPTION>
<CAPTION_TO_PHRASE_GROUNDING>
<OPEN_VOCABULARY_DETECTION>
""",
description="Annotation task to perform (e.g., <OD>, <CAPTION>, <REFERRING_EXPRESSION_SEGMENTATION>)",
),
InputParam(
"annotation_prompt",
type_hint=Union[str, List[str]],
type_hint=str,
required=True,
description="""Annotation Prompt to provide more context to the task.
Can be used to detect or segment out specific elements in the image
""",
description="Prompt to provide context for the annotation task",
),
InputParam(
"annotation_output_type",
type_hint=str,
required=True,
default="mask_image",
description="""Output type from annotation predictions. Available options are
mask_image:
-black and white mask image for the given image based on the task type
mask_overlay:
- mask overlayed on the original image
bounding_box:
- bounding boxes drawn on the original image
""",
),
InputParam(
"annotation_overlay",
type_hint=bool,
required=True,
default=False,
description="",
description="Output type: 'mask_image', 'mask_overlay', or 'bounding_box'",
),
]
@@ -163,225 +152,45 @@ class Florence2ImageAnnotatorBlock(ModularPipelineBlocks):
return [
OutputParam(
"mask_image",
type_hint=Image,
description="Inpainting Mask for input Image(s)",
type_hint=Image.Image,
description="Inpainting mask for the input image",
),
OutputParam(
"annotations",
type_hint=dict,
description="Annotations Predictions for input Image(s)",
description="Raw annotation predictions",
),
OutputParam(
"image",
type_hint=Image,
description="Annotated input Image(s)",
type_hint=Image.Image,
description="Annotated image",
),
]
```
Now we implement the `__call__` method, which contains the logic for processing the input image and generating the mask.
### Implement the `__call__` method
```py
from typing import List, Union
from PIL import Image, ImageDraw
The `__call__` method contains the block's logic. Access inputs via `block_state`, run your computation, and set outputs back to `block_state`.
```python
import torch
import numpy as np
from diffusers.modular_pipelines import (
PipelineState,
ModularPipelineBlocks,
InputParam,
ComponentSpec,
OutputParam,
)
from transformers import AutoProcessor, Florence2ForConditionalGeneration
from diffusers.modular_pipelines import PipelineState
class Florence2ImageAnnotatorBlock(ModularPipelineBlocks):
@property
def expected_components(self):
return [
ComponentSpec(
name="image_annotator",
type_hint=Florence2ForConditionalGeneration,
pretrained_model_name_or_path="florence-community/Florence-2-base-ft",
),
ComponentSpec(
name="image_annotator_processor",
type_hint=AutoProcessor,
pretrained_model_name_or_path="florence-community/Florence-2-base-ft",
),
]
@property
def inputs(self) -> List[InputParam]:
return [
InputParam(
"image",
type_hint=Union[Image.Image, List[Image.Image]],
required=True,
description="Image(s) to annotate",
),
InputParam(
"annotation_task",
type_hint=Union[str, List[str]],
required=True,
default="<REFERRING_EXPRESSION_SEGMENTATION>",
description="""Annotation Task to perform on the image.
Supported Tasks:
<OD>
<REFERRING_EXPRESSION_SEGMENTATION>
<CAPTION>
<DETAILED_CAPTION>
<MORE_DETAILED_CAPTION>
<DENSE_REGION_CAPTION>
<CAPTION_TO_PHRASE_GROUNDING>
<OPEN_VOCABULARY_DETECTION>
""",
),
InputParam(
"annotation_prompt",
type_hint=Union[str, List[str]],
required=True,
description="""Annotation Prompt to provide more context to the task.
Can be used to detect or segment out specific elements in the image
""",
),
InputParam(
"annotation_output_type",
type_hint=str,
required=True,
default="mask_image",
description="""Output type from annotation predictions. Available options are
mask_image:
-black and white mask image for the given image based on the task type
mask_overlay:
- mask overlayed on the original image
bounding_box:
- bounding boxes drawn on the original image
""",
),
InputParam(
"annotation_overlay",
type_hint=bool,
required=True,
default=False,
description="",
),
]
@property
def intermediate_outputs(self) -> List[OutputParam]:
return [
OutputParam(
"mask_image",
type_hint=Image,
description="Inpainting Mask for input Image(s)",
),
OutputParam(
"annotations",
type_hint=dict,
description="Annotations Predictions for input Image(s)",
),
OutputParam(
"image",
type_hint=Image,
description="Annotated input Image(s)",
),
]
def get_annotations(self, components, images, prompts, task):
task_prompts = [task + prompt for prompt in prompts]
inputs = components.image_annotator_processor(
text=task_prompts, images=images, return_tensors="pt"
).to(components.image_annotator.device, components.image_annotator.dtype)
generated_ids = components.image_annotator.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
early_stopping=False,
do_sample=False,
num_beams=3,
)
annotations = components.image_annotator_processor.batch_decode(
generated_ids, skip_special_tokens=False
)
outputs = []
for image, annotation in zip(images, annotations):
outputs.append(
components.image_annotator_processor.post_process_generation(
annotation, task=task, image_size=(image.width, image.height)
)
)
return outputs
def prepare_mask(self, images, annotations, overlay=False, fill="white"):
masks = []
for image, annotation in zip(images, annotations):
mask_image = image.copy() if overlay else Image.new("L", image.size, 0)
draw = ImageDraw.Draw(mask_image)
for _, _annotation in annotation.items():
if "polygons" in _annotation:
for polygon in _annotation["polygons"]:
polygon = np.array(polygon).reshape(-1, 2)
if len(polygon) < 3:
continue
polygon = polygon.reshape(-1).tolist()
draw.polygon(polygon, fill=fill)
elif "bbox" in _annotation:
bbox = _annotation["bbox"]
draw.rectangle(bbox, fill="white")
masks.append(mask_image)
return masks
def prepare_bounding_boxes(self, images, annotations):
outputs = []
for image, annotation in zip(images, annotations):
image_copy = image.copy()
draw = ImageDraw.Draw(image_copy)
for _, _annotation in annotation.items():
bbox = _annotation["bbox"]
label = _annotation["label"]
draw.rectangle(bbox, outline="red", width=3)
draw.text((bbox[0], bbox[1] - 20), label, fill="red")
outputs.append(image_copy)
return outputs
def prepare_inputs(self, images, prompts):
prompts = prompts or ""
if isinstance(images, Image.Image):
images = [images]
if isinstance(prompts, str):
prompts = [prompts]
if len(images) != len(prompts):
raise ValueError("Number of images and annotation prompts must match.")
return images, prompts
# ... expected_components, inputs, intermediate_outputs from above ...
@torch.no_grad()
def __call__(self, components, state: PipelineState) -> PipelineState:
block_state = self.get_block_state(state)
images, annotation_task_prompt = self.prepare_inputs(
block_state.image, block_state.annotation_prompt
)
task = block_state.annotation_task
fill = block_state.fill
annotations = self.get_annotations(
components, images, annotation_task_prompt, task
)
@@ -400,67 +209,69 @@ class Florence2ImageAnnotatorBlock(ModularPipelineBlocks):
self.set_block_state(state, block_state)
return components, state
# Helper methods for mask/bounding box generation...
```
Once we have defined our custom block, we can save it to the Hub, using either the CLI or the [`push_to_hub`] method. This will make it easy to share and reuse our custom block with other pipelines.
<hfoptions id="share">
<hfoption id="hf CLI">
```shell
# In the folder with the `block.py` file, run:
diffusers-cli custom_block
```
Then upload the block to the Hub:
```shell
hf upload <your repo id> . .
```
</hfoption>
<hfoption id="push_to_hub">
```py
from block import Florence2ImageAnnotatorBlock
block = Florence2ImageAnnotatorBlock()
block.push_to_hub("<your repo id>")
```
</hfoption>
</hfoptions>
> [!TIP]
> See the complete implementation at [diffusers/Florence2-image-Annotator](https://huggingface.co/diffusers/Florence2-image-Annotator).
## Using Custom Blocks
Load the custom block with [`~ModularPipelineBlocks.from_pretrained`] and set `trust_remote_code=True`.
Load a custom block with [`~ModularPipeline.from_pretrained`] and set `trust_remote_code=True`.
```py
import torch
from diffusers.modular_pipelines import ModularPipelineBlocks, SequentialPipelineBlocks
from diffusers.modular_pipelines.stable_diffusion_xl import INPAINT_BLOCKS
from diffusers import ModularPipeline
from diffusers.utils import load_image
# Fetch the Florence2 image annotator block that will create our mask
image_annotator_block = ModularPipelineBlocks.from_pretrained("diffusers/florence-2-custom-block", trust_remote_code=True)
# Load the Florence-2 annotator pipeline
image_annotator = ModularPipeline.from_pretrained(
"diffusers/Florence2-image-Annotator",
trust_remote_code=True
)
my_blocks = INPAINT_BLOCKS.copy()
# insert the annotation block before the image encoding step
my_blocks.insert("image_annotator", image_annotator_block, 1)
# Check the docstring to see inputs/outputs
print(image_annotator.blocks.doc)
```
# Create our initial set of inpainting blocks
blocks = SequentialPipelineBlocks.from_blocks_dict(my_blocks)
Use the block to generate a mask:
repo_id = "diffusers/modular-stable-diffusion-xl-base-1.0"
pipe = blocks.init_pipeline(repo_id)
pipe.load_components(torch_dtype=torch.float16, device_map="cuda", trust_remote_code=True)
```python
image_annotator.load_components(torch_dtype=torch.bfloat16)
image_annotator.to("cuda")
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true")
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg")
image = image.resize((1024, 1024))
prompt = ["A red car"]
annotation_task = "<REFERRING_EXPRESSION_SEGMENTATION>"
annotation_prompt = ["the car"]
mask_image = image_annotator_node(
prompt=prompt,
image=image,
annotation_task=annotation_task,
annotation_prompt=annotation_prompt,
annotation_output_type="mask_image",
).images
mask_image[0].save("car-mask.png")
```
Compose it with other blocks to create a new pipeline:
```python
# Get the annotator block
annotator_block = image_annotator.blocks
# Get an inpainting workflow and insert the annotator at the beginning
inpaint_blocks = ModularPipeline.from_pretrained("Qwen/Qwen-Image").blocks.get_workflow("inpainting")
inpaint_blocks.sub_blocks.insert("image_annotator", annotator_block, 0)
# Initialize the combined pipeline
pipe = inpaint_blocks.init_pipeline()
pipe.load_components(torch_dtype=torch.float16, device="cuda")
# Now the pipeline automatically generates masks from prompts
output = pipe(
prompt=prompt,
image=image,
@@ -475,18 +286,50 @@ output = pipe(
output[0].save("florence-inpainting.png")
```
## Editing Custom Blocks
## Editing custom blocks
By default, custom blocks are saved in your cache directory. Use the `local_dir` argument to download and edit a custom block in a specific folder.
Edit custom blocks by downloading it locally. This is the same workflow as the [Quick Start with Template](#quick-start-with-template), but starting from an existing block instead of the template.
```py
import torch
from diffusers.modular_pipelines import ModularPipelineBlocks, SequentialPipelineBlocks
from diffusers.modular_pipelines.stable_diffusion_xl import INPAINT_BLOCKS
from diffusers.utils import load_image
Use the `local_dir` argument to download a custom block to a specific folder:
# Fetch the Florence2 image annotator block that will create our mask
image_annotator_block = ModularPipelineBlocks.from_pretrained("diffusers/florence-2-custom-block", trust_remote_code=True, local_dir="/my-local-folder")
```python
from diffusers import ModularPipelineBlocks
# Download to a local folder for editing
annotator_block = ModularPipelineBlocks.from_pretrained(
"diffusers/Florence2-image-Annotator",
trust_remote_code=True,
local_dir="./my-florence-block"
)
```
Any changes made to the block files in this folder will be reflected when you load the block again.
Any changes made to the block files in this folder will be reflected when you load the block again. When you're ready to share your changes, upload to a new repository:
```python
pipeline = annotator_block.init_pipeline()
pipeline.save_pretrained("./my-florence-block", repo_id="your-username/my-custom-florence", push_to_hub=True)
```
## Next Steps
<hfoptions id="next">
<hfoption id="Learn block types">
This guide covered creating a single custom block. Learn how to compose multiple blocks together:
- [SequentialPipelineBlocks](./sequential_pipeline_blocks): Chain blocks to execute in sequence
- [ConditionalPipelineBlocks](./auto_pipeline_blocks): Create conditional blocks that select different execution paths
- [LoopSequentialPipelineBlocks](./loop_sequential_pipeline_blocks): Define an iterative workflows like the denoising loop
</hfoption>
<hfoption id="Use in Mellon">
Make your custom block work with Mellon's visual interface. See the [Mellon Custom Blocks](./mellon) guide.
</hfoption>
<hfoption id="Explore existing blocks">
Browse the [Modular Diffusers Custom Blocks](https://huggingface.co/collections/diffusers/modular-diffusers-custom-blocks) collection for inspiration and ready-to-use blocks.
</hfoption>
</hfoptions>

View File

@@ -0,0 +1,270 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
## Using Custom Blocks with Mellon
[Mellon](https://github.com/cubiq/Mellon) is a visual workflow interface that integrates with Modular Diffusers and is designed for node-based workflows.
> [!WARNING]
> Mellon is in early development and not ready for production use yet. Consider this a sneak peek of how the integration works!
Custom blocks work in Mellon out of the box - just need to add a `mellon_pipeline_config.json` to your repository. This config file tells Mellon how to render your block's parameters as UI components.
Here's what it looks like in action with the [Gemini Prompt Expander](https://huggingface.co/diffusers/gemini-prompt-expander-mellon) block:
![Mellon custom block demo](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/modular_demo_dynamic.gif)
To use a modular diffusers custom block in Mellon:
1. Drag a **Dynamic Block Node** from the ModularDiffusers section
2. Enter the `repo_id` (e.g., `diffusers/gemini-prompt-expander-mellon`)
3. Click **Load Custom Block**
4. The node transforms to show your block's inputs and outputs
Now let's walk through how to create this config for your own custom block.
## Steps to create a Mellon config
1. **Specify Mellon types for your parameters** - Each `InputParam`/`OutputParam` needs a type that tells Mellon what UI component to render (e.g., `"textbox"`, `"dropdown"`, `"image"`).
2. **Generate `mellon_pipeline_config.json`** - Use our utility to generate a config template and push it to your Hub repository.
3. **(Optional) Manually adjust the config** - Fine-tune the generated config for your specific needs.
## Specify Mellon types for parameters
Mellon types determine how each parameter renders in the UI. If you don't specify a type for a parameter, it will default to `"custom"`, which renders as a simple connection dot. You can always adjust this later in the generated config.
| Type | Input/Output | Description |
|------|--------------|-------------|
| `image` | Both | Image (PIL Image) |
| `video` | Both | Video |
| `text` | Both | Text display |
| `textbox` | Input | Text input |
| `dropdown` | Input | Dropdown selection menu |
| `slider` | Input | Slider for numeric values |
| `number` | Input | Numeric input |
| `checkbox` | Input | Boolean toggle |
For parameters that need more configuration (like dropdowns with options, or sliders with min/max values), pass a `MellonParam` instance directly instead of a string. You can use one of the class methods below, or create a fully custom one with `MellonParam(name, label, type, ...)`.
| Method | Description |
|--------|-------------|
| `MellonParam.Input.image(name)` | Image input |
| `MellonParam.Input.textbox(name, default)` | Text input as textarea |
| `MellonParam.Input.dropdown(name, options, default)` | Dropdown selection |
| `MellonParam.Input.slider(name, default, min, max, step)` | Slider for numeric values |
| `MellonParam.Input.number(name, default, min, max, step)` | Numeric input (no slider) |
| `MellonParam.Input.seed(name, default)` | Seed input with randomize button |
| `MellonParam.Input.checkbox(name, default)` | Boolean checkbox |
| `MellonParam.Input.model(name)` | Model input for diffusers components |
| `MellonParam.Output.image(name)` | Image output |
| `MellonParam.Output.video(name)` | Video output |
| `MellonParam.Output.text(name)` | Text output |
| `MellonParam.Output.model(name)` | Model output for diffusers components |
Choose one of the methods below to specify a Mellon type.
### Using `metadata` in block definitions
If you're defining a custom block from scratch, add `metadata={"mellon": "<type>"}` directly to your `InputParam` and `OutputParam` definitions. If you're editing an existing custom block from the Hub, see [Editing custom blocks](./custom_blocks#editing-custom-blocks) for how to download it locally.
```python
class GeminiPromptExpander(ModularPipelineBlocks):
@property
def inputs(self) -> List[InputParam]:
return [
InputParam(
"prompt",
type_hint=str,
required=True,
description="Prompt to use",
metadata={"mellon": "textbox"}, # Text input
)
]
@property
def intermediate_outputs(self) -> List[OutputParam]:
return [
OutputParam(
"prompt",
type_hint=str,
description="Expanded prompt by the LLM",
metadata={"mellon": "text"}, # Text output
),
OutputParam(
"old_prompt",
type_hint=str,
description="Old prompt provided by the user",
# No metadata - we don't want to render this in UI
)
]
```
For full control over UI configuration, pass a `MellonParam` instance directly:
```python
from diffusers.modular_pipelines.mellon_node_utils import MellonParam
InputParam(
"mode",
type_hint=str,
default="balanced",
metadata={"mellon": MellonParam.Input.dropdown("mode", options=["fast", "balanced", "quality"])},
)
```
### Using `input_types` and `output_types` when Generating Config
If you're working with an existing pipeline or prefer to keep your block definitions clean, specify types when generating the config using the `input_types/output_types` argument:
```python
from diffusers.modular_pipelines.mellon_node_utils import MellonPipelineConfig
mellon_config = MellonPipelineConfig.from_custom_block(
blocks,
input_types={"prompt": "textbox"},
output_types={"prompt": "text"}
)
```
> [!NOTE]
> When both `metadata` and `input_types`/`output_types` are specified, the arguments overrides `metadata`.
## Generate and push the Mellon config
After adding metadata to your block, generate the default Mellon configuration template and push it to the Hub:
```python
from diffusers import ModularPipelineBlocks
from diffusers.modular_pipelines.mellon_node_utils import MellonPipelineConfig
# load your custom blocks from your local dir
blocks = ModularPipelineBlocks.from_pretrained("/path/local/folder", trust_remote_code=True)
# Generate the default config template
mellon_config = MellonPipelineConfig.from_custom_block(blocks)
# push the default template to `repo_id`, you will need to pass the same local folder path so that it will save the config locally first
mellon_config.save(
local_dir="/path/local/folder",
repo_id= repo_id,
push_to_hub=True
)
```
This creates a `mellon_pipeline_config.json` file in your repository.
## Review and adjust the config
The generated template is a starting point - you may want to adjust it for your needs. Let's walk through the generated config for the Gemini Prompt Expander:
```json
{
"label": "Gemini Prompt Expander",
"default_repo": "",
"default_dtype": "",
"node_params": {
"custom": {
"params": {
"prompt": {
"label": "Prompt",
"type": "string",
"display": "textarea",
"default": ""
},
"out_prompt": {
"label": "Prompt",
"type": "string",
"display": "output"
},
"old_prompt": {
"label": "Old Prompt",
"type": "custom",
"display": "output"
},
"doc": {
"label": "Doc",
"type": "string",
"display": "output"
}
},
"input_names": ["prompt"],
"model_input_names": [],
"output_names": ["out_prompt", "old_prompt", "doc"],
"block_name": "custom",
"node_type": "custom"
}
}
}
```
### Understanding the Structure
The `params` dict defines how each UI element renders. The `input_names`, `model_input_names`, and `output_names` lists map these UI elements to the underlying [`ModularPipelineBlocks`]'s I/O interface:
| Mellon Config | ModularPipelineBlocks |
|---------------|----------------------|
| `input_names` | `inputs` property |
| `model_input_names` | `expected_components` property |
| `output_names` | `intermediate_outputs` property |
In this example: `prompt` is the only input. There are no model components, and outputs include `out_prompt`, `old_prompt`, and `doc`.
Now let's look at the `params` dict:
- **`prompt`**: An input parameter with `display: "textarea"` (renders as a text input box), `label: "Prompt"` (shown in the UI), and `default: ""` (starts empty). The `type: "string"` field is important in Mellon because it determines which nodes can connect together - only matching types can be linked with "noodles".
- **`out_prompt`**: The expanded prompt output. The `out_` prefix was automatically added because the input and output share the same name (`prompt`), avoiding naming conflicts in the config. It has `display: "output"` which renders as an output socket.
- **`old_prompt`**: Has `type: "custom"` because we didn't specify metadata. This renders as a simple dot in the UI. Since we don't actually want to expose this in the UI, we can remove it.
- **`doc`**: The documentation output, automatically added to all custom blocks.
### Making Adjustments
Remove `old_prompt` from both `params` and `output_names` because you won't need to use it.
```json
{
"label": "Gemini Prompt Expander",
"default_repo": "",
"default_dtype": "",
"node_params": {
"custom": {
"params": {
"prompt": {
"label": "Prompt",
"type": "string",
"display": "textarea",
"default": ""
},
"out_prompt": {
"label": "Prompt",
"type": "string",
"display": "output"
},
"doc": {
"label": "Doc",
"type": "string",
"display": "output"
}
},
"input_names": ["prompt"],
"model_input_names": [],
"output_names": ["out_prompt", "doc"],
"block_name": "custom",
"node_type": "custom"
}
}
}
```
See the final config at [diffusers/gemini-prompt-expander-mellon](https://huggingface.co/diffusers/gemini-prompt-expander-mellon).

View File

@@ -33,9 +33,14 @@ The Modular Diffusers docs are organized as shown below.
- [SequentialPipelineBlocks](./sequential_pipeline_blocks) is a type of block that chains multiple blocks so they run one after another, passing data along the chain. This guide shows you how to create [`~modular_pipelines.SequentialPipelineBlocks`] and how they connect and work together.
- [LoopSequentialPipelineBlocks](./loop_sequential_pipeline_blocks) is a type of block that runs a series of blocks in a loop. This guide shows you how to create [`~modular_pipelines.LoopSequentialPipelineBlocks`].
- [AutoPipelineBlocks](./auto_pipeline_blocks) is a type of block that automatically chooses which blocks to run based on the input. This guide shows you how to create [`~modular_pipelines.AutoPipelineBlocks`].
- [Building Custom Blocks](./custom_blocks) shows you how to create your own custom blocks and share them on the Hub.
## ModularPipeline
- [ModularPipeline](./modular_pipeline) shows you how to create and convert pipeline blocks into an executable [`ModularPipeline`].
- [ComponentsManager](./components_manager) shows you how to manage and reuse components across multiple pipelines.
- [Guiders](./guiders) shows you how to use different guidance methods in the pipeline.
- [Guiders](./guiders) shows you how to use different guidance methods in the pipeline.
## Mellon Integration
- [Using Custom Blocks with Mellon](./mellon) shows you how to make your custom blocks work with [Mellon](https://github.com/cubiq/Mellon), a visual node-based interface for building workflows.

View File

@@ -18,7 +18,7 @@ from typing import Optional, Union
from huggingface_hub.utils import validate_hf_hub_args
from ..configuration_utils import ConfigMixin
from ..utils import logging
from ..utils import DIFFUSERS_LOAD_ID_FIELDS, logging
from ..utils.dynamic_modules_utils import get_class_from_dynamic_module, resolve_trust_remote_code
@@ -220,4 +220,11 @@ class AutoModel(ConfigMixin):
raise ValueError(f"AutoModel can't find a model linked to {orig_class_name}.")
kwargs = {**load_config_kwargs, **kwargs}
return model_cls.from_pretrained(pretrained_model_or_path, **kwargs)
model = model_cls.from_pretrained(pretrained_model_or_path, **kwargs)
load_id_kwargs = {"pretrained_model_name_or_path": pretrained_model_or_path, **kwargs}
parts = [load_id_kwargs.get(field, "null") for field in DIFFUSERS_LOAD_ID_FIELDS]
load_id = "|".join("null" if p is None else p for p in parts)
model._diffusers_load_id = load_id
return model

View File

@@ -21,7 +21,7 @@ from torch.nn import functional as F
from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import PeftAdapterMixin
from ...loaders.single_file_model import FromOriginalModelMixin
from ...utils import BaseOutput, logging
from ...utils import BaseOutput, apply_lora_scale, logging
from ..attention import AttentionMixin
from ..attention_processor import (
ADDED_KV_ATTENTION_PROCESSORS,
@@ -598,6 +598,7 @@ class ControlNetModel(ModelMixin, AttentionMixin, ConfigMixin, FromOriginalModel
for module in self.children():
fn_recursive_set_attention_slice(module, reversed_slice_size)
@apply_lora_scale("cross_attention_kwargs")
def forward(
self,
sample: torch.Tensor,

View File

@@ -20,7 +20,11 @@ import torch.nn as nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import PeftAdapterMixin
from ...utils import USE_PEFT_BACKEND, BaseOutput, logging, scale_lora_layers, unscale_lora_layers
from ...utils import (
BaseOutput,
apply_lora_scale,
logging,
)
from ..attention import AttentionMixin
from ..controlnets.controlnet import ControlNetConditioningEmbedding, zero_module
from ..embeddings import CombinedTimestepGuidanceTextProjEmbeddings, CombinedTimestepTextProjEmbeddings, FluxPosEmbed
@@ -150,6 +154,7 @@ class FluxControlNetModel(ModelMixin, AttentionMixin, ConfigMixin, PeftAdapterMi
return controlnet
@apply_lora_scale("joint_attention_kwargs")
def forward(
self,
hidden_states: torch.Tensor,
@@ -197,20 +202,6 @@ class FluxControlNetModel(ModelMixin, AttentionMixin, ConfigMixin, PeftAdapterMi
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
`tuple` where the first element is the sample tensor.
"""
if joint_attention_kwargs is not None:
joint_attention_kwargs = joint_attention_kwargs.copy()
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
logger.warning(
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
)
hidden_states = self.x_embedder(hidden_states)
if self.input_hint_block is not None:
@@ -323,10 +314,6 @@ class FluxControlNetModel(ModelMixin, AttentionMixin, ConfigMixin, PeftAdapterMi
None if len(controlnet_single_block_samples) == 0 else controlnet_single_block_samples
)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (controlnet_block_samples, controlnet_single_block_samples)

View File

@@ -20,7 +20,12 @@ import torch.nn as nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import FromOriginalModelMixin, PeftAdapterMixin
from ...utils import USE_PEFT_BACKEND, BaseOutput, deprecate, logging, scale_lora_layers, unscale_lora_layers
from ...utils import (
BaseOutput,
apply_lora_scale,
deprecate,
logging,
)
from ..attention import AttentionMixin
from ..cache_utils import CacheMixin
from ..controlnets.controlnet import zero_module
@@ -123,6 +128,7 @@ class QwenImageControlNetModel(
return controlnet
@apply_lora_scale("joint_attention_kwargs")
def forward(
self,
hidden_states: torch.Tensor,
@@ -181,20 +187,6 @@ class QwenImageControlNetModel(
standard_warn=False,
)
if joint_attention_kwargs is not None:
joint_attention_kwargs = joint_attention_kwargs.copy()
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
logger.warning(
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
)
hidden_states = self.img_in(hidden_states)
# add
@@ -256,10 +248,6 @@ class QwenImageControlNetModel(
controlnet_block_samples = [sample * conditioning_scale for sample in controlnet_block_samples]
controlnet_block_samples = None if len(controlnet_block_samples) == 0 else controlnet_block_samples
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return controlnet_block_samples

View File

@@ -20,7 +20,7 @@ from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import PeftAdapterMixin
from ...utils import USE_PEFT_BACKEND, BaseOutput, logging, scale_lora_layers, unscale_lora_layers
from ...utils import BaseOutput, apply_lora_scale, logging
from ..attention import AttentionMixin
from ..embeddings import PatchEmbed, PixArtAlphaTextProjection
from ..modeling_outputs import Transformer2DModelOutput
@@ -117,6 +117,7 @@ class SanaControlNetModel(ModelMixin, AttentionMixin, ConfigMixin, PeftAdapterMi
self.gradient_checkpointing = False
@apply_lora_scale("attention_kwargs")
def forward(
self,
hidden_states: torch.Tensor,
@@ -129,21 +130,6 @@ class SanaControlNetModel(ModelMixin, AttentionMixin, ConfigMixin, PeftAdapterMi
attention_kwargs: Optional[Dict[str, Any]] = None,
return_dict: bool = True,
) -> Union[Tuple[torch.Tensor, ...], Transformer2DModelOutput]:
if attention_kwargs is not None:
attention_kwargs = attention_kwargs.copy()
lora_scale = attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
logger.warning(
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
)
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
@@ -218,10 +204,6 @@ class SanaControlNetModel(ModelMixin, AttentionMixin, ConfigMixin, PeftAdapterMi
block_res_sample = controlnet_block(block_res_sample)
controlnet_block_res_samples = controlnet_block_res_samples + (block_res_sample,)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
controlnet_block_res_samples = [sample * conditioning_scale for sample in controlnet_block_res_samples]
if not return_dict:

View File

@@ -21,7 +21,7 @@ import torch.nn as nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import FromOriginalModelMixin, PeftAdapterMixin
from ...utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
from ...utils import apply_lora_scale, logging
from ..attention import AttentionMixin, JointTransformerBlock
from ..attention_processor import Attention, FusedJointAttnProcessor2_0
from ..embeddings import CombinedTimestepTextProjEmbeddings, PatchEmbed
@@ -269,6 +269,7 @@ class SD3ControlNetModel(ModelMixin, AttentionMixin, ConfigMixin, PeftAdapterMix
return controlnet
@apply_lora_scale("joint_attention_kwargs")
def forward(
self,
hidden_states: torch.Tensor,
@@ -308,21 +309,6 @@ class SD3ControlNetModel(ModelMixin, AttentionMixin, ConfigMixin, PeftAdapterMix
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
`tuple` where the first element is the sample tensor.
"""
if joint_attention_kwargs is not None:
joint_attention_kwargs = joint_attention_kwargs.copy()
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
logger.warning(
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
)
if self.pos_embed is not None and hidden_states.ndim != 4:
raise ValueError("hidden_states must be 4D when pos_embed is used")
@@ -382,10 +368,6 @@ class SD3ControlNetModel(ModelMixin, AttentionMixin, ConfigMixin, PeftAdapterMix
# 6. scaling
controlnet_block_res_samples = [sample * conditioning_scale for sample in controlnet_block_res_samples]
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (controlnet_block_res_samples,)

View File

@@ -21,7 +21,7 @@ import torch.nn.functional as F
from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import FromOriginalModelMixin, PeftAdapterMixin
from ...utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
from ...utils import apply_lora_scale, logging
from ...utils.torch_utils import maybe_allow_in_graph
from ..attention import AttentionMixin
from ..attention_processor import (
@@ -397,6 +397,7 @@ class AuraFlowTransformer2DModel(ModelMixin, AttentionMixin, ConfigMixin, PeftAd
if self.original_attn_processors is not None:
self.set_attn_processor(self.original_attn_processors)
@apply_lora_scale("attention_kwargs")
def forward(
self,
hidden_states: torch.FloatTensor,
@@ -405,21 +406,6 @@ class AuraFlowTransformer2DModel(ModelMixin, AttentionMixin, ConfigMixin, PeftAd
attention_kwargs: Optional[Dict[str, Any]] = None,
return_dict: bool = True,
) -> Union[Tuple[torch.Tensor], Transformer2DModelOutput]:
if attention_kwargs is not None:
attention_kwargs = attention_kwargs.copy()
lora_scale = attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
logger.warning(
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
)
height, width = hidden_states.shape[-2:]
# Apply patch embedding, timestep embedding, and project the caption embeddings.
@@ -486,10 +472,6 @@ class AuraFlowTransformer2DModel(ModelMixin, AttentionMixin, ConfigMixin, PeftAd
shape=(hidden_states.shape[0], out_channels, height * patch_size, width * patch_size)
)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (output,)

View File

@@ -20,7 +20,7 @@ from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import PeftAdapterMixin
from ...utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
from ...utils import apply_lora_scale, logging
from ...utils.torch_utils import maybe_allow_in_graph
from ..attention import Attention, AttentionMixin, FeedForward
from ..attention_processor import CogVideoXAttnProcessor2_0, FusedCogVideoXAttnProcessor2_0
@@ -363,6 +363,7 @@ class CogVideoXTransformer3DModel(ModelMixin, AttentionMixin, ConfigMixin, PeftA
if self.original_attn_processors is not None:
self.set_attn_processor(self.original_attn_processors)
@apply_lora_scale("attention_kwargs")
def forward(
self,
hidden_states: torch.Tensor,
@@ -374,21 +375,6 @@ class CogVideoXTransformer3DModel(ModelMixin, AttentionMixin, ConfigMixin, PeftA
attention_kwargs: Optional[Dict[str, Any]] = None,
return_dict: bool = True,
) -> Union[Tuple[torch.Tensor], Transformer2DModelOutput]:
if attention_kwargs is not None:
attention_kwargs = attention_kwargs.copy()
lora_scale = attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
logger.warning(
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
)
batch_size, num_frames, channels, height, width = hidden_states.shape
# 1. Time embedding
@@ -454,10 +440,6 @@ class CogVideoXTransformer3DModel(ModelMixin, AttentionMixin, ConfigMixin, PeftA
)
output = output.permute(0, 1, 5, 4, 2, 6, 3, 7).flatten(6, 7).flatten(4, 5).flatten(1, 2)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (output,)
return Transformer2DModelOutput(sample=output)

View File

@@ -20,7 +20,7 @@ from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import PeftAdapterMixin
from ...utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
from ...utils import apply_lora_scale, logging
from ...utils.torch_utils import maybe_allow_in_graph
from ..attention import Attention, AttentionMixin, FeedForward
from ..attention_processor import CogVideoXAttnProcessor2_0
@@ -620,6 +620,7 @@ class ConsisIDTransformer3DModel(ModelMixin, AttentionMixin, ConfigMixin, PeftAd
]
)
@apply_lora_scale("attention_kwargs")
def forward(
self,
hidden_states: torch.Tensor,
@@ -632,21 +633,6 @@ class ConsisIDTransformer3DModel(ModelMixin, AttentionMixin, ConfigMixin, PeftAd
id_vit_hidden: Optional[torch.Tensor] = None,
return_dict: bool = True,
) -> Union[Tuple[torch.Tensor], Transformer2DModelOutput]:
if attention_kwargs is not None:
attention_kwargs = attention_kwargs.copy()
lora_scale = attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
logger.warning(
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
)
# fuse clip and insightface
valid_face_emb = None
if self.is_train_face:
@@ -720,10 +706,6 @@ class ConsisIDTransformer3DModel(ModelMixin, AttentionMixin, ConfigMixin, PeftAd
output = hidden_states.reshape(batch_size, num_frames, height // p, width // p, -1, p, p)
output = output.permute(0, 1, 4, 2, 5, 3, 6).flatten(5, 6).flatten(3, 4)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (output,)
return Transformer2DModelOutput(sample=output)

View File

@@ -20,7 +20,7 @@ from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import FromOriginalModelMixin, PeftAdapterMixin
from ...utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
from ...utils import apply_lora_scale, logging
from ..attention import AttentionMixin
from ..attention_processor import (
Attention,
@@ -414,6 +414,7 @@ class SanaTransformer2DModel(ModelMixin, AttentionMixin, ConfigMixin, PeftAdapte
self.gradient_checkpointing = False
@apply_lora_scale("attention_kwargs")
def forward(
self,
hidden_states: torch.Tensor,
@@ -426,21 +427,6 @@ class SanaTransformer2DModel(ModelMixin, AttentionMixin, ConfigMixin, PeftAdapte
controlnet_block_samples: Optional[Tuple[torch.Tensor]] = None,
return_dict: bool = True,
) -> Union[Tuple[torch.Tensor, ...], Transformer2DModelOutput]:
if attention_kwargs is not None:
attention_kwargs = attention_kwargs.copy()
lora_scale = attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
logger.warning(
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
)
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
@@ -527,10 +513,6 @@ class SanaTransformer2DModel(ModelMixin, AttentionMixin, ConfigMixin, PeftAdapte
hidden_states = hidden_states.permute(0, 5, 1, 3, 2, 4)
output = hidden_states.reshape(batch_size, -1, post_patch_height * p, post_patch_width * p)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (output,)

View File

@@ -8,7 +8,7 @@ import torch.nn.functional as F
from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import FromOriginalModelMixin, PeftAdapterMixin
from ...utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
from ...utils import apply_lora_scale, logging
from ...utils.torch_utils import maybe_allow_in_graph
from ..attention import AttentionModuleMixin, FeedForward
from ..attention_dispatch import dispatch_attention_fn
@@ -581,6 +581,7 @@ class BriaTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOrig
self.gradient_checkpointing = False
@apply_lora_scale("attention_kwargs")
def forward(
self,
hidden_states: torch.Tensor,
@@ -621,20 +622,6 @@ class BriaTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOrig
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
`tuple` where the first element is the sample tensor.
"""
if attention_kwargs is not None:
attention_kwargs = attention_kwargs.copy()
lora_scale = attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
logger.warning(
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
)
hidden_states = self.x_embedder(hidden_states)
timestep = timestep.to(hidden_states.dtype)
@@ -715,10 +702,6 @@ class BriaTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOrig
hidden_states = self.norm_out(hidden_states, temb)
output = self.proj_out(hidden_states)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (output,)

View File

@@ -22,10 +22,8 @@ from ...models.modeling_outputs import Transformer2DModelOutput
from ...models.modeling_utils import ModelMixin
from ...models.transformers.transformer_bria import BriaAttnProcessor
from ...utils import (
USE_PEFT_BACKEND,
apply_lora_scale,
logging,
scale_lora_layers,
unscale_lora_layers,
)
from ...utils.torch_utils import maybe_allow_in_graph
from ..attention import AttentionModuleMixin, FeedForward
@@ -510,6 +508,7 @@ class BriaFiboTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, From
]
self.caption_projection = nn.ModuleList(caption_projection)
@apply_lora_scale("joint_attention_kwargs")
def forward(
self,
hidden_states: torch.Tensor,
@@ -545,20 +544,7 @@ class BriaFiboTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, From
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
`tuple` where the first element is the sample tensor.
"""
if joint_attention_kwargs is not None:
joint_attention_kwargs = joint_attention_kwargs.copy()
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
logger.warning(
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
)
hidden_states = self.x_embedder(hidden_states)
timestep = timestep.to(hidden_states.dtype)
@@ -645,10 +631,6 @@ class BriaFiboTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, From
hidden_states = self.norm_out(hidden_states, temb)
output = self.proj_out(hidden_states)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (output,)

View File

@@ -21,7 +21,7 @@ import torch.nn as nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import FluxTransformer2DLoadersMixin, FromOriginalModelMixin, PeftAdapterMixin
from ...utils import USE_PEFT_BACKEND, deprecate, logging, scale_lora_layers, unscale_lora_layers
from ...utils import apply_lora_scale, deprecate, logging
from ...utils.import_utils import is_torch_npu_available
from ...utils.torch_utils import maybe_allow_in_graph
from ..attention import AttentionMixin, FeedForward
@@ -473,6 +473,7 @@ class ChromaTransformer2DModel(
self.gradient_checkpointing = False
@apply_lora_scale("joint_attention_kwargs")
def forward(
self,
hidden_states: torch.Tensor,
@@ -511,20 +512,6 @@ class ChromaTransformer2DModel(
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
`tuple` where the first element is the sample tensor.
"""
if joint_attention_kwargs is not None:
joint_attention_kwargs = joint_attention_kwargs.copy()
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
logger.warning(
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
)
hidden_states = self.x_embedder(hidden_states)
@@ -631,10 +618,6 @@ class ChromaTransformer2DModel(
hidden_states = self.norm_out(hidden_states, temb)
output = self.proj_out(hidden_states)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (output,)

View File

@@ -21,7 +21,7 @@ import torch.nn.functional as F
from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import FromOriginalModelMixin, PeftAdapterMixin
from ...utils import USE_PEFT_BACKEND, deprecate, logging, scale_lora_layers, unscale_lora_layers
from ...utils import apply_lora_scale, deprecate, logging
from ...utils.torch_utils import maybe_allow_in_graph
from .._modeling_parallel import ContextParallelInput, ContextParallelOutput
from ..attention import AttentionMixin, AttentionModuleMixin, FeedForward
@@ -638,6 +638,7 @@ class ChronoEditTransformer3DModel(
self.gradient_checkpointing = False
@apply_lora_scale("attention_kwargs")
def forward(
self,
hidden_states: torch.Tensor,
@@ -647,21 +648,6 @@ class ChronoEditTransformer3DModel(
return_dict: bool = True,
attention_kwargs: Optional[Dict[str, Any]] = None,
) -> Union[torch.Tensor, Dict[str, torch.Tensor]]:
if attention_kwargs is not None:
attention_kwargs = attention_kwargs.copy()
lora_scale = attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
logger.warning(
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
)
batch_size, num_channels, num_frames, height, width = hidden_states.shape
p_t, p_h, p_w = self.config.patch_size
post_patch_num_frames = num_frames // p_t
@@ -729,10 +715,6 @@ class ChronoEditTransformer3DModel(
hidden_states = hidden_states.permute(0, 7, 1, 4, 2, 5, 3, 6)
output = hidden_states.flatten(6, 7).flatten(4, 5).flatten(2, 3)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (output,)

View File

@@ -20,7 +20,7 @@ import torch.nn.functional as F
from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import PeftAdapterMixin
from ...utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
from ...utils import apply_lora_scale, logging
from ...utils.torch_utils import maybe_allow_in_graph
from ..attention import FeedForward
from ..attention_processor import Attention
@@ -703,6 +703,7 @@ class CogView4Transformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, Cach
self.gradient_checkpointing = False
@apply_lora_scale("attention_kwargs")
def forward(
self,
hidden_states: torch.Tensor,
@@ -718,21 +719,6 @@ class CogView4Transformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, Cach
Union[Tuple[torch.Tensor, torch.Tensor], List[Tuple[torch.Tensor, torch.Tensor]]]
] = None,
) -> Union[Tuple[torch.Tensor], Transformer2DModelOutput]:
if attention_kwargs is not None:
attention_kwargs = attention_kwargs.copy()
lora_scale = attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
logger.warning(
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
)
batch_size, num_channels, height, width = hidden_states.shape
# 1. RoPE
@@ -779,10 +765,6 @@ class CogView4Transformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, Cach
hidden_states = hidden_states.reshape(batch_size, post_patch_height, post_patch_width, -1, p, p)
output = hidden_states.permute(0, 3, 1, 4, 2, 5).flatten(4, 5).flatten(2, 3)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (output,)
return Transformer2DModelOutput(sample=output)

View File

@@ -22,7 +22,7 @@ import torch.nn.functional as F
from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import FluxTransformer2DLoadersMixin, FromOriginalModelMixin, PeftAdapterMixin
from ...utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
from ...utils import apply_lora_scale, logging
from ...utils.torch_utils import maybe_allow_in_graph
from .._modeling_parallel import ContextParallelInput, ContextParallelOutput
from ..attention import AttentionMixin, AttentionModuleMixin, FeedForward
@@ -634,6 +634,7 @@ class FluxTransformer2DModel(
self.gradient_checkpointing = False
@apply_lora_scale("joint_attention_kwargs")
def forward(
self,
hidden_states: torch.Tensor,
@@ -675,20 +676,6 @@ class FluxTransformer2DModel(
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
`tuple` where the first element is the sample tensor.
"""
if joint_attention_kwargs is not None:
joint_attention_kwargs = joint_attention_kwargs.copy()
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
logger.warning(
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
)
hidden_states = self.x_embedder(hidden_states)
@@ -785,10 +772,6 @@ class FluxTransformer2DModel(
hidden_states = self.norm_out(hidden_states, temb)
output = self.proj_out(hidden_states)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (output,)

View File

@@ -21,7 +21,7 @@ import torch.nn.functional as F
from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import FluxTransformer2DLoadersMixin, FromOriginalModelMixin, PeftAdapterMixin
from ...utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
from ...utils import apply_lora_scale, logging
from .._modeling_parallel import ContextParallelInput, ContextParallelOutput
from ..attention import AttentionMixin, AttentionModuleMixin
from ..attention_dispatch import dispatch_attention_fn
@@ -774,6 +774,7 @@ class Flux2Transformer2DModel(
self.gradient_checkpointing = False
@apply_lora_scale("joint_attention_kwargs")
def forward(
self,
hidden_states: torch.Tensor,
@@ -810,20 +811,6 @@ class Flux2Transformer2DModel(
`tuple` where the first element is the sample tensor.
"""
# 0. Handle input arguments
if joint_attention_kwargs is not None:
joint_attention_kwargs = joint_attention_kwargs.copy()
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
logger.warning(
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
)
num_txt_tokens = encoder_hidden_states.shape[1]
@@ -908,10 +895,6 @@ class Flux2Transformer2DModel(
hidden_states = self.norm_out(hidden_states, temb)
output = self.proj_out(hidden_states)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (output,)

View File

@@ -8,7 +8,7 @@ from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import FromOriginalModelMixin, PeftAdapterMixin
from ...models.modeling_outputs import Transformer2DModelOutput
from ...models.modeling_utils import ModelMixin
from ...utils import USE_PEFT_BACKEND, deprecate, logging, scale_lora_layers, unscale_lora_layers
from ...utils import apply_lora_scale, deprecate, logging
from ...utils.torch_utils import maybe_allow_in_graph
from ..attention import Attention
from ..embeddings import TimestepEmbedding, Timesteps
@@ -773,6 +773,7 @@ class HiDreamImageTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin,
return hidden_states, hidden_states_masks, img_sizes, img_ids
@apply_lora_scale("attention_kwargs")
def forward(
self,
hidden_states: torch.Tensor,
@@ -808,21 +809,6 @@ class HiDreamImageTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin,
"if `hidden_states_masks` is passed, `hidden_states` must be a 3D tensors with shape (batch_size, patch_height * patch_width, patch_size * patch_size * channels)"
)
if attention_kwargs is not None:
attention_kwargs = attention_kwargs.copy()
lora_scale = attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
logger.warning(
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
)
# spatial forward
batch_size = hidden_states.shape[0]
hidden_states_type = hidden_states.dtype
@@ -933,10 +919,6 @@ class HiDreamImageTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin,
if hidden_states_masks is not None:
hidden_states_masks = hidden_states_masks[:, :image_tokens_seq_len]
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (output,)
return Transformer2DModelOutput(sample=output)

View File

@@ -22,7 +22,7 @@ from diffusers.loaders import FromOriginalModelMixin
from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import PeftAdapterMixin
from ...utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
from ...utils import apply_lora_scale, logging
from ..attention import AttentionMixin, FeedForward
from ..attention_dispatch import dispatch_attention_fn
from ..attention_processor import Attention
@@ -989,6 +989,7 @@ class HunyuanVideoTransformer3DModel(
self.gradient_checkpointing = False
@apply_lora_scale("attention_kwargs")
def forward(
self,
hidden_states: torch.Tensor,
@@ -1000,21 +1001,6 @@ class HunyuanVideoTransformer3DModel(
attention_kwargs: Optional[Dict[str, Any]] = None,
return_dict: bool = True,
) -> Union[Tuple[torch.Tensor], Transformer2DModelOutput]:
if attention_kwargs is not None:
attention_kwargs = attention_kwargs.copy()
lora_scale = attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
logger.warning(
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
)
batch_size, num_channels, num_frames, height, width = hidden_states.shape
p, p_t = self.config.patch_size, self.config.patch_size_t
post_patch_num_frames = num_frames // p_t
@@ -1104,10 +1090,6 @@ class HunyuanVideoTransformer3DModel(
hidden_states = hidden_states.permute(0, 4, 1, 5, 2, 6, 3, 7)
hidden_states = hidden_states.flatten(6, 7).flatten(4, 5).flatten(2, 3)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (hidden_states,)

View File

@@ -22,7 +22,7 @@ from diffusers.loaders import FromOriginalModelMixin
from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import PeftAdapterMixin
from ...utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
from ...utils import apply_lora_scale, logging
from ..attention import AttentionMixin, FeedForward
from ..attention_dispatch import dispatch_attention_fn
from ..attention_processor import Attention
@@ -620,6 +620,7 @@ class HunyuanVideo15Transformer3DModel(
self.gradient_checkpointing = False
@apply_lora_scale("attention_kwargs")
def forward(
self,
hidden_states: torch.Tensor,
@@ -633,21 +634,6 @@ class HunyuanVideo15Transformer3DModel(
attention_kwargs: Optional[Dict[str, Any]] = None,
return_dict: bool = True,
) -> Union[Tuple[torch.Tensor], Transformer2DModelOutput]:
if attention_kwargs is not None:
attention_kwargs = attention_kwargs.copy()
lora_scale = attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
logger.warning(
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
)
batch_size, num_channels, num_frames, height, width = hidden_states.shape
p_t, p_h, p_w = self.config.patch_size_t, self.config.patch_size, self.config.patch_size
post_patch_num_frames = num_frames // p_t
@@ -783,10 +769,6 @@ class HunyuanVideo15Transformer3DModel(
hidden_states = hidden_states.permute(0, 4, 1, 5, 2, 6, 3, 7)
hidden_states = hidden_states.flatten(6, 7).flatten(4, 5).flatten(2, 3)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (hidden_states,)

View File

@@ -20,7 +20,7 @@ import torch.nn.functional as F
from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import FromOriginalModelMixin, PeftAdapterMixin
from ...utils import USE_PEFT_BACKEND, get_logger, scale_lora_layers, unscale_lora_layers
from ...utils import apply_lora_scale, get_logger
from ..cache_utils import CacheMixin
from ..embeddings import get_1d_rotary_pos_embed
from ..modeling_outputs import Transformer2DModelOutput
@@ -198,6 +198,7 @@ class HunyuanVideoFramepackTransformer3DModel(
self.gradient_checkpointing = False
@apply_lora_scale("attention_kwargs")
def forward(
self,
hidden_states: torch.Tensor,
@@ -217,21 +218,6 @@ class HunyuanVideoFramepackTransformer3DModel(
attention_kwargs: Optional[Dict[str, Any]] = None,
return_dict: bool = True,
) -> Union[Tuple[torch.Tensor], Transformer2DModelOutput]:
if attention_kwargs is not None:
attention_kwargs = attention_kwargs.copy()
lora_scale = attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
logger.warning(
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
)
batch_size, num_channels, num_frames, height, width = hidden_states.shape
p, p_t = self.config.patch_size, self.config.patch_size_t
post_patch_num_frames = num_frames // p_t
@@ -337,10 +323,6 @@ class HunyuanVideoFramepackTransformer3DModel(
hidden_states = hidden_states.permute(0, 4, 1, 5, 2, 6, 3, 7)
hidden_states = hidden_states.flatten(6, 7).flatten(4, 5).flatten(2, 3)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (hidden_states,)
return Transformer2DModelOutput(sample=hidden_states)

View File

@@ -23,7 +23,7 @@ from diffusers.loaders import FromOriginalModelMixin
from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import PeftAdapterMixin
from ...utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
from ...utils import apply_lora_scale, logging
from ...utils.torch_utils import maybe_allow_in_graph
from ..attention import AttentionMixin, FeedForward
from ..attention_dispatch import dispatch_attention_fn
@@ -742,6 +742,7 @@ class HunyuanImageTransformer2DModel(
self.gradient_checkpointing = False
@apply_lora_scale("attention_kwargs")
def forward(
self,
hidden_states: torch.Tensor,
@@ -755,21 +756,6 @@ class HunyuanImageTransformer2DModel(
attention_kwargs: Optional[Dict[str, Any]] = None,
return_dict: bool = True,
) -> Union[torch.Tensor, Dict[str, torch.Tensor]]:
if attention_kwargs is not None:
attention_kwargs = attention_kwargs.copy()
lora_scale = attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
logger.warning(
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
)
if hidden_states.ndim == 4:
batch_size, channels, height, width = hidden_states.shape
sizes = (height, width)
@@ -900,10 +886,6 @@ class HunyuanImageTransformer2DModel(
]
hidden_states = hidden_states.reshape(*final_dims)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (hidden_states,)

View File

@@ -22,7 +22,7 @@ import torch.nn as nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import FromOriginalModelMixin, PeftAdapterMixin
from ...utils import USE_PEFT_BACKEND, deprecate, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
from ...utils import apply_lora_scale, deprecate, is_torch_version, logging
from ...utils.torch_utils import maybe_allow_in_graph
from .._modeling_parallel import ContextParallelInput, ContextParallelOutput
from ..attention import AttentionMixin, AttentionModuleMixin, FeedForward
@@ -491,6 +491,7 @@ class LTXVideoTransformer3DModel(
self.gradient_checkpointing = False
@apply_lora_scale("attention_kwargs")
def forward(
self,
hidden_states: torch.Tensor,
@@ -505,21 +506,6 @@ class LTXVideoTransformer3DModel(
attention_kwargs: Optional[Dict[str, Any]] = None,
return_dict: bool = True,
) -> torch.Tensor:
if attention_kwargs is not None:
attention_kwargs = attention_kwargs.copy()
lora_scale = attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
logger.warning(
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
)
image_rotary_emb = self.rope(hidden_states, num_frames, height, width, rope_interpolation_scale, video_coords)
# convert encoder_attention_mask to a bias the same way we do for attention_mask
@@ -568,10 +554,6 @@ class LTXVideoTransformer3DModel(
hidden_states = hidden_states * (1 + scale) + shift
output = self.proj_out(hidden_states)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (output,)
return Transformer2DModelOutput(sample=output)

View File

@@ -22,14 +22,7 @@ import torch.nn as nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import FromOriginalModelMixin, PeftAdapterMixin
from ...utils import (
USE_PEFT_BACKEND,
BaseOutput,
is_torch_version,
logging,
scale_lora_layers,
unscale_lora_layers,
)
from ...utils import BaseOutput, apply_lora_scale, is_torch_version, logging
from .._modeling_parallel import ContextParallelInput, ContextParallelOutput
from ..attention import AttentionMixin, AttentionModuleMixin, FeedForward
from ..attention_dispatch import dispatch_attention_fn
@@ -1101,6 +1094,7 @@ class LTX2VideoTransformer3DModel(
self.gradient_checkpointing = False
@apply_lora_scale("attention_kwargs")
def forward(
self,
hidden_states: torch.Tensor,
@@ -1171,21 +1165,6 @@ class LTX2VideoTransformer3DModel(
`tuple` is returned where the first element is the denoised video latent patch sequence and the second
element is the denoised audio latent patch sequence.
"""
if attention_kwargs is not None:
attention_kwargs = attention_kwargs.copy()
lora_scale = attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
logger.warning(
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
)
# Determine timestep for audio.
audio_timestep = audio_timestep if audio_timestep is not None else timestep
@@ -1341,10 +1320,6 @@ class LTX2VideoTransformer3DModel(
audio_hidden_states = audio_hidden_states * (1 + audio_scale) + audio_shift
audio_output = self.audio_proj_out(audio_hidden_states)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (output, audio_output)
return AudioVisualModelOutput(sample=output, audio_sample=audio_output)

View File

@@ -22,7 +22,7 @@ import torch.nn.functional as F
from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import PeftAdapterMixin
from ...loaders.single_file_model import FromOriginalModelMixin
from ...utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
from ...utils import apply_lora_scale, logging
from ..attention import LuminaFeedForward
from ..attention_processor import Attention
from ..embeddings import TimestepEmbedding, Timesteps, apply_rotary_emb, get_1d_rotary_pos_embed
@@ -455,6 +455,7 @@ class Lumina2Transformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromO
self.gradient_checkpointing = False
@apply_lora_scale("attention_kwargs")
def forward(
self,
hidden_states: torch.Tensor,
@@ -464,21 +465,6 @@ class Lumina2Transformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromO
attention_kwargs: Optional[Dict[str, Any]] = None,
return_dict: bool = True,
) -> Union[torch.Tensor, Transformer2DModelOutput]:
if attention_kwargs is not None:
attention_kwargs = attention_kwargs.copy()
lora_scale = attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
logger.warning(
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
)
# 1. Condition, positional & patch embedding
batch_size, _, height, width = hidden_states.shape
@@ -539,10 +525,6 @@ class Lumina2Transformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromO
)
output = torch.stack(output, dim=0)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (output,)
return Transformer2DModelOutput(sample=output)

View File

@@ -21,7 +21,7 @@ import torch.nn as nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import PeftAdapterMixin
from ...loaders.single_file_model import FromOriginalModelMixin
from ...utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
from ...utils import apply_lora_scale, logging
from ...utils.torch_utils import maybe_allow_in_graph
from ..attention import FeedForward
from ..attention_processor import MochiAttention, MochiAttnProcessor2_0
@@ -404,6 +404,7 @@ class MochiTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOri
self.gradient_checkpointing = False
@apply_lora_scale("attention_kwargs")
def forward(
self,
hidden_states: torch.Tensor,
@@ -413,21 +414,6 @@ class MochiTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOri
attention_kwargs: Optional[Dict[str, Any]] = None,
return_dict: bool = True,
) -> torch.Tensor:
if attention_kwargs is not None:
attention_kwargs = attention_kwargs.copy()
lora_scale = attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
logger.warning(
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
)
batch_size, num_channels, num_frames, height, width = hidden_states.shape
p = self.config.patch_size
@@ -479,10 +465,6 @@ class MochiTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOri
hidden_states = hidden_states.permute(0, 6, 1, 2, 4, 3, 5)
output = hidden_states.reshape(batch_size, -1, num_frames, height, width)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (output,)
return Transformer2DModelOutput(sample=output)

View File

@@ -24,7 +24,7 @@ import torch.nn.functional as F
from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import FromOriginalModelMixin, PeftAdapterMixin
from ...utils import USE_PEFT_BACKEND, deprecate, logging, scale_lora_layers, unscale_lora_layers
from ...utils import apply_lora_scale, deprecate, logging
from ...utils.torch_utils import maybe_allow_in_graph
from .._modeling_parallel import ContextParallelInput, ContextParallelOutput
from ..attention import AttentionMixin, FeedForward
@@ -829,6 +829,7 @@ class QwenImageTransformer2DModel(
self.gradient_checkpointing = False
self.zero_cond_t = zero_cond_t
@apply_lora_scale("attention_kwargs")
def forward(
self,
hidden_states: torch.Tensor,
@@ -887,20 +888,6 @@ class QwenImageTransformer2DModel(
"The mask-based approach is more flexible and supports variable-length sequences.",
standard_warn=False,
)
if attention_kwargs is not None:
attention_kwargs = attention_kwargs.copy()
lora_scale = attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
logger.warning(
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
)
hidden_states = self.img_in(hidden_states)
@@ -981,10 +968,6 @@ class QwenImageTransformer2DModel(
hidden_states = self.norm_out(hidden_states, temb)
output = self.proj_out(hidden_states)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (output,)

View File

@@ -21,7 +21,7 @@ from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import FromOriginalModelMixin, PeftAdapterMixin
from ...utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
from ...utils import apply_lora_scale, logging
from ..attention import AttentionMixin
from ..attention_dispatch import dispatch_attention_fn
from ..attention_processor import Attention
@@ -570,6 +570,7 @@ class SanaVideoTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, Fro
self.gradient_checkpointing = False
@apply_lora_scale("attention_kwargs")
def forward(
self,
hidden_states: torch.Tensor,
@@ -582,21 +583,6 @@ class SanaVideoTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, Fro
controlnet_block_samples: Optional[Tuple[torch.Tensor]] = None,
return_dict: bool = True,
) -> Union[Tuple[torch.Tensor, ...], Transformer2DModelOutput]:
if attention_kwargs is not None:
attention_kwargs = attention_kwargs.copy()
lora_scale = attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
logger.warning(
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
)
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
@@ -695,10 +681,6 @@ class SanaVideoTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, Fro
hidden_states = hidden_states.permute(0, 7, 1, 4, 2, 5, 3, 6)
output = hidden_states.flatten(6, 7).flatten(4, 5).flatten(2, 3)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (output,)

View File

@@ -18,7 +18,7 @@ import torch.nn as nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import FromOriginalModelMixin, PeftAdapterMixin, SD3Transformer2DLoadersMixin
from ...utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
from ...utils import apply_lora_scale, logging
from ...utils.torch_utils import maybe_allow_in_graph
from ..attention import AttentionMixin, FeedForward, JointTransformerBlock
from ..attention_processor import (
@@ -245,6 +245,7 @@ class SD3Transformer2DModel(
if self.original_attn_processors is not None:
self.set_attn_processor(self.original_attn_processors)
@apply_lora_scale("joint_attention_kwargs")
def forward(
self,
hidden_states: torch.Tensor,
@@ -284,20 +285,6 @@ class SD3Transformer2DModel(
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
`tuple` where the first element is the sample tensor.
"""
if joint_attention_kwargs is not None:
joint_attention_kwargs = joint_attention_kwargs.copy()
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
logger.warning(
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
)
height, width = hidden_states.shape[-2:]
@@ -352,10 +339,6 @@ class SD3Transformer2DModel(
shape=(hidden_states.shape[0], self.out_channels, height * patch_size, width * patch_size)
)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (output,)

View File

@@ -21,7 +21,7 @@ import torch.nn.functional as F
from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import FromOriginalModelMixin, PeftAdapterMixin
from ...utils import USE_PEFT_BACKEND, deprecate, logging, scale_lora_layers, unscale_lora_layers
from ...utils import apply_lora_scale, deprecate, logging
from ...utils.torch_utils import maybe_allow_in_graph
from ..attention import AttentionMixin, AttentionModuleMixin, FeedForward
from ..attention_dispatch import dispatch_attention_fn
@@ -630,6 +630,7 @@ class SkyReelsV2Transformer3DModel(
self.gradient_checkpointing = False
@apply_lora_scale("attention_kwargs")
def forward(
self,
hidden_states: torch.Tensor,
@@ -641,21 +642,6 @@ class SkyReelsV2Transformer3DModel(
return_dict: bool = True,
attention_kwargs: Optional[Dict[str, Any]] = None,
) -> Union[torch.Tensor, Dict[str, torch.Tensor]]:
if attention_kwargs is not None:
attention_kwargs = attention_kwargs.copy()
lora_scale = attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
logger.warning(
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
)
batch_size, num_channels, num_frames, height, width = hidden_states.shape
p_t, p_h, p_w = self.config.patch_size
post_patch_num_frames = num_frames // p_t
@@ -771,10 +757,6 @@ class SkyReelsV2Transformer3DModel(
hidden_states = hidden_states.permute(0, 7, 1, 4, 2, 5, 3, 6)
output = hidden_states.flatten(6, 7).flatten(4, 5).flatten(2, 3)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (output,)

View File

@@ -21,7 +21,7 @@ import torch.nn.functional as F
from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import FromOriginalModelMixin, PeftAdapterMixin
from ...utils import USE_PEFT_BACKEND, deprecate, logging, scale_lora_layers, unscale_lora_layers
from ...utils import apply_lora_scale, deprecate, logging
from ...utils.torch_utils import maybe_allow_in_graph
from .._modeling_parallel import ContextParallelInput, ContextParallelOutput
from ..attention import AttentionMixin, AttentionModuleMixin, FeedForward
@@ -622,6 +622,7 @@ class WanTransformer3DModel(
self.gradient_checkpointing = False
@apply_lora_scale("attention_kwargs")
def forward(
self,
hidden_states: torch.Tensor,
@@ -631,21 +632,6 @@ class WanTransformer3DModel(
return_dict: bool = True,
attention_kwargs: Optional[Dict[str, Any]] = None,
) -> Union[torch.Tensor, Dict[str, torch.Tensor]]:
if attention_kwargs is not None:
attention_kwargs = attention_kwargs.copy()
lora_scale = attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
logger.warning(
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
)
batch_size, num_channels, num_frames, height, width = hidden_states.shape
p_t, p_h, p_w = self.config.patch_size
post_patch_num_frames = num_frames // p_t
@@ -713,10 +699,6 @@ class WanTransformer3DModel(
hidden_states = hidden_states.permute(0, 7, 1, 4, 2, 5, 3, 6)
output = hidden_states.flatten(6, 7).flatten(4, 5).flatten(2, 3)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (output,)

View File

@@ -21,7 +21,7 @@ import torch.nn.functional as F
from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import FromOriginalModelMixin, PeftAdapterMixin
from ...utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
from ...utils import apply_lora_scale, logging
from ..attention import AttentionMixin, AttentionModuleMixin, FeedForward
from ..attention_dispatch import dispatch_attention_fn
from ..cache_utils import CacheMixin
@@ -1141,6 +1141,7 @@ class WanAnimateTransformer3DModel(
self.gradient_checkpointing = False
@apply_lora_scale("attention_kwargs")
def forward(
self,
hidden_states: torch.Tensor,
@@ -1179,21 +1180,6 @@ class WanAnimateTransformer3DModel(
Whether to return the output as a dict or tuple.
"""
if attention_kwargs is not None:
attention_kwargs = attention_kwargs.copy()
lora_scale = attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
logger.warning(
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
)
# Check that shapes match up
if pose_hidden_states is not None and pose_hidden_states.shape[2] + 1 != hidden_states.shape[2]:
raise ValueError(
@@ -1294,10 +1280,6 @@ class WanAnimateTransformer3DModel(
hidden_states = hidden_states.permute(0, 7, 1, 4, 2, 5, 3, 6)
output = hidden_states.flatten(6, 7).flatten(4, 5).flatten(2, 3)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (output,)

View File

@@ -20,7 +20,7 @@ import torch.nn as nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import FromOriginalModelMixin, PeftAdapterMixin
from ...utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
from ...utils import apply_lora_scale, logging
from ..attention import AttentionMixin, FeedForward
from ..cache_utils import CacheMixin
from ..modeling_outputs import Transformer2DModelOutput
@@ -261,6 +261,7 @@ class WanVACETransformer3DModel(
self.gradient_checkpointing = False
@apply_lora_scale("attention_kwargs")
def forward(
self,
hidden_states: torch.Tensor,
@@ -272,21 +273,6 @@ class WanVACETransformer3DModel(
return_dict: bool = True,
attention_kwargs: Optional[Dict[str, Any]] = None,
) -> Union[torch.Tensor, Dict[str, torch.Tensor]]:
if attention_kwargs is not None:
attention_kwargs = attention_kwargs.copy()
lora_scale = attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
logger.warning(
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
)
batch_size, num_channels, num_frames, height, width = hidden_states.shape
p_t, p_h, p_w = self.config.patch_size
post_patch_num_frames = num_frames // p_t
@@ -379,10 +365,6 @@ class WanVACETransformer3DModel(
hidden_states = hidden_states.permute(0, 7, 1, 4, 2, 5, 3, 6)
output = hidden_states.flatten(6, 7).flatten(4, 5).flatten(2, 3)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (output,)

View File

@@ -20,7 +20,12 @@ import torch.nn as nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import PeftAdapterMixin, UNet2DConditionLoadersMixin
from ...loaders.single_file_model import FromOriginalModelMixin
from ...utils import USE_PEFT_BACKEND, BaseOutput, deprecate, logging, scale_lora_layers, unscale_lora_layers
from ...utils import (
BaseOutput,
apply_lora_scale,
deprecate,
logging,
)
from ..activations import get_activation
from ..attention import AttentionMixin
from ..attention_processor import (
@@ -974,6 +979,7 @@ class UNet2DConditionModel(
encoder_hidden_states = (encoder_hidden_states, image_embeds)
return encoder_hidden_states
@apply_lora_scale("cross_attention_kwargs")
def forward(
self,
sample: torch.Tensor,
@@ -1112,18 +1118,6 @@ class UNet2DConditionModel(
cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)}
# 3. down
# we're popping the `scale` instead of getting it because otherwise `scale` will be propagated
# to the internal blocks and will raise deprecation warnings. this will be confusing for our users.
if cross_attention_kwargs is not None:
cross_attention_kwargs = cross_attention_kwargs.copy()
lora_scale = cross_attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
# using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets
is_adapter = down_intrablock_additional_residuals is not None
@@ -1239,10 +1233,6 @@ class UNet2DConditionModel(
sample = self.conv_act(sample)
sample = self.conv_out(sample)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (sample,)

View File

@@ -21,7 +21,7 @@ import torch.nn.functional as F
from ...configuration_utils import ConfigMixin, FrozenDict, register_to_config
from ...loaders import FromOriginalModelMixin, PeftAdapterMixin, UNet2DConditionLoadersMixin
from ...utils import BaseOutput, deprecate, logging
from ...utils import BaseOutput, apply_lora_scale, deprecate, logging
from ...utils.torch_utils import apply_freeu
from ..attention import AttentionMixin, BasicTransformerBlock
from ..attention_processor import (
@@ -1875,6 +1875,7 @@ class UNetMotionModel(ModelMixin, AttentionMixin, ConfigMixin, UNet2DConditionLo
if self.original_attn_processors is not None:
self.set_attn_processor(self.original_attn_processors)
@apply_lora_scale("cross_attention_kwargs")
def forward(
self,
sample: torch.Tensor,

View File

@@ -21,6 +21,7 @@ from torch.utils.checkpoint import checkpoint
from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import PeftAdapterMixin
from ...utils import apply_lora_scale
from ..attention import AttentionMixin, BasicTransformerBlock, SkipFFTransformerBlock
from ..attention_processor import (
ADDED_KV_ATTENTION_PROCESSORS,
@@ -146,6 +147,7 @@ class UVit2DModel(ModelMixin, AttentionMixin, ConfigMixin, PeftAdapterMixin):
self.gradient_checkpointing = False
@apply_lora_scale("cross_attention_kwargs")
def forward(self, input_ids, encoder_hidden_states, pooled_text_emb, micro_conds, cross_attention_kwargs=None):
encoder_hidden_states = self.encoder_proj(encoder_hidden_states)
encoder_hidden_states = self.encoder_proj_layer_norm(encoder_hidden_states)

View File

@@ -324,6 +324,7 @@ class ComponentsManager:
"has_hook",
"execution_device",
"ip_adapter",
"quantization",
]
def __init__(self):
@@ -356,7 +357,9 @@ class ComponentsManager:
ids_by_name.add(component_id)
else:
ids_by_name = set(components.keys())
if collection:
if collection and collection not in self.collections:
return set()
elif collection and collection in self.collections:
ids_by_collection = set()
for component_id, component in components.items():
if component_id in self.collections[collection]:
@@ -423,7 +426,8 @@ class ComponentsManager:
# add component to components manager
self.components[component_id] = component
self.added_time[component_id] = time.time()
if is_new_component:
self.added_time[component_id] = time.time()
if collection:
if collection not in self.collections:
@@ -760,7 +764,6 @@ class ComponentsManager:
self.model_hooks = None
self._auto_offload_enabled = False
# YiYi TODO: (1) add quantization info
def get_model_info(
self,
component_id: str,
@@ -836,6 +839,17 @@ class ComponentsManager:
if scales:
info["ip_adapter"] = summarize_dict_by_value_and_parts(scales)
# Check for quantization
hf_quantizer = getattr(component, "hf_quantizer", None)
if hf_quantizer is not None:
quant_config = hf_quantizer.quantization_config
if hasattr(quant_config, "to_diff_dict"):
info["quantization"] = quant_config.to_diff_dict()
else:
info["quantization"] = quant_config.to_dict()
else:
info["quantization"] = None
# If fields specified, filter info
if fields is not None:
return {k: v for k, v in info.items() if k in fields}
@@ -966,12 +980,16 @@ class ComponentsManager:
output += "\nAdditional Component Info:\n" + "=" * 50 + "\n"
for name in self.components:
info = self.get_model_info(name)
if info is not None and (info.get("adapters") is not None or info.get("ip_adapter")):
if info is not None and (
info.get("adapters") is not None or info.get("ip_adapter") or info.get("quantization")
):
output += f"\n{name}:\n"
if info.get("adapters") is not None:
output += f" Adapters: {info['adapters']}\n"
if info.get("ip_adapter"):
output += " IP-Adapter: Enabled\n"
if info.get("quantization"):
output += f" Quantization: {info['quantization']}\n"
return output

File diff suppressed because it is too large Load Diff

View File

@@ -2143,6 +2143,8 @@ class ModularPipeline(ConfigMixin, PushToHubMixin):
name
for name in self._component_specs.keys()
if self._component_specs[name].default_creation_method == "from_pretrained"
and self._component_specs[name].pretrained_model_name_or_path is not None
and getattr(self, name, None) is None
]
elif isinstance(names, str):
names = [names]

View File

@@ -15,7 +15,7 @@
import inspect
import re
from collections import OrderedDict
from dataclasses import dataclass, field, fields
from dataclasses import dataclass, field
from typing import Any, Dict, List, Literal, Optional, Type, Union
import PIL.Image
@@ -23,7 +23,7 @@ import torch
from ..configuration_utils import ConfigMixin, FrozenDict
from ..loaders.single_file_utils import _is_single_file_path_or_url
from ..utils import is_torch_available, logging
from ..utils import DIFFUSERS_LOAD_ID_FIELDS, is_torch_available, logging
if is_torch_available():
@@ -186,7 +186,7 @@ class ComponentSpec:
"""
Return the names of all loadingrelated fields (i.e. those whose field.metadata["loading"] is True).
"""
return [f.name for f in fields(cls) if f.metadata.get("loading", False)]
return DIFFUSERS_LOAD_ID_FIELDS.copy()
@property
def load_id(self) -> str:
@@ -198,7 +198,7 @@ class ComponentSpec:
return "null"
parts = [getattr(self, k) for k in self.loading_fields()]
parts = ["null" if p is None else p for p in parts]
return "|".join(p for p in parts if p)
return "|".join(parts)
@classmethod
def decode_load_id(cls, load_id: str) -> Dict[str, Optional[str]]:
@@ -520,6 +520,7 @@ class InputParam:
required: bool = False
description: str = ""
kwargs_type: str = None
metadata: Dict[str, Any] = None
def __repr__(self):
return f"<{self.name}: {'required' if self.required else 'optional'}, default={self.default}>"
@@ -553,6 +554,7 @@ class OutputParam:
type_hint: Any = None
description: str = ""
kwargs_type: str = None
metadata: Dict[str, Any] = None
def __repr__(self):
return (

View File

@@ -23,6 +23,7 @@ from .constants import (
DEFAULT_HF_PARALLEL_LOADING_WORKERS,
DEPRECATED_REVISION_ARGS,
DIFFUSERS_DYNAMIC_MODULE_NAME,
DIFFUSERS_LOAD_ID_FIELDS,
FLAX_WEIGHTS_NAME,
GGUF_FILE_EXTENSION,
HF_ENABLE_PARALLEL_LOADING,
@@ -130,6 +131,7 @@ from .loading_utils import get_module_from_name, get_submodule_by_name, load_ima
from .logging import get_logger
from .outputs import BaseOutput
from .peft_utils import (
apply_lora_scale,
check_peft_version,
delete_adapter_layers,
get_adapter_name,

View File

@@ -73,3 +73,11 @@ DECODE_ENDPOINT_HUNYUAN_VIDEO = "https://o7ywnmrahorts457.us-east-1.aws.endpoint
ENCODE_ENDPOINT_SD_V1 = "https://qc6479g0aac6qwy9.us-east-1.aws.endpoints.huggingface.cloud/"
ENCODE_ENDPOINT_SD_XL = "https://xjqqhmyn62rog84g.us-east-1.aws.endpoints.huggingface.cloud/"
ENCODE_ENDPOINT_FLUX = "https://ptccx55jz97f9zgo.us-east-1.aws.endpoints.huggingface.cloud/"
DIFFUSERS_LOAD_ID_FIELDS = [
"pretrained_model_name_or_path",
"subfolder",
"variant",
"revision",
]

View File

@@ -16,6 +16,7 @@ PEFT utilities: Utilities related to peft library
"""
import collections
import functools
import importlib
from typing import Optional
@@ -275,6 +276,59 @@ def set_weights_and_activate_adapters(model, adapter_names, weights):
module.set_scale(adapter_name, get_module_weight(weight, module_name))
def apply_lora_scale(kwargs_name: str = "joint_attention_kwargs"):
"""
Decorator to automatically handle LoRA layer scaling/unscaling in forward methods.
This decorator extracts the `lora_scale` from the specified kwargs parameter, applies scaling before the forward
pass, and ensures unscaling happens after, even if an exception occurs.
Args:
kwargs_name (`str`, defaults to `"joint_attention_kwargs"`):
The name of the keyword argument that contains the LoRA scale. Common values include
"joint_attention_kwargs", "attention_kwargs", "cross_attention_kwargs", etc.
"""
def decorator(forward_fn):
@functools.wraps(forward_fn)
def wrapper(self, *args, **kwargs):
from . import USE_PEFT_BACKEND
lora_scale = 1.0
attention_kwargs = kwargs.get(kwargs_name)
if attention_kwargs is not None:
attention_kwargs = attention_kwargs.copy()
kwargs[kwargs_name] = attention_kwargs
lora_scale = attention_kwargs.pop("scale", 1.0)
else:
if (
not USE_PEFT_BACKEND
and attention_kwargs is not None
and attention_kwargs.get("scale", None) is not None
):
logger.warning(
f"Passing `scale` via `{kwargs_name}` when not using the PEFT backend is ineffective."
)
# Apply LoRA scaling if using PEFT backend
if USE_PEFT_BACKEND:
scale_lora_layers(self, lora_scale)
try:
# Execute the forward pass
result = forward_fn(self, *args, **kwargs)
return result
finally:
# Always unscale, even if forward pass raises an exception
if USE_PEFT_BACKEND:
unscale_lora_layers(self, lora_scale)
return wrapper
return decorator
def check_peft_version(min_version: str) -> None:
r"""
Checks if the version of PEFT is compatible.