mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-20 02:26:06 +08:00
Compare commits
295 Commits
unbloat-do
...
apply-lora
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
afa4a23c6c | ||
|
|
3996788b60 | ||
|
|
9fedfe58b7 | ||
|
|
ebf891a254 | ||
|
|
8af8e86bc7 | ||
|
|
74654df203 | ||
|
|
f112eab97e | ||
|
|
61f175660a | ||
|
|
7f43cb1d79 | ||
|
|
5efb81fa71 | ||
|
|
b351be2379 | ||
|
|
d8f4dd295f | ||
|
|
1ecfbfe12b | ||
|
|
d7fa445453 | ||
|
|
7feb4fc791 | ||
|
|
3c70440d26 | ||
|
|
7299121413 | ||
|
|
3114f6a796 | ||
|
|
9d68742214 | ||
|
|
f1a93c765f | ||
|
|
29a930a142 | ||
|
|
dad5cb55e6 | ||
|
|
b86bd99eac | ||
|
|
5b202111bf | ||
|
|
4ac2b4a521 | ||
|
|
418313bbf6 | ||
|
|
2120c3096f | ||
|
|
ed6e5ecf67 | ||
|
|
d44b5f86e6 | ||
|
|
02c7adc356 | ||
|
|
a3cc0e7a52 | ||
|
|
2a6cdc0b3e | ||
|
|
1791306739 | ||
|
|
df6516a716 | ||
|
|
5794ffffbe | ||
|
|
4fb44bdf91 | ||
|
|
b7a81582ae | ||
|
|
4b64b5603f | ||
|
|
2bb640f8ea | ||
|
|
2dc9d2af50 | ||
|
|
57e57cfae0 | ||
|
|
644169433f | ||
|
|
632765a5ee | ||
|
|
d36564f06a | ||
|
|
441b69eabf | ||
|
|
d568c9773f | ||
|
|
3981c955ce | ||
|
|
1903383e94 | ||
|
|
08f8b7af9a | ||
|
|
2f66edc880 | ||
|
|
be38f41f9f | ||
|
|
91e5134175 | ||
|
|
a812c87465 | ||
|
|
8b9f817ef5 | ||
|
|
b1f06b780a | ||
|
|
8600b4c10d | ||
|
|
c10bdd9b73 | ||
|
|
dab000e88b | ||
|
|
9fb6b89d49 | ||
|
|
6fb4c99f5a | ||
|
|
961b9b27d3 | ||
|
|
8f30bfff1f | ||
|
|
b4be29bda2 | ||
|
|
98479a94c2 | ||
|
|
ade1059ae2 | ||
|
|
41a6e86faf | ||
|
|
9b5a244653 | ||
|
|
417f6b2d33 | ||
|
|
e46354d2d0 | ||
|
|
db37140474 | ||
|
|
88ffb00139 | ||
|
|
b6098ca006 | ||
|
|
7c6d314549 | ||
|
|
3138e37fe6 | ||
|
|
0da1aa90b5 | ||
|
|
5ffb65803d | ||
|
|
d0ae34d313 | ||
|
|
47378066c0 | ||
|
|
208cda8f6d | ||
|
|
1cdb8723b8 | ||
|
|
f6b6a7181e | ||
|
|
52766e6a69 | ||
|
|
973a077c6a | ||
|
|
0c4f6c9cff | ||
|
|
262ce19bff | ||
|
|
f7753b1bc8 | ||
|
|
b5309683cb | ||
|
|
55463f7ace | ||
|
|
f9c1e612fb | ||
|
|
87f7d11143 | ||
|
|
5e48f466b9 | ||
|
|
a748a839ad | ||
|
|
58519283e7 | ||
|
|
0c1ccc0775 | ||
|
|
b8a4cbac14 | ||
|
|
17c0e79dbd | ||
|
|
1567243463 | ||
|
|
0eac64c7a6 | ||
|
|
10e820a2dd | ||
|
|
6708f5c76d | ||
|
|
be3c2a0667 | ||
|
|
8b4722de57 | ||
|
|
07ea0786e8 | ||
|
|
54fa0745c3 | ||
|
|
3d02cd543e | ||
|
|
2246d2c7c4 | ||
|
|
671149e036 | ||
|
|
f67639b0bb | ||
|
|
5a74319715 | ||
|
|
6290fdfda4 | ||
|
|
256e010674 | ||
|
|
8430ac2a2f | ||
|
|
bb9e713d02 | ||
|
|
c98c157a9e | ||
|
|
f12d161d67 | ||
|
|
8d415a6f48 | ||
|
|
7de51b826c | ||
|
|
cd00ba685b | ||
|
|
2842c14c5f | ||
|
|
c318686090 | ||
|
|
6028613226 | ||
|
|
a1f36ee3ef | ||
|
|
d96cbacacd | ||
|
|
5ab5946931 | ||
|
|
d0c54e5563 | ||
|
|
1908c47600 | ||
|
|
759ea58708 | ||
|
|
f48f9c250f | ||
|
|
3c05b9f71c | ||
|
|
9379b2391b | ||
|
|
4f136f842c | ||
|
|
edf36f5128 | ||
|
|
564079f295 | ||
|
|
394a48d169 | ||
|
|
99784ae0d2 | ||
|
|
fffd964a0f | ||
|
|
859b809031 | ||
|
|
d769d8a13b | ||
|
|
c25582d509 | ||
|
|
6156cf8f22 | ||
|
|
152f7ca357 | ||
|
|
b010a8ce0c | ||
|
|
1b91856d0e | ||
|
|
01e355516b | ||
|
|
6bf668c4d2 | ||
|
|
e6d4612309 | ||
|
|
a88a7b4f03 | ||
|
|
c8656ed73c | ||
|
|
94c9613f99 | ||
|
|
b91e8c0d0b | ||
|
|
ac7864624b | ||
|
|
5ffb73d4ae | ||
|
|
4088e8a851 | ||
|
|
d33d9f6715 | ||
|
|
dde8754ba2 | ||
|
|
fbcd3ba6b2 | ||
|
|
d176f61fcf | ||
|
|
354d35adb0 | ||
|
|
544ba677dd | ||
|
|
6f1042e36c | ||
|
|
d5da453de5 | ||
|
|
15370f8412 | ||
|
|
a96b145304 | ||
|
|
6d8973ffe2 | ||
|
|
ab71f3c864 | ||
|
|
b7df4a5387 | ||
|
|
67dc65e2e3 | ||
|
|
3579fdabf9 | ||
|
|
1afc21855e | ||
|
|
0c35b580fe | ||
|
|
01a56927f1 | ||
|
|
a9e4883b6a | ||
|
|
63dd601758 | ||
|
|
eeae0338e7 | ||
|
|
3c1ca869d7 | ||
|
|
6fe4a6ff8e | ||
|
|
40de88af8c | ||
|
|
6a2309b98d | ||
|
|
cd3bbe2910 | ||
|
|
7a001c3ee2 | ||
|
|
d8e4805816 | ||
|
|
44c3101685 | ||
|
|
d6c63bb956 | ||
|
|
2f44d63046 | ||
|
|
f3db38c1e7 | ||
|
|
f5e5f34823 | ||
|
|
093cd3f040 | ||
|
|
aecf0c53bf | ||
|
|
0c7589293b | ||
|
|
ff263947ad | ||
|
|
66e6a0215f | ||
|
|
5a47442f92 | ||
|
|
8f6328c4a4 | ||
|
|
8d45f219d0 | ||
|
|
0fd58c7706 | ||
|
|
35d703310c | ||
|
|
b455dc94a2 | ||
|
|
04f9d2bf3d | ||
|
|
bc8fd864eb | ||
|
|
a9cb08af39 | ||
|
|
9f669e7b5d | ||
|
|
8ac17cd2cb | ||
|
|
e4393fa613 | ||
|
|
b3e9dfced7 | ||
|
|
58f3771545 | ||
|
|
6198f8a12b | ||
|
|
dcfb18a2d3 | ||
|
|
ac5a1e28fc | ||
|
|
325a95051b | ||
|
|
1ec28a2c77 | ||
|
|
de6173c683 | ||
|
|
8f80dda193 | ||
|
|
cdbf0ad883 | ||
|
|
5e8415a311 | ||
|
|
051c8a1c0f | ||
|
|
d54622c267 | ||
|
|
df8dd77817 | ||
|
|
9f3c0fdcd8 | ||
|
|
84e16575e4 | ||
|
|
55d49d4379 | ||
|
|
40528e9ae7 | ||
|
|
dc622a95d0 | ||
|
|
ecfbc8f952 | ||
|
|
df0e2a4f2c | ||
|
|
303efd2b8d | ||
|
|
5afbcce176 | ||
|
|
6d1a648602 | ||
|
|
250f5cb53d | ||
|
|
dc6bd1511a | ||
|
|
500b9cf184 | ||
|
|
d34b18c783 | ||
|
|
7536f647e4 | ||
|
|
a138d71ec1 | ||
|
|
bc4039886d | ||
|
|
9c3b58dcf1 | ||
|
|
74b5fed434 | ||
|
|
85eb505672 | ||
|
|
ccdd96ca52 | ||
|
|
4c723d8ec3 | ||
|
|
bec2d8eaea | ||
|
|
a0a51eb098 | ||
|
|
a5a0ccf86a | ||
|
|
dd07b19e27 | ||
|
|
57636ad4f4 | ||
|
|
cefc2cf82d | ||
|
|
b3e56e71fb | ||
|
|
5b5fa49a89 | ||
|
|
decfa3c9e1 | ||
|
|
48305755bf | ||
|
|
7853bfbed7 | ||
|
|
23ebbb4bc8 | ||
|
|
1b456bd5d5 | ||
|
|
af769881d3 | ||
|
|
4715c5c769 | ||
|
|
dbe413668d | ||
|
|
26475082cb | ||
|
|
f072c64bf2 | ||
|
|
aed636f5f0 | ||
|
|
53a10518b9 | ||
|
|
b4e6dc3037 | ||
|
|
3eb40786ca | ||
|
|
a4bc845478 | ||
|
|
fa468c5d57 | ||
|
|
8abc7aeb71 | ||
|
|
693d8a3a52 | ||
|
|
a9df12ab45 | ||
|
|
a519272d97 | ||
|
|
345864eb85 | ||
|
|
35e538d46a | ||
|
|
2dc31677e1 | ||
|
|
1066de8c69 | ||
|
|
2d69bacb00 | ||
|
|
0974b4c606 | ||
|
|
cf4b97b233 | ||
|
|
7f3e9b8695 | ||
|
|
ce90f9b2db | ||
|
|
c3675d4c9b | ||
|
|
2b7deffe36 | ||
|
|
941ac9c3d9 | ||
|
|
7242b5ff62 | ||
|
|
b4297967a0 | ||
|
|
9ae5b6299d | ||
|
|
814d710e56 | ||
|
|
cc5b31ffc9 | ||
|
|
d7a1a0363f | ||
|
|
b59654544b | ||
|
|
0e12ba7454 | ||
|
|
20fd00b14b | ||
|
|
76d4e416bc | ||
|
|
c07fcf780a | ||
|
|
ccedeca96e | ||
|
|
64a5187d96 | ||
|
|
0a151115bb | ||
|
|
19085ac8f4 | ||
|
|
041501aea9 |
11
.github/workflows/benchmark.yml
vendored
11
.github/workflows/benchmark.yml
vendored
@@ -7,7 +7,7 @@ on:
|
||||
|
||||
env:
|
||||
DIFFUSERS_IS_CI: yes
|
||||
HF_HUB_ENABLE_HF_TRANSFER: 1
|
||||
HF_XET_HIGH_PERFORMANCE: 1
|
||||
HF_HOME: /mnt/cache
|
||||
OMP_NUM_THREADS: 8
|
||||
MKL_NUM_THREADS: 8
|
||||
@@ -28,7 +28,7 @@ jobs:
|
||||
options: --shm-size "16gb" --ipc host --gpus all
|
||||
steps:
|
||||
- name: Checkout diffusers
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v6
|
||||
with:
|
||||
fetch-depth: 2
|
||||
- name: NVIDIA-SMI
|
||||
@@ -38,9 +38,8 @@ jobs:
|
||||
run: |
|
||||
apt update
|
||||
apt install -y libpq-dev postgresql-client
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
python -m uv pip install -e [quality,test]
|
||||
python -m uv pip install -r benchmarks/requirements.txt
|
||||
uv pip install -e ".[quality]"
|
||||
uv pip install -r benchmarks/requirements.txt
|
||||
- name: Environment
|
||||
run: |
|
||||
python utils/print_env.py
|
||||
@@ -59,7 +58,7 @@ jobs:
|
||||
|
||||
- name: Test suite reports artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
uses: actions/upload-artifact@v6
|
||||
with:
|
||||
name: benchmark_test_reports
|
||||
path: benchmarks/${{ env.BASE_PATH }}
|
||||
|
||||
42
.github/workflows/build_docker_images.yml
vendored
42
.github/workflows/build_docker_images.yml
vendored
@@ -28,7 +28,7 @@ jobs:
|
||||
uses: docker/setup-buildx-action@v1
|
||||
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v6
|
||||
|
||||
- name: Find Changed Dockerfiles
|
||||
id: file_changes
|
||||
@@ -42,18 +42,39 @@ jobs:
|
||||
CHANGED_FILES: ${{ steps.file_changes.outputs.all }}
|
||||
run: |
|
||||
echo "$CHANGED_FILES"
|
||||
for FILE in $CHANGED_FILES; do
|
||||
ALLOWED_IMAGES=(
|
||||
diffusers-pytorch-cpu
|
||||
diffusers-pytorch-cuda
|
||||
diffusers-pytorch-xformers-cuda
|
||||
diffusers-pytorch-minimum-cuda
|
||||
diffusers-doc-builder
|
||||
)
|
||||
|
||||
declare -A IMAGES_TO_BUILD=()
|
||||
|
||||
for FILE in $CHANGED_FILES; do
|
||||
# skip anything that isn't still on disk
|
||||
if [[ ! -f "$FILE" ]]; then
|
||||
if [[ ! -e "$FILE" ]]; then
|
||||
echo "Skipping removed file $FILE"
|
||||
continue
|
||||
fi
|
||||
if [[ "$FILE" == docker/*Dockerfile ]]; then
|
||||
DOCKER_PATH="${FILE%/Dockerfile}"
|
||||
DOCKER_TAG=$(basename "$DOCKER_PATH")
|
||||
echo "Building Docker image for $DOCKER_TAG"
|
||||
docker build -t "$DOCKER_TAG" "$DOCKER_PATH"
|
||||
fi
|
||||
|
||||
for IMAGE in "${ALLOWED_IMAGES[@]}"; do
|
||||
if [[ "$FILE" == docker/${IMAGE}/* ]]; then
|
||||
IMAGES_TO_BUILD["$IMAGE"]=1
|
||||
fi
|
||||
done
|
||||
done
|
||||
|
||||
if [[ ${#IMAGES_TO_BUILD[@]} -eq 0 ]]; then
|
||||
echo "No relevant Docker changes detected."
|
||||
exit 0
|
||||
fi
|
||||
|
||||
for IMAGE in "${!IMAGES_TO_BUILD[@]}"; do
|
||||
DOCKER_PATH="docker/${IMAGE}"
|
||||
echo "Building Docker image for $IMAGE"
|
||||
docker build -t "$IMAGE" "$DOCKER_PATH"
|
||||
done
|
||||
if: steps.file_changes.outputs.all != ''
|
||||
|
||||
@@ -72,14 +93,13 @@ jobs:
|
||||
image-name:
|
||||
- diffusers-pytorch-cpu
|
||||
- diffusers-pytorch-cuda
|
||||
- diffusers-pytorch-cuda
|
||||
- diffusers-pytorch-xformers-cuda
|
||||
- diffusers-pytorch-minimum-cuda
|
||||
- diffusers-doc-builder
|
||||
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v6
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v1
|
||||
- name: Login to Docker Hub
|
||||
|
||||
26
.github/workflows/build_pr_documentation.yml
vendored
26
.github/workflows/build_pr_documentation.yml
vendored
@@ -12,7 +12,33 @@ concurrency:
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
check-links:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v6
|
||||
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v6
|
||||
with:
|
||||
python-version: '3.10'
|
||||
|
||||
- name: Install uv
|
||||
run: |
|
||||
curl -LsSf https://astral.sh/uv/install.sh | sh
|
||||
echo "$HOME/.cargo/bin" >> $GITHUB_PATH
|
||||
|
||||
- name: Install doc-builder
|
||||
run: |
|
||||
uv pip install --system git+https://github.com/huggingface/doc-builder.git@main
|
||||
|
||||
- name: Check documentation links
|
||||
run: |
|
||||
uv run doc-builder check-links docs/source/en
|
||||
|
||||
build:
|
||||
needs: check-links
|
||||
uses: huggingface/doc-builder/.github/workflows/build_pr_documentation.yml@main
|
||||
with:
|
||||
commit_sha: ${{ github.event.pull_request.head.sha }}
|
||||
|
||||
22
.github/workflows/codeql.yml
vendored
Normal file
22
.github/workflows/codeql.yml
vendored
Normal file
@@ -0,0 +1,22 @@
|
||||
---
|
||||
name: CodeQL Security Analysis For Github Actions
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: ["main"]
|
||||
workflow_dispatch:
|
||||
# pull_request:
|
||||
|
||||
jobs:
|
||||
codeql:
|
||||
name: CodeQL Analysis
|
||||
uses: huggingface/security-workflows/.github/workflows/codeql-reusable.yml@v1
|
||||
permissions:
|
||||
security-events: write
|
||||
packages: read
|
||||
actions: read
|
||||
contents: read
|
||||
with:
|
||||
languages: '["actions","python"]'
|
||||
queries: 'security-extended,security-and-quality'
|
||||
runner: 'ubuntu-latest' #optional if need custom runner
|
||||
31
.github/workflows/mirror_community_pipeline.yml
vendored
31
.github/workflows/mirror_community_pipeline.yml
vendored
@@ -24,7 +24,6 @@ jobs:
|
||||
mirror_community_pipeline:
|
||||
env:
|
||||
SLACK_WEBHOOK_URL: ${{ secrets.SLACK_WEBHOOK_URL_COMMUNITY_MIRROR }}
|
||||
|
||||
runs-on: ubuntu-22.04
|
||||
steps:
|
||||
# Checkout to correct ref
|
||||
@@ -39,42 +38,46 @@ jobs:
|
||||
# If ref is 'refs/heads/main' => set 'main'
|
||||
# Else it must be a tag => set {tag}
|
||||
- name: Set checkout_ref and path_in_repo
|
||||
env:
|
||||
EVENT_NAME: ${{ github.event_name }}
|
||||
EVENT_INPUT_REF: ${{ github.event.inputs.ref }}
|
||||
GITHUB_REF: ${{ github.ref }}
|
||||
run: |
|
||||
if [ "${{ github.event_name }}" == "workflow_dispatch" ]; then
|
||||
if [ -z "${{ github.event.inputs.ref }}" ]; then
|
||||
if [ "$EVENT_NAME" == "workflow_dispatch" ]; then
|
||||
if [ -z "$EVENT_INPUT_REF" ]; then
|
||||
echo "Error: Missing ref input"
|
||||
exit 1
|
||||
elif [ "${{ github.event.inputs.ref }}" == "main" ]; then
|
||||
elif [ "$EVENT_INPUT_REF" == "main" ]; then
|
||||
echo "CHECKOUT_REF=refs/heads/main" >> $GITHUB_ENV
|
||||
echo "PATH_IN_REPO=main" >> $GITHUB_ENV
|
||||
else
|
||||
echo "CHECKOUT_REF=refs/tags/${{ github.event.inputs.ref }}" >> $GITHUB_ENV
|
||||
echo "PATH_IN_REPO=${{ github.event.inputs.ref }}" >> $GITHUB_ENV
|
||||
echo "CHECKOUT_REF=refs/tags/$EVENT_INPUT_REF" >> $GITHUB_ENV
|
||||
echo "PATH_IN_REPO=$EVENT_INPUT_REF" >> $GITHUB_ENV
|
||||
fi
|
||||
elif [ "${{ github.ref }}" == "refs/heads/main" ]; then
|
||||
echo "CHECKOUT_REF=${{ github.ref }}" >> $GITHUB_ENV
|
||||
elif [ "$GITHUB_REF" == "refs/heads/main" ]; then
|
||||
echo "CHECKOUT_REF=$GITHUB_REF" >> $GITHUB_ENV
|
||||
echo "PATH_IN_REPO=main" >> $GITHUB_ENV
|
||||
else
|
||||
# e.g. refs/tags/v0.28.1 -> v0.28.1
|
||||
echo "CHECKOUT_REF=${{ github.ref }}" >> $GITHUB_ENV
|
||||
echo "PATH_IN_REPO=$(echo ${{ github.ref }} | sed 's/^refs\/tags\///')" >> $GITHUB_ENV
|
||||
echo "CHECKOUT_REF=$GITHUB_REF" >> $GITHUB_ENV
|
||||
echo "PATH_IN_REPO=$(echo $GITHUB_REF | sed 's/^refs\/tags\///')" >> $GITHUB_ENV
|
||||
fi
|
||||
- name: Print env vars
|
||||
run: |
|
||||
echo "CHECKOUT_REF: ${{ env.CHECKOUT_REF }}"
|
||||
echo "PATH_IN_REPO: ${{ env.PATH_IN_REPO }}"
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v6
|
||||
with:
|
||||
ref: ${{ env.CHECKOUT_REF }}
|
||||
|
||||
# Setup + install dependencies
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v4
|
||||
uses: actions/setup-python@v6
|
||||
with:
|
||||
python-version: "3.10"
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install --upgrade pip
|
||||
pip install --upgrade huggingface_hub
|
||||
|
||||
# Check secret is set
|
||||
@@ -99,4 +102,4 @@ jobs:
|
||||
- name: Report failure status
|
||||
if: ${{ failure() }}
|
||||
run: |
|
||||
pip install requests && python utils/notify_community_pipelines_mirror.py --status=failure
|
||||
pip install requests && python utils/notify_community_pipelines_mirror.py --status=failure
|
||||
|
||||
161
.github/workflows/nightly_tests.yml
vendored
161
.github/workflows/nightly_tests.yml
vendored
@@ -7,7 +7,7 @@ on:
|
||||
|
||||
env:
|
||||
DIFFUSERS_IS_CI: yes
|
||||
HF_HUB_ENABLE_HF_TRANSFER: 1
|
||||
HF_XET_HIGH_PERFORMANCE: 1
|
||||
OMP_NUM_THREADS: 8
|
||||
MKL_NUM_THREADS: 8
|
||||
PYTEST_TIMEOUT: 600
|
||||
@@ -28,7 +28,7 @@ jobs:
|
||||
pipeline_test_matrix: ${{ steps.fetch_pipeline_matrix.outputs.pipeline_test_matrix }}
|
||||
steps:
|
||||
- name: Checkout diffusers
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v6
|
||||
with:
|
||||
fetch-depth: 2
|
||||
- name: Install dependencies
|
||||
@@ -44,7 +44,7 @@ jobs:
|
||||
|
||||
- name: Pipeline Tests Artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
uses: actions/upload-artifact@v6
|
||||
with:
|
||||
name: test-pipelines.json
|
||||
path: reports
|
||||
@@ -64,17 +64,18 @@ jobs:
|
||||
options: --shm-size "16gb" --ipc host --gpus all
|
||||
steps:
|
||||
- name: Checkout diffusers
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v6
|
||||
with:
|
||||
fetch-depth: 2
|
||||
- name: NVIDIA-SMI
|
||||
run: nvidia-smi
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
python -m uv pip install -e [quality,test]
|
||||
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
|
||||
python -m uv pip install pytest-reportlog
|
||||
uv pip install -e ".[quality]"
|
||||
uv pip uninstall accelerate && uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
|
||||
#uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
|
||||
uv pip uninstall transformers huggingface_hub && uv pip install transformers==4.57.1
|
||||
uv pip install pytest-reportlog
|
||||
- name: Environment
|
||||
run: |
|
||||
python utils/print_env.py
|
||||
@@ -84,8 +85,8 @@ jobs:
|
||||
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
|
||||
CUBLAS_WORKSPACE_CONFIG: :16:8
|
||||
run: |
|
||||
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
|
||||
-s -v -k "not Flax and not Onnx" \
|
||||
pytest -n 1 --max-worker-restart=0 --dist=loadfile \
|
||||
-k "not Flax and not Onnx" \
|
||||
--make-reports=tests_pipeline_${{ matrix.module }}_cuda \
|
||||
--report-log=tests_pipeline_${{ matrix.module }}_cuda.log \
|
||||
tests/pipelines/${{ matrix.module }}
|
||||
@@ -96,7 +97,7 @@ jobs:
|
||||
cat reports/tests_pipeline_${{ matrix.module }}_cuda_failures_short.txt
|
||||
- name: Test suite reports artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
uses: actions/upload-artifact@v6
|
||||
with:
|
||||
name: pipeline_${{ matrix.module }}_test_reports
|
||||
path: reports
|
||||
@@ -118,17 +119,18 @@ jobs:
|
||||
module: [models, schedulers, lora, others, single_file, examples]
|
||||
steps:
|
||||
- name: Checkout diffusers
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v6
|
||||
with:
|
||||
fetch-depth: 2
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
python -m uv pip install -e [quality,test]
|
||||
python -m uv pip install peft@git+https://github.com/huggingface/peft.git
|
||||
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
|
||||
python -m uv pip install pytest-reportlog
|
||||
uv pip install -e ".[quality]"
|
||||
uv pip install peft@git+https://github.com/huggingface/peft.git
|
||||
uv pip uninstall accelerate && uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
|
||||
#uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
|
||||
uv pip uninstall transformers huggingface_hub && uv pip install transformers==4.57.1
|
||||
uv pip install pytest-reportlog
|
||||
- name: Environment
|
||||
run: python utils/print_env.py
|
||||
|
||||
@@ -139,8 +141,8 @@ jobs:
|
||||
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
|
||||
CUBLAS_WORKSPACE_CONFIG: :16:8
|
||||
run: |
|
||||
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
|
||||
-s -v -k "not Flax and not Onnx" \
|
||||
pytest -n 1 --max-worker-restart=0 --dist=loadfile \
|
||||
-k "not Flax and not Onnx" \
|
||||
--make-reports=tests_torch_${{ matrix.module }}_cuda \
|
||||
--report-log=tests_torch_${{ matrix.module }}_cuda.log \
|
||||
tests/${{ matrix.module }}
|
||||
@@ -152,8 +154,8 @@ jobs:
|
||||
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
|
||||
CUBLAS_WORKSPACE_CONFIG: :16:8
|
||||
run: |
|
||||
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
|
||||
-s -v --make-reports=examples_torch_cuda \
|
||||
pytest -n 1 --max-worker-restart=0 --dist=loadfile \
|
||||
--make-reports=examples_torch_cuda \
|
||||
--report-log=examples_torch_cuda.log \
|
||||
examples/
|
||||
|
||||
@@ -165,7 +167,7 @@ jobs:
|
||||
|
||||
- name: Test suite reports artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
uses: actions/upload-artifact@v6
|
||||
with:
|
||||
name: torch_${{ matrix.module }}_cuda_test_reports
|
||||
path: reports
|
||||
@@ -182,7 +184,7 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Checkout diffusers
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v6
|
||||
with:
|
||||
fetch-depth: 2
|
||||
|
||||
@@ -191,8 +193,9 @@ jobs:
|
||||
nvidia-smi
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
python -m uv pip install -e [quality,test,training]
|
||||
uv pip install -e ".[quality,training]"
|
||||
#uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
|
||||
uv pip uninstall transformers huggingface_hub && uv pip install transformers==4.57.1
|
||||
- name: Environment
|
||||
run: |
|
||||
python utils/print_env.py
|
||||
@@ -201,14 +204,14 @@ jobs:
|
||||
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
|
||||
RUN_COMPILE: yes
|
||||
run: |
|
||||
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v -k "compile" --make-reports=tests_torch_compile_cuda tests/
|
||||
pytest -n 1 --max-worker-restart=0 --dist=loadfile -k "compile" --make-reports=tests_torch_compile_cuda tests/
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
run: cat reports/tests_torch_compile_cuda_failures_short.txt
|
||||
|
||||
- name: Test suite reports artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
uses: actions/upload-artifact@v6
|
||||
with:
|
||||
name: torch_compile_test_reports
|
||||
path: reports
|
||||
@@ -225,18 +228,19 @@ jobs:
|
||||
options: --shm-size "16gb" --ipc host --gpus all
|
||||
steps:
|
||||
- name: Checkout diffusers
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v6
|
||||
with:
|
||||
fetch-depth: 2
|
||||
- name: NVIDIA-SMI
|
||||
run: nvidia-smi
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
python -m uv pip install -e [quality,test]
|
||||
python -m uv pip install peft@git+https://github.com/huggingface/peft.git
|
||||
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
|
||||
python -m uv pip install pytest-reportlog
|
||||
uv pip install -e ".[quality]"
|
||||
uv pip install peft@git+https://github.com/huggingface/peft.git
|
||||
uv pip uninstall accelerate && uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
|
||||
#uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
|
||||
uv pip uninstall transformers huggingface_hub && uv pip install transformers==4.57.1
|
||||
uv pip install pytest-reportlog
|
||||
- name: Environment
|
||||
run: |
|
||||
python utils/print_env.py
|
||||
@@ -247,7 +251,7 @@ jobs:
|
||||
CUBLAS_WORKSPACE_CONFIG: :16:8
|
||||
BIG_GPU_MEMORY: 40
|
||||
run: |
|
||||
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
|
||||
pytest -n 1 --max-worker-restart=0 --dist=loadfile \
|
||||
-m "big_accelerator" \
|
||||
--make-reports=tests_big_gpu_torch_cuda \
|
||||
--report-log=tests_big_gpu_torch_cuda.log \
|
||||
@@ -259,7 +263,7 @@ jobs:
|
||||
cat reports/tests_big_gpu_torch_cuda_failures_short.txt
|
||||
- name: Test suite reports artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
uses: actions/upload-artifact@v6
|
||||
with:
|
||||
name: torch_cuda_big_gpu_test_reports
|
||||
path: reports
|
||||
@@ -276,16 +280,17 @@ jobs:
|
||||
shell: bash
|
||||
steps:
|
||||
- name: Checkout diffusers
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v6
|
||||
with:
|
||||
fetch-depth: 2
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
python -m uv pip install -e [quality,test]
|
||||
python -m uv pip install peft@git+https://github.com/huggingface/peft.git
|
||||
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
|
||||
uv pip install -e ".[quality]"
|
||||
uv pip install peft@git+https://github.com/huggingface/peft.git
|
||||
uv pip uninstall accelerate && uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
|
||||
#uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
|
||||
uv pip uninstall transformers huggingface_hub && uv pip install transformers==4.57.1
|
||||
|
||||
- name: Environment
|
||||
run: |
|
||||
@@ -297,8 +302,8 @@ jobs:
|
||||
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
|
||||
CUBLAS_WORKSPACE_CONFIG: :16:8
|
||||
run: |
|
||||
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
|
||||
-s -v -k "not Flax and not Onnx" \
|
||||
pytest -n 1 --max-worker-restart=0 --dist=loadfile \
|
||||
-k "not Flax and not Onnx" \
|
||||
--make-reports=tests_torch_minimum_version_cuda \
|
||||
tests/models/test_modeling_common.py \
|
||||
tests/pipelines/test_pipelines_common.py \
|
||||
@@ -316,7 +321,7 @@ jobs:
|
||||
|
||||
- name: Test suite reports artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
uses: actions/upload-artifact@v6
|
||||
with:
|
||||
name: torch_minimum_version_cuda_test_reports
|
||||
path: reports
|
||||
@@ -350,20 +355,21 @@ jobs:
|
||||
options: --shm-size "20gb" --ipc host --gpus all
|
||||
steps:
|
||||
- name: Checkout diffusers
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v6
|
||||
with:
|
||||
fetch-depth: 2
|
||||
- name: NVIDIA-SMI
|
||||
run: nvidia-smi
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
python -m uv pip install -e [quality,test]
|
||||
python -m uv pip install -U ${{ matrix.config.backend }}
|
||||
uv pip install -e ".[quality]"
|
||||
uv pip install -U ${{ matrix.config.backend }}
|
||||
if [ "${{ join(matrix.config.additional_deps, ' ') }}" != "" ]; then
|
||||
python -m uv pip install ${{ join(matrix.config.additional_deps, ' ') }}
|
||||
uv pip install ${{ join(matrix.config.additional_deps, ' ') }}
|
||||
fi
|
||||
python -m uv pip install pytest-reportlog
|
||||
uv pip install pytest-reportlog
|
||||
#uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
|
||||
uv pip uninstall transformers huggingface_hub && uv pip install transformers==4.57.1
|
||||
- name: Environment
|
||||
run: |
|
||||
python utils/print_env.py
|
||||
@@ -374,7 +380,7 @@ jobs:
|
||||
CUBLAS_WORKSPACE_CONFIG: :16:8
|
||||
BIG_GPU_MEMORY: 40
|
||||
run: |
|
||||
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
|
||||
pytest -n 1 --max-worker-restart=0 --dist=loadfile \
|
||||
--make-reports=tests_${{ matrix.config.backend }}_torch_cuda \
|
||||
--report-log=tests_${{ matrix.config.backend }}_torch_cuda.log \
|
||||
tests/quantization/${{ matrix.config.test_location }}
|
||||
@@ -385,7 +391,7 @@ jobs:
|
||||
cat reports/tests_${{ matrix.config.backend }}_torch_cuda_failures_short.txt
|
||||
- name: Test suite reports artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
uses: actions/upload-artifact@v6
|
||||
with:
|
||||
name: torch_cuda_${{ matrix.config.backend }}_reports
|
||||
path: reports
|
||||
@@ -402,17 +408,18 @@ jobs:
|
||||
options: --shm-size "20gb" --ipc host --gpus all
|
||||
steps:
|
||||
- name: Checkout diffusers
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v6
|
||||
with:
|
||||
fetch-depth: 2
|
||||
- name: NVIDIA-SMI
|
||||
run: nvidia-smi
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
python -m uv pip install -e [quality,test]
|
||||
python -m uv pip install -U bitsandbytes optimum_quanto
|
||||
python -m uv pip install pytest-reportlog
|
||||
uv pip install -e ".[quality]"
|
||||
uv pip install -U bitsandbytes optimum_quanto
|
||||
#uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
|
||||
uv pip uninstall transformers huggingface_hub && uv pip install transformers==4.57.1
|
||||
uv pip install pytest-reportlog
|
||||
- name: Environment
|
||||
run: |
|
||||
python utils/print_env.py
|
||||
@@ -423,7 +430,7 @@ jobs:
|
||||
CUBLAS_WORKSPACE_CONFIG: :16:8
|
||||
BIG_GPU_MEMORY: 40
|
||||
run: |
|
||||
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
|
||||
pytest -n 1 --max-worker-restart=0 --dist=loadfile \
|
||||
--make-reports=tests_pipeline_level_quant_torch_cuda \
|
||||
--report-log=tests_pipeline_level_quant_torch_cuda.log \
|
||||
tests/quantization/test_pipeline_level_quantization.py
|
||||
@@ -434,7 +441,7 @@ jobs:
|
||||
cat reports/tests_pipeline_level_quant_torch_cuda_failures_short.txt
|
||||
- name: Test suite reports artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
uses: actions/upload-artifact@v6
|
||||
with:
|
||||
name: torch_cuda_pipeline_level_quant_reports
|
||||
path: reports
|
||||
@@ -459,7 +466,7 @@ jobs:
|
||||
image: diffusers/diffusers-pytorch-cpu
|
||||
steps:
|
||||
- name: Checkout diffusers
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v6
|
||||
with:
|
||||
fetch-depth: 2
|
||||
|
||||
@@ -467,7 +474,7 @@ jobs:
|
||||
run: mkdir -p combined_reports
|
||||
|
||||
- name: Download all test reports
|
||||
uses: actions/download-artifact@v4
|
||||
uses: actions/download-artifact@v7
|
||||
with:
|
||||
path: artifacts
|
||||
|
||||
@@ -493,7 +500,7 @@ jobs:
|
||||
cat $CONSOLIDATED_REPORT_PATH >> $GITHUB_STEP_SUMMARY
|
||||
|
||||
- name: Upload consolidated report
|
||||
uses: actions/upload-artifact@v4
|
||||
uses: actions/upload-artifact@v6
|
||||
with:
|
||||
name: consolidated_test_report
|
||||
path: ${{ env.CONSOLIDATED_REPORT_PATH }}
|
||||
@@ -507,7 +514,7 @@ jobs:
|
||||
#
|
||||
# steps:
|
||||
# - name: Checkout diffusers
|
||||
# uses: actions/checkout@v3
|
||||
# uses: actions/checkout@v6
|
||||
# with:
|
||||
# fetch-depth: 2
|
||||
#
|
||||
@@ -523,11 +530,11 @@ jobs:
|
||||
# - name: Install dependencies
|
||||
# shell: arch -arch arm64 bash {0}
|
||||
# run: |
|
||||
# ${CONDA_RUN} python -m pip install --upgrade pip uv
|
||||
# ${CONDA_RUN} python -m uv pip install -e [quality,test]
|
||||
# ${CONDA_RUN} python -m uv pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu
|
||||
# ${CONDA_RUN} python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate
|
||||
# ${CONDA_RUN} python -m uv pip install pytest-reportlog
|
||||
# ${CONDA_RUN} pip install --upgrade pip uv
|
||||
# ${CONDA_RUN} uv pip install -e ".[quality]"
|
||||
# ${CONDA_RUN} uv pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu
|
||||
# ${CONDA_RUN} uv pip install accelerate@git+https://github.com/huggingface/accelerate
|
||||
# ${CONDA_RUN} uv pip install pytest-reportlog
|
||||
# - name: Environment
|
||||
# shell: arch -arch arm64 bash {0}
|
||||
# run: |
|
||||
@@ -538,7 +545,7 @@ jobs:
|
||||
# HF_HOME: /System/Volumes/Data/mnt/cache
|
||||
# HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
|
||||
# run: |
|
||||
# ${CONDA_RUN} python -m pytest -n 1 -s -v --make-reports=tests_torch_mps \
|
||||
# ${CONDA_RUN} pytest -n 1 --make-reports=tests_torch_mps \
|
||||
# --report-log=tests_torch_mps.log \
|
||||
# tests/
|
||||
# - name: Failure short reports
|
||||
@@ -547,7 +554,7 @@ jobs:
|
||||
#
|
||||
# - name: Test suite reports artifacts
|
||||
# if: ${{ always() }}
|
||||
# uses: actions/upload-artifact@v4
|
||||
# uses: actions/upload-artifact@v6
|
||||
# with:
|
||||
# name: torch_mps_test_reports
|
||||
# path: reports
|
||||
@@ -563,7 +570,7 @@ jobs:
|
||||
#
|
||||
# steps:
|
||||
# - name: Checkout diffusers
|
||||
# uses: actions/checkout@v3
|
||||
# uses: actions/checkout@v6
|
||||
# with:
|
||||
# fetch-depth: 2
|
||||
#
|
||||
@@ -579,11 +586,11 @@ jobs:
|
||||
# - name: Install dependencies
|
||||
# shell: arch -arch arm64 bash {0}
|
||||
# run: |
|
||||
# ${CONDA_RUN} python -m pip install --upgrade pip uv
|
||||
# ${CONDA_RUN} python -m uv pip install -e [quality,test]
|
||||
# ${CONDA_RUN} python -m uv pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu
|
||||
# ${CONDA_RUN} python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate
|
||||
# ${CONDA_RUN} python -m uv pip install pytest-reportlog
|
||||
# ${CONDA_RUN} pip install --upgrade pip uv
|
||||
# ${CONDA_RUN} uv pip install -e ".[quality]"
|
||||
# ${CONDA_RUN} uv pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu
|
||||
# ${CONDA_RUN} uv pip install accelerate@git+https://github.com/huggingface/accelerate
|
||||
# ${CONDA_RUN} uv pip install pytest-reportlog
|
||||
# - name: Environment
|
||||
# shell: arch -arch arm64 bash {0}
|
||||
# run: |
|
||||
@@ -594,7 +601,7 @@ jobs:
|
||||
# HF_HOME: /System/Volumes/Data/mnt/cache
|
||||
# HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
|
||||
# run: |
|
||||
# ${CONDA_RUN} python -m pytest -n 1 -s -v --make-reports=tests_torch_mps \
|
||||
# ${CONDA_RUN} pytest -n 1 --make-reports=tests_torch_mps \
|
||||
# --report-log=tests_torch_mps.log \
|
||||
# tests/
|
||||
# - name: Failure short reports
|
||||
@@ -603,7 +610,7 @@ jobs:
|
||||
#
|
||||
# - name: Test suite reports artifacts
|
||||
# if: ${{ always() }}
|
||||
# uses: actions/upload-artifact@v4
|
||||
# uses: actions/upload-artifact@v6
|
||||
# with:
|
||||
# name: torch_mps_test_reports
|
||||
# path: reports
|
||||
|
||||
@@ -10,10 +10,10 @@ jobs:
|
||||
runs-on: ubuntu-22.04
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v6
|
||||
|
||||
- name: Setup Python
|
||||
uses: actions/setup-python@v4
|
||||
uses: actions/setup-python@v6
|
||||
with:
|
||||
python-version: '3.8'
|
||||
|
||||
|
||||
13
.github/workflows/pr_dependency_test.yml
vendored
13
.github/workflows/pr_dependency_test.yml
vendored
@@ -18,18 +18,15 @@ jobs:
|
||||
check_dependencies:
|
||||
runs-on: ubuntu-22.04
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v6
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v4
|
||||
uses: actions/setup-python@v6
|
||||
with:
|
||||
python-version: "3.8"
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
python -m pip install --upgrade pip uv
|
||||
python -m uv pip install -e .
|
||||
python -m uv pip install pytest
|
||||
pip install -e .
|
||||
pip install pytest
|
||||
- name: Check for soft dependencies
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
pytest tests/others/test_dependencies.py
|
||||
pytest tests/others/test_dependencies.py
|
||||
|
||||
59
.github/workflows/pr_modular_tests.yml
vendored
59
.github/workflows/pr_modular_tests.yml
vendored
@@ -1,3 +1,4 @@
|
||||
|
||||
name: Fast PR tests for Modular
|
||||
|
||||
on:
|
||||
@@ -26,7 +27,7 @@ concurrency:
|
||||
|
||||
env:
|
||||
DIFFUSERS_IS_CI: yes
|
||||
HF_HUB_ENABLE_HF_TRANSFER: 1
|
||||
HF_XET_HIGH_PERFORMANCE: 1
|
||||
OMP_NUM_THREADS: 4
|
||||
MKL_NUM_THREADS: 4
|
||||
PYTEST_TIMEOUT: 60
|
||||
@@ -35,14 +36,14 @@ jobs:
|
||||
check_code_quality:
|
||||
runs-on: ubuntu-22.04
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v6
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v4
|
||||
uses: actions/setup-python@v6
|
||||
with:
|
||||
python-version: "3.10"
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install --upgrade pip
|
||||
pip install .[quality]
|
||||
- name: Check quality
|
||||
run: make quality
|
||||
@@ -55,14 +56,14 @@ jobs:
|
||||
needs: check_code_quality
|
||||
runs-on: ubuntu-22.04
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v6
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v4
|
||||
uses: actions/setup-python@v6
|
||||
with:
|
||||
python-version: "3.10"
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install --upgrade pip
|
||||
pip install .[quality]
|
||||
- name: Check repo consistency
|
||||
run: |
|
||||
@@ -77,23 +78,13 @@ jobs:
|
||||
|
||||
run_fast_tests:
|
||||
needs: [check_code_quality, check_repository_consistency]
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
config:
|
||||
- name: Fast PyTorch Modular Pipeline CPU tests
|
||||
framework: pytorch_pipelines
|
||||
runner: aws-highmemory-32-plus
|
||||
image: diffusers/diffusers-pytorch-cpu
|
||||
report: torch_cpu_modular_pipelines
|
||||
|
||||
name: ${{ matrix.config.name }}
|
||||
name: Fast PyTorch Modular Pipeline CPU tests
|
||||
|
||||
runs-on:
|
||||
group: ${{ matrix.config.runner }}
|
||||
group: aws-highmemory-32-plus
|
||||
|
||||
container:
|
||||
image: ${{ matrix.config.image }}
|
||||
image: diffusers/diffusers-pytorch-cpu
|
||||
options: --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/
|
||||
|
||||
defaults:
|
||||
@@ -102,41 +93,35 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Checkout diffusers
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v6
|
||||
with:
|
||||
fetch-depth: 2
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
python -m uv pip install -e [quality,test]
|
||||
# Stopping this update temporarily until the Hub RC is fully shipped and integrated.
|
||||
# pip uninstall transformers -y && python -m uv pip install -U transformers@git+https://github.com/huggingface/transformers.git --no-deps
|
||||
# pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git --no-deps
|
||||
uv pip install -e ".[quality]"
|
||||
#uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
|
||||
uv pip uninstall transformers huggingface_hub && uv pip install transformers==4.57.1
|
||||
uv pip uninstall accelerate && uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git --no-deps
|
||||
|
||||
- name: Environment
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
python utils/print_env.py
|
||||
|
||||
- name: Run fast PyTorch Pipeline CPU tests
|
||||
if: ${{ matrix.config.framework == 'pytorch_pipelines' }}
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
python -m pytest -n 8 --max-worker-restart=0 --dist=loadfile \
|
||||
-s -v -k "not Flax and not Onnx" \
|
||||
--make-reports=tests_${{ matrix.config.report }} \
|
||||
pytest -n 8 --max-worker-restart=0 --dist=loadfile \
|
||||
-k "not Flax and not Onnx" \
|
||||
--make-reports=tests_torch_cpu_modular_pipelines \
|
||||
tests/modular_pipelines
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
run: cat reports/tests_${{ matrix.config.report }}_failures_short.txt
|
||||
run: cat reports/tests_torch_cpu_modular_pipelines_failures_short.txt
|
||||
|
||||
- name: Test suite reports artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
uses: actions/upload-artifact@v6
|
||||
with:
|
||||
name: pr_${{ matrix.config.framework }}_${{ matrix.config.report }}_test_reports
|
||||
name: pr_pytorch_pipelines_torch_cpu_modular_pipelines_test_reports
|
||||
path: reports
|
||||
|
||||
|
||||
|
||||
31
.github/workflows/pr_test_fetcher.yml
vendored
31
.github/workflows/pr_test_fetcher.yml
vendored
@@ -28,13 +28,12 @@ jobs:
|
||||
test_map: ${{ steps.set_matrix.outputs.test_map }}
|
||||
steps:
|
||||
- name: Checkout diffusers
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v6
|
||||
with:
|
||||
fetch-depth: 0
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
python -m uv pip install -e [quality,test]
|
||||
uv pip install -e ".[quality]"
|
||||
- name: Environment
|
||||
run: |
|
||||
python utils/print_env.py
|
||||
@@ -43,7 +42,7 @@ jobs:
|
||||
run: |
|
||||
python utils/tests_fetcher.py | tee test_preparation.txt
|
||||
- name: Report fetched tests
|
||||
uses: actions/upload-artifact@v3
|
||||
uses: actions/upload-artifact@v6
|
||||
with:
|
||||
name: test_fetched
|
||||
path: test_preparation.txt
|
||||
@@ -84,25 +83,22 @@ jobs:
|
||||
shell: bash
|
||||
steps:
|
||||
- name: Checkout diffusers
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v6
|
||||
with:
|
||||
fetch-depth: 2
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
python -m pip install -e [quality,test]
|
||||
python -m pip install accelerate
|
||||
uv pip install -e ".[quality]"
|
||||
uv pip install accelerate
|
||||
|
||||
- name: Environment
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
python utils/print_env.py
|
||||
|
||||
- name: Run all selected tests on CPU
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
python -m pytest -n 2 --dist=loadfile -v --make-reports=${{ matrix.modules }}_tests_cpu ${{ fromJson(needs.setup_pr_tests.outputs.test_map)[matrix.modules] }}
|
||||
pytest -n 2 --dist=loadfile -v --make-reports=${{ matrix.modules }}_tests_cpu ${{ fromJson(needs.setup_pr_tests.outputs.test_map)[matrix.modules] }}
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
@@ -113,7 +109,7 @@ jobs:
|
||||
|
||||
- name: Test suite reports artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v3
|
||||
uses: actions/upload-artifact@v6
|
||||
with:
|
||||
name: ${{ matrix.modules }}_test_reports
|
||||
path: reports
|
||||
@@ -142,25 +138,22 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Checkout diffusers
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v6
|
||||
with:
|
||||
fetch-depth: 2
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
python -m pip install -e [quality,test]
|
||||
pip install -e [quality]
|
||||
|
||||
- name: Environment
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
python utils/print_env.py
|
||||
|
||||
- name: Run Hub tests for models, schedulers, and pipelines on a staging env
|
||||
if: ${{ matrix.config.framework == 'hub_tests_pytorch' }}
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
HUGGINGFACE_CO_STAGING=true python -m pytest \
|
||||
HUGGINGFACE_CO_STAGING=true pytest \
|
||||
-m "is_staging_test" \
|
||||
--make-reports=tests_${{ matrix.config.report }} \
|
||||
tests
|
||||
@@ -171,7 +164,7 @@ jobs:
|
||||
|
||||
- name: Test suite reports artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
uses: actions/upload-artifact@v6
|
||||
with:
|
||||
name: pr_${{ matrix.config.report }}_test_reports
|
||||
path: reports
|
||||
|
||||
81
.github/workflows/pr_tests.yml
vendored
81
.github/workflows/pr_tests.yml
vendored
@@ -22,7 +22,7 @@ concurrency:
|
||||
|
||||
env:
|
||||
DIFFUSERS_IS_CI: yes
|
||||
HF_HUB_ENABLE_HF_TRANSFER: 1
|
||||
HF_XET_HIGH_PERFORMANCE: 1
|
||||
OMP_NUM_THREADS: 4
|
||||
MKL_NUM_THREADS: 4
|
||||
PYTEST_TIMEOUT: 60
|
||||
@@ -31,14 +31,14 @@ jobs:
|
||||
check_code_quality:
|
||||
runs-on: ubuntu-22.04
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v6
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v4
|
||||
uses: actions/setup-python@v6
|
||||
with:
|
||||
python-version: "3.8"
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install --upgrade pip
|
||||
pip install .[quality]
|
||||
- name: Check quality
|
||||
run: make quality
|
||||
@@ -51,14 +51,14 @@ jobs:
|
||||
needs: check_code_quality
|
||||
runs-on: ubuntu-22.04
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v6
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v4
|
||||
uses: actions/setup-python@v6
|
||||
with:
|
||||
python-version: "3.8"
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install --upgrade pip
|
||||
pip install .[quality]
|
||||
- name: Check repo consistency
|
||||
run: |
|
||||
@@ -108,47 +108,42 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Checkout diffusers
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v6
|
||||
with:
|
||||
fetch-depth: 2
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
python -m uv pip install -e [quality,test]
|
||||
# Stopping this update temporarily until the Hub RC is fully shipped and integrated.
|
||||
# pip uninstall transformers -y && python -m uv pip install -U transformers@git+https://github.com/huggingface/transformers.git --no-deps
|
||||
# pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git --no-deps
|
||||
uv pip install -e ".[quality]"
|
||||
#uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
|
||||
uv pip uninstall transformers huggingface_hub && uv pip install transformers==4.57.1
|
||||
uv pip uninstall accelerate && uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git --no-deps
|
||||
|
||||
- name: Environment
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
python utils/print_env.py
|
||||
|
||||
- name: Run fast PyTorch Pipeline CPU tests
|
||||
if: ${{ matrix.config.framework == 'pytorch_pipelines' }}
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
python -m pytest -n 8 --max-worker-restart=0 --dist=loadfile \
|
||||
-s -v -k "not Flax and not Onnx" \
|
||||
pytest -n 8 --max-worker-restart=0 --dist=loadfile \
|
||||
-k "not Flax and not Onnx" \
|
||||
--make-reports=tests_${{ matrix.config.report }} \
|
||||
tests/pipelines
|
||||
|
||||
- name: Run fast PyTorch Model Scheduler CPU tests
|
||||
if: ${{ matrix.config.framework == 'pytorch_models' }}
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
python -m pytest -n 4 --max-worker-restart=0 --dist=loadfile \
|
||||
-s -v -k "not Flax and not Onnx and not Dependency" \
|
||||
pytest -n 4 --max-worker-restart=0 --dist=loadfile \
|
||||
-k "not Flax and not Onnx and not Dependency" \
|
||||
--make-reports=tests_${{ matrix.config.report }} \
|
||||
tests/models tests/schedulers tests/others
|
||||
|
||||
- name: Run example PyTorch CPU tests
|
||||
if: ${{ matrix.config.framework == 'pytorch_examples' }}
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
python -m uv pip install peft timm
|
||||
python -m pytest -n 4 --max-worker-restart=0 --dist=loadfile \
|
||||
uv pip install ".[training]"
|
||||
pytest -n 4 --max-worker-restart=0 --dist=loadfile \
|
||||
--make-reports=tests_${{ matrix.config.report }} \
|
||||
examples
|
||||
|
||||
@@ -158,7 +153,7 @@ jobs:
|
||||
|
||||
- name: Test suite reports artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
uses: actions/upload-artifact@v6
|
||||
with:
|
||||
name: pr_${{ matrix.config.framework }}_${{ matrix.config.report }}_test_reports
|
||||
path: reports
|
||||
@@ -190,25 +185,22 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Checkout diffusers
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v6
|
||||
with:
|
||||
fetch-depth: 2
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
python -m uv pip install -e [quality,test]
|
||||
uv pip install -e ".[quality]"
|
||||
|
||||
- name: Environment
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
python utils/print_env.py
|
||||
|
||||
- name: Run Hub tests for models, schedulers, and pipelines on a staging env
|
||||
if: ${{ matrix.config.framework == 'hub_tests_pytorch' }}
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
HUGGINGFACE_CO_STAGING=true python -m pytest \
|
||||
HUGGINGFACE_CO_STAGING=true pytest \
|
||||
-m "is_staging_test" \
|
||||
--make-reports=tests_${{ matrix.config.report }} \
|
||||
tests
|
||||
@@ -219,7 +211,7 @@ jobs:
|
||||
|
||||
- name: Test suite reports artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
uses: actions/upload-artifact@v6
|
||||
with:
|
||||
name: pr_${{ matrix.config.report }}_test_reports
|
||||
path: reports
|
||||
@@ -244,35 +236,32 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Checkout diffusers
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v6
|
||||
with:
|
||||
fetch-depth: 2
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
python -m uv pip install -e [quality,test]
|
||||
uv pip install -e ".[quality]"
|
||||
# TODO (sayakpaul, DN6): revisit `--no-deps`
|
||||
python -m pip install -U peft@git+https://github.com/huggingface/peft.git --no-deps
|
||||
# Stopping this update temporarily until the Hub RC is fully shipped and integrated.
|
||||
# python -m uv pip install -U transformers@git+https://github.com/huggingface/transformers.git --no-deps
|
||||
# python -m uv pip install -U tokenizers
|
||||
# pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git --no-deps
|
||||
uv pip install -U peft@git+https://github.com/huggingface/peft.git --no-deps
|
||||
uv pip install -U tokenizers
|
||||
uv pip uninstall accelerate && uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git --no-deps
|
||||
#uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
|
||||
uv pip uninstall transformers huggingface_hub && uv pip install transformers==4.57.1
|
||||
|
||||
- name: Environment
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
python utils/print_env.py
|
||||
|
||||
- name: Run fast PyTorch LoRA tests with PEFT
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
python -m pytest -n 4 --max-worker-restart=0 --dist=loadfile \
|
||||
-s -v \
|
||||
pytest -n 4 --max-worker-restart=0 --dist=loadfile \
|
||||
\
|
||||
--make-reports=tests_peft_main \
|
||||
tests/lora/
|
||||
python -m pytest -n 4 --max-worker-restart=0 --dist=loadfile \
|
||||
-s -v \
|
||||
pytest -n 4 --max-worker-restart=0 --dist=loadfile \
|
||||
\
|
||||
--make-reports=tests_models_lora_peft_main \
|
||||
tests/models/ -k "lora"
|
||||
|
||||
@@ -284,7 +273,7 @@ jobs:
|
||||
|
||||
- name: Test suite reports artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
uses: actions/upload-artifact@v6
|
||||
with:
|
||||
name: pr_main_test_reports
|
||||
path: reports
|
||||
|
||||
92
.github/workflows/pr_tests_gpu.yml
vendored
92
.github/workflows/pr_tests_gpu.yml
vendored
@@ -1,4 +1,4 @@
|
||||
name: Fast GPU Tests on PR
|
||||
name: Fast GPU Tests on PR
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
@@ -24,7 +24,7 @@ env:
|
||||
DIFFUSERS_IS_CI: yes
|
||||
OMP_NUM_THREADS: 8
|
||||
MKL_NUM_THREADS: 8
|
||||
HF_HUB_ENABLE_HF_TRANSFER: 1
|
||||
HF_XET_HIGH_PERFORMANCE: 1
|
||||
PYTEST_TIMEOUT: 600
|
||||
PIPELINE_USAGE_CUTOFF: 1000000000 # set high cutoff so that only always-test pipelines run
|
||||
|
||||
@@ -32,14 +32,14 @@ jobs:
|
||||
check_code_quality:
|
||||
runs-on: ubuntu-22.04
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v6
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v4
|
||||
uses: actions/setup-python@v6
|
||||
with:
|
||||
python-version: "3.8"
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install --upgrade pip
|
||||
pip install .[quality]
|
||||
- name: Check quality
|
||||
run: make quality
|
||||
@@ -52,14 +52,14 @@ jobs:
|
||||
needs: check_code_quality
|
||||
runs-on: ubuntu-22.04
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v6
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v4
|
||||
uses: actions/setup-python@v6
|
||||
with:
|
||||
python-version: "3.8"
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install --upgrade pip
|
||||
pip install .[quality]
|
||||
- name: Check repo consistency
|
||||
run: |
|
||||
@@ -71,7 +71,7 @@ jobs:
|
||||
if: ${{ failure() }}
|
||||
run: |
|
||||
echo "Repo consistency check failed. Please ensure the right dependency versions are installed with 'pip install -e .[quality]' and run 'make fix-copies'" >> $GITHUB_STEP_SUMMARY
|
||||
|
||||
|
||||
setup_torch_cuda_pipeline_matrix:
|
||||
needs: [check_code_quality, check_repository_consistency]
|
||||
name: Setup Torch Pipelines CUDA Slow Tests Matrix
|
||||
@@ -83,13 +83,12 @@ jobs:
|
||||
pipeline_test_matrix: ${{ steps.fetch_pipeline_matrix.outputs.pipeline_test_matrix }}
|
||||
steps:
|
||||
- name: Checkout diffusers
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v6
|
||||
with:
|
||||
fetch-depth: 2
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
python -m uv pip install -e [quality,test]
|
||||
uv pip install -e ".[quality]"
|
||||
- name: Environment
|
||||
run: |
|
||||
python utils/print_env.py
|
||||
@@ -101,7 +100,7 @@ jobs:
|
||||
echo "pipeline_test_matrix=$matrix" >> $GITHUB_OUTPUT
|
||||
- name: Pipeline Tests Artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
uses: actions/upload-artifact@v6
|
||||
with:
|
||||
name: test-pipelines.json
|
||||
path: reports
|
||||
@@ -121,7 +120,7 @@ jobs:
|
||||
options: --shm-size "16gb" --ipc host --gpus all
|
||||
steps:
|
||||
- name: Checkout diffusers
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v6
|
||||
with:
|
||||
fetch-depth: 2
|
||||
|
||||
@@ -130,11 +129,10 @@ jobs:
|
||||
nvidia-smi
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
python -m uv pip install -e [quality,test]
|
||||
# Stopping this update temporarily until the Hub RC is fully shipped and integrated.
|
||||
# pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
|
||||
# pip uninstall transformers -y && python -m uv pip install -U transformers@git+https://github.com/huggingface/transformers.git --no-deps
|
||||
uv pip install -e ".[quality]"
|
||||
uv pip uninstall accelerate && uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
|
||||
#uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
|
||||
uv pip uninstall transformers huggingface_hub && uv pip install transformers==4.57.1
|
||||
|
||||
- name: Environment
|
||||
run: |
|
||||
@@ -152,18 +150,18 @@ jobs:
|
||||
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
|
||||
CUBLAS_WORKSPACE_CONFIG: :16:8
|
||||
run: |
|
||||
if [ "${{ matrix.module }}" = "ip_adapters" ]; then
|
||||
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
|
||||
-s -v -k "not Flax and not Onnx" \
|
||||
if [ "${{ matrix.module }}" = "ip_adapters" ]; then
|
||||
pytest -n 1 --max-worker-restart=0 --dist=loadfile \
|
||||
-k "not Flax and not Onnx" \
|
||||
--make-reports=tests_pipeline_${{ matrix.module }}_cuda \
|
||||
tests/pipelines/${{ matrix.module }}
|
||||
else
|
||||
else
|
||||
pattern=$(cat ${{ steps.extract_tests.outputs.pattern_file }})
|
||||
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
|
||||
-s -v -k "not Flax and not Onnx and $pattern" \
|
||||
pytest -n 1 --max-worker-restart=0 --dist=loadfile \
|
||||
-k "not Flax and not Onnx and $pattern" \
|
||||
--make-reports=tests_pipeline_${{ matrix.module }}_cuda \
|
||||
tests/pipelines/${{ matrix.module }}
|
||||
fi
|
||||
fi
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
@@ -172,7 +170,7 @@ jobs:
|
||||
cat reports/tests_pipeline_${{ matrix.module }}_cuda_failures_short.txt
|
||||
- name: Test suite reports artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
uses: actions/upload-artifact@v6
|
||||
with:
|
||||
name: pipeline_${{ matrix.module }}_test_reports
|
||||
path: reports
|
||||
@@ -195,18 +193,17 @@ jobs:
|
||||
module: [models, schedulers, lora, others]
|
||||
steps:
|
||||
- name: Checkout diffusers
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v6
|
||||
with:
|
||||
fetch-depth: 2
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
python -m uv pip install -e [quality,test]
|
||||
python -m uv pip install peft@git+https://github.com/huggingface/peft.git
|
||||
# Stopping this update temporarily until the Hub RC is fully shipped and integrated.
|
||||
# pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
|
||||
# pip uninstall transformers -y && python -m uv pip install -U transformers@git+https://github.com/huggingface/transformers.git --no-deps
|
||||
uv pip install -e ".[quality]"
|
||||
uv pip install peft@git+https://github.com/huggingface/peft.git
|
||||
uv pip uninstall accelerate && uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
|
||||
#uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
|
||||
uv pip uninstall transformers huggingface_hub && uv pip install transformers==4.57.1
|
||||
|
||||
- name: Environment
|
||||
run: |
|
||||
@@ -227,11 +224,11 @@ jobs:
|
||||
run: |
|
||||
pattern=$(cat ${{ steps.extract_tests.outputs.pattern_file }})
|
||||
if [ -z "$pattern" ]; then
|
||||
python -m pytest -n 1 -sv --max-worker-restart=0 --dist=loadfile -k "not Flax and not Onnx" tests/${{ matrix.module }} \
|
||||
--make-reports=tests_torch_cuda_${{ matrix.module }}
|
||||
pytest -n 1 --max-worker-restart=0 --dist=loadfile -k "not Flax and not Onnx" tests/${{ matrix.module }} \
|
||||
--make-reports=tests_torch_cuda_${{ matrix.module }}
|
||||
else
|
||||
python -m pytest -n 1 -sv --max-worker-restart=0 --dist=loadfile -k "not Flax and not Onnx and $pattern" tests/${{ matrix.module }} \
|
||||
--make-reports=tests_torch_cuda_${{ matrix.module }}
|
||||
pytest -n 1 --max-worker-restart=0 --dist=loadfile -k "not Flax and not Onnx and $pattern" tests/${{ matrix.module }} \
|
||||
--make-reports=tests_torch_cuda_${{ matrix.module }}
|
||||
fi
|
||||
|
||||
- name: Failure short reports
|
||||
@@ -242,7 +239,7 @@ jobs:
|
||||
|
||||
- name: Test suite reports artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
uses: actions/upload-artifact@v6
|
||||
with:
|
||||
name: torch_cuda_test_reports_${{ matrix.module }}
|
||||
path: reports
|
||||
@@ -258,7 +255,7 @@ jobs:
|
||||
options: --gpus all --shm-size "16gb" --ipc host
|
||||
steps:
|
||||
- name: Checkout diffusers
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v6
|
||||
with:
|
||||
fetch-depth: 2
|
||||
|
||||
@@ -267,23 +264,20 @@ jobs:
|
||||
nvidia-smi
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
# Stopping this update temporarily until the Hub RC is fully shipped and integrated.
|
||||
# pip uninstall transformers -y && python -m uv pip install -U transformers@git+https://github.com/huggingface/transformers.git --no-deps
|
||||
python -m uv pip install -e [quality,test,training]
|
||||
#uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
|
||||
uv pip uninstall transformers huggingface_hub && uv pip install transformers==4.57.1
|
||||
uv pip install -e ".[quality,training]"
|
||||
|
||||
- name: Environment
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
python utils/print_env.py
|
||||
|
||||
- name: Run example tests on GPU
|
||||
env:
|
||||
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
python -m uv pip install timm
|
||||
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v --make-reports=examples_torch_cuda examples/
|
||||
uv pip install ".[training]"
|
||||
pytest -n 1 --max-worker-restart=0 --dist=loadfile --make-reports=examples_torch_cuda examples/
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
@@ -293,7 +287,7 @@ jobs:
|
||||
|
||||
- name: Test suite reports artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
uses: actions/upload-artifact@v6
|
||||
with:
|
||||
name: examples_test_reports
|
||||
path: reports
|
||||
|
||||
14
.github/workflows/pr_torch_dependency_test.yml
vendored
14
.github/workflows/pr_torch_dependency_test.yml
vendored
@@ -18,19 +18,15 @@ jobs:
|
||||
check_torch_dependencies:
|
||||
runs-on: ubuntu-22.04
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v6
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v4
|
||||
uses: actions/setup-python@v6
|
||||
with:
|
||||
python-version: "3.8"
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
python -m pip install --upgrade pip uv
|
||||
python -m uv pip install -e .
|
||||
python -m uv pip install torch torchvision torchaudio
|
||||
python -m uv pip install pytest
|
||||
pip install -e .
|
||||
pip install torch torchvision torchaudio pytest
|
||||
- name: Check for soft dependencies
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
pytest tests/others/test_dependencies.py
|
||||
pytest tests/others/test_dependencies.py
|
||||
|
||||
74
.github/workflows/push_tests.yml
vendored
74
.github/workflows/push_tests.yml
vendored
@@ -14,7 +14,7 @@ env:
|
||||
DIFFUSERS_IS_CI: yes
|
||||
OMP_NUM_THREADS: 8
|
||||
MKL_NUM_THREADS: 8
|
||||
HF_HUB_ENABLE_HF_TRANSFER: 1
|
||||
HF_XET_HIGH_PERFORMANCE: 1
|
||||
PYTEST_TIMEOUT: 600
|
||||
PIPELINE_USAGE_CUTOFF: 50000
|
||||
|
||||
@@ -29,13 +29,12 @@ jobs:
|
||||
pipeline_test_matrix: ${{ steps.fetch_pipeline_matrix.outputs.pipeline_test_matrix }}
|
||||
steps:
|
||||
- name: Checkout diffusers
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v6
|
||||
with:
|
||||
fetch-depth: 2
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
python -m uv pip install -e [quality,test]
|
||||
uv pip install -e ".[quality]"
|
||||
- name: Environment
|
||||
run: |
|
||||
python utils/print_env.py
|
||||
@@ -47,7 +46,7 @@ jobs:
|
||||
echo "pipeline_test_matrix=$matrix" >> $GITHUB_OUTPUT
|
||||
- name: Pipeline Tests Artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
uses: actions/upload-artifact@v6
|
||||
with:
|
||||
name: test-pipelines.json
|
||||
path: reports
|
||||
@@ -67,7 +66,7 @@ jobs:
|
||||
options: --shm-size "16gb" --ipc host --gpus all
|
||||
steps:
|
||||
- name: Checkout diffusers
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v6
|
||||
with:
|
||||
fetch-depth: 2
|
||||
- name: NVIDIA-SMI
|
||||
@@ -75,9 +74,10 @@ jobs:
|
||||
nvidia-smi
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
python -m uv pip install -e [quality,test]
|
||||
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
|
||||
uv pip install -e ".[quality]"
|
||||
uv pip uninstall accelerate && uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
|
||||
#uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
|
||||
uv pip uninstall transformers huggingface_hub && uv pip install transformers==4.57.1
|
||||
- name: Environment
|
||||
run: |
|
||||
python utils/print_env.py
|
||||
@@ -87,8 +87,8 @@ jobs:
|
||||
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
|
||||
CUBLAS_WORKSPACE_CONFIG: :16:8
|
||||
run: |
|
||||
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
|
||||
-s -v -k "not Flax and not Onnx" \
|
||||
pytest -n 1 --max-worker-restart=0 --dist=loadfile \
|
||||
-k "not Flax and not Onnx" \
|
||||
--make-reports=tests_pipeline_${{ matrix.module }}_cuda \
|
||||
tests/pipelines/${{ matrix.module }}
|
||||
- name: Failure short reports
|
||||
@@ -98,7 +98,7 @@ jobs:
|
||||
cat reports/tests_pipeline_${{ matrix.module }}_cuda_failures_short.txt
|
||||
- name: Test suite reports artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
uses: actions/upload-artifact@v6
|
||||
with:
|
||||
name: pipeline_${{ matrix.module }}_test_reports
|
||||
path: reports
|
||||
@@ -120,16 +120,17 @@ jobs:
|
||||
module: [models, schedulers, lora, others, single_file]
|
||||
steps:
|
||||
- name: Checkout diffusers
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v6
|
||||
with:
|
||||
fetch-depth: 2
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
python -m uv pip install -e [quality,test]
|
||||
python -m uv pip install peft@git+https://github.com/huggingface/peft.git
|
||||
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
|
||||
uv pip install -e ".[quality]"
|
||||
uv pip install peft@git+https://github.com/huggingface/peft.git
|
||||
uv pip uninstall accelerate && uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
|
||||
#uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
|
||||
uv pip uninstall transformers huggingface_hub && uv pip install transformers==4.57.1
|
||||
|
||||
- name: Environment
|
||||
run: |
|
||||
@@ -141,8 +142,8 @@ jobs:
|
||||
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
|
||||
CUBLAS_WORKSPACE_CONFIG: :16:8
|
||||
run: |
|
||||
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
|
||||
-s -v -k "not Flax and not Onnx" \
|
||||
pytest -n 1 --max-worker-restart=0 --dist=loadfile \
|
||||
-k "not Flax and not Onnx" \
|
||||
--make-reports=tests_torch_cuda_${{ matrix.module }} \
|
||||
tests/${{ matrix.module }}
|
||||
|
||||
@@ -154,7 +155,7 @@ jobs:
|
||||
|
||||
- name: Test suite reports artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
uses: actions/upload-artifact@v6
|
||||
with:
|
||||
name: torch_cuda_test_reports_${{ matrix.module }}
|
||||
path: reports
|
||||
@@ -171,7 +172,7 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Checkout diffusers
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v6
|
||||
with:
|
||||
fetch-depth: 2
|
||||
|
||||
@@ -180,8 +181,9 @@ jobs:
|
||||
nvidia-smi
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
python -m uv pip install -e [quality,test,training]
|
||||
uv pip install -e ".[quality,training]"
|
||||
#uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
|
||||
uv pip uninstall transformers huggingface_hub && uv pip install transformers==4.57.1
|
||||
- name: Environment
|
||||
run: |
|
||||
python utils/print_env.py
|
||||
@@ -190,14 +192,14 @@ jobs:
|
||||
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
|
||||
RUN_COMPILE: yes
|
||||
run: |
|
||||
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v -k "compile" --make-reports=tests_torch_compile_cuda tests/
|
||||
pytest -n 1 --max-worker-restart=0 --dist=loadfile -k "compile" --make-reports=tests_torch_compile_cuda tests/
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
run: cat reports/tests_torch_compile_cuda_failures_short.txt
|
||||
|
||||
- name: Test suite reports artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
uses: actions/upload-artifact@v6
|
||||
with:
|
||||
name: torch_compile_test_reports
|
||||
path: reports
|
||||
@@ -214,7 +216,7 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Checkout diffusers
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v6
|
||||
with:
|
||||
fetch-depth: 2
|
||||
|
||||
@@ -223,8 +225,7 @@ jobs:
|
||||
nvidia-smi
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
python -m uv pip install -e [quality,test,training]
|
||||
uv pip install -e ".[quality,training]"
|
||||
- name: Environment
|
||||
run: |
|
||||
python utils/print_env.py
|
||||
@@ -232,14 +233,14 @@ jobs:
|
||||
env:
|
||||
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
|
||||
run: |
|
||||
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v -k "xformers" --make-reports=tests_torch_xformers_cuda tests/
|
||||
pytest -n 1 --max-worker-restart=0 --dist=loadfile -k "xformers" --make-reports=tests_torch_xformers_cuda tests/
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
run: cat reports/tests_torch_xformers_cuda_failures_short.txt
|
||||
|
||||
- name: Test suite reports artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
uses: actions/upload-artifact@v6
|
||||
with:
|
||||
name: torch_xformers_test_reports
|
||||
path: reports
|
||||
@@ -255,7 +256,7 @@ jobs:
|
||||
options: --gpus all --shm-size "16gb" --ipc host
|
||||
steps:
|
||||
- name: Checkout diffusers
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v6
|
||||
with:
|
||||
fetch-depth: 2
|
||||
|
||||
@@ -264,21 +265,18 @@ jobs:
|
||||
nvidia-smi
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
python -m uv pip install -e [quality,test,training]
|
||||
uv pip install -e ".[quality,training]"
|
||||
|
||||
- name: Environment
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
python utils/print_env.py
|
||||
|
||||
- name: Run example tests on GPU
|
||||
env:
|
||||
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
python -m uv pip install timm
|
||||
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v --make-reports=examples_torch_cuda examples/
|
||||
uv pip install ".[training]"
|
||||
pytest -n 1 --max-worker-restart=0 --dist=loadfile --make-reports=examples_torch_cuda examples/
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
@@ -288,7 +286,7 @@ jobs:
|
||||
|
||||
- name: Test suite reports artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
uses: actions/upload-artifact@v6
|
||||
with:
|
||||
name: examples_test_reports
|
||||
path: reports
|
||||
|
||||
20
.github/workflows/push_tests_fast.yml
vendored
20
.github/workflows/push_tests_fast.yml
vendored
@@ -18,7 +18,7 @@ env:
|
||||
HF_HOME: /mnt/cache
|
||||
OMP_NUM_THREADS: 8
|
||||
MKL_NUM_THREADS: 8
|
||||
HF_HUB_ENABLE_HF_TRANSFER: 1
|
||||
HF_XET_HIGH_PERFORMANCE: 1
|
||||
PYTEST_TIMEOUT: 600
|
||||
RUN_SLOW: no
|
||||
|
||||
@@ -54,35 +54,31 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Checkout diffusers
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v6
|
||||
with:
|
||||
fetch-depth: 2
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
python -m uv pip install -e [quality,test]
|
||||
uv pip install -e ".[quality]"
|
||||
|
||||
- name: Environment
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
python utils/print_env.py
|
||||
|
||||
- name: Run fast PyTorch CPU tests
|
||||
if: ${{ matrix.config.framework == 'pytorch' }}
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
python -m pytest -n 4 --max-worker-restart=0 --dist=loadfile \
|
||||
-s -v -k "not Flax and not Onnx" \
|
||||
pytest -n 4 --max-worker-restart=0 --dist=loadfile \
|
||||
-k "not Flax and not Onnx" \
|
||||
--make-reports=tests_${{ matrix.config.report }} \
|
||||
tests/
|
||||
|
||||
- name: Run example PyTorch CPU tests
|
||||
if: ${{ matrix.config.framework == 'pytorch_examples' }}
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
python -m uv pip install peft timm
|
||||
python -m pytest -n 4 --max-worker-restart=0 --dist=loadfile \
|
||||
uv pip install ".[training]"
|
||||
pytest -n 4 --max-worker-restart=0 --dist=loadfile \
|
||||
--make-reports=tests_${{ matrix.config.report }} \
|
||||
examples
|
||||
|
||||
@@ -92,7 +88,7 @@ jobs:
|
||||
|
||||
- name: Test suite reports artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
uses: actions/upload-artifact@v6
|
||||
with:
|
||||
name: pr_${{ matrix.config.report }}_test_reports
|
||||
path: reports
|
||||
|
||||
8
.github/workflows/push_tests_mps.yml
vendored
8
.github/workflows/push_tests_mps.yml
vendored
@@ -8,7 +8,7 @@ env:
|
||||
HF_HOME: /mnt/cache
|
||||
OMP_NUM_THREADS: 8
|
||||
MKL_NUM_THREADS: 8
|
||||
HF_HUB_ENABLE_HF_TRANSFER: 1
|
||||
HF_XET_HIGH_PERFORMANCE: 1
|
||||
PYTEST_TIMEOUT: 600
|
||||
RUN_SLOW: no
|
||||
|
||||
@@ -23,7 +23,7 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Checkout diffusers
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v6
|
||||
with:
|
||||
fetch-depth: 2
|
||||
|
||||
@@ -57,7 +57,7 @@ jobs:
|
||||
HF_HOME: /System/Volumes/Data/mnt/cache
|
||||
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
||||
run: |
|
||||
${CONDA_RUN} python -m pytest -n 0 -s -v --make-reports=tests_torch_mps tests/
|
||||
${CONDA_RUN} python -m pytest -n 0 --make-reports=tests_torch_mps tests/
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
@@ -65,7 +65,7 @@ jobs:
|
||||
|
||||
- name: Test suite reports artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
uses: actions/upload-artifact@v6
|
||||
with:
|
||||
name: pr_torch_mps_test_reports
|
||||
path: reports
|
||||
|
||||
8
.github/workflows/pypi_publish.yaml
vendored
8
.github/workflows/pypi_publish.yaml
vendored
@@ -15,10 +15,10 @@ jobs:
|
||||
latest_branch: ${{ steps.set_latest_branch.outputs.latest_branch }}
|
||||
steps:
|
||||
- name: Checkout Repo
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v6
|
||||
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v4
|
||||
uses: actions/setup-python@v6
|
||||
with:
|
||||
python-version: '3.8'
|
||||
|
||||
@@ -40,12 +40,12 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Checkout Repo
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v6
|
||||
with:
|
||||
ref: ${{ needs.find-and-checkout-latest-branch.outputs.latest_branch }}
|
||||
|
||||
- name: Setup Python
|
||||
uses: actions/setup-python@v4
|
||||
uses: actions/setup-python@v6
|
||||
with:
|
||||
python-version: "3.8"
|
||||
|
||||
|
||||
81
.github/workflows/release_tests_fast.yml
vendored
81
.github/workflows/release_tests_fast.yml
vendored
@@ -27,13 +27,12 @@ jobs:
|
||||
pipeline_test_matrix: ${{ steps.fetch_pipeline_matrix.outputs.pipeline_test_matrix }}
|
||||
steps:
|
||||
- name: Checkout diffusers
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v6
|
||||
with:
|
||||
fetch-depth: 2
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
python -m uv pip install -e [quality,test]
|
||||
uv pip install -e ".[quality]"
|
||||
- name: Environment
|
||||
run: |
|
||||
python utils/print_env.py
|
||||
@@ -45,7 +44,7 @@ jobs:
|
||||
echo "pipeline_test_matrix=$matrix" >> $GITHUB_OUTPUT
|
||||
- name: Pipeline Tests Artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
uses: actions/upload-artifact@v6
|
||||
with:
|
||||
name: test-pipelines.json
|
||||
path: reports
|
||||
@@ -65,7 +64,7 @@ jobs:
|
||||
options: --shm-size "16gb" --ipc host --gpus all
|
||||
steps:
|
||||
- name: Checkout diffusers
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v6
|
||||
with:
|
||||
fetch-depth: 2
|
||||
- name: NVIDIA-SMI
|
||||
@@ -73,9 +72,8 @@ jobs:
|
||||
nvidia-smi
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
python -m uv pip install -e [quality,test]
|
||||
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
|
||||
uv pip install -e ".[quality]"
|
||||
uv pip uninstall accelerate && uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
|
||||
- name: Environment
|
||||
run: |
|
||||
python utils/print_env.py
|
||||
@@ -85,8 +83,8 @@ jobs:
|
||||
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
|
||||
CUBLAS_WORKSPACE_CONFIG: :16:8
|
||||
run: |
|
||||
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
|
||||
-s -v -k "not Flax and not Onnx" \
|
||||
pytest -n 1 --max-worker-restart=0 --dist=loadfile \
|
||||
-k "not Flax and not Onnx" \
|
||||
--make-reports=tests_pipeline_${{ matrix.module }}_cuda \
|
||||
tests/pipelines/${{ matrix.module }}
|
||||
- name: Failure short reports
|
||||
@@ -96,7 +94,7 @@ jobs:
|
||||
cat reports/tests_pipeline_${{ matrix.module }}_cuda_failures_short.txt
|
||||
- name: Test suite reports artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
uses: actions/upload-artifact@v6
|
||||
with:
|
||||
name: pipeline_${{ matrix.module }}_test_reports
|
||||
path: reports
|
||||
@@ -118,16 +116,15 @@ jobs:
|
||||
module: [models, schedulers, lora, others, single_file]
|
||||
steps:
|
||||
- name: Checkout diffusers
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v6
|
||||
with:
|
||||
fetch-depth: 2
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
python -m uv pip install -e [quality,test]
|
||||
python -m uv pip install peft@git+https://github.com/huggingface/peft.git
|
||||
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
|
||||
uv pip install -e ".[quality]"
|
||||
uv pip install peft@git+https://github.com/huggingface/peft.git
|
||||
uv pip uninstall accelerate && uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
|
||||
|
||||
- name: Environment
|
||||
run: |
|
||||
@@ -139,8 +136,8 @@ jobs:
|
||||
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
|
||||
CUBLAS_WORKSPACE_CONFIG: :16:8
|
||||
run: |
|
||||
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
|
||||
-s -v -k "not Flax and not Onnx" \
|
||||
pytest -n 1 --max-worker-restart=0 --dist=loadfile \
|
||||
-k "not Flax and not Onnx" \
|
||||
--make-reports=tests_torch_${{ matrix.module }}_cuda \
|
||||
tests/${{ matrix.module }}
|
||||
|
||||
@@ -152,7 +149,7 @@ jobs:
|
||||
|
||||
- name: Test suite reports artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
uses: actions/upload-artifact@v6
|
||||
with:
|
||||
name: torch_cuda_${{ matrix.module }}_test_reports
|
||||
path: reports
|
||||
@@ -169,16 +166,15 @@ jobs:
|
||||
shell: bash
|
||||
steps:
|
||||
- name: Checkout diffusers
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v6
|
||||
with:
|
||||
fetch-depth: 2
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
python -m uv pip install -e [quality,test]
|
||||
python -m uv pip install peft@git+https://github.com/huggingface/peft.git
|
||||
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
|
||||
uv pip install -e ".[quality]"
|
||||
uv pip install peft@git+https://github.com/huggingface/peft.git
|
||||
uv pip uninstall accelerate && uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
|
||||
|
||||
- name: Environment
|
||||
run: |
|
||||
@@ -190,8 +186,8 @@ jobs:
|
||||
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
|
||||
CUBLAS_WORKSPACE_CONFIG: :16:8
|
||||
run: |
|
||||
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
|
||||
-s -v -k "not Flax and not Onnx" \
|
||||
pytest -n 1 --max-worker-restart=0 --dist=loadfile \
|
||||
-k "not Flax and not Onnx" \
|
||||
--make-reports=tests_torch_minimum_cuda \
|
||||
tests/models/test_modeling_common.py \
|
||||
tests/pipelines/test_pipelines_common.py \
|
||||
@@ -209,7 +205,7 @@ jobs:
|
||||
|
||||
- name: Test suite reports artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
uses: actions/upload-artifact@v6
|
||||
with:
|
||||
name: torch_minimum_version_cuda_test_reports
|
||||
path: reports
|
||||
@@ -226,7 +222,7 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Checkout diffusers
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v6
|
||||
with:
|
||||
fetch-depth: 2
|
||||
|
||||
@@ -235,8 +231,7 @@ jobs:
|
||||
nvidia-smi
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
python -m uv pip install -e [quality,test,training]
|
||||
uv pip install -e ".[quality,training]"
|
||||
- name: Environment
|
||||
run: |
|
||||
python utils/print_env.py
|
||||
@@ -245,14 +240,14 @@ jobs:
|
||||
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
|
||||
RUN_COMPILE: yes
|
||||
run: |
|
||||
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v -k "compile" --make-reports=tests_torch_compile_cuda tests/
|
||||
pytest -n 1 --max-worker-restart=0 --dist=loadfile -k "compile" --make-reports=tests_torch_compile_cuda tests/
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
run: cat reports/tests_torch_compile_cuda_failures_short.txt
|
||||
|
||||
- name: Test suite reports artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
uses: actions/upload-artifact@v6
|
||||
with:
|
||||
name: torch_compile_test_reports
|
||||
path: reports
|
||||
@@ -269,7 +264,7 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Checkout diffusers
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v6
|
||||
with:
|
||||
fetch-depth: 2
|
||||
|
||||
@@ -278,8 +273,7 @@ jobs:
|
||||
nvidia-smi
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
python -m uv pip install -e [quality,test,training]
|
||||
uv pip install -e ".[quality,training]"
|
||||
- name: Environment
|
||||
run: |
|
||||
python utils/print_env.py
|
||||
@@ -287,14 +281,14 @@ jobs:
|
||||
env:
|
||||
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
|
||||
run: |
|
||||
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v -k "xformers" --make-reports=tests_torch_xformers_cuda tests/
|
||||
pytest -n 1 --max-worker-restart=0 --dist=loadfile -k "xformers" --make-reports=tests_torch_xformers_cuda tests/
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
run: cat reports/tests_torch_xformers_cuda_failures_short.txt
|
||||
|
||||
- name: Test suite reports artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
uses: actions/upload-artifact@v6
|
||||
with:
|
||||
name: torch_xformers_test_reports
|
||||
path: reports
|
||||
@@ -311,7 +305,7 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Checkout diffusers
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v6
|
||||
with:
|
||||
fetch-depth: 2
|
||||
|
||||
@@ -321,21 +315,18 @@ jobs:
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
python -m uv pip install -e [quality,test,training]
|
||||
uv pip install -e ".[quality,training]"
|
||||
|
||||
- name: Environment
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
python utils/print_env.py
|
||||
|
||||
- name: Run example tests on GPU
|
||||
env:
|
||||
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
python -m uv pip install timm
|
||||
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v --make-reports=examples_torch_cuda examples/
|
||||
uv pip install ".[training]"
|
||||
pytest -n 1 --max-worker-restart=0 --dist=loadfile --make-reports=examples_torch_cuda examples/
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
@@ -345,7 +336,7 @@ jobs:
|
||||
|
||||
- name: Test suite reports artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
uses: actions/upload-artifact@v6
|
||||
with:
|
||||
name: examples_test_reports
|
||||
path: reports
|
||||
|
||||
7
.github/workflows/run_tests_from_a_pr.yml
vendored
7
.github/workflows/run_tests_from_a_pr.yml
vendored
@@ -57,15 +57,14 @@ jobs:
|
||||
shell: bash -e {0}
|
||||
|
||||
- name: Checkout PR branch
|
||||
uses: actions/checkout@v4
|
||||
uses: actions/checkout@v6
|
||||
with:
|
||||
ref: refs/pull/${{ inputs.pr_number }}/head
|
||||
|
||||
- name: Install pytest
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
python -m uv pip install -e [quality,test]
|
||||
python -m uv pip install peft
|
||||
uv pip install -e ".[quality]"
|
||||
uv pip install peft
|
||||
|
||||
- name: Run tests
|
||||
env:
|
||||
|
||||
2
.github/workflows/ssh-pr-runner.yml
vendored
2
.github/workflows/ssh-pr-runner.yml
vendored
@@ -27,7 +27,7 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Checkout diffusers
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v6
|
||||
with:
|
||||
fetch-depth: 2
|
||||
|
||||
|
||||
2
.github/workflows/ssh-runner.yml
vendored
2
.github/workflows/ssh-runner.yml
vendored
@@ -35,7 +35,7 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Checkout diffusers
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v6
|
||||
with:
|
||||
fetch-depth: 2
|
||||
|
||||
|
||||
4
.github/workflows/stale.yml
vendored
4
.github/workflows/stale.yml
vendored
@@ -15,10 +15,10 @@ jobs:
|
||||
env:
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- uses: actions/checkout@v6
|
||||
|
||||
- name: Setup Python
|
||||
uses: actions/setup-python@v1
|
||||
uses: actions/setup-python@v6
|
||||
with:
|
||||
python-version: 3.8
|
||||
|
||||
|
||||
2
.github/workflows/trufflehog.yml
vendored
2
.github/workflows/trufflehog.yml
vendored
@@ -8,7 +8,7 @@ jobs:
|
||||
runs-on: ubuntu-22.04
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v4
|
||||
uses: actions/checkout@v6
|
||||
with:
|
||||
fetch-depth: 0
|
||||
- name: Secret Scanning
|
||||
|
||||
2
.github/workflows/typos.yml
vendored
2
.github/workflows/typos.yml
vendored
@@ -8,7 +8,7 @@ jobs:
|
||||
runs-on: ubuntu-22.04
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v6
|
||||
|
||||
- name: typos-action
|
||||
uses: crate-ci/typos@v1.12.4
|
||||
|
||||
2
.github/workflows/update_metadata.yml
vendored
2
.github/workflows/update_metadata.yml
vendored
@@ -15,7 +15,7 @@ jobs:
|
||||
shell: bash -l {0}
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v6
|
||||
|
||||
- name: Setup environment
|
||||
run: |
|
||||
|
||||
3
.gitignore
vendored
3
.gitignore
vendored
@@ -125,6 +125,9 @@ dmypy.json
|
||||
.vs
|
||||
.vscode
|
||||
|
||||
# Cursor
|
||||
.cursor
|
||||
|
||||
# Pycharm
|
||||
.idea
|
||||
|
||||
|
||||
506
CONTRIBUTING.md
506
CONTRIBUTING.md
@@ -1,506 +0,0 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# How to contribute to Diffusers 🧨
|
||||
|
||||
We ❤️ contributions from the open-source community! Everyone is welcome, and all types of participation –not just code– are valued and appreciated. Answering questions, helping others, reaching out, and improving the documentation are all immensely valuable to the community, so don't be afraid and get involved if you're up for it!
|
||||
|
||||
Everyone is encouraged to start by saying 👋 in our public Discord channel. We discuss the latest trends in diffusion models, ask questions, show off personal projects, help each other with contributions, or just hang out ☕. <a href="https://discord.gg/G7tWnz98XR"><img alt="Join us on Discord" src="https://img.shields.io/discord/823813159592001537?color=5865F2&logo=Discord&logoColor=white"></a>
|
||||
|
||||
Whichever way you choose to contribute, we strive to be part of an open, welcoming, and kind community. Please, read our [code of conduct](https://github.com/huggingface/diffusers/blob/main/CODE_OF_CONDUCT.md) and be mindful to respect it during your interactions. We also recommend you become familiar with the [ethical guidelines](https://huggingface.co/docs/diffusers/conceptual/ethical_guidelines) that guide our project and ask you to adhere to the same principles of transparency and responsibility.
|
||||
|
||||
We enormously value feedback from the community, so please do not be afraid to speak up if you believe you have valuable feedback that can help improve the library - every message, comment, issue, and pull request (PR) is read and considered.
|
||||
|
||||
## Overview
|
||||
|
||||
You can contribute in many ways ranging from answering questions on issues to adding new diffusion models to
|
||||
the core library.
|
||||
|
||||
In the following, we give an overview of different ways to contribute, ranked by difficulty in ascending order. All of them are valuable to the community.
|
||||
|
||||
* 1. Asking and answering questions on [the Diffusers discussion forum](https://discuss.huggingface.co/c/discussion-related-to-httpsgithubcomhuggingfacediffusers) or on [Discord](https://discord.gg/G7tWnz98XR).
|
||||
* 2. Opening new issues on [the GitHub Issues tab](https://github.com/huggingface/diffusers/issues/new/choose).
|
||||
* 3. Answering issues on [the GitHub Issues tab](https://github.com/huggingface/diffusers/issues).
|
||||
* 4. Fix a simple issue, marked by the "Good first issue" label, see [here](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22).
|
||||
* 5. Contribute to the [documentation](https://github.com/huggingface/diffusers/tree/main/docs/source).
|
||||
* 6. Contribute a [Community Pipeline](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3Acommunity-examples).
|
||||
* 7. Contribute to the [examples](https://github.com/huggingface/diffusers/tree/main/examples).
|
||||
* 8. Fix a more difficult issue, marked by the "Good second issue" label, see [here](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22Good+second+issue%22).
|
||||
* 9. Add a new pipeline, model, or scheduler, see ["New Pipeline/Model"](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+pipeline%2Fmodel%22) and ["New scheduler"](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+scheduler%22) issues. For this contribution, please have a look at [Design Philosophy](https://github.com/huggingface/diffusers/blob/main/PHILOSOPHY.md).
|
||||
|
||||
As said before, **all contributions are valuable to the community**.
|
||||
In the following, we will explain each contribution a bit more in detail.
|
||||
|
||||
For all contributions 4-9, you will need to open a PR. It is explained in detail how to do so in [Opening a pull request](#how-to-open-a-pr).
|
||||
|
||||
### 1. Asking and answering questions on the Diffusers discussion forum or on the Diffusers Discord
|
||||
|
||||
Any question or comment related to the Diffusers library can be asked on the [discussion forum](https://discuss.huggingface.co/c/discussion-related-to-httpsgithubcomhuggingfacediffusers/) or on [Discord](https://discord.gg/G7tWnz98XR). Such questions and comments include (but are not limited to):
|
||||
- Reports of training or inference experiments in an attempt to share knowledge
|
||||
- Presentation of personal projects
|
||||
- Questions to non-official training examples
|
||||
- Project proposals
|
||||
- General feedback
|
||||
- Paper summaries
|
||||
- Asking for help on personal projects that build on top of the Diffusers library
|
||||
- General questions
|
||||
- Ethical questions regarding diffusion models
|
||||
- ...
|
||||
|
||||
Every question that is asked on the forum or on Discord actively encourages the community to publicly
|
||||
share knowledge and might very well help a beginner in the future who has the same question you're
|
||||
having. Please do pose any questions you might have.
|
||||
In the same spirit, you are of immense help to the community by answering such questions because this way you are publicly documenting knowledge for everybody to learn from.
|
||||
|
||||
**Please** keep in mind that the more effort you put into asking or answering a question, the higher
|
||||
the quality of the publicly documented knowledge. In the same way, well-posed and well-answered questions create a high-quality knowledge database accessible to everybody, while badly posed questions or answers reduce the overall quality of the public knowledge database.
|
||||
In short, a high quality question or answer is *precise*, *concise*, *relevant*, *easy-to-understand*, *accessible*, and *well-formatted/well-posed*. For more information, please have a look through the [How to write a good issue](#how-to-write-a-good-issue) section.
|
||||
|
||||
**NOTE about channels**:
|
||||
[*The forum*](https://discuss.huggingface.co/c/discussion-related-to-httpsgithubcomhuggingfacediffusers/63) is much better indexed by search engines, such as Google. Posts are ranked by popularity rather than chronologically. Hence, it's easier to look up questions and answers that we posted some time ago.
|
||||
In addition, questions and answers posted in the forum can easily be linked to.
|
||||
In contrast, *Discord* has a chat-like format that invites fast back-and-forth communication.
|
||||
While it will most likely take less time for you to get an answer to your question on Discord, your
|
||||
question won't be visible anymore over time. Also, it's much harder to find information that was posted a while back on Discord. We therefore strongly recommend using the forum for high-quality questions and answers in an attempt to create long-lasting knowledge for the community. If discussions on Discord lead to very interesting answers and conclusions, we recommend posting the results on the forum to make the information more available for future readers.
|
||||
|
||||
### 2. Opening new issues on the GitHub issues tab
|
||||
|
||||
The 🧨 Diffusers library is robust and reliable thanks to the users who notify us of
|
||||
the problems they encounter. So thank you for reporting an issue.
|
||||
|
||||
Remember, GitHub issues are reserved for technical questions directly related to the Diffusers library, bug reports, feature requests, or feedback on the library design.
|
||||
|
||||
In a nutshell, this means that everything that is **not** related to the **code of the Diffusers library** (including the documentation) should **not** be asked on GitHub, but rather on either the [forum](https://discuss.huggingface.co/c/discussion-related-to-httpsgithubcomhuggingfacediffusers/63) or [Discord](https://discord.gg/G7tWnz98XR).
|
||||
|
||||
**Please consider the following guidelines when opening a new issue**:
|
||||
- Make sure you have searched whether your issue has already been asked before (use the search bar on GitHub under Issues).
|
||||
- Please never report a new issue on another (related) issue. If another issue is highly related, please
|
||||
open a new issue nevertheless and link to the related issue.
|
||||
- Make sure your issue is written in English. Please use one of the great, free online translation services, such as [DeepL](https://www.deepl.com/translator) to translate from your native language to English if you are not comfortable in English.
|
||||
- Check whether your issue might be solved by updating to the newest Diffusers version. Before posting your issue, please make sure that `python -c "import diffusers; print(diffusers.__version__)"` is higher or matches the latest Diffusers version.
|
||||
- Remember that the more effort you put into opening a new issue, the higher the quality of your answer will be and the better the overall quality of the Diffusers issues.
|
||||
|
||||
New issues usually include the following.
|
||||
|
||||
#### 2.1. Reproducible, minimal bug reports
|
||||
|
||||
A bug report should always have a reproducible code snippet and be as minimal and concise as possible.
|
||||
This means in more detail:
|
||||
- Narrow the bug down as much as you can, **do not just dump your whole code file**.
|
||||
- Format your code.
|
||||
- Do not include any external libraries except for Diffusers depending on them.
|
||||
- **Always** provide all necessary information about your environment; for this, you can run: `diffusers-cli env` in your shell and copy-paste the displayed information to the issue.
|
||||
- Explain the issue. If the reader doesn't know what the issue is and why it is an issue, she cannot solve it.
|
||||
- **Always** make sure the reader can reproduce your issue with as little effort as possible. If your code snippet cannot be run because of missing libraries or undefined variables, the reader cannot help you. Make sure your reproducible code snippet is as minimal as possible and can be copy-pasted into a simple Python shell.
|
||||
- If in order to reproduce your issue a model and/or dataset is required, make sure the reader has access to that model or dataset. You can always upload your model or dataset to the [Hub](https://huggingface.co) to make it easily downloadable. Try to keep your model and dataset as small as possible, to make the reproduction of your issue as effortless as possible.
|
||||
|
||||
For more information, please have a look through the [How to write a good issue](#how-to-write-a-good-issue) section.
|
||||
|
||||
You can open a bug report [here](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=bug&projects=&template=bug-report.yml).
|
||||
|
||||
#### 2.2. Feature requests
|
||||
|
||||
A world-class feature request addresses the following points:
|
||||
|
||||
1. Motivation first:
|
||||
* Is it related to a problem/frustration with the library? If so, please explain
|
||||
why. Providing a code snippet that demonstrates the problem is best.
|
||||
* Is it related to something you would need for a project? We'd love to hear
|
||||
about it!
|
||||
* Is it something you worked on and think could benefit the community?
|
||||
Awesome! Tell us what problem it solved for you.
|
||||
2. Write a *full paragraph* describing the feature;
|
||||
3. Provide a **code snippet** that demonstrates its future use;
|
||||
4. In case this is related to a paper, please attach a link;
|
||||
5. Attach any additional information (drawings, screenshots, etc.) you think may help.
|
||||
|
||||
You can open a feature request [here](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=&template=feature_request.md&title=).
|
||||
|
||||
#### 2.3 Feedback
|
||||
|
||||
Feedback about the library design and why it is good or not good helps the core maintainers immensely to build a user-friendly library. To understand the philosophy behind the current design philosophy, please have a look [here](https://huggingface.co/docs/diffusers/conceptual/philosophy). If you feel like a certain design choice does not fit with the current design philosophy, please explain why and how it should be changed. If a certain design choice follows the design philosophy too much, hence restricting use cases, explain why and how it should be changed.
|
||||
If a certain design choice is very useful for you, please also leave a note as this is great feedback for future design decisions.
|
||||
|
||||
You can open an issue about feedback [here](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=&template=feedback.md&title=).
|
||||
|
||||
#### 2.4 Technical questions
|
||||
|
||||
Technical questions are mainly about why certain code of the library was written in a certain way, or what a certain part of the code does. Please make sure to link to the code in question and please provide detail on
|
||||
why this part of the code is difficult to understand.
|
||||
|
||||
You can open an issue about a technical question [here](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=bug&template=bug-report.yml).
|
||||
|
||||
#### 2.5 Proposal to add a new model, scheduler, or pipeline
|
||||
|
||||
If the diffusion model community released a new model, pipeline, or scheduler that you would like to see in the Diffusers library, please provide the following information:
|
||||
|
||||
* Short description of the diffusion pipeline, model, or scheduler and link to the paper or public release.
|
||||
* Link to any of its open-source implementation.
|
||||
* Link to the model weights if they are available.
|
||||
|
||||
If you are willing to contribute to the model yourself, let us know so we can best guide you. Also, don't forget
|
||||
to tag the original author of the component (model, scheduler, pipeline, etc.) by GitHub handle if you can find it.
|
||||
|
||||
You can open a request for a model/pipeline/scheduler [here](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=New+model%2Fpipeline%2Fscheduler&template=new-model-addition.yml).
|
||||
|
||||
### 3. Answering issues on the GitHub issues tab
|
||||
|
||||
Answering issues on GitHub might require some technical knowledge of Diffusers, but we encourage everybody to give it a try even if you are not 100% certain that your answer is correct.
|
||||
Some tips to give a high-quality answer to an issue:
|
||||
- Be as concise and minimal as possible.
|
||||
- Stay on topic. An answer to the issue should concern the issue and only the issue.
|
||||
- Provide links to code, papers, or other sources that prove or encourage your point.
|
||||
- Answer in code. If a simple code snippet is the answer to the issue or shows how the issue can be solved, please provide a fully reproducible code snippet.
|
||||
|
||||
Also, many issues tend to be simply off-topic, duplicates of other issues, or irrelevant. It is of great
|
||||
help to the maintainers if you can answer such issues, encouraging the author of the issue to be
|
||||
more precise, provide the link to a duplicated issue or redirect them to [the forum](https://discuss.huggingface.co/c/discussion-related-to-httpsgithubcomhuggingfacediffusers/63) or [Discord](https://discord.gg/G7tWnz98XR).
|
||||
|
||||
If you have verified that the issued bug report is correct and requires a correction in the source code,
|
||||
please have a look at the next sections.
|
||||
|
||||
For all of the following contributions, you will need to open a PR. It is explained in detail how to do so in the [Opening a pull request](#how-to-open-a-pr) section.
|
||||
|
||||
### 4. Fixing a "Good first issue"
|
||||
|
||||
*Good first issues* are marked by the [Good first issue](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22) label. Usually, the issue already
|
||||
explains how a potential solution should look so that it is easier to fix.
|
||||
If the issue hasn't been closed and you would like to try to fix this issue, you can just leave a message "I would like to try this issue.". There are usually three scenarios:
|
||||
- a.) The issue description already proposes a fix. In this case and if the solution makes sense to you, you can open a PR or draft PR to fix it.
|
||||
- b.) The issue description does not propose a fix. In this case, you can ask what a proposed fix could look like and someone from the Diffusers team should answer shortly. If you have a good idea of how to fix it, feel free to directly open a PR.
|
||||
- c.) There is already an open PR to fix the issue, but the issue hasn't been closed yet. If the PR has gone stale, you can simply open a new PR and link to the stale PR. PRs often go stale if the original contributor who wanted to fix the issue suddenly cannot find the time anymore to proceed. This often happens in open-source and is very normal. In this case, the community will be very happy if you give it a new try and leverage the knowledge of the existing PR. If there is already a PR and it is active, you can help the author by giving suggestions, reviewing the PR or even asking whether you can contribute to the PR.
|
||||
|
||||
|
||||
### 5. Contribute to the documentation
|
||||
|
||||
A good library **always** has good documentation! The official documentation is often one of the first points of contact for new users of the library, and therefore contributing to the documentation is a **highly
|
||||
valuable contribution**.
|
||||
|
||||
Contributing to the library can have many forms:
|
||||
|
||||
- Correcting spelling or grammatical errors.
|
||||
- Correct incorrect formatting of the docstring. If you see that the official documentation is weirdly displayed or a link is broken, we are very happy if you take some time to correct it.
|
||||
- Correct the shape or dimensions of a docstring input or output tensor.
|
||||
- Clarify documentation that is hard to understand or incorrect.
|
||||
- Update outdated code examples.
|
||||
- Translating the documentation to another language.
|
||||
|
||||
Anything displayed on [the official Diffusers doc page](https://huggingface.co/docs/diffusers/index) is part of the official documentation and can be corrected, adjusted in the respective [documentation source](https://github.com/huggingface/diffusers/tree/main/docs/source).
|
||||
|
||||
Please have a look at [this page](https://github.com/huggingface/diffusers/tree/main/docs) on how to verify changes made to the documentation locally.
|
||||
|
||||
|
||||
### 6. Contribute a community pipeline
|
||||
|
||||
[Pipelines](https://huggingface.co/docs/diffusers/api/pipelines/overview) are usually the first point of contact between the Diffusers library and the user.
|
||||
Pipelines are examples of how to use Diffusers [models](https://huggingface.co/docs/diffusers/api/models/overview) and [schedulers](https://huggingface.co/docs/diffusers/api/schedulers/overview).
|
||||
We support two types of pipelines:
|
||||
|
||||
- Official Pipelines
|
||||
- Community Pipelines
|
||||
|
||||
Both official and community pipelines follow the same design and consist of the same type of components.
|
||||
|
||||
Official pipelines are tested and maintained by the core maintainers of Diffusers. Their code
|
||||
resides in [src/diffusers/pipelines](https://github.com/huggingface/diffusers/tree/main/src/diffusers/pipelines).
|
||||
In contrast, community pipelines are contributed and maintained purely by the **community** and are **not** tested.
|
||||
They reside in [examples/community](https://github.com/huggingface/diffusers/tree/main/examples/community) and while they can be accessed via the [PyPI diffusers package](https://pypi.org/project/diffusers/), their code is not part of the PyPI distribution.
|
||||
|
||||
The reason for the distinction is that the core maintainers of the Diffusers library cannot maintain and test all
|
||||
possible ways diffusion models can be used for inference, but some of them may be of interest to the community.
|
||||
Officially released diffusion pipelines,
|
||||
such as Stable Diffusion are added to the core src/diffusers/pipelines package which ensures
|
||||
high quality of maintenance, no backward-breaking code changes, and testing.
|
||||
More bleeding edge pipelines should be added as community pipelines. If usage for a community pipeline is high, the pipeline can be moved to the official pipelines upon request from the community. This is one of the ways we strive to be a community-driven library.
|
||||
|
||||
To add a community pipeline, one should add a <name-of-the-community>.py file to [examples/community](https://github.com/huggingface/diffusers/tree/main/examples/community) and adapt the [examples/community/README.md](https://github.com/huggingface/diffusers/tree/main/examples/community/README.md) to include an example of the new pipeline.
|
||||
|
||||
An example can be seen [here](https://github.com/huggingface/diffusers/pull/2400).
|
||||
|
||||
Community pipeline PRs are only checked at a superficial level and ideally they should be maintained by their original authors.
|
||||
|
||||
Contributing a community pipeline is a great way to understand how Diffusers models and schedulers work. Having contributed a community pipeline is usually the first stepping stone to contributing an official pipeline to the
|
||||
core package.
|
||||
|
||||
### 7. Contribute to training examples
|
||||
|
||||
Diffusers examples are a collection of training scripts that reside in [examples](https://github.com/huggingface/diffusers/tree/main/examples).
|
||||
|
||||
We support two types of training examples:
|
||||
|
||||
- Official training examples
|
||||
- Research training examples
|
||||
|
||||
Research training examples are located in [examples/research_projects](https://github.com/huggingface/diffusers/tree/main/examples/research_projects) whereas official training examples include all folders under [examples](https://github.com/huggingface/diffusers/tree/main/examples) except the `research_projects` and `community` folders.
|
||||
The official training examples are maintained by the Diffusers' core maintainers whereas the research training examples are maintained by the community.
|
||||
This is because of the same reasons put forward in [6. Contribute a community pipeline](#6-contribute-a-community-pipeline) for official pipelines vs. community pipelines: It is not feasible for the core maintainers to maintain all possible training methods for diffusion models.
|
||||
If the Diffusers core maintainers and the community consider a certain training paradigm to be too experimental or not popular enough, the corresponding training code should be put in the `research_projects` folder and maintained by the author.
|
||||
|
||||
Both official training and research examples consist of a directory that contains one or more training scripts, a `requirements.txt` file, and a `README.md` file. In order for the user to make use of the
|
||||
training examples, it is required to clone the repository:
|
||||
|
||||
```bash
|
||||
git clone https://github.com/huggingface/diffusers
|
||||
```
|
||||
|
||||
as well as to install all additional dependencies required for training:
|
||||
|
||||
```bash
|
||||
cd diffusers
|
||||
pip install -r examples/<your-example-folder>/requirements.txt
|
||||
```
|
||||
|
||||
Therefore when adding an example, the `requirements.txt` file shall define all pip dependencies required for your training example so that once all those are installed, the user can run the example's training script. See, for example, the [DreamBooth `requirements.txt` file](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/requirements.txt).
|
||||
|
||||
Training examples of the Diffusers library should adhere to the following philosophy:
|
||||
- All the code necessary to run the examples should be found in a single Python file.
|
||||
- One should be able to run the example from the command line with `python <your-example>.py --args`.
|
||||
- Examples should be kept simple and serve as **an example** on how to use Diffusers for training. The purpose of example scripts is **not** to create state-of-the-art diffusion models, but rather to reproduce known training schemes without adding too much custom logic. As a byproduct of this point, our examples also strive to serve as good educational materials.
|
||||
|
||||
To contribute an example, it is highly recommended to look at already existing examples such as [dreambooth](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/train_dreambooth.py) to get an idea of how they should look like.
|
||||
We strongly advise contributors to make use of the [Accelerate library](https://github.com/huggingface/accelerate) as it's tightly integrated
|
||||
with Diffusers.
|
||||
Once an example script works, please make sure to add a comprehensive `README.md` that states how to use the example exactly. This README should include:
|
||||
- An example command on how to run the example script as shown [here e.g.](https://github.com/huggingface/diffusers/tree/main/examples/dreambooth#running-locally-with-pytorch).
|
||||
- A link to some training results (logs, models, ...) that show what the user can expect as shown [here e.g.](https://api.wandb.ai/report/patrickvonplaten/xm6cd5q5).
|
||||
- If you are adding a non-official/research training example, **please don't forget** to add a sentence that you are maintaining this training example which includes your git handle as shown [here](https://github.com/huggingface/diffusers/tree/main/examples/research_projects/intel_opts#diffusers-examples-with-intel-optimizations).
|
||||
|
||||
If you are contributing to the official training examples, please also make sure to add a test to [examples/test_examples.py](https://github.com/huggingface/diffusers/blob/main/examples/test_examples.py). This is not necessary for non-official training examples.
|
||||
|
||||
### 8. Fixing a "Good second issue"
|
||||
|
||||
*Good second issues* are marked by the [Good second issue](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22Good+second+issue%22) label. Good second issues are
|
||||
usually more complicated to solve than [Good first issues](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22).
|
||||
The issue description usually gives less guidance on how to fix the issue and requires
|
||||
a decent understanding of the library by the interested contributor.
|
||||
If you are interested in tackling a good second issue, feel free to open a PR to fix it and link the PR to the issue. If you see that a PR has already been opened for this issue but did not get merged, have a look to understand why it wasn't merged and try to open an improved PR.
|
||||
Good second issues are usually more difficult to get merged compared to good first issues, so don't hesitate to ask for help from the core maintainers. If your PR is almost finished the core maintainers can also jump into your PR and commit to it in order to get it merged.
|
||||
|
||||
### 9. Adding pipelines, models, schedulers
|
||||
|
||||
Pipelines, models, and schedulers are the most important pieces of the Diffusers library.
|
||||
They provide easy access to state-of-the-art diffusion technologies and thus allow the community to
|
||||
build powerful generative AI applications.
|
||||
|
||||
By adding a new model, pipeline, or scheduler you might enable a new powerful use case for any of the user interfaces relying on Diffusers which can be of immense value for the whole generative AI ecosystem.
|
||||
|
||||
Diffusers has a couple of open feature requests for all three components - feel free to gloss over them
|
||||
if you don't know yet what specific component you would like to add:
|
||||
- [Model or pipeline](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+pipeline%2Fmodel%22)
|
||||
- [Scheduler](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+scheduler%22)
|
||||
|
||||
Before adding any of the three components, it is strongly recommended that you give the [Philosophy guide](https://github.com/huggingface/diffusers/blob/main/PHILOSOPHY.md) a read to better understand the design of any of the three components. Please be aware that
|
||||
we cannot merge model, scheduler, or pipeline additions that strongly diverge from our design philosophy
|
||||
as it will lead to API inconsistencies. If you fundamentally disagree with a design choice, please
|
||||
open a [Feedback issue](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=&template=feedback.md&title=) instead so that it can be discussed whether a certain design
|
||||
pattern/design choice shall be changed everywhere in the library and whether we shall update our design philosophy. Consistency across the library is very important for us.
|
||||
|
||||
Please make sure to add links to the original codebase/paper to the PR and ideally also ping the
|
||||
original author directly on the PR so that they can follow the progress and potentially help with questions.
|
||||
|
||||
If you are unsure or stuck in the PR, don't hesitate to leave a message to ask for a first review or help.
|
||||
|
||||
## How to write a good issue
|
||||
|
||||
**The better your issue is written, the higher the chances that it will be quickly resolved.**
|
||||
|
||||
1. Make sure that you've used the correct template for your issue. You can pick between *Bug Report*, *Feature Request*, *Feedback about API Design*, *New model/pipeline/scheduler addition*, *Forum*, or a blank issue. Make sure to pick the correct one when opening [a new issue](https://github.com/huggingface/diffusers/issues/new/choose).
|
||||
2. **Be precise**: Give your issue a fitting title. Try to formulate your issue description as simple as possible. The more precise you are when submitting an issue, the less time it takes to understand the issue and potentially solve it. Make sure to open an issue for one issue only and not for multiple issues. If you found multiple issues, simply open multiple issues. If your issue is a bug, try to be as precise as possible about what bug it is - you should not just write "Error in diffusers".
|
||||
3. **Reproducibility**: No reproducible code snippet == no solution. If you encounter a bug, maintainers **have to be able to reproduce** it. Make sure that you include a code snippet that can be copy-pasted into a Python interpreter to reproduce the issue. Make sure that your code snippet works, *i.e.* that there are no missing imports or missing links to images, ... Your issue should contain an error message **and** a code snippet that can be copy-pasted without any changes to reproduce the exact same error message. If your issue is using local model weights or local data that cannot be accessed by the reader, the issue cannot be solved. If you cannot share your data or model, try to make a dummy model or dummy data.
|
||||
4. **Minimalistic**: Try to help the reader as much as you can to understand the issue as quickly as possible by staying as concise as possible. Remove all code / all information that is irrelevant to the issue. If you have found a bug, try to create the easiest code example you can to demonstrate your issue, do not just dump your whole workflow into the issue as soon as you have found a bug. E.g., if you train a model and get an error at some point during the training, you should first try to understand what part of the training code is responsible for the error and try to reproduce it with a couple of lines. Try to use dummy data instead of full datasets.
|
||||
5. Add links. If you are referring to a certain naming, method, or model make sure to provide a link so that the reader can better understand what you mean. If you are referring to a specific PR or issue, make sure to link it to your issue. Do not assume that the reader knows what you are talking about. The more links you add to your issue the better.
|
||||
6. Formatting. Make sure to nicely format your issue by formatting code into Python code syntax, and error messages into normal code syntax. See the [official GitHub formatting docs](https://docs.github.com/en/get-started/writing-on-github/getting-started-with-writing-and-formatting-on-github/basic-writing-and-formatting-syntax) for more information.
|
||||
7. Think of your issue not as a ticket to be solved, but rather as a beautiful entry to a well-written encyclopedia. Every added issue is a contribution to publicly available knowledge. By adding a nicely written issue you not only make it easier for maintainers to solve your issue, but you are helping the whole community to better understand a certain aspect of the library.
|
||||
|
||||
## How to write a good PR
|
||||
|
||||
1. Be a chameleon. Understand existing design patterns and syntax and make sure your code additions flow seamlessly into the existing code base. Pull requests that significantly diverge from existing design patterns or user interfaces will not be merged.
|
||||
2. Be laser focused. A pull request should solve one problem and one problem only. Make sure to not fall into the trap of "also fixing another problem while we're adding it". It is much more difficult to review pull requests that solve multiple, unrelated problems at once.
|
||||
3. If helpful, try to add a code snippet that displays an example of how your addition can be used.
|
||||
4. The title of your pull request should be a summary of its contribution.
|
||||
5. If your pull request addresses an issue, please mention the issue number in
|
||||
the pull request description to make sure they are linked (and people
|
||||
consulting the issue know you are working on it);
|
||||
6. To indicate a work in progress please prefix the title with `[WIP]`. These
|
||||
are useful to avoid duplicated work, and to differentiate it from PRs ready
|
||||
to be merged;
|
||||
7. Try to formulate and format your text as explained in [How to write a good issue](#how-to-write-a-good-issue).
|
||||
8. Make sure existing tests pass;
|
||||
9. Add high-coverage tests. No quality testing = no merge.
|
||||
- If you are adding new `@slow` tests, make sure they pass using
|
||||
`RUN_SLOW=1 python -m pytest tests/test_my_new_model.py`.
|
||||
CircleCI does not run the slow tests, but GitHub Actions does every night!
|
||||
10. All public methods must have informative docstrings that work nicely with markdown. See [`pipeline_latent_diffusion.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py) for an example.
|
||||
11. Due to the rapidly growing repository, it is important to make sure that no files that would significantly weigh down the repository are added. This includes images, videos, and other non-text files. We prefer to leverage a hf.co hosted `dataset` like
|
||||
[`hf-internal-testing`](https://huggingface.co/hf-internal-testing) or [huggingface/documentation-images](https://huggingface.co/datasets/huggingface/documentation-images) to place these files.
|
||||
If an external contribution, feel free to add the images to your PR and ask a Hugging Face member to migrate your images
|
||||
to this dataset.
|
||||
|
||||
## How to open a PR
|
||||
|
||||
Before writing code, we strongly advise you to search through the existing PRs or
|
||||
issues to make sure that nobody is already working on the same thing. If you are
|
||||
unsure, it is always a good idea to open an issue to get some feedback.
|
||||
|
||||
You will need basic `git` proficiency to be able to contribute to
|
||||
🧨 Diffusers. `git` is not the easiest tool to use but it has the greatest
|
||||
manual. Type `git --help` in a shell and enjoy. If you prefer books, [Pro
|
||||
Git](https://git-scm.com/book/en/v2) is a very good reference.
|
||||
|
||||
Follow these steps to start contributing ([supported Python versions](https://github.com/huggingface/diffusers/blob/42f25d601a910dceadaee6c44345896b4cfa9928/setup.py#L270)):
|
||||
|
||||
1. Fork the [repository](https://github.com/huggingface/diffusers) by
|
||||
clicking on the 'Fork' button on the repository's page. This creates a copy of the code
|
||||
under your GitHub user account.
|
||||
|
||||
2. Clone your fork to your local disk, and add the base repository as a remote:
|
||||
|
||||
```bash
|
||||
$ git clone git@github.com:<your GitHub handle>/diffusers.git
|
||||
$ cd diffusers
|
||||
$ git remote add upstream https://github.com/huggingface/diffusers.git
|
||||
```
|
||||
|
||||
3. Create a new branch to hold your development changes:
|
||||
|
||||
```bash
|
||||
$ git checkout -b a-descriptive-name-for-my-changes
|
||||
```
|
||||
|
||||
**Do not** work on the `main` branch.
|
||||
|
||||
4. Set up a development environment by running the following command in a virtual environment:
|
||||
|
||||
```bash
|
||||
$ pip install -e ".[dev]"
|
||||
```
|
||||
|
||||
If you have already cloned the repo, you might need to `git pull` to get the most recent changes in the
|
||||
library.
|
||||
|
||||
5. Develop the features on your branch.
|
||||
|
||||
As you work on the features, you should make sure that the test suite
|
||||
passes. You should run the tests impacted by your changes like this:
|
||||
|
||||
```bash
|
||||
$ pytest tests/<TEST_TO_RUN>.py
|
||||
```
|
||||
|
||||
Before you run the tests, please make sure you install the dependencies required for testing. You can do so
|
||||
with this command:
|
||||
|
||||
```bash
|
||||
$ pip install -e ".[test]"
|
||||
```
|
||||
|
||||
You can also run the full test suite with the following command, but it takes
|
||||
a beefy machine to produce a result in a decent amount of time now that
|
||||
Diffusers has grown a lot. Here is the command for it:
|
||||
|
||||
```bash
|
||||
$ make test
|
||||
```
|
||||
|
||||
🧨 Diffusers relies on `ruff` and `isort` to format its source code
|
||||
consistently. After you make changes, apply automatic style corrections and code verifications
|
||||
that can't be automated in one go with:
|
||||
|
||||
```bash
|
||||
$ make style
|
||||
```
|
||||
|
||||
🧨 Diffusers also uses `ruff` and a few custom scripts to check for coding mistakes. Quality
|
||||
control runs in CI, however, you can also run the same checks with:
|
||||
|
||||
```bash
|
||||
$ make quality
|
||||
```
|
||||
|
||||
Once you're happy with your changes, add changed files using `git add` and
|
||||
make a commit with `git commit` to record your changes locally:
|
||||
|
||||
```bash
|
||||
$ git add modified_file.py
|
||||
$ git commit -m "A descriptive message about your changes."
|
||||
```
|
||||
|
||||
It is a good idea to sync your copy of the code with the original
|
||||
repository regularly. This way you can quickly account for changes:
|
||||
|
||||
```bash
|
||||
$ git pull upstream main
|
||||
```
|
||||
|
||||
Push the changes to your account using:
|
||||
|
||||
```bash
|
||||
$ git push -u origin a-descriptive-name-for-my-changes
|
||||
```
|
||||
|
||||
6. Once you are satisfied, go to the
|
||||
webpage of your fork on GitHub. Click on 'Pull request' to send your changes
|
||||
to the project maintainers for review.
|
||||
|
||||
7. It's ok if maintainers ask you for changes. It happens to core contributors
|
||||
too! So everyone can see the changes in the Pull request, work in your local
|
||||
branch and push the changes to your fork. They will automatically appear in
|
||||
the pull request.
|
||||
|
||||
### Tests
|
||||
|
||||
An extensive test suite is included to test the library behavior and several examples. Library tests can be found in
|
||||
the [tests folder](https://github.com/huggingface/diffusers/tree/main/tests).
|
||||
|
||||
We like `pytest` and `pytest-xdist` because it's faster. From the root of the
|
||||
repository, here's how to run tests with `pytest` for the library:
|
||||
|
||||
```bash
|
||||
$ python -m pytest -n auto --dist=loadfile -s -v ./tests/
|
||||
```
|
||||
|
||||
In fact, that's how `make test` is implemented!
|
||||
|
||||
You can specify a smaller set of tests in order to test only the feature
|
||||
you're working on.
|
||||
|
||||
By default, slow tests are skipped. Set the `RUN_SLOW` environment variable to
|
||||
`yes` to run them. This will download many gigabytes of models — make sure you
|
||||
have enough disk space and a good Internet connection, or a lot of patience!
|
||||
|
||||
```bash
|
||||
$ RUN_SLOW=yes python -m pytest -n auto --dist=loadfile -s -v ./tests/
|
||||
```
|
||||
|
||||
`unittest` is fully supported, here's how to run tests with it:
|
||||
|
||||
```bash
|
||||
$ python -m unittest discover -s tests -t . -v
|
||||
$ python -m unittest discover -s examples -t examples -v
|
||||
```
|
||||
|
||||
### Syncing forked main with upstream (HuggingFace) main
|
||||
|
||||
To avoid pinging the upstream repository which adds reference notes to each upstream PR and sends unnecessary notifications to the developers involved in these PRs,
|
||||
when syncing the main branch of a forked repository, please, follow these steps:
|
||||
1. When possible, avoid syncing with the upstream using a branch and PR on the forked repository. Instead, merge directly into the forked main.
|
||||
2. If a PR is absolutely necessary, use the following steps after checking out your branch:
|
||||
```bash
|
||||
$ git checkout -b your-branch-for-syncing
|
||||
$ git pull --squash --no-commit upstream main
|
||||
$ git commit -m '<your message without GitHub references>'
|
||||
$ git push --set-upstream origin your-branch-for-syncing
|
||||
```
|
||||
|
||||
### Style guide
|
||||
|
||||
For documentation strings, 🧨 Diffusers follows the [Google style](https://google.github.io/styleguide/pyguide.html).
|
||||
1
CONTRIBUTING.md
Symbolic link
1
CONTRIBUTING.md
Symbolic link
@@ -0,0 +1 @@
|
||||
docs/source/en/conceptual/contribution.md
|
||||
@@ -171,7 +171,7 @@ Also, say 👋 in our public Discord channel <a href="https://discord.gg/G7tWnz9
|
||||
<tr style="border-top: 2px solid black">
|
||||
<td>Text-guided Image Inpainting</td>
|
||||
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/inpaint">Stable Diffusion Inpainting</a></td>
|
||||
<td><a href="https://huggingface.co/runwayml/stable-diffusion-inpainting"> runwayml/stable-diffusion-inpainting </a></td>
|
||||
<td><a href="https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-inpainting"> stable-diffusion-v1-5/stable-diffusion-inpainting </a></td>
|
||||
</tr>
|
||||
<tr style="border-top: 2px solid black">
|
||||
<td>Image Variation</td>
|
||||
|
||||
@@ -1,56 +1,45 @@
|
||||
FROM ubuntu:20.04
|
||||
FROM python:3.10-slim
|
||||
ENV PYTHONDONTWRITEBYTECODE=1
|
||||
LABEL maintainer="Hugging Face"
|
||||
LABEL repository="diffusers"
|
||||
|
||||
ENV DEBIAN_FRONTEND=noninteractive
|
||||
|
||||
RUN apt-get -y update \
|
||||
&& apt-get install -y software-properties-common \
|
||||
&& add-apt-repository ppa:deadsnakes/ppa
|
||||
RUN apt-get -y update && apt-get install -y bash \
|
||||
build-essential \
|
||||
git \
|
||||
git-lfs \
|
||||
curl \
|
||||
ca-certificates \
|
||||
libglib2.0-0 \
|
||||
libsndfile1-dev \
|
||||
libgl1 \
|
||||
zip \
|
||||
wget
|
||||
|
||||
RUN apt install -y bash \
|
||||
build-essential \
|
||||
git \
|
||||
git-lfs \
|
||||
curl \
|
||||
ca-certificates \
|
||||
libsndfile1-dev \
|
||||
python3.10 \
|
||||
python3-pip \
|
||||
libgl1 \
|
||||
zip \
|
||||
wget \
|
||||
python3.10-venv && \
|
||||
rm -rf /var/lib/apt/lists
|
||||
|
||||
# make sure to use venv
|
||||
RUN python3.10 -m venv /opt/venv
|
||||
ENV PATH="/opt/venv/bin:$PATH"
|
||||
ENV UV_PYTHON=/usr/local/bin/python
|
||||
|
||||
# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
|
||||
RUN python3.10 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
|
||||
python3.10 -m uv pip install --no-cache-dir \
|
||||
torch \
|
||||
torchvision \
|
||||
torchaudio \
|
||||
invisible_watermark \
|
||||
--extra-index-url https://download.pytorch.org/whl/cpu && \
|
||||
python3.10 -m uv pip install --no-cache-dir \
|
||||
accelerate \
|
||||
datasets \
|
||||
hf-doc-builder \
|
||||
huggingface-hub \
|
||||
Jinja2 \
|
||||
librosa \
|
||||
numpy==1.26.4 \
|
||||
scipy \
|
||||
tensorboard \
|
||||
transformers \
|
||||
matplotlib \
|
||||
setuptools==69.5.1 \
|
||||
bitsandbytes \
|
||||
torchao \
|
||||
gguf \
|
||||
optimum-quanto
|
||||
RUN pip install uv
|
||||
RUN uv pip install --no-cache-dir \
|
||||
torch \
|
||||
torchvision \
|
||||
torchaudio \
|
||||
--extra-index-url https://download.pytorch.org/whl/cpu
|
||||
|
||||
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/diffusers.git@main#egg=diffusers[test]"
|
||||
|
||||
# Extra dependencies
|
||||
RUN uv pip install --no-cache-dir \
|
||||
accelerate \
|
||||
numpy==1.26.4 \
|
||||
hf_xet \
|
||||
setuptools==69.5.1 \
|
||||
bitsandbytes \
|
||||
torchao \
|
||||
gguf \
|
||||
optimum-quanto
|
||||
|
||||
RUN apt-get clean && rm -rf /var/lib/apt/lists/* && apt-get autoremove && apt-get autoclean
|
||||
|
||||
CMD ["/bin/bash"]
|
||||
|
||||
@@ -44,6 +44,6 @@ RUN python3 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
|
||||
scipy \
|
||||
tensorboard \
|
||||
transformers \
|
||||
hf_transfer
|
||||
hf_xet
|
||||
|
||||
CMD ["/bin/bash"]
|
||||
@@ -38,13 +38,12 @@ RUN python3.10 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
|
||||
datasets \
|
||||
hf-doc-builder \
|
||||
huggingface-hub \
|
||||
hf_transfer \
|
||||
hf_xet \
|
||||
Jinja2 \
|
||||
librosa \
|
||||
numpy==1.26.4 \
|
||||
scipy \
|
||||
tensorboard \
|
||||
transformers \
|
||||
hf_transfer
|
||||
transformers
|
||||
|
||||
CMD ["/bin/bash"]
|
||||
@@ -1,50 +1,38 @@
|
||||
FROM ubuntu:20.04
|
||||
FROM python:3.10-slim
|
||||
ENV PYTHONDONTWRITEBYTECODE=1
|
||||
LABEL maintainer="Hugging Face"
|
||||
LABEL repository="diffusers"
|
||||
|
||||
ENV DEBIAN_FRONTEND=noninteractive
|
||||
|
||||
RUN apt-get -y update \
|
||||
&& apt-get install -y software-properties-common \
|
||||
&& add-apt-repository ppa:deadsnakes/ppa
|
||||
RUN apt-get -y update && apt-get install -y bash \
|
||||
build-essential \
|
||||
git \
|
||||
git-lfs \
|
||||
curl \
|
||||
ca-certificates \
|
||||
libglib2.0-0 \
|
||||
libsndfile1-dev \
|
||||
libgl1
|
||||
|
||||
RUN apt install -y bash \
|
||||
build-essential \
|
||||
git \
|
||||
git-lfs \
|
||||
curl \
|
||||
ca-certificates \
|
||||
libsndfile1-dev \
|
||||
python3.10 \
|
||||
python3.10-dev \
|
||||
python3-pip \
|
||||
libgl1 \
|
||||
python3.10-venv && \
|
||||
rm -rf /var/lib/apt/lists
|
||||
|
||||
# make sure to use venv
|
||||
RUN python3.10 -m venv /opt/venv
|
||||
ENV PATH="/opt/venv/bin:$PATH"
|
||||
ENV UV_PYTHON=/usr/local/bin/python
|
||||
|
||||
# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
|
||||
RUN python3.10 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
|
||||
python3.10 -m uv pip install --no-cache-dir \
|
||||
torch \
|
||||
torchvision \
|
||||
torchaudio \
|
||||
invisible_watermark \
|
||||
--extra-index-url https://download.pytorch.org/whl/cpu && \
|
||||
python3.10 -m uv pip install --no-cache-dir \
|
||||
accelerate \
|
||||
datasets \
|
||||
hf-doc-builder \
|
||||
huggingface-hub \
|
||||
Jinja2 \
|
||||
librosa \
|
||||
numpy==1.26.4 \
|
||||
scipy \
|
||||
tensorboard \
|
||||
transformers matplotlib \
|
||||
hf_transfer
|
||||
RUN pip install uv
|
||||
RUN uv pip install --no-cache-dir \
|
||||
torch \
|
||||
torchvision \
|
||||
torchaudio \
|
||||
--extra-index-url https://download.pytorch.org/whl/cpu
|
||||
|
||||
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/diffusers.git@main#egg=diffusers[test]"
|
||||
|
||||
# Extra dependencies
|
||||
RUN uv pip install --no-cache-dir \
|
||||
accelerate \
|
||||
numpy==1.26.4 \
|
||||
hf_xet
|
||||
|
||||
RUN apt-get clean && rm -rf /var/lib/apt/lists/* && apt-get autoremove && apt-get autoclean
|
||||
|
||||
CMD ["/bin/bash"]
|
||||
|
||||
@@ -2,11 +2,13 @@ FROM nvidia/cuda:12.1.0-runtime-ubuntu20.04
|
||||
LABEL maintainer="Hugging Face"
|
||||
LABEL repository="diffusers"
|
||||
|
||||
ARG PYTHON_VERSION=3.12
|
||||
ENV DEBIAN_FRONTEND=noninteractive
|
||||
|
||||
RUN apt-get -y update \
|
||||
&& apt-get install -y software-properties-common \
|
||||
&& add-apt-repository ppa:deadsnakes/ppa
|
||||
&& add-apt-repository ppa:deadsnakes/ppa && \
|
||||
apt-get update
|
||||
|
||||
RUN apt install -y bash \
|
||||
build-essential \
|
||||
@@ -14,38 +16,34 @@ RUN apt install -y bash \
|
||||
git-lfs \
|
||||
curl \
|
||||
ca-certificates \
|
||||
libglib2.0-0 \
|
||||
libsndfile1-dev \
|
||||
libgl1 \
|
||||
python3.10 \
|
||||
python3.10-dev \
|
||||
python3 \
|
||||
python3-pip \
|
||||
python3.10-venv && \
|
||||
rm -rf /var/lib/apt/lists
|
||||
&& apt-get clean \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# make sure to use venv
|
||||
RUN python3.10 -m venv /opt/venv
|
||||
ENV PATH="/opt/venv/bin:$PATH"
|
||||
RUN curl -LsSf https://astral.sh/uv/install.sh | sh
|
||||
ENV PATH="/root/.local/bin:$PATH"
|
||||
ENV VIRTUAL_ENV="/opt/venv"
|
||||
ENV UV_PYTHON_INSTALL_DIR=/opt/uv/python
|
||||
RUN uv venv --python ${PYTHON_VERSION} --seed ${VIRTUAL_ENV}
|
||||
ENV PATH="$VIRTUAL_ENV/bin:$PATH"
|
||||
|
||||
# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
|
||||
RUN python3.10 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
|
||||
python3.10 -m uv pip install --no-cache-dir \
|
||||
RUN uv pip install --no-cache-dir \
|
||||
torch \
|
||||
torchvision \
|
||||
torchaudio \
|
||||
invisible_watermark && \
|
||||
python3.10 -m pip install --no-cache-dir \
|
||||
torchaudio
|
||||
|
||||
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/diffusers.git@main#egg=diffusers[test]"
|
||||
|
||||
# Extra dependencies
|
||||
RUN uv pip install --no-cache-dir \
|
||||
accelerate \
|
||||
datasets \
|
||||
hf-doc-builder \
|
||||
huggingface-hub \
|
||||
hf_transfer \
|
||||
Jinja2 \
|
||||
librosa \
|
||||
numpy==1.26.4 \
|
||||
scipy \
|
||||
tensorboard \
|
||||
transformers \
|
||||
pytorch-lightning \
|
||||
hf_transfer
|
||||
pytorch-lightning \
|
||||
hf_xet
|
||||
|
||||
CMD ["/bin/bash"]
|
||||
|
||||
@@ -2,6 +2,7 @@ FROM nvidia/cuda:12.1.0-runtime-ubuntu20.04
|
||||
LABEL maintainer="Hugging Face"
|
||||
LABEL repository="diffusers"
|
||||
|
||||
ARG PYTHON_VERSION=3.10
|
||||
ENV DEBIAN_FRONTEND=noninteractive
|
||||
ENV MINIMUM_SUPPORTED_TORCH_VERSION="2.1.0"
|
||||
ENV MINIMUM_SUPPORTED_TORCHVISION_VERSION="0.16.0"
|
||||
@@ -9,7 +10,8 @@ ENV MINIMUM_SUPPORTED_TORCHAUDIO_VERSION="2.1.0"
|
||||
|
||||
RUN apt-get -y update \
|
||||
&& apt-get install -y software-properties-common \
|
||||
&& add-apt-repository ppa:deadsnakes/ppa
|
||||
&& add-apt-repository ppa:deadsnakes/ppa && \
|
||||
apt-get update
|
||||
|
||||
RUN apt install -y bash \
|
||||
build-essential \
|
||||
@@ -17,37 +19,34 @@ RUN apt install -y bash \
|
||||
git-lfs \
|
||||
curl \
|
||||
ca-certificates \
|
||||
libglib2.0-0 \
|
||||
libsndfile1-dev \
|
||||
libgl1 \
|
||||
python3.10 \
|
||||
python3.10-dev \
|
||||
python3 \
|
||||
python3-pip \
|
||||
python3.10-venv && \
|
||||
rm -rf /var/lib/apt/lists
|
||||
&& apt-get clean \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# make sure to use venv
|
||||
RUN python3.10 -m venv /opt/venv
|
||||
ENV PATH="/opt/venv/bin:$PATH"
|
||||
RUN curl -LsSf https://astral.sh/uv/install.sh | sh
|
||||
ENV PATH="/root/.local/bin:$PATH"
|
||||
ENV VIRTUAL_ENV="/opt/venv"
|
||||
ENV UV_PYTHON_INSTALL_DIR=/opt/uv/python
|
||||
RUN uv venv --python ${PYTHON_VERSION} --seed ${VIRTUAL_ENV}
|
||||
ENV PATH="$VIRTUAL_ENV/bin:$PATH"
|
||||
|
||||
# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
|
||||
RUN python3.10 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
|
||||
python3.10 -m uv pip install --no-cache-dir \
|
||||
RUN uv pip install --no-cache-dir \
|
||||
torch==$MINIMUM_SUPPORTED_TORCH_VERSION \
|
||||
torchvision==$MINIMUM_SUPPORTED_TORCHVISION_VERSION \
|
||||
torchaudio==$MINIMUM_SUPPORTED_TORCHAUDIO_VERSION \
|
||||
invisible_watermark && \
|
||||
python3.10 -m pip install --no-cache-dir \
|
||||
torchaudio==$MINIMUM_SUPPORTED_TORCHAUDIO_VERSION
|
||||
|
||||
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/diffusers.git@main#egg=diffusers[test]"
|
||||
|
||||
# Extra dependencies
|
||||
RUN uv pip install --no-cache-dir \
|
||||
accelerate \
|
||||
datasets \
|
||||
hf-doc-builder \
|
||||
huggingface-hub \
|
||||
hf_transfer \
|
||||
Jinja2 \
|
||||
librosa \
|
||||
numpy==1.26.4 \
|
||||
scipy \
|
||||
tensorboard \
|
||||
transformers \
|
||||
hf_transfer
|
||||
pytorch-lightning \
|
||||
hf_xet
|
||||
|
||||
CMD ["/bin/bash"]
|
||||
|
||||
@@ -2,50 +2,49 @@ FROM nvidia/cuda:12.1.0-runtime-ubuntu20.04
|
||||
LABEL maintainer="Hugging Face"
|
||||
LABEL repository="diffusers"
|
||||
|
||||
ARG PYTHON_VERSION=3.12
|
||||
ENV DEBIAN_FRONTEND=noninteractive
|
||||
|
||||
RUN apt-get -y update \
|
||||
&& apt-get install -y software-properties-common \
|
||||
&& add-apt-repository ppa:deadsnakes/ppa
|
||||
&& add-apt-repository ppa:deadsnakes/ppa && \
|
||||
apt-get update
|
||||
|
||||
RUN apt install -y bash \
|
||||
build-essential \
|
||||
git \
|
||||
git-lfs \
|
||||
curl \
|
||||
ca-certificates \
|
||||
libsndfile1-dev \
|
||||
libgl1 \
|
||||
python3.10 \
|
||||
python3.10-dev \
|
||||
python3-pip \
|
||||
python3.10-venv && \
|
||||
rm -rf /var/lib/apt/lists
|
||||
build-essential \
|
||||
git \
|
||||
git-lfs \
|
||||
curl \
|
||||
ca-certificates \
|
||||
libglib2.0-0 \
|
||||
libsndfile1-dev \
|
||||
libgl1 \
|
||||
python3 \
|
||||
python3-pip \
|
||||
&& apt-get clean \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# make sure to use venv
|
||||
RUN python3.10 -m venv /opt/venv
|
||||
ENV PATH="/opt/venv/bin:$PATH"
|
||||
RUN curl -LsSf https://astral.sh/uv/install.sh | sh
|
||||
ENV PATH="/root/.local/bin:$PATH"
|
||||
ENV VIRTUAL_ENV="/opt/venv"
|
||||
ENV UV_PYTHON_INSTALL_DIR=/opt/uv/python
|
||||
RUN uv venv --python ${PYTHON_VERSION} --seed ${VIRTUAL_ENV}
|
||||
ENV PATH="$VIRTUAL_ENV/bin:$PATH"
|
||||
|
||||
# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
|
||||
RUN python3.10 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
|
||||
python3.10 -m pip install --no-cache-dir \
|
||||
torch \
|
||||
torchvision \
|
||||
torchaudio \
|
||||
invisible_watermark && \
|
||||
python3.10 -m uv pip install --no-cache-dir \
|
||||
accelerate \
|
||||
datasets \
|
||||
hf-doc-builder \
|
||||
huggingface-hub \
|
||||
hf_transfer \
|
||||
Jinja2 \
|
||||
librosa \
|
||||
numpy==1.26.4 \
|
||||
scipy \
|
||||
tensorboard \
|
||||
transformers \
|
||||
xformers \
|
||||
hf_transfer
|
||||
RUN uv pip install --no-cache-dir \
|
||||
torch \
|
||||
torchvision \
|
||||
torchaudio
|
||||
|
||||
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/diffusers.git@main#egg=diffusers[test]"
|
||||
|
||||
# Extra dependencies
|
||||
RUN uv pip install --no-cache-dir \
|
||||
accelerate \
|
||||
numpy==1.26.4 \
|
||||
pytorch-lightning \
|
||||
hf_xet \
|
||||
xformers
|
||||
|
||||
CMD ["/bin/bash"]
|
||||
|
||||
@@ -1,5 +1,4 @@
|
||||
- title: Get started
|
||||
sections:
|
||||
- sections:
|
||||
- local: index
|
||||
title: Diffusers
|
||||
- local: installation
|
||||
@@ -8,9 +7,8 @@
|
||||
title: Quickstart
|
||||
- local: stable_diffusion
|
||||
title: Basic performance
|
||||
|
||||
- title: Pipelines
|
||||
isExpanded: false
|
||||
title: Get started
|
||||
- isExpanded: false
|
||||
sections:
|
||||
- local: using-diffusers/loading
|
||||
title: DiffusionPipeline
|
||||
@@ -24,13 +22,14 @@
|
||||
title: Reproducibility
|
||||
- local: using-diffusers/schedulers
|
||||
title: Schedulers
|
||||
- local: using-diffusers/automodel
|
||||
title: AutoModel
|
||||
- local: using-diffusers/other-formats
|
||||
title: Model files and layouts
|
||||
title: Model formats
|
||||
- local: using-diffusers/push_to_hub
|
||||
title: Sharing pipelines and models
|
||||
|
||||
- title: Adapters
|
||||
isExpanded: false
|
||||
title: Pipelines
|
||||
- isExpanded: false
|
||||
sections:
|
||||
- local: tutorials/using_peft_for_inference
|
||||
title: LoRA
|
||||
@@ -44,21 +43,21 @@
|
||||
title: DreamBooth
|
||||
- local: using-diffusers/textual_inversion_inference
|
||||
title: Textual inversion
|
||||
|
||||
- title: Inference
|
||||
isExpanded: false
|
||||
title: Adapters
|
||||
- isExpanded: false
|
||||
sections:
|
||||
- local: using-diffusers/weighted_prompts
|
||||
title: Prompt techniques
|
||||
title: Prompting
|
||||
- local: using-diffusers/create_a_server
|
||||
title: Create a server
|
||||
- local: using-diffusers/batched_inference
|
||||
title: Batch inference
|
||||
- local: training/distributed_inference
|
||||
title: Distributed inference
|
||||
|
||||
- title: Inference optimization
|
||||
isExpanded: false
|
||||
- local: hybrid_inference/overview
|
||||
title: Remote inference
|
||||
title: Inference
|
||||
- isExpanded: false
|
||||
sections:
|
||||
- local: optimization/fp16
|
||||
title: Accelerate inference
|
||||
@@ -70,10 +69,7 @@
|
||||
title: Reduce memory usage
|
||||
- local: optimization/speed-memory-optims
|
||||
title: Compiling and offloading quantized models
|
||||
- local: api/parallel
|
||||
title: Parallel inference
|
||||
- title: Community optimizations
|
||||
sections:
|
||||
- sections:
|
||||
- local: optimization/pruna
|
||||
title: Pruna
|
||||
- local: optimization/xformers
|
||||
@@ -92,21 +88,9 @@
|
||||
title: ParaAttention
|
||||
- local: using-diffusers/image_quality
|
||||
title: FreeU
|
||||
|
||||
- title: Hybrid Inference
|
||||
isExpanded: false
|
||||
sections:
|
||||
- local: hybrid_inference/overview
|
||||
title: Overview
|
||||
- local: hybrid_inference/vae_decode
|
||||
title: VAE Decode
|
||||
- local: hybrid_inference/vae_encode
|
||||
title: VAE Encode
|
||||
- local: hybrid_inference/api_reference
|
||||
title: API Reference
|
||||
|
||||
- title: Modular Diffusers
|
||||
isExpanded: false
|
||||
title: Community optimizations
|
||||
title: Inference optimization
|
||||
- isExpanded: false
|
||||
sections:
|
||||
- local: modular_diffusers/overview
|
||||
title: Overview
|
||||
@@ -128,9 +112,10 @@
|
||||
title: ComponentsManager
|
||||
- local: modular_diffusers/guiders
|
||||
title: Guiders
|
||||
|
||||
- title: Training
|
||||
isExpanded: false
|
||||
- local: modular_diffusers/custom_blocks
|
||||
title: Building Custom Blocks
|
||||
title: Modular Diffusers
|
||||
- isExpanded: false
|
||||
sections:
|
||||
- local: training/overview
|
||||
title: Overview
|
||||
@@ -140,8 +125,7 @@
|
||||
title: Adapt a model to a new task
|
||||
- local: tutorials/basic_training
|
||||
title: Train a diffusion model
|
||||
- title: Models
|
||||
sections:
|
||||
- sections:
|
||||
- local: training/unconditional_training
|
||||
title: Unconditional image generation
|
||||
- local: training/text2image
|
||||
@@ -160,8 +144,8 @@
|
||||
title: InstructPix2Pix
|
||||
- local: training/cogvideox
|
||||
title: CogVideoX
|
||||
- title: Methods
|
||||
sections:
|
||||
title: Models
|
||||
- sections:
|
||||
- local: training/text_inversion
|
||||
title: Textual Inversion
|
||||
- local: training/dreambooth
|
||||
@@ -174,9 +158,9 @@
|
||||
title: Latent Consistency Distillation
|
||||
- local: training/ddpo
|
||||
title: Reinforcement learning training with DDPO
|
||||
|
||||
- title: Quantization
|
||||
isExpanded: false
|
||||
title: Methods
|
||||
title: Training
|
||||
- isExpanded: false
|
||||
sections:
|
||||
- local: quantization/overview
|
||||
title: Getting started
|
||||
@@ -190,9 +174,8 @@
|
||||
title: quanto
|
||||
- local: quantization/modelopt
|
||||
title: NVIDIA ModelOpt
|
||||
|
||||
- title: Model accelerators and hardware
|
||||
isExpanded: false
|
||||
title: Quantization
|
||||
- isExpanded: false
|
||||
sections:
|
||||
- local: optimization/onnx
|
||||
title: ONNX
|
||||
@@ -206,9 +189,8 @@
|
||||
title: Intel Gaudi
|
||||
- local: optimization/neuron
|
||||
title: AWS Neuron
|
||||
|
||||
- title: Specific pipeline examples
|
||||
isExpanded: false
|
||||
title: Model accelerators and hardware
|
||||
- isExpanded: false
|
||||
sections:
|
||||
- local: using-diffusers/consisid
|
||||
title: ConsisID
|
||||
@@ -234,12 +216,10 @@
|
||||
title: Stable Video Diffusion
|
||||
- local: using-diffusers/marigold_usage
|
||||
title: Marigold Computer Vision
|
||||
|
||||
- title: Resources
|
||||
isExpanded: false
|
||||
title: Specific pipeline examples
|
||||
- isExpanded: false
|
||||
sections:
|
||||
- title: Task recipes
|
||||
sections:
|
||||
- sections:
|
||||
- local: using-diffusers/unconditional_image_generation
|
||||
title: Unconditional image generation
|
||||
- local: using-diffusers/conditional_image_generation
|
||||
@@ -254,6 +234,7 @@
|
||||
title: Video generation
|
||||
- local: using-diffusers/depth2img
|
||||
title: Depth-to-image
|
||||
title: Task recipes
|
||||
- local: using-diffusers/write_own_pipeline
|
||||
title: Understanding pipelines, models and schedulers
|
||||
- local: community_projects
|
||||
@@ -268,12 +249,10 @@
|
||||
title: Diffusers' Ethical Guidelines
|
||||
- local: conceptual/evaluation
|
||||
title: Evaluating Diffusion Models
|
||||
|
||||
- title: API
|
||||
isExpanded: false
|
||||
title: Resources
|
||||
- isExpanded: false
|
||||
sections:
|
||||
- title: Main Classes
|
||||
sections:
|
||||
- sections:
|
||||
- local: api/configuration
|
||||
title: Configuration
|
||||
- local: api/logging
|
||||
@@ -282,8 +261,12 @@
|
||||
title: Outputs
|
||||
- local: api/quantization
|
||||
title: Quantization
|
||||
- title: Modular
|
||||
sections:
|
||||
- local: hybrid_inference/api_reference
|
||||
title: Remote inference
|
||||
- local: api/parallel
|
||||
title: Parallel inference
|
||||
title: Main Classes
|
||||
- sections:
|
||||
- local: api/modular_diffusers/pipeline
|
||||
title: Pipeline
|
||||
- local: api/modular_diffusers/pipeline_blocks
|
||||
@@ -294,8 +277,8 @@
|
||||
title: Components and configs
|
||||
- local: api/modular_diffusers/guiders
|
||||
title: Guiders
|
||||
- title: Loaders
|
||||
sections:
|
||||
title: Modular
|
||||
- sections:
|
||||
- local: api/loaders/ip_adapter
|
||||
title: IP-Adapter
|
||||
- local: api/loaders/lora
|
||||
@@ -310,14 +293,13 @@
|
||||
title: SD3Transformer2D
|
||||
- local: api/loaders/peft
|
||||
title: PEFT
|
||||
- title: Models
|
||||
sections:
|
||||
title: Loaders
|
||||
- sections:
|
||||
- local: api/models/overview
|
||||
title: Overview
|
||||
- local: api/models/auto_model
|
||||
title: AutoModel
|
||||
- title: ControlNets
|
||||
sections:
|
||||
- sections:
|
||||
- local: api/models/controlnet
|
||||
title: ControlNetModel
|
||||
- local: api/models/controlnet_union
|
||||
@@ -332,16 +314,20 @@
|
||||
title: SD3ControlNetModel
|
||||
- local: api/models/controlnet_sparsectrl
|
||||
title: SparseControlNetModel
|
||||
- title: Transformers
|
||||
sections:
|
||||
title: ControlNets
|
||||
- sections:
|
||||
- local: api/models/allegro_transformer3d
|
||||
title: AllegroTransformer3DModel
|
||||
- local: api/models/aura_flow_transformer2d
|
||||
title: AuraFlowTransformer2DModel
|
||||
- local: api/models/transformer_bria_fibo
|
||||
title: BriaFiboTransformer2DModel
|
||||
- local: api/models/bria_transformer
|
||||
title: BriaTransformer2DModel
|
||||
- local: api/models/chroma_transformer
|
||||
title: ChromaTransformer2DModel
|
||||
- local: api/models/chronoedit_transformer_3d
|
||||
title: ChronoEditTransformer3DModel
|
||||
- local: api/models/cogvideox_transformer3d
|
||||
title: CogVideoXTransformer3DModel
|
||||
- local: api/models/cogview3plus_transformer2d
|
||||
@@ -356,16 +342,28 @@
|
||||
title: DiTTransformer2DModel
|
||||
- local: api/models/easyanimate_transformer3d
|
||||
title: EasyAnimateTransformer3DModel
|
||||
- local: api/models/flux2_transformer
|
||||
title: Flux2Transformer2DModel
|
||||
- local: api/models/flux_transformer
|
||||
title: FluxTransformer2DModel
|
||||
- local: api/models/glm_image_transformer2d
|
||||
title: GlmImageTransformer2DModel
|
||||
- local: api/models/hidream_image_transformer
|
||||
title: HiDreamImageTransformer2DModel
|
||||
- local: api/models/hunyuan_transformer2d
|
||||
title: HunyuanDiT2DModel
|
||||
- local: api/models/hunyuanimage_transformer_2d
|
||||
title: HunyuanImageTransformer2DModel
|
||||
- local: api/models/hunyuan_video15_transformer_3d
|
||||
title: HunyuanVideo15Transformer3DModel
|
||||
- local: api/models/hunyuan_video_transformer_3d
|
||||
title: HunyuanVideoTransformer3DModel
|
||||
- local: api/models/latte_transformer3d
|
||||
title: LatteTransformer3DModel
|
||||
- local: api/models/longcat_image_transformer2d
|
||||
title: LongCatImageTransformer2DModel
|
||||
- local: api/models/ltx2_video_transformer3d
|
||||
title: LTX2VideoTransformer3DModel
|
||||
- local: api/models/ltx_video_transformer3d
|
||||
title: LTXVideoTransformer3DModel
|
||||
- local: api/models/lumina2_transformer2d
|
||||
@@ -376,6 +374,8 @@
|
||||
title: MochiTransformer3DModel
|
||||
- local: api/models/omnigen_transformer
|
||||
title: OmniGenTransformer2DModel
|
||||
- local: api/models/ovisimage_transformer2d
|
||||
title: OvisImageTransformer2DModel
|
||||
- local: api/models/pixart_transformer2d
|
||||
title: PixArtTransformer2DModel
|
||||
- local: api/models/prior_transformer
|
||||
@@ -384,6 +384,8 @@
|
||||
title: QwenImageTransformer2DModel
|
||||
- local: api/models/sana_transformer2d
|
||||
title: SanaTransformer2DModel
|
||||
- local: api/models/sana_video_transformer3d
|
||||
title: SanaVideoTransformer3DModel
|
||||
- local: api/models/sd3_transformer2d
|
||||
title: SD3Transformer2DModel
|
||||
- local: api/models/skyreels_v2_transformer_3d
|
||||
@@ -394,10 +396,14 @@
|
||||
title: Transformer2DModel
|
||||
- local: api/models/transformer_temporal
|
||||
title: TransformerTemporalModel
|
||||
- local: api/models/wan_animate_transformer_3d
|
||||
title: WanAnimateTransformer3DModel
|
||||
- local: api/models/wan_transformer_3d
|
||||
title: WanTransformer3DModel
|
||||
- title: UNets
|
||||
sections:
|
||||
- local: api/models/z_image_transformer2d
|
||||
title: ZImageTransformer2DModel
|
||||
title: Transformers
|
||||
- sections:
|
||||
- local: api/models/stable_cascade_unet
|
||||
title: StableCascadeUNet
|
||||
- local: api/models/unet
|
||||
@@ -412,8 +418,8 @@
|
||||
title: UNetMotionModel
|
||||
- local: api/models/uvit2d
|
||||
title: UViT2DModel
|
||||
- title: VAEs
|
||||
sections:
|
||||
title: UNets
|
||||
- sections:
|
||||
- local: api/models/asymmetricautoencoderkl
|
||||
title: AsymmetricAutoencoderKL
|
||||
- local: api/models/autoencoder_dc
|
||||
@@ -426,8 +432,18 @@
|
||||
title: AutoencoderKLCogVideoX
|
||||
- local: api/models/autoencoderkl_cosmos
|
||||
title: AutoencoderKLCosmos
|
||||
- local: api/models/autoencoder_kl_hunyuanimage
|
||||
title: AutoencoderKLHunyuanImage
|
||||
- local: api/models/autoencoder_kl_hunyuanimage_refiner
|
||||
title: AutoencoderKLHunyuanImageRefiner
|
||||
- local: api/models/autoencoder_kl_hunyuan_video
|
||||
title: AutoencoderKLHunyuanVideo
|
||||
- local: api/models/autoencoder_kl_hunyuan_video15
|
||||
title: AutoencoderKLHunyuanVideo15
|
||||
- local: api/models/autoencoderkl_audio_ltx_2
|
||||
title: AutoencoderKLLTX2Audio
|
||||
- local: api/models/autoencoderkl_ltx_2
|
||||
title: AutoencoderKLLTX2Video
|
||||
- local: api/models/autoencoderkl_ltx_video
|
||||
title: AutoencoderKLLTXVideo
|
||||
- local: api/models/autoencoderkl_magvit
|
||||
@@ -446,210 +462,246 @@
|
||||
title: Tiny AutoEncoder
|
||||
- local: api/models/vq
|
||||
title: VQModel
|
||||
- title: Pipelines
|
||||
sections:
|
||||
title: VAEs
|
||||
title: Models
|
||||
- sections:
|
||||
- local: api/pipelines/overview
|
||||
title: Overview
|
||||
- local: api/pipelines/allegro
|
||||
title: Allegro
|
||||
- local: api/pipelines/amused
|
||||
title: aMUSEd
|
||||
- local: api/pipelines/animatediff
|
||||
title: AnimateDiff
|
||||
- local: api/pipelines/attend_and_excite
|
||||
title: Attend-and-Excite
|
||||
- local: api/pipelines/audioldm
|
||||
title: AudioLDM
|
||||
- local: api/pipelines/audioldm2
|
||||
title: AudioLDM 2
|
||||
- local: api/pipelines/aura_flow
|
||||
title: AuraFlow
|
||||
- local: api/pipelines/auto_pipeline
|
||||
title: AutoPipeline
|
||||
- local: api/pipelines/blip_diffusion
|
||||
title: BLIP-Diffusion
|
||||
- local: api/pipelines/bria_3_2
|
||||
title: Bria 3.2
|
||||
- local: api/pipelines/chroma
|
||||
title: Chroma
|
||||
- local: api/pipelines/cogvideox
|
||||
title: CogVideoX
|
||||
- local: api/pipelines/cogview3
|
||||
title: CogView3
|
||||
- local: api/pipelines/cogview4
|
||||
title: CogView4
|
||||
- local: api/pipelines/consisid
|
||||
title: ConsisID
|
||||
- local: api/pipelines/consistency_models
|
||||
title: Consistency Models
|
||||
- local: api/pipelines/controlnet
|
||||
title: ControlNet
|
||||
- local: api/pipelines/controlnet_flux
|
||||
title: ControlNet with Flux.1
|
||||
- local: api/pipelines/controlnet_hunyuandit
|
||||
title: ControlNet with Hunyuan-DiT
|
||||
- local: api/pipelines/controlnet_sd3
|
||||
title: ControlNet with Stable Diffusion 3
|
||||
- local: api/pipelines/controlnet_sdxl
|
||||
title: ControlNet with Stable Diffusion XL
|
||||
- local: api/pipelines/controlnet_sana
|
||||
title: ControlNet-Sana
|
||||
- local: api/pipelines/controlnetxs
|
||||
title: ControlNet-XS
|
||||
- local: api/pipelines/controlnetxs_sdxl
|
||||
title: ControlNet-XS with Stable Diffusion XL
|
||||
- local: api/pipelines/controlnet_union
|
||||
title: ControlNetUnion
|
||||
- local: api/pipelines/cosmos
|
||||
title: Cosmos
|
||||
- local: api/pipelines/dance_diffusion
|
||||
title: Dance Diffusion
|
||||
- local: api/pipelines/ddim
|
||||
title: DDIM
|
||||
- local: api/pipelines/ddpm
|
||||
title: DDPM
|
||||
- local: api/pipelines/deepfloyd_if
|
||||
title: DeepFloyd IF
|
||||
- local: api/pipelines/diffedit
|
||||
title: DiffEdit
|
||||
- local: api/pipelines/dit
|
||||
title: DiT
|
||||
- local: api/pipelines/easyanimate
|
||||
title: EasyAnimate
|
||||
- local: api/pipelines/flux
|
||||
title: Flux
|
||||
- local: api/pipelines/control_flux_inpaint
|
||||
title: FluxControlInpaint
|
||||
- local: api/pipelines/framepack
|
||||
title: Framepack
|
||||
- local: api/pipelines/hidream
|
||||
title: HiDream-I1
|
||||
- local: api/pipelines/hunyuandit
|
||||
title: Hunyuan-DiT
|
||||
- local: api/pipelines/hunyuan_video
|
||||
title: HunyuanVideo
|
||||
- local: api/pipelines/i2vgenxl
|
||||
title: I2VGen-XL
|
||||
- local: api/pipelines/pix2pix
|
||||
title: InstructPix2Pix
|
||||
- local: api/pipelines/kandinsky
|
||||
title: Kandinsky 2.1
|
||||
- local: api/pipelines/kandinsky_v22
|
||||
title: Kandinsky 2.2
|
||||
- local: api/pipelines/kandinsky3
|
||||
title: Kandinsky 3
|
||||
- local: api/pipelines/kolors
|
||||
title: Kolors
|
||||
- local: api/pipelines/latent_consistency_models
|
||||
title: Latent Consistency Models
|
||||
- local: api/pipelines/latent_diffusion
|
||||
title: Latent Diffusion
|
||||
- local: api/pipelines/latte
|
||||
title: Latte
|
||||
- local: api/pipelines/ledits_pp
|
||||
title: LEDITS++
|
||||
- local: api/pipelines/ltx_video
|
||||
title: LTXVideo
|
||||
- local: api/pipelines/lumina2
|
||||
title: Lumina 2.0
|
||||
- local: api/pipelines/lumina
|
||||
title: Lumina-T2X
|
||||
- local: api/pipelines/marigold
|
||||
title: Marigold
|
||||
- local: api/pipelines/mochi
|
||||
title: Mochi
|
||||
- local: api/pipelines/panorama
|
||||
title: MultiDiffusion
|
||||
- local: api/pipelines/musicldm
|
||||
title: MusicLDM
|
||||
- local: api/pipelines/omnigen
|
||||
title: OmniGen
|
||||
- local: api/pipelines/pag
|
||||
title: PAG
|
||||
- local: api/pipelines/paint_by_example
|
||||
title: Paint by Example
|
||||
- local: api/pipelines/pia
|
||||
title: Personalized Image Animator (PIA)
|
||||
- local: api/pipelines/pixart
|
||||
title: PixArt-α
|
||||
- local: api/pipelines/pixart_sigma
|
||||
title: PixArt-Σ
|
||||
- local: api/pipelines/qwenimage
|
||||
title: QwenImage
|
||||
- local: api/pipelines/sana
|
||||
title: Sana
|
||||
- local: api/pipelines/sana_sprint
|
||||
title: Sana Sprint
|
||||
- local: api/pipelines/self_attention_guidance
|
||||
title: Self-Attention Guidance
|
||||
- local: api/pipelines/semantic_stable_diffusion
|
||||
title: Semantic Guidance
|
||||
- local: api/pipelines/shap_e
|
||||
title: Shap-E
|
||||
- local: api/pipelines/skyreels_v2
|
||||
title: SkyReels-V2
|
||||
- local: api/pipelines/stable_audio
|
||||
title: Stable Audio
|
||||
- local: api/pipelines/stable_cascade
|
||||
title: Stable Cascade
|
||||
- title: Stable Diffusion
|
||||
sections:
|
||||
- local: api/pipelines/stable_diffusion/overview
|
||||
title: Overview
|
||||
- local: api/pipelines/stable_diffusion/depth2img
|
||||
title: Depth-to-image
|
||||
- local: api/pipelines/stable_diffusion/gligen
|
||||
title: GLIGEN (Grounded Language-to-Image Generation)
|
||||
- local: api/pipelines/stable_diffusion/image_variation
|
||||
title: Image variation
|
||||
- local: api/pipelines/stable_diffusion/img2img
|
||||
title: Image-to-image
|
||||
- sections:
|
||||
- local: api/pipelines/audioldm
|
||||
title: AudioLDM
|
||||
- local: api/pipelines/audioldm2
|
||||
title: AudioLDM 2
|
||||
- local: api/pipelines/dance_diffusion
|
||||
title: Dance Diffusion
|
||||
- local: api/pipelines/musicldm
|
||||
title: MusicLDM
|
||||
- local: api/pipelines/stable_audio
|
||||
title: Stable Audio
|
||||
title: Audio
|
||||
- sections:
|
||||
- local: api/pipelines/amused
|
||||
title: aMUSEd
|
||||
- local: api/pipelines/animatediff
|
||||
title: AnimateDiff
|
||||
- local: api/pipelines/attend_and_excite
|
||||
title: Attend-and-Excite
|
||||
- local: api/pipelines/aura_flow
|
||||
title: AuraFlow
|
||||
- local: api/pipelines/blip_diffusion
|
||||
title: BLIP-Diffusion
|
||||
- local: api/pipelines/bria_3_2
|
||||
title: Bria 3.2
|
||||
- local: api/pipelines/bria_fibo
|
||||
title: Bria Fibo
|
||||
- local: api/pipelines/chroma
|
||||
title: Chroma
|
||||
- local: api/pipelines/cogview3
|
||||
title: CogView3
|
||||
- local: api/pipelines/cogview4
|
||||
title: CogView4
|
||||
- local: api/pipelines/consistency_models
|
||||
title: Consistency Models
|
||||
- local: api/pipelines/controlnet
|
||||
title: ControlNet
|
||||
- local: api/pipelines/controlnet_flux
|
||||
title: ControlNet with Flux.1
|
||||
- local: api/pipelines/controlnet_hunyuandit
|
||||
title: ControlNet with Hunyuan-DiT
|
||||
- local: api/pipelines/controlnet_sd3
|
||||
title: ControlNet with Stable Diffusion 3
|
||||
- local: api/pipelines/controlnet_sdxl
|
||||
title: ControlNet with Stable Diffusion XL
|
||||
- local: api/pipelines/controlnet_sana
|
||||
title: ControlNet-Sana
|
||||
- local: api/pipelines/controlnetxs
|
||||
title: ControlNet-XS
|
||||
- local: api/pipelines/controlnetxs_sdxl
|
||||
title: ControlNet-XS with Stable Diffusion XL
|
||||
- local: api/pipelines/controlnet_union
|
||||
title: ControlNetUnion
|
||||
- local: api/pipelines/cosmos
|
||||
title: Cosmos
|
||||
- local: api/pipelines/ddim
|
||||
title: DDIM
|
||||
- local: api/pipelines/ddpm
|
||||
title: DDPM
|
||||
- local: api/pipelines/deepfloyd_if
|
||||
title: DeepFloyd IF
|
||||
- local: api/pipelines/diffedit
|
||||
title: DiffEdit
|
||||
- local: api/pipelines/dit
|
||||
title: DiT
|
||||
- local: api/pipelines/easyanimate
|
||||
title: EasyAnimate
|
||||
- local: api/pipelines/flux
|
||||
title: Flux
|
||||
- local: api/pipelines/flux2
|
||||
title: Flux2
|
||||
- local: api/pipelines/control_flux_inpaint
|
||||
title: FluxControlInpaint
|
||||
- local: api/pipelines/glm_image
|
||||
title: GLM-Image
|
||||
- local: api/pipelines/hidream
|
||||
title: HiDream-I1
|
||||
- local: api/pipelines/hunyuandit
|
||||
title: Hunyuan-DiT
|
||||
- local: api/pipelines/hunyuanimage21
|
||||
title: HunyuanImage2.1
|
||||
- local: api/pipelines/pix2pix
|
||||
title: InstructPix2Pix
|
||||
- local: api/pipelines/kandinsky
|
||||
title: Kandinsky 2.1
|
||||
- local: api/pipelines/kandinsky_v22
|
||||
title: Kandinsky 2.2
|
||||
- local: api/pipelines/kandinsky3
|
||||
title: Kandinsky 3
|
||||
- local: api/pipelines/kandinsky5_image
|
||||
title: Kandinsky 5.0 Image
|
||||
- local: api/pipelines/kolors
|
||||
title: Kolors
|
||||
- local: api/pipelines/latent_consistency_models
|
||||
title: Latent Consistency Models
|
||||
- local: api/pipelines/latent_diffusion
|
||||
title: Latent Diffusion
|
||||
- local: api/pipelines/ledits_pp
|
||||
title: LEDITS++
|
||||
- local: api/pipelines/longcat_image
|
||||
title: LongCat-Image
|
||||
- local: api/pipelines/lumina2
|
||||
title: Lumina 2.0
|
||||
- local: api/pipelines/lumina
|
||||
title: Lumina-T2X
|
||||
- local: api/pipelines/marigold
|
||||
title: Marigold
|
||||
- local: api/pipelines/panorama
|
||||
title: MultiDiffusion
|
||||
- local: api/pipelines/omnigen
|
||||
title: OmniGen
|
||||
- local: api/pipelines/ovis_image
|
||||
title: Ovis-Image
|
||||
- local: api/pipelines/pag
|
||||
title: PAG
|
||||
- local: api/pipelines/paint_by_example
|
||||
title: Paint by Example
|
||||
- local: api/pipelines/pixart
|
||||
title: PixArt-α
|
||||
- local: api/pipelines/pixart_sigma
|
||||
title: PixArt-Σ
|
||||
- local: api/pipelines/prx
|
||||
title: PRX
|
||||
- local: api/pipelines/qwenimage
|
||||
title: QwenImage
|
||||
- local: api/pipelines/sana
|
||||
title: Sana
|
||||
- local: api/pipelines/sana_sprint
|
||||
title: Sana Sprint
|
||||
- local: api/pipelines/sana_video
|
||||
title: Sana Video
|
||||
- local: api/pipelines/self_attention_guidance
|
||||
title: Self-Attention Guidance
|
||||
- local: api/pipelines/semantic_stable_diffusion
|
||||
title: Semantic Guidance
|
||||
- local: api/pipelines/shap_e
|
||||
title: Shap-E
|
||||
- local: api/pipelines/stable_cascade
|
||||
title: Stable Cascade
|
||||
- sections:
|
||||
- local: api/pipelines/stable_diffusion/overview
|
||||
title: Overview
|
||||
- local: api/pipelines/stable_diffusion/depth2img
|
||||
title: Depth-to-image
|
||||
- local: api/pipelines/stable_diffusion/gligen
|
||||
title: GLIGEN (Grounded Language-to-Image Generation)
|
||||
- local: api/pipelines/stable_diffusion/image_variation
|
||||
title: Image variation
|
||||
- local: api/pipelines/stable_diffusion/img2img
|
||||
title: Image-to-image
|
||||
- local: api/pipelines/stable_diffusion/inpaint
|
||||
title: Inpainting
|
||||
- local: api/pipelines/stable_diffusion/k_diffusion
|
||||
title: K-Diffusion
|
||||
- local: api/pipelines/stable_diffusion/latent_upscale
|
||||
title: Latent upscaler
|
||||
- local: api/pipelines/stable_diffusion/ldm3d_diffusion
|
||||
title: LDM3D Text-to-(RGB, Depth), Text-to-(RGB-pano, Depth-pano), LDM3D
|
||||
Upscaler
|
||||
- local: api/pipelines/stable_diffusion/stable_diffusion_safe
|
||||
title: Safe Stable Diffusion
|
||||
- local: api/pipelines/stable_diffusion/sdxl_turbo
|
||||
title: SDXL Turbo
|
||||
- local: api/pipelines/stable_diffusion/stable_diffusion_2
|
||||
title: Stable Diffusion 2
|
||||
- local: api/pipelines/stable_diffusion/stable_diffusion_3
|
||||
title: Stable Diffusion 3
|
||||
- local: api/pipelines/stable_diffusion/stable_diffusion_xl
|
||||
title: Stable Diffusion XL
|
||||
- local: api/pipelines/stable_diffusion/upscale
|
||||
title: Super-resolution
|
||||
- local: api/pipelines/stable_diffusion/adapter
|
||||
title: T2I-Adapter
|
||||
- local: api/pipelines/stable_diffusion/text2img
|
||||
title: Text-to-image
|
||||
title: Stable Diffusion
|
||||
- local: api/pipelines/stable_unclip
|
||||
title: Stable unCLIP
|
||||
- local: api/pipelines/unclip
|
||||
title: unCLIP
|
||||
- local: api/pipelines/unidiffuser
|
||||
title: UniDiffuser
|
||||
- local: api/pipelines/value_guided_sampling
|
||||
title: Value-guided sampling
|
||||
- local: api/pipelines/visualcloze
|
||||
title: VisualCloze
|
||||
- local: api/pipelines/wuerstchen
|
||||
title: Wuerstchen
|
||||
- local: api/pipelines/z_image
|
||||
title: Z-Image
|
||||
title: Image
|
||||
- sections:
|
||||
- local: api/pipelines/allegro
|
||||
title: Allegro
|
||||
- local: api/pipelines/chronoedit
|
||||
title: ChronoEdit
|
||||
- local: api/pipelines/cogvideox
|
||||
title: CogVideoX
|
||||
- local: api/pipelines/consisid
|
||||
title: ConsisID
|
||||
- local: api/pipelines/framepack
|
||||
title: Framepack
|
||||
- local: api/pipelines/hunyuan_video
|
||||
title: HunyuanVideo
|
||||
- local: api/pipelines/hunyuan_video15
|
||||
title: HunyuanVideo1.5
|
||||
- local: api/pipelines/i2vgenxl
|
||||
title: I2VGen-XL
|
||||
- local: api/pipelines/kandinsky5_video
|
||||
title: Kandinsky 5.0 Video
|
||||
- local: api/pipelines/latte
|
||||
title: Latte
|
||||
- local: api/pipelines/ltx2
|
||||
title: LTX-2
|
||||
- local: api/pipelines/ltx_video
|
||||
title: LTXVideo
|
||||
- local: api/pipelines/mochi
|
||||
title: Mochi
|
||||
- local: api/pipelines/pia
|
||||
title: Personalized Image Animator (PIA)
|
||||
- local: api/pipelines/skyreels_v2
|
||||
title: SkyReels-V2
|
||||
- local: api/pipelines/stable_diffusion/svd
|
||||
title: Image-to-video
|
||||
- local: api/pipelines/stable_diffusion/inpaint
|
||||
title: Inpainting
|
||||
- local: api/pipelines/stable_diffusion/k_diffusion
|
||||
title: K-Diffusion
|
||||
- local: api/pipelines/stable_diffusion/latent_upscale
|
||||
title: Latent upscaler
|
||||
- local: api/pipelines/stable_diffusion/ldm3d_diffusion
|
||||
title: LDM3D Text-to-(RGB, Depth), Text-to-(RGB-pano, Depth-pano), LDM3D Upscaler
|
||||
- local: api/pipelines/stable_diffusion/stable_diffusion_safe
|
||||
title: Safe Stable Diffusion
|
||||
- local: api/pipelines/stable_diffusion/sdxl_turbo
|
||||
title: SDXL Turbo
|
||||
- local: api/pipelines/stable_diffusion/stable_diffusion_2
|
||||
title: Stable Diffusion 2
|
||||
- local: api/pipelines/stable_diffusion/stable_diffusion_3
|
||||
title: Stable Diffusion 3
|
||||
- local: api/pipelines/stable_diffusion/stable_diffusion_xl
|
||||
title: Stable Diffusion XL
|
||||
- local: api/pipelines/stable_diffusion/upscale
|
||||
title: Super-resolution
|
||||
- local: api/pipelines/stable_diffusion/adapter
|
||||
title: T2I-Adapter
|
||||
- local: api/pipelines/stable_diffusion/text2img
|
||||
title: Text-to-image
|
||||
- local: api/pipelines/stable_unclip
|
||||
title: Stable unCLIP
|
||||
- local: api/pipelines/text_to_video
|
||||
title: Text-to-video
|
||||
- local: api/pipelines/text_to_video_zero
|
||||
title: Text2Video-Zero
|
||||
- local: api/pipelines/unclip
|
||||
title: unCLIP
|
||||
- local: api/pipelines/unidiffuser
|
||||
title: UniDiffuser
|
||||
- local: api/pipelines/value_guided_sampling
|
||||
title: Value-guided sampling
|
||||
- local: api/pipelines/visualcloze
|
||||
title: VisualCloze
|
||||
- local: api/pipelines/wan
|
||||
title: Wan
|
||||
- local: api/pipelines/wuerstchen
|
||||
title: Wuerstchen
|
||||
- title: Schedulers
|
||||
sections:
|
||||
title: Stable Video Diffusion
|
||||
- local: api/pipelines/text_to_video
|
||||
title: Text-to-video
|
||||
- local: api/pipelines/text_to_video_zero
|
||||
title: Text2Video-Zero
|
||||
- local: api/pipelines/wan
|
||||
title: Wan
|
||||
title: Video
|
||||
title: Pipelines
|
||||
- sections:
|
||||
- local: api/schedulers/overview
|
||||
title: Overview
|
||||
- local: api/schedulers/cm_stochastic_iterative
|
||||
@@ -718,8 +770,8 @@
|
||||
title: UniPCMultistepScheduler
|
||||
- local: api/schedulers/vq_diffusion
|
||||
title: VQDiffusionScheduler
|
||||
- title: Internal classes
|
||||
sections:
|
||||
title: Schedulers
|
||||
- sections:
|
||||
- local: api/internal_classes_overview
|
||||
title: Overview
|
||||
- local: api/attnprocessor
|
||||
@@ -736,3 +788,5 @@
|
||||
title: VAE Image Processor
|
||||
- local: api/video_processor
|
||||
title: Video Processor
|
||||
title: Internal classes
|
||||
title: API
|
||||
|
||||
@@ -29,8 +29,14 @@ Cache methods speedup diffusion transformers by storing and reusing intermediate
|
||||
|
||||
[[autodoc]] apply_faster_cache
|
||||
|
||||
### FirstBlockCacheConfig
|
||||
## FirstBlockCacheConfig
|
||||
|
||||
[[autodoc]] FirstBlockCacheConfig
|
||||
|
||||
[[autodoc]] apply_first_block_cache
|
||||
|
||||
### TaylorSeerCacheConfig
|
||||
|
||||
[[autodoc]] TaylorSeerCacheConfig
|
||||
|
||||
[[autodoc]] apply_taylorseer_cache
|
||||
|
||||
@@ -14,11 +14,8 @@ specific language governing permissions and limitations under the License.
|
||||
|
||||
Schedulers from [`~schedulers.scheduling_utils.SchedulerMixin`] and models from [`ModelMixin`] inherit from [`ConfigMixin`] which stores all the parameters that are passed to their respective `__init__` methods in a JSON-configuration file.
|
||||
|
||||
<Tip>
|
||||
|
||||
To use private or [gated](https://huggingface.co/docs/hub/models-gated#gated-models) models, log-in with `hf auth login`.
|
||||
|
||||
</Tip>
|
||||
> [!TIP]
|
||||
> To use private or [gated](https://huggingface.co/docs/hub/models-gated#gated-models) models, log-in with `hf auth login`.
|
||||
|
||||
## ConfigMixin
|
||||
|
||||
|
||||
@@ -14,11 +14,8 @@ specific language governing permissions and limitations under the License.
|
||||
|
||||
[IP-Adapter](https://hf.co/papers/2308.06721) is a lightweight adapter that enables prompting a diffusion model with an image. This method decouples the cross-attention layers of the image and text features. The image features are generated from an image encoder.
|
||||
|
||||
<Tip>
|
||||
|
||||
Learn how to load an IP-Adapter checkpoint and image in the IP-Adapter [loading](../../using-diffusers/loading_adapters#ip-adapter) guide, and you can see how to use it in the [usage](../../using-diffusers/ip_adapter) guide.
|
||||
|
||||
</Tip>
|
||||
> [!TIP]
|
||||
> Learn how to load and use an IP-Adapter checkpoint and image in the [IP-Adapter](../../using-diffusers/ip_adapter) guide,.
|
||||
|
||||
## IPAdapterMixin
|
||||
|
||||
|
||||
@@ -30,14 +30,14 @@ LoRA is a fast and lightweight training method that inserts and trains a signifi
|
||||
- [`CogView4LoraLoaderMixin`] provides similar functions for [CogView4](https://huggingface.co/docs/diffusers/main/en/api/pipelines/cogview4).
|
||||
- [`AmusedLoraLoaderMixin`] is for the [`AmusedPipeline`].
|
||||
- [`HiDreamImageLoraLoaderMixin`] provides similar functions for [HiDream Image](https://huggingface.co/docs/diffusers/main/en/api/pipelines/hidream)
|
||||
- [`QwenImageLoraLoaderMixin`] provides similar functions for [Qwen Image](https://huggingface.co/docs/diffusers/main/en/api/pipelines/qwen)
|
||||
- [`QwenImageLoraLoaderMixin`] provides similar functions for [Qwen Image](https://huggingface.co/docs/diffusers/main/en/api/pipelines/qwen).
|
||||
- [`ZImageLoraLoaderMixin`] provides similar functions for [Z-Image](https://huggingface.co/docs/diffusers/main/en/api/pipelines/zimage).
|
||||
- [`Flux2LoraLoaderMixin`] provides similar functions for [Flux2](https://huggingface.co/docs/diffusers/main/en/api/pipelines/flux2).
|
||||
- [`LTX2LoraLoaderMixin`] provides similar functions for [Flux2](https://huggingface.co/docs/diffusers/main/en/api/pipelines/ltx2).
|
||||
- [`LoraBaseMixin`] provides a base class with several utility methods to fuse, unfuse, unload, LoRAs and more.
|
||||
|
||||
<Tip>
|
||||
|
||||
To learn more about how to load LoRA weights, see the [LoRA](../../using-diffusers/loading_adapters#lora) loading guide.
|
||||
|
||||
</Tip>
|
||||
> [!TIP]
|
||||
> To learn more about how to load LoRA weights, see the [LoRA](../../tutorials/using_peft_for_inference) loading guide.
|
||||
|
||||
## LoraBaseMixin
|
||||
|
||||
@@ -59,6 +59,14 @@ To learn more about how to load LoRA weights, see the [LoRA](../../using-diffuse
|
||||
|
||||
[[autodoc]] loaders.lora_pipeline.FluxLoraLoaderMixin
|
||||
|
||||
## Flux2LoraLoaderMixin
|
||||
|
||||
[[autodoc]] loaders.lora_pipeline.Flux2LoraLoaderMixin
|
||||
|
||||
## LTX2LoraLoaderMixin
|
||||
|
||||
[[autodoc]] loaders.lora_pipeline.LTX2LoraLoaderMixin
|
||||
|
||||
## CogVideoXLoraLoaderMixin
|
||||
|
||||
[[autodoc]] loaders.lora_pipeline.CogVideoXLoraLoaderMixin
|
||||
@@ -110,6 +118,13 @@ To learn more about how to load LoRA weights, see the [LoRA](../../using-diffuse
|
||||
|
||||
[[autodoc]] loaders.lora_pipeline.QwenImageLoraLoaderMixin
|
||||
|
||||
## ZImageLoraLoaderMixin
|
||||
|
||||
[[autodoc]] loaders.lora_pipeline.ZImageLoraLoaderMixin
|
||||
|
||||
## KandinskyLoraLoaderMixin
|
||||
[[autodoc]] loaders.lora_pipeline.KandinskyLoraLoaderMixin
|
||||
|
||||
## LoraBaseMixin
|
||||
|
||||
[[autodoc]] loaders.lora_base.LoraBaseMixin
|
||||
@@ -12,13 +12,10 @@ specific language governing permissions and limitations under the License.
|
||||
|
||||
# PEFT
|
||||
|
||||
Diffusers supports loading adapters such as [LoRA](../../using-diffusers/loading_adapters) with the [PEFT](https://huggingface.co/docs/peft/index) library with the [`~loaders.peft.PeftAdapterMixin`] class. This allows modeling classes in Diffusers like [`UNet2DConditionModel`], [`SD3Transformer2DModel`] to operate with an adapter.
|
||||
Diffusers supports loading adapters such as [LoRA](../../tutorials/using_peft_for_inference) with the [PEFT](https://huggingface.co/docs/peft/index) library with the [`~loaders.peft.PeftAdapterMixin`] class. This allows modeling classes in Diffusers like [`UNet2DConditionModel`], [`SD3Transformer2DModel`] to operate with an adapter.
|
||||
|
||||
<Tip>
|
||||
|
||||
Refer to the [Inference with PEFT](../../tutorials/using_peft_for_inference.md) tutorial for an overview of how to use PEFT in Diffusers for inference.
|
||||
|
||||
</Tip>
|
||||
> [!TIP]
|
||||
> Refer to the [Inference with PEFT](../../tutorials/using_peft_for_inference.md) tutorial for an overview of how to use PEFT in Diffusers for inference.
|
||||
|
||||
## PeftAdapterMixin
|
||||
|
||||
|
||||
@@ -16,11 +16,8 @@ Textual Inversion is a training method for personalizing models by learning new
|
||||
|
||||
[`TextualInversionLoaderMixin`] provides a function for loading Textual Inversion embeddings from Diffusers and Automatic1111 into the text encoder and loading a special token to activate the embeddings.
|
||||
|
||||
<Tip>
|
||||
|
||||
To learn more about how to load Textual Inversion embeddings, see the [Textual Inversion](../../using-diffusers/loading_adapters#textual-inversion) loading guide.
|
||||
|
||||
</Tip>
|
||||
> [!TIP]
|
||||
> To learn more about how to load Textual Inversion embeddings, see the [Textual Inversion](../../using-diffusers/textual_inversion_inference) loading guide.
|
||||
|
||||
## TextualInversionLoaderMixin
|
||||
|
||||
|
||||
@@ -16,11 +16,8 @@ This class is useful when *only* loading weights into a [`SD3Transformer2DModel`
|
||||
|
||||
The [`SD3Transformer2DLoadersMixin`] class currently only loads IP-Adapter weights, but will be used in the future to save weights and load LoRAs.
|
||||
|
||||
<Tip>
|
||||
|
||||
To learn more about how to load LoRA weights, see the [LoRA](../../using-diffusers/loading_adapters#lora) loading guide.
|
||||
|
||||
</Tip>
|
||||
> [!TIP]
|
||||
> To learn more about how to load LoRA weights, see the [LoRA](../../tutorials/using_peft_for_inference) loading guide.
|
||||
|
||||
## SD3Transformer2DLoadersMixin
|
||||
|
||||
|
||||
@@ -16,11 +16,8 @@ Some training methods - like LoRA and Custom Diffusion - typically target the UN
|
||||
|
||||
The [`UNet2DConditionLoadersMixin`] class provides functions for loading and saving weights, fusing and unfusing LoRAs, disabling and enabling LoRAs, and setting and deleting adapters.
|
||||
|
||||
<Tip>
|
||||
|
||||
To learn more about how to load LoRA weights, see the [LoRA](../../using-diffusers/loading_adapters#lora) loading guide.
|
||||
|
||||
</Tip>
|
||||
> [!TIP]
|
||||
> To learn more about how to load LoRA weights, see the [LoRA](../../tutorials/using_peft_for_inference) guide.
|
||||
|
||||
## UNet2DConditionLoadersMixin
|
||||
|
||||
|
||||
@@ -39,7 +39,7 @@ mask_url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images
|
||||
original_image = load_image(img_url).resize((512, 512))
|
||||
mask_image = load_image(mask_url).resize((512, 512))
|
||||
|
||||
pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
|
||||
pipe = StableDiffusionInpaintPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-inpainting")
|
||||
pipe.vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5")
|
||||
pipe.to("cuda")
|
||||
|
||||
|
||||
@@ -12,15 +12,7 @@ specific language governing permissions and limitations under the License.
|
||||
|
||||
# AutoModel
|
||||
|
||||
The `AutoModel` is designed to make it easy to load a checkpoint without needing to know the specific model class. `AutoModel` automatically retrieves the correct model class from the checkpoint `config.json` file.
|
||||
|
||||
```python
|
||||
from diffusers import AutoModel, AutoPipelineForText2Image
|
||||
|
||||
unet = AutoModel.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", subfolder="unet")
|
||||
pipe = AutoPipelineForText2Image.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", unet=unet)
|
||||
```
|
||||
|
||||
[`AutoModel`] automatically retrieves the correct model class from the checkpoint `config.json` file.
|
||||
|
||||
## AutoModel
|
||||
|
||||
|
||||
36
docs/source/en/api/models/autoencoder_kl_hunyuan_video15.md
Normal file
36
docs/source/en/api/models/autoencoder_kl_hunyuan_video15.md
Normal file
@@ -0,0 +1,36 @@
|
||||
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License. -->
|
||||
|
||||
# AutoencoderKLHunyuanVideo15
|
||||
|
||||
The 3D variational autoencoder (VAE) model with KL loss used in [HunyuanVideo1.5](https://github.com/Tencent/HunyuanVideo1-1.5) by Tencent.
|
||||
|
||||
The model can be loaded with the following code snippet.
|
||||
|
||||
```python
|
||||
from diffusers import AutoencoderKLHunyuanVideo15
|
||||
|
||||
vae = AutoencoderKLHunyuanVideo15.from_pretrained("hunyuanvideo-community/HunyuanVideo-1.5-Diffusers-480p_t2v", subfolder="vae", torch_dtype=torch.float32)
|
||||
|
||||
# make sure to enable tiling to avoid OOM
|
||||
vae.enable_tiling()
|
||||
```
|
||||
|
||||
## AutoencoderKLHunyuanVideo15
|
||||
|
||||
[[autodoc]] AutoencoderKLHunyuanVideo15
|
||||
- decode
|
||||
- encode
|
||||
- all
|
||||
|
||||
## DecoderOutput
|
||||
|
||||
[[autodoc]] models.autoencoders.vae.DecoderOutput
|
||||
32
docs/source/en/api/models/autoencoder_kl_hunyuanimage.md
Normal file
32
docs/source/en/api/models/autoencoder_kl_hunyuanimage.md
Normal file
@@ -0,0 +1,32 @@
|
||||
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License. -->
|
||||
|
||||
# AutoencoderKLHunyuanImage
|
||||
|
||||
The 2D variational autoencoder (VAE) model with KL loss used in [HunyuanImage2.1].
|
||||
|
||||
The model can be loaded with the following code snippet.
|
||||
|
||||
```python
|
||||
from diffusers import AutoencoderKLHunyuanImage
|
||||
|
||||
vae = AutoencoderKLHunyuanImage.from_pretrained("hunyuanvideo-community/HunyuanImage-2.1-Diffusers", subfolder="vae", torch_dtype=torch.bfloat16)
|
||||
```
|
||||
|
||||
## AutoencoderKLHunyuanImage
|
||||
|
||||
[[autodoc]] AutoencoderKLHunyuanImage
|
||||
- decode
|
||||
- all
|
||||
|
||||
## DecoderOutput
|
||||
|
||||
[[autodoc]] models.autoencoders.vae.DecoderOutput
|
||||
@@ -0,0 +1,32 @@
|
||||
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License. -->
|
||||
|
||||
# AutoencoderKLHunyuanImageRefiner
|
||||
|
||||
The 3D variational autoencoder (VAE) model with KL loss used in [HunyuanImage2.1](https://github.com/Tencent-Hunyuan/HunyuanImage-2.1) for its refiner pipeline.
|
||||
|
||||
The model can be loaded with the following code snippet.
|
||||
|
||||
```python
|
||||
from diffusers import AutoencoderKLHunyuanImageRefiner
|
||||
|
||||
vae = AutoencoderKLHunyuanImageRefiner.from_pretrained("hunyuanvideo-community/HunyuanImage-2.1-Refiner-Diffusers", subfolder="vae", torch_dtype=torch.bfloat16)
|
||||
```
|
||||
|
||||
## AutoencoderKLHunyuanImageRefiner
|
||||
|
||||
[[autodoc]] AutoencoderKLHunyuanImageRefiner
|
||||
- decode
|
||||
- all
|
||||
|
||||
## DecoderOutput
|
||||
|
||||
[[autodoc]] models.autoencoders.vae.DecoderOutput
|
||||
29
docs/source/en/api/models/autoencoderkl_audio_ltx_2.md
Normal file
29
docs/source/en/api/models/autoencoderkl_audio_ltx_2.md
Normal file
@@ -0,0 +1,29 @@
|
||||
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License. -->
|
||||
|
||||
# AutoencoderKLLTX2Audio
|
||||
|
||||
The 3D variational autoencoder (VAE) model with KL loss used in [LTX-2](https://huggingface.co/Lightricks/LTX-2) was introduced by Lightricks. This is for encoding and decoding audio latent representations.
|
||||
|
||||
The model can be loaded with the following code snippet.
|
||||
|
||||
```python
|
||||
from diffusers import AutoencoderKLLTX2Audio
|
||||
|
||||
vae = AutoencoderKLLTX2Audio.from_pretrained("Lightricks/LTX-2", subfolder="vae", torch_dtype=torch.float32).to("cuda")
|
||||
```
|
||||
|
||||
## AutoencoderKLLTX2Audio
|
||||
|
||||
[[autodoc]] AutoencoderKLLTX2Audio
|
||||
- encode
|
||||
- decode
|
||||
- all
|
||||
29
docs/source/en/api/models/autoencoderkl_ltx_2.md
Normal file
29
docs/source/en/api/models/autoencoderkl_ltx_2.md
Normal file
@@ -0,0 +1,29 @@
|
||||
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License. -->
|
||||
|
||||
# AutoencoderKLLTX2Video
|
||||
|
||||
The 3D variational autoencoder (VAE) model with KL loss used in [LTX-2](https://huggingface.co/Lightricks/LTX-2) was introduced by Lightricks.
|
||||
|
||||
The model can be loaded with the following code snippet.
|
||||
|
||||
```python
|
||||
from diffusers import AutoencoderKLLTX2Video
|
||||
|
||||
vae = AutoencoderKLLTX2Video.from_pretrained("Lightricks/LTX-2", subfolder="vae", torch_dtype=torch.float32).to("cuda")
|
||||
```
|
||||
|
||||
## AutoencoderKLLTX2Video
|
||||
|
||||
[[autodoc]] AutoencoderKLLTX2Video
|
||||
- decode
|
||||
- encode
|
||||
- all
|
||||
@@ -12,7 +12,7 @@ specific language governing permissions and limitations under the License.
|
||||
|
||||
# ChromaTransformer2DModel
|
||||
|
||||
A modified flux Transformer model from [Chroma](https://huggingface.co/lodestones/Chroma)
|
||||
A modified flux Transformer model from [Chroma](https://huggingface.co/lodestones/Chroma1-HD)
|
||||
|
||||
## ChromaTransformer2DModel
|
||||
|
||||
|
||||
32
docs/source/en/api/models/chronoedit_transformer_3d.md
Normal file
32
docs/source/en/api/models/chronoedit_transformer_3d.md
Normal file
@@ -0,0 +1,32 @@
|
||||
<!-- Copyright 2025 The ChronoEdit Team and HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License. -->
|
||||
|
||||
# ChronoEditTransformer3DModel
|
||||
|
||||
A Diffusion Transformer model for 3D video-like data from [ChronoEdit: Towards Temporal Reasoning for Image Editing and World Simulation](https://huggingface.co/papers/2510.04290) from NVIDIA and University of Toronto, by Jay Zhangjie Wu, Xuanchi Ren, Tianchang Shen, Tianshi Cao, Kai He, Yifan Lu, Ruiyuan Gao, Enze Xie, Shiyi Lan, Jose M. Alvarez, Jun Gao, Sanja Fidler, Zian Wang, Huan Ling.
|
||||
|
||||
> **TL;DR:** ChronoEdit reframes image editing as a video generation task, using input and edited images as start/end frames to leverage pretrained video models with temporal consistency. A temporal reasoning stage introduces reasoning tokens to ensure physically plausible edits and visualize the editing trajectory.
|
||||
|
||||
The model can be loaded with the following code snippet.
|
||||
|
||||
```python
|
||||
from diffusers import ChronoEditTransformer3DModel
|
||||
|
||||
transformer = ChronoEditTransformer3DModel.from_pretrained("nvidia/ChronoEdit-14B-Diffusers", subfolder="transformer", torch_dtype=torch.bfloat16)
|
||||
```
|
||||
|
||||
## ChronoEditTransformer3DModel
|
||||
|
||||
[[autodoc]] ChronoEditTransformer3DModel
|
||||
|
||||
## Transformer2DModelOutput
|
||||
|
||||
[[autodoc]] models.modeling_outputs.Transformer2DModelOutput
|
||||
@@ -16,11 +16,8 @@ Consistency decoder can be used to decode the latents from the denoising UNet in
|
||||
|
||||
The original codebase can be found at [openai/consistencydecoder](https://github.com/openai/consistencydecoder).
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
Inference is only supported for 2 iterations as of now.
|
||||
|
||||
</Tip>
|
||||
> [!WARNING]
|
||||
> Inference is only supported for 2 iterations as of now.
|
||||
|
||||
The pipeline could not have been contributed without the help of [madebyollin](https://github.com/madebyollin) and [mrsteyk](https://github.com/mrsteyk) from [this issue](https://github.com/openai/consistencydecoder/issues/1).
|
||||
|
||||
|
||||
@@ -33,6 +33,21 @@ url = "https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5/blob/m
|
||||
pipe = StableDiffusionControlNetPipeline.from_single_file(url, controlnet=controlnet)
|
||||
```
|
||||
|
||||
## Loading from Control LoRA
|
||||
|
||||
Control-LoRA is introduced by Stability AI in [stabilityai/control-lora](https://huggingface.co/stabilityai/control-lora) by adding low-rank parameter efficient fine tuning to ControlNet. This approach offers a more efficient and compact method to bring model control to a wider variety of consumer GPUs.
|
||||
|
||||
```py
|
||||
from diffusers import ControlNetModel, UNet2DConditionModel
|
||||
|
||||
lora_id = "stabilityai/control-lora"
|
||||
lora_filename = "control-LoRAs-rank128/control-lora-canny-rank128.safetensors"
|
||||
|
||||
unet = UNet2DConditionModel.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="unet", torch_dtype=torch.bfloat16).to("cuda")
|
||||
controlnet = ControlNetModel.from_unet(unet).to(device="cuda", dtype=torch.bfloat16)
|
||||
controlnet.load_lora_adapter(lora_id, weight_name=lora_filename, prefix=None, controlnet_config=controlnet.config)
|
||||
```
|
||||
|
||||
## ControlNetModel
|
||||
|
||||
[[autodoc]] ControlNetModel
|
||||
|
||||
@@ -42,4 +42,4 @@ pipe = FluxControlNetPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", co
|
||||
|
||||
## FluxControlNetOutput
|
||||
|
||||
[[autodoc]] models.controlnet_flux.FluxControlNetOutput
|
||||
[[autodoc]] models.controlnets.controlnet_flux.FluxControlNetOutput
|
||||
@@ -43,4 +43,4 @@ controlnet = SparseControlNetModel.from_pretrained("guoyww/animatediff-sparsectr
|
||||
|
||||
## SparseControlNetOutput
|
||||
|
||||
[[autodoc]] models.controlnet_sparsectrl.SparseControlNetOutput
|
||||
[[autodoc]] models.controlnets.controlnet_sparsectrl.SparseControlNetOutput
|
||||
|
||||
19
docs/source/en/api/models/flux2_transformer.md
Normal file
19
docs/source/en/api/models/flux2_transformer.md
Normal file
@@ -0,0 +1,19 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# Flux2Transformer2DModel
|
||||
|
||||
A Transformer model for image-like data from [Flux2](https://hf.co/black-forest-labs/FLUX.2-dev).
|
||||
|
||||
## Flux2Transformer2DModel
|
||||
|
||||
[[autodoc]] Flux2Transformer2DModel
|
||||
18
docs/source/en/api/models/glm_image_transformer2d.md
Normal file
18
docs/source/en/api/models/glm_image_transformer2d.md
Normal file
@@ -0,0 +1,18 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License. -->
|
||||
|
||||
# GlmImageTransformer2DModel
|
||||
|
||||
A Diffusion Transformer model for 2D data from [GlmImageTransformer2DModel] (TODO).
|
||||
|
||||
## GlmImageTransformer2DModel
|
||||
|
||||
[[autodoc]] GlmImageTransformer2DModel
|
||||
30
docs/source/en/api/models/hunyuan_video15_transformer_3d.md
Normal file
30
docs/source/en/api/models/hunyuan_video15_transformer_3d.md
Normal file
@@ -0,0 +1,30 @@
|
||||
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License. -->
|
||||
|
||||
# HunyuanVideo15Transformer3DModel
|
||||
|
||||
A Diffusion Transformer model for 3D video-like data used in [HunyuanVideo1.5](https://github.com/Tencent/HunyuanVideo1-1.5).
|
||||
|
||||
The model can be loaded with the following code snippet.
|
||||
|
||||
```python
|
||||
from diffusers import HunyuanVideo15Transformer3DModel
|
||||
|
||||
transformer = HunyuanVideo15Transformer3DModel.from_pretrained("hunyuanvideo-community/HunyuanVideo-1.5-Diffusers-480p_t2v" subfolder="transformer", torch_dtype=torch.bfloat16)
|
||||
```
|
||||
|
||||
## HunyuanVideo15Transformer3DModel
|
||||
|
||||
[[autodoc]] HunyuanVideo15Transformer3DModel
|
||||
|
||||
## Transformer2DModelOutput
|
||||
|
||||
[[autodoc]] models.modeling_outputs.Transformer2DModelOutput
|
||||
30
docs/source/en/api/models/hunyuanimage_transformer_2d.md
Normal file
30
docs/source/en/api/models/hunyuanimage_transformer_2d.md
Normal file
@@ -0,0 +1,30 @@
|
||||
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License. -->
|
||||
|
||||
# HunyuanImageTransformer2DModel
|
||||
|
||||
A Diffusion Transformer model for [HunyuanImage2.1](https://github.com/Tencent-Hunyuan/HunyuanImage-2.1).
|
||||
|
||||
The model can be loaded with the following code snippet.
|
||||
|
||||
```python
|
||||
from diffusers import HunyuanImageTransformer2DModel
|
||||
|
||||
transformer = HunyuanImageTransformer2DModel.from_pretrained("hunyuanvideo-community/HunyuanImage-2.1-Diffusers", subfolder="transformer", torch_dtype=torch.bfloat16)
|
||||
```
|
||||
|
||||
## HunyuanImageTransformer2DModel
|
||||
|
||||
[[autodoc]] HunyuanImageTransformer2DModel
|
||||
|
||||
## Transformer2DModelOutput
|
||||
|
||||
[[autodoc]] models.modeling_outputs.Transformer2DModelOutput
|
||||
25
docs/source/en/api/models/longcat_image_transformer2d.md
Normal file
25
docs/source/en/api/models/longcat_image_transformer2d.md
Normal file
@@ -0,0 +1,25 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# LongCatImageTransformer2DModel
|
||||
|
||||
The model can be loaded with the following code snippet.
|
||||
|
||||
```python
|
||||
from diffusers import LongCatImageTransformer2DModel
|
||||
|
||||
transformer = LongCatImageTransformer2DModel.from_pretrained("meituan-longcat/LongCat-Image ", subfolder="transformer", torch_dtype=torch.bfloat16)
|
||||
```
|
||||
|
||||
## LongCatImageTransformer2DModel
|
||||
|
||||
[[autodoc]] LongCatImageTransformer2DModel
|
||||
26
docs/source/en/api/models/ltx2_video_transformer3d.md
Normal file
26
docs/source/en/api/models/ltx2_video_transformer3d.md
Normal file
@@ -0,0 +1,26 @@
|
||||
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License. -->
|
||||
|
||||
# LTX2VideoTransformer3DModel
|
||||
|
||||
A Diffusion Transformer model for 3D data from [LTX](https://huggingface.co/Lightricks/LTX-2) was introduced by Lightricks.
|
||||
|
||||
The model can be loaded with the following code snippet.
|
||||
|
||||
```python
|
||||
from diffusers import LTX2VideoTransformer3DModel
|
||||
|
||||
transformer = LTX2VideoTransformer3DModel.from_pretrained("Lightricks/LTX-2", subfolder="transformer", torch_dtype=torch.bfloat16).to("cuda")
|
||||
```
|
||||
|
||||
## LTX2VideoTransformer3DModel
|
||||
|
||||
[[autodoc]] LTX2VideoTransformer3DModel
|
||||
24
docs/source/en/api/models/ovisimage_transformer2d.md
Normal file
24
docs/source/en/api/models/ovisimage_transformer2d.md
Normal file
@@ -0,0 +1,24 @@
|
||||
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License. -->
|
||||
|
||||
# OvisImageTransformer2DModel
|
||||
|
||||
The model can be loaded with the following code snippet.
|
||||
|
||||
```python
|
||||
from diffusers import OvisImageTransformer2DModel
|
||||
|
||||
transformer = OvisImageTransformer2DModel.from_pretrained("AIDC-AI/Ovis-Image-7B", subfolder="transformer", torch_dtype=torch.bfloat16)
|
||||
```
|
||||
|
||||
## OvisImageTransformer2DModel
|
||||
|
||||
[[autodoc]] OvisImageTransformer2DModel
|
||||
36
docs/source/en/api/models/sana_video_transformer3d.md
Normal file
36
docs/source/en/api/models/sana_video_transformer3d.md
Normal file
@@ -0,0 +1,36 @@
|
||||
<!-- Copyright 2025 The SANA-Video Authors and HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License. -->
|
||||
|
||||
# SanaVideoTransformer3DModel
|
||||
|
||||
A Diffusion Transformer model for 3D data (video) from [SANA-Video: Efficient Video Generation with Block Linear Diffusion Transformer](https://huggingface.co/papers/2509.24695) from NVIDIA and MIT HAN Lab, by Junsong Chen, Yuyang Zhao, Jincheng Yu, Ruihang Chu, Junyu Chen, Shuai Yang, Xianbang Wang, Yicheng Pan, Daquan Zhou, Huan Ling, Haozhe Liu, Hongwei Yi, Hao Zhang, Muyang Li, Yukang Chen, Han Cai, Sanja Fidler, Ping Luo, Song Han, Enze Xie.
|
||||
|
||||
The abstract from the paper is:
|
||||
|
||||
*We introduce SANA-Video, a small diffusion model that can efficiently generate videos up to 720x1280 resolution and minute-length duration. SANA-Video synthesizes high-resolution, high-quality and long videos with strong text-video alignment at a remarkably fast speed, deployable on RTX 5090 GPU. Two core designs ensure our efficient, effective and long video generation: (1) Linear DiT: We leverage linear attention as the core operation, which is more efficient than vanilla attention given the large number of tokens processed in video generation. (2) Constant-Memory KV cache for Block Linear Attention: we design block-wise autoregressive approach for long video generation by employing a constant-memory state, derived from the cumulative properties of linear attention. This KV cache provides the Linear DiT with global context at a fixed memory cost, eliminating the need for a traditional KV cache and enabling efficient, minute-long video generation. In addition, we explore effective data filters and model training strategies, narrowing the training cost to 12 days on 64 H100 GPUs, which is only 1% of the cost of MovieGen. Given its low cost, SANA-Video achieves competitive performance compared to modern state-of-the-art small diffusion models (e.g., Wan 2.1-1.3B and SkyReel-V2-1.3B) while being 16x faster in measured latency. Moreover, SANA-Video can be deployed on RTX 5090 GPUs with NVFP4 precision, accelerating the inference speed of generating a 5-second 720p video from 71s to 29s (2.4x speedup). In summary, SANA-Video enables low-cost, high-quality video generation.*
|
||||
|
||||
The model can be loaded with the following code snippet.
|
||||
|
||||
```python
|
||||
from diffusers import SanaVideoTransformer3DModel
|
||||
import torch
|
||||
|
||||
transformer = SanaVideoTransformer3DModel.from_pretrained("Efficient-Large-Model/SANA-Video_2B_480p_diffusers", subfolder="transformer", torch_dtype=torch.bfloat16)
|
||||
```
|
||||
|
||||
## SanaVideoTransformer3DModel
|
||||
|
||||
[[autodoc]] SanaVideoTransformer3DModel
|
||||
|
||||
## Transformer2DModelOutput
|
||||
|
||||
[[autodoc]] models.modeling_outputs.Transformer2DModelOutput
|
||||
|
||||
@@ -22,11 +22,8 @@ When the input is **continuous**:
|
||||
|
||||
When the input is **discrete**:
|
||||
|
||||
<Tip>
|
||||
|
||||
It is assumed one of the input classes is the masked latent pixel. The predicted classes of the unnoised image don't contain a prediction for the masked pixel because the unnoised image cannot be masked.
|
||||
|
||||
</Tip>
|
||||
> [!TIP]
|
||||
> It is assumed one of the input classes is the masked latent pixel. The predicted classes of the unnoised image don't contain a prediction for the masked pixel because the unnoised image cannot be masked.
|
||||
|
||||
1. Convert input (classes of latent pixels) to embeddings and apply positional embeddings.
|
||||
2. Apply the Transformer blocks in the standard way.
|
||||
|
||||
19
docs/source/en/api/models/transformer_bria_fibo.md
Normal file
19
docs/source/en/api/models/transformer_bria_fibo.md
Normal file
@@ -0,0 +1,19 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# BriaFiboTransformer2DModel
|
||||
|
||||
A modified flux Transformer model from [Bria](https://huggingface.co/briaai/FIBO)
|
||||
|
||||
## BriaFiboTransformer2DModel
|
||||
|
||||
[[autodoc]] BriaFiboTransformer2DModel
|
||||
30
docs/source/en/api/models/wan_animate_transformer_3d.md
Normal file
30
docs/source/en/api/models/wan_animate_transformer_3d.md
Normal file
@@ -0,0 +1,30 @@
|
||||
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License. -->
|
||||
|
||||
# WanAnimateTransformer3DModel
|
||||
|
||||
A Diffusion Transformer model for 3D video-like data was introduced in [Wan Animate](https://github.com/Wan-Video/Wan2.2) by the Alibaba Wan Team.
|
||||
|
||||
The model can be loaded with the following code snippet.
|
||||
|
||||
```python
|
||||
from diffusers import WanAnimateTransformer3DModel
|
||||
|
||||
transformer = WanAnimateTransformer3DModel.from_pretrained("Wan-AI/Wan2.2-Animate-14B-Diffusers", subfolder="transformer", torch_dtype=torch.bfloat16)
|
||||
```
|
||||
|
||||
## WanAnimateTransformer3DModel
|
||||
|
||||
[[autodoc]] WanAnimateTransformer3DModel
|
||||
|
||||
## Transformer2DModelOutput
|
||||
|
||||
[[autodoc]] models.modeling_outputs.Transformer2DModelOutput
|
||||
19
docs/source/en/api/models/z_image_transformer2d.md
Normal file
19
docs/source/en/api/models/z_image_transformer2d.md
Normal file
@@ -0,0 +1,19 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# ZImageTransformer2DModel
|
||||
|
||||
A Transformer model for image-like data from [Z-Image](https://huggingface.co/Tongyi-MAI/Z-Image-Turbo).
|
||||
|
||||
## ZImageTransformer2DModel
|
||||
|
||||
[[autodoc]] ZImageTransformer2DModel
|
||||
@@ -39,11 +39,8 @@ For instance, retrieving an image by indexing into it returns the tuple `(output
|
||||
outputs[:1]
|
||||
```
|
||||
|
||||
<Tip>
|
||||
|
||||
To check a specific pipeline or model output, refer to its corresponding API documentation.
|
||||
|
||||
</Tip>
|
||||
> [!TIP]
|
||||
> To check a specific pipeline or model output, refer to its corresponding API documentation.
|
||||
|
||||
## BaseOutput
|
||||
|
||||
|
||||
@@ -11,7 +11,7 @@ specific language governing permissions and limitations under the License. -->
|
||||
|
||||
# Parallelism
|
||||
|
||||
Parallelism strategies help speed up diffusion transformers by distributing computations across multiple devices, allowing for faster inference/training times.
|
||||
Parallelism strategies help speed up diffusion transformers by distributing computations across multiple devices, allowing for faster inference/training times. Refer to the [Distributed inferece](../training/distributed_inference) guide to learn more.
|
||||
|
||||
## ParallelConfig
|
||||
|
||||
|
||||
@@ -17,11 +17,8 @@ The abstract from the paper is:
|
||||
|
||||
*Significant advancements have been made in the field of video generation, with the open-source community contributing a wealth of research papers and tools for training high-quality models. However, despite these efforts, the available information and resources remain insufficient for achieving commercial-level performance. In this report, we open the black box and introduce Allegro, an advanced video generation model that excels in both quality and temporal consistency. We also highlight the current limitations in the field and present a comprehensive methodology for training high-performance, commercial-level video generation models, addressing key aspects such as data, model architecture, training pipeline, and evaluation. Our user study shows that Allegro surpasses existing open-source models and most commercial models, ranking just behind Hailuo and Kling. Code: https://github.com/rhymes-ai/Allegro , Model: https://huggingface.co/rhymes-ai/Allegro , Gallery: https://rhymes.ai/allegro_gallery .*
|
||||
|
||||
<Tip>
|
||||
|
||||
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
|
||||
|
||||
</Tip>
|
||||
> [!TIP]
|
||||
> Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
|
||||
|
||||
## Quantization
|
||||
|
||||
|
||||
@@ -102,11 +102,8 @@ Here are some sample outputs:
|
||||
</tr>
|
||||
</table>
|
||||
|
||||
<Tip>
|
||||
|
||||
AnimateDiff tends to work better with finetuned Stable Diffusion models. If you plan on using a scheduler that can clip samples, make sure to disable it by setting `clip_sample=False` in the scheduler as this can also have an adverse effect on generated samples. Additionally, the AnimateDiff checkpoints can be sensitive to the beta schedule of the scheduler. We recommend setting this to `linear`.
|
||||
|
||||
</Tip>
|
||||
> [!TIP]
|
||||
> AnimateDiff tends to work better with finetuned Stable Diffusion models. If you plan on using a scheduler that can clip samples, make sure to disable it by setting `clip_sample=False` in the scheduler as this can also have an adverse effect on generated samples. Additionally, the AnimateDiff checkpoints can be sensitive to the beta schedule of the scheduler. We recommend setting this to `linear`.
|
||||
|
||||
### AnimateDiffControlNetPipeline
|
||||
|
||||
@@ -799,17 +796,11 @@ frames = output.frames[0]
|
||||
export_to_gif(frames, "animation.gif")
|
||||
```
|
||||
|
||||
<Tip warning={true}>
|
||||
> [!WARNING]
|
||||
> FreeInit is not really free - the improved quality comes at the cost of extra computation. It requires sampling a few extra times depending on the `num_iters` parameter that is set when enabling it. Setting the `use_fast_sampling` parameter to `True` can improve the overall performance (at the cost of lower quality compared to when `use_fast_sampling=False` but still better results than vanilla video generation models).
|
||||
|
||||
FreeInit is not really free - the improved quality comes at the cost of extra computation. It requires sampling a few extra times depending on the `num_iters` parameter that is set when enabling it. Setting the `use_fast_sampling` parameter to `True` can improve the overall performance (at the cost of lower quality compared to when `use_fast_sampling=False` but still better results than vanilla video generation models).
|
||||
|
||||
</Tip>
|
||||
|
||||
<Tip>
|
||||
|
||||
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
|
||||
|
||||
</Tip>
|
||||
> [!TIP]
|
||||
> Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
|
||||
|
||||
<table>
|
||||
<tr>
|
||||
|
||||
@@ -23,11 +23,8 @@ The abstract from the paper is:
|
||||
|
||||
You can find additional information about Attend-and-Excite on the [project page](https://attendandexcite.github.io/Attend-and-Excite/), the [original codebase](https://github.com/AttendAndExcite/Attend-and-Excite), or try it out in a [demo](https://huggingface.co/spaces/AttendAndExcite/Attend-and-Excite).
|
||||
|
||||
<Tip>
|
||||
|
||||
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
|
||||
|
||||
</Tip>
|
||||
> [!TIP]
|
||||
> Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
|
||||
|
||||
## StableDiffusionAttendAndExcitePipeline
|
||||
|
||||
|
||||
@@ -38,11 +38,8 @@ During inference:
|
||||
* The _quality_ of the predicted audio sample can be controlled by the `num_inference_steps` argument; higher steps give higher quality audio at the expense of slower inference.
|
||||
* The _length_ of the predicted audio sample can be controlled by varying the `audio_length_in_s` argument.
|
||||
|
||||
<Tip>
|
||||
|
||||
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
|
||||
|
||||
</Tip>
|
||||
> [!TIP]
|
||||
> Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
|
||||
|
||||
## AudioLDMPipeline
|
||||
[[autodoc]] AudioLDMPipeline
|
||||
|
||||
@@ -58,11 +58,8 @@ See table below for details on the three checkpoints:
|
||||
|
||||
The following example demonstrates how to construct good music and speech generation using the aforementioned tips: [example](https://huggingface.co/docs/diffusers/main/en/api/pipelines/audioldm2#diffusers.AudioLDM2Pipeline.__call__.example).
|
||||
|
||||
<Tip>
|
||||
|
||||
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
|
||||
|
||||
</Tip>
|
||||
> [!TIP]
|
||||
> Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
|
||||
|
||||
## AudioLDM2Pipeline
|
||||
[[autodoc]] AudioLDM2Pipeline
|
||||
|
||||
@@ -16,11 +16,8 @@ AuraFlow is inspired by [Stable Diffusion 3](../pipelines/stable_diffusion/stabl
|
||||
|
||||
It was developed by the Fal team and more details about it can be found in [this blog post](https://blog.fal.ai/auraflow/).
|
||||
|
||||
<Tip>
|
||||
|
||||
AuraFlow can be quite expensive to run on consumer hardware devices. However, you can perform a suite of optimizations to run it faster and in a more memory-friendly manner. Check out [this section](https://huggingface.co/blog/sd3#memory-optimizations-for-sd3) for more details.
|
||||
|
||||
</Tip>
|
||||
> [!TIP]
|
||||
> AuraFlow can be quite expensive to run on consumer hardware devices. However, you can perform a suite of optimizations to run it faster and in a more memory-friendly manner. Check out [this section](https://huggingface.co/blog/sd3#memory-optimizations-for-sd3) for more details.
|
||||
|
||||
## Quantization
|
||||
|
||||
|
||||
@@ -26,11 +26,8 @@ The original codebase can be found at [salesforce/LAVIS](https://github.com/sale
|
||||
|
||||
`BlipDiffusionPipeline` and `BlipDiffusionControlNetPipeline` were contributed by [`ayushtues`](https://github.com/ayushtues/).
|
||||
|
||||
<Tip>
|
||||
|
||||
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
|
||||
|
||||
</Tip>
|
||||
> [!TIP]
|
||||
> Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
|
||||
|
||||
|
||||
## BlipDiffusionPipeline
|
||||
|
||||
45
docs/source/en/api/pipelines/bria_fibo.md
Normal file
45
docs/source/en/api/pipelines/bria_fibo.md
Normal file
@@ -0,0 +1,45 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# Bria Fibo
|
||||
|
||||
Text-to-image models have mastered imagination - but not control. FIBO changes that.
|
||||
|
||||
FIBO is trained on structured JSON captions up to 1,000+ words and designed to understand and control different visual parameters such as lighting, composition, color, and camera settings, enabling precise and reproducible outputs.
|
||||
|
||||
With only 8 billion parameters, FIBO provides a new level of image quality, prompt adherence and proffesional control.
|
||||
|
||||
FIBO is trained exclusively on a structured prompt and will not work with freeform text prompts.
|
||||
you can use the [FIBO-VLM-prompt-to-JSON](https://huggingface.co/briaai/FIBO-VLM-prompt-to-JSON) model or the [FIBO-gemini-prompt-to-JSON](https://huggingface.co/briaai/FIBO-gemini-prompt-to-JSON) to convert your freeform text prompt to a structured JSON prompt.
|
||||
|
||||
> [!NOTE]
|
||||
> Avoid using freeform text prompts directly with FIBO because it does not produce the best results.
|
||||
|
||||
Refer to the Bria Fibo Hugging Face [page](https://huggingface.co/briaai/FIBO) to learn more.
|
||||
|
||||
|
||||
## Usage
|
||||
|
||||
_As the model is gated, before using it with diffusers you first need to go to the [Bria Fibo Hugging Face page](https://huggingface.co/briaai/FIBO), fill in the form and accept the gate. Once you are in, you need to login so that your system knows you’ve accepted the gate._
|
||||
|
||||
Use the command below to log in:
|
||||
|
||||
```bash
|
||||
hf auth login
|
||||
```
|
||||
|
||||
|
||||
## BriaFiboPipeline
|
||||
|
||||
[[autodoc]] BriaFiboPipeline
|
||||
- all
|
||||
- __call__
|
||||
@@ -19,23 +19,21 @@ specific language governing permissions and limitations under the License.
|
||||
|
||||
Chroma is a text to image generation model based on Flux.
|
||||
|
||||
Original model checkpoints for Chroma can be found [here](https://huggingface.co/lodestones/Chroma).
|
||||
Original model checkpoints for Chroma can be found here:
|
||||
* High-resolution finetune: [lodestones/Chroma1-HD](https://huggingface.co/lodestones/Chroma1-HD)
|
||||
* Base model: [lodestones/Chroma1-Base](https://huggingface.co/lodestones/Chroma1-Base)
|
||||
* Original repo with progress checkpoints: [lodestones/Chroma](https://huggingface.co/lodestones/Chroma) (loading this repo with `from_pretrained` will load a Diffusers-compatible version of the `unlocked-v37` checkpoint)
|
||||
|
||||
<Tip>
|
||||
|
||||
Chroma can use all the same optimizations as Flux.
|
||||
|
||||
</Tip>
|
||||
> [!TIP]
|
||||
> Chroma can use all the same optimizations as Flux.
|
||||
|
||||
## Inference
|
||||
|
||||
The Diffusers version of Chroma is based on the [`unlocked-v37`](https://huggingface.co/lodestones/Chroma/blob/main/chroma-unlocked-v37.safetensors) version of the original model, which is available in the [Chroma repository](https://huggingface.co/lodestones/Chroma).
|
||||
|
||||
```python
|
||||
import torch
|
||||
from diffusers import ChromaPipeline
|
||||
|
||||
pipe = ChromaPipeline.from_pretrained("lodestones/Chroma", torch_dtype=torch.bfloat16)
|
||||
pipe = ChromaPipeline.from_pretrained("lodestones/Chroma1-HD", torch_dtype=torch.bfloat16)
|
||||
pipe.enable_model_cpu_offload()
|
||||
|
||||
prompt = [
|
||||
@@ -66,10 +64,10 @@ Then run the following example
|
||||
import torch
|
||||
from diffusers import ChromaTransformer2DModel, ChromaPipeline
|
||||
|
||||
model_id = "lodestones/Chroma"
|
||||
model_id = "lodestones/Chroma1-HD"
|
||||
dtype = torch.bfloat16
|
||||
|
||||
transformer = ChromaTransformer2DModel.from_single_file("https://huggingface.co/lodestones/Chroma/blob/main/chroma-unlocked-v37.safetensors", torch_dtype=dtype)
|
||||
transformer = ChromaTransformer2DModel.from_single_file("https://huggingface.co/lodestones/Chroma1-HD/blob/main/Chroma1-HD.safetensors", torch_dtype=dtype)
|
||||
|
||||
pipe = ChromaPipeline.from_pretrained(model_id, transformer=transformer, torch_dtype=dtype)
|
||||
pipe.enable_model_cpu_offload()
|
||||
@@ -101,3 +99,9 @@ image.save("chroma-single-file.png")
|
||||
[[autodoc]] ChromaImg2ImgPipeline
|
||||
- all
|
||||
- __call__
|
||||
|
||||
## ChromaInpaintPipeline
|
||||
|
||||
[[autodoc]] ChromaInpaintPipeline
|
||||
- all
|
||||
- __call__
|
||||
|
||||
211
docs/source/en/api/pipelines/chronoedit.md
Normal file
211
docs/source/en/api/pipelines/chronoedit.md
Normal file
@@ -0,0 +1,211 @@
|
||||
<!-- Copyright 2025 The ChronoEdit Team and HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License. -->
|
||||
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<a href="https://huggingface.co/docs/diffusers/main/en/tutorials/using_peft_for_inference" target="_blank" rel="noopener">
|
||||
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
|
||||
</a>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
# ChronoEdit
|
||||
|
||||
[ChronoEdit: Towards Temporal Reasoning for Image Editing and World Simulation](https://huggingface.co/papers/2510.04290) from NVIDIA and University of Toronto, by Jay Zhangjie Wu, Xuanchi Ren, Tianchang Shen, Tianshi Cao, Kai He, Yifan Lu, Ruiyuan Gao, Enze Xie, Shiyi Lan, Jose M. Alvarez, Jun Gao, Sanja Fidler, Zian Wang, Huan Ling.
|
||||
|
||||
> **TL;DR:** ChronoEdit reframes image editing as a video generation task, using input and edited images as start/end frames to leverage pretrained video models with temporal consistency. A temporal reasoning stage introduces reasoning tokens to ensure physically plausible edits and visualize the editing trajectory.
|
||||
|
||||
*Recent advances in large generative models have greatly enhanced both image editing and in-context image generation, yet a critical gap remains in ensuring physical consistency, where edited objects must remain coherent. This capability is especially vital for world simulation related tasks. In this paper, we present ChronoEdit, a framework that reframes image editing as a video generation problem. First, ChronoEdit treats the input and edited images as the first and last frames of a video, allowing it to leverage large pretrained video generative models that capture not only object appearance but also the implicit physics of motion and interaction through learned temporal consistency. Second, ChronoEdit introduces a temporal reasoning stage that explicitly performs editing at inference time. Under this setting, target frame is jointly denoised with reasoning tokens to imagine a plausible editing trajectory that constrains the solution space to physically viable transformations. The reasoning tokens are then dropped after a few steps to avoid the high computational cost of rendering a full video. To validate ChronoEdit, we introduce PBench-Edit, a new benchmark of image-prompt pairs for contexts that require physical consistency, and demonstrate that ChronoEdit surpasses state-of-the-art baselines in both visual fidelity and physical plausibility. Project page for code and models: [this https URL](https://research.nvidia.com/labs/toronto-ai/chronoedit).*
|
||||
|
||||
The ChronoEdit pipeline is developed by the ChronoEdit Team. The original code is available on [GitHub](https://github.com/nv-tlabs/ChronoEdit), and pretrained models can be found in the [nvidia/ChronoEdit](https://huggingface.co/collections/nvidia/chronoedit) collection on Hugging Face.
|
||||
|
||||
Available Models/LoRAs:
|
||||
- [nvidia/ChronoEdit-14B-Diffusers](https://huggingface.co/nvidia/ChronoEdit-14B-Diffusers)
|
||||
- [nvidia/ChronoEdit-14B-Diffusers-Upscaler-Lora](https://huggingface.co/nvidia/ChronoEdit-14B-Diffusers-Upscaler-Lora)
|
||||
- [nvidia/ChronoEdit-14B-Diffusers-Paint-Brush-Lora](https://huggingface.co/nvidia/ChronoEdit-14B-Diffusers-Paint-Brush-Lora)
|
||||
|
||||
### Image Editing
|
||||
|
||||
```py
|
||||
import torch
|
||||
import numpy as np
|
||||
from diffusers import AutoencoderKLWan, ChronoEditTransformer3DModel, ChronoEditPipeline
|
||||
from diffusers.utils import export_to_video, load_image
|
||||
from transformers import CLIPVisionModel
|
||||
from PIL import Image
|
||||
|
||||
model_id = "nvidia/ChronoEdit-14B-Diffusers"
|
||||
image_encoder = CLIPVisionModel.from_pretrained(model_id, subfolder="image_encoder", torch_dtype=torch.float32)
|
||||
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
|
||||
transformer = ChronoEditTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.bfloat16)
|
||||
pipe = ChronoEditPipeline.from_pretrained(model_id, image_encoder=image_encoder, transformer=transformer, vae=vae, torch_dtype=torch.bfloat16)
|
||||
pipe.to("cuda")
|
||||
|
||||
image = load_image(
|
||||
"https://huggingface.co/spaces/nvidia/ChronoEdit/resolve/main/examples/3.png"
|
||||
)
|
||||
max_area = 720 * 1280
|
||||
aspect_ratio = image.height / image.width
|
||||
mod_value = pipe.vae_scale_factor_spatial * pipe.transformer.config.patch_size[1]
|
||||
height = round(np.sqrt(max_area * aspect_ratio)) // mod_value * mod_value
|
||||
width = round(np.sqrt(max_area / aspect_ratio)) // mod_value * mod_value
|
||||
print("width", width, "height", height)
|
||||
image = image.resize((width, height))
|
||||
prompt = (
|
||||
"The user wants to transform the image by adding a small, cute mouse sitting inside the floral teacup, enjoying a spa bath. The mouse should appear relaxed and cheerful, with a tiny white bath towel draped over its head like a turban. It should be positioned comfortably in the cup’s liquid, with gentle steam rising around it to blend with the cozy atmosphere. "
|
||||
"The mouse’s pose should be natural—perhaps sitting upright with paws resting lightly on the rim or submerged in the tea. The teacup’s floral design, gold trim, and warm lighting must remain unchanged to preserve the original aesthetic. The steam should softly swirl around the mouse, enhancing the spa-like, whimsical mood."
|
||||
)
|
||||
|
||||
output = pipe(
|
||||
image=image,
|
||||
prompt=prompt,
|
||||
height=height,
|
||||
width=width,
|
||||
num_frames=5,
|
||||
num_inference_steps=50,
|
||||
guidance_scale=5.0,
|
||||
enable_temporal_reasoning=False,
|
||||
num_temporal_reasoning_steps=0,
|
||||
).frames[0]
|
||||
Image.fromarray((output[-1] * 255).clip(0, 255).astype("uint8")).save("output.png")
|
||||
```
|
||||
|
||||
Optionally, enable **temporal reasoning** for improved physical consistency:
|
||||
```py
|
||||
output = pipe(
|
||||
image=image,
|
||||
prompt=prompt,
|
||||
height=height,
|
||||
width=width,
|
||||
num_frames=29,
|
||||
num_inference_steps=50,
|
||||
guidance_scale=5.0,
|
||||
enable_temporal_reasoning=True,
|
||||
num_temporal_reasoning_steps=50,
|
||||
).frames[0]
|
||||
export_to_video(output, "output.mp4", fps=16)
|
||||
Image.fromarray((output[-1] * 255).clip(0, 255).astype("uint8")).save("output.png")
|
||||
```
|
||||
|
||||
### Inference with 8-Step Distillation Lora
|
||||
|
||||
```py
|
||||
import torch
|
||||
import numpy as np
|
||||
from diffusers import AutoencoderKLWan, ChronoEditTransformer3DModel, ChronoEditPipeline
|
||||
from diffusers.schedulers import UniPCMultistepScheduler
|
||||
from diffusers.utils import export_to_video, load_image
|
||||
from transformers import CLIPVisionModel
|
||||
from PIL import Image
|
||||
|
||||
model_id = "nvidia/ChronoEdit-14B-Diffusers"
|
||||
image_encoder = CLIPVisionModel.from_pretrained(model_id, subfolder="image_encoder", torch_dtype=torch.float32)
|
||||
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
|
||||
transformer = ChronoEditTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.bfloat16)
|
||||
pipe = ChronoEditPipeline.from_pretrained(model_id, image_encoder=image_encoder, transformer=transformer, vae=vae, torch_dtype=torch.bfloat16)
|
||||
pipe.load_lora_weights("nvidia/ChronoEdit-14B-Diffusers", weight_name="lora/chronoedit_distill_lora.safetensors", adapter_name="distill")
|
||||
pipe.fuse_lora(adapter_names=["distill"], lora_scale=1.0)
|
||||
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=2.0)
|
||||
pipe.to("cuda")
|
||||
|
||||
image = load_image(
|
||||
"https://huggingface.co/spaces/nvidia/ChronoEdit/resolve/main/examples/3.png"
|
||||
)
|
||||
max_area = 720 * 1280
|
||||
aspect_ratio = image.height / image.width
|
||||
mod_value = pipe.vae_scale_factor_spatial * pipe.transformer.config.patch_size[1]
|
||||
height = round(np.sqrt(max_area * aspect_ratio)) // mod_value * mod_value
|
||||
width = round(np.sqrt(max_area / aspect_ratio)) // mod_value * mod_value
|
||||
print("width", width, "height", height)
|
||||
image = image.resize((width, height))
|
||||
prompt = (
|
||||
"The user wants to transform the image by adding a small, cute mouse sitting inside the floral teacup, enjoying a spa bath. The mouse should appear relaxed and cheerful, with a tiny white bath towel draped over its head like a turban. It should be positioned comfortably in the cup’s liquid, with gentle steam rising around it to blend with the cozy atmosphere. "
|
||||
"The mouse’s pose should be natural—perhaps sitting upright with paws resting lightly on the rim or submerged in the tea. The teacup’s floral design, gold trim, and warm lighting must remain unchanged to preserve the original aesthetic. The steam should softly swirl around the mouse, enhancing the spa-like, whimsical mood."
|
||||
)
|
||||
|
||||
output = pipe(
|
||||
image=image,
|
||||
prompt=prompt,
|
||||
height=height,
|
||||
width=width,
|
||||
num_frames=5,
|
||||
num_inference_steps=8,
|
||||
guidance_scale=1.0,
|
||||
enable_temporal_reasoning=False,
|
||||
num_temporal_reasoning_steps=0,
|
||||
).frames[0]
|
||||
export_to_video(output, "output.mp4", fps=16)
|
||||
Image.fromarray((output[-1] * 255).clip(0, 255).astype("uint8")).save("output.png")
|
||||
```
|
||||
|
||||
### Inference with Multiple LoRAs
|
||||
|
||||
```py
|
||||
import torch
|
||||
import numpy as np
|
||||
from diffusers import AutoencoderKLWan, ChronoEditTransformer3DModel, ChronoEditPipeline
|
||||
from diffusers.schedulers import UniPCMultistepScheduler
|
||||
from diffusers.utils import export_to_video, load_image
|
||||
from transformers import CLIPVisionModel
|
||||
from PIL import Image
|
||||
|
||||
model_id = "nvidia/ChronoEdit-14B-Diffusers"
|
||||
image_encoder = CLIPVisionModel.from_pretrained(model_id, subfolder="image_encoder", torch_dtype=torch.float32)
|
||||
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
|
||||
transformer = ChronoEditTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.bfloat16)
|
||||
pipe = ChronoEditPipeline.from_pretrained(model_id, image_encoder=image_encoder, transformer=transformer, vae=vae, torch_dtype=torch.bfloat16)
|
||||
pipe.load_lora_weights("nvidia/ChronoEdit-14B-Diffusers-Paint-Brush-Lora", weight_name="paintbrush_lora_diffusers.safetensors", adapter_name="paintbrush")
|
||||
pipe.load_lora_weights("nvidia/ChronoEdit-14B-Diffusers", weight_name="lora/chronoedit_distill_lora.safetensors", adapter_name="distill")
|
||||
pipe.fuse_lora(adapter_names=["paintbrush", "distill"], lora_scale=1.0)
|
||||
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=2.0)
|
||||
pipe.to("cuda")
|
||||
|
||||
image = load_image(
|
||||
"https://raw.githubusercontent.com/nv-tlabs/ChronoEdit/refs/heads/main/assets/images/input_paintbrush.png"
|
||||
)
|
||||
max_area = 720 * 1280
|
||||
aspect_ratio = image.height / image.width
|
||||
mod_value = pipe.vae_scale_factor_spatial * pipe.transformer.config.patch_size[1]
|
||||
height = round(np.sqrt(max_area * aspect_ratio)) // mod_value * mod_value
|
||||
width = round(np.sqrt(max_area / aspect_ratio)) // mod_value * mod_value
|
||||
print("width", width, "height", height)
|
||||
image = image.resize((width, height))
|
||||
prompt = (
|
||||
"Turn the pencil sketch in the image into an actual object that is consistent with the image’s content. The user wants to change the sketch to a crown and a hat."
|
||||
)
|
||||
|
||||
output = pipe(
|
||||
image=image,
|
||||
prompt=prompt,
|
||||
height=height,
|
||||
width=width,
|
||||
num_frames=5,
|
||||
num_inference_steps=8,
|
||||
guidance_scale=1.0,
|
||||
enable_temporal_reasoning=False,
|
||||
num_temporal_reasoning_steps=0,
|
||||
).frames[0]
|
||||
export_to_video(output, "output.mp4", fps=16)
|
||||
Image.fromarray((output[-1] * 255).clip(0, 255).astype("uint8")).save("output_1.png")
|
||||
```
|
||||
|
||||
## ChronoEditPipeline
|
||||
|
||||
[[autodoc]] ChronoEditPipeline
|
||||
- all
|
||||
- __call__
|
||||
|
||||
## ChronoEditPipelineOutput
|
||||
|
||||
[[autodoc]] pipelines.chronoedit.pipeline_output.ChronoEditPipelineOutput
|
||||
@@ -21,11 +21,8 @@ The abstract from the paper is:
|
||||
|
||||
*Recent advancements in text-to-image generative systems have been largely driven by diffusion models. However, single-stage text-to-image diffusion models still face challenges, in terms of computational efficiency and the refinement of image details. To tackle the issue, we propose CogView3, an innovative cascaded framework that enhances the performance of text-to-image diffusion. CogView3 is the first model implementing relay diffusion in the realm of text-to-image generation, executing the task by first creating low-resolution images and subsequently applying relay-based super-resolution. This methodology not only results in competitive text-to-image outputs but also greatly reduces both training and inference costs. Our experimental results demonstrate that CogView3 outperforms SDXL, the current state-of-the-art open-source text-to-image diffusion model, by 77.0% in human evaluations, all while requiring only about 1/2 of the inference time. The distilled variant of CogView3 achieves comparable performance while only utilizing 1/10 of the inference time by SDXL.*
|
||||
|
||||
<Tip>
|
||||
|
||||
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
|
||||
|
||||
</Tip>
|
||||
> [!TIP]
|
||||
> Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
|
||||
|
||||
This pipeline was contributed by [zRzRzRzRzRzRzR](https://github.com/zRzRzRzRzRzRzR). The original codebase can be found [here](https://huggingface.co/THUDM). The original weights can be found under [hf.co/THUDM](https://huggingface.co/THUDM).
|
||||
|
||||
|
||||
@@ -15,11 +15,8 @@
|
||||
|
||||
# CogView4
|
||||
|
||||
<Tip>
|
||||
|
||||
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
|
||||
|
||||
</Tip>
|
||||
> [!TIP]
|
||||
> Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
|
||||
|
||||
This pipeline was contributed by [zRzRzRzRzRzRzR](https://github.com/zRzRzRzRzRzRzR). The original codebase can be found [here](https://huggingface.co/THUDM). The original weights can be found under [hf.co/THUDM](https://huggingface.co/THUDM).
|
||||
|
||||
|
||||
@@ -25,11 +25,8 @@ The abstract from the paper is:
|
||||
|
||||
*Identity-preserving text-to-video (IPT2V) generation aims to create high-fidelity videos with consistent human identity. It is an important task in video generation but remains an open problem for generative models. This paper pushes the technical frontier of IPT2V in two directions that have not been resolved in the literature: (1) A tuning-free pipeline without tedious case-by-case finetuning, and (2) A frequency-aware heuristic identity-preserving Diffusion Transformer (DiT)-based control scheme. To achieve these goals, we propose **ConsisID**, a tuning-free DiT-based controllable IPT2V model to keep human-**id**entity **consis**tent in the generated video. Inspired by prior findings in frequency analysis of vision/diffusion transformers, it employs identity-control signals in the frequency domain, where facial features can be decomposed into low-frequency global features (e.g., profile, proportions) and high-frequency intrinsic features (e.g., identity markers that remain unaffected by pose changes). First, from a low-frequency perspective, we introduce a global facial extractor, which encodes the reference image and facial key points into a latent space, generating features enriched with low-frequency information. These features are then integrated into the shallow layers of the network to alleviate training challenges associated with DiT. Second, from a high-frequency perspective, we design a local facial extractor to capture high-frequency details and inject them into the transformer blocks, enhancing the model's ability to preserve fine-grained features. To leverage the frequency information for identity preservation, we propose a hierarchical training strategy, transforming a vanilla pre-trained video generation model into an IPT2V model. Extensive experiments demonstrate that our frequency-aware heuristic scheme provides an optimal control solution for DiT-based models. Thanks to this scheme, our **ConsisID** achieves excellent results in generating high-quality, identity-preserving videos, making strides towards more effective IPT2V. The model weight of ConsID is publicly available at https://github.com/PKU-YuanGroup/ConsisID.*
|
||||
|
||||
<Tip>
|
||||
|
||||
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers.md) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading.md#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
|
||||
|
||||
</Tip>
|
||||
> [!TIP]
|
||||
> Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers.md) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading.md#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
|
||||
|
||||
This pipeline was contributed by [SHYuanBest](https://github.com/SHYuanBest). The original codebase can be found [here](https://github.com/PKU-YuanGroup/ConsisID). The original weights can be found under [hf.co/BestWishYsh](https://huggingface.co/BestWishYsh).
|
||||
|
||||
|
||||
@@ -26,11 +26,8 @@ FLUX.1 Depth and Canny [dev] is a 12 billion parameter rectified flow transforme
|
||||
| Canny | [Black Forest Labs](https://huggingface.co/black-forest-labs) | [Link](https://huggingface.co/black-forest-labs/FLUX.1-Canny-dev) |
|
||||
|
||||
|
||||
<Tip>
|
||||
|
||||
Flux can be quite expensive to run on consumer hardware devices. However, you can perform a suite of optimizations to run it faster and in a more memory-friendly manner. Check out [this section](https://huggingface.co/blog/sd3#memory-optimizations-for-sd3) for more details. Additionally, Flux can benefit from quantization for memory efficiency with a trade-off in inference latency. Refer to [this blog post](https://huggingface.co/blog/quanto-diffusers) to learn more. For an exhaustive list of resources, check out [this gist](https://gist.github.com/sayakpaul/b664605caf0aa3bf8585ab109dd5ac9c).
|
||||
|
||||
</Tip>
|
||||
> [!TIP]
|
||||
> Flux can be quite expensive to run on consumer hardware devices. However, you can perform a suite of optimizations to run it faster and in a more memory-friendly manner. Check out [this section](https://huggingface.co/blog/sd3#memory-optimizations-for-sd3) for more details. Additionally, Flux can benefit from quantization for memory efficiency with a trade-off in inference latency. Refer to [this blog post](https://huggingface.co/blog/quanto-diffusers) to learn more. For an exhaustive list of resources, check out [this gist](https://gist.github.com/sayakpaul/b664605caf0aa3bf8585ab109dd5ac9c).
|
||||
|
||||
```python
|
||||
import torch
|
||||
|
||||
@@ -28,11 +28,8 @@ This model was contributed by [takuma104](https://huggingface.co/takuma104). ❤
|
||||
|
||||
The original codebase can be found at [lllyasviel/ControlNet](https://github.com/lllyasviel/ControlNet), and you can find official ControlNet checkpoints on [lllyasviel's](https://huggingface.co/lllyasviel) Hub profile.
|
||||
|
||||
<Tip>
|
||||
|
||||
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
|
||||
|
||||
</Tip>
|
||||
> [!TIP]
|
||||
> Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
|
||||
|
||||
## StableDiffusionControlNetPipeline
|
||||
[[autodoc]] StableDiffusionControlNetPipeline
|
||||
|
||||
@@ -44,11 +44,8 @@ XLabs ControlNets are also supported, which was contributed by the [XLabs team](
|
||||
| HED | [The XLabs Team](https://huggingface.co/XLabs-AI) | [Link](https://huggingface.co/XLabs-AI/flux-controlnet-hed-diffusers) |
|
||||
|
||||
|
||||
<Tip>
|
||||
|
||||
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
|
||||
|
||||
</Tip>
|
||||
> [!TIP]
|
||||
> Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
|
||||
|
||||
## FluxControlNetPipeline
|
||||
[[autodoc]] FluxControlNetPipeline
|
||||
|
||||
@@ -24,11 +24,8 @@ The abstract from the paper is:
|
||||
|
||||
This code is implemented by Tencent Hunyuan Team. You can find pre-trained checkpoints for Hunyuan-DiT ControlNets on [Tencent Hunyuan](https://huggingface.co/Tencent-Hunyuan).
|
||||
|
||||
<Tip>
|
||||
|
||||
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
|
||||
|
||||
</Tip>
|
||||
> [!TIP]
|
||||
> Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
|
||||
|
||||
## HunyuanDiTControlNetPipeline
|
||||
[[autodoc]] HunyuanDiTControlNetPipeline
|
||||
|
||||
@@ -38,11 +38,8 @@ This controlnet code is mainly implemented by [The InstantX Team](https://huggin
|
||||
| Inpainting | [The AlimamaCreative Team](https://huggingface.co/alimama-creative) | [link](https://huggingface.co/alimama-creative/SD3-Controlnet-Inpainting) |
|
||||
|
||||
|
||||
<Tip>
|
||||
|
||||
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
|
||||
|
||||
</Tip>
|
||||
> [!TIP]
|
||||
> Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
|
||||
|
||||
## StableDiffusion3ControlNetPipeline
|
||||
[[autodoc]] StableDiffusion3ControlNetPipeline
|
||||
|
||||
@@ -26,19 +26,13 @@ The abstract from the paper is:
|
||||
|
||||
You can find additional smaller Stable Diffusion XL (SDXL) ControlNet checkpoints from the 🤗 [Diffusers](https://huggingface.co/diffusers) Hub organization, and browse [community-trained](https://huggingface.co/models?other=stable-diffusion-xl&other=controlnet) checkpoints on the Hub.
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
🧪 Many of the SDXL ControlNet checkpoints are experimental, and there is a lot of room for improvement. Feel free to open an [Issue](https://github.com/huggingface/diffusers/issues/new/choose) and leave us feedback on how we can improve!
|
||||
|
||||
</Tip>
|
||||
> [!WARNING]
|
||||
> 🧪 Many of the SDXL ControlNet checkpoints are experimental, and there is a lot of room for improvement. Feel free to open an [Issue](https://github.com/huggingface/diffusers/issues/new/choose) and leave us feedback on how we can improve!
|
||||
|
||||
If you don't see a checkpoint you're interested in, you can train your own SDXL ControlNet with our [training script](../../../../../examples/controlnet/README_sdxl).
|
||||
|
||||
<Tip>
|
||||
|
||||
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
|
||||
|
||||
</Tip>
|
||||
> [!TIP]
|
||||
> Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
|
||||
|
||||
## StableDiffusionXLControlNetPipeline
|
||||
[[autodoc]] StableDiffusionXLControlNetPipeline
|
||||
|
||||
@@ -31,11 +31,8 @@ Here's the overview from the [project page](https://vislearn.github.io/ControlNe
|
||||
|
||||
This model was contributed by [UmerHA](https://twitter.com/UmerHAdil). ❤️
|
||||
|
||||
<Tip>
|
||||
|
||||
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
|
||||
|
||||
</Tip>
|
||||
> [!TIP]
|
||||
> Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
|
||||
|
||||
## StableDiffusionControlNetXSPipeline
|
||||
[[autodoc]] StableDiffusionControlNetXSPipeline
|
||||
|
||||
@@ -27,17 +27,11 @@ Here's the overview from the [project page](https://vislearn.github.io/ControlNe
|
||||
|
||||
This model was contributed by [UmerHA](https://twitter.com/UmerHAdil). ❤️
|
||||
|
||||
<Tip warning={true}>
|
||||
> [!WARNING]
|
||||
> 🧪 Many of the SDXL ControlNet checkpoints are experimental, and there is a lot of room for improvement. Feel free to open an [Issue](https://github.com/huggingface/diffusers/issues/new/choose) and leave us feedback on how we can improve!
|
||||
|
||||
🧪 Many of the SDXL ControlNet checkpoints are experimental, and there is a lot of room for improvement. Feel free to open an [Issue](https://github.com/huggingface/diffusers/issues/new/choose) and leave us feedback on how we can improve!
|
||||
|
||||
</Tip>
|
||||
|
||||
<Tip>
|
||||
|
||||
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
|
||||
|
||||
</Tip>
|
||||
> [!TIP]
|
||||
> Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
|
||||
|
||||
## StableDiffusionXLControlNetXSPipeline
|
||||
[[autodoc]] StableDiffusionXLControlNetXSPipeline
|
||||
|
||||
@@ -18,11 +18,8 @@
|
||||
|
||||
*Physical AI needs to be trained digitally first. It needs a digital twin of itself, the policy model, and a digital twin of the world, the world model. In this paper, we present the Cosmos World Foundation Model Platform to help developers build customized world models for their Physical AI setups. We position a world foundation model as a general-purpose world model that can be fine-tuned into customized world models for downstream applications. Our platform covers a video curation pipeline, pre-trained world foundation models, examples of post-training of pre-trained world foundation models, and video tokenizers. To help Physical AI builders solve the most critical problems of our society, we make our platform open-source and our models open-weight with permissive licenses available via https://github.com/NVIDIA/Cosmos.*
|
||||
|
||||
<Tip>
|
||||
|
||||
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
|
||||
|
||||
</Tip>
|
||||
> [!TIP]
|
||||
> Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
|
||||
|
||||
## Loading original format checkpoints
|
||||
|
||||
@@ -73,6 +70,12 @@ output.save("output.png")
|
||||
- all
|
||||
- __call__
|
||||
|
||||
## Cosmos2_5_PredictBasePipeline
|
||||
|
||||
[[autodoc]] Cosmos2_5_PredictBasePipeline
|
||||
- all
|
||||
- __call__
|
||||
|
||||
## CosmosPipelineOutput
|
||||
|
||||
[[autodoc]] pipelines.cosmos.pipeline_output.CosmosPipelineOutput
|
||||
|
||||
@@ -20,11 +20,8 @@ specific language governing permissions and limitations under the License.
|
||||
Dance Diffusion is the first in a suite of generative audio tools for producers and musicians released by [Harmonai](https://github.com/Harmonai-org).
|
||||
|
||||
|
||||
<Tip>
|
||||
|
||||
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
|
||||
|
||||
</Tip>
|
||||
> [!TIP]
|
||||
> Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
|
||||
|
||||
## DanceDiffusionPipeline
|
||||
[[autodoc]] DanceDiffusionPipeline
|
||||
|
||||
@@ -20,11 +20,8 @@ The abstract from the paper is:
|
||||
|
||||
The original codebase can be found at [hohonathanho/diffusion](https://github.com/hojonathanho/diffusion).
|
||||
|
||||
<Tip>
|
||||
|
||||
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
|
||||
|
||||
</Tip>
|
||||
> [!TIP]
|
||||
> Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
|
||||
|
||||
# DDPMPipeline
|
||||
[[autodoc]] DDPMPipeline
|
||||
|
||||
@@ -21,7 +21,7 @@ The abstract from the paper is:
|
||||
|
||||
*Image generation has recently seen tremendous advances, with diffusion models allowing to synthesize convincing images for a large variety of text prompts. In this article, we propose DiffEdit, a method to take advantage of text-conditioned diffusion models for the task of semantic image editing, where the goal is to edit an image based on a text query. Semantic image editing is an extension of image generation, with the additional constraint that the generated image should be as similar as possible to a given input image. Current editing methods based on diffusion models usually require to provide a mask, making the task much easier by treating it as a conditional inpainting task. In contrast, our main contribution is able to automatically generate a mask highlighting regions of the input image that need to be edited, by contrasting predictions of a diffusion model conditioned on different text prompts. Moreover, we rely on latent inference to preserve content in those regions of interest and show excellent synergies with mask-based diffusion. DiffEdit achieves state-of-the-art editing performance on ImageNet. In addition, we evaluate semantic image editing in more challenging settings, using images from the COCO dataset as well as text-based generated images.*
|
||||
|
||||
The original codebase can be found at [Xiang-cd/DiffEdit-stable-diffusion](https://github.com/Xiang-cd/DiffEdit-stable-diffusion), and you can try it out in this [demo](https://blog.problemsolversguild.com/technical/research/2022/11/02/DiffEdit-Implementation.html).
|
||||
The original codebase can be found at [Xiang-cd/DiffEdit-stable-diffusion](https://github.com/Xiang-cd/DiffEdit-stable-diffusion), and you can try it out in this [demo](https://blog.problemsolversguild.com/posts/2022-11-02-diffedit-implementation.html).
|
||||
|
||||
This pipeline was contributed by [clarencechen](https://github.com/clarencechen). ❤️
|
||||
|
||||
|
||||
@@ -20,11 +20,8 @@ The abstract from the paper is:
|
||||
|
||||
The original codebase can be found at [facebookresearch/dit](https://github.com/facebookresearch/dit).
|
||||
|
||||
<Tip>
|
||||
|
||||
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
|
||||
|
||||
</Tip>
|
||||
> [!TIP]
|
||||
> Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
|
||||
|
||||
## DiTPipeline
|
||||
[[autodoc]] DiTPipeline
|
||||
|
||||
@@ -21,13 +21,10 @@ Flux is a series of text-to-image generation models based on diffusion transform
|
||||
|
||||
Original model checkpoints for Flux can be found [here](https://huggingface.co/black-forest-labs). Original inference code can be found [here](https://github.com/black-forest-labs/flux).
|
||||
|
||||
<Tip>
|
||||
|
||||
Flux can be quite expensive to run on consumer hardware devices. However, you can perform a suite of optimizations to run it faster and in a more memory-friendly manner. Check out [this section](https://huggingface.co/blog/sd3#memory-optimizations-for-sd3) for more details. Additionally, Flux can benefit from quantization for memory efficiency with a trade-off in inference latency. Refer to [this blog post](https://huggingface.co/blog/quanto-diffusers) to learn more. For an exhaustive list of resources, check out [this gist](https://gist.github.com/sayakpaul/b664605caf0aa3bf8585ab109dd5ac9c).
|
||||
|
||||
[Caching](../../optimization/cache) may also speed up inference by storing and reusing intermediate outputs.
|
||||
|
||||
</Tip>
|
||||
> [!TIP]
|
||||
> Flux can be quite expensive to run on consumer hardware devices. However, you can perform a suite of optimizations to run it faster and in a more memory-friendly manner. Check out [this section](https://huggingface.co/blog/sd3#memory-optimizations-for-sd3) for more details. Additionally, Flux can benefit from quantization for memory efficiency with a trade-off in inference latency. Refer to [this blog post](https://huggingface.co/blog/quanto-diffusers) to learn more. For an exhaustive list of resources, check out [this gist](https://gist.github.com/sayakpaul/b664605caf0aa3bf8585ab109dd5ac9c).
|
||||
>
|
||||
> [Caching](../../optimization/cache) may also speed up inference by storing and reusing intermediate outputs.
|
||||
|
||||
Flux comes in the following variants:
|
||||
|
||||
@@ -420,11 +417,8 @@ When unloading the Control LoRA weights, call `pipe.unload_lora_weights(reset_to
|
||||
|
||||
## IP-Adapter
|
||||
|
||||
<Tip>
|
||||
|
||||
Check out [IP-Adapter](../../../using-diffusers/ip_adapter) to learn more about how IP-Adapters work.
|
||||
|
||||
</Tip>
|
||||
> [!TIP]
|
||||
> Check out [IP-Adapter](../../using-diffusers/ip_adapter) to learn more about how IP-Adapters work.
|
||||
|
||||
An IP-Adapter lets you prompt Flux with images, in addition to the text prompt. This is especially useful when describing complex concepts that are difficult to articulate through text alone and you have reference images.
|
||||
|
||||
@@ -604,9 +598,8 @@ image.save("flux.png")
|
||||
|
||||
The `FluxTransformer2DModel` supports loading checkpoints in the original format shipped by Black Forest Labs. This is also useful when trying to load finetunes or quantized versions of the models that have been published by the community.
|
||||
|
||||
<Tip>
|
||||
`FP8` inference can be brittle depending on the GPU type, CUDA version, and `torch` version that you are using. It is recommended that you use the `optimum-quanto` library in order to run FP8 inference on your machine.
|
||||
</Tip>
|
||||
> [!TIP]
|
||||
> `FP8` inference can be brittle depending on the GPU type, CUDA version, and `torch` version that you are using. It is recommended that you use the `optimum-quanto` library in order to run FP8 inference on your machine.
|
||||
|
||||
The following example demonstrates how to run Flux with less than 16GB of VRAM.
|
||||
|
||||
|
||||
45
docs/source/en/api/pipelines/flux2.md
Normal file
45
docs/source/en/api/pipelines/flux2.md
Normal file
@@ -0,0 +1,45 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# Flux2
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
|
||||
<img alt="MPS" src="https://img.shields.io/badge/MPS-000000?style=flat&logo=apple&logoColor=white%22">
|
||||
</div>
|
||||
|
||||
Flux.2 is the recent series of image generation models from Black Forest Labs, preceded by the [Flux.1](./flux.md) series. It is an entirely new model with a new architecture and pre-training done from scratch!
|
||||
|
||||
Original model checkpoints for Flux can be found [here](https://huggingface.co/black-forest-labs). Original inference code can be found [here](https://github.com/black-forest-labs/flux2).
|
||||
|
||||
> [!TIP]
|
||||
> Flux2 can be quite expensive to run on consumer hardware devices. However, you can perform a suite of optimizations to run it faster and in a more memory-friendly manner. Check out [this section](https://huggingface.co/blog/sd3#memory-optimizations-for-sd3) for more details. Additionally, Flux can benefit from quantization for memory efficiency with a trade-off in inference latency. Refer to [this blog post](https://huggingface.co/blog/quanto-diffusers) to learn more.
|
||||
>
|
||||
> [Caching](../../optimization/cache) may also speed up inference by storing and reusing intermediate outputs.
|
||||
|
||||
## Caption upsampling
|
||||
|
||||
Flux.2 can potentially generate better better outputs with better prompts. We can "upsample"
|
||||
an input prompt by setting the `caption_upsample_temperature` argument in the pipeline call arguments.
|
||||
The [official implementation](https://github.com/black-forest-labs/flux2/blob/5a5d316b1b42f6b59a8c9194b77c8256be848432/src/flux2/text_encoder.py#L140) recommends this value to be 0.15.
|
||||
|
||||
## Flux2Pipeline
|
||||
|
||||
[[autodoc]] Flux2Pipeline
|
||||
- all
|
||||
- __call__
|
||||
|
||||
## Flux2KleinPipeline
|
||||
|
||||
[[autodoc]] Flux2KleinPipeline
|
||||
- all
|
||||
- __call__
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user