mirror of
https://github.com/huggingface/diffusers.git
synced 2025-12-06 20:44:33 +08:00
Compare commits
4 Commits
v0.26.0-re
...
v0.10.2
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
0ca172407d | ||
|
|
315f37674b | ||
|
|
ea96fa686e | ||
|
|
b9b344e58a |
@@ -17,6 +17,7 @@ from accelerate.utils import set_seed
|
||||
from diffusers import AutoencoderKL, DDPMScheduler, DiffusionPipeline, UNet2DConditionModel
|
||||
from diffusers.optimization import get_scheduler
|
||||
from diffusers.utils import check_min_version
|
||||
from diffusers.utils.import_utils import is_xformers_available
|
||||
from huggingface_hub import HfFolder, Repository, whoami
|
||||
from PIL import Image
|
||||
from torchvision import transforms
|
||||
@@ -488,6 +489,15 @@ def main(args):
|
||||
revision=args.revision,
|
||||
)
|
||||
|
||||
if is_xformers_available():
|
||||
try:
|
||||
unet.enable_xformers_memory_efficient_attention(True)
|
||||
except Exception as e:
|
||||
logger.warning(
|
||||
"Could not enable memory efficient attention. Make sure xformers is installed"
|
||||
f" correctly and a GPU is available: {e}"
|
||||
)
|
||||
|
||||
vae.requires_grad_(False)
|
||||
if not args.train_text_encoder:
|
||||
text_encoder.requires_grad_(False)
|
||||
|
||||
@@ -18,6 +18,7 @@ from datasets import load_dataset
|
||||
from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionPipeline, UNet2DConditionModel
|
||||
from diffusers.optimization import get_scheduler
|
||||
from diffusers.utils import check_min_version
|
||||
from diffusers.utils.import_utils import is_xformers_available
|
||||
from huggingface_hub import HfFolder, Repository, whoami
|
||||
from torchvision import transforms
|
||||
from tqdm.auto import tqdm
|
||||
@@ -364,6 +365,15 @@ def main():
|
||||
revision=args.revision,
|
||||
)
|
||||
|
||||
if is_xformers_available():
|
||||
try:
|
||||
unet.enable_xformers_memory_efficient_attention(True)
|
||||
except Exception as e:
|
||||
logger.warning(
|
||||
"Could not enable memory efficient attention. Make sure xformers is installed"
|
||||
f" correctly and a GPU is available: {e}"
|
||||
)
|
||||
|
||||
# Freeze vae and text_encoder
|
||||
vae.requires_grad_(False)
|
||||
text_encoder.requires_grad_(False)
|
||||
|
||||
@@ -20,6 +20,7 @@ from diffusers import AutoencoderKL, DDPMScheduler, PNDMScheduler, StableDiffusi
|
||||
from diffusers.optimization import get_scheduler
|
||||
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
|
||||
from diffusers.utils import check_min_version
|
||||
from diffusers.utils.import_utils import is_xformers_available
|
||||
from huggingface_hub import HfFolder, Repository, whoami
|
||||
|
||||
# TODO: remove and import from diffusers.utils when the new version of diffusers is released
|
||||
@@ -439,6 +440,15 @@ def main():
|
||||
revision=args.revision,
|
||||
)
|
||||
|
||||
if is_xformers_available():
|
||||
try:
|
||||
unet.enable_xformers_memory_efficient_attention(True)
|
||||
except Exception as e:
|
||||
logger.warning(
|
||||
"Could not enable memory efficient attention. Make sure xformers is installed"
|
||||
f" correctly and a GPU is available: {e}"
|
||||
)
|
||||
|
||||
# Resize the token embeddings as we are adding new special tokens to the tokenizer
|
||||
text_encoder.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
|
||||
2
setup.py
2
setup.py
@@ -218,7 +218,7 @@ install_requires = [
|
||||
|
||||
setup(
|
||||
name="diffusers",
|
||||
version="0.10.0", # expected format is one of x.y.z.dev0, or x.y.z.rc1 or x.y.z (no to dashes, yes to dots)
|
||||
version="0.10.2", # expected format is one of x.y.z.dev0, or x.y.z.rc1 or x.y.z (no to dashes, yes to dots)
|
||||
description="Diffusers",
|
||||
long_description=open("README.md", "r", encoding="utf-8").read(),
|
||||
long_description_content_type="text/markdown",
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
__version__ = "0.10.0"
|
||||
__version__ = "0.10.2"
|
||||
|
||||
from .configuration_utils import ConfigMixin
|
||||
from .onnx_utils import OnnxRuntimeModel
|
||||
@@ -18,18 +18,6 @@ from .utils import (
|
||||
)
|
||||
|
||||
|
||||
# Make sure `transformers` is up to date
|
||||
if is_transformers_available():
|
||||
import transformers
|
||||
|
||||
if is_transformers_version("<", "4.25.1"):
|
||||
raise ImportError(
|
||||
f"`diffusers` requires transformers >= 4.25.1 to function correctly, but {transformers.__version__} was"
|
||||
" found in your environment. You can upgrade it with pip: `pip install transformers --upgrade`"
|
||||
)
|
||||
else:
|
||||
pass
|
||||
|
||||
try:
|
||||
if not is_torch_available():
|
||||
raise OptionalDependencyNotAvailable()
|
||||
|
||||
@@ -188,6 +188,39 @@ class ModelMixin(torch.nn.Module):
|
||||
if self._supports_gradient_checkpointing:
|
||||
self.apply(partial(self._set_gradient_checkpointing, value=False))
|
||||
|
||||
def set_use_memory_efficient_attention_xformers(self, valid: bool) -> None:
|
||||
# Recursively walk through all the children.
|
||||
# Any children which exposes the set_use_memory_efficient_attention_xformers method
|
||||
# gets the message
|
||||
def fn_recursive_set_mem_eff(module: torch.nn.Module):
|
||||
if hasattr(module, "set_use_memory_efficient_attention_xformers"):
|
||||
module.set_use_memory_efficient_attention_xformers(valid)
|
||||
|
||||
for child in module.children():
|
||||
fn_recursive_set_mem_eff(child)
|
||||
|
||||
for module in self.children():
|
||||
if isinstance(module, torch.nn.Module):
|
||||
fn_recursive_set_mem_eff(module)
|
||||
|
||||
def enable_xformers_memory_efficient_attention(self):
|
||||
r"""
|
||||
Enable memory efficient attention as implemented in xformers.
|
||||
|
||||
When this option is enabled, you should observe lower GPU memory usage and a potential speed up at inference
|
||||
time. Speed up at training time is not guaranteed.
|
||||
|
||||
Warning: When Memory Efficient Attention and Sliced attention are both enabled, the Memory Efficient Attention
|
||||
is used.
|
||||
"""
|
||||
self.set_use_memory_efficient_attention_xformers(True)
|
||||
|
||||
def disable_xformers_memory_efficient_attention(self):
|
||||
r"""
|
||||
Disable memory efficient attention as implemented in xformers.
|
||||
"""
|
||||
self.set_use_memory_efficient_attention_xformers(False)
|
||||
|
||||
def save_pretrained(
|
||||
self,
|
||||
save_directory: Union[str, os.PathLike],
|
||||
|
||||
@@ -12,7 +12,6 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import math
|
||||
import warnings
|
||||
from dataclasses import dataclass
|
||||
from typing import Optional
|
||||
|
||||
@@ -447,16 +446,6 @@ class BasicTransformerBlock(nn.Module):
|
||||
# 3. Feed-forward
|
||||
self.norm3 = nn.LayerNorm(dim)
|
||||
|
||||
# if xformers is installed try to use memory_efficient_attention by default
|
||||
if is_xformers_available():
|
||||
try:
|
||||
self.set_use_memory_efficient_attention_xformers(True)
|
||||
except Exception as e:
|
||||
warnings.warn(
|
||||
"Could not enable memory efficient attention. Make sure xformers is installed"
|
||||
f" correctly and a GPU is available: {e}"
|
||||
)
|
||||
|
||||
def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
|
||||
if not is_xformers_available():
|
||||
print("Here is how to install it")
|
||||
|
||||
@@ -46,7 +46,7 @@ if is_transformers_available() and is_torch_available():
|
||||
from .safety_checker import StableDiffusionSafetyChecker
|
||||
|
||||
try:
|
||||
if not (is_transformers_available() and is_torch_available()):
|
||||
if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")):
|
||||
raise OptionalDependencyNotAvailable()
|
||||
except OptionalDependencyNotAvailable:
|
||||
from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline
|
||||
|
||||
@@ -7,7 +7,7 @@ from ...utils import (
|
||||
|
||||
|
||||
try:
|
||||
if not (is_transformers_available() and is_torch_available()):
|
||||
if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")):
|
||||
raise OptionalDependencyNotAvailable()
|
||||
except OptionalDependencyNotAvailable:
|
||||
from ...utils.dummy_torch_and_transformers_objects import (
|
||||
|
||||
@@ -354,7 +354,20 @@ def requires_backends(obj, backends):
|
||||
if failed:
|
||||
raise ImportError("".join(failed))
|
||||
|
||||
if name in ["StableDiffusionDepth2ImgPipeline"] and is_transformers_version("<", "4.26.0.dev0"):
|
||||
if name in [
|
||||
"VersatileDiffusionTextToImagePipeline",
|
||||
"VersatileDiffusionPipeline",
|
||||
"VersatileDiffusionDualGuidedPipeline",
|
||||
"StableDiffusionImageVariationPipeline",
|
||||
] and is_transformers_version("<", "4.25.0"):
|
||||
raise ImportError(
|
||||
f"You need to install `transformers>=4.25` in order to use {name}: \n```\n pip install"
|
||||
" --upgrade transformers \n```"
|
||||
)
|
||||
|
||||
if name in [
|
||||
"StableDiffusionDepth2ImgPipeline",
|
||||
] and is_transformers_version("<", "4.26.0.dev0"):
|
||||
raise ImportError(
|
||||
f"You need to install `transformers` from 'main' in order to use {name}: \n```\n pip install"
|
||||
" git+https://github.com/huggingface/transformers \n```"
|
||||
|
||||
@@ -30,6 +30,7 @@ from diffusers.utils import (
|
||||
torch_all_close,
|
||||
torch_device,
|
||||
)
|
||||
from diffusers.utils.import_utils import is_xformers_available
|
||||
from parameterized import parameterized
|
||||
|
||||
from ..test_modeling_common import ModelTesterMixin
|
||||
@@ -255,6 +256,20 @@ class UNet2DConditionModelTests(ModelTesterMixin, unittest.TestCase):
|
||||
inputs_dict = self.dummy_input
|
||||
return init_dict, inputs_dict
|
||||
|
||||
@unittest.skipIf(
|
||||
torch_device != "cuda" or not is_xformers_available(),
|
||||
reason="XFormers attention is only available with CUDA and `xformers` installed",
|
||||
)
|
||||
def test_xformers_enable_works(self):
|
||||
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
||||
model = self.model_class(**init_dict)
|
||||
|
||||
model.enable_xformers_memory_efficient_attention()
|
||||
|
||||
assert (
|
||||
model.mid_block.attentions[0].transformer_blocks[0].attn1._use_memory_efficient_attention_xformers
|
||||
), "xformers is not enabled"
|
||||
|
||||
@unittest.skipIf(torch_device == "mps", "Gradient checkpointing skipped on MPS")
|
||||
def test_gradient_checkpointing(self):
|
||||
# enable deterministic behavior for gradient checkpointing
|
||||
|
||||
Reference in New Issue
Block a user