Compare commits

...

4 Commits

Author SHA1 Message Date
anton-
0ca172407d Patch release: v0.10.2 2022-12-09 18:31:44 +01:00
Patrick von Platen
315f37674b do not automatically enable xformers (#1640)
* do not automatically enable xformers

* uP
2022-12-09 18:30:36 +01:00
Anton Lozhkov
ea96fa686e Adapt to forced transformers version in some dependent libraries (#1638)
* Adapt to forced transformers version in some dependent libraries

* style

* Update __init__.py

* update requires_backends
2022-12-09 18:01:43 +01:00
Patrick von Platen
b9b344e58a Re-add xformers enable to UNet2DCondition (#1627)
* finish

* fix

* Update tests/models/test_models_unet_2d.py

* style

Co-authored-by: Anton Lozhkov <anton@huggingface.co>
2022-12-09 18:00:18 +01:00
11 changed files with 96 additions and 28 deletions

View File

@@ -17,6 +17,7 @@ from accelerate.utils import set_seed
from diffusers import AutoencoderKL, DDPMScheduler, DiffusionPipeline, UNet2DConditionModel
from diffusers.optimization import get_scheduler
from diffusers.utils import check_min_version
from diffusers.utils.import_utils import is_xformers_available
from huggingface_hub import HfFolder, Repository, whoami
from PIL import Image
from torchvision import transforms
@@ -488,6 +489,15 @@ def main(args):
revision=args.revision,
)
if is_xformers_available():
try:
unet.enable_xformers_memory_efficient_attention(True)
except Exception as e:
logger.warning(
"Could not enable memory efficient attention. Make sure xformers is installed"
f" correctly and a GPU is available: {e}"
)
vae.requires_grad_(False)
if not args.train_text_encoder:
text_encoder.requires_grad_(False)

View File

@@ -18,6 +18,7 @@ from datasets import load_dataset
from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionPipeline, UNet2DConditionModel
from diffusers.optimization import get_scheduler
from diffusers.utils import check_min_version
from diffusers.utils.import_utils import is_xformers_available
from huggingface_hub import HfFolder, Repository, whoami
from torchvision import transforms
from tqdm.auto import tqdm
@@ -364,6 +365,15 @@ def main():
revision=args.revision,
)
if is_xformers_available():
try:
unet.enable_xformers_memory_efficient_attention(True)
except Exception as e:
logger.warning(
"Could not enable memory efficient attention. Make sure xformers is installed"
f" correctly and a GPU is available: {e}"
)
# Freeze vae and text_encoder
vae.requires_grad_(False)
text_encoder.requires_grad_(False)

View File

@@ -20,6 +20,7 @@ from diffusers import AutoencoderKL, DDPMScheduler, PNDMScheduler, StableDiffusi
from diffusers.optimization import get_scheduler
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
from diffusers.utils import check_min_version
from diffusers.utils.import_utils import is_xformers_available
from huggingface_hub import HfFolder, Repository, whoami
# TODO: remove and import from diffusers.utils when the new version of diffusers is released
@@ -439,6 +440,15 @@ def main():
revision=args.revision,
)
if is_xformers_available():
try:
unet.enable_xformers_memory_efficient_attention(True)
except Exception as e:
logger.warning(
"Could not enable memory efficient attention. Make sure xformers is installed"
f" correctly and a GPU is available: {e}"
)
# Resize the token embeddings as we are adding new special tokens to the tokenizer
text_encoder.resize_token_embeddings(len(tokenizer))

View File

@@ -218,7 +218,7 @@ install_requires = [
setup(
name="diffusers",
version="0.10.0", # expected format is one of x.y.z.dev0, or x.y.z.rc1 or x.y.z (no to dashes, yes to dots)
version="0.10.2", # expected format is one of x.y.z.dev0, or x.y.z.rc1 or x.y.z (no to dashes, yes to dots)
description="Diffusers",
long_description=open("README.md", "r", encoding="utf-8").read(),
long_description_content_type="text/markdown",

View File

@@ -1,4 +1,4 @@
__version__ = "0.10.0"
__version__ = "0.10.2"
from .configuration_utils import ConfigMixin
from .onnx_utils import OnnxRuntimeModel
@@ -18,18 +18,6 @@ from .utils import (
)
# Make sure `transformers` is up to date
if is_transformers_available():
import transformers
if is_transformers_version("<", "4.25.1"):
raise ImportError(
f"`diffusers` requires transformers >= 4.25.1 to function correctly, but {transformers.__version__} was"
" found in your environment. You can upgrade it with pip: `pip install transformers --upgrade`"
)
else:
pass
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()

View File

@@ -188,6 +188,39 @@ class ModelMixin(torch.nn.Module):
if self._supports_gradient_checkpointing:
self.apply(partial(self._set_gradient_checkpointing, value=False))
def set_use_memory_efficient_attention_xformers(self, valid: bool) -> None:
# Recursively walk through all the children.
# Any children which exposes the set_use_memory_efficient_attention_xformers method
# gets the message
def fn_recursive_set_mem_eff(module: torch.nn.Module):
if hasattr(module, "set_use_memory_efficient_attention_xformers"):
module.set_use_memory_efficient_attention_xformers(valid)
for child in module.children():
fn_recursive_set_mem_eff(child)
for module in self.children():
if isinstance(module, torch.nn.Module):
fn_recursive_set_mem_eff(module)
def enable_xformers_memory_efficient_attention(self):
r"""
Enable memory efficient attention as implemented in xformers.
When this option is enabled, you should observe lower GPU memory usage and a potential speed up at inference
time. Speed up at training time is not guaranteed.
Warning: When Memory Efficient Attention and Sliced attention are both enabled, the Memory Efficient Attention
is used.
"""
self.set_use_memory_efficient_attention_xformers(True)
def disable_xformers_memory_efficient_attention(self):
r"""
Disable memory efficient attention as implemented in xformers.
"""
self.set_use_memory_efficient_attention_xformers(False)
def save_pretrained(
self,
save_directory: Union[str, os.PathLike],

View File

@@ -12,7 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import warnings
from dataclasses import dataclass
from typing import Optional
@@ -447,16 +446,6 @@ class BasicTransformerBlock(nn.Module):
# 3. Feed-forward
self.norm3 = nn.LayerNorm(dim)
# if xformers is installed try to use memory_efficient_attention by default
if is_xformers_available():
try:
self.set_use_memory_efficient_attention_xformers(True)
except Exception as e:
warnings.warn(
"Could not enable memory efficient attention. Make sure xformers is installed"
f" correctly and a GPU is available: {e}"
)
def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
if not is_xformers_available():
print("Here is how to install it")

View File

@@ -46,7 +46,7 @@ if is_transformers_available() and is_torch_available():
from .safety_checker import StableDiffusionSafetyChecker
try:
if not (is_transformers_available() and is_torch_available()):
if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline

View File

@@ -7,7 +7,7 @@ from ...utils import (
try:
if not (is_transformers_available() and is_torch_available()):
if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import (

View File

@@ -354,7 +354,20 @@ def requires_backends(obj, backends):
if failed:
raise ImportError("".join(failed))
if name in ["StableDiffusionDepth2ImgPipeline"] and is_transformers_version("<", "4.26.0.dev0"):
if name in [
"VersatileDiffusionTextToImagePipeline",
"VersatileDiffusionPipeline",
"VersatileDiffusionDualGuidedPipeline",
"StableDiffusionImageVariationPipeline",
] and is_transformers_version("<", "4.25.0"):
raise ImportError(
f"You need to install `transformers>=4.25` in order to use {name}: \n```\n pip install"
" --upgrade transformers \n```"
)
if name in [
"StableDiffusionDepth2ImgPipeline",
] and is_transformers_version("<", "4.26.0.dev0"):
raise ImportError(
f"You need to install `transformers` from 'main' in order to use {name}: \n```\n pip install"
" git+https://github.com/huggingface/transformers \n```"

View File

@@ -30,6 +30,7 @@ from diffusers.utils import (
torch_all_close,
torch_device,
)
from diffusers.utils.import_utils import is_xformers_available
from parameterized import parameterized
from ..test_modeling_common import ModelTesterMixin
@@ -255,6 +256,20 @@ class UNet2DConditionModelTests(ModelTesterMixin, unittest.TestCase):
inputs_dict = self.dummy_input
return init_dict, inputs_dict
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available(),
reason="XFormers attention is only available with CUDA and `xformers` installed",
)
def test_xformers_enable_works(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
model.enable_xformers_memory_efficient_attention()
assert (
model.mid_block.attentions[0].transformer_blocks[0].attn1._use_memory_efficient_attention_xformers
), "xformers is not enabled"
@unittest.skipIf(torch_device == "mps", "Gradient checkpointing skipped on MPS")
def test_gradient_checkpointing(self):
# enable deterministic behavior for gradient checkpointing