Compare commits

..

299 Commits

Author SHA1 Message Date
Patrick von Platen
b2c1e0d6d4 Release: v0.13.0 2023-02-17 23:38:05 +02:00
Will Berman
bfdffbea32 add xformers 0.0.16 warning message (#2345)
* add xformers 0.0.16 warning message

* fix version check to check whole version string
2023-02-17 13:25:46 -08:00
YiYi Xu
770d3b3c29 add index page (#2401)
* add index page

* update

---------

Co-authored-by: yiyixuxu <yixu@yis-macbook-pro.lan>
2023-02-17 22:24:16 +01:00
Pedro Cuenca
780b3a4f8c Fix typo in AttnProcessor2_0 symbol (#2404)
Fix typo in AttnProcessor2_0 symbol.
2023-02-17 22:21:18 +02:00
Will Berman
07547dfacd controlling generation doc nits (#2406)
controlling generation docs fixes
2023-02-17 22:20:53 +02:00
Will Berman
5979089713 Revert "Release: v0.13.0" (#2405)
This reverts commit 024c4376fb.
2023-02-17 10:48:16 -08:00
Patrick von Platen
024c4376fb Release: v0.13.0 2023-02-17 18:46:00 +02:00
daquexian
0866e85e76 apply_forward_hook simply returns if no accelerate (#2387)
Signed-off-by: daquexian <daquexian566@gmail.com>
2023-02-17 17:27:23 +01:00
Will Berman
d2e2c611bc controlling generation docs (#2388)
* controlling generation docs

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* up

* up

* uP

* up

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-02-17 17:20:37 +01:00
Amiruddin Nagri
b6b73d97b4 Fixing typos in documentation (#2389)
Fixing typos in outgoing links
2023-02-17 16:42:59 +01:00
Omer Bar Tal
38de964343 add MultiDiffusionPanorama pipeline (#2393)
* add MultiDiffusionPanorama pipeline

* fix docs naming

* update pipeline name, remove redundant tests

* apply styling.

* debugging information.

* fix: assertion values.

* fix-copies.

* update docs

* update docs

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-02-17 16:39:50 +01:00
Patrick von Platen
14b950705a Add ddim inversion pix2pix (#2397)
* add

* finish

* add tests

* add tests

* up

* up

* pull from main

* uP

* Apply suggestions from code review

* finish

* Update docs/source/en/_toctree.yml

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* finish

* clean docs

* next

* next

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* up

* up

---------

Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2023-02-17 16:27:51 +01:00
Manuel Brack
01a80807de Add semantic guidance pipeline (#2223)
* Add semantic guidance pipeline

* Fix style

* Refactor Pipeline

* Pipeline documentation

* Add documentation

* Fix style and quality

* Fix doctree

* Add tests for SEGA

* Update src/diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Make compatible with half precision

* Change deprecation warning to throw an exception

* update

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-02-17 15:54:15 +01:00
patil-suraj
291ecdacd3 quikc doc fix 2023-02-17 15:45:54 +01:00
patil-suraj
350a510335 fix docs 2023-02-17 15:25:55 +01:00
Sayak Paul
867a217d14 add: inversion to pix2pix zero docs. (#2398)
* add: inversion to pix2pix zero docs.

* add: comment to emphasize the use of flan to generate.

* more nits.
2023-02-17 14:51:58 +01:00
Suraj Patil
0c0bb085e1 Torch2.0 scaled_dot_product_attention processor (#2303)
* add sdpa processor

* don't use it by default

* add some checks and style

* typo

* support torch sdpa in dreambooth example

* use torch attn proc by default when available

* typo

* add attn mask

* fix naming

* being doc

* doc

* Apply suggestions from code review

* polish

* torctree

* Apply suggestions from code review

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* better name

* style

* add benchamrk table

* Update docs/source/en/optimization/torch2.0.mdx

* up

* fix example

* check if processor is None

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* add fp32 benchmakr

* Apply suggestions from code review

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2023-02-17 14:22:26 +01:00
Sayak Paul
c5fa13aa0d [Pipelines] Add a section on generating captions and embeddings for Pix2Pix Zero (#2395)
* add: section on generating embeddings.

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* apply changes from code review.

---------

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2023-02-17 13:21:21 +01:00
Pedro Cuenca
351b37ea73 Fix UniPC tests and remove some test warnings (#2396)
* Change solver_type to match the previous tests.

* Prevent warnings about scale_model_inputs

* Prevent console log about division by zero.
2023-02-17 13:20:20 +01:00
Patrick von Platen
2e0d489a4e [Pix2Pix] Add utility function (#2385)
* [Pix2Pix] Add utility function

* improve

* update

* Apply suggestions from code review

* uP

* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_pix2pix_zero.py
2023-02-17 10:49:00 +01:00
Sayak Paul
abd5dcbbf1 [Pix2Pix Zero] Fix slow tests (#2391)
* fix: slow tests.

* retrieving the slices.

* fix: assertion.

* debugging.

* debugging.

* debugging

* debugging.

* debugging

* debugging.

* debugging.

* debugging

* debugging

* change debugging.

* change debugging.

* fix: tests for pix2pix zero.
2023-02-17 10:35:50 +01:00
Wenliang Zhao
d45bb937ab [Docs] Fix UniPC docs (#2386)
* fix typos in the doc

* restyle the code
2023-02-17 08:10:56 +02:00
Tianlei Wu
568b73fdf8 Fix stable diffusion onnx pipeline error when batch_size > 1 (#2366)
fix safety_checker for batch_size > 1
2023-02-16 23:57:33 +01:00
Patrick von Platen
8e1cae5d66 Revert "[Pix2Pix0] Add utility function to get edit vector" (#2384)
Revert "[Pix2Pix0] Add utility function to get edit vector (#2383)"

This reverts commit 857c04cfba.
2023-02-16 23:00:27 +01:00
Patrick von Platen
857c04cfba [Pix2Pix0] Add utility function to get edit vector (#2383)
uP
2023-02-16 22:59:53 +01:00
YiYi Xu
2e7a28652a Attend and excite 2 (#2369)
* attend and excite pipeline

* update

update docstring example

remove visualization

remove the base class attention control

remove dependency on stable diffusion pipeline

always apply gaussian filter with default setting

remove run_standard_sd argument

hardcode attention_res and scale_range (related to step size)

Update docs/source/en/api/pipelines/stable_diffusion/attend_and_excite.mdx

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_attend_and_excite.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_attend_and_excite.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_attend_and_excite.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_attend_and_excite.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_attend_and_excite.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_attend_and_excite.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

Update tests/pipelines/stable_diffusion_2/test_stable_diffusion_attend_and_excite.py

Co-authored-by: Will Berman <wlbberman@gmail.com>

Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_attend_and_excite.py

Co-authored-by: Will Berman <wlbberman@gmail.com>

Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_attend_and_excite.py

Co-authored-by: Will Berman <wlbberman@gmail.com>

revert test_float16_inference

revert change to the batch related tests

fix test_float16_inference

handle batch

remove the deprecation message

remove None check, step_size

remove debugging logging

add slow test

indices_to_alter -> indices

add check_input

* skip mps

* style

* Apply suggestions from code review

Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* indices -> token_indices
---------

Co-authored-by: evin <evinpinarornek@gmail.com>
Co-authored-by: yiyixuxu <yixu310@gmail,com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-02-16 11:15:54 -10:00
Patrick von Platen
f243282e3e [Dummy imports] Add missing if else statements for SD] (#2381)
* [Dummy imports] Add missing if else statements for SD]

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

---------

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2023-02-16 21:53:07 +01:00
Patrick von Platen
ca980fd0d1 [Examples] Make sure EMA works with any device (#2382)
* Fix EMA

* up

* update
2023-02-16 21:27:47 +01:00
Pedro Cuenca
a60f5555f5 Make diffusers importable with transformers < 4.26 (#2380) 2023-02-16 20:17:33 +01:00
Patrick von Platen
90a624f697 improve tests 2023-02-16 20:42:00 +02:00
fxmarty
d32e9391f9 Replace torch.concat calls by torch.cat (#2378)
replace torch.concat by torch.cat
2023-02-16 19:36:33 +01:00
Wenliang Zhao
aaaec06487 add the UniPC scheduler (#2373)
* add UniPC scheduler

* add the return type to the functions

* code quality check

* add tests

* finish docs

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-02-16 19:19:06 +01:00
Pedro Cuenca
2777264ee8 enable_model_cpu_offload (#2285)
* enable_model_offload PoC

It's surprisingly more involved than expected, see comments in the PR.

* Rename final_offload_hook

* Invoke the vae forward hook manually.

* Completely remove decoder.

* Style

* apply_forward_hook decorator

* Rename method.

* Style

* Copy enable_model_cpu_offload

* Fix copies.

* Remove comment.

* Fix copies

* Missing import

* Fix doc-builder style.

* Merge main and fix again.

* Add docs

* Fix docs.

* Add a couple of tests.

* style
2023-02-16 19:06:36 +01:00
Sayak Paul
6eaebe8278 [Utils] Adds store() and restore() methods to EMAModel (#2302)
* add store and restore() methods to EMAModel.

* Update src/diffusers/training_utils.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* make style with doc builder

* remove explicit listing.

* Apply suggestions from code review

Co-authored-by: Will Berman <wlbberman@gmail.com>

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* chore: better variable naming.

* better treatment of temp_stored_params

Co-authored-by: patil-suraj <surajp815@gmail.com>

* make style

* remove temporary params from earth 🌎

* make fix-copies.

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Will Berman <wlbberman@gmail.com>
Co-authored-by: patil-suraj <surajp815@gmail.com>
2023-02-16 15:20:25 +01:00
Will Berman
b214bb25f8 train_text_to_image EMAModel saving (#2341) 2023-02-16 14:40:28 +01:00
Suraj Patil
de9ce9e936 [SchedulingPNDM ] reset cur_model_output after each call (#2376)
reset cur_model_output
2023-02-16 14:38:42 +01:00
Susung Hong
fa35750d3b Add Self-Attention-Guided (SAG) Stable Diffusion pipeline (#2193)
* Add Stable Diffusion Sw/ elf-Attention Guidance

* Modify __init__.py

* Register attention storing processor

* Update pipeline_stable_diffusion_sag.py

* Editing default value

* Update pipeline_stable_diffusion_sag.py

* Update pipeline_stable_diffusion_sag.py

* Update pipeline_stable_diffusion_sag.py

* Update dummy_torch_and_transformers_objects.py

* Update pipeline_stable_diffusion_sag.py

* Update pipeline_stable_diffusion_sag.py

* Update pipeline_stable_diffusion_sag.py

* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_sag.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update pipeline_stable_diffusion_sag.py

* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_sag.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_sag.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_sag.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_sag.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_sag.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_sag.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_sag.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_sag.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_sag.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_sag.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update pipeline_stable_diffusion_sag.py

* Update pipeline_stable_diffusion_sag.py

* Update pipeline_stable_diffusion_sag.py

* Update pipeline_stable_diffusion_sag.py

* Create test_stable_diffusion_sag.py

* Create self_attention_guidance.py

* Update pipeline_stable_diffusion_sag.py

* Update test_stable_diffusion_sag.py

* Update pipeline_stable_diffusion_sag.py

* Rename self_attention_guidance.py to self_attention_guidance.mdx

* Update self_attention_guidance.mdx

* Update self_attention_guidance.mdx

* Update _toctree.yml

* Update pipeline_stable_diffusion_sag.py

* Update pipeline_stable_diffusion_sag.py

* Update pipeline_stable_diffusion_sag.py

* Update pipeline_stable_diffusion_sag.py

* Fixing order

* Update pipeline_stable_diffusion_sag.py

* fixing import order

* fix order

* Update pipeline_stable_diffusion_sag.py

* Update pipeline_stable_diffusion_sag.py

* Naming change

* Noting pred_x0

* Adding some fast tests

* Update pipeline_stable_diffusion_sag.py

* Update test_stable_diffusion_sag.py

* Update test_stable_diffusion_sag.py

* Update test_stable_diffusion_sag.py

* Update docs/source/en/api/pipelines/stable_diffusion/self_attention_guidance.mdx

* implement gaussian_blur

* Update pipeline_stable_diffusion_sag.py

* Update pipeline_stable_diffusion_sag.py

* fix tests

* Update pipeline_stable_diffusion_sag.py

* Update pipeline_stable_diffusion_sag.py

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Will Berman <wlbberman@gmail.com>
2023-02-16 13:04:49 +01:00
Sayak Paul
fd3d5502d4 [Pipelines] Adds pix2pix zero (#2334)
* add: support for BLIP generation.

* add: support for editing synthetic images.

* remove unnecessary comments.

* add inits and run make fix-copies.

* version change of diffusers.

* fix: condition for loading the captioner.

* default conditions_input_image to False.

* guidance_amount -> cross_attention_guidance_amount

* fix inputs to check_inputs()

* fix: attribute.

* fix: prepare_attention_mask() call.

* debugging.

* better placement of references.

* remove torch.no_grad() decorations.

* put torch.no_grad() context before the first denoising loop.

* detach() latents before decoding them.

* put deocding in a torch.no_grad() context.

* add reconstructed image for debugging.

* no_grad(0

* apply formatting.

* address one-off suggestions from the draft PR.

* back to torch.no_grad() and add more elaborate comments.

* refactor prepare_unet() per Patrick's suggestions.

* more elaborate description for .

* formatting.

* add docstrings to the methods specific to pix2pix zero.

* suspecting a redundant noise prediction.

* needed for gradient computation chain.

* less hacks.

* fix: attention mask handling within the processor.

* remove attention reference map computation.

* fix: cross attn args.

* fix: prcoessor.

* store attention maps.

* fix: attention processor.

* update docs and better treatment to xa args.

* update the final noise computation call.

* change xa args call.

* remove xa args option from the pipeline.

* add: docs.

* first test.

* fix: url call.

* fix: argument call.

* remove image conditioning for now.

* 🚨 add: fast tests.

* explicit placement of the xa attn weights.

* add: slow tests 🐢

* fix: tests.

* edited direction embedding should be on the same device as prompt_embeds.

* debugging message.

* debugging.

* add pix2pix zero pipeline for a non-deterministic test.

* debugging/

* remove debugging message.

* make caption generation _

* address comments (part I).

* address PR comments (part II)

* fix: DDPM test assertion.

* refactor doc.

* address PR comments (part III).

* fix: type annotation for the scheduler.

* apply styling.

* skip_mps and add note on embeddings in the docs.
2023-02-16 11:20:38 +01:00
Patrick von Platen
e5810e686e [Variant] Add "variant" as input kwarg so to have better UX when downloading no_ema or fp16 weights (#2305)
* [Variant] Add variant loading mechanism

* clean

* improve further

* up

* add tests

* add some first tests

* up

* up

* use path splittetx

* add deprecate

* deprecation warnings

* improve docs

* up

* up

* up

* fix tests

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* correct code format

* fix warning

* finish

* Apply suggestions from code review

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Apply suggestions from code review

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Update docs/source/en/using-diffusers/loading.mdx

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Apply suggestions from code review

Co-authored-by: Will Berman <wlbberman@gmail.com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>

* correct loading docs

* finish

---------

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Will Berman <wlbberman@gmail.com>
2023-02-16 11:02:58 +01:00
Damian Stewart
e3ddbe25ed Fix 3-way merging with the checkpoint_merger community pipeline (#2355)
correctly locate 3rd file; also correct misleading docs
2023-02-16 10:52:41 +01:00
Will Berman
46def7265f checkpointing_steps_total_limit->checkpoints_total_limit (#2374) 2023-02-16 00:28:58 -08:00
Will Berman
296b01e1a1 add total number checkpoints to training scripts (#2367)
* add total number checkpoints to training scripts

* Update examples/dreambooth/train_dreambooth.py

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-02-15 23:58:06 -08:00
Will Berman
a3ae46610f schedulers add glide noising schedule (#2347) 2023-02-15 23:51:33 -08:00
meg
c613288c9b Funky spacing issue (#2368)
There isn't a space between the "Scope" paragraph and "Ethical Guidelines", here: https://huggingface.co/docs/diffusers/main/en/conceptual/ethical_guidelines , yet I can't see that in the preview. In this PR, I'm simply adding some spaces in the hopes that it resolves the issue.....
2023-02-15 17:36:31 -08:00
Patrick von Platen
4c52982a0b [Tests] Add MPS skip decorator (#2362)
* finish

* Apply suggestions from code review

* fix indent and import error in test_stable_diffusion_depth

---------

Co-authored-by: William Berman <WLBberman@gmail.com>
2023-02-15 22:17:25 +01:00
Will Berman
2a49fac864 KarrasDiffusionSchedulers type note (#2365) 2023-02-15 12:37:56 -08:00
Kashif Rasul
51b61b69c5 [Docs] initial docs about KarrasDiffusionSchedulers (#2349)
* initial docs about KarrasDiffusionSchedulers

* typo

* grammer

* Update docs/source/en/api/schedulers/overview.mdx

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* do not list the schedulers explicitly

---------

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2023-02-15 10:19:57 -08:00
Patrick von Platen
666d80a1c8 fix some tests 2023-02-15 10:22:06 +00:00
Patrick von Platen
91925fbb76 Fix callback type hints - no optional function argument (#2357)
replace type hints
2023-02-14 14:35:05 -08:00
Ben Evans
0db19da01f Log Unconditional Image Generation Samples to W&B (#2287)
* Log Unconditional Image Generation Samples to WandB

* Check for wandb installation and parity between onnxruntime script

* Log epoch to wandb

* Check for tensorboard logger early on

* style fixes

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-02-14 23:11:12 +01:00
Will Berman
62b3c9e06a unCLIP variant (#2297)
* pipeline_variant

* Add docs for when clip_stats_path is specified

* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* prepare_latents # Copied from re: @patrickvonplaten

* NoiseAugmentor->ImageNormalizer

* stable_unclip_prior default to None re: @patrickvonplaten

* prepare_prior_extra_step_kwargs

* prior denoising scale model input

* {DDIM,DDPM}Scheduler -> KarrasDiffusionSchedulers re: @patrickvonplaten

* docs

* Update docs/source/en/api/pipelines/stable_unclip.mdx

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-02-14 11:28:57 -08:00
Will Berman
e55687e1e1 unet check length inputs (#2327)
* unet check length input

* prep test file for changes

* correct all tests

* clean up

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-02-13 16:25:50 -08:00
Will Berman
9e8ee2ace1 dreambooth checkpointing tests and docs (#2339) 2023-02-13 14:16:32 -08:00
Will Berman
6782b70dd3 github issue forum link (#2335)
* github issue forum link

* Update .github/ISSUE_TEMPLATE/config.yml

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-02-13 11:21:14 -08:00
Will Berman
f190714e77 karlo image variation use kakaobrain upload (#2338) 2023-02-13 10:53:33 -08:00
Patrick von Platen
6cbd7b8b27 [Tests] Remove unnecessary tests (#2337) 2023-02-13 18:27:41 +01:00
Patrick von Platen
bc0cee9d1c [Latent Upscaling] Remove unused noise (#2298) 2023-02-13 18:06:26 +01:00
Patrick von Platen
1f5f17c5b4 [Versatile Diffusion] Fix tests (#2336) 2023-02-13 18:04:50 +01:00
Patrick von Platen
98c1a8e793 [Docs] Fix ethical guidelines docs (#2333) 2023-02-13 14:15:53 +01:00
Plat
0850b88fa1 Fix typo in load_pipeline_from_original_stable_diffusion_ckpt() method (#2320)
fix typo
2023-02-13 12:26:56 +01:00
bddppq
5d4f59ee96 Fix running LoRA with xformers (#2286)
* Fix running LoRA with xformers

* support disabling xformers

* reformat

* Add test
2023-02-13 11:58:18 +01:00
Giada Pistilli
f2eae16849 Add ethical guidelines (#2330)
* add ethical guidelines

* update file name

* edit file name

* update toctree

* Update docs/source/en/conceptual/ethical_guidelines.mdx

* Update docs/source/en/conceptual/ethical_guidelines.mdx

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-02-13 10:43:40 +01:00
Patrick von Platen
120844aadf [Tests] Refactor push tests (#2329)
* [Tests] Refactor push tests

* correct
2023-02-13 10:06:11 +01:00
Naga Sai Abhinay
a688c7bdfb [Community Pipeline] UnCLIP Text Interpolation Pipeline (#2257)
* UnCLIP Text Interpolation Pipeline

* Formatter fixes

* Changes based on feedback

* Formatting fix

* Formatting fix

* isort formatting fix(?)

* Remove duplicate code

* Formatting fix

* Refactor __call__ and change example in readme.

* Update examples/community/unclip_text_interpolation.py

Refactor to linter formatting

Co-authored-by: Will Berman <wlbberman@gmail.com>

---------

Co-authored-by: Will Berman <wlbberman@gmail.com>
2023-02-12 22:16:18 -08:00
Will Berman
1e7f965442 convert ckpt script docstring fixes (#2293)
* convert ckpt script docstring fixes

* Update src/diffusers/pipelines/stable_diffusion/convert_from_ckpt.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update src/diffusers/pipelines/stable_diffusion/convert_from_ckpt.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

---------

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2023-02-10 13:57:49 -08:00
Will Berman
beb59abfa0 remove ddpm test_full_inference (#2291)
* remove ddpm test_full_inference

* style
2023-02-10 13:51:07 -08:00
Patrick von Platen
96c2279bcd Correct fast tests (#2314)
* correct some

* Apply suggestions from code review

* correct

* Update tests/pipelines/altdiffusion/test_alt_diffusion_img2img.py

* Final
2023-02-10 14:12:34 +01:00
Patrick von Platen
716286f19d Fast CPU tests should also run on main (#2313)
add fast tests
2023-02-10 12:46:01 +01:00
Patrick von Platen
e83b43612b make style 2023-02-10 13:07:46 +02:00
erkams
1be7df0205 [LoRA] Freezing the model weights (#2245)
* [LoRA] Freezing the model weights

Freeze the model weights since we don't need to calculate grads for them.

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Apply suggestions from code review

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
2023-02-09 11:45:11 +01:00
Patrick von Platen
62a15cec6e make style 2023-02-09 12:27:44 +02:00
Ben Evans
f3c848383a Run same number of DDPM steps in inference as training (#2263)
Resolves ValueError: `num_inference_steps`: 1000 cannot be larger than `self.config.train_timesteps`: 50 as the unet model trained with this scheduler can only handle maximal 50 timesteps.
2023-02-09 10:36:38 +01:00
Will Berman
fd5c3c09af misc fixes (#2282)
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-02-08 09:02:42 -08:00
Patrick von Platen
648090e26e fix pix2pix docs (#2290) 2023-02-08 16:38:18 +01:00
Patrick von Platen
1ed6b77781 [Examples] Test all examples on CPU (#2289)
* [Examples] Test all examples on CPU

* add

* correct

* Apply suggestions from code review
2023-02-08 15:59:13 +01:00
Chenguo Lin
9d0d070996 EMA: fix state_dict() and load_state_dict() & add cur_decay_value (#2146)
* EMA: fix `state_dict()` & add `cur_decay_value`

* EMA: fix a bug in `load_state_dict()`

'float' object (`state_dict["power"]`) has no attribute 'get'.

* del train_unconditional_ort.py
2023-02-08 10:44:50 +01:00
Isamu Isozaki
c1971a53bc Textual inv save log memory (#2184)
* Quality check and adding tokenizer

* Adapted stable diffusion to mixed precision+finished up style fixes

* Fixed based on patrick's review

* Fixed oom from number of validation images

* Removed unnecessary np.array conversion

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-02-08 10:37:10 +01:00
Patrick von Platen
41db2dbf90 correct tests 2023-02-08 11:12:51 +02:00
Patrick von Platen
a7ca03aa85 Replace flake8 with ruff and update black (#2279)
* before running make style

* remove left overs from flake8

* finish

* make fix-copies

* final fix

* more fixes
2023-02-07 23:46:23 +01:00
Patrick von Platen
f5ccffecf7 Use accelerate save & loading hooks to have better checkpoint structure (#2048)
* better accelerated saving

* up

* finish

* finish

* uP

* up

* up

* fix

* Apply suggestions from code review

* correct ema

* Remove @

* up

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update docs/source/en/training/dreambooth.mdx

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

---------

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2023-02-07 20:03:59 +01:00
Pedro Cuenca
e619db24be mps cross-attention hack: don't crash on fp16 (#2258)
* mps cross-attention hack: don't crash on fp16

* Make conversion explicit.
2023-02-07 19:51:33 +01:00
wfng92
111228cb39 Fix torchvision.transforms and transforms function naming clash (#2274)
* Fix torchvision.transforms and transforms function naming clash

* Update unconditional script for onnx

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2023-02-07 17:36:32 +01:00
Patrick von Platen
bbb46ad3d5 [Tests] Fix slow tests (#2271) 2023-02-07 14:42:12 +01:00
wfng92
b1dad2e9d3 Make center crop and random flip as args for unconditional image generation (#2259)
* Add center crop and horizontal flip to args

* Update command to use center crop and random flip

* Add center crop and horizontal flip to args

* Update command to use center crop and random flip
2023-02-07 11:58:31 +01:00
Patrick von Platen
cd52475560 [Examples] Remove datasets important that is not needed (#2267)
* [Examples] Remove datasets important that is not needed

* remove from lora tambien
2023-02-07 11:55:34 +01:00
Patrick von Platen
0f04e799dc fix vae pt script 2023-02-07 08:34:19 +00:00
YiYi Xu
1051ca81a6 Stable Diffusion Latent Upscaler (#2059)
* Modify UNet2DConditionModel

- allow skipping mid_block

- adding a norm_group_size argument so that we can set the `num_groups` for group norm using `num_channels//norm_group_size`

- allow user to set dimension for the timestep embedding (`time_embed_dim`)

- the kernel_size for `conv_in` and `conv_out` is now configurable

- add random fourier feature layer (`GaussianFourierProjection`) for `time_proj`

- allow user to add the time and class embeddings before passing through the projection layer together - `time_embedding(t_emb + class_label))`

- added 2 arguments `attn1_types` and `attn2_types`

  * currently we have argument `only_cross_attention`: when it's set to `True`, we will have a to the
`BasicTransformerBlock` block with 2 cross-attention , otherwise we
get a self-attention followed by a cross-attention; in k-upscaler, we need to have blocks that include just one cross-attention, or self-attention -> cross-attention;
so I added `attn1_types` and `attn2_types` to the unet's argument list to allow user specify the attention types for the 2 positions in each block;  note that I stil kept
the `only_cross_attention` argument for unet for easy configuration, but it will be converted to `attn1_type` and `attn2_type` when passing down to the down blocks

- the position of downsample layer and upsample layer is now configurable

- in k-upscaler unet, there is only one skip connection per each up/down block (instead of each layer in stable diffusion unet), added `skip_freq = "block"` to support
this use case

- if user passes attention_mask to unet, it will prepare the mask and pass a flag to cross attention processer to skip the `prepare_attention_mask` step
inside cross attention block

add up/down blocks for k-upscaler

modify CrossAttention class

- make the `dropout` layer in `to_out` optional

- `use_conv_proj` - use conv instead of linear for all projection layers (i.e. `to_q`, `to_k`, `to_v`, `to_out`) whenever possible. note that when it's used to do cross
attention, to_k, to_v has to be linear because the `encoder_hidden_states` is not 2d

- `cross_attention_norm` - add an optional layernorm on encoder_hidden_states

- `attention_dropout`: add an optional dropout on attention score

adapt BasicTransformerBlock

- add an ada groupnorm layer  to conditioning attention input with timestep embedding

- allow skipping the FeedForward layer in between the attentions

- replaced the only_cross_attention argument with attn1_type and attn2_type for more flexible configuration

update timestep embedding: add new act_fn  gelu and an optional act_2

modified ResnetBlock2D

- refactored with AdaGroupNorm class (the timestep scale shift normalization)

- add `mid_channel` argument - allow the first conv to have a different output dimension from the second conv

- add option to use input AdaGroupNorm on the input instead of groupnorm

- add options to add a dropout layer after each conv

- allow user to set the bias in conv_shortcut (needed for k-upscaler)

- add gelu

adding conversion script for k-upscaler unet

add pipeline

* fix attention mask

* fix a typo

* fix a bug

* make sure model can be used with GPU

* make pipeline work with fp16

* fix an error in BasicTransfomerBlock

* make style

* fix typo

* some more fixes

* uP

* up

* correct more

* some clean-up

* clean time proj

* up

* uP

* more changes

* remove the upcast_attention=True from unet config

* remove attn1_types, attn2_types etc

* fix

* revert incorrect changes up/down samplers

* make style

* remove outdated files

* Apply suggestions from code review

* attention refactor

* refactor cross attention

* Apply suggestions from code review

* update

* up

* update

* Apply suggestions from code review

* finish

* Update src/diffusers/models/cross_attention.py

* more fixes

* up

* up

* up

* finish

* more corrections of conversion state

* act_2 -> act_2_fn

* remove dropout_after_conv from ResnetBlock2D

* make style

* simplify KAttentionBlock

* add fast test for latent upscaler pipeline

* add slow test

* slow test fp16

* make style

* add doc string for pipeline_stable_diffusion_latent_upscale

* add api doc page for latent upscaler pipeline

* deprecate attention mask

* clean up embeddings

* simplify resnet

* up

* clean up resnet

* up

* correct more

* up

* up

* improve a bit more

* correct more

* more clean-ups

* Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* add docstrings for new unet config

* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* # Copied from

* encode the image if not latent

* remove force casting vae to fp32

* fix

* add comments about preconditioning parameters from k-diffusion paper

* attn1_type, attn2_type -> add_self_attention

* clean up get_down_block and get_up_block

* fix

* fixed a typo(?) in ada group norm

* update slice attention processer for cross attention

* update slice

* fix fast test

* update the checkpoint

* finish tests

* fix-copies

* fix-copy for modeling_text_unet.py

* make style

* make style

* fix f-string

* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* fix import

* correct changes

* fix resnet

* make fix-copies

* correct euler scheduler

* add missing #copied from for preprocess

* revert

* fix

* fix copies

* Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update src/diffusers/models/cross_attention.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* clean up conversion script

* KDownsample2d,KUpsample2d -> KDownsample2D,KUpsample2D

* more

* Update src/diffusers/models/unet_2d_condition.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* remove prepare_extra_step_kwargs

* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* fix a typo in timestep embedding

* remove num_image_per_prompt

* fix fasttest

* make style + fix-copies

* fix

* fix xformer test

* fix style

* doc string

* make style

* fix-copies

* docstring for time_embedding_norm

* make style

* final finishes

* make fix-copies

* fix tests

---------

Co-authored-by: yiyixuxu <yixu@yis-macbook-pro.lan>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2023-02-07 09:11:57 +01:00
Patrick von Platen
3b66cc0fc1 make style 2023-02-07 08:11:22 +00:00
chavinlo
717a956a02 Create convert_vae_pt_to_diffusers.py (#2215)
* Create convert_vae_pt_to_diffusers.py

Just a simple script to convert VAE.pt files to diffusers format
Tested with: https://huggingface.co/WarriorMama777/OrangeMixs/blob/main/VAEs/orangemix.vae.pt

* Update convert_vae_pt_to_diffusers.py

Forgot to add the function call

* make style

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: chavinlo <example@example.com>
2023-02-07 09:10:34 +01:00
Jorge C. Gomes
d43972ae71 Fixes prompt input checks in StableDiffusion img2img pipeline (#2206)
* Fixes prompt input checks in img2img

Allows providing prompt_embeds instead of the prompt, which is not currently possible as the first check fails.
This becomes the same as the function found in 8267c78445/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py (L393)

* Continues the fix

This also needs to be fixed. Becomes consistent with 8267c78445/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py (L558)

I've now tested this implementation, and it produces the expected results.
2023-02-07 09:10:24 +01:00
Fazzie-Maqianli
ffed2420c4 fix distributed init twice (#2252)
fix colossalai dreambooth
2023-02-07 08:55:39 +01:00
Pedro Cuenca
8178c840f2 Mention training problems with xFormers 0.0.16 (#2254) 2023-02-06 11:19:26 +01:00
nickkolok
3a0d3da66f Fix a typo: bfloa16 -> bfloat16 (#2243) 2023-02-06 09:14:08 +01:00
psychedelicious
22c1ba56c2 Fix k_dpm_2 & k_dpm_2_a on MPS (#2241)
Needed to convert `timesteps` to `float32` a bit sooner.

Fixes #1537
2023-02-05 23:45:15 +01:00
Pedro Cuenca
7386e7730c Show error when loading safety_checker from_flax (#2187)
* Show error when loading safety_checker `from_flax`

* fix style
2023-02-04 20:55:11 +01:00
Pedro Cuenca
154a7865fc [Flax DDPM] Make key optional so default pipelines don't fail (#2176)
Make `key` optional so default pipelines don't fail.
2023-02-04 20:45:20 +01:00
Robin Hutmacher
9baa29e9c0 Fix typo in StableDiffusionInpaintPipeline (#2197)
* Fix typo in StableDiffusionInpaintPipeline

* Add embedded prompt handling

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-02-03 19:03:15 +01:00
Jorge C. Gomes
58c416ab0c Fixes LoRAXFormersCrossAttnProcessor (#2207)
Related to #2124 
The current implementation is throwing a shape mismatch error. Which makes sense, as this line is obviously missing, comparing to XFormersCrossAttnProcessor and LoRACrossAttnProcessor.

I don't have formal tests, but I compared `LoRACrossAttnProcessor` and `LoRAXFormersCrossAttnProcessor` ad-hoc, and they produce the same results with this fix.
2023-02-03 18:10:48 +01:00
Isamu Isozaki
d46d78c584 Hotfix textual inv logging (#2183) 2023-02-03 18:08:46 +01:00
Patrick von Platen
05168e5d83 make style 2023-02-03 19:03:13 +02:00
Justin Merrell
948022e1e8 fix: flagged_images implementation (#1947)
Flagged images would be set to the blank image instead of the original image that contained the NSF concept for optional viewing.

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-02-03 18:02:56 +01:00
Patrick von Platen
2f9a70aa85 [LoRA] Make sure validation works in multi GPU setup (#2172)
* [LoRA] Make sure validation works in multi GPU setup

* more fixes

* up
2023-02-03 16:50:10 +01:00
Sayak Paul
e43e206dc7 removes ~s in favor of full-fledged links. (#2229)
remove ~ in favor of full-fledged links.
2023-02-03 20:18:39 +05:30
Will Berman
99c39b4012 [nit] negative_prompt typo (#2227)
* negative_prompt typo

* fix
2023-02-03 14:05:50 +01:00
dymil
7547f9b475 Fix timestep dtype in legacy inpaint (#2120)
* Fix timestep dtype in legacy inpaint

This matches the structure in the text2img, img2img, and inpaint ONNX pipelines

* Fix style in dtype patch
2023-02-03 13:04:21 +01:00
Prathik Rao
a87e87fcbe refactor onnxruntime integration (#2042)
* refactor onnxruntime integration

* fix requirements.txt bug

* make style

* add support for textual_inversion

* make style

* add readme

* cleanup README files

* 1/27/2023 update to training scripts

* make style

* 1/30 update to train_unconditional

* style with black-22.8.0

---------

Co-authored-by: Prathik Rao <prathikrao@microsoft.com>
Co-authored-by: anton- <anton@huggingface.co>
2023-02-03 12:04:59 +01:00
Dudu Moshe
ecadcdefe1 [Bug] scheduling_ddpm: fix variance in the case of learned_range type. (#2090)
scheduling_ddpm: fix variance in the case of learned_range type.

In the case of learned_range variance type, there are missing logs
and exponent comparing to the theory (see "Improved Denoising Diffusion
Probabilistic Models" section 3.1 equation 15:
https://arxiv.org/pdf/2102.09672.pdf).
2023-02-03 09:42:42 +01:00
Pedro Cuenca
2bbd532990 Docs: short section on changing the scheduler in Flax (#2181)
* Short doc on changing the scheduler in Flax.

* Apply fix from @patil-suraj

Co-authored-by: Suraj Patil <surajp815@gmail.com>

---------

Co-authored-by: Suraj Patil <surajp815@gmail.com>
2023-02-02 18:52:21 +01:00
Adalberto
68ef0666e2 Create train_dreambooth_inpaint_lora.py (#2205)
* Create train_dreambooth_inpaint_lora.py

* Update train_dreambooth_inpaint_lora.py

* Update train_dreambooth_inpaint_lora.py

* Update train_dreambooth_inpaint_lora.py

* Update train_dreambooth_inpaint_lora.py
2023-02-02 13:15:15 +01:00
Kashif Rasul
7ac95703cd add CITATION.cff (#2211)
add citation.cff
2023-02-02 12:46:44 +01:00
Pedro Cuenca
3816c9ad9f Update xFormers docs (#2208)
Update xFormers docs.
2023-02-01 19:56:32 +01:00
Patrick von Platen
8267c78445 [Loading] Better error message on missing keys (#2198)
* up

* finish
2023-02-01 14:22:39 +01:00
Muyang Li
4fc7084875 Fix a dimension bug in Transform2d (#2144)
The dimension does not match when `inner_dim` is not equal to `in_channels`.
2023-02-01 10:11:45 +01:00
Sayak Paul
9213d81bd0 add: guide on kerascv conversion tool. (#2169)
* add: guide on kerascv conversion tool.

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: Kashif Rasul <kashif.rasul@gmail.com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>

* address additional suggestions from review.

* change links to documentation-images.

* add separate links for training and inference goodies from diffusers.

* address Patrick's comments.

---------

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: Kashif Rasul <kashif.rasul@gmail.com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
2023-02-01 09:41:00 +01:00
Asad Memon
dd3cae3327 Pass LoRA rank to LoRALinearLayer (#2191) 2023-02-01 09:40:02 +01:00
Patrick von Platen
f73d0b6bec [Docs] remove license (#2188) 2023-01-31 22:11:32 +01:00
Patrick von Platen
d0d7ffffbd [Docs] Add components to docs (#2175) 2023-01-31 22:11:14 +01:00
Abhishek Varma
87cf88ed3d Use requests instead of wget in convert_from_ckpt.py (#2168)
-- This commit adopts `requests` in place of `wget` to fetch config `.yaml`
   files as part of `load_pipeline_from_original_stable_diffusion_ckpt` API.
-- This was done because in Windows PowerShell one needs to explicitly ensure
   that `wget` binary is part of the PATH variable. If not present, this leads
   to the code not being able to download the `.yaml` config file.

Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>
Co-authored-by: Abhishek Varma <abhishek@nod-labs.com>
2023-01-31 14:35:45 +01:00
Patrick von Platen
60d915fbed make style 2023-01-31 11:46:48 +00:00
1lint
d1efefe15e [Breaking change] fix legacy inpaint noise and resize mask tensor (#2147)
* fix legacy inpaint noise and resize mask tensor

* updated legacy inpaint pipe test expected_slice
2023-01-31 12:44:35 +01:00
Sayak Paul
7d96b38b70 [examples] Fix CLI argument in the launch script command for text2image with LoRA (#2171)
* Update README.md

* Update README.md
2023-01-31 09:47:09 +01:00
Dudu Moshe
cedafb8600 [Bug]: fix DDPM scheduler arbitrary infer steps count. (#2076)
scheduling_ddpm: fix evaluate with lower timesteps count than train.

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-01-31 09:13:26 +01:00
Patrick von Platen
69caa96472 fix slow test 2023-01-31 07:39:30 +00:00
hysts
da113364df Add instance prompt to model card of lora dreambooth example (#2112) 2023-01-31 08:14:25 +01:00
Pedro Cuenca
44f6bc81c7 Don't copy when unwrapping model (#2166)
* Don't copy when unwrapping model.

Otherwise an exception is raised when using fp16.

* Remove unused import
2023-01-30 20:18:20 +01:00
Pedro Cuenca
164b6e0532 Section on using LoRA alpha / scale (#2139)
* Section on using LoRA alpha / scale.

* Accept suggestion

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Clarify on merge.

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-01-30 14:14:46 +01:00
Patrick von Platen
a6610db7a8 [Design philosopy] Create official doc (#2140)
* finish more

* finish philosophy

* Apply suggestions from code review

Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: Will Berman <wlbberman@gmail.com>

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: Will Berman <wlbberman@gmail.com>
2023-01-30 09:27:37 +01:00
Pedro Cuenca
0b68101a13 [diffusers-cli] Fix typo in accelerate and transformers versions (#2154)
Fix typo in accelerate and transformers versions.
2023-01-30 09:04:45 +01:00
Ayan Das
125d783076 fix typo in EMAModel's load_state_dict() (#2151)
Possible typo introduced in 7c82a16fc1
2023-01-29 13:23:18 +01:00
Pedro Cuenca
fdf70cb54b Fix typo (#2138) 2023-01-27 20:08:56 +01:00
Nicolas Patry
20396e2bd2 Adding some safetensors docs. (#2122)
* Tmp.

* Adding more docs.

* Doc style.

* Remove the argument `use_safetensors=True`.

* doc-builder
2023-01-27 18:20:50 +01:00
Will Berman
2cf34e6db4 [from_pretrained] only load config one time (#2131) 2023-01-27 08:23:55 -08:00
Patrick von Platen
04ad948673 make style 2 - sorry 2023-01-27 16:54:40 +02:00
Patrick von Platen
97ef5e0665 make style 2023-01-27 16:52:04 +02:00
Patrick von Platen
31be42209d Don't call the Hub if local_files_only is specifiied (#2119)
Don't call the Hub if
2023-01-27 09:42:33 +02:00
RahulBhalley
43c5ac2be7 Typo fix: torwards -> towards (#2134) 2023-01-27 08:20:18 +01:00
Ji soo Kim
c750a82374 Fix typos in loaders.py (#2137)
Fix typo in loaders.py
2023-01-27 08:20:07 +01:00
Patrick von Platen
0c39f53cbb Allow lora from pipeline (#2129)
* [LoRA] All to use in inference with pipeline

* [LoRA] allow cross attention kwargs passed to pipeline

* finish
2023-01-27 08:19:46 +01:00
Will Berman
0a5948e7f4 remove redundant allow_patterns (#2130) 2023-01-26 13:22:28 -08:00
Patrick von Platen
f653ded7ed [LoRA] Make sure LoRA can be disabled after it's run (#2128) 2023-01-26 21:26:11 +01:00
Will Berman
e92d43feb0 [nit] torch_dtype used twice in doc string (#2126) 2023-01-26 11:19:20 -08:00
hysts
7436e30c72 Fix model card of LoRA (#2114)
Fix
2023-01-26 19:08:45 +01:00
Will Berman
14976500ed fuse attention mask (#2111)
* fuse attention mask

* lint

* use 0 beta when no attention mask re: @Birch-san
2023-01-26 08:36:07 -08:00
Cyberes
96af5bf7d9 Fix unable to save_pretrained when using pathlib (#1972)
* fix PosixPath is not JSON serializable

* use PosixPath

* forgot elif like a dummy
2023-01-26 16:53:34 +01:00
Patrick von Platen
bbc2a03052 [Import Utils] Fix naming (#2118) 2023-01-26 15:54:59 +01:00
Suraj Patil
1e216be895 make scaling factor a config arg of vae/vqvae (#1860)
* make scaling factor cnfig arg of vae

* fix

* make flake happy

* fix ldm

* fix upscaler

* qualirty

* Apply suggestions from code review

Co-authored-by: Anton Lozhkov <anton@huggingface.co>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* solve conflicts, addres some comments

* examples

* examples min version

* doc

* fix type

* typo

* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* remove duplicate line

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

Co-authored-by: Anton Lozhkov <anton@huggingface.co>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-01-26 14:37:19 +01:00
Pedro Cuenca
915a563611 Allow UNet2DModel to use arbitrary class embeddings (#2080)
* Allow `UNet2DModel` to use arbitrary class embeddings.

We can currently use class conditioning in `UNet2DConditionModel`, but
not in `UNet2DModel`. However, `UNet2DConditionModel` requires text
conditioning too, which is unrelated to other types of conditioning.
This commit makes it possible for `UNet2DModel` to be conditioned on
entities other than timesteps. This is useful for training /
research purposes. We can currently train models to perform
unconditional image generation or text-to-image generation, but it's not
straightforward to train a model to perform class-conditioned image
generation, if text conditioning is not required.

We could potentiall use `UNet2DConditionModel` for class-conditioning
without text embeddings by using down/up blocks without
cross-conditioning. However:
- The mid block currently requires cross attention.
- We are required to provide `encoder_hidden_states` to `forward`.

* Style

* Align class conditioning, add docstring for `num_class_embeds`.

* Copy docstring to versatile_diffusion UNetFlatConditionModel
2023-01-26 13:46:32 +01:00
Pedro Cuenca
0856137337 [textual inversion] Allow validation images (#2077)
* [textual inversion] Allow validation images.

* Change key to `validation`

* Specify format instead of transposing.

As discussed with @sayakpaul.

* Style

Co-authored-by: isamu-isozaki <isamu.website@gmail.com>
2023-01-26 09:20:03 +01:00
Suraj Patil
946d1cb200 [dreambooth] check the low-precision guard before preparing model (#2102)
check the dtype before preparing model
2023-01-25 11:06:33 -08:00
Patrick von Platen
09779cbb40 [Bump version] 0.13.0dev0 & Deprecate predict_epsilon (#2109)
* [Bump version] 0.13

* Bump model up

* up
2023-01-25 17:59:02 +01:00
Patrick von Platen
b0cc7c202b make style 2023-01-25 16:03:56 +02:00
Oren WANG
fb98acf03b [lora] Fix bug with training without validation (#2106) 2023-01-25 14:56:13 +01:00
Patrick von Platen
180841bbde Release: v0.12.0 2023-01-25 15:48:00 +02:00
Patrick von Platen
6ba2231d72 Reproducibility 3/3 (#1924)
* make tests deterministic

* run slow tests

* prepare for testing

* finish

* refactor

* add print statements

* finish more

* correct some test failures

* more fixes

* set up to correct tests

* more corrections

* up

* fix more

* more prints

* add

* up

* up

* up

* uP

* uP

* more fixes

* uP

* up

* up

* up

* up

* fix more

* up

* up

* clean tests

* up

* up

* up

* more fixes

* Apply suggestions from code review

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* make

* correct

* finish

* finish

Co-authored-by: Suraj Patil <surajp815@gmail.com>
2023-01-25 13:44:22 +01:00
Patrick von Platen
008c22d334 Improve transformers versions handling (#2104) 2023-01-25 12:50:54 +01:00
Patrick von Platen
b562b6611f Allow directly passing text embeddings to Stable Diffusion Pipeline for prompt weighting (#2071)
* add text embeds to sd

* add text embeds to sd

* finish tests

* finish

* finish

* make style

* fix tests

* make style

* make style

* up

* better docs

* fix

* fix

* new try

* up

* up

* finish
2023-01-25 12:29:49 +01:00
Sayak Paul
c1184918c5 [docs] Adds a doc on LoRA support for diffusers (#2086)
* add: a doc on LoRA support in diffusers.

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* apply PR suggestions.

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* remove visually incoherent elements.

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2023-01-25 12:23:12 +01:00
apolinario
263b968041 Add lora tag to the model tags (#2103)
* Add `lora` tag to the model tags

For lora training

* uP

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-01-25 12:17:59 +01:00
Suraj Patil
480d8846a9 [doc] update example for pix2pix (#2101)
update example for pix2pix
2023-01-25 11:22:09 +01:00
patil-suraj
9dbf78e2f1 Merge branch 'main' of https://github.com/huggingface/diffusers 2023-01-25 09:12:49 +01:00
patil-suraj
9aa6fcab60 fix docs for center_crop 2023-01-25 09:12:47 +01:00
Pedro Cuenca
f37d880f6a Remove wandb from text_to_image requirements.txt (#2092) 2023-01-25 08:54:14 +01:00
Will Berman
febaf86302 [docs] [dreambooth] note random crop (#2085)
* [docs] [dreambooth] note random crop

documenting default random crop behavior
2023-01-24 08:37:34 -08:00
Takuma Mori
16bb5058b9 xFormers attention op arg (#2049)
* allow passing op to xFormers attention

original code by @patil-suraj
huggingface/diffusers@ae0cc0b71f

* correct style by `make style`

* add attention_op arg documents

* add usage example to docstring

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* add usage example to docstring

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* code style correction by `make style`

* Update docstring code to a valid python example

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Update docstring code to a valid python example

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* style correction by `make style`

* Update code exmaple to fully functional

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
2023-01-24 17:26:04 +01:00
Lincoln Stein
7533e3d7e6 [Feat] checkpoint_merger works on local models as well as ones that use safetensors (#2060)
* allow a local model directory to be used for merging

* moved checkpoint merge bugfix into main for testing

* possibly fix local variable "config_dict" referenced before assignment

* fix deprecation warning

* debugging...

* debugging

* allow safetensors

* safetensors try again

* fix syntax error

* further debugging

* fix logic error when checkpoint 2 is none

* more debugging...

* more debuging...

* more debugging...

* more debugging...

* debugging

* clean up status reporting

* skip the requires_safety_checker boolean

* moved checkpoint merge bugfix into main for testing

* possibly fix local variable "config_dict" referenced before assignment

* fix deprecation warning

* allow safetensors

* fix logic error when checkpoint 2 is none

* clean up status reporting

* undo hack to use private repo for community pipelines

* allow a local model directory to be used for merging

* allow safetensors

* clean up status reporting

* reformatted with black

* sort imported modules correctly

* Update examples/community/checkpoint_merger.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update examples/community/checkpoint_merger.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update examples/community/checkpoint_merger.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* fix import style error

Co-authored-by: Lincoln Stein <lstein@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-01-24 16:35:17 +01:00
Yuta Hayashibe
418331094d Run inference on a specific condition and fix call of manual_seed() (#2074) 2023-01-24 14:19:22 +01:00
Suraj Patil
fc8afa3ab5 [dreambooth] fix multi on gpu. (#2088)
unwrap model on multi gpu
2023-01-24 13:23:56 +01:00
Pedro Cuenca
31336dae3b Fix resume epoch for all training scripts except textual_inversion (#2079) 2023-01-24 12:02:41 +01:00
Pedro Cuenca
0e98e83927 [lora] Log images when using tensorboard (#2078)
* [lora] Log images when using tensorboard.

* Specify image format instead of transposing.

As discussed with @sayakpaul.

* Style
2023-01-24 10:26:39 +01:00
Pedro Cuenca
f4dddaf5ee [textual_inversion] Fix resuming state when using gradient checkpointing (#2072)
* Fix resuming state when using gradient checkpointing.

Also, allow --resume_from_checkpoint to be used when the checkpoint does
not yet exist (a normal training run will be started).

* style
2023-01-24 10:25:41 +01:00
Patrick von Platen
7d8b4f7f8e [Paint by example] Fix cpu offload for paint by example (#2062)
* [Paint by example] Fix paint by example

* fix more

* final fix
2023-01-24 10:05:50 +01:00
Gleb Akhmerov
a66f2baeb7 Dreambooth: reduce VRAM usage (#2039)
* Dreambooth: use `optimizer.zero_grad(set_to_none=True)` to reduce VRAM usage

* Allow the user to control `optimizer.zero_grad(set_to_none=True)` with --set_grads_to_none

* Update Dreambooth readme

* Fix link in readme

* Fix header size in readme
2023-01-23 12:21:03 +01:00
Suraj Patil
6fedb29f11 [examples] add dataloader_num_workers argument (#2070)
add --dataloader_num_workers argument
2023-01-23 10:58:03 +01:00
cafe+ai — かふぇあい
d75ad93ca7 Safetensors loading in "convert_diffusers_to_original_stable_diffusion" (#2054)
* Safetensors loading in "convert_diffusers_to_original_stable_diffusion"

Adds diffusers format saftetensors loading support

* Fix import sort order: convert_diffusers_to_original_stable_diffusion.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-01-23 09:44:55 +01:00
Sayak Paul
ffb3a26c5c [LoRA] Adds example on text2image fine-tuning with LoRA (#2031)
* example on fine-tuning with LoRA.

* apply make quality.

* fix: pipeline loading.

* Apply suggestions from code review

Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* apply suggestions for PR review.

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* apply make style and make quality.

* chore: remove mention of dreambooth from text2image.

* add: weight path and wandb run link.

* Apply suggestions from code review

* apply make style.

* make style

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
2023-01-23 08:31:07 +01:00
wrong.wang
b15a951a48 add community pipeline: StableUnCLIPPipeline (#2037)
* add community pipeline: StableUnCLIPPipeline

* reformt stable_unclip.py with isort and black
2023-01-22 21:03:42 +01:00
Patrick von Platen
69c76173fa fix tests 2023-01-22 14:31:05 +02:00
Patrick von Platen
926b34b40c improve tests 2023-01-22 14:30:15 +02:00
Patrick von Platen
8d326e61cf Correct Pix2Pix example (#2056)
* Correct Pix2Pix example

- no advertisement of revision -> it'll be deprecated soon
- by default safety checker should be used

* Update docs/source/en/api/pipelines/stable_diffusion/pix2pix.mdx

* up
2023-01-21 15:56:29 +01:00
Patrick von Platen
59b7339a84 [From pretrained] Don't download .safetensors files if safetensors is… (#2057)
* [From pretrained] Don't download .safetensors files if safetensors is not available

* tests

* tests

* up
2023-01-21 15:51:33 +01:00
Suraj Patil
aa265f74bd [StableDiffusionInstructPix2Pix] use cpu generator in slow tests (#2051)
* use cpu generator in slow tests

* ifx get_inputs
2023-01-20 21:43:00 +02:00
Damian Stewart
3d2f24b099 Module-ise "original stable diffusion to diffusers" conversion script (#2019)
* convert __main__ to a function call and call it

* add missing type hint

* make style check pass

* move loading to src/diffusers

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-01-20 17:30:44 +01:00
Lucain
bcb476797c Remove modelcards dependency (#2050)
* Switch to huggingface_hub.ModelCard

* Remove modelcards dependency in favor of Jinja2
2023-01-20 16:39:42 +01:00
Lucain
5ea4be86ab Create repo before cloning in examples (#2047)
* Create repo before cloning in examples

* code quality
2023-01-20 16:38:37 +01:00
Suraj Patil
e5ff75540c Add InstructPix2Pix pipeline (#2040)
* being pix2pix

* ifx

* cfg image_latents

* fix some docstr

* fix

* fix

* hack

* fix

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* add comments to explain the hack

* move __call__ to the top

* doc

* remove height and width

* remove depreications

* fix doc str

* quality

* fast tests

* chnage model id

* fast tests

* fix test

* address Pedro's comments

* copyright

* Simple doc page.

* Apply suggestions from code review

* style

* Remove import

* address some review comments

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* style

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-01-20 16:25:46 +01:00
hysts
3ecbbd6288 Minor fix in the documentation of LoRA (#2045)
Fix
2023-01-20 13:19:54 +01:00
Anton Lozhkov
7c82a16fc1 Fix EMA for multi-gpu training in the unconditional example (#1930)
* improve EMA

* style

* one EMA model

* quality

* fix tests

* fix test

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* re organise the unconditional script

* backwards compatibility

* default to init values for some args

* fix ort script

* issubclass => isinstance

* update state_dict

* docstr

* doc

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* use .to if device is passed

* deprecate device

* make flake happy

* fix typo

Co-authored-by: patil-suraj <surajp815@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-01-19 11:35:55 +01:00
Patrick von Platen
f354dd9e2f [Save Pretrained] Remove dead code lines that can accidentally remove pytorch files (#2038)
correct safetensors
2023-01-19 10:11:27 +01:00
Patrick von Platen
007c914c70 [Lora] Model card (#2032)
* [Lora] up lora training

* finish

* finish

* finish model card
2023-01-19 09:44:02 +01:00
Patrick von Platen
3c07840b1b make style 2023-01-19 02:22:47 +01:00
Joqsan
fcb2ec8c2f Fix typos and minor redundancies (#2029)
fix typos and minor redundancies

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-01-19 02:22:18 +01:00
Patrick von Platen
013955b5a7 [Dit] Fix dit tests (#2034)
* [Dit] Fix dit tests

* up
2023-01-19 01:50:22 +01:00
Patrick von Platen
ed616bd8a8 [LoRA] Add LoRA training script (#1884)
* [Lora] first upload

* add first lora version

* upload

* more

* first training

* up

* correct

* improve

* finish loaders and inference

* up

* up

* fix more

* up

* finish more

* finish more

* up

* up

* change year

* revert year change

* Change lines

* Add cloneofsimo as co-author.

Co-authored-by: Simo Ryu <cloneofsimo@gmail.com>

* finish

* fix docs

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: Suraj Patil <surajp815@gmail.com>

* upload

* finish

Co-authored-by: Simo Ryu <cloneofsimo@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
2023-01-18 18:05:51 +01:00
Suraj Patil
ac3fc64906 fix dit doc header (#2027)
The link in the main heading needs to be rendered on the doc page. It displays the text as is.
2023-01-18 10:31:24 +01:00
Kashif Rasul
37d113cce7 DiT Pipeline (#1806)
* added dit model

* import

* initial pipeline

* initial convert script

* initial pipeline

* make style

* raise valueerror

* single function

* rename classes

* use DDIMScheduler

* timesteps embedder

* samples to cpu

* fix var names

* fix numpy type

* use timesteps class for proj

* fix typo

* fix arg name

* flip_sin_to_cos and better var names

* fix C shape cal

* make style

* remove unused imports

* cleanup

* add back patch_size

* initial dit doc

* typo

* Update docs/source/api/pipelines/dit.mdx

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* added copyright license headers

* added example usage and toc

* fix variable names asserts

* remove comment

* added docs

* fix typo

* upstream changes

* set proper device for drop_ids

* added initial dit pipeline test

* update docs

* fix imports

* make fix-copies

* isort

* fix imports

* get rid of more magic numbers

* fix code when guidance is off

* remove block_kwargs

* cleanup script

* removed to_2tuple

* use FeedForward class instead of another MLP

* style

* work on mergint DiTBlock with BasicTransformerBlock

* added missing final_dropout and args to BasicTransformerBlock

* use norm from block

* fix arg

* remove unused arg

* fix call to class_embedder

* use timesteps

* make style

* attn_output gets multiplied

* removed commented code

* use Transformer2D

* use self.is_input_patches

* fix flags

* fixed conversion to use Transformer2DModel

* fixes for pipeline

* remove dit.py

* fix timesteps device

* use randn_tensor and fix fp16 inf.

* timesteps_emb already the right dtype

* fix dit test class

* fix test and style

* fix norm2 usage in vq-diffusion

* added author names to pipeline and lmagenet labels link

* fix tests

* use norm_type as string

* rename dit to transformer

* fix name

* fix test

* set  norm_type = "layer" by default

* fix tests

* do not skip common tests

* Update src/diffusers/models/attention.py

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* revert AdaLayerNorm API

* fix norm_type name

* make sure all components are in eval mode

* revert norm2 API

* compact

* finish deprecation

* add slow tests

* remove @

* refactor some stuff

* upload

* Update src/diffusers/pipelines/dit/pipeline_dit.py

* finish more

* finish docs

* improve docs

* finish docs

Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: William Berman <WLBberman@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-01-17 23:09:29 +01:00
Pedro Cuenca
7e29b747f9 Check k-diffusion version is at least 0.0.12 (#2022)
* Check k-diffusion version is at least 0.0.12

* make style
2023-01-17 21:16:46 +01:00
Jerry Jiarui XU
a43bdd01cd [Flax] Add Flax inpainting impl (#1966)
* [Flax] Add Flax inpainting impl

* fixed copies, add README.md

* fixed README.md

* add test

* format

* update README.md
2023-01-17 10:42:04 +01:00
Patrick von Platen
f77ff56158 [Docs] No more autocast (#2021)
no more autocast
2023-01-17 10:31:25 +01:00
Suraj Patil
f861cde14f [train_unconditional] fix LR scheduler init (#2010)
fix lr scheduler
2023-01-17 10:11:46 +01:00
William Dalheim
b2ea8a84e9 Change PNDMPipeline to use PNDMScheduler (#2003)
* pndmpipeline uses pndmscheduler

* formatted pipeline_pndm
2023-01-16 15:34:59 +01:00
Will Berman
07c0fe4b87 Use pipeline tests mixin for UnCLIP pipeline tests + unCLIP MPS fixes (#1908)
re: https://github.com/huggingface/diffusers/issues/1857

We relax some of the checks to deal with unclip reproducibility issues. Mainly by checking the average pixel difference (measured w/in 0-255) instead of the max pixel difference (measured w/in 0-1).

- [x] add mixin to UnCLIPPipelineFastTests
- [x] add mixin to UnCLIPImageVariationPipelineFastTests
- [x] Move UnCLIPPipeline flags in mixin to base class
- [x] Small MPS fixes for F.pad and F.interpolate
- [x] Made test unCLIP model's dimensions smaller to run tests faster
2023-01-16 15:21:58 +01:00
Haofan Wang
1e651ca2c9 Fix typos in ColossalAI example (#2001)
fix typos
2023-01-16 15:21:04 +01:00
Patrick von Platen
522f8aa7b2 [Black] Update black library (#2007) 2023-01-16 15:16:28 +01:00
Patrick von Platen
8a3f0c1f71 [Conversion] Improve safetensors (#1989) 2023-01-16 14:26:56 +01:00
Patrick von Platen
f6a5c359cc [Community] Fix merger (#2006)
* [Community] Fix merger

* finish
2023-01-16 14:25:25 +01:00
蓝色的秋风
651c5adf8a [Conversion] Support convert diffusers to safetensors (#1996)
fix: support diffusers to safetensors
2023-01-16 12:58:01 +01:00
Erin
cc2cc00d20 Add tests for 2D UNet blocks (#1945)
* test unet blocks 2d

* change to randn_tensor

* mps flaky
2023-01-16 12:53:05 +01:00
Pedro Cuenca
8f58159159 Fix a couple typos in Dreambooth readme (#2004)
Fix a couple typos in Dreambooth readme.
2023-01-16 11:38:07 +01:00
Sayak Paul
216d190178 Update README.md to include our blog post (#1998)
* Update README.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2023-01-16 09:16:54 +01:00
Vladimir Sotnikov
9b37ed33b5 [SD Img2Img] resize source images to multiple of 8 instead of 32 (#1571)
* [Stable Diffusion Img2Img] resize source images to integer multiple of 8 instead of 32

* [Alt Diffusion Img2Img] resize source images to multiple of 8 instead of 32

* [Img2Img] fix AltDiffusion Img2Img resolution test

* [Img2Img] add Stable Diffusion Img2Img resolution test

* [Cycle Diffusion] round resolution to multiplies of 8 instead of 32

* [ONNX SD Img2Img] round resolution to multiplies of 64 instead of 32

* [SD Depth2Img] round resolution to multiplies of 8 instead of 32

* [Repaint] round resolution to multiplies of 8 instead of 32

* fix make style

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-01-13 16:02:22 +01:00
Patrick von Platen
135567f18e make style 2023-01-12 20:02:41 +00:00
Walter Hugo Lopez Pinaya
9a5d3322e7 Update docstring (#1971) 2023-01-12 21:01:40 +01:00
camenduru
f73ed17961 Allow converting Flax to PyTorch by adding a "from_flax" keyword (#1900)
* from_flax

* oops

* oops

* make style with pip install -e ".[dev]"

* oops

* now code quality happy 😋

* allow_patterns += FLAX_WEIGHTS_NAME

* Update src/diffusers/pipelines/pipeline_utils.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/pipelines/pipeline_utils.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/pipelines/pipeline_utils.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/pipelines/pipeline_utils.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/models/modeling_utils.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/pipelines/pipeline_utils.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* for test

* bye bye is_flax_available()

* oops

* Update src/diffusers/models/modeling_pytorch_flax_utils.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update src/diffusers/models/modeling_pytorch_flax_utils.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update src/diffusers/models/modeling_pytorch_flax_utils.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update src/diffusers/models/modeling_utils.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update src/diffusers/models/modeling_utils.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* make style

* add test

* finihs

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2023-01-12 20:00:35 +01:00
Katsuya
9147c4c954 Fix unused upcast_attn flag in convert_original_stable_diffusion_to_diffusers script (#1942)
Fix unused upcast_attn flag in sd to diffusers script
2023-01-12 19:55:40 +01:00
Patrick von Platen
6d3adf6570 Fix slow tests (#1983)
* [Slow tests] Fix tests

* Update tests/pipelines/karras_ve/test_karras_ve.py
2023-01-12 18:24:51 +01:00
Patrick von Platen
dbdd585cad Example tests (#1982)
* Example tests

* fix
2023-01-12 17:39:37 +01:00
klopsahlong
7f0eb35af3 Research project multi subject dreambooth (#1948)
* implemented multi subject dreambooth in research_projects

* minor edits to readme

* added style and quality fixes

Co-authored-by: Krista Opsahl-Ong <kristaopsahlong@gmail.com>
2023-01-12 11:42:35 +01:00
Haofan Wang
40aa162808 [Docs] Update README.md (#1960)
Update README.md
2023-01-12 11:34:10 +01:00
Patrick von Platen
f06e4e5579 make style 2023-01-12 11:33:11 +01:00
Patrick von Platen
57f7d25934 [CPU offload] correct cpu offload (#1968)
* [CPU offload] correct cpu offload

* [CPU offload] correct cpu offload

* finish

* finish

* Update docs/source/en/optimization/fp16.mdx

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update src/diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2023-01-12 11:23:52 +01:00
Michael Krasnyk
50b6513531 Update CLIPGuidedStableDiffusion.feature_extractor.size to fix TypeError (#1938)
TypeError: Size should be int or sequence. Got <class 'dict'>
2023-01-11 10:52:48 +01:00
Patrick von Platen
d1d5451b64 [Community] Correct checkpoint merger (#1965) 2023-01-10 15:11:50 +01:00
Patrick von Platen
f6f1ec3a7c allow loading ddpm models into ddim (#1932) 2023-01-10 14:52:32 +01:00
Patrick von Platen
beb932c5d1 [Conversion SD] Make sure weirdly sorted keys work as well (#1959) 2023-01-10 01:23:14 +01:00
andreemic
4401e6aa2b fix typo in imagic_stable_diffusion.py (#1956)
changed named arg to self.tokenizer from `truncaton` to `truncation` according to Tokenizer docs (https://huggingface.co/docs/tokenizers/api/tokenizer#tokenizers.Tokenizer.truncation)
2023-01-09 20:34:19 +01:00
Fazzie-Maqianli
089f0f4c98 update to latest colossalai (#1951) 2023-01-09 19:47:41 +01:00
Patrick von Platen
aba2a65d6a Add automatic doc sorting (#1940)
* automatically sort docs

* add new check toc doc

* add new check toc doc

* add

* add new check toc doc

* add

* add new check toc doc

* correct

* finalize
2023-01-06 17:24:47 +01:00
vvssttkk
9f4c4f5e82 fix path to logo (#1939) 2023-01-06 16:12:30 +01:00
Patrick von Platen
409387889d [Conversion] Make sure ema weights are extracted correctly (#1937)
* [Conversion] Make sure ema weights are extracted correctly

* up

* finish
2023-01-06 07:08:39 +01:00
Patrick von Platen
2533f92532 [Stable Diffusion Guide] 101 Stable Diffusion Guide directly into the docs (#1927)
* finish

* improve

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2023-01-05 21:14:23 +01:00
Patrick von Platen
f6af0d1f33 move to intro 2023-01-05 20:57:43 +01:00
Will Berman
247b5feea1 [dreambooth] low precision guard (#1916)
* [dreambooth] low precision guard

* fix

* add docs to cli args

* Update examples/dreambooth/train_dreambooth.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* style

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-01-05 16:54:56 +01:00
Shubhamai
7101c7316b [StableDiffusionimg2img] validating input type (#1913)
* [StableDiffusionimg2img] validating input type

* fixing tests

* running make style

* make fix-copies
2023-01-05 12:01:00 +01:00
Chanran Kim
f6f4176294 [Docs] Add TRANSLATING.md file (#1920)
* init for korean docs

* edit build yml file for multi language docs

* edit one more build yml file for multi language docs

* add title for get_frontmatter error

* add translating.md

* default language for docs is en

* Update docs/TRANSLATING.md

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-01-05 09:42:43 +01:00
Fazzie-Maqianli
d8062ad700 Feature/colossalai (#1793)
Support ColossalAi for Dreamblooth
2023-01-05 08:53:42 +01:00
qsh-zh
be99201a56 feat : add log-rho deis multistep scheduler (#1432)
* feat : add log-rho deis multistep deis

* docs :fix typo

* docs : add docs for impl algo

* docs : remove duplicate ref

* finish deis

* add docs

* fix

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-01-05 00:09:30 +01:00
Patrick von Platen
9b63854886 Improve reproduceability 2/3 (#1906)
* [Repro] Correct reproducability

* up

* up

* uP

* up

* need better image

* allow conversion from no state dict checkpoints

* up

* up

* up

* up

* check tensors

* check tensors

* check tensors

* check tensors

* next try

* up

* up

* better name

* up

* up

* Apply suggestions from code review

* correct more

* up

* replace all torch randn

* fix

* correct

* correct

* finish

* fix more

* up
2023-01-04 23:51:17 +01:00
Peter Willemsen
67e2f95cc4 New Pipeline: Tiled-upscaling with depth perception to avoid blurry spots (#1615)
* added first version of the tiled upscaling pipeline

* reformatted to pass code quality tests
2023-01-04 23:07:58 +01:00
Chanran Kim
75d53cc839 Init for korean docs (#1910)
* init for korean docs

* edit build yml file for multi language docs

* edit one more build yml file for multi language docs

* add title for get_frontmatter error
2023-01-04 22:59:42 +01:00
Erin
9e17983d9f Test ResnetBlock2D (#1850)
* test resnet block

* fix code format required by isort

* add torch device

* nit
2023-01-04 22:57:32 +01:00
Patrick von Platen
cb8a3dbe34 make style 2023-01-04 21:50:17 +00:00
Yasyf Mohamedali
bcd6f3f9ce Various Fixes for Flax Dreambooth (#1782)
* Various Fixes for Flax Dreambooth

- Correctly update the progress bar every epoch
- Allow specifying a pretrained VAE
- Allow specifying a revision to pretrained models
- Cache compiled models between invocations (speeds up TPU execution a lot!)
- Save intermediate checkpoints by specifying `save_steps`

* Don't die when save_steps is not set.

* Address CR

* Address comments

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2023-01-04 22:49:56 +01:00
Alex Redden
19a0ce4a47 Fix lr-scaling store_true & default=True cli argument for textual_inversion training. (#1090)
Fix default lr-scaling cli argument
2023-01-04 15:43:41 +01:00
Yasyf Mohamedali
856331c61b Support training SD V2 with Flax (#1783)
* Support training SD V2 with Flax

Mostly involves supporting a v_prediction scheduler.

The implementation in #1777 doesn't take into account a recent refactor of `scheduling_utils_flax`, so this should be used instead.

* Add to other top-level files.
2023-01-04 13:19:22 +01:00
Manfred Lindmark
f7154f859c Fix --resume_from_checkpoint step in train_text_to_image.py (#1914)
fix resume step in train_text_to_image example
2023-01-04 13:05:55 +01:00
Joqsan
675ef1ffbd fix: DDPMScheduler.set_timesteps() (#1912) 2023-01-04 13:02:50 +01:00
Patrick von Platen
d67c305120 allow conversion from no state dict checkpoints 2023-01-03 19:48:13 +00:00
Patrick von Platen
2bd53a940c [Docs] Remove duplicated API doc string (#1901)
only have api docstring once for sD
2023-01-03 19:11:48 +01:00
Patrick von Platen
8ed08e4270 [Deterministic torch randn] Allow tensors to be generated on CPU (#1902)
* [Deterministic torch randn] Allow tensors to be generated on CPU

* fix more

* up

* fix more

* up

* Update src/diffusers/utils/torch_utils.py

Co-authored-by: Anton Lozhkov <anton@huggingface.co>

* Apply suggestions from code review

* up

* up

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

Co-authored-by: Anton Lozhkov <anton@huggingface.co>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2023-01-03 18:22:40 +01:00
neverix
0df83c79e4 Fixes in comments in SD2 D2I (#1903) 2023-01-03 16:24:36 +01:00
Robert Dargavel Smith
4a7e4cec38 Add condtional generation to AudioDiffusionPipeline (#1826)
* Add condtional generation

* add fast test for conditional audio generation
2023-01-03 14:09:14 +01:00
aengusng8
f45c675d2c [addresses issue #1642] add add_noise to scheduling-sde-ve (#1827)
* add add_noise to scheduling-sde-ve

* run Black formater
2023-01-03 14:08:41 +01:00
Anton Lozhkov
1bf4f0da7e Add accelerate and xformers versions to diffusers-cli env (#1898)
Add accelerate and xformers to diffusers-cli env
2023-01-03 13:51:27 +01:00
Anton Lozhkov
f17fae641c Add UnCLIPImageVariationPipeline to dummy imports (#1897)
* Add UnCLIPImageVariationPipeline to dummy imports

* style
2023-01-03 11:57:56 +01:00
YiYi Xu
da31075700 updated doc for stable diffusion pipelines (#1770)
* add a doc page for each pipeline under api/pipelines/stable_diffusion
* add pipeline examples to docstrings
* updated stable_diffusion_2 page
* updated default markdown syntax to list methods based on https://github.com/huggingface/diffusers/pull/1870
* add function decorator

Co-authored-by: yiyixuxu <yixu@Yis-MacBook-Pro.lan>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-01-02 11:35:51 -10:00
Pedro Cuenca
8c14ca3d43 Fixes to the help for report_to in training scripts (#1888)
Fixes to the help for report_to in training scripts.
2023-01-02 15:53:28 +01:00
Suraj Patil
fa1f4701e8 [examples] misc fixes (#1886)
* misc fixes

* more comments

* Update examples/textual_inversion/textual_inversion.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* set transformers verbosity to warning

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-01-02 14:09:01 +01:00
agizmo
423c3a4cc6 Update ONNX Pipelines to use np.float64 instead of np.float (#1789)
Numpy 1.24 had removed the "float" scalar alias as it was depricated in v1.20.
https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
https://numpy.org/devdocs/release/1.24.0-notes.html#expired-deprecations
2023-01-02 13:21:49 +01:00
Pedro Cuenca
f769d74b0f Fix typo in train_dreambooth_inpaint (#1885)
Fix typo in train_dreambooth_inpaint.
2023-01-02 11:50:58 +01:00
Patrick von Platen
21bbc633c4 [Attention] Finish refactor attention file (#1879)
* [Attention] Finish refactor attention file

* correct more

* fix

* more fixes

* correct

* up
2023-01-01 19:18:10 +01:00
Suraj Patil
62608a9102 [train_text_to_image] allow using non-ema weights for training (#1834)
* allow using non-ema weights for training

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* address more review comment

* reorganise a few lines

* always pad text to max_length to match original training

* ifx collate_fn

* remove unused code

* don't prepare ema_unet, don't register lr scheduler

* style

* assert => ValueError

* add allow_tf32

* set log level

* fix comment

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2022-12-30 21:49:47 +01:00
Suraj Patil
e4fe941312 [examples] update loss computation (#1861)
update loss computation
2022-12-30 14:32:38 +01:00
Patrick von Platen
ac3738462b [Docs] Improve docs (#1870)
* [Docs] Improve docs

* up
2022-12-30 13:50:01 +01:00
Pedro Cuenca
a6e2c1fe5c Fix ema decay (#1868)
* Fix ema decay and clarify nomenclature.

* Rename var.
2022-12-30 12:42:42 +01:00
Patrick von Platen
b28ab30215 [Unclip] Make sure text_embeddings & image_embeddings can directly be passed to enable interpolation tasks. (#1858)
* [Unclip] Make sure latents can be reused

* allow one to directly pass embeddings

* up

* make unclip for text work

* finish allowing to pass embeddings

* correct more

* make style
2022-12-30 12:18:19 +01:00
Patrick von Platen
29b2c93c90 Make repo structure consistent (#1862)
* move files a bit

* more refactors

* fix more

* more fixes

* fix more onnx

* make style

* upload

* fix

* up

* fix more

* up again

* up

* small fix

* Update src/diffusers/__init__.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* correct

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2022-12-30 11:51:08 +01:00
Simon Kirsten
ab0e92fdc8 Flax: Fix img2img and align with other pipeline (#1824)
* Flax: Add components function

* Flax: Fix img2img and align with other pipeline

* Flax: Fix PRNGKey type

* Refactor strength to start_timestep

* Fix preprocess images

* Fix processed_images dimen

* latents.shape -> latents_shape

* Fix typo

* Remove "static" comment

* Remove unnecessary optional types in _generate

* Apply doc-builder code style.

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2022-12-29 18:56:03 +01:00
Suraj Patil
9ea7052f0e [textual inversion] add gradient checkpointing and small fixes. (#1848)
Co-authored-by: Henrik Forstén <henrik.forsten@gmail.com>

* update TI script

* make flake happy

* fix typo
2022-12-29 15:02:29 +01:00
Patrick von Platen
03bf877bf4 [StableDiffusionInpaint] Correct test (#1859) 2022-12-29 14:47:56 +01:00
Patrick von Platen
f2e521c499 [Dtype] Align dtype casting behavior with Transformers and Accelerate (#1725)
* [Dtype] Align automatic dtype

* up

* up

* fix

* re-add accelerate
2022-12-29 14:36:02 +01:00
Patrick von Platen
debc74f442 [Versatile Diffusion] Fix cross_attention_kwargs (#1849)
fix versatile
2022-12-28 18:49:04 +01:00
Partho
2ba42aa9b1 [Community Pipeline] MagicMix (#1839)
* initial

* type hints

* update scheduler type hint

* add to README

* add example generation to README

* v -> mix_factor

* load scheduler from pretrained
2022-12-28 17:02:53 +01:00
Will Berman
53c8147afe unCLIP image variation (#1781)
* unCLIP image variation

* remove prior comment re: @pcuenca

* stable diffusion -> unCLIP re: @pcuenca

* add copy froms re: @patil-suraj
2022-12-28 14:17:09 +01:00
kabachuha
cf5265ad41 Allow selecting precision to make Dreambooth class images (#1832)
* allow selecting precision to make DB class images

addresses #1831

* add prior_generation_precision argument

* correct prior_generation_precision's description

Co-authored-by: Suraj Patil <surajp815@gmail.com>

Co-authored-by: Suraj Patil <surajp815@gmail.com>
2022-12-27 19:51:32 +01:00
Katsuya
8874027efc Make xformers optional even if it is available (#1753)
* Make xformers optional even if it is available

* Raise exception if xformers is used but not available

* Rename use_xformers to enable_xformers_memory_efficient_attention

* Add a note about xformers in README

* Reformat code style
2022-12-27 19:47:50 +01:00
Christopher Friesen
b693aff795 fix: resize transform now preserves aspect ratio (#1804) 2022-12-27 15:10:25 +01:00
William Held
8a4c3e50bd Width was typod as weight (#1800)
* Width was typod as weight

* Run Black
2022-12-27 15:09:21 +01:00
Pedro Cuenca
68e24259af Avoid duplicating PyTorch + safetensors downloads. (#1836) 2022-12-27 14:58:15 +01:00
camenduru
1f1b6c6544 Device to use (e.g. cpu, cuda:0, cuda:1, etc.) (#1844)
* Device to use (e.g. cpu, cuda:0, cuda:1, etc.)

* "cuda" if torch.cuda.is_available() else "cpu"
2022-12-27 14:42:56 +01:00
Pedro Cuenca
df2b548e89 Make safety_checker optional in more pipelines (#1796)
* Make safety_checker optional in more pipelines.

* Remove inappropriate comment in inpaint pipeline.

* InPaint Test: set feature_extractor to None.

* Remove import

* img2img test: set feature_extractor to None.

* inpaint sd2 test: set feature_extractor to None.

Co-authored-by: Suraj Patil <surajp815@gmail.com>
2022-12-25 21:58:45 +01:00
Daquan Lin
b6d4702301 fix small mistake in annotation: 32 -> 64 (#1780)
Fix inconsistencies between code and comments in the function 'preprocess'
2022-12-24 19:56:57 +01:00
Suraj Patil
9be94d9c66 [textual_inversion] unwrap_model text encoder before accessing weights (#1816)
* unwrap_model text encoder before accessing weights

* fix another call

* fix the right call
2022-12-23 16:46:24 +01:00
Patrick von Platen
f2acfb67ac Remove hardcoded names from PT scripts (#1778)
* Remove hardcoded names from PT scripts

* Apply suggestions from code review

Co-authored-by: Suraj Patil <surajp815@gmail.com>
2022-12-23 15:36:29 +01:00
Prathik Rao
8aa4372aea reorder model wrap + bug fix (#1799)
* reorder model wrap

* bug fix

Co-authored-by: Prathik Rao <prathikrao@microsoft.com>
2022-12-22 14:51:47 +01:00
Pedro Cuenca
6043838971 Fix OOM when using PyTorch with JAX installed. (#1795)
Don't initialize Jax on startup.
2022-12-21 14:07:24 +01:00
Patrick von Platen
4125756e88 Refactor cross attention and allow mechanism to tweak cross attention function (#1639)
* first proposal

* rename

* up

* Apply suggestions from code review

* better

* up

* finish

* up

* rename

* correct versatile

* up

* up

* up

* up

* fix

* Apply suggestions from code review

* make style

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* add error message

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2022-12-20 18:49:05 +01:00
Dhruv Naik
a9190badf7 Add Flax stable diffusion img2img pipeline (#1355)
* add flax img2img pipeline

* update pipeline

* black format file

* remove argg from get_timesteps

* update get_timesteps

* fix bug: make use of timesteps for for_loop

* black file

* black, isort, flake8

* update docstring

* update readme

* update flax img2img readme

* update sd pipeline init

* Update src/diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_img2img.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update src/diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_img2img.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* update inits

* revert change

* update var name to image, typo

* update readme

* return new t_start instead of modified timestep

* black format

* isort files

* update docs

* fix-copies

* update prng_seed typing

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2022-12-20 16:25:08 +01:00
Suraj Patil
d07f73003d Fix num images per prompt unclip (#1787)
* use repeat_interleave

* fix repeat

* Trigger Build

* don't install accelerate from main

* install released accelrate for mps test

* Remove additional accelerate installation from main.

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2022-12-20 16:03:38 +01:00
Pedro Cuenca
a6fb9407fd Dreambooth docs: minor fixes (#1758)
* Section header for in-painting, inference from checkpoint.

* Inference: link to section to perform inference from checkpoint.

* Move Dreambooth in-painting instructions to the proper place.
2022-12-20 08:39:16 +01:00
Patrick von Platen
261a448c6a Correct hf hub download (#1767)
* allow model download when no internet

* up

* make style
2022-12-20 02:07:15 +01:00
Simon Kirsten
f106ab40b3 [Flax] Stateless schedulers, fixes and refactors (#1661)
* [Flax] Stateless schedulers, fixes and refactors

* Remove scheduling_common_flax and some renames

* Update src/diffusers/schedulers/scheduling_pndm_flax.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2022-12-20 01:42:41 +01:00
Emil Bogomolov
d87cc15977 expose polynomial:power and cosine_with_restarts:num_cycles params (#1737)
* expose polynomial:power and cosine_with_restarts:num_cycles using get_scheduler func, add it to train_dreambooth.py

* fix formatting

* fix style

* Update src/diffusers/optimization.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2022-12-20 01:41:37 +01:00
Patrick von Platen
e29dc97215 make style 2022-12-20 01:38:45 +01:00
Ilmari Heikkinen
8e4733b3c3 Only test for xformers when enabling them #1773 (#1776)
* only check for xformers when xformers are enabled

* only test for xformers when enabling them
2022-12-20 01:38:28 +01:00
Prathik Rao
847daf25c7 update train_unconditional_ort.py (#1775)
* reflect changes

* run make style

Co-authored-by: Prathik Rao <prathikrao@microsoft.com>
Co-authored-by: Prathik Rao <prathikrao@microsoft.com@orttrainingdev7.d32nl1ml4oruzj4qz3bqlggovf.px.internal.cloudapp.net>
2022-12-19 23:58:55 +01:00
Pedro Cuenca
9f8c915a75 [Dreambooth] flax fixes (#1765)
* Fail if there are less images than the effective batch size.

* Remove lr-scheduler arg as it's currently ignored.

* Make guidance_scale work for batch_size > 1.
2022-12-19 20:42:25 +01:00
Anton Lozhkov
8331da4683 Bump to 0.12.0.dev0 (#1771) 2022-12-19 18:44:08 +01:00
Anton Lozhkov
f1a32203aa [Tests] Fix UnCLIP cpu offload tests (#1769) 2022-12-19 18:25:08 +01:00
Nan Liu
6f15026330 update composable diffusion for an updated diffuser library (#1697)
* update composable diffusion for an updated diffuser library

* fix style/quality for code

* Revert "fix style/quality for code"

This reverts commit 71f2349763.

* update style

* reduce memory usage by computing score sequentially
2022-12-19 18:03:40 +01:00
455 changed files with 44656 additions and 8883 deletions

View File

@@ -1,4 +1,7 @@
contact_links:
- name: Blank issue
url: https://github.com/huggingface/diffusers/issues/new
about: General usage questions and community discussions
about: Other
- name: Forum
url: https://discuss.huggingface.co/
about: General usage questions and community discussions

View File

@@ -13,5 +13,6 @@ jobs:
with:
commit_sha: ${{ github.sha }}
package: diffusers
languages: en ko
secrets:
token: ${{ secrets.HUGGINGFACE_PUSH }}

View File

@@ -14,3 +14,4 @@ jobs:
commit_sha: ${{ github.event.pull_request.head.sha }}
pr_number: ${{ github.event.number }}
package: diffusers
languages: en ko

View File

@@ -61,8 +61,8 @@ jobs:
- name: Install dependencies
run: |
python -m pip install -e .[quality,test]
python -m pip install git+https://github.com/huggingface/accelerate
python -m pip install -U git+https://github.com/huggingface/transformers
python -m pip install git+https://github.com/huggingface/accelerate
- name: Environment
run: |
@@ -159,4 +159,4 @@ jobs:
uses: actions/upload-artifact@v2
with:
name: torch_mps_test_reports
path: reports
path: reports

View File

@@ -27,9 +27,8 @@ jobs:
pip install .[quality]
- name: Check quality
run: |
black --check --preview examples tests src utils scripts
isort --check-only examples tests src utils scripts
flake8 examples tests src utils scripts
black --check examples tests src utils scripts
ruff examples tests src utils scripts
doc-builder style src/diffusers docs/source --max_len 119 --check_only --path_to_docs docs/source
check_repository_consistency:

View File

@@ -36,6 +36,11 @@ jobs:
runner: docker-cpu
image: diffusers/diffusers-onnxruntime-cpu
report: onnx_cpu
- name: PyTorch Example CPU tests on Ubuntu
framework: pytorch_examples
runner: docker-cpu
image: diffusers/diffusers-pytorch-cpu
report: torch_cpu
name: ${{ matrix.config.name }}
@@ -59,8 +64,8 @@ jobs:
run: |
apt-get update && apt-get install libsndfile1-dev -y
python -m pip install -e .[quality,test]
python -m pip install git+https://github.com/huggingface/accelerate
python -m pip install -U git+https://github.com/huggingface/transformers
python -m pip install git+https://github.com/huggingface/accelerate
- name: Environment
run: |
@@ -90,6 +95,13 @@ jobs:
--make-reports=tests_${{ matrix.config.report }} \
tests/
- name: Run example PyTorch CPU tests
if: ${{ matrix.config.framework == 'pytorch_examples' }}
run: |
python -m pytest -n 2 --max-worker-restart=0 --dist=loadfile \
--make-reports=tests_${{ matrix.config.report }} \
examples/test_examples.py
- name: Failure short reports
if: ${{ failure() }}
run: cat reports/tests_${{ matrix.config.report }}_failures_short.txt

View File

@@ -61,8 +61,8 @@ jobs:
- name: Install dependencies
run: |
python -m pip install -e .[quality,test]
python -m pip install git+https://github.com/huggingface/accelerate
python -m pip install -U git+https://github.com/huggingface/transformers
python -m pip install git+https://github.com/huggingface/accelerate
- name: Environment
run: |
@@ -153,4 +153,4 @@ jobs:
uses: actions/upload-artifact@v2
with:
name: examples_test_reports
path: reports
path: reports

165
.github/workflows/push_tests_fast.yml vendored Normal file
View File

@@ -0,0 +1,165 @@
name: Slow tests on main
on:
push:
branches:
- main
env:
DIFFUSERS_IS_CI: yes
HF_HOME: /mnt/cache
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
PYTEST_TIMEOUT: 600
RUN_SLOW: no
jobs:
run_fast_tests:
strategy:
fail-fast: false
matrix:
config:
- name: Fast PyTorch CPU tests on Ubuntu
framework: pytorch
runner: docker-cpu
image: diffusers/diffusers-pytorch-cpu
report: torch_cpu
- name: Fast Flax CPU tests on Ubuntu
framework: flax
runner: docker-cpu
image: diffusers/diffusers-flax-cpu
report: flax_cpu
- name: Fast ONNXRuntime CPU tests on Ubuntu
framework: onnxruntime
runner: docker-cpu
image: diffusers/diffusers-onnxruntime-cpu
report: onnx_cpu
- name: PyTorch Example CPU tests on Ubuntu
framework: pytorch_examples
runner: docker-cpu
image: diffusers/diffusers-pytorch-cpu
report: torch_cpu
name: ${{ matrix.config.name }}
runs-on: ${{ matrix.config.runner }}
container:
image: ${{ matrix.config.image }}
options: --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/
defaults:
run:
shell: bash
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Install dependencies
run: |
apt-get update && apt-get install libsndfile1-dev -y
python -m pip install -e .[quality,test]
python -m pip install -U git+https://github.com/huggingface/transformers
python -m pip install git+https://github.com/huggingface/accelerate
- name: Environment
run: |
python utils/print_env.py
- name: Run fast PyTorch CPU tests
if: ${{ matrix.config.framework == 'pytorch' }}
run: |
python -m pytest -n 2 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
--make-reports=tests_${{ matrix.config.report }} \
tests/
- name: Run fast Flax TPU tests
if: ${{ matrix.config.framework == 'flax' }}
run: |
python -m pytest -n 2 --max-worker-restart=0 --dist=loadfile \
-s -v -k "Flax" \
--make-reports=tests_${{ matrix.config.report }} \
tests/
- name: Run fast ONNXRuntime CPU tests
if: ${{ matrix.config.framework == 'onnxruntime' }}
run: |
python -m pytest -n 2 --max-worker-restart=0 --dist=loadfile \
-s -v -k "Onnx" \
--make-reports=tests_${{ matrix.config.report }} \
tests/
- name: Run example PyTorch CPU tests
if: ${{ matrix.config.framework == 'pytorch_examples' }}
run: |
python -m pytest -n 2 --max-worker-restart=0 --dist=loadfile \
--make-reports=tests_${{ matrix.config.report }} \
examples/test_examples.py
- name: Failure short reports
if: ${{ failure() }}
run: cat reports/tests_${{ matrix.config.report }}_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: pr_${{ matrix.config.report }}_test_reports
path: reports
run_fast_tests_apple_m1:
name: Fast PyTorch MPS tests on MacOS
runs-on: [ self-hosted, apple-m1 ]
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Clean checkout
shell: arch -arch arm64 bash {0}
run: |
git clean -fxd
- name: Setup miniconda
uses: ./.github/actions/setup-miniconda
with:
python-version: 3.9
- name: Install dependencies
shell: arch -arch arm64 bash {0}
run: |
${CONDA_RUN} python -m pip install --upgrade pip
${CONDA_RUN} python -m pip install -e .[quality,test]
${CONDA_RUN} python -m pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu
${CONDA_RUN} python -m pip install git+https://github.com/huggingface/accelerate
${CONDA_RUN} python -m pip install -U git+https://github.com/huggingface/transformers
- name: Environment
shell: arch -arch arm64 bash {0}
run: |
${CONDA_RUN} python utils/print_env.py
- name: Run fast PyTorch tests on M1 (MPS)
shell: arch -arch arm64 bash {0}
env:
HF_HOME: /System/Volumes/Data/mnt/cache
HUGGING_FACE_HUB_TOKEN: ${{ secrets.HUGGING_FACE_HUB_TOKEN }}
run: |
${CONDA_RUN} python -m pytest -n 0 -s -v --make-reports=tests_torch_mps tests/
- name: Failure short reports
if: ${{ failure() }}
run: cat reports/tests_torch_mps_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: pr_torch_mps_test_reports
path: reports

3
.gitignore vendored
View File

@@ -169,3 +169,6 @@ tags
# dependencies
/transformers
# ruff
.ruff_cache

40
CITATION.cff Normal file
View File

@@ -0,0 +1,40 @@
cff-version: 1.2.0
title: 'Diffusers: State-of-the-art diffusion models'
message: >-
If you use this software, please cite it using the
metadata from this file.
type: software
authors:
- given-names: Patrick
family-names: von Platen
- given-names: Suraj
family-names: Patil
- given-names: Anton
family-names: Lozhkov
- given-names: Pedro
family-names: Cuenca
- given-names: Nathan
family-names: Lambert
- given-names: Kashif
family-names: Rasul
- given-names: Mishig
family-names: Davaadorj
- given-names: Thomas
family-names: Wolf
repository-code: 'https://github.com/huggingface/diffusers'
abstract: >-
Diffusers provides pretrained diffusion models across
multiple modalities, such as vision and audio, and serves
as a modular toolbox for inference and training of
diffusion models.
keywords:
- deep-learning
- pytorch
- image-generation
- diffusion
- text2image
- image2image
- score-based-generative-modeling
- stable-diffusion
license: Apache-2.0
version: 0.12.1

View File

@@ -177,7 +177,7 @@ Follow these steps to start contributing ([supported Python versions](https://gi
$ make style
```
🧨 Diffusers also uses `flake8` and a few custom scripts to check for coding mistakes. Quality
🧨 Diffusers also uses `ruff` and a few custom scripts to check for coding mistakes. Quality
control runs in CI, however you can also run the same checks with:
```bash

View File

@@ -9,9 +9,8 @@ modified_only_fixup:
$(eval modified_py_files := $(shell python utils/get_modified_files.py $(check_dirs)))
@if test -n "$(modified_py_files)"; then \
echo "Checking/fixing $(modified_py_files)"; \
black --preview $(modified_py_files); \
isort $(modified_py_files); \
flake8 $(modified_py_files); \
black $(modified_py_files); \
ruff $(modified_py_files); \
else \
echo "No library .py files were modified"; \
fi
@@ -41,22 +40,23 @@ repo-consistency:
# this target runs checks on all files
quality:
black --check --preview $(check_dirs)
isort --check-only $(check_dirs)
flake8 $(check_dirs)
black --check $(check_dirs)
ruff $(check_dirs)
doc-builder style src/diffusers docs/source --max_len 119 --check_only --path_to_docs docs/source
python utils/check_doc_toc.py
# Format source code automatically and check is there are any problems left that need manual fixing
extra_style_checks:
python utils/custom_init_isort.py
doc-builder style src/diffusers docs/source --max_len 119 --path_to_docs docs/source
python utils/check_doc_toc.py --fix_and_overwrite
# this target runs checks on all files and potentially modifies some of them
style:
black --preview $(check_dirs)
isort $(check_dirs)
black $(check_dirs)
ruff $(check_dirs) --fix
${MAKE} autogenerate_code
${MAKE} extra_style_checks

View File

@@ -1,6 +1,6 @@
<p align="center">
<br>
<img src="https://github.com/huggingface/diffusers/raw/main/docs/source/imgs/diffusers_library.jpg" width="400"/>
<img src="./docs/source/en/imgs/diffusers_library.jpg" width="400"/>
<br>
<p>
<p align="center">
@@ -235,6 +235,102 @@ images = pipeline(prompt_ids, params, prng_seed, num_inference_steps, jit=True).
images = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:])))
```
Diffusers also has a Image-to-Image generation pipeline with Flax/Jax
```python
import jax
import numpy as np
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
import requests
from io import BytesIO
from PIL import Image
from diffusers import FlaxStableDiffusionImg2ImgPipeline
def create_key(seed=0):
return jax.random.PRNGKey(seed)
rng = create_key(0)
url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
response = requests.get(url)
init_img = Image.open(BytesIO(response.content)).convert("RGB")
init_img = init_img.resize((768, 512))
prompts = "A fantasy landscape, trending on artstation"
pipeline, params = FlaxStableDiffusionImg2ImgPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4", revision="flax",
dtype=jnp.bfloat16,
)
num_samples = jax.device_count()
rng = jax.random.split(rng, jax.device_count())
prompt_ids, processed_image = pipeline.prepare_inputs(prompt=[prompts]*num_samples, image = [init_img]*num_samples)
p_params = replicate(params)
prompt_ids = shard(prompt_ids)
processed_image = shard(processed_image)
output = pipeline(
prompt_ids=prompt_ids,
image=processed_image,
params=p_params,
prng_seed=rng,
strength=0.75,
num_inference_steps=50,
jit=True,
height=512,
width=768).images
output_images = pipeline.numpy_to_pil(np.asarray(output.reshape((num_samples,) + output.shape[-3:])))
```
Diffusers also has a Text-guided inpainting pipeline with Flax/Jax
```python
import jax
import numpy as np
from flax.jax_utils import replicate
from flax.training.common_utils import shard
import PIL
import requests
from io import BytesIO
from diffusers import FlaxStableDiffusionInpaintPipeline
def download_image(url):
response = requests.get(url)
return PIL.Image.open(BytesIO(response.content)).convert("RGB")
img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
init_image = download_image(img_url).resize((512, 512))
mask_image = download_image(mask_url).resize((512, 512))
pipeline, params = FlaxStableDiffusionInpaintPipeline.from_pretrained("xvjiarui/stable-diffusion-2-inpainting")
prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
prng_seed = jax.random.PRNGKey(0)
num_inference_steps = 50
num_samples = jax.device_count()
prompt = num_samples * [prompt]
init_image = num_samples * [init_image]
mask_image = num_samples * [mask_image]
prompt_ids, processed_masked_images, processed_masks = pipeline.prepare_inputs(prompt, init_image, mask_image)
# shard inputs and rng
params = replicate(params)
prng_seed = jax.random.split(prng_seed, jax.device_count())
prompt_ids = shard(prompt_ids)
processed_masked_images = shard(processed_masked_images)
processed_masks = shard(processed_masks)
images = pipeline(prompt_ids, processed_masks, processed_masked_images, params, prng_seed, num_inference_steps, jit=True).images
images = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:])))
```
### Image-to-Image text-guided generation with Stable Diffusion
The `StableDiffusionImg2ImgPipeline` lets you pass a text prompt and an initial image to condition the generation of new images.

View File

@@ -34,8 +34,8 @@ RUN python3 -m pip install --no-cache-dir --upgrade pip && \
datasets \
hf-doc-builder \
huggingface-hub \
Jinja2 \
librosa \
modelcards \
numpy \
scipy \
tensorboard \

View File

@@ -36,8 +36,8 @@ RUN python3 -m pip install --no-cache-dir --upgrade pip && \
datasets \
hf-doc-builder \
huggingface-hub \
Jinja2 \
librosa \
modelcards \
numpy \
scipy \
tensorboard \

View File

@@ -34,8 +34,8 @@ RUN python3 -m pip install --no-cache-dir --upgrade pip && \
datasets \
hf-doc-builder \
huggingface-hub \
Jinja2 \
librosa \
modelcards \
numpy \
scipy \
tensorboard \

View File

@@ -34,8 +34,8 @@ RUN python3 -m pip install --no-cache-dir --upgrade pip && \
datasets \
hf-doc-builder \
huggingface-hub \
Jinja2 \
librosa \
modelcards \
numpy \
scipy \
tensorboard \

View File

@@ -33,8 +33,8 @@ RUN python3 -m pip install --no-cache-dir --upgrade pip && \
datasets \
hf-doc-builder \
huggingface-hub \
Jinja2 \
librosa \
modelcards \
numpy \
scipy \
tensorboard \

View File

@@ -33,8 +33,8 @@ RUN python3 -m pip install --no-cache-dir --upgrade pip && \
datasets \
hf-doc-builder \
huggingface-hub \
Jinja2 \
librosa \
modelcards \
numpy \
scipy \
tensorboard \

View File

@@ -54,7 +54,7 @@ doc-builder preview {package_name} {path_to_docs}
For example:
```bash
doc-builder preview diffusers docs/source/
doc-builder preview diffusers docs/source/en
```
The docs will be viewable at [http://localhost:3000](http://localhost:3000). You can also preview the docs once you have opened a PR. You will see a bot add a comment to a link where the documentation with your changes lives.
@@ -126,23 +126,28 @@ When adding a new pipeline:
- Paper abstract
- Tips and tricks and how to use it best
- Possible an end-to-end example of how to use it
- Add all the pipeline classes that should be linked in the diffusion model. These classes should be added using our Markdown syntax. Usually as follows:
```
## XXXPipeline
[[autodoc]] XXXPipeline
```
This will include every public method of the pipeline that is documented. You can specify which methods should be in the docs:
- Add all the pipeline classes that should be linked in the diffusion model. These classes should be added using our Markdown syntax. By default as follows:
```
## XXXPipeline
[[autodoc]] XXXPipeline
- all
- __call__
```
This will include every public method of the pipeline that is documented, as well as the `__call__` method that is not documented by default. If you just want to add additional methods that are not documented, you can put the list of all methods to add in a list that contains `all`.
```
[[autodoc]] XXXPipeline
- all
- __call__
- enable_attention_slicing
- disable_attention_slicing
- enable_xformers_memory_efficient_attention
- disable_xformers_memory_efficient_attention
```
You can follow the same process to create a new scheduler under the `docs/source/api/schedulers` folder
### Writing source documentation
@@ -155,9 +160,9 @@ adds a link to its documentation with this syntax: \[\`XXXClass\`\] or \[\`funct
function to be in the main package.
If you want to create a link to some internal class or function, you need to
provide its path. For instance: \[\`pipeline_utils.ImagePipelineOutput\`\]. This will be converted into a link with
`pipeline_utils.ImagePipelineOutput` in the description. To get rid of the path and only keep the name of the object you are
linking to in the description, add a ~: \[\`~pipeline_utils.ImagePipelineOutput\`\] will generate a link with `ImagePipelineOutput` in the description.
provide its path. For instance: \[\`pipelines.ImagePipelineOutput\`\]. This will be converted into a link with
`pipelines.ImagePipelineOutput` in the description. To get rid of the path and only keep the name of the object you are
linking to in the description, add a ~: \[\`~pipelines.ImagePipelineOutput\`\] will generate a link with `ImagePipelineOutput` in the description.
The same works for methods so you can either use \[\`XXXClass.method\`\] or \[~\`XXXClass.method\`\].

57
docs/TRANSLATING.md Normal file
View File

@@ -0,0 +1,57 @@
### Translating the Diffusers documentation into your language
As part of our mission to democratize machine learning, we'd love to make the Diffusers library available in many more languages! Follow the steps below if you want to help translate the documentation into your language 🙏.
**🗞️ Open an issue**
To get started, navigate to the [Issues](https://github.com/huggingface/diffusers/issues) page of this repo and check if anyone else has opened an issue for your language. If not, open a new issue by selecting the "Translation template" from the "New issue" button.
Once an issue exists, post a comment to indicate which chapters you'd like to work on, and we'll add your name to the list.
**🍴 Fork the repository**
First, you'll need to [fork the Diffusers repo](https://docs.github.com/en/get-started/quickstart/fork-a-repo). You can do this by clicking on the **Fork** button on the top-right corner of this repo's page.
Once you've forked the repo, you'll want to get the files on your local machine for editing. You can do that by cloning the fork with Git as follows:
```bash
git clone https://github.com/YOUR-USERNAME/diffusers.git
```
**📋 Copy-paste the English version with a new language code**
The documentation files are in one leading directory:
- [`docs/source`](https://github.com/huggingface/diffusers/tree/main/docs/source): All the documentation materials are organized here by language.
You'll only need to copy the files in the [`docs/source/en`](https://github.com/huggingface/diffusers/tree/main/docs/source/en) directory, so first navigate to your fork of the repo and run the following:
```bash
cd ~/path/to/diffusers/docs
cp -r source/en source/LANG-ID
```
Here, `LANG-ID` should be one of the ISO 639-1 or ISO 639-2 language codes -- see [here](https://www.loc.gov/standards/iso639-2/php/code_list.php) for a handy table.
**✍️ Start translating**
The fun part comes - translating the text!
The first thing we recommend is translating the part of the `_toctree.yml` file that corresponds to your doc chapter. This file is used to render the table of contents on the website.
> 🙋 If the `_toctree.yml` file doesn't yet exist for your language, you can create one by copy-pasting from the English version and deleting the sections unrelated to your chapter. Just make sure it exists in the `docs/source/LANG-ID/` directory!
The fields you should add are `local` (with the name of the file containing the translation; e.g. `autoclass_tutorial`), and `title` (with the title of the doc in your language; e.g. `Load pretrained instances with an AutoClass`) -- as a reference, here is the `_toctree.yml` for [English](https://github.com/huggingface/diffusers/blob/main/docs/source/en/_toctree.yml):
```yaml
- sections:
- local: pipeline_tutorial # Do not change this! Use the same name for your .md file
title: Pipelines for inference # Translate this!
...
title: Tutorials # Translate this!
```
Once you have translated the `_toctree.yml` file, you can start translating the [MDX](https://mdxjs.com/) files associated with your docs chapter.
> 🙋 If you'd like others to help you with the translation, you should [open an issue](https://github.com/huggingface/diffusers/issues) and tag @patrickvonplaten.

View File

@@ -1,178 +0,0 @@
- sections:
- local: index
title: "🧨 Diffusers"
- local: quicktour
title: "Quicktour"
- local: installation
title: "Installation"
title: "Get started"
- sections:
- sections:
- local: using-diffusers/loading
title: "Loading Pipelines, Models, and Schedulers"
- local: using-diffusers/schedulers
title: "Using different Schedulers"
- local: using-diffusers/configuration
title: "Configuring Pipelines, Models, and Schedulers"
- local: using-diffusers/custom_pipeline_overview
title: "Loading and Adding Custom Pipelines"
title: "Loading & Hub"
- sections:
- local: using-diffusers/unconditional_image_generation
title: "Unconditional Image Generation"
- local: using-diffusers/conditional_image_generation
title: "Text-to-Image Generation"
- local: using-diffusers/img2img
title: "Text-Guided Image-to-Image"
- local: using-diffusers/inpaint
title: "Text-Guided Image-Inpainting"
- local: using-diffusers/depth2img
title: "Text-Guided Depth-to-Image"
- local: using-diffusers/reusing_seeds
title: "Reusing seeds for deterministic generation"
- local: using-diffusers/custom_pipeline_examples
title: "Community Pipelines"
- local: using-diffusers/contribute_pipeline
title: "How to contribute a Pipeline"
title: "Pipelines for Inference"
- sections:
- local: using-diffusers/rl
title: "Reinforcement Learning"
- local: using-diffusers/audio
title: "Audio"
- local: using-diffusers/other-modalities
title: "Other Modalities"
title: "Taking Diffusers Beyond Images"
title: "Using Diffusers"
- sections:
- local: optimization/fp16
title: "Memory and Speed"
- local: optimization/xformers
title: "xFormers"
- local: optimization/onnx
title: "ONNX"
- local: optimization/open_vino
title: "OpenVINO"
- local: optimization/mps
title: "MPS"
- local: optimization/habana
title: "Habana Gaudi"
title: "Optimization/Special Hardware"
- sections:
- local: training/overview
title: "Overview"
- local: training/unconditional_training
title: "Unconditional Image Generation"
- local: training/text_inversion
title: "Textual Inversion"
- local: training/dreambooth
title: "Dreambooth"
- local: training/text2image
title: "Text-to-image fine-tuning"
title: "Training"
- sections:
- local: conceptual/stable_diffusion
title: "Stable Diffusion"
- local: conceptual/philosophy
title: "Philosophy"
- local: conceptual/contribution
title: "How to contribute?"
title: "Conceptual Guides"
- sections:
- sections:
- local: api/models
title: "Models"
- local: api/diffusion_pipeline
title: "Diffusion Pipeline"
- local: api/logging
title: "Logging"
- local: api/configuration
title: "Configuration"
- local: api/outputs
title: "Outputs"
title: "Main Classes"
- sections:
- local: api/pipelines/overview
title: "Overview"
- local: api/pipelines/alt_diffusion
title: "AltDiffusion"
- local: api/pipelines/cycle_diffusion
title: "Cycle Diffusion"
- local: api/pipelines/ddim
title: "DDIM"
- local: api/pipelines/ddpm
title: "DDPM"
- local: api/pipelines/latent_diffusion
title: "Latent Diffusion"
- local: api/pipelines/latent_diffusion_uncond
title: "Unconditional Latent Diffusion"
- local: api/pipelines/paint_by_example
title: "PaintByExample"
- local: api/pipelines/pndm
title: "PNDM"
- local: api/pipelines/score_sde_ve
title: "Score SDE VE"
- local: api/pipelines/stable_diffusion
title: "Stable Diffusion"
- local: api/pipelines/stable_diffusion_2
title: "Stable Diffusion 2"
- local: api/pipelines/stable_diffusion_safe
title: "Safe Stable Diffusion"
- local: api/pipelines/stochastic_karras_ve
title: "Stochastic Karras VE"
- local: api/pipelines/dance_diffusion
title: "Dance Diffusion"
- local: api/pipelines/unclip
title: "UnCLIP"
- local: api/pipelines/versatile_diffusion
title: "Versatile Diffusion"
- local: api/pipelines/vq_diffusion
title: "VQ Diffusion"
- local: api/pipelines/repaint
title: "RePaint"
- local: api/pipelines/audio_diffusion
title: "Audio Diffusion"
title: "Pipelines"
- sections:
- local: api/schedulers/overview
title: "Overview"
- local: api/schedulers/ddim
title: "DDIM"
- local: api/schedulers/ddpm
title: "DDPM"
- local: api/schedulers/singlestep_dpm_solver
title: "Singlestep DPM-Solver"
- local: api/schedulers/multistep_dpm_solver
title: "Multistep DPM-Solver"
- local: api/schedulers/heun
title: "Heun Scheduler"
- local: api/schedulers/dpm_discrete
title: "DPM Discrete Scheduler"
- local: api/schedulers/dpm_discrete_ancestral
title: "DPM Discrete Scheduler with ancestral sampling"
- local: api/schedulers/stochastic_karras_ve
title: "Stochastic Kerras VE"
- local: api/schedulers/lms_discrete
title: "Linear Multistep"
- local: api/schedulers/pndm
title: "PNDM"
- local: api/schedulers/score_sde_ve
title: "VE-SDE"
- local: api/schedulers/ipndm
title: "IPNDM"
- local: api/schedulers/score_sde_vp
title: "VP-SDE"
- local: api/schedulers/euler
title: "Euler scheduler"
- local: api/schedulers/euler_ancestral
title: "Euler Ancestral Scheduler"
- local: api/schedulers/vq_diffusion
title: "VQDiffusionScheduler"
- local: api/schedulers/repaint
title: "RePaint Scheduler"
title: "Schedulers"
- sections:
- local: api/experimental/rl
title: "RL Planning"
title: "Experimental Features"
title: "API"

View File

@@ -1,17 +0,0 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Philosophy
- Readability and clarity are preferred over highly optimized code. A strong importance is put on providing readable, intuitive and elementary code design. *E.g.*, the provided [schedulers](https://github.com/huggingface/diffusers/tree/main/src/diffusers/schedulers) are separated from the provided [models](https://github.com/huggingface/diffusers/tree/main/src/diffusers/models) and use well-commented code that can be read alongside the original paper.
- Diffusers is **modality independent** and focuses on providing pretrained models and tools to build systems that generate **continuous outputs**, *e.g.* vision and audio. This is one of the guiding goals even if the initial pipelines are devoted to vision tasks.
- Diffusion models and schedulers are provided as concise, elementary building blocks. In contrast, diffusion pipelines are a collection of end-to-end diffusion systems that can be used out-of-the-box, should stay as close as possible to their original implementations and can include components of other libraries, such as text encoders. Examples of diffusion pipelines are [Glide](https://github.com/openai/glide-text2im), [Latent Diffusion](https://github.com/CompVis/latent-diffusion) and [Stable Diffusion](https://github.com/compvis/stable-diffusion).

232
docs/source/en/_toctree.yml Normal file
View File

@@ -0,0 +1,232 @@
- sections:
- local: index
title: 🧨 Diffusers
- local: quicktour
title: Quicktour
- local: stable_diffusion
title: Stable Diffusion
- local: installation
title: Installation
title: Get started
- sections:
- sections:
- local: using-diffusers/loading
title: Loading Pipelines, Models, and Schedulers
- local: using-diffusers/schedulers
title: Using different Schedulers
- local: using-diffusers/configuration
title: Configuring Pipelines, Models, and Schedulers
- local: using-diffusers/custom_pipeline_overview
title: Loading and Adding Custom Pipelines
- local: using-diffusers/kerascv
title: Using KerasCV Stable Diffusion Checkpoints in Diffusers
title: Loading & Hub
- sections:
- local: using-diffusers/unconditional_image_generation
title: Unconditional Image Generation
- local: using-diffusers/conditional_image_generation
title: Text-to-Image Generation
- local: using-diffusers/img2img
title: Text-Guided Image-to-Image
- local: using-diffusers/inpaint
title: Text-Guided Image-Inpainting
- local: using-diffusers/depth2img
title: Text-Guided Depth-to-Image
- local: using-diffusers/controlling_generation
title: Controlling generation
- local: using-diffusers/reusing_seeds
title: Reusing seeds for deterministic generation
- local: using-diffusers/reproducibility
title: Reproducibility
- local: using-diffusers/custom_pipeline_examples
title: Community Pipelines
- local: using-diffusers/contribute_pipeline
title: How to contribute a Pipeline
- local: using-diffusers/using_safetensors
title: Using safetensors
title: Pipelines for Inference
- sections:
- local: using-diffusers/rl
title: Reinforcement Learning
- local: using-diffusers/audio
title: Audio
- local: using-diffusers/other-modalities
title: Other Modalities
title: Taking Diffusers Beyond Images
title: Using Diffusers
- sections:
- local: optimization/fp16
title: Memory and Speed
- local: optimization/torch2.0
title: Torch2.0 support
- local: optimization/xformers
title: xFormers
- local: optimization/onnx
title: ONNX
- local: optimization/open_vino
title: OpenVINO
- local: optimization/mps
title: MPS
- local: optimization/habana
title: Habana Gaudi
title: Optimization/Special Hardware
- sections:
- local: training/overview
title: Overview
- local: training/unconditional_training
title: Unconditional Image Generation
- local: training/text_inversion
title: Textual Inversion
- local: training/dreambooth
title: Dreambooth
- local: training/text2image
title: Text-to-image fine-tuning
- local: training/lora
title: LoRA Support in Diffusers
title: Training
- sections:
- local: conceptual/philosophy
title: Philosophy
- local: conceptual/contribution
title: How to contribute?
- local: conceptual/ethical_guidelines
title: Diffusers' Ethical Guidelines
title: Conceptual Guides
- sections:
- sections:
- local: api/models
title: Models
- local: api/diffusion_pipeline
title: Diffusion Pipeline
- local: api/logging
title: Logging
- local: api/configuration
title: Configuration
- local: api/outputs
title: Outputs
- local: api/loaders
title: Loaders
title: Main Classes
- sections:
- local: api/pipelines/overview
title: Overview
- local: api/pipelines/alt_diffusion
title: AltDiffusion
- local: api/pipelines/audio_diffusion
title: Audio Diffusion
- local: api/pipelines/cycle_diffusion
title: Cycle Diffusion
- local: api/pipelines/dance_diffusion
title: Dance Diffusion
- local: api/pipelines/ddim
title: DDIM
- local: api/pipelines/ddpm
title: DDPM
- local: api/pipelines/dit
title: DiT
- local: api/pipelines/latent_diffusion
title: Latent Diffusion
- local: api/pipelines/paint_by_example
title: PaintByExample
- local: api/pipelines/pndm
title: PNDM
- local: api/pipelines/repaint
title: RePaint
- local: api/pipelines/stable_diffusion_safe
title: Safe Stable Diffusion
- local: api/pipelines/score_sde_ve
title: Score SDE VE
- local: api/pipelines/semantic_stable_diffusion
title: Semantic Guidance
- sections:
- local: api/pipelines/stable_diffusion/overview
title: Overview
- local: api/pipelines/stable_diffusion/text2img
title: Text-to-Image
- local: api/pipelines/stable_diffusion/img2img
title: Image-to-Image
- local: api/pipelines/stable_diffusion/inpaint
title: Inpaint
- local: api/pipelines/stable_diffusion/depth2img
title: Depth-to-Image
- local: api/pipelines/stable_diffusion/image_variation
title: Image-Variation
- local: api/pipelines/stable_diffusion/upscale
title: Super-Resolution
- local: api/pipelines/stable_diffusion/latent_upscale
title: Stable-Diffusion-Latent-Upscaler
- local: api/pipelines/stable_diffusion/pix2pix
title: InstructPix2Pix
- local: api/pipelines/stable_diffusion/attend_and_excite
title: Attend and Excite
- local: api/pipelines/stable_diffusion/pix2pix_zero
title: Pix2Pix Zero
- local: api/pipelines/stable_diffusion/self_attention_guidance
title: Self-Attention Guidance
- local: api/pipelines/stable_diffusion/panorama
title: MultiDiffusion Panorama
title: Stable Diffusion
- local: api/pipelines/stable_diffusion_2
title: Stable Diffusion 2
- local: api/pipelines/stable_unclip
title: Stable unCLIP
- local: api/pipelines/stochastic_karras_ve
title: Stochastic Karras VE
- local: api/pipelines/unclip
title: UnCLIP
- local: api/pipelines/latent_diffusion_uncond
title: Unconditional Latent Diffusion
- local: api/pipelines/versatile_diffusion
title: Versatile Diffusion
- local: api/pipelines/vq_diffusion
title: VQ Diffusion
title: Pipelines
- sections:
- local: api/schedulers/overview
title: Overview
- local: api/schedulers/ddim
title: DDIM
- local: api/schedulers/ddim_inverse
title: DDIMInverse
- local: api/schedulers/ddpm
title: DDPM
- local: api/schedulers/deis
title: DEIS
- local: api/schedulers/dpm_discrete
title: DPM Discrete Scheduler
- local: api/schedulers/dpm_discrete_ancestral
title: DPM Discrete Scheduler with ancestral sampling
- local: api/schedulers/euler_ancestral
title: Euler Ancestral Scheduler
- local: api/schedulers/euler
title: Euler scheduler
- local: api/schedulers/heun
title: Heun Scheduler
- local: api/schedulers/ipndm
title: IPNDM
- local: api/schedulers/lms_discrete
title: Linear Multistep
- local: api/schedulers/multistep_dpm_solver
title: Multistep DPM-Solver
- local: api/schedulers/pndm
title: PNDM
- local: api/schedulers/repaint
title: RePaint Scheduler
- local: api/schedulers/singlestep_dpm_solver
title: Singlestep DPM-Solver
- local: api/schedulers/stochastic_karras_ve
title: Stochastic Kerras VE
- local: api/schedulers/unipc
title: UniPCMultistepScheduler
- local: api/schedulers/score_sde_ve
title: VE-SDE
- local: api/schedulers/score_sde_vp
title: VP-SDE
- local: api/schedulers/vq_diffusion
title: VQDiffusionScheduler
title: Schedulers
- sections:
- local: api/experimental/rl
title: RL Planning
title: Experimental Features
title: API

View File

@@ -30,13 +30,18 @@ Any pipeline object can be saved locally with [`~DiffusionPipeline.save_pretrain
## DiffusionPipeline
[[autodoc]] DiffusionPipeline
- from_pretrained
- save_pretrained
- to
- all
- __call__
- device
- to
- components
## ImagePipelineOutput
By default diffusion pipelines return an object of class
[[autodoc]] pipeline_utils.ImagePipelineOutput
[[autodoc]] pipelines.ImagePipelineOutput
## AudioPipelineOutput
By default diffusion pipelines return an object of class
[[autodoc]] pipelines.AudioPipelineOutput

View File

@@ -0,0 +1,30 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Loaders
There are many ways to train adapter neural networks for diffusion models, such as
- [Textual Inversion](./training/text_inversion.mdx)
- [LoRA](https://github.com/cloneofsimo/lora)
- [Hypernetworks](https://arxiv.org/abs/1609.09106)
Such adapter neural networks often only consist of a fraction of the number of weights compared
to the pretrained model and as such are very portable. The Diffusers library offers an easy-to-use
API to load such adapter neural networks via the [`loaders.py` module](https://github.com/huggingface/diffusers/blob/main/src/diffusers/loaders.py).
**Note**: This module is still highly experimental and prone to future changes.
## LoaderMixins
### UNet2DConditionLoadersMixin
[[autodoc]] loaders.UNet2DConditionLoadersMixin

View File

@@ -1,4 +1,4 @@
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -41,13 +41,13 @@ The models are built on the base class ['ModelMixin'] that is a `torch.nn.module
[[autodoc]] models.vae.DecoderOutput
## VQEncoderOutput
[[autodoc]] models.vae.VQEncoderOutput
[[autodoc]] models.vq_model.VQEncoderOutput
## VQModel
[[autodoc]] VQModel
## AutoencoderKLOutput
[[autodoc]] models.vae.AutoencoderKLOutput
[[autodoc]] models.autoencoder_kl.AutoencoderKLOutput
## AutoencoderKL
[[autodoc]] AutoencoderKL
@@ -56,7 +56,7 @@ The models are built on the base class ['ModelMixin'] that is a `torch.nn.module
[[autodoc]] Transformer2DModel
## Transformer2DModelOutput
[[autodoc]] models.attention.Transformer2DModelOutput
[[autodoc]] models.transformer_2d.Transformer2DModelOutput
## PriorTransformer
[[autodoc]] models.prior_transformer.PriorTransformer

View File

@@ -25,7 +25,7 @@ pipeline = DDIMPipeline.from_pretrained("google/ddpm-cifar10-32")
outputs = pipeline()
```
The `outputs` object is a [`~pipeline_utils.ImagePipelineOutput`], as we can see in the
The `outputs` object is a [`~pipelines.ImagePipelineOutput`], as we can see in the
documentation of that class below, it means it has an image attribute.
You can access each attribute as you would usually do, and if that attribute has not been returned by the model, you will get `None`:

View File

@@ -28,7 +28,7 @@ The abstract of the paper is the following:
## Tips
- AltDiffusion is conceptually exaclty the same as [Stable Diffusion](./api/pipelines/stable_diffusion).
- AltDiffusion is conceptually exaclty the same as [Stable Diffusion](./api/pipelines/stable_diffusion/overview).
- *Run AltDiffusion*
@@ -69,15 +69,15 @@ If you want to use all possible use cases in a single `DiffusionPipeline` we rec
## AltDiffusionPipelineOutput
[[autodoc]] pipelines.alt_diffusion.AltDiffusionPipelineOutput
- all
- __call__
## AltDiffusionPipeline
[[autodoc]] AltDiffusionPipeline
- all
- __call__
- enable_attention_slicing
- disable_attention_slicing
## AltDiffusionImg2ImgPipeline
[[autodoc]] AltDiffusionImg2ImgPipeline
- all
- __call__
- enable_attention_slicing
- disable_attention_slicing

View File

@@ -91,12 +91,8 @@ display(Audio(output.audios[0], rate=pipe.mel.get_sample_rate()))
## AudioDiffusionPipeline
[[autodoc]] AudioDiffusionPipeline
- __call__
- encode
- slerp
- all
- __call__
## Mel
[[autodoc]] Mel
- audio_slice_to_image
- image_to_audio

View File

@@ -96,4 +96,5 @@ image.save("black_to_blue.png")
## CycleDiffusionPipeline
[[autodoc]] CycleDiffusionPipeline
- all
- __call__

View File

@@ -30,4 +30,5 @@ The original codebase of this implementation can be found [here](https://github.
## DanceDiffusionPipeline
[[autodoc]] DanceDiffusionPipeline
- __call__
- all
- __call__

View File

@@ -32,4 +32,5 @@ For questions, feel free to contact the author on [tsong.me](https://tsong.me/).
## DDIMPipeline
[[autodoc]] DDIMPipeline
- __call__
- all
- __call__

View File

@@ -33,4 +33,5 @@ The original codebase of this paper can be found [here](https://github.com/hojon
# DDPMPipeline
[[autodoc]] DDPMPipeline
- __call__
- all
- __call__

View File

@@ -0,0 +1,59 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Scalable Diffusion Models with Transformers (DiT)
## Overview
[Scalable Diffusion Models with Transformers](https://arxiv.org/abs/2212.09748) (DiT) by William Peebles and Saining Xie.
The abstract of the paper is the following:
*We explore a new class of diffusion models based on the transformer architecture. We train latent diffusion models of images, replacing the commonly-used U-Net backbone with a transformer that operates on latent patches. We analyze the scalability of our Diffusion Transformers (DiTs) through the lens of forward pass complexity as measured by Gflops. We find that DiTs with higher Gflops -- through increased transformer depth/width or increased number of input tokens -- consistently have lower FID. In addition to possessing good scalability properties, our largest DiT-XL/2 models outperform all prior diffusion models on the class-conditional ImageNet 512x512 and 256x256 benchmarks, achieving a state-of-the-art FID of 2.27 on the latter.*
The original codebase of this paper can be found here: [facebookresearch/dit](https://github.com/facebookresearch/dit).
## Available Pipelines:
| Pipeline | Tasks | Colab
|---|---|:---:|
| [pipeline_dit.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/dit/pipeline_dit.py) | *Conditional Image Generation* | - |
## Usage example
```python
from diffusers import DiTPipeline, DPMSolverMultistepScheduler
import torch
pipe = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256", torch_dtype=torch.float16)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to("cuda")
# pick words from Imagenet class labels
pipe.labels # to print all available words
# pick words that exist in ImageNet
words = ["white shark", "umbrella"]
class_ids = pipe.get_label_ids(words)
generator = torch.manual_seed(33)
output = pipe(class_labels=class_ids, num_inference_steps=25, generator=generator)
image = output.images[0] # label 'white shark'
```
## DiTPipeline
[[autodoc]] DiTPipeline
- all
- __call__

View File

@@ -40,8 +40,10 @@ The original codebase can be found [here](https://github.com/CompVis/latent-diff
## LDMTextToImagePipeline
[[autodoc]] LDMTextToImagePipeline
- __call__
- all
- __call__
## LDMSuperResolutionPipeline
[[autodoc]] LDMSuperResolutionPipeline
- __call__
- all
- __call__

View File

@@ -38,4 +38,5 @@ The original codebase can be found [here](https://github.com/CompVis/latent-diff
## LDMPipeline
[[autodoc]] LDMPipeline
- __call__
- all
- __call__

View File

@@ -57,13 +57,24 @@ available a colab notebook to directly try them out.
| [pndm](./pndm) | [**Pseudo Numerical Methods for Diffusion Models on Manifolds**](https://arxiv.org/abs/2202.09778) | Unconditional Image Generation |
| [score_sde_ve](./score_sde_ve) | [**Score-Based Generative Modeling through Stochastic Differential Equations**](https://openreview.net/forum?id=PxTIG12RRHS) | Unconditional Image Generation |
| [score_sde_vp](./score_sde_vp) | [**Score-Based Generative Modeling through Stochastic Differential Equations**](https://openreview.net/forum?id=PxTIG12RRHS) | Unconditional Image Generation |
| [stable_diffusion](./stable_diffusion) | [**Stable Diffusion**](https://stability.ai/blog/stable-diffusion-public-release) | Text-to-Image Generation | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/training_example.ipynb)
| [stable_diffusion](./stable_diffusion) | [**Stable Diffusion**](https://stability.ai/blog/stable-diffusion-public-release) | Image-to-Image Text-Guided Generation | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/image_2_image_using_diffusers.ipynb)
| [stable_diffusion](./stable_diffusion) | [**Stable Diffusion**](https://stability.ai/blog/stable-diffusion-public-release) | Text-Guided Image Inpainting | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/in_painting_with_stable_diffusion_using_diffusers.ipynb)
| [stable_diffusion_2](./stable_diffusion_2) | [**Stable Diffusion 2**](https://stability.ai/blog/stable-diffusion-v2-release) | Text-to-Image Generation |
| [semantic_stable_diffusion](./semantic_stable_diffusion) | [**SEGA: Instructing Diffusion using Semantic Dimensions**](https://arxiv.org/abs/2301.12247) | Text-to-Image Generation |
| [stable_diffusion_text2img](./stable_diffusion/text2img) | [**Stable Diffusion**](https://stability.ai/blog/stable-diffusion-public-release) | Text-to-Image Generation | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/training_example.ipynb)
| [stable_diffusion_img2img](./stable_diffusion/img2img) | [**Stable Diffusion**](https://stability.ai/blog/stable-diffusion-public-release) | Image-to-Image Text-Guided Generation | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/image_2_image_using_diffusers.ipynb)
| [stable_diffusion_inpaint](./stable_diffusion/inpaint) | [**Stable Diffusion**](https://stability.ai/blog/stable-diffusion-public-release) | Text-Guided Image Inpainting | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/in_painting_with_stable_diffusion_using_diffusers.ipynb)
| [stable_diffusion_panorama](./stable_diffusion/panorama) | [**MultiDiffusion: Fusing Diffusion Paths for Controlled Image Generation**](https://arxiv.org/abs/2302.08113) | Text-Guided Panorama View Generation |
| [stable_diffusion_pix2pix](./stable_diffusion/pix2pix) | [**InstructPix2Pix: Learning to Follow Image Editing Instructions**](https://arxiv.org/abs/2211.09800) | Text-Based Image Editing |
| [stable_diffusion_pix2pix_zero](./stable_diffusion/pix2pix_zero) | [**Zero-shot Image-to-Image Translation**](https://arxiv.org/abs/2302.03027) | Text-Based Image Editing |
| [stable_diffusion_attend_and_excite](./stable_diffusion/attend_and_excite) | [**Attend and Excite: Attention-Based Semantic Guidance for Text-to-Image Diffusion Models**](https://arxiv.org/abs/2301.13826) | Text-to-Image Generation |
| [stable_diffusion_self_attention_guidance](./stable_diffusion/self_attention_guidance) | [**Self-Attention Guidance**](https://arxiv.org/abs/2210.00939) | Text-to-Image Generation |
| [stable_diffusion_image_variation](./stable_diffusion/image_variation) | [**Stable Diffusion Image Variations**](https://github.com/LambdaLabsML/lambda-diffusers#stable-diffusion-image-variations) | Image-to-Image Generation |
| [stable_diffusion_latent_upscale](./stable_diffusion/latent_upscale) | [**Stable Diffusion Latent Upscaler**](https://twitter.com/StabilityAI/status/1590531958815064065) | Text-Guided Super Resolution Image-to-Image |
| [stable_diffusion_2](./stable_diffusion_2/) | [**Stable Diffusion 2**](https://stability.ai/blog/stable-diffusion-v2-release) | Text-to-Image Generation |
| [stable_diffusion_2](./stable_diffusion_2) | [**Stable Diffusion 2**](https://stability.ai/blog/stable-diffusion-v2-release) | Text-Guided Image Inpainting |
| [stable_diffusion_2](./stable_diffusion_2) | [**Stable Diffusion 2**](https://stability.ai/blog/stable-diffusion-v2-release) | Depth-to-Image Text-Guided Generation |
| [stable_diffusion_2](./stable_diffusion_2) | [**Stable Diffusion 2**](https://stability.ai/blog/stable-diffusion-v2-release) | Text-Guided Super Resolution Image-to-Image |
| [stable_diffusion_safe](./stable_diffusion_safe) | [**Safe Stable Diffusion**](https://arxiv.org/abs/2211.05105) | Text-Guided Generation | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/ml-research/safe-latent-diffusion/blob/main/examples/Safe%20Latent%20Diffusion.ipynb)
| [stable_unclip](./stable_unclip) | **Stable unCLIP** | Text-to-Image Generation |
| [stable_unclip](./stable_unclip) | **Stable unCLIP** | Image-to-Image Text-Guided Generation |
| [stochastic_karras_ve](./stochastic_karras_ve) | [**Elucidating the Design Space of Diffusion-Based Generative Models**](https://arxiv.org/abs/2206.00364) | Unconditional Image Generation |
| [unclip](./unclip) | [Hierarchical Text-Conditional Image Generation with CLIP Latents](https://arxiv.org/abs/2204.06125) | Text-to-Image Generation |
| [versatile_diffusion](./versatile_diffusion) | [Versatile Diffusion: Text, Images and Variations All in One Diffusion Model](https://arxiv.org/abs/2211.08332) | Text-to-Image Generation |

View File

@@ -69,5 +69,6 @@ image
```
## PaintByExamplePipeline
[[autodoc]] pipelines.paint_by_example.pipeline_paint_by_example.PaintByExamplePipeline
- __call__
[[autodoc]] PaintByExamplePipeline
- all
- __call__

View File

@@ -30,6 +30,6 @@ The original codebase can be found [here](https://github.com/luping-liu/PNDM).
## PNDMPipeline
[[autodoc]] pipelines.pndm.pipeline_pndm.PNDMPipeline
- __call__
[[autodoc]] PNDMPipeline
- all
- __call__

View File

@@ -72,6 +72,6 @@ inpainted_image = output.images[0]
```
## RePaintPipeline
[[autodoc]] pipelines.repaint.pipeline_repaint.RePaintPipeline
- __call__
[[autodoc]] RePaintPipeline
- all
- __call__

View File

@@ -32,5 +32,5 @@ This pipeline implements the Variance Expanding (VE) variant of the method.
## ScoreSdeVePipeline
[[autodoc]] ScoreSdeVePipeline
- __call__
- all
- __call__

View File

@@ -0,0 +1,79 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Semantic Guidance
Semantic Guidance for Diffusion Models was proposed in [SEGA: Instructing Diffusion using Semantic Dimensions](https://arxiv.org/abs/2301.12247) and provides strong semantic control over the image generation.
Small changes to the text prompt usually result in entirely different output images. However, with SEGA a variety of changes to the image are enabled that can be controlled easily and intuitively, and stay true to the original image composition.
The abstract of the paper is the following:
*Text-to-image diffusion models have recently received a lot of interest for their astonishing ability to produce high-fidelity images from text only. However, achieving one-shot generation that aligns with the user's intent is nearly impossible, yet small changes to the input prompt often result in very different images. This leaves the user with little semantic control. To put the user in control, we show how to interact with the diffusion process to flexibly steer it along semantic directions. This semantic guidance (SEGA) allows for subtle and extensive edits, changes in composition and style, as well as optimizing the overall artistic conception. We demonstrate SEGA's effectiveness on a variety of tasks and provide evidence for its versatility and flexibility.*
*Overview*:
| Pipeline | Tasks | Colab | Demo
|---|---|:---:|:---:|
| [pipeline_semantic_stable_diffusion.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion) | *Text-to-Image Generation* | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/ml-research/semantic-image-editing/blob/main/examples/SemanticGuidance.ipynb) | [Coming Soon](https://huggingface.co/AIML-TUDA)
## Tips
- The Semantic Guidance pipeline can be used with any [Stable Diffusion](./api/pipelines/stable_diffusion/text2img) checkpoint.
### Run Semantic Guidance
The interface of [`SemanticStableDiffusionPipeline`] provides several additional parameters to influence the image generation.
Exemplary usage may look like this:
```python
import torch
from diffusers import SemanticStableDiffusionPipeline
pipe = SemanticStableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
pipe = pipe.to("cuda")
out = pipe(
prompt="a photo of the face of a woman",
num_images_per_prompt=1,
guidance_scale=7,
editing_prompt=[
"smiling, smile", # Concepts to apply
"glasses, wearing glasses",
"curls, wavy hair, curly hair",
"beard, full beard, mustache",
],
reverse_editing_direction=[False, False, False, False], # Direction of guidance i.e. increase all concepts
edit_warmup_steps=[10, 10, 10, 10], # Warmup period for each concept
edit_guidance_scale=[4, 5, 5, 5.4], # Guidance scale for each concept
edit_threshold=[
0.99,
0.975,
0.925,
0.96,
], # Threshold for each concept. Threshold equals the percentile of the latent space that will be discarded. I.e. threshold=0.99 uses 1% of the latent dimensions
edit_momentum_scale=0.3, # Momentum scale that will be added to the latent guidance
edit_mom_beta=0.6, # Momentum beta
edit_weights=[1, 1, 1, 1, 1], # Weights of the individual concepts against each other
)
```
For more examples check the colab notebook.
## StableDiffusionSafePipelineOutput
[[autodoc]] pipelines.semantic_stable_diffusion.SemanticStableDiffusionPipelineOutput
- all
## SemanticStableDiffusionPipeline
[[autodoc]] SemanticStableDiffusionPipeline
- all
- __call__

View File

@@ -0,0 +1,75 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Attend and Excite: Attention-Based Semantic Guidance for Text-to-Image Diffusion Models
## Overview
Attend and Excite for Stable Diffusion was proposed in [Attend-and-Excite: Attention-Based Semantic Guidance for Text-to-Image Diffusion Models](https://attendandexcite.github.io/Attend-and-Excite/) and provides textual attention control over the image generation.
The abstract of the paper is the following:
*Text-to-image diffusion models have recently received a lot of interest for their astonishing ability to produce high-fidelity images from text only. However, achieving one-shot generation that aligns with the user's intent is nearly impossible, yet small changes to the input prompt often result in very different images. This leaves the user with little semantic control. To put the user in control, we show how to interact with the diffusion process to flexibly steer it along semantic directions. This semantic guidance (SEGA) allows for subtle and extensive edits, changes in composition and style, as well as optimizing the overall artistic conception. We demonstrate SEGA's effectiveness on a variety of tasks and provide evidence for its versatility and flexibility.*
Resources
* [Project Page](https://attendandexcite.github.io/Attend-and-Excite/)
* [Paper](https://arxiv.org/abs/2301.13826)
* [Original Code](https://github.com/AttendAndExcite/Attend-and-Excite)
* [Demo](https://huggingface.co/spaces/AttendAndExcite/Attend-and-Excite)
## Available Pipelines:
| Pipeline | Tasks | Colab | Demo
|---|---|:---:|:---:|
| [pipeline_semantic_stable_diffusion_attend_and_excite.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_semantic_stable_diffusion_attend_and_excite) | *Text-to-Image Generation* | - | -
### Usage example
```python
import torch
from diffusers import StableDiffusionAttendAndExcitePipeline
model_id = "CompVis/stable-diffusion-v1-4"
pipe = StableDiffusionAttendAndExcitePipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
pipe = pipe.to("cuda")
prompt = "a cat and a frog"
# use get_indices function to find out indices of the tokens you want to alter
pipe.get_indices(prompt)
token_indices = [2, 5]
seed = 6141
generator = torch.Generator("cuda").manual_seed(seed)
images = pipe(
prompt=prompt,
token_indices=token_indices,
guidance_scale=7.5,
generator=generator,
num_inference_steps=50,
max_iter_to_alter=25,
).images
image = images[0]
image.save(f"../images/{prompt}_{seed}.png")
```
## StableDiffusionAttendAndExcitePipeline
[[autodoc]] StableDiffusionAttendAndExcitePipeline
- all
- __call__

View File

@@ -0,0 +1,33 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Depth-to-Image Generation
## StableDiffusionDepth2ImgPipeline
The depth-guided stable diffusion model was created by the researchers and engineers from [CompVis](https://github.com/CompVis), [Stability AI](https://stability.ai/), and [LAION](https://laion.ai/), as part of Stable Diffusion 2.0. It uses [MiDas](https://github.com/isl-org/MiDaS) to infer depth based on an image.
[`StableDiffusionDepth2ImgPipeline`] lets you pass a text prompt and an initial image to condition the generation of new images as well as a `depth_map` to preserve the images structure.
The original codebase can be found here:
- *Stable Diffusion v2*: [Stability-AI/stablediffusion](https://github.com/Stability-AI/stablediffusion#depth-conditional-stable-diffusion)
Available Checkpoints are:
- *stable-diffusion-2-depth*: [stabilityai/stable-diffusion-2-depth](https://huggingface.co/stabilityai/stable-diffusion-2-depth)
[[autodoc]] StableDiffusionDepth2ImgPipeline
- all
- __call__
- enable_attention_slicing
- disable_attention_slicing
- enable_xformers_memory_efficient_attention
- disable_xformers_memory_efficient_attention

View File

@@ -0,0 +1,31 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Image Variation
## StableDiffusionImageVariationPipeline
[`StableDiffusionImageVariationPipeline`] lets you generate variations from an input image using Stable Diffusion. It uses a fine-tuned version of Stable Diffusion model, trained by [Justin Pinkney](https://www.justinpinkney.com/) (@Buntworthy) at [Lambda](https://lambdalabs.com/)
The original codebase can be found here:
[Stable Diffusion Image Variations](https://github.com/LambdaLabsML/lambda-diffusers#stable-diffusion-image-variations)
Available Checkpoints are:
- *sd-image-variations-diffusers*: [lambdalabs/sd-image-variations-diffusers](https://huggingface.co/lambdalabs/sd-image-variations-diffusers)
[[autodoc]] StableDiffusionImageVariationPipeline
- all
- __call__
- enable_attention_slicing
- disable_attention_slicing
- enable_xformers_memory_efficient_attention
- disable_xformers_memory_efficient_attention

View File

@@ -0,0 +1,29 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Image-to-Image Generation
## StableDiffusionImg2ImgPipeline
The Stable Diffusion model was created by the researchers and engineers from [CompVis](https://github.com/CompVis), [Stability AI](https://stability.ai/), [runway](https://github.com/runwayml), and [LAION](https://laion.ai/). The [`StableDiffusionImg2ImgPipeline`] lets you pass a text prompt and an initial image to condition the generation of new images using Stable Diffusion.
The original codebase can be found here: [CampVis/stable-diffusion](https://github.com/CompVis/stable-diffusion/blob/main/scripts/img2img.py)
[`StableDiffusionImg2ImgPipeline`] is compatible with all Stable Diffusion checkpoints for [Text-to-Image](./text2img)
[[autodoc]] StableDiffusionImg2ImgPipeline
- all
- __call__
- enable_attention_slicing
- disable_attention_slicing
- enable_xformers_memory_efficient_attention
- disable_xformers_memory_efficient_attention

View File

@@ -0,0 +1,33 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Text-Guided Image Inpainting
## StableDiffusionInpaintPipeline
The Stable Diffusion model was created by the researchers and engineers from [CompVis](https://github.com/CompVis), [Stability AI](https://stability.ai/), [runway](https://github.com/runwayml), and [LAION](https://laion.ai/). The [`StableDiffusionInpaintPipeline`] lets you edit specific parts of an image by providing a mask and a text prompt using Stable Diffusion.
The original codebase can be found here:
- *Stable Diffusion V1*: [CampVis/stable-diffusion](https://github.com/runwayml/stable-diffusion#inpainting-with-stable-diffusion)
- *Stable Diffusion V2*: [Stability-AI/stablediffusion](https://github.com/Stability-AI/stablediffusion#image-inpainting-with-stable-diffusion)
Available checkpoints are:
- *stable-diffusion-inpainting (512x512 resolution)*: [runwayml/stable-diffusion-inpainting](https://huggingface.co/runwayml/stable-diffusion-inpainting)
- *stable-diffusion-2-inpainting (512x512 resolution)*: [stabilityai/stable-diffusion-2-inpainting](https://huggingface.co/stabilityai/stable-diffusion-2-inpainting)
[[autodoc]] StableDiffusionInpaintPipeline
- all
- __call__
- enable_attention_slicing
- disable_attention_slicing
- enable_xformers_memory_efficient_attention
- disable_xformers_memory_efficient_attention

View File

@@ -0,0 +1,33 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Stable Diffusion Latent Upscaler
## StableDiffusionLatentUpscalePipeline
The Stable Diffusion Latent Upscaler model was created by [Katherine Crowson](https://github.com/crowsonkb/k-diffusion) in collaboration with [Stability AI](https://stability.ai/). It can be used on top of any [`StableDiffusionUpscalePipeline`] checkpoint to enhance its output image resolution by a factor of 2.
A notebook that demonstrates the original implementation can be found here:
- [Stable Diffusion Upscaler Demo](https://colab.research.google.com/drive/1o1qYJcFeywzCIdkfKJy7cTpgZTCM2EI4)
Available Checkpoints are:
- *stabilityai/latent-upscaler*: [stabilityai/sd-x2-latent-upscaler](https://huggingface.co/stabilityai/sd-x2-latent-upscaler)
[[autodoc]] StableDiffusionLatentUpscalePipeline
- all
- __call__
- enable_sequential_cpu_offload
- enable_attention_slicing
- disable_attention_slicing
- enable_xformers_memory_efficient_attention
- disable_xformers_memory_efficient_attention

View File

@@ -25,9 +25,18 @@ For more details about how Stable Diffusion works and how it differs from the ba
| Pipeline | Tasks | Colab | Demo
|---|---|:---:|:---:|
| [pipeline_stable_diffusion.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py) | *Text-to-Image Generation* | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_diffusion.ipynb) | [🤗 Stable Diffusion](https://huggingface.co/spaces/stabilityai/stable-diffusion)
| [pipeline_stable_diffusion_img2img.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py) | *Image-to-Image Text-Guided Generation* | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/image_2_image_using_diffusers.ipynb) | [🤗 Diffuse the Rest](https://huggingface.co/spaces/huggingface/diffuse-the-rest)
| [pipeline_stable_diffusion_inpaint.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py) | **Experimental** *Text-Guided Image Inpainting* | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/in_painting_with_stable_diffusion_using_diffusers.ipynb) | Coming soon
| [StableDiffusionPipeline](./text2img) | *Text-to-Image Generation* | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_diffusion.ipynb) | [🤗 Stable Diffusion](https://huggingface.co/spaces/stabilityai/stable-diffusion)
| [StableDiffusionImg2ImgPipeline](./img2img) | *Image-to-Image Text-Guided Generation* | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/image_2_image_using_diffusers.ipynb) | [🤗 Diffuse the Rest](https://huggingface.co/spaces/huggingface/diffuse-the-rest)
| [StableDiffusionInpaintPipeline](./inpaint) | **Experimental** *Text-Guided Image Inpainting* | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/in_painting_with_stable_diffusion_using_diffusers.ipynb) | Coming soon
| [StableDiffusionDepth2ImgPipeline](./depth2img) | **Experimental** *Depth-to-Image Text-Guided Generation * | | Coming soon
| [StableDiffusionImageVariationPipeline](./image_variation) | **Experimental** *Image Variation Generation * | | [🤗 Stable Diffusion Image Variations](https://huggingface.co/spaces/lambdalabs/stable-diffusion-image-variations)
| [StableDiffusionUpscalePipeline](./upscale) | **Experimental** *Text-Guided Image Super-Resolution * | | Coming soon
| [StableDiffusionLatentUpscalePipeline](./latent_upscale) | **Experimental** *Text-Guided Image Super-Resolution * | | Coming soon
| [StableDiffusionInstructPix2PixPipeline](./pix2pix) | **Experimental** *Text-Based Image Editing * | | [InstructPix2Pix: Learning to Follow Image Editing Instructions](https://huggingface.co/spaces/timbrooks/instruct-pix2pix)
| [StableDiffusionAttendAndExcitePipeline](./attend_and_excite) | **Experimental** *Text-to-Image Generation * | | [Attend-and-Excite: Attention-Based Semantic Guidance for Text-to-Image Diffusion Models](https://huggingface.co/spaces/AttendAndExcite/Attend-and-Excite)
| [StableDiffusionPix2PixZeroPipeline](./pix2pix_zero) | **Experimental** *Text-Based Image Editing * | | [Zero-shot Image-to-Image Translation](https://arxiv.org/abs/2302.03027)
## Tips
@@ -70,54 +79,3 @@ If you want to use all possible use cases in a single `DiffusionPipeline` you ca
## StableDiffusionPipelineOutput
[[autodoc]] pipelines.stable_diffusion.StableDiffusionPipelineOutput
## StableDiffusionPipeline
[[autodoc]] StableDiffusionPipeline
- __call__
- enable_attention_slicing
- disable_attention_slicing
- enable_vae_slicing
- disable_vae_slicing
- enable_xformers_memory_efficient_attention
- disable_xformers_memory_efficient_attention
## StableDiffusionImg2ImgPipeline
[[autodoc]] StableDiffusionImg2ImgPipeline
- __call__
- enable_attention_slicing
- disable_attention_slicing
- enable_xformers_memory_efficient_attention
- disable_xformers_memory_efficient_attention
## StableDiffusionInpaintPipeline
[[autodoc]] StableDiffusionInpaintPipeline
- __call__
- enable_attention_slicing
- disable_attention_slicing
- enable_xformers_memory_efficient_attention
- disable_xformers_memory_efficient_attention
## StableDiffusionDepth2ImgPipeline
[[autodoc]] StableDiffusionDepth2ImgPipeline
- __call__
- enable_attention_slicing
- disable_attention_slicing
- enable_xformers_memory_efficient_attention
- disable_xformers_memory_efficient_attention
## StableDiffusionImageVariationPipeline
[[autodoc]] StableDiffusionImageVariationPipeline
- __call__
- enable_attention_slicing
- disable_attention_slicing
- enable_xformers_memory_efficient_attention
- disable_xformers_memory_efficient_attention
## StableDiffusionUpscalePipeline
[[autodoc]] StableDiffusionUpscalePipeline
- __call__
- enable_attention_slicing
- disable_attention_slicing
- enable_xformers_memory_efficient_attention
- disable_xformers_memory_efficient_attention

View File

@@ -0,0 +1,57 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# MultiDiffusion: Fusing Diffusion Paths for Controlled Image Generation
## Overview
[MultiDiffusion: Fusing Diffusion Paths for Controlled Image Generation](https://arxiv.org/abs/2302.08113) by Omer Bar-Tal, Lior Yariv, Yaron Lipman, and Tali Dekel.
The abstract of the paper is the following:
*Recent advances in text-to-image generation with diffusion models present transformative capabilities in image quality. However, user controllability of the generated image, and fast adaptation to new tasks still remains an open challenge, currently mostly addressed by costly and long re-training and fine-tuning or ad-hoc adaptations to specific image generation tasks. In this work, we present MultiDiffusion, a unified framework that enables versatile and controllable image generation, using a pre-trained text-to-image diffusion model, without any further training or finetuning. At the center of our approach is a new generation process, based on an optimization task that binds together multiple diffusion generation processes with a shared set of parameters or constraints. We show that MultiDiffusion can be readily applied to generate high quality and diverse images that adhere to user-provided controls, such as desired aspect ratio (e.g., panorama), and spatial guiding signals, ranging from tight segmentation masks to bounding boxes.
Resources:
* [Project Page](https://multidiffusion.github.io/).
* [Paper](https://arxiv.org/abs/2302.08113).
* [Original Code](https://github.com/omerbt/MultiDiffusion).
## Available Pipelines:
| Pipeline | Tasks
|---|---|
| [StableDiffusionPanoramaPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_panorama.py) | *Text-Guided Panorama View Generation* |
<!-- TODO: add Colab -->
## Usage example
```python
import torch
from diffusers import StableDiffusionPanoramaPipeline, DDIMScheduler
model_ckpt = "stabilityai/stable-diffusion-2-base"
scheduler = DDIMScheduler.from_pretrained(model_ckpt, subfolder="scheduler")
pipe = StableDiffusionPanoramaPipeline.from_pretrained(model_ckpt, scheduler=scheduler, torch_dtype=torch.float16)
pipe = pipe.to("cuda")
prompt = "a photo of the dolomites"
image = pipe(prompt).images[0]
image.save("dolomites.png")
```
## StableDiffusionPanoramaPipeline
[[autodoc]] StableDiffusionPanoramaPipeline
- __call__
- all

View File

@@ -0,0 +1,70 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# InstructPix2Pix: Learning to Follow Image Editing Instructions
## Overview
[InstructPix2Pix: Learning to Follow Image Editing Instructions](https://arxiv.org/abs/2211.09800) by Tim Brooks, Aleksander Holynski and Alexei A. Efros.
The abstract of the paper is the following:
*We propose a method for editing images from human instructions: given an input image and a written instruction that tells the model what to do, our model follows these instructions to edit the image. To obtain training data for this problem, we combine the knowledge of two large pretrained models -- a language model (GPT-3) and a text-to-image model (Stable Diffusion) -- to generate a large dataset of image editing examples. Our conditional diffusion model, InstructPix2Pix, is trained on our generated data, and generalizes to real images and user-written instructions at inference time. Since it performs edits in the forward pass and does not require per example fine-tuning or inversion, our model edits images quickly, in a matter of seconds. We show compelling editing results for a diverse collection of input images and written instructions.*
Resources:
* [Project Page](https://www.timothybrooks.com/instruct-pix2pix).
* [Paper](https://arxiv.org/abs/2211.09800).
* [Original Code](https://github.com/timothybrooks/instruct-pix2pix).
* [Demo](https://huggingface.co/spaces/timbrooks/instruct-pix2pix).
## Available Pipelines:
| Pipeline | Tasks | Demo
|---|---|:---:|
| [StableDiffusionInstructPix2PixPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py) | *Text-Based Image Editing* | [🤗 Space](https://huggingface.co/spaces/timbrooks/instruct-pix2pix) |
<!-- TODO: add Colab -->
## Usage example
```python
import PIL
import requests
import torch
from diffusers import StableDiffusionInstructPix2PixPipeline
model_id = "timbrooks/instruct-pix2pix"
pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
url = "https://huggingface.co/datasets/diffusers/diffusers-images-docs/resolve/main/mountain.png"
def download_image(url):
image = PIL.Image.open(requests.get(url, stream=True).raw)
image = PIL.ImageOps.exif_transpose(image)
image = image.convert("RGB")
return image
image = download_image(url)
prompt = "make the mountains snowy"
edit = pipe(prompt, image=image, num_inference_steps=20, image_guidance_scale=1.5, guidance_scale=7).images[0]
images[0].save("snowy_mountains.png")
```
## StableDiffusionInstructPix2PixPipeline
[[autodoc]] StableDiffusionInstructPix2PixPipeline
- __call__
- all

View File

@@ -0,0 +1,289 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Zero-shot Image-to-Image Translation
## Overview
[Zero-shot Image-to-Image Translation](https://arxiv.org/abs/2302.03027) by Gaurav Parmar, Krishna Kumar Singh, Richard Zhang, Yijun Li, Jingwan Lu, and Jun-Yan Zhu.
The abstract of the paper is the following:
*Large-scale text-to-image generative models have shown their remarkable ability to synthesize diverse and high-quality images. However, it is still challenging to directly apply these models for editing real images for two reasons. First, it is hard for users to come up with a perfect text prompt that accurately describes every visual detail in the input image. Second, while existing models can introduce desirable changes in certain regions, they often dramatically alter the input content and introduce unexpected changes in unwanted regions. In this work, we propose pix2pix-zero, an image-to-image translation method that can preserve the content of the original image without manual prompting. We first automatically discover editing directions that reflect desired edits in the text embedding space. To preserve the general content structure after editing, we further propose cross-attention guidance, which aims to retain the cross-attention maps of the input image throughout the diffusion process. In addition, our method does not need additional training for these edits and can directly use the existing pre-trained text-to-image diffusion model. We conduct extensive experiments and show that our method outperforms existing and concurrent works for both real and synthetic image editing.*
Resources:
* [Project Page](https://pix2pixzero.github.io/).
* [Paper](https://arxiv.org/abs/2302.03027).
* [Original Code](https://github.com/pix2pixzero/pix2pix-zero).
## Tips
* The pipeline can be conditioned on real input images. Check out the code examples below to know more.
* The pipeline exposes two arguments namely `source_embeds` and `target_embeds`
that let you control the direction of the semantic edits in the final image to be generated. Let's say,
you wanted to translate from "cat" to "dog". In this case, the edit direction will be "cat -> dog". To reflect
this in the pipeline, you simply have to set the embeddings related to the phrases including "cat" to
`source_embeds` and "dog" to `target_embeds`. Refer to the code example below for more details.
* When you're using this pipeline from a prompt, specify the _source_ concept in the prompt. Taking
the above example, a valid input prompt would be: "a high resolution painting of a **cat** in the style of van gough".
* If you wanted to reverse the direction in the example above, i.e., "dog -> cat", then it's recommended to:
* Swap the `source_embeds` and `target_embeds`.
* Change the input prompt to include "dog".
* To learn more about how the source and target embeddings are generated, refer to the [original
paper](https://arxiv.org/abs/2302.03027). Below, we also provide some directions on how to generate the embeddings.
## Available Pipelines:
| Pipeline | Tasks | Demo
|---|---|:---:|
| [StableDiffusionPix2PixZeroPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_pix2pix_zero.py) | *Text-Based Image Editing* | [🤗 Space] (soon) |
<!-- TODO: add Colab -->
## Usage example
### Based on an image generated with the input prompt
```python
import requests
import torch
from diffusers import DDIMScheduler, StableDiffusionPix2PixZeroPipeline
def download(embedding_url, local_filepath):
r = requests.get(embedding_url)
with open(local_filepath, "wb") as f:
f.write(r.content)
model_ckpt = "CompVis/stable-diffusion-v1-4"
pipeline = StableDiffusionPix2PixZeroPipeline.from_pretrained(
model_ckpt, conditions_input_image=False, torch_dtype=torch.float16
)
pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)
pipeline.to("cuda")
prompt = "a high resolution painting of a cat in the style of van gough"
src_embs_url = "https://github.com/pix2pixzero/pix2pix-zero/raw/main/assets/embeddings_sd_1.4/cat.pt"
target_embs_url = "https://github.com/pix2pixzero/pix2pix-zero/raw/main/assets/embeddings_sd_1.4/dog.pt"
for url in [src_embs_url, target_embs_url]:
download(url, url.split("/")[-1])
src_embeds = torch.load(src_embs_url.split("/")[-1])
target_embeds = torch.load(target_embs_url.split("/")[-1])
images = pipeline(
prompt,
source_embeds=src_embeds,
target_embeds=target_embeds,
num_inference_steps=50,
cross_attention_guidance_amount=0.15,
).images
images[0].save("edited_image_dog.png")
```
### Based on an input image
When the pipeline is conditioned on an input image, we first obtain an inverted
noise from it using a `DDIMInverseScheduler` with the help of a generated caption. Then
the inverted noise is used to start the generation process.
First, let's load our pipeline:
```py
import torch
from transformers import BlipForConditionalGeneration, BlipProcessor
from diffusers import DDIMScheduler, DDIMInverseScheduler, StableDiffusionPix2PixZeroPipeline
captioner_id = "Salesforce/blip-image-captioning-base"
processor = BlipProcessor.from_pretrained(captioner_id)
model = BlipForConditionalGeneration.from_pretrained(captioner_id, torch_dtype=torch.float16, low_cpu_mem_usage=True)
sd_model_ckpt = "CompVis/stable-diffusion-v1-4"
pipeline = StableDiffusionPix2PixZeroPipeline.from_pretrained(
sd_model_ckpt,
caption_generator=model,
caption_processor=processor,
torch_dtype=torch.float16,
safety_checker=None,
)
pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)
pipeline.inverse_scheduler = DDIMInverseScheduler.from_config(pipeline.scheduler.config)
pipeline.enable_model_cpu_offload()
```
Then, we load an input image for conditioning and obtain a suitable caption for it:
```py
import requests
from PIL import Image
img_url = "https://github.com/pix2pixzero/pix2pix-zero/raw/main/assets/test_images/cats/cat_6.png"
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB").resize((512, 512))
caption = pipeline.generate_caption(raw_image)
```
Then we employ the generated caption and the input image to get the inverted noise:
```py
generator = torch.manual_seed(0)
inv_latents = pipeline.invert(caption, image=raw_image, generator=generator).latents
```
Now, generate the image with edit directions:
```py
# See the "Generating source and target embeddings" section below to
# automate the generation of these captions with a pre-trained model like Flan-T5 as explained below.
source_prompts = ["a cat sitting on the street", "a cat playing in the field", "a face of a cat"]
target_prompts = ["a dog sitting on the street", "a dog playing in the field", "a face of a dog"]
source_embeds = pipeline.get_embeds(source_prompts, batch_size=2)
target_embeds = pipeline.get_embeds(target_prompts, batch_size=2)
image = pipeline(
caption,
source_embeds=source_embeds,
target_embeds=target_embeds,
num_inference_steps=50,
cross_attention_guidance_amount=0.15,
generator=generator,
latents=inv_latents,
negative_prompt=caption,
).images[0]
image.save("edited_image.png")
```
## Generating source and target embeddings
The authors originally used the [GPT-3 API](https://openai.com/api/) to generate the source and target captions for discovering
edit directions. However, we can also leverage open source and public models for the same purpose.
Below, we provide an end-to-end example with the [Flan-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5) model
for generating captions and [CLIP](https://huggingface.co/docs/transformers/model_doc/clip) for
computing embeddings on the generated captions.
**1. Load the generation model**:
```py
import torch
from transformers import AutoTokenizer, T5ForConditionalGeneration
tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-xl")
model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-xl", device_map="auto", torch_dtype=torch.float16)
```
**2. Construct a starting prompt**:
```py
source_concept = "cat"
target_concept = "dog"
source_text = f"Provide a caption for images containing a {source_concept}. "
"The captions should be in English and should be no longer than 150 characters."
target_text = f"Provide a caption for images containing a {target_concept}. "
"The captions should be in English and should be no longer than 150 characters."
```
Here, we're interested in the "cat -> dog" direction.
**3. Generate captions**:
We can use a utility like so for this purpose.
```py
def generate_captions(input_prompt):
input_ids = tokenizer(input_prompt, return_tensors="pt").input_ids.to("cuda")
outputs = model.generate(
input_ids, temperature=0.8, num_return_sequences=16, do_sample=True, max_new_tokens=128, top_k=10
)
return tokenizer.batch_decode(outputs, skip_special_tokens=True)
```
And then we just call it to generate our captions:
```py
source_captions = generate_captions(source_text)
target_captions = generate_captions(target_concept)
```
We encourage you to play around with the different parameters supported by the
`generate()` method ([documentation](https://huggingface.co/docs/transformers/main/en/main_classes/text_generation#transformers.generation_tf_utils.TFGenerationMixin.generate)) for the generation quality you are looking for.
**4. Load the embedding model**:
Here, we need to use the same text encoder model used by the subsequent Stable Diffusion model.
```py
from diffusers import StableDiffusionPix2PixZeroPipeline
pipeline = StableDiffusionPix2PixZeroPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16
)
pipeline = pipeline.to("cuda")
tokenizer = pipeline.tokenizer
text_encoder = pipeline.text_encoder
```
**5. Compute embeddings**:
```py
import torch
def embed_captions(sentences, tokenizer, text_encoder, device="cuda"):
with torch.no_grad():
embeddings = []
for sent in sentences:
text_inputs = tokenizer(
sent,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
prompt_embeds = text_encoder(text_input_ids.to(device), attention_mask=None)[0]
embeddings.append(prompt_embeds)
return torch.concatenate(embeddings, dim=0).mean(dim=0).unsqueeze(0)
source_embeddings = embed_captions(source_captions, tokenizer, text_encoder)
target_embeddings = embed_captions(target_captions, tokenizer, text_encoder)
```
And you're done! [Here](https://colab.research.google.com/drive/1tz2C1EdfZYAPlzXXbTnf-5PRBiR8_R1F?usp=sharing) is a Colab Notebook that you can use to interact with the entire process.
Now, you can use these embeddings directly while calling the pipeline:
```py
from diffusers import DDIMScheduler
pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)
images = pipeline(
prompt,
source_embeds=source_embeddings,
target_embeds=target_embeddings,
num_inference_steps=50,
cross_attention_guidance_amount=0.15,
).images
images[0].save("edited_image_dog.png")
```
## StableDiffusionPix2PixZeroPipeline
[[autodoc]] StableDiffusionPix2PixZeroPipeline
- __call__
- all

View File

@@ -0,0 +1,64 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Self-Attention Guidance (SAG)
## Overview
[Self-Attention Guidance](https://arxiv.org/abs/2210.00939) by Susung Hong et al.
The abstract of the paper is the following:
*Denoising diffusion models (DDMs) have been drawing much attention for their appreciable sample quality and diversity. Despite their remarkable performance, DDMs remain black boxes on which further study is necessary to take a profound step. Motivated by this, we delve into the design of conventional U-shaped diffusion models. More specifically, we investigate the self-attention modules within these models through carefully designed experiments and explore their characteristics. In addition, inspired by the studies that substantiate the effectiveness of the guidance schemes, we present plug-and-play diffusion guidance, namely Self-Attention Guidance (SAG), that can drastically boost the performance of existing diffusion models. Our method, SAG, extracts the intermediate attention map from a diffusion model at every iteration and selects tokens above a certain attention score for masking and blurring to obtain a partially blurred input. Subsequently, we measure the dissimilarity between the predicted noises obtained from feeding the blurred and original input to the diffusion model and leverage it as guidance. With this guidance, we observe apparent improvements in a wide range of diffusion models, e.g., ADM, IDDPM, and Stable Diffusion, and show that the results further improve by combining our method with the conventional guidance scheme. We provide extensive ablation studies to verify our choices.*
Resources:
* [Project Page](https://ku-cvlab.github.io/Self-Attention-Guidance).
* [Paper](https://arxiv.org/abs/2210.00939).
* [Original Code](https://github.com/KU-CVLAB/Self-Attention-Guidance).
* [Demo](https://colab.research.google.com/github/SusungHong/Self-Attention-Guidance/blob/main/SAG_Stable.ipynb).
## Available Pipelines:
| Pipeline | Tasks | Demo
|---|---|:---:|
| [StableDiffusionSAGPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_sag.py) | *Text-to-Image Generation* | [Colab](https://colab.research.google.com/github/SusungHong/Self-Attention-Guidance/blob/main/SAG_Stable.ipynb) |
## Usage example
```python
import torch
from diffusers import StableDiffusionSAGPipeline
from accelerate.utils import set_seed
pipe = StableDiffusionSAGPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
pipe = pipe.to("cuda")
seed = 8978
prompt = "."
guidance_scale = 7.5
num_images_per_prompt = 1
sag_scale = 1.0
set_seed(seed)
images = pipe(
prompt, num_images_per_prompt=num_images_per_prompt, guidance_scale=guidance_scale, sag_scale=sag_scale
).images
images[0].save("example.png")
```
## StableDiffusionSAGPipeline
[[autodoc]] StableDiffusionSAGPipeline
- __call__
- all

View File

@@ -0,0 +1,39 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Text-to-Image Generation
## StableDiffusionPipeline
The Stable Diffusion model was created by the researchers and engineers from [CompVis](https://github.com/CompVis), [Stability AI](https://stability.ai/), [runway](https://github.com/runwayml), and [LAION](https://laion.ai/). The [`StableDiffusionPipeline`] is capable of generating photo-realistic images given any text input using Stable Diffusion.
The original codebase can be found here:
- *Stable Diffusion V1*: [CompVis/stable-diffusion](https://github.com/CompVis/stable-diffusion)
- *Stable Diffusion v2*: [Stability-AI/stablediffusion](https://github.com/Stability-AI/stablediffusion)
Available Checkpoints are:
- *stable-diffusion-v1-4 (512x512 resolution)* [CompVis/stable-diffusion-v1-4](https://huggingface.co/CompVis/stable-diffusion-v1-4)
- *stable-diffusion-v1-5 (512x512 resolution)* [runwayml/stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5)
- *stable-diffusion-2-base (512x512 resolution)*: [stabilityai/stable-diffusion-2-base](https://huggingface.co/stabilityai/stable-diffusion-2-base)
- *stable-diffusion-2 (768x768 resolution)*: [stabilityai/stable-diffusion-2](https://huggingface.co/stabilityai/stable-diffusion-2)
- *stable-diffusion-2-1-base (512x512 resolution)* [stabilityai/stable-diffusion-2-1-base](https://huggingface.co/stabilityai/stable-diffusion-2-1-base)
- *stable-diffusion-2-1 (768x768 resolution)*: [stabilityai/stable-diffusion-2-1](https://huggingface.co/stabilityai/stable-diffusion-2-1)
[[autodoc]] StableDiffusionPipeline
- all
- __call__
- enable_attention_slicing
- disable_attention_slicing
- enable_vae_slicing
- disable_vae_slicing
- enable_xformers_memory_efficient_attention
- disable_xformers_memory_efficient_attention

View File

@@ -0,0 +1,32 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Super-Resolution
## StableDiffusionUpscalePipeline
The upscaler diffusion model was created by the researchers and engineers from [CompVis](https://github.com/CompVis), [Stability AI](https://stability.ai/), and [LAION](https://laion.ai/), as part of Stable Diffusion 2.0. [`StableDiffusionUpscalePipeline`] can be used to enhance the resolution of input images by a factor of 4.
The original codebase can be found here:
- *Stable Diffusion v2*: [Stability-AI/stablediffusion](https://github.com/Stability-AI/stablediffusion#image-upscaling-with-stable-diffusion)
Available Checkpoints are:
- *stabilityai/stable-diffusion-x4-upscaler (x4 resolution resolution)*: [stable-diffusion-x4-upscaler](https://huggingface.co/stabilityai/stable-diffusion-x4-upscaler)
[[autodoc]] StableDiffusionUpscalePipeline
- all
- __call__
- enable_attention_slicing
- disable_attention_slicing
- enable_xformers_memory_efficient_attention
- disable_xformers_memory_efficient_attention

View File

@@ -24,17 +24,20 @@ For more details about how Stable Diffusion 2 works and how it differs from Stab
### Available checkpoints:
Note that the architecture is more or less identical to [Stable Diffusion 1](./api/pipelines/stable_diffusion) so please refer to [this page](./api/pipelines/stable_diffusion) for API documentation.
Note that the architecture is more or less identical to [Stable Diffusion 1](./stable_diffusion/overview) so please refer to [this page](./stable_diffusion/overview) for API documentation.
- *Text-to-Image (512x512 resolution)*: [stabilityai/stable-diffusion-2-base](https://huggingface.co/stabilityai/stable-diffusion-2-base) with [`StableDiffusionPipeline`]
- *Text-to-Image (768x768 resolution)*: [stabilityai/stable-diffusion-2](https://huggingface.co/stabilityai/stable-diffusion-2) with [`StableDiffusionPipeline`]
- *Image Inpainting (512x512 resolution)*: [stabilityai/stable-diffusion-2-inpainting](https://huggingface.co/stabilityai/stable-diffusion-2-inpainting) with [`StableDiffusionInpaintPipeline`]
- *Image Upscaling (x4 resolution resolution)*: [stable-diffusion-x4-upscaler](https://huggingface.co/stabilityai/stable-diffusion-x4-upscaler) [`StableDiffusionUpscalePipeline`]
- *Super-Resolution (x4 resolution resolution)*: [stable-diffusion-x4-upscaler](https://huggingface.co/stabilityai/stable-diffusion-x4-upscaler) [`StableDiffusionUpscalePipeline`]
- *Depth-to-Image (512x512 resolution)*: [stabilityai/stable-diffusion-2-depth](https://huggingface.co/stabilityai/stable-diffusion-2-depth) with [`StableDiffusionDepth2ImagePipeline`]
We recommend using the [`DPMSolverMultistepScheduler`] as it's currently the fastest scheduler there is.
- *Text-to-Image (512x512 resolution)*:
### Text-to-Image
- *Text-to-Image (512x512 resolution)*: [stabilityai/stable-diffusion-2-base](https://huggingface.co/stabilityai/stable-diffusion-2-base) with [`StableDiffusionPipeline`]
```python
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
@@ -51,7 +54,7 @@ image = pipe(prompt, num_inference_steps=25).images[0]
image.save("astronaut.png")
```
- *Text-to-Image (768x768 resolution)*:
- *Text-to-Image (768x768 resolution)*: [stabilityai/stable-diffusion-2](https://huggingface.co/stabilityai/stable-diffusion-2) with [`StableDiffusionPipeline`]
```python
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
@@ -68,7 +71,9 @@ image = pipe(prompt, guidance_scale=9, num_inference_steps=25).images[0]
image.save("astronaut.png")
```
- *Image Inpainting (512x512 resolution)*:
### Image Inpainting
- *Image Inpainting (512x512 resolution)*: [stabilityai/stable-diffusion-2-inpainting](https://huggingface.co/stabilityai/stable-diffusion-2-inpainting) with [`StableDiffusionInpaintPipeline`]
```python
import PIL
@@ -102,7 +107,10 @@ image = pipe(prompt=prompt, image=init_image, mask_image=mask_image, num_inferen
image.save("yellow_cat.png")
```
- *Image Upscaling (x4 resolution resolution)*: [stable-diffusion-x4-upscaler](https://huggingface.co/stabilityai/stable-diffusion-x4-upscaler) [`StableDiffusionUpscalePipeline`]
### Super-Resolution
- *Image Upscaling (x4 resolution resolution)*: [stable-diffusion-x4-upscaler](https://huggingface.co/stabilityai/stable-diffusion-x4-upscaler) with [`StableDiffusionUpscalePipeline`]
```python
import requests
@@ -126,16 +134,10 @@ upscaled_image = pipeline(prompt=prompt, image=low_res_img).images[0]
upscaled_image.save("upsampled_cat.png")
```
### Depth-to-Image
- *Depth-Guided Text-to-Image*: [stabilityai/stable-diffusion-2-depth](https://huggingface.co/stabilityai/stable-diffusion-2-depth) [`StableDiffusionDepth2ImagePipeline`]
**Installation**
```bash
!pip install -U git+https://github.com/huggingface/transformers.git
!pip install diffusers[torch]
```
**Example**
```python
import torch

View File

@@ -24,11 +24,11 @@ The abstract of the paper is the following:
| Pipeline | Tasks | Colab | Demo
|---|---|:---:|:---:|
| [pipeline_stable_diffusion_safe.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py) | *Text-to-Image Generation* | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/ml-research/safe-latent-diffusion/blob/main/examples/Safe%20Latent%20Diffusion.ipynb) | -
| [pipeline_stable_diffusion_safe.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py) | *Text-to-Image Generation* | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/ml-research/safe-latent-diffusion/blob/main/examples/Safe%20Latent%20Diffusion.ipynb) | [![Huggingface Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/AIML-TUDA/unsafe-vs-safe-stable-diffusion)
## Tips
- Safe Stable Diffusion may also be used with weights of [Stable Diffusion](./api/pipelines/stable_diffusion).
- Safe Stable Diffusion may also be used with weights of [Stable Diffusion](./api/pipelines/stable_diffusion/text2img).
### Run Safe Stable Diffusion
@@ -58,7 +58,7 @@ You may use the 4 configurations defined in the [Safe Latent Diffusion paper](ht
>>> out = pipeline(prompt=prompt, **SafetyConfig.MAX)
```
The following configurations are available: `SafetyConfig.WEAK`, `SafetyConfig.MEDIUM`, `SafetyConfig.STRONg`, and `SafetyConfig.MAX`.
The following configurations are available: `SafetyConfig.WEAK`, `SafetyConfig.MEDIUM`, `SafetyConfig.STRONG`, and `SafetyConfig.MAX`.
### How to load and use different schedulers.
@@ -81,10 +81,10 @@ To use a different scheduler, you can either change it via the [`ConfigMixin.fro
## StableDiffusionSafePipelineOutput
[[autodoc]] pipelines.stable_diffusion_safe.StableDiffusionSafePipelineOutput
- all
- __call__
## StableDiffusionPipelineSafe
[[autodoc]] StableDiffusionPipelineSafe
- all
- __call__
- enable_attention_slicing
- disable_attention_slicing

View File

@@ -0,0 +1,97 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Stable unCLIP
Stable unCLIP checkpoints are finetuned from [stable diffusion 2.1](./stable_diffusion_2) checkpoints to condition on CLIP image embeddings.
Stable unCLIP also still conditions on text embeddings. Given the two separate conditionings, stable unCLIP can be used
for text guided image variation. When combined with an unCLIP prior, it can also be used for full text to image generation.
## Tips
Stable unCLIP takes a `noise_level` as input during inference. `noise_level` determines how much noise is added
to the image embeddings. A higher `noise_level` increases variation in the final un-noised images. By default,
we do not add any additional noise to the image embeddings i.e. `noise_level = 0`.
### Available checkpoints:
TODO
### Text-to-Image Generation
```python
import torch
from diffusers import StableUnCLIPPipeline
pipe = StableUnCLIPPipeline.from_pretrained(
"fusing/stable-unclip-2-1-l", torch_dtype=torch.float16
) # TODO update model path
pipe = pipe.to("cuda")
prompt = "a photo of an astronaut riding a horse on mars"
images = pipe(prompt).images
images[0].save("astronaut_horse.png")
```
### Text guided Image-to-Image Variation
```python
import requests
import torch
from PIL import Image
from io import BytesIO
from diffusers import StableUnCLIPImg2ImgPipeline
pipe = StableUnCLIPImg2ImgPipeline.from_pretrained(
"fusing/stable-unclip-2-1-l-img2img", torch_dtype=torch.float16
) # TODO update model path
pipe = pipe.to("cuda")
url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
response = requests.get(url)
init_image = Image.open(BytesIO(response.content)).convert("RGB")
init_image = init_image.resize((768, 512))
prompt = "A fantasy landscape, trending on artstation"
images = pipe(prompt, init_image).images
images[0].save("fantasy_landscape.png")
```
### StableUnCLIPPipeline
[[autodoc]] StableUnCLIPPipeline
- all
- __call__
- enable_attention_slicing
- disable_attention_slicing
- enable_vae_slicing
- disable_vae_slicing
- enable_xformers_memory_efficient_attention
- disable_xformers_memory_efficient_attention
### StableUnCLIPImg2ImgPipeline
[[autodoc]] StableUnCLIPImg2ImgPipeline
- all
- __call__
- enable_attention_slicing
- disable_attention_slicing
- enable_vae_slicing
- disable_vae_slicing
- enable_xformers_memory_efficient_attention
- disable_xformers_memory_efficient_attention

View File

@@ -32,4 +32,5 @@ This pipeline implements the Stochastic sampling tailored to the Variance-Expand
## KarrasVePipeline
[[autodoc]] KarrasVePipeline
- __call__
- all
- __call__

View File

@@ -24,8 +24,14 @@ The unCLIP model in diffusers comes from kakaobrain's karlo and the original cod
| Pipeline | Tasks | Colab
|---|---|:---:|
| [pipeline_unclip.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/unclip/pipeline_unclip.py) | *Text-to-Image Generation* | - |
| [pipeline_unclip_image_variation.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/unclip/pipeline_unclip_image_variation.py) | *Image-Guided Image Generation* | - |
## UnCLIPPipeline
[[autodoc]] pipelines.unclip.pipeline_unclip.UnCLIPPipeline
- __call__
[[autodoc]] UnCLIPPipeline
- all
- __call__
[[autodoc]] UnCLIPImageVariationPipeline
- all
- __call__

View File

@@ -20,7 +20,7 @@ The abstract of the paper is the following:
## Tips
- VersatileDiffusion is conceptually very similar as [Stable Diffusion](./api/pipelines/stable_diffusion), but instead of providing just a image data stream conditioned on text, VersatileDiffusion provides both a image and text data stream and can be conditioned on both text and image.
- VersatileDiffusion is conceptually very similar as [Stable Diffusion](./api/pipelines/stable_diffusion/overview), but instead of providing just a image data stream conditioned on text, VersatileDiffusion provides both a image and text data stream and can be conditioned on both text and image.
### *Run VersatileDiffusion*
@@ -56,18 +56,15 @@ To use a different scheduler, you can either change it via the [`ConfigMixin.fro
## VersatileDiffusionTextToImagePipeline
[[autodoc]] VersatileDiffusionTextToImagePipeline
- all
- __call__
- enable_attention_slicing
- disable_attention_slicing
## VersatileDiffusionImageVariationPipeline
[[autodoc]] VersatileDiffusionImageVariationPipeline
- all
- __call__
- enable_attention_slicing
- disable_attention_slicing
## VersatileDiffusionDualGuidedPipeline
[[autodoc]] VersatileDiffusionDualGuidedPipeline
- all
- __call__
- enable_attention_slicing
- disable_attention_slicing

View File

@@ -30,5 +30,6 @@ The original codebase can be found [here](https://github.com/microsoft/VQ-Diffus
## VQDiffusionPipeline
[[autodoc]] pipelines.vq_diffusion.pipeline_vq_diffusion.VQDiffusionPipeline
- __call__
[[autodoc]] VQDiffusionPipeline
- all
- __call__

View File

@@ -0,0 +1,21 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Inverse Denoising Diffusion Implicit Models (DDIMInverse)
## Overview
This scheduler is the inverted scheduler of [Denoising Diffusion Implicit Models](https://arxiv.org/abs/2010.02502) (DDIM) by Jiaming Song, Chenlin Meng and Stefano Ermon.
The implementation is mostly based on the DDIM inversion definition of [Null-text Inversion for Editing Real Images using Guided Diffusion Models](https://arxiv.org/pdf/2211.09794.pdf)
## DDIMInverseScheduler
[[autodoc]] DDIMInverseScheduler

View File

@@ -0,0 +1,22 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# DEIS
Fast Sampling of Diffusion Models with Exponential Integrator.
## Overview
Original paper can be found [here](https://arxiv.org/abs/2204.13902). The original implementation can be found [here](https://github.com/qsh-zh/deis).
## DEISMultistepScheduler
[[autodoc]] DEISMultistepScheduler

View File

@@ -37,16 +37,18 @@ To this end, the design of schedulers is such that:
- Schedulers can be used interchangeably between diffusion models in inference to find the preferred trade-off between speed and generation quality.
- Schedulers are currently by default in PyTorch, but are designed to be framework independent (partial Jax support currently exists).
- Many diffusion pipelines, such as [`StableDiffusionPipeline`] and [`DiTPipeline`] can use any of [`KarrasDiffusionSchedulers`]
## Schedulers Summary
The following table summarizes all officially supported schedulers, their corresponding paper
| Scheduler | Paper |
|---|---|
| [ddim](./ddim) | [**Denoising Diffusion Implicit Models**](https://arxiv.org/abs/2010.02502) |
| [ddim_inverse](./ddim_inverse) | [**Denoising Diffusion Implicit Models**](https://arxiv.org/abs/2010.02502) |
| [ddpm](./ddpm) | [**Denoising Diffusion Probabilistic Models**](https://arxiv.org/abs/2006.11239) |
| [deis](./deis) | [**DEISMultistepScheduler**](https://arxiv.org/abs/2204.13902) |
| [singlestep_dpm_solver](./singlestep_dpm_solver) | [**Singlestep DPM-Solver**](https://arxiv.org/abs/2206.00927) |
| [multistep_dpm_solver](./multistep_dpm_solver) | [**Multistep DPM-Solver**](https://arxiv.org/abs/2206.00927) |
| [heun](./heun) | [**Heun scheduler inspired by Karras et. al paper**](https://arxiv.org/abs/2206.00364) |
@@ -61,6 +63,7 @@ The following table summarizes all officially supported schedulers, their corres
| [euler](./euler) | [**Euler scheduler**](https://arxiv.org/abs/2206.00364) |
| [euler_ancestral](./euler_ancestral) | [**Euler Ancestral scheduler**](https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L72) |
| [vq_diffusion](./vq_diffusion) | [**VQDiffusionScheduler**](https://arxiv.org/abs/2111.14822) |
| [unipc](./unipc) | [**UniPCMultistepScheduler**](https://arxiv.org/abs/2302.04867) |
| [repaint](./repaint) | [**RePaint scheduler**](https://arxiv.org/abs/2201.09865) |
## API
@@ -80,4 +83,10 @@ The class [`SchedulerOutput`] contains the outputs from any schedulers `step(...
[[autodoc]] schedulers.scheduling_utils.SchedulerOutput
### KarrasDiffusionSchedulers
`KarrasDiffusionSchedulers` encompasses the main generalization of schedulers in Diffusers. The schedulers in this class are distinguished, at a high level, by their noise sampling strategy; the type of network and scaling; and finally the training strategy or how the loss is weighed.
The different schedulers, depending on the type of ODE solver, fall into the above taxonomy and provide a good abstraction for the design of the main schedulers implemented in Diffusers. The schedulers in this class are given below:
[[autodoc]] schedulers.scheduling_utils.KarrasDiffusionSchedulers

View File

@@ -0,0 +1,24 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# UniPC
## Overview
UniPC is a training-free framework designed for the fast sampling of diffusion models, which consists of a corrector (UniC) and a predictor (UniP) that share a unified analytical form and support arbitrary orders.
For more details about the method, please refer to the [[paper]](https://arxiv.org/abs/2302.04867) and the [[code]](https://github.com/wl-zhao/UniPC).
Fast Sampling of Diffusion Models with Exponential Integrator.
## UniPCMultistepScheduler
[[autodoc]] UniPCMultistepScheduler

View File

@@ -177,7 +177,7 @@ Follow these steps to start contributing ([supported Python versions](https://gi
$ make style
```
🧨 Diffusers also uses `flake8` and a few custom scripts to check for coding mistakes. Quality
🧨 Diffusers also uses `ruff` and a few custom scripts to check for coding mistakes. Quality
control runs in CI, however you can also run the same checks with:
```bash

View File

@@ -0,0 +1,49 @@
# 🧨 Diffusers Ethical Guidelines
## Preamble
[Diffusers](https://huggingface.co/docs/diffusers/index) provides pre-trained diffusion models and serves as a modular toolbox for inference and training.
Given its real case applications in the world and potential negative impacts on society, we think it is important to provide the project with ethical guidelines to guide the development, users contributions, and usage of the Diffusers library.
The risks associated with using this technology are still being examined, but to name a few: copyrights issues for artists; deep-fake exploitation; sexual content generation in inappropriate contexts; non-consensual impersonation; harmful social biases perpetuating the oppression of marginalized groups.
We will keep tracking risks and adapt the following guidelines based on the community's responsiveness and valuable feedback.
## Scope
The Diffusers community will apply the following ethical guidelines to the projects development and help coordinate how the community will integrate the contributions, especially concerning sensitive topics related to ethical concerns.
## Ethical guidelines
The following ethical guidelines apply generally, but we will primarily implement them when dealing with ethically sensitive issues while making a technical choice. Furthermore, we commit to adapting those ethical principles over time following emerging harms related to the state of the art of the technology in question.
- **Transparency**: we are committed to being transparent in managing PRs, explaining our choices to users, and making technical decisions.
- **Consistency**: we are committed to guaranteeing our users the same level of attention in project management, keeping it technically stable and consistent.
- **Simplicity**: with a desire to make it easy to use and exploit the Diffusers library, we are committed to keeping the projects goals lean and coherent.
- **Accessibility**: the Diffusers project helps lower the entry bar for contributors who can help run it even without technical expertise. Doing so makes research artifacts more accessible to the community.
- **Reproducibility**: we aim to be transparent about the reproducibility of upstream code, models, and datasets when made available through the Diffusers library.
- **Responsibility**: as a community and through teamwork, we hold a collective responsibility to our users by anticipating and mitigating this technology's potential risks and dangers.
## Examples of implementations: Safety features and Mechanisms
The team works daily to make the technical and non-technical tools available to deal with the potential ethical and social risks associated with diffusion technology. Moreover, the community's input is invaluable in ensuring these features' implementation and raising awareness with us.
- [**Community tab**](https://huggingface.co/docs/hub/repositories-pull-requests-discussions): it enables the community to discuss and better collaborate on a project.
- **Bias exploration and evaluation**: the Hugging Face team provides a [space](https://huggingface.co/spaces/society-ethics/DiffusionBiasExplorer) to demonstrate the biases in Stable Diffusion interactively. In this sense, we support and encourage bias explorers and evaluations.
- **Encouraging safety in deployment**
- [**Safe Stable Diffusion**](https://huggingface.co/docs/diffusers/main/en/api/pipelines/stable_diffusion_safe): It mitigates the well-known issue that models, like Stable Diffusion, that are trained on unfiltered, web-crawled datasets tend to suffer from inappropriate degeneration. Related paper: [Safe Latent Diffusion: Mitigating Inappropriate Degeneration in Diffusion Models](https://arxiv.org/abs/2211.05105).
- **Staged released on the Hub**: in particularly sensitive situations, access to some repositories should be restricted. This staged release is an intermediary step that allows the repositorys authors to have more control over its use.
- **Licensing**: [OpenRAILs](https://huggingface.co/blog/open_rail), a new type of licensing, allow us to ensure free access while having a set of restrictions that ensure more responsible use.

View File

@@ -0,0 +1,110 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Philosophy
🧨 Diffusers provides **state-of-the-art** pretrained diffusion models across multiple modalities.
Its purpose is to serve as a **modular toolbox** for both inference and training.
We aim at building a library that stands the test of time and therefore take API design very seriously.
In a nutshell, Diffusers is built to be a natural extension of PyTorch. Therefore, most of our design choices are based on [PyTorch's Design Principles](https://pytorch.org/docs/stable/community/design.html#pytorch-design-philosophy). Let's go over the most important ones:
## Usability over Performance
- While Diffusers has many built-in performance-enhancing features (see [Memory and Speed](https://huggingface.co/docs/diffusers/optimization/fp16)), models are always loaded with the highest precision and lowest optimization. Therefore, by default diffusion pipelines are always instantiated on CPU with float32 precision if not otherwise defined by the user. This ensures usability across different platforms and accelerators and means that no complex installations are required to run the library.
- Diffusers aim at being a **light-weight** package and therefore has very few required dependencies, but many soft dependencies that can improve performance (such as `accelerate`, `safetensors`, `onnx`, etc...). We strive to keep the library as lightweight as possible so that it can be added without much concern as a dependency on other packages.
- Diffusers prefers simple, self-explainable code over condensed, magic code. This means that short-hand code syntaxes such as lambda functions, and advanced PyTorch operators are often not desired.
## Simple over easy
As PyTorch states, **explicit is better than implicit** and **simple is better than complex**. This design philosophy is reflected in multiple parts of the library:
- We follow PyTorch's API with methods like [`DiffusionPipeline.to`](https://huggingface.co/docs/diffusers/main/en/api/diffusion_pipeline#diffusers.DiffusionPipeline.to) to let the user handle device management.
- Raising concise error messages is preferred to silently correct erroneous input. Diffusers aims at teaching the user, rather than making the library as easy to use as possible.
- Complex model vs. scheduler logic is exposed instead of magically handled inside. Schedulers/Samplers are separated from diffusion models with minimal dependencies on each other. This forces the user to write the unrolled denoising loop. However, the separation allows for easier debugging and gives the user more control over adapting the denoising process or switching out diffusion models or schedulers.
- Separately trained components of the diffusion pipeline, *e.g.* the text encoder, the unet, and the variational autoencoder, each have their own model class. This forces the user to handle the interaction between the different model components, and the serialization format separates the model components into different files. However, this allows for easier debugging and customization. Dreambooth or textual inversion training
is very simple thanks to diffusers' ability to separate single components of the diffusion pipeline.
## Tweakable, contributor-friendly over abstraction
For large parts of the library, Diffusers adopts an important design principle of the [Transformers library](https://github.com/huggingface/transformers), which is to prefer copy-pasted code over hasty abstractions. This design principle is very opinionated and stands in stark contrast to popular design principles such as [Don't repeat yourself (DRY)](https://en.wikipedia.org/wiki/Don%27t_repeat_yourself).
In short, just like Transformers does for modeling files, diffusers prefers to keep an extremely low level of abstraction and very self-contained code for pipelines and schedulers.
Functions, long code blocks, and even classes can be copied across multiple files which at first can look like a bad, sloppy design choice that makes the library unmaintainable.
**However**, this design has proven to be extremely successful for Transformers and makes a lot of sense for community-driven, open-source machine learning libraries because:
- Machine Learning is an extremely fast-moving field in which paradigms, model architectures, and algorithms are changing rapidly, which therefore makes it very difficult to define long-lasting code abstractions.
- Machine Learning practitioners like to be able to quickly tweak existing code for ideation and research and therefore prefer self-contained code over one that contains many abstractions.
- Open-source libraries rely on community contributions and therefore must build a library that is easy to contribute to. The more abstract the code, the more dependencies, the harder to read, and the harder to contribute to. Contributors simply stop contributing to very abstract libraries out of fear of breaking vital functionality. If contributing to a library cannot break other fundamental code, not only is it more inviting for potential new contributors, but it is also easier to review and contribute to multiple parts in parallel.
At Hugging Face, we call this design the **single-file policy** which means that almost all of the code of a certain class should be written in a single, self-contained file. To read more about the philosophy, you can have a look
at [this blog post](https://huggingface.co/blog/transformers-design-philosophy).
In diffusers, we follow this philosophy for both pipelines and schedulers, but only partly for diffusion models. The reason we don't follow this design fully for diffusion models is because almost all diffusion pipelines, such
as [DDPM](https://huggingface.co/docs/diffusers/v0.12.0/en/api/pipelines/ddpm), [Stable Diffusion](https://huggingface.co/docs/diffusers/v0.12.0/en/api/pipelines/stable_diffusion/overview#stable-diffusion-pipelines), [UnCLIP (Dalle-2)](https://huggingface.co/docs/diffusers/v0.12.0/en/api/pipelines/unclip#overview) and [Imagen](https://imagen.research.google/) all rely on the same diffusion model, the [UNet](https://huggingface.co/docs/diffusers/api/models#diffusers.UNet2DConditionModel).
Great, now you should have generally understood why 🧨 Diffusers is designed the way it is 🤗.
We try to apply these design principles consistently across the library. Nevertheless, there are some minor exceptions to the philosophy or some unlucky design choices. If you have feedback regarding the design, we would ❤️ to hear it [directly on GitHub](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=&template=feedback.md&title=).
## Design Philosophy in Details
Now, let's look a bit into the nitty-gritty details of the design philosophy. Diffusers essentially consist of three major classes, [pipelines](https://github.com/huggingface/diffusers/tree/main/src/diffusers/pipelines), [models](https://github.com/huggingface/diffusers/tree/main/src/diffusers/models), and [schedulers](https://github.com/huggingface/diffusers/tree/main/src/diffusers/schedulers).
Let's walk through more in-detail design decisions for each class.
### Pipelines
Pipelines are designed to be easy to use (therefore do not follow [*Simple over easy*](#simple-over-easy) 100%)), are not feature complete, and should loosely be seen as examples of how to use [models](#models) and [schedulers](#schedulers) for inference.
The following design principles are followed:
- Pipelines follow the single-file policy. All pipelines can be found in individual directories under src/diffusers/pipelines. One pipeline folder corresponds to one diffusion paper/project/release. Multiple pipeline files can be gathered in one pipeline folder, as its done for [`src/diffusers/pipelines/stable-diffusion`](https://github.com/huggingface/diffusers/tree/main/src/diffusers/pipelines/stable_diffusion). If pipelines share similar functionality, one can make use of the [#Copied from mechanism](https://github.com/huggingface/diffusers/blob/125d783076e5bd9785beb05367a2d2566843a271/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py#L251).
- Pipelines all inherit from [`DiffusionPipeline`]
- Every pipeline consists of different model and scheduler components, that are documented in the [`model_index.json` file](https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/model_index.json), are accessible under the same name as attributes of the pipeline and can be shared between pipelines with [`DiffusionPipeline.components`](https://huggingface.co/docs/diffusers/main/en/api/diffusion_pipeline#diffusers.DiffusionPipeline.components) function.
- Every pipeline should be loadable via the [`DiffusionPipeline.from_pretrained`](https://huggingface.co/docs/diffusers/main/en/api/diffusion_pipeline#diffusers.DiffusionPipeline.from_pretrained) function.
- Pipelines should be used **only** for inference.
- Pipelines should be very readable, self-explanatory, and easy to tweak.
- Pipelines should be designed to build on top of each other and be easy to integrate into higher-level APIs.
- Pipelines are **not** intended to be feature-complete user interfaces. For future complete user interfaces one should rather have a look at [InvokeAI](https://github.com/invoke-ai/InvokeAI), [Diffuzers](https://github.com/abhishekkrthakur/diffuzers), and [lama-cleaner](https://github.com/Sanster/lama-cleaner)
- Every pipeline should have one and only one way to run it via a `__call__` method. The naming of the `__call__` arguments should be shared across all pipelines.
- Pipelines should be named after the task they are intended to solve.
- In almost all cases, novel diffusion pipelines shall be implemented in a new pipeline folder/file.
### Models
Models are designed as configurable toolboxes that are natural extensions of [PyTorch's Module class](https://pytorch.org/docs/stable/generated/torch.nn.Module.html). They only partly follow the **single-file policy**.
The following design principles are followed:
- Models correspond to **a type of model architecture**. *E.g.* the [`UNet2DConditionModel`] class is used for all UNet variations that expect 2D image inputs and are conditioned on some context.
- All models can be found in [`src/diffusers/models`](https://github.com/huggingface/diffusers/tree/main/src/diffusers/models) and every model architecture shall be defined in its file, e.g. [`unet_2d_condition.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_condition.py), [`transformer_2d.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/transformer_2d.py), etc...
- Models **do not** follow the single-file policy and should make use of smaller model building blocks, such as [`attention.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention.py), [`resnet.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/resnet.py), [`embeddings.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/embeddings.py), etc... **Note**: This is in stark contrast to Transformers' modeling files and shows that models do not really follow the single-file policy.
- Models intend to expose complexity, just like PyTorch's module does, and give clear error messages.
- Models all inherit from `ModelMixin` and `ConfigMixin`.
- Models can be optimized for performance when it doesnt demand major code changes, keeps backward compatibility, and gives significant memory or compute gain.
- Models should by default have the highest precision and lowest performance setting.
- To integrate new model checkpoints whose general architecture can be classified as an architecture that already exists in Diffusers, the existing model architecture shall be adapted to make it work with the new checkpoint. One should only create a new file if the model architecture is fundamentally different.
- Models should be designed to be easily extendable to future changes. This can be achieved by limiting public function arguments, configuration arguments, and "foreseeing" future changes, *e.g.* it is usually better to add `string` "...type" arguments that can easily be extended to new future types instead of boolean `is_..._type` arguments. Only the minimum amount of changes shall be made to existing architectures to make a new model checkpoint work.
- The model design is a difficult trade-off between keeping code readable and concise and supporting many model checkpoints. For most parts of the modeling code, classes shall be adapted for new model checkpoints, while there are some exceptions where it is preferred to add new classes to make sure the code is kept concise and
readable longterm, such as [UNet blocks](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_blocks.py) and [Attention processors](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
### Schedulers
Schedulers are responsible to guide the denoising process for inference as well as to define a noise schedule for training. They are designed as individual classes with loadable configuration files and strongly follow the **single-file policy**.
The following design principles are followed:
- All schedulers are found in [`src/diffusers/schedulers`](https://github.com/huggingface/diffusers/tree/main/src/diffusers/schedulers).
- Schedulers are **not** allowed to import from large utils files and shall be kept very self-contained.
- One scheduler python file corresponds to one scheduler algorithm (as might be defined in a paper).
- If schedulers share similar functionalities, we can make use of the `#Copied from` mechanism.
- Schedulers all inherit from `SchedulerMixin` and `ConfigMixin`.
- Schedulers can be easily swapped out with the [`ConfigMixin.from_config`](https://huggingface.co/docs/diffusers/main/en/api/configuration#diffusers.ConfigMixin.from_config) method as explained in detail [here](./using-diffusers/schedulers.mdx).
- Every scheduler has to have a `set_num_inference_steps`, and a `step` function. `set_num_inference_steps(...)` has to be called before every denoising process, *i.e.* before `step(...)` is called.
- Every scheduler exposes the timesteps to be "looped over" via a `timesteps` attribute, which is an array of timesteps the model will be called upon
- The `step(...)` function takes a predicted model output and the "current" sample (x_t) and returns the "previous", slightly more denoised sample (x_t-1).
- Given the complexity of diffusion schedulers, the `step` function does not expose all the complexity and can be a bit of a "black box".
- In almost all cases, novel schedulers shall be implemented in a new scheduling file.

View File

Before

Width:  |  Height:  |  Size: 102 KiB

After

Width:  |  Height:  |  Size: 102 KiB

View File

Before

Width:  |  Height:  |  Size: 14 KiB

After

Width:  |  Height:  |  Size: 14 KiB

75
docs/source/en/index.mdx Normal file
View File

@@ -0,0 +1,75 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
<p align="center">
<br>
<img src="https://raw.githubusercontent.com/huggingface/diffusers/77aadfee6a891ab9fcfb780f87c693f7a5beeb8e/docs/source/imgs/diffusers_library.jpg" width="400"/>
<br>
</p>
# 🧨 Diffusers
🤗 Diffusers provides pretrained vision and audio diffusion models, and serves as a modular toolbox for inference and training.
More precisely, 🤗 Diffusers offers:
- State-of-the-art diffusion pipelines that can be run in inference with just a couple of lines of code (see [**Using Diffusers**](./using-diffusers/conditional_image_generation)) or have a look at [**Pipelines**](#pipelines) to get an overview of all supported pipelines and their corresponding papers.
- Various noise schedulers that can be used interchangeably for the preferred speed vs. quality trade-off in inference. For more information see [**Schedulers**](./api/schedulers/overview).
- Multiple types of models, such as UNet, can be used as building blocks in an end-to-end diffusion system. See [**Models**](./api/models) for more details
- Training examples to show how to train the most popular diffusion model tasks. For more information see [**Training**](./training/overview).
## 🧨 Diffusers Pipelines
The following table summarizes all officially supported pipelines, their corresponding paper, and if
available a colab notebook to directly try them out.
| Pipeline | Paper | Tasks | Colab
|---|---|:---:|:---:|
| [alt_diffusion](./api/pipelines/alt_diffusion) | [**AltDiffusion**](https://arxiv.org/abs/2211.06679) | Image-to-Image Text-Guided Generation |
| [audio_diffusion](./api/pipelines/audio_diffusion) | [**Audio Diffusion**](https://github.com/teticio/audio-diffusion.git) | Unconditional Audio Generation | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/teticio/audio-diffusion/blob/master/notebooks/audio_diffusion_pipeline.ipynb)
| [cycle_diffusion](./api/pipelines/cycle_diffusion) | [**Cycle Diffusion**](https://arxiv.org/abs/2210.05559) | Image-to-Image Text-Guided Generation |
| [dance_diffusion](./api/pipelines/dance_diffusion) | [**Dance Diffusion**](https://github.com/williamberman/diffusers.git) | Unconditional Audio Generation |
| [ddpm](./api/pipelines/ddpm) | [**Denoising Diffusion Probabilistic Models**](https://arxiv.org/abs/2006.11239) | Unconditional Image Generation |
| [ddim](./api/pipelines/ddim) | [**Denoising Diffusion Implicit Models**](https://arxiv.org/abs/2010.02502) | Unconditional Image Generation |
| [latent_diffusion](./api/pipelines/latent_diffusion) | [**High-Resolution Image Synthesis with Latent Diffusion Models**](https://arxiv.org/abs/2112.10752)| Text-to-Image Generation |
| [latent_diffusion](./api/pipelines/latent_diffusion) | [**High-Resolution Image Synthesis with Latent Diffusion Models**](https://arxiv.org/abs/2112.10752)| Super Resolution Image-to-Image |
| [latent_diffusion_uncond](./api/pipelines/latent_diffusion_uncond) | [**High-Resolution Image Synthesis with Latent Diffusion Models**](https://arxiv.org/abs/2112.10752) | Unconditional Image Generation |
| [paint_by_example](./api/pipelines/paint_by_example) | [**Paint by Example: Exemplar-based Image Editing with Diffusion Models**](https://arxiv.org/abs/2211.13227) | Image-Guided Image Inpainting |
| [pndm](./api/pipelines/pndm) | [**Pseudo Numerical Methods for Diffusion Models on Manifolds**](https://arxiv.org/abs/2202.09778) | Unconditional Image Generation |
| [score_sde_ve](./api/pipelines/score_sde_ve) | [**Score-Based Generative Modeling through Stochastic Differential Equations**](https://openreview.net/forum?id=PxTIG12RRHS) | Unconditional Image Generation |
| [score_sde_vp](./api/pipelines/score_sde_vp) | [**Score-Based Generative Modeling through Stochastic Differential Equations**](https://openreview.net/forum?id=PxTIG12RRHS) | Unconditional Image Generation |
| [semantic_stable_diffusion](./api/pipelines/semantic_stable_diffusion) | [**Semantic Guidance**](https://arxiv.org/abs/2301.12247) | Text-Guided Generation | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/ml-research/semantic-image-editing/blob/main/examples/SemanticGuidance.ipynb)
| [stable_diffusion_text2img](./api/pipelines/stable_diffusion/text2img) | [**Stable Diffusion**](https://stability.ai/blog/stable-diffusion-public-release) | Text-to-Image Generation | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/training_example.ipynb)
| [stable_diffusion_img2img](./api/pipelines/stable_diffusion/img2img) | [**Stable Diffusion**](https://stability.ai/blog/stable-diffusion-public-release) | Image-to-Image Text-Guided Generation | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/image_2_image_using_diffusers.ipynb)
| [stable_diffusion_inpaint](./api/pipelines/stable_diffusion/inpaint) | [**Stable Diffusion**](https://stability.ai/blog/stable-diffusion-public-release) | Text-Guided Image Inpainting | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/in_painting_with_stable_diffusion_using_diffusers.ipynb)
| [stable_diffusion_panorama](./api/pipelines/stable_diffusion/panorama) | [**MultiDiffusion**](https://multidiffusion.github.io/) | Text-to-Panorama Generation |
| [stable_diffusion_pix2pix](./api/pipelines/stable_diffusion/pix2pix) | [**InstructPix2Pix**](https://github.com/timothybrooks/instruct-pix2pix) | Text-Guided Image Editing|
| [stable_diffusion_pix2pix_zero](./api/pipelines/stable_diffusion/pix2pix_zero) | [**Zero-shot Image-to-Image Translation**](https://pix2pixzero.github.io/) | Text-Guided Image Editing |
| [stable_diffusion_attend_and_excite](./api/pipelines/stable_diffusion/attend_and_excite) | [**Attend and Excite for Stable Diffusion**](https://attendandexcite.github.io/Attend-and-Excite/) | Text-to-Image Generation |
| [stable_diffusion_self_attention_guidance](./api/pipelines/stable_diffusion/self_attention_guidance) | [**Self-Attention Guidance**](https://ku-cvlab.github.io/Self-Attention-Guidance) | Text-to-Image Generation |
| [stable_diffusion_image_variation](./stable_diffusion/image_variation) | [**Stable Diffusion Image Variations**](https://github.com/LambdaLabsML/lambda-diffusers#stable-diffusion-image-variations) | Image-to-Image Generation |
| [stable_diffusion_latent_upscale](./stable_diffusion/latent_upscale) | [**Stable Diffusion Latent Upscaler**](https://twitter.com/StabilityAI/status/1590531958815064065) | Text-Guided Super Resolution Image-to-Image |
| [stable_diffusion_2](./api/pipelines/stable_diffusion_2) | [**Stable Diffusion 2**](https://stability.ai/blog/stable-diffusion-v2-release) | Text-to-Image Generation |
| [stable_diffusion_2](./api/pipelines/stable_diffusion_2) | [**Stable Diffusion 2**](https://stability.ai/blog/stable-diffusion-v2-release) | Text-Guided Image Inpainting |
| [stable_diffusion_2](./api/pipelines/stable_diffusion_2) | [**Depth-Conditional Stable Diffusion**](https://github.com/Stability-AI/stablediffusion#depth-conditional-stable-diffusion) | Depth-to-Image Generation |
| [stable_diffusion_2](./api/pipelines/stable_diffusion_2) | [**Stable Diffusion 2**](https://stability.ai/blog/stable-diffusion-v2-release) | Text-Guided Super Resolution Image-to-Image |
| [stable_diffusion_safe](./api/pipelines/stable_diffusion_safe) | [**Safe Stable Diffusion**](https://arxiv.org/abs/2211.05105) | Text-Guided Generation | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/ml-research/safe-latent-diffusion/blob/main/examples/Safe%20Latent%20Diffusion.ipynb)
| [stable_unclip](./stable_unclip) | **Stable unCLIP** | Text-to-Image Generation |
| [stable_unclip](./stable_unclip) | **Stable unCLIP** | Image-to-Image Text-Guided Generation |
| [stochastic_karras_ve](./api/pipelines/stochastic_karras_ve) | [**Elucidating the Design Space of Diffusion-Based Generative Models**](https://arxiv.org/abs/2206.00364) | Unconditional Image Generation |
| [unclip](./api/pipelines/unclip) | [Hierarchical Text-Conditional Image Generation with CLIP Latents](https://arxiv.org/abs/2204.06125) | Text-to-Image Generation |
| [versatile_diffusion](./api/pipelines/versatile_diffusion) | [Versatile Diffusion: Text, Images and Variations All in One Diffusion Model](https://arxiv.org/abs/2211.08332) | Text-to-Image Generation |
| [versatile_diffusion](./api/pipelines/versatile_diffusion) | [Versatile Diffusion: Text, Images and Variations All in One Diffusion Model](https://arxiv.org/abs/2211.08332) | Image Variations Generation |
| [versatile_diffusion](./api/pipelines/versatile_diffusion) | [Versatile Diffusion: Text, Images and Variations All in One Diffusion Model](https://arxiv.org/abs/2211.08332) | Dual Image and Text Guided Generation |
| [vq_diffusion](./api/pipelines/vq_diffusion) | [Vector Quantized Diffusion Model for Text-to-Image Synthesis](https://arxiv.org/abs/2111.14822) | Text-to-Image Generation |
**Note**: Pipelines are simple examples of how to play around with the diffusion systems as described in the corresponding papers.

View File

@@ -20,7 +20,6 @@ We'll discuss how the following settings impact performance and memory.
| ---------------- | ------- | ------- |
| original | 9.50s | x1 |
| cuDNN auto-tuner | 9.37s | x1.01 |
| autocast (fp16) | 5.47s | x1.74 |
| fp16 | 3.61s | x2.63 |
| channels last | 3.30s | x2.88 |
| traced UNet | 3.21s | x2.96 |
@@ -54,27 +53,9 @@ import torch
torch.backends.cuda.matmul.allow_tf32 = True
```
## Automatic mixed precision (AMP)
If you use a CUDA GPU, you can take advantage of `torch.autocast` to perform inference roughly twice as fast at the cost of slightly lower precision. All you need to do is put your inference call inside an `autocast` context manager. The following example shows how to do it using Stable Diffusion text-to-image generation as an example:
```Python
from torch import autocast
from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
pipe = pipe.to("cuda")
prompt = "a photo of an astronaut riding a horse on mars"
with autocast("cuda"):
image = pipe(prompt).images[0]
```
Despite the precision loss, in our experience the final image results look the same as the `float32` versions. Feel free to experiment and report back!
## Half precision weights
To save more GPU memory and get even more speed, you can load and run the model weights directly in half precision. This involves loading the float16 version of the weights, which was saved to a branch named `fp16`, and telling PyTorch to use the `float16` type when loading them:
To save more GPU memory and get more speed, you can load and run the model weights directly in half precision. This involves loading the float16 version of the weights, which was saved to a branch named `fp16`, and telling PyTorch to use the `float16` type when loading them:
```Python
pipe = StableDiffusionPipeline.from_pretrained(
@@ -88,6 +69,11 @@ prompt = "a photo of an astronaut riding a horse on mars"
image = pipe(prompt).images[0]
```
<Tip warning={true}>
It is strongly discouraged to make use of [`torch.autocast`](https://pytorch.org/docs/stable/amp.html#torch.autocast) in any of the pipelines as it can lead to black images and is always slower than using pure
float16 precision.
</Tip>
## Sliced attention for additional memory savings
For even additional memory savings, you can use a sliced version of attention that performs the computation in steps instead of all at once.
@@ -147,9 +133,10 @@ images = pipe([prompt] * 32).images
You may see a small performance boost in VAE decode on multi-image batches. There should be no performance impact on single-image batches.
<a name="sequential_offloading"></a>
## Offloading to CPU with accelerate for memory savings
For additional memory savings, you can offload the weights to CPU and load them to GPU when performing the forward pass.
For additional memory savings, you can offload the weights to CPU and only load them to GPU when performing the forward pass.
To perform CPU offloading, all you have to do is invoke [`~StableDiffusionPipeline.enable_sequential_cpu_offload`]:
@@ -162,16 +149,21 @@ pipe = StableDiffusionPipeline.from_pretrained(
torch_dtype=torch.float16,
)
pipe = pipe.to("cuda")
prompt = "a photo of an astronaut riding a horse on mars"
pipe.enable_sequential_cpu_offload()
image = pipe(prompt).images[0]
```
And you can get the memory consumption to < 2GB.
And you can get the memory consumption to < 3GB.
If is also possible to chain it with attention slicing for minimal memory consumption, running it in as little as < 800mb of GPU vRAM:
Note that this method works at the submodule level, not on whole models. This is the best way to minimize memory consumption, but inference is much slower due to the iterative nature of the process. The UNet component of the pipeline runs several times (as many as `num_inference_steps`); each time, the different submodules of the UNet are sequentially onloaded and then offloaded as they are needed, so the number of memory transfers is large.
<Tip>
Consider using <a href="#model_offloading">model offloading</a> as another point in the optimization space: it will be much faster, but memory savings won't be as large.
</Tip>
It is also possible to chain offloading with attention slicing for minimal memory consumption (< 2GB).
```Python
import torch
@@ -182,7 +174,6 @@ pipe = StableDiffusionPipeline.from_pretrained(
torch_dtype=torch.float16,
)
pipe = pipe.to("cuda")
prompt = "a photo of an astronaut riding a horse on mars"
pipe.enable_sequential_cpu_offload()
@@ -191,6 +182,57 @@ pipe.enable_attention_slicing(1)
image = pipe(prompt).images[0]
```
**Note**: When using `enable_sequential_cpu_offload()`, it is important to **not** move the pipeline to CUDA beforehand or else the gain in memory consumption will only be minimal. See [this issue](https://github.com/huggingface/diffusers/issues/1934) for more information.
<a name="model_offloading"></a>
## Model offloading for fast inference and memory savings
[Sequential CPU offloading](#sequential_offloading), as discussed in the previous section, preserves a lot of memory but makes inference slower, because submodules are moved to GPU as needed, and immediately returned to CPU when a new module runs.
Full-model offloading is an alternative that moves whole models to the GPU, instead of handling each model's constituent _modules_. This results in a negligible impact on inference time (compared with moving the pipeline to `cuda`), while still providing some memory savings.
In this scenario, only one of the main components of the pipeline (typically: text encoder, unet and vae)
will be in the GPU while the others wait in the CPU. Compoments like the UNet that run for multiple iterations will stay on GPU until they are no longer needed.
This feature can be enabled by invoking `enable_model_cpu_offload()` on the pipeline, as shown below.
```Python
import torch
from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16,
)
prompt = "a photo of an astronaut riding a horse on mars"
pipe.enable_model_cpu_offload()
image = pipe(prompt).images[0]
```
This is also compatible with attention slicing for additional memory savings.
```Python
import torch
from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16,
)
prompt = "a photo of an astronaut riding a horse on mars"
pipe.enable_model_cpu_offload()
pipe.enable_attention_slicing(1)
image = pipe(prompt).images[0]
```
<Tip>
This feature requires `accelerate` version 0.17.0 or larger.
</Tip>
## Using Channels Last memory format
Channels last memory format is an alternative way of ordering NCHW tensors in memory preserving dimensions ordering. Channels last tensors ordered in such a way that channels become the densest dimension (aka storing images pixel-per-pixel). Since not all operators currently support channels last format it may result in a worst performance, so it's better to try it and see if it works for your model.
@@ -224,6 +266,7 @@ torch.set_grad_enabled(False)
n_experiments = 2
unet_runs_per_experiment = 50
# load inputs
def generate_inputs():
sample = torch.randn(2, 4, 64, 64).half().cuda()
@@ -302,6 +345,8 @@ pipe = StableDiffusionPipeline.from_pretrained(
# use jitted unet
unet_traced = torch.jit.load("unet_traced.pt")
# del pipe.unet
class TracedUNet(torch.nn.Module):
def __init__(self):
@@ -357,4 +402,4 @@ with torch.inference_mode():
# optional: You can disable it via
# pipe.disable_xformers_memory_efficient_attention()
```
```

View File

@@ -0,0 +1,200 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Torch2.0 support in Diffusers
Starting from version `0.13.0`, Diffusers supports the latest optimization from the upcoming [PyTorch 2.0](https://pytorch.org/get-started/pytorch-2.0/) release. These include:
1. Support for native flash and memory-efficient attention without any extra dependencies.
2. [torch.compile](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html) support for compiling individual models for extra performance boost.
## Installation
To benefit from the native efficient attention and `torch.compile`, we will need to install the nightly version of PyTorch as the stable version is yet to be released. The first step is to install CUDA11.7 or CUDA11.8,
as torch2.0 does not support the previous versions. Once CUDA is installed, torch nightly can be installed using:
```bash
pip install --pre torch torchvision --index-url https://download.pytorch.org/whl/nightly/cu117
```
## Using efficient attention and torch.compile.
1. **Efficient Attention**
Efficient attention is implemented via the [`torch.nn.functional.scaled_dot_product_attention`](https://pytorch.org/docs/master/generated/torch.nn.functional.scaled_dot_product_attention) function, which automatically enables flash/memory efficient attention, depending on the input and the GPU type. This is the same as the `memory_efficient_attention` from [xFormers](https://github.com/facebookresearch/xformers) but built natively into PyTorch.
Efficient attention will be enabled by default in Diffusers if torch2.0 is installed and if `torch.nn.functional.scaled_dot_product_attention` is available. To use it, you can install torch2.0 as suggested above and use the pipeline. For example:
```Python
import torch
from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
pipe = pipe.to("cuda")
prompt = "a photo of an astronaut riding a horse on mars"
image = pipe(prompt).images[0]
```
If you want to enable it explicitly (which is not required), you can do so as shown below.
```Python
import torch
from diffusers import StableDiffusionPipeline
from diffusers.models.cross_attention import AttnProcessor2_0
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16).to("cuda")
pipe.unet.set_attn_processor(AttnProcessor2_0())
prompt = "a photo of an astronaut riding a horse on mars"
image = pipe(prompt).images[0]
```
This should be as fast and memory efficient as `xFormers`.
2. **torch.compile**
To get an additional speedup, we can use the new `torch.compile` feature. To do so, we wrap our `unet` with `torch.compile`. For more information and different options, refer to the
[torch compile docs](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html).
```python
import torch
from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16).to(
"cuda"
)
pipe.unet = torch.compile(pipe.unet)
batch_size = 10
prompt = "A photo of an astronaut riding a horse on marse."
images = pipe(prompt, num_inference_steps=steps, num_images_per_prompt=batch_size).images
```
Depending on the type of GPU it can give between 2-9% speed-up over efficient attention. But note that as of now the speed-up is mostly noticeable on the more recent GPU architectures, such as in the A100.
Note that compilation will also take some time to complete, so it is best suited for situations where you need to prepare your pipeline once and then perform the same type of inference operations multiple times.
## Benchmark
We conducted a simple benchmark on different GPUs to compare vanilla attention, xFormers, `torch.nn.functional.scaled_dot_product_attention` and `torch.compile+torch.nn.functional.scaled_dot_product_attention`.
For the benchmark we used the the [stable-diffusion-v1-4](https://huggingface.co/CompVis/stable-diffusion-v1-4) model with 50 steps. `xFormers` benchmark is done using the `torch==1.13.1` version. The table below summarizes the result that we got.
The `Speed over xformers` columns denotes the speed-up gained over `xFormers` using the `torch.compile+torch.nn.functional.scaled_dot_product_attention`.
### FP16 benchmark
The table below shows the benchmark results for inference using `fp16`. As we can see, `torch.nn.functional.scaled_dot_product_attention` is as fast as `xFormers` (sometimes slightly faster/slower) on all the GPUs we tested.
And using `torch.compile` gives further speed-up up to 10% over `xFormers`, but it's mostly noticeable on the A100 GPU.
___The time reported is in seconds.___
| GPU | Batch Size | Vanilla Attention | xFormers | PyTorch2.0 SDPA | SDPA + torch.compile | Speed over xformers (%) |
| --- | --- | --- | --- | --- | --- | --- |
| A100 | 10 | 12.02 | 8.7 | 8.79 | 7.89 | 9.31 |
| A100 | 16 | 18.95 | 13.57 | 13.67 | 12.25 | 9.73 |
| A100 | 32 (1) | OOM | 26.56 | 26.68 | 24.08 | 9.34 |
| A100 | 64(2) | | 52.51 | 53.03 | 47.81 | 8.95 |
| | | | | | | |
| A10 | 4 | 13.94 | 9.81 | 10.01 | 9.35 | 4.69 |
| A10 | 8 | 27.09 | 19 | 19.53 | 18.33 | 3.53 |
| A10 | 10 | 33.69 | 23.53 | 24.19 | 22.52 | 4.29 |
| A10 | 16 | OOM | 37.55 | 38.31 | 36.81 | 1.97 |
| A10 | 32 (1) | | 77.19 | 78.43 | 76.64 | 0.71 |
| A10 | 64 (1) | | 173.59 | 158.99 | 155.14 | 10.63 |
| | | | | | | |
| T4 | 4 | 38.81 | 30.09 | 29.74 | 27.55 | 8.44 |
| T4 | 8 | OOM | 55.71 | 55.99 | 53.85 | 3.34 |
| T4 | 10 | OOM | 68.96 | 69.86 | 65.35 | 5.23 |
| T4 | 16 | OOM | 111.47 | 113.26 | 106.93 | 4.07 |
| | | | | | | |
| V100 | 4 | 9.84 | 8.16 | 8.09 | 7.65 | 6.25 |
| V100 | 8 | OOM | 15.62 | 15.44 | 14.59 | 6.59 |
| V100 | 10 | OOM | 19.52 | 19.28 | 18.18 | 6.86 |
| V100 | 16 | OOM | 30.29 | 29.84 | 28.22 | 6.83 |
| | | | | | | |
| 3090 | 4 | 10.04 | 7.82 | 7.89 | 7.47 | 4.48 |
| 3090 | 8 | 19.27 | 14.97 | 15.04 | 14.22 | 5.01 |
| 3090 | 10| 24.08 | 18.7 | 18.7 | 17.69 | 5.40 |
| 3090 | 16 | OOM | 29.06 | 29.06 | 28.2 | 2.96 |
| 3090 | 32 (1) | | 58.05 | 58 | 54.88 | 5.46 |
| 3090 | 64 (1) | | 126.54 | 126.03 | 117.33 | 7.28 |
| | | | | | | |
| 3090 Ti | 4 | 9.07 | 7.14 | 7.15 | 6.81 | 4.62 |
| 3090 Ti | 8 | 17.51 | 13.65 | 13.72 | 12.99 | 4.84 |
| 3090 Ti | 10 (2) | 21.79 | 16.85 | 16.93 | 16.02 | 4.93 |
| 3090 Ti | 16 | OOM | 26.1 | 26.28 | 25.46 | 2.45 |
| 3090 Ti | 32 (1) | | 51.78 | 52.04 | 49.15 | 5.08 |
| 3090 Ti | 64 (1) | | 112.02 | 112.33 | 103.91 | 7.24 |
### FP32 benchmark
The table below shows the benchmark results for inference using `fp32`. As we can see, `torch.nn.functional.scaled_dot_product_attention` is as fast as `xFormers` (sometimes slightly faster/slower) on all the GPUs we tested.
Using `torch.compile` with efficient attention gives up to 18% performance improvement over `xFormers` in Ampere cards, and up to 20% over vanilla attention.
| GPU | Batch Size | Vanilla Attention | xFormers | PyTorch2.0 SDPA | SDPA + torch.compile | Speed over xformers (%) | Speed over vanilla (%) |
| --- | --- | --- | --- | --- | --- | --- | --- |
| A100 | 4 | 16.56 | 12.42 | 12.2 | 11.84 | 4.67 | 28.50 |
| A100 | 10 | OOM | 29.93 | 29.44 | 28.5 | 4.78 | |
| A100 | 16 | | 47.08 | 46.27 | 44.8 | 4.84 | |
| A100 | 32 | | 92.89 | 91.34 | 88.35 | 4.89 | |
| A100 | 64 | | 185.3 | 182.71 | 176.48 | 4.76 | |
| | | | | | | |
| A10 | 1 | 10.59 | 8.81 | 7.51 | 7.35 | 16.57 | 30.59 |
| A10 | 4 | 34.77 | 27.63 | 22.77 | 22.07 | 20.12 | 36.53 |
| A10 | 8 | | 56.19 | 43.53 | 43.86 | 21.94 | |
| A10 | 16 | | 116.49 | 88.56 | 86.64 | 25.62 | |
| A10 | 32 | | 221.95 | 175.74 | 168.18 | 24.23 | |
| A10 | 48 | | 333.23 | 264.84 | | 20.52 | |
| | | | | | | |
| T4 | 1 | 28.2 | 24.49 | 23.93 | 23.56 | 3.80 | 16.45 |
| T4 | 2 | 52.77 | 45.7 | 45.88 | 45.06 | 1.40 | 14.61 |
| T4 | 4 | OOM | 85.72 | 85.78 | 84.48 | 1.45 | |
| T4 | 8 | | 149.64 | 150.75 | 148.4 | 0.83 | |
| | | | | | | |
| V100 | 1 | 7.4 | 6.84 | 6.8 | 6.66 | 2.63 | 10.00 |
| V100 | 2 | 13.85 | 12.81 | 12.66 | 12.35 | 3.59 | 10.83 |
| V100 | 4 | OOM | 25.73 | 25.31 | 24.78 | 3.69 | |
| V100 | 8 | | 43.95 | 43.37 | 42.25 | 3.87 | |
| V100 | 16 | | 84.99 | 84.73 | 82.55 | 2.87 | |
| | | | | | | |
| 3090 | 1 | 7.09 | 6.78 | 6.11 | 6.03 | 11.06 | 14.95 |
| 3090 | 4 | 22.69 | 21.45 | 18.67 | 18.09 | 15.66 | 20.27 |
| 3090 | 8 (2) | | 42.59 | 36.75 | 35.59 | 16.44 | |
| 3090 | 16 | | 85.35 | 72.37 | 70.25 | 17.69 | |
| 3090 | 32 (1) | | 162.05 | 138.99 | 134.53 | 16.98 | |
| 3090 | 48 | | 241.91 | 207.75 | | 14.12 | |
| | | | | | | |
| 3090 Ti | 1 | 6.45 | 6.19 | 5.64 | 5.49 | 11.31 | 14.88 |
| 3090 Ti | 4 | 20.32 | 19.31 | 16.9 | 16.37 | 15.23 | 19.44 |
| 3090 Ti | 8 (2) | | 37.93 | 33.05 | 31.99 | 15.66 | |
| 3090 Ti | 16 | | 75.37 | 65.25 | 64.32 | 14.66 | |
| 3090 Ti | 32 (1) | | 142.55 | 124.44 | 120.74 | 15.30 | |
| 3090 Ti | 48 | | 213.19 | 186.55 | | 12.50 | |
| | | | | | | |
| 4090 | 1 | 5.54 | 4.99 | 4.51 | | | |
| 4090 | 4 | 13.67 | 11.4 | 10.3 | | | |
| 4090 | 8 (2) | | 19.79 | 17.13 | | | |
| 4090 | 16 | | 38.62 | 33.14 | | | |
| 4090 | 32 (1) | | 76.57 | 65.96 | | | |
| 4090 | 48 | | 114.44 | 98.78 | | | |
(1) Batch Size >= 32 requires enable_vae_slicing() because of https://github.com/pytorch/pytorch/issues/81665
This is required for PyTorch 1.13.1, and also for PyTorch 2.0 and batch size of 64
For more details about how this benchmark was run, please refer to [this PR](https://github.com/huggingface/diffusers/pull/2303).

Some files were not shown because too many files have changed in this diff Show More