Improve docstrings and type hints in scheduling_deis_multistep.py (#12796)

* feat: Add `flow_prediction` to `prediction_type`, introduce `use_flow_sigmas`, `flow_shift`, `use_dynamic_shifting`, and `time_shift_type` parameters, and refine type hints for various arguments.

* style: reformat argument wrapping in `_convert_to_beta` and `index_for_timestep` method signatures.
This commit is contained in:
David El Malih
2025-12-05 17:48:01 +01:00
committed by GitHub
parent 8430ac2a2f
commit 256e010674

View File

@@ -84,33 +84,35 @@ class DEISMultistepScheduler(SchedulerMixin, ConfigMixin):
methods the library implements for all schedulers such as loading and saving.
Args:
num_train_timesteps (`int`, defaults to 1000):
num_train_timesteps (`int`, defaults to `1000`):
The number of diffusion steps to train the model.
beta_start (`float`, defaults to 0.0001):
beta_start (`float`, defaults to `0.0001`):
The starting `beta` value of inference.
beta_end (`float`, defaults to 0.02):
beta_end (`float`, defaults to `0.02`):
The final `beta` value.
beta_schedule (`str`, defaults to `"linear"`):
beta_schedule (`"linear"`, `"scaled_linear"`, or `"squaredcos_cap_v2"`, defaults to `"linear"`):
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
`linear`, `scaled_linear`, or `squaredcos_cap_v2`.
trained_betas (`np.ndarray`, *optional*):
trained_betas (`np.ndarray` or `List[float]`, *optional*):
Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
solver_order (`int`, defaults to 2):
solver_order (`int`, defaults to `2`):
The DEIS order which can be `1` or `2` or `3`. It is recommended to use `solver_order=2` for guided
sampling, and `solver_order=3` for unconditional sampling.
prediction_type (`str`, defaults to `epsilon`):
prediction_type (`"epsilon"`, `"sample"`, `"v_prediction"`, or `"flow_prediction"`, defaults to `"epsilon"`):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://huggingface.co/papers/2210.02303) paper).
`sample` (directly predicts the noisy sample`), `v_prediction` (see section 2.4 of [Imagen
Video](https://huggingface.co/papers/2210.02303) paper), or `flow_prediction`.
thresholding (`bool`, defaults to `False`):
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
as Stable Diffusion.
dynamic_thresholding_ratio (`float`, defaults to 0.995):
dynamic_thresholding_ratio (`float`, defaults to `0.995`):
The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
sample_max_value (`float`, defaults to 1.0):
sample_max_value (`float`, defaults to `1.0`):
The threshold value for dynamic thresholding. Valid only when `thresholding=True`.
algorithm_type (`str`, defaults to `deis`):
algorithm_type (`"deis"`, defaults to `"deis"`):
The algorithm type for the solver.
solver_type (`"logrho"`, defaults to `"logrho"`):
Solver type for DEIS.
lower_order_final (`bool`, defaults to `True`):
Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps.
use_karras_sigmas (`bool`, *optional*, defaults to `False`):
@@ -121,11 +123,19 @@ class DEISMultistepScheduler(SchedulerMixin, ConfigMixin):
use_beta_sigmas (`bool`, *optional*, defaults to `False`):
Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to [Beta
Sampling is All You Need](https://huggingface.co/papers/2407.12173) for more information.
timestep_spacing (`str`, defaults to `"linspace"`):
use_flow_sigmas (`bool`, *optional*, defaults to `False`):
Whether to use flow sigmas for step sizes in the noise schedule during the sampling process.
flow_shift (`float`, *optional*, defaults to `1.0`):
The flow shift parameter for flow-based models.
timestep_spacing (`"linspace"`, `"leading"`, or `"trailing"`, defaults to `"linspace"`):
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
steps_offset (`int`, defaults to 0):
steps_offset (`int`, defaults to `0`):
An offset added to the inference steps, as required by some model families.
use_dynamic_shifting (`bool`, defaults to `False`):
Whether to use dynamic shifting for the noise schedule.
time_shift_type (`"exponential"`, defaults to `"exponential"`):
The type of time shifting to apply.
"""
_compatibles = [e.name for e in KarrasDiffusionSchedulers]
@@ -137,29 +147,38 @@ class DEISMultistepScheduler(SchedulerMixin, ConfigMixin):
num_train_timesteps: int = 1000,
beta_start: float = 0.0001,
beta_end: float = 0.02,
beta_schedule: str = "linear",
trained_betas: Optional[np.ndarray] = None,
beta_schedule: Literal["linear", "scaled_linear", "squaredcos_cap_v2"] = "linear",
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
solver_order: int = 2,
prediction_type: str = "epsilon",
prediction_type: Literal["epsilon", "sample", "v_prediction", "flow_prediction"] = "epsilon",
thresholding: bool = False,
dynamic_thresholding_ratio: float = 0.995,
sample_max_value: float = 1.0,
algorithm_type: str = "deis",
solver_type: str = "logrho",
algorithm_type: Literal["deis"] = "deis",
solver_type: Literal["logrho"] = "logrho",
lower_order_final: bool = True,
use_karras_sigmas: Optional[bool] = False,
use_exponential_sigmas: Optional[bool] = False,
use_beta_sigmas: Optional[bool] = False,
use_flow_sigmas: Optional[bool] = False,
flow_shift: Optional[float] = 1.0,
timestep_spacing: str = "linspace",
timestep_spacing: Literal["linspace", "leading", "trailing"] = "linspace",
steps_offset: int = 0,
use_dynamic_shifting: bool = False,
time_shift_type: str = "exponential",
):
time_shift_type: Literal["exponential"] = "exponential",
) -> None:
if self.config.use_beta_sigmas and not is_scipy_available():
raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
if (
sum(
[
self.config.use_beta_sigmas,
self.config.use_exponential_sigmas,
self.config.use_karras_sigmas,
]
)
> 1
):
raise ValueError(
"Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
)
@@ -169,7 +188,15 @@ class DEISMultistepScheduler(SchedulerMixin, ConfigMixin):
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
self.betas = (
torch.linspace(
beta_start**0.5,
beta_end**0.5,
num_train_timesteps,
dtype=torch.float32,
)
** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
self.betas = betas_for_alpha_bar(num_train_timesteps)
@@ -211,21 +238,21 @@ class DEISMultistepScheduler(SchedulerMixin, ConfigMixin):
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
@property
def step_index(self):
def step_index(self) -> Optional[int]:
"""
The index counter for current timestep. It will increase 1 after each scheduler step.
"""
return self._step_index
@property
def begin_index(self):
def begin_index(self) -> Optional[int]:
"""
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
"""
return self._begin_index
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
def set_begin_index(self, begin_index: int = 0):
def set_begin_index(self, begin_index: int = 0) -> None:
"""
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
@@ -236,8 +263,11 @@ class DEISMultistepScheduler(SchedulerMixin, ConfigMixin):
self._begin_index = begin_index
def set_timesteps(
self, num_inference_steps: int, device: Union[str, torch.device] = None, mu: Optional[float] = None
):
self,
num_inference_steps: int,
device: Union[str, torch.device] = None,
mu: Optional[float] = None,
) -> None:
"""
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
@@ -246,6 +276,9 @@ class DEISMultistepScheduler(SchedulerMixin, ConfigMixin):
The number of diffusion steps used when generating samples with a pre-trained model.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
mu (`float`, *optional*):
The mu parameter for dynamic shifting. Only used when `use_dynamic_shifting=True` and
`time_shift_type="exponential"`.
"""
if mu is not None:
assert self.config.use_dynamic_shifting and self.config.time_shift_type == "exponential"
@@ -363,7 +396,7 @@ class DEISMultistepScheduler(SchedulerMixin, ConfigMixin):
return sample
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
def _sigma_to_t(self, sigma, log_sigmas):
def _sigma_to_t(self, sigma: np.ndarray, log_sigmas: np.ndarray) -> np.ndarray:
"""
Convert sigma values to corresponding timestep values through interpolation.
@@ -400,7 +433,7 @@ class DEISMultistepScheduler(SchedulerMixin, ConfigMixin):
return t
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._sigma_to_alpha_sigma_t
def _sigma_to_alpha_sigma_t(self, sigma):
def _sigma_to_alpha_sigma_t(self, sigma: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Convert sigma values to alpha_t and sigma_t values.
@@ -422,7 +455,7 @@ class DEISMultistepScheduler(SchedulerMixin, ConfigMixin):
return alpha_t, sigma_t
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
"""
Construct the noise schedule as proposed in [Elucidating the Design Space of Diffusion-Based Generative
Models](https://huggingface.co/papers/2206.00364).
@@ -648,7 +681,10 @@ class DEISMultistepScheduler(SchedulerMixin, ConfigMixin):
"Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
)
sigma_t, sigma_s = self.sigmas[self.step_index + 1], self.sigmas[self.step_index]
sigma_t, sigma_s = (
self.sigmas[self.step_index + 1],
self.sigmas[self.step_index],
)
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
alpha_s, sigma_s = self._sigma_to_alpha_sigma_t(sigma_s)
lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
@@ -714,7 +750,11 @@ class DEISMultistepScheduler(SchedulerMixin, ConfigMixin):
m0, m1 = model_output_list[-1], model_output_list[-2]
rho_t, rho_s0, rho_s1 = sigma_t / alpha_t, sigma_s0 / alpha_s0, sigma_s1 / alpha_s1
rho_t, rho_s0, rho_s1 = (
sigma_t / alpha_t,
sigma_s0 / alpha_s0,
sigma_s1 / alpha_s1,
)
if self.config.algorithm_type == "deis":
@@ -854,7 +894,7 @@ class DEISMultistepScheduler(SchedulerMixin, ConfigMixin):
return step_index
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._init_step_index
def _init_step_index(self, timestep):
def _init_step_index(self, timestep: Union[int, torch.Tensor]) -> None:
"""
Initialize the step_index counter for the scheduler.
@@ -884,18 +924,17 @@ class DEISMultistepScheduler(SchedulerMixin, ConfigMixin):
Args:
model_output (`torch.Tensor`):
The direct output from learned diffusion model.
timestep (`int`):
timestep (`int` or `torch.Tensor`):
The current discrete timestep in the diffusion chain.
sample (`torch.Tensor`):
A current instance of a sample created by the diffusion process.
return_dict (`bool`):
return_dict (`bool`, defaults to `True`):
Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.
Returns:
[`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
tuple is returned where the first element is the sample tensor.
"""
if self.num_inference_steps is None:
raise ValueError(
@@ -1000,5 +1039,5 @@ class DEISMultistepScheduler(SchedulerMixin, ConfigMixin):
noisy_samples = alpha_t * original_samples + sigma_t * noise
return noisy_samples
def __len__(self):
def __len__(self) -> int:
return self.config.num_train_timesteps