Compare commits

..

12 Commits

Author SHA1 Message Date
DN6
71ce634d1e update 2026-02-20 14:04:58 +05:30
Animesh Jain
01de02e8b4 [gguf][torch.compile time] Convert to plain tensor earlier in dequantize_gguf_tensor (#13166)
[gguf] Convert to plain tensor earlier in dequantize_gguf_tensor

Once dequantize_gguf_tensor fetches the quant_type attributed from the
GGUFParamter tensor subclass, there is no further need of running the
actual dequantize operations on the Tensor subclass, we can just convert
to plain tensor right away.

This not only makes PyTorch eager faster, but reduces torch.compile
tracer compile time from 36 seconds to 10 seconds, because there is lot
less code to trace now.
2026-02-20 09:31:52 +05:30
Dhruv Nair
db2d7e7bc4 [CI] Fix new LoRAHotswap tests (#13163)
update

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2026-02-20 09:01:20 +05:30
Sayak Paul
f8d3db9ca7 remove deps related to test from ci (#13164) 2026-02-20 08:35:35 +05:30
Sayak Paul
99daaa802d [core] Enable CP for kernels-based attention backends (#12812)
* up

* up

* up

* up

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2026-02-19 18:16:50 +05:30
dg845
fe78a7b7c6 Fix ftfy import for PRX Pipeline (#13154)
* Guard ftfy import with is_ftfy_available

* Remove xfail for PRX pipeline tests as they appear to work on transformers>4.57.1

* make style and make quality
2026-02-18 20:44:33 -08:00
dg845
53e1d0e458 [CI] Revert setuptools CI Fix as the Failing Pipelines are Deprecated (#13149)
* Pin setuptools version for dependencies which explicitly depend on pkg_resources

* Revert setuptools pin as k-diffusion pipelines are now deprecated

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2026-02-18 20:34:00 -08:00
dxqb
a577ec36df Flux2: Tensor tuples can cause issues for checkpointing (#12777)
* split tensors inside the transformer blocks to avoid checkpointing issues

* clean up, fix type hints

* fix merge error

* Apply style fixes

---------

Co-authored-by: s <you@example.com>
Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2026-02-18 17:03:22 -08:00
Steven Liu
6875490c3b [docs] add docs for qwenimagelayered (#13158)
* add example

* feedback
2026-02-18 11:02:15 -08:00
David El Malih
64734b2115 docs: improve docstring scheduling_flow_match_lcm.py (#13160)
Improve docstring scheduling flow match lcm
2026-02-18 10:52:02 -08:00
Dhruv Nair
f81e653197 [CI] Add ftfy as a test dependency (#13155)
* update

* update

* update

* update

* update

* update
2026-02-18 22:51:10 +05:30
zhangtao0408
bcbbded7c3 [Bug] Fix QwenImageEditPlus Series on NPU (#13017)
* [Bug Fix][Qwen-Image-Edit] Fix Qwen-Image-Edit series on NPU

* Enhance NPU attention handling by converting attention mask to boolean and refining mask checks.

* Refine attention mask handling in NPU attention function to improve validation and conversion logic.

* Clean Code

* Refine attention mask processing in NPU attention functions to enhance performance and validation.

* Remove item() ops on npu fa backend.

* Reuse NPU attention mask by `_maybe_modify_attn_mask_npu`

* Apply style fixes

* Update src/diffusers/models/attention_dispatch.py

---------

Co-authored-by: zhangtao <zhangtao529@huawei.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2026-02-17 09:10:40 +05:30
31 changed files with 674 additions and 231 deletions

View File

@@ -199,11 +199,6 @@ jobs:
- name: Install dependencies
run: |
# Install pkgs which depend on setuptools<81 for pkg_resources first with no build isolation
uv pip install pip==25.2 setuptools==80.10.2
uv pip install --no-build-isolation k-diffusion==0.0.12
uv pip install --upgrade pip setuptools
# Install the rest as normal
uv pip install -e ".[quality]"
uv pip install peft@git+https://github.com/huggingface/peft.git
uv pip uninstall accelerate && uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git

View File

@@ -126,11 +126,6 @@ jobs:
- name: Install dependencies
run: |
# Install pkgs which depend on setuptools<81 for pkg_resources first with no build isolation
uv pip install pip==25.2 setuptools==80.10.2
uv pip install --no-build-isolation k-diffusion==0.0.12
uv pip install --upgrade pip setuptools
# Install the rest as normal
uv pip install -e ".[quality]"
uv pip install peft@git+https://github.com/huggingface/peft.git
uv pip uninstall accelerate && uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git

View File

@@ -41,7 +41,7 @@ jobs:
shell: arch -arch arm64 bash {0}
run: |
${CONDA_RUN} python -m pip install --upgrade pip uv
${CONDA_RUN} python -m uv pip install -e ".[quality,test]"
${CONDA_RUN} python -m uv pip install -e ".[quality]"
${CONDA_RUN} python -m uv pip install torch torchvision torchaudio
${CONDA_RUN} python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate.git
${CONDA_RUN} python -m uv pip install transformers --upgrade

View File

@@ -29,7 +29,7 @@ Qwen-Image comes in the following variants:
| Qwen-Image-Edit Plus | [Qwen/Qwen-Image-Edit-2509](https://huggingface.co/Qwen/Qwen-Image-Edit-2509) |
> [!TIP]
> [Caching](../../optimization/cache) may also speed up inference by storing and reusing intermediate outputs.
> See the [Caching](../../optimization/cache) guide to speed up inference by storing and reusing intermediate outputs.
## LoRA for faster inference
@@ -190,6 +190,12 @@ For detailed benchmark scripts and results, see [this gist](https://gist.github.
- all
- __call__
## QwenImageLayeredPipeline
[[autodoc]] QwenImageLayeredPipeline
- all
- __call__
## QwenImagePipelineOutput
[[autodoc]] pipelines.qwenimage.pipeline_output.QwenImagePipelineOutput

View File

@@ -101,6 +101,7 @@ _deps = [
"datasets",
"filelock",
"flax>=0.4.1",
"ftfy",
"hf-doc-builder>=0.3.0",
"httpx<1.0.0",
"huggingface-hub>=0.34.0,<2.0",
@@ -221,12 +222,14 @@ extras["docs"] = deps_list("hf-doc-builder")
extras["training"] = deps_list("accelerate", "datasets", "protobuf", "tensorboard", "Jinja2", "peft", "timm")
extras["test"] = deps_list(
"compel",
"ftfy",
"GitPython",
"datasets",
"Jinja2",
"invisible-watermark",
"librosa",
"parameterized",
"protobuf",
"pytest",
"pytest-timeout",
"pytest-xdist",
@@ -235,6 +238,7 @@ extras["test"] = deps_list(
"sentencepiece",
"scipy",
"tiktoken",
"torchsde",
"torchvision",
"transformers",
"phonemizer",

View File

@@ -8,6 +8,7 @@ deps = {
"datasets": "datasets",
"filelock": "filelock",
"flax": "flax>=0.4.1",
"ftfy": "ftfy",
"hf-doc-builder": "hf-doc-builder>=0.3.0",
"httpx": "httpx<1.0.0",
"huggingface-hub": "huggingface-hub>=0.34.0,<2.0",

View File

@@ -266,6 +266,10 @@ class _HubKernelConfig:
function_attr: str
revision: str | None = None
kernel_fn: Callable | None = None
wrapped_forward_attr: str | None = None
wrapped_backward_attr: str | None = None
wrapped_forward_fn: Callable | None = None
wrapped_backward_fn: Callable | None = None
# Registry for hub-based attention kernels
@@ -280,7 +284,11 @@ _HUB_KERNELS_REGISTRY: dict["AttentionBackendName", _HubKernelConfig] = {
# revision="fake-ops-return-probs",
),
AttentionBackendName.FLASH_HUB: _HubKernelConfig(
repo_id="kernels-community/flash-attn2", function_attr="flash_attn_func", revision=None
repo_id="kernels-community/flash-attn2",
function_attr="flash_attn_func",
revision=None,
wrapped_forward_attr="flash_attn_interface._wrapped_flash_attn_forward",
wrapped_backward_attr="flash_attn_interface._wrapped_flash_attn_backward",
),
AttentionBackendName.FLASH_VARLEN_HUB: _HubKernelConfig(
repo_id="kernels-community/flash-attn2", function_attr="flash_attn_varlen_func", revision=None
@@ -605,22 +613,39 @@ def _flex_attention_causal_mask_mod(batch_idx, head_idx, q_idx, kv_idx):
# ===== Helpers for downloading kernels =====
def _resolve_kernel_attr(module, attr_path: str):
target = module
for attr in attr_path.split("."):
if not hasattr(target, attr):
raise AttributeError(f"Kernel module '{module.__name__}' does not define attribute path '{attr_path}'.")
target = getattr(target, attr)
return target
def _maybe_download_kernel_for_backend(backend: AttentionBackendName) -> None:
if backend not in _HUB_KERNELS_REGISTRY:
return
config = _HUB_KERNELS_REGISTRY[backend]
if config.kernel_fn is not None:
needs_kernel = config.kernel_fn is None
needs_wrapped_forward = config.wrapped_forward_attr is not None and config.wrapped_forward_fn is None
needs_wrapped_backward = config.wrapped_backward_attr is not None and config.wrapped_backward_fn is None
if not (needs_kernel or needs_wrapped_forward or needs_wrapped_backward):
return
try:
from kernels import get_kernel
kernel_module = get_kernel(config.repo_id, revision=config.revision)
kernel_func = getattr(kernel_module, config.function_attr)
if needs_kernel:
config.kernel_fn = _resolve_kernel_attr(kernel_module, config.function_attr)
# Cache the downloaded kernel function in the config object
config.kernel_fn = kernel_func
if needs_wrapped_forward:
config.wrapped_forward_fn = _resolve_kernel_attr(kernel_module, config.wrapped_forward_attr)
if needs_wrapped_backward:
config.wrapped_backward_fn = _resolve_kernel_attr(kernel_module, config.wrapped_backward_attr)
except Exception as e:
logger.error(f"An error occurred while fetching kernel '{config.repo_id}' from the Hub: {e}")
@@ -1071,6 +1096,237 @@ def _flash_attention_backward_op(
return grad_query, grad_key, grad_value
def _flash_attention_hub_forward_op(
ctx: torch.autograd.function.FunctionCtx,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attn_mask: torch.Tensor | None = None,
dropout_p: float = 0.0,
is_causal: bool = False,
scale: float | None = None,
enable_gqa: bool = False,
return_lse: bool = False,
_save_ctx: bool = True,
_parallel_config: "ParallelConfig" | None = None,
):
if attn_mask is not None:
raise ValueError("`attn_mask` is not yet supported for flash-attn hub kernels.")
if enable_gqa:
raise ValueError("`enable_gqa` is not yet supported for flash-attn hub kernels.")
config = _HUB_KERNELS_REGISTRY[AttentionBackendName.FLASH_HUB]
wrapped_forward_fn = config.wrapped_forward_fn
wrapped_backward_fn = config.wrapped_backward_fn
if wrapped_forward_fn is None or wrapped_backward_fn is None:
raise RuntimeError(
"Flash attention hub kernels must expose `_wrapped_flash_attn_forward` and `_wrapped_flash_attn_backward` "
"for context parallel execution."
)
if scale is None:
scale = query.shape[-1] ** (-0.5)
window_size = (-1, -1)
softcap = 0.0
alibi_slopes = None
deterministic = False
grad_enabled = any(x.requires_grad for x in (query, key, value))
if grad_enabled or (_parallel_config is not None and _parallel_config.context_parallel_config._world_size > 1):
dropout_p = dropout_p if dropout_p > 0 else 1e-30
with torch.set_grad_enabled(grad_enabled):
out, lse, S_dmask, rng_state = wrapped_forward_fn(
query,
key,
value,
dropout_p,
scale,
is_causal,
window_size[0],
window_size[1],
softcap,
alibi_slopes,
return_lse,
)
lse = lse.permute(0, 2, 1).contiguous()
if _save_ctx:
ctx.save_for_backward(query, key, value, out, lse, rng_state)
ctx.dropout_p = dropout_p
ctx.scale = scale
ctx.is_causal = is_causal
ctx.window_size = window_size
ctx.softcap = softcap
ctx.alibi_slopes = alibi_slopes
ctx.deterministic = deterministic
return (out, lse) if return_lse else out
def _flash_attention_hub_backward_op(
ctx: torch.autograd.function.FunctionCtx,
grad_out: torch.Tensor,
*args,
**kwargs,
):
config = _HUB_KERNELS_REGISTRY[AttentionBackendName.FLASH_HUB]
wrapped_backward_fn = config.wrapped_backward_fn
if wrapped_backward_fn is None:
raise RuntimeError(
"Flash attention hub kernels must expose `_wrapped_flash_attn_backward` for context parallel execution."
)
query, key, value, out, lse, rng_state = ctx.saved_tensors
grad_query, grad_key, grad_value = torch.empty_like(query), torch.empty_like(key), torch.empty_like(value)
_ = wrapped_backward_fn(
grad_out,
query,
key,
value,
out,
lse,
grad_query,
grad_key,
grad_value,
ctx.dropout_p,
ctx.scale,
ctx.is_causal,
ctx.window_size[0],
ctx.window_size[1],
ctx.softcap,
ctx.alibi_slopes,
ctx.deterministic,
rng_state,
)
grad_query = grad_query[..., : grad_out.shape[-1]]
grad_key = grad_key[..., : grad_out.shape[-1]]
grad_value = grad_value[..., : grad_out.shape[-1]]
return grad_query, grad_key, grad_value
def _flash_attention_3_hub_forward_op(
ctx: torch.autograd.function.FunctionCtx,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attn_mask: torch.Tensor | None = None,
dropout_p: float = 0.0,
is_causal: bool = False,
scale: float | None = None,
enable_gqa: bool = False,
return_lse: bool = False,
_save_ctx: bool = True,
_parallel_config: "ParallelConfig" | None = None,
*,
window_size: tuple[int, int] = (-1, -1),
softcap: float = 0.0,
num_splits: int = 1,
pack_gqa: bool | None = None,
deterministic: bool = False,
sm_margin: int = 0,
):
if attn_mask is not None:
raise ValueError("`attn_mask` is not yet supported for flash-attn 3 hub kernels.")
if dropout_p != 0.0:
raise ValueError("`dropout_p` is not yet supported for flash-attn 3 hub kernels.")
if enable_gqa:
raise ValueError("`enable_gqa` is not yet supported for flash-attn 3 hub kernels.")
func = _HUB_KERNELS_REGISTRY[AttentionBackendName._FLASH_3_HUB].kernel_fn
out = func(
q=query,
k=key,
v=value,
softmax_scale=scale,
causal=is_causal,
qv=None,
q_descale=None,
k_descale=None,
v_descale=None,
window_size=window_size,
softcap=softcap,
num_splits=num_splits,
pack_gqa=pack_gqa,
deterministic=deterministic,
sm_margin=sm_margin,
return_attn_probs=return_lse,
)
lse = None
if return_lse:
out, lse = out
lse = lse.permute(0, 2, 1).contiguous()
if _save_ctx:
ctx.save_for_backward(query, key, value)
ctx.scale = scale
ctx.is_causal = is_causal
ctx._hub_kernel = func
return (out, lse) if return_lse else out
def _flash_attention_3_hub_backward_op(
ctx: torch.autograd.function.FunctionCtx,
grad_out: torch.Tensor,
*args,
window_size: tuple[int, int] = (-1, -1),
softcap: float = 0.0,
num_splits: int = 1,
pack_gqa: bool | None = None,
deterministic: bool = False,
sm_margin: int = 0,
):
query, key, value = ctx.saved_tensors
kernel_fn = ctx._hub_kernel
# NOTE: Unlike the FA2 hub kernel, the FA3 hub kernel does not expose separate wrapped forward/backward
# primitives (no `wrapped_forward_attr`/`wrapped_backward_attr` in its `_HubKernelConfig`). We
# therefore rerun the forward pass under `torch.enable_grad()` and differentiate through it with
# `torch.autograd.grad()`. This is a second forward pass during backward; it can be avoided once
# the FA3 hub exposes a dedicated fused backward kernel (analogous to `_wrapped_flash_attn_backward`
# in the FA2 hub), at which point this can be refactored to match `_flash_attention_hub_backward_op`.
with torch.enable_grad():
query_r = query.detach().requires_grad_(True)
key_r = key.detach().requires_grad_(True)
value_r = value.detach().requires_grad_(True)
out = kernel_fn(
q=query_r,
k=key_r,
v=value_r,
softmax_scale=ctx.scale,
causal=ctx.is_causal,
qv=None,
q_descale=None,
k_descale=None,
v_descale=None,
window_size=window_size,
softcap=softcap,
num_splits=num_splits,
pack_gqa=pack_gqa,
deterministic=deterministic,
sm_margin=sm_margin,
return_attn_probs=False,
)
if isinstance(out, tuple):
out = out[0]
grad_query, grad_key, grad_value = torch.autograd.grad(
out,
(query_r, key_r, value_r),
grad_out,
retain_graph=False,
allow_unused=False,
)
return grad_query, grad_key, grad_value
def _sage_attention_forward_op(
ctx: torch.autograd.function.FunctionCtx,
query: torch.Tensor,
@@ -1109,6 +1365,46 @@ def _sage_attention_forward_op(
return (out, lse) if return_lse else out
def _sage_attention_hub_forward_op(
ctx: torch.autograd.function.FunctionCtx,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attn_mask: torch.Tensor | None = None,
dropout_p: float = 0.0,
is_causal: bool = False,
scale: float | None = None,
enable_gqa: bool = False,
return_lse: bool = False,
_save_ctx: bool = True,
_parallel_config: "ParallelConfig" | None = None,
):
if attn_mask is not None:
raise ValueError("`attn_mask` is not yet supported for Sage attention.")
if dropout_p > 0.0:
raise ValueError("`dropout_p` is not yet supported for Sage attention.")
if enable_gqa:
raise ValueError("`enable_gqa` is not yet supported for Sage attention.")
func = _HUB_KERNELS_REGISTRY[AttentionBackendName.SAGE_HUB].kernel_fn
out = func(
q=query,
k=key,
v=value,
tensor_layout="NHD",
is_causal=is_causal,
sm_scale=scale,
return_lse=return_lse,
)
lse = None
if return_lse:
out, lse, *_ = out
lse = lse.permute(0, 2, 1).contiguous()
return (out, lse) if return_lse else out
def _sage_attention_backward_op(
ctx: torch.autograd.function.FunctionCtx,
grad_out: torch.Tensor,
@@ -1117,6 +1413,26 @@ def _sage_attention_backward_op(
raise NotImplementedError("Backward pass is not implemented for Sage attention.")
def _maybe_modify_attn_mask_npu(query: torch.Tensor, key: torch.Tensor, attn_mask: torch.Tensor | None = None):
# Skip Attention Mask if all values are 1, `None` mask can speedup the computation
if attn_mask is not None and torch.all(attn_mask != 0):
attn_mask = None
# Reshape Attention Mask: [batch_size, seq_len_k] -> [batch_size, 1, sqe_len_q, seq_len_k]
# https://www.hiascend.com/document/detail/zh/Pytorch/730/apiref/torchnpuCustomsapi/docs/context/torch_npu-npu_fusion_attention.md
if (
attn_mask is not None
and attn_mask.ndim == 2
and attn_mask.shape[0] == query.shape[0]
and attn_mask.shape[1] == key.shape[1]
):
B, Sq, Skv = attn_mask.shape[0], query.shape[1], key.shape[1]
attn_mask = ~attn_mask.to(torch.bool)
attn_mask = attn_mask.unsqueeze(1).expand(B, Sq, Skv).unsqueeze(1).contiguous()
return attn_mask
def _npu_attention_forward_op(
ctx: torch.autograd.function.FunctionCtx,
query: torch.Tensor,
@@ -1134,11 +1450,14 @@ def _npu_attention_forward_op(
if return_lse:
raise ValueError("NPU attention backend does not support setting `return_lse=True`.")
attn_mask = _maybe_modify_attn_mask_npu(query, key, attn_mask)
out = npu_fusion_attention(
query,
key,
value,
query.size(2), # num_heads
atten_mask=attn_mask,
input_layout="BSND",
pse=None,
scale=1.0 / math.sqrt(query.shape[-1]) if scale is None else scale,
@@ -1942,7 +2261,7 @@ def _flash_attention(
@_AttentionBackendRegistry.register(
AttentionBackendName.FLASH_HUB,
constraints=[_check_device, _check_qkv_dtype_bf16_or_fp16, _check_shape],
supports_context_parallel=False,
supports_context_parallel=True,
)
def _flash_attention_hub(
query: torch.Tensor,
@@ -1960,17 +2279,35 @@ def _flash_attention_hub(
raise ValueError("`attn_mask` is not supported for flash-attn 2.")
func = _HUB_KERNELS_REGISTRY[AttentionBackendName.FLASH_HUB].kernel_fn
out = func(
q=query,
k=key,
v=value,
dropout_p=dropout_p,
softmax_scale=scale,
causal=is_causal,
return_attn_probs=return_lse,
)
if return_lse:
out, lse, *_ = out
if _parallel_config is None:
out = func(
q=query,
k=key,
v=value,
dropout_p=dropout_p,
softmax_scale=scale,
causal=is_causal,
return_attn_probs=return_lse,
)
if return_lse:
out, lse, *_ = out
else:
out = _templated_context_parallel_attention(
query,
key,
value,
None,
dropout_p,
is_causal,
scale,
False,
return_lse,
forward_op=_flash_attention_hub_forward_op,
backward_op=_flash_attention_hub_backward_op,
_parallel_config=_parallel_config,
)
if return_lse:
out, lse = out
return (out, lse) if return_lse else out
@@ -2117,7 +2454,7 @@ def _flash_attention_3(
@_AttentionBackendRegistry.register(
AttentionBackendName._FLASH_3_HUB,
constraints=[_check_device, _check_qkv_dtype_bf16_or_fp16, _check_shape],
supports_context_parallel=False,
supports_context_parallel=True,
)
def _flash_attention_3_hub(
query: torch.Tensor,
@@ -2132,33 +2469,68 @@ def _flash_attention_3_hub(
return_attn_probs: bool = False,
_parallel_config: "ParallelConfig" | None = None,
) -> torch.Tensor:
if _parallel_config:
raise NotImplementedError(f"{AttentionBackendName._FLASH_3_HUB.value} is not implemented for parallelism yet.")
if attn_mask is not None:
raise ValueError("`attn_mask` is not supported for flash-attn 3.")
func = _HUB_KERNELS_REGISTRY[AttentionBackendName._FLASH_3_HUB].kernel_fn
out = func(
q=query,
k=key,
v=value,
softmax_scale=scale,
causal=is_causal,
qv=None,
q_descale=None,
k_descale=None,
v_descale=None,
if _parallel_config is None:
out = func(
q=query,
k=key,
v=value,
softmax_scale=scale,
causal=is_causal,
qv=None,
q_descale=None,
k_descale=None,
v_descale=None,
window_size=window_size,
softcap=softcap,
num_splits=1,
pack_gqa=None,
deterministic=deterministic,
sm_margin=0,
return_attn_probs=return_attn_probs,
)
return (out[0], out[1]) if return_attn_probs else out
forward_op = functools.partial(
_flash_attention_3_hub_forward_op,
window_size=window_size,
softcap=softcap,
num_splits=1,
pack_gqa=None,
deterministic=deterministic,
sm_margin=0,
return_attn_probs=return_attn_probs,
)
# When `return_attn_probs` is True, the above returns a tuple of
# actual outputs and lse.
return (out[0], out[1]) if return_attn_probs else out
backward_op = functools.partial(
_flash_attention_3_hub_backward_op,
window_size=window_size,
softcap=softcap,
num_splits=1,
pack_gqa=None,
deterministic=deterministic,
sm_margin=0,
)
out = _templated_context_parallel_attention(
query,
key,
value,
None,
0.0,
is_causal,
scale,
False,
return_attn_probs,
forward_op=forward_op,
backward_op=backward_op,
_parallel_config=_parallel_config,
)
if return_attn_probs:
out, lse = out
return out, lse
return out
@_AttentionBackendRegistry.register(
@@ -2668,16 +3040,17 @@ def _native_npu_attention(
return_lse: bool = False,
_parallel_config: "ParallelConfig" | None = None,
) -> torch.Tensor:
if attn_mask is not None:
raise ValueError("`attn_mask` is not supported for NPU attention")
if return_lse:
raise ValueError("NPU attention backend does not support setting `return_lse=True`.")
if _parallel_config is None:
attn_mask = _maybe_modify_attn_mask_npu(query, key, attn_mask)
out = npu_fusion_attention(
query,
key,
value,
query.size(2), # num_heads
atten_mask=attn_mask,
input_layout="BSND",
pse=None,
scale=1.0 / math.sqrt(query.shape[-1]) if scale is None else scale,
@@ -2692,7 +3065,7 @@ def _native_npu_attention(
query,
key,
value,
None,
attn_mask,
dropout_p,
None,
scale,
@@ -2789,7 +3162,7 @@ def _sage_attention(
@_AttentionBackendRegistry.register(
AttentionBackendName.SAGE_HUB,
constraints=[_check_device_cuda, _check_qkv_dtype_bf16_or_fp16, _check_shape],
supports_context_parallel=False,
supports_context_parallel=True,
)
def _sage_attention_hub(
query: torch.Tensor,
@@ -2817,6 +3190,23 @@ def _sage_attention_hub(
)
if return_lse:
out, lse, *_ = out
else:
out = _templated_context_parallel_attention(
query,
key,
value,
None,
0.0,
is_causal,
scale,
False,
return_lse,
forward_op=_sage_attention_hub_forward_op,
backward_op=_sage_attention_backward_op,
_parallel_config=_parallel_config,
)
if return_lse:
out, lse = out
return (out, lse) if return_lse else out

View File

@@ -424,7 +424,7 @@ class Flux2SingleTransformerBlock(nn.Module):
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor | None,
temb_mod_params: tuple[torch.Tensor, torch.Tensor, torch.Tensor],
temb_mod: torch.Tensor,
image_rotary_emb: tuple[torch.Tensor, torch.Tensor] | None = None,
joint_attention_kwargs: dict[str, Any] | None = None,
split_hidden_states: bool = False,
@@ -436,7 +436,7 @@ class Flux2SingleTransformerBlock(nn.Module):
text_seq_len = encoder_hidden_states.shape[1]
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
mod_shift, mod_scale, mod_gate = temb_mod_params
mod_shift, mod_scale, mod_gate = Flux2Modulation.split(temb_mod, 1)[0]
norm_hidden_states = self.norm(hidden_states)
norm_hidden_states = (1 + mod_scale) * norm_hidden_states + mod_shift
@@ -498,16 +498,18 @@ class Flux2TransformerBlock(nn.Module):
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
temb_mod_params_img: tuple[tuple[torch.Tensor, torch.Tensor, torch.Tensor], ...],
temb_mod_params_txt: tuple[tuple[torch.Tensor, torch.Tensor, torch.Tensor], ...],
temb_mod_img: torch.Tensor,
temb_mod_txt: torch.Tensor,
image_rotary_emb: tuple[torch.Tensor, torch.Tensor] | None = None,
joint_attention_kwargs: dict[str, Any] | None = None,
) -> tuple[torch.Tensor, torch.Tensor]:
joint_attention_kwargs = joint_attention_kwargs or {}
# Modulation parameters shape: [1, 1, self.dim]
(shift_msa, scale_msa, gate_msa), (shift_mlp, scale_mlp, gate_mlp) = temb_mod_params_img
(c_shift_msa, c_scale_msa, c_gate_msa), (c_shift_mlp, c_scale_mlp, c_gate_mlp) = temb_mod_params_txt
(shift_msa, scale_msa, gate_msa), (shift_mlp, scale_mlp, gate_mlp) = Flux2Modulation.split(temb_mod_img, 2)
(c_shift_msa, c_scale_msa, c_gate_msa), (c_shift_mlp, c_scale_mlp, c_gate_mlp) = Flux2Modulation.split(
temb_mod_txt, 2
)
# Img stream
norm_hidden_states = self.norm1(hidden_states)
@@ -627,15 +629,19 @@ class Flux2Modulation(nn.Module):
self.linear = nn.Linear(dim, dim * 3 * self.mod_param_sets, bias=bias)
self.act_fn = nn.SiLU()
def forward(self, temb: torch.Tensor) -> tuple[tuple[torch.Tensor, torch.Tensor, torch.Tensor], ...]:
def forward(self, temb: torch.Tensor) -> torch.Tensor:
mod = self.act_fn(temb)
mod = self.linear(mod)
return mod
@staticmethod
# split inside the transformer blocks, to avoid passing tuples into checkpoints https://github.com/huggingface/diffusers/issues/12776
def split(mod: torch.Tensor, mod_param_sets: int) -> tuple[tuple[torch.Tensor, torch.Tensor, torch.Tensor], ...]:
if mod.ndim == 2:
mod = mod.unsqueeze(1)
mod_params = torch.chunk(mod, 3 * self.mod_param_sets, dim=-1)
mod_params = torch.chunk(mod, 3 * mod_param_sets, dim=-1)
# Return tuple of 3-tuples of modulation params shift/scale/gate
return tuple(mod_params[3 * i : 3 * (i + 1)] for i in range(self.mod_param_sets))
return tuple(mod_params[3 * i : 3 * (i + 1)] for i in range(mod_param_sets))
class Flux2Transformer2DModel(
@@ -824,7 +830,7 @@ class Flux2Transformer2DModel(
double_stream_mod_img = self.double_stream_modulation_img(temb)
double_stream_mod_txt = self.double_stream_modulation_txt(temb)
single_stream_mod = self.single_stream_modulation(temb)[0]
single_stream_mod = self.single_stream_modulation(temb)
# 2. Input projection for image (hidden_states) and conditioning text (encoder_hidden_states)
hidden_states = self.x_embedder(hidden_states)
@@ -861,8 +867,8 @@ class Flux2Transformer2DModel(
encoder_hidden_states, hidden_states = block(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
temb_mod_params_img=double_stream_mod_img,
temb_mod_params_txt=double_stream_mod_txt,
temb_mod_img=double_stream_mod_img,
temb_mod_txt=double_stream_mod_txt,
image_rotary_emb=concat_rotary_emb,
joint_attention_kwargs=joint_attention_kwargs,
)
@@ -884,7 +890,7 @@ class Flux2Transformer2DModel(
hidden_states = block(
hidden_states=hidden_states,
encoder_hidden_states=None,
temb_mod_params=single_stream_mod,
temb_mod=single_stream_mod,
image_rotary_emb=concat_rotary_emb,
joint_attention_kwargs=joint_attention_kwargs,
)

View File

@@ -164,7 +164,11 @@ def compute_text_seq_len_from_mask(
position_ids = torch.arange(text_seq_len, device=encoder_hidden_states.device, dtype=torch.long)
active_positions = torch.where(encoder_hidden_states_mask, position_ids, position_ids.new_zeros(()))
has_active = encoder_hidden_states_mask.any(dim=1)
per_sample_len = torch.where(has_active, active_positions.max(dim=1).values + 1, torch.as_tensor(text_seq_len))
per_sample_len = torch.where(
has_active,
active_positions.max(dim=1).values + 1,
torch.as_tensor(text_seq_len, device=encoder_hidden_states.device),
)
return text_seq_len, per_sample_len, encoder_hidden_states_mask

View File

@@ -14,6 +14,7 @@
import importlib
import inspect
import os
import sys
import traceback
import warnings
from collections import OrderedDict
@@ -28,10 +29,16 @@ from tqdm.auto import tqdm
from typing_extensions import Self
from ..configuration_utils import ConfigMixin, FrozenDict
from ..pipelines.pipeline_loading_utils import _fetch_class_library_tuple, simple_get_class_obj
from ..pipelines.pipeline_loading_utils import (
LOADABLE_CLASSES,
_fetch_class_library_tuple,
_unwrap_model,
simple_get_class_obj,
)
from ..utils import PushToHubMixin, is_accelerate_available, logging
from ..utils.dynamic_modules_utils import get_class_from_dynamic_module, resolve_trust_remote_code
from ..utils.hub_utils import load_or_create_model_card, populate_model_card
from ..utils.torch_utils import is_compiled_module
from .components_manager import ComponentsManager
from .modular_pipeline_utils import (
MODULAR_MODEL_CARD_TEMPLATE,
@@ -1819,17 +1826,84 @@ class ModularPipeline(ConfigMixin, PushToHubMixin):
)
return pipeline
def save_pretrained(self, save_directory: str | os.PathLike, push_to_hub: bool = False, **kwargs):
def save_pretrained(
self,
save_directory: str | os.PathLike,
safe_serialization: bool = True,
variant: str | None = None,
max_shard_size: int | str | None = None,
push_to_hub: bool = False,
**kwargs,
):
"""
Save the pipeline to a directory. It does not save components, you need to save them separately.
Save the pipeline and all its components to a directory, so that it can be re-loaded using the
[`~ModularPipeline.from_pretrained`] class method.
Args:
save_directory (`str` or `os.PathLike`):
Path to the directory where the pipeline will be saved.
push_to_hub (`bool`, optional):
Whether to push the pipeline to the huggingface hub.
**kwargs: Additional arguments passed to `save_config()` method
Directory to save the pipeline to. Will be created if it doesn't exist.
safe_serialization (`bool`, *optional*, defaults to `True`):
Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
variant (`str`, *optional*):
If specified, weights are saved in the format `pytorch_model.<variant>.bin`.
max_shard_size (`int` or `str`, defaults to `None`):
The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size
lower than this size. If expressed as a string, needs to be digits followed by a unit (like `"5GB"`).
If expressed as an integer, the unit is bytes.
push_to_hub (`bool`, *optional*, defaults to `False`):
Whether to push the pipeline to the Hugging Face model hub after saving it.
**kwargs: Additional keyword arguments passed along to the push to hub method.
"""
for component_name, component_spec in self._component_specs.items():
sub_model = getattr(self, component_name, None)
if sub_model is None:
continue
model_cls = sub_model.__class__
if is_compiled_module(sub_model):
sub_model = _unwrap_model(sub_model)
model_cls = sub_model.__class__
save_method_name = None
for library_name, library_classes in LOADABLE_CLASSES.items():
if library_name in sys.modules:
library = importlib.import_module(library_name)
else:
logger.info(
f"{library_name} is not installed. Cannot save {component_name} as {library_classes} from {library_name}"
)
continue
for base_class, save_load_methods in library_classes.items():
class_candidate = getattr(library, base_class, None)
if class_candidate is not None and issubclass(model_cls, class_candidate):
save_method_name = save_load_methods[0]
break
if save_method_name is not None:
break
if save_method_name is None:
logger.warning(f"self.{component_name}={sub_model} of type {type(sub_model)} cannot be saved.")
continue
save_method = getattr(sub_model, save_method_name)
save_method_signature = inspect.signature(save_method)
save_method_accept_safe = "safe_serialization" in save_method_signature.parameters
save_method_accept_variant = "variant" in save_method_signature.parameters
save_method_accept_max_shard_size = "max_shard_size" in save_method_signature.parameters
save_kwargs = {}
if save_method_accept_safe:
save_kwargs["safe_serialization"] = safe_serialization
if save_method_accept_variant:
save_kwargs["variant"] = variant
if save_method_accept_max_shard_size and max_shard_size is not None:
save_kwargs["max_shard_size"] = max_shard_size
save_method(os.path.join(save_directory, component_name), **save_kwargs)
self.save_config(save_directory=save_directory)
if push_to_hub:
commit_message = kwargs.pop("commit_message", None)
private = kwargs.pop("private", None)
@@ -1838,10 +1912,7 @@ class ModularPipeline(ConfigMixin, PushToHubMixin):
repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
repo_id = create_repo(repo_id, exist_ok=True, private=private, token=token).repo_id
# Generate modular pipeline card content
card_content = generate_modular_model_card_content(self.blocks)
# Create a new empty model card and eventually tag it
model_card = load_or_create_model_card(
repo_id,
token=token,
@@ -1850,13 +1921,8 @@ class ModularPipeline(ConfigMixin, PushToHubMixin):
is_modular=True,
)
model_card = populate_model_card(model_card, tags=card_content["tags"])
model_card.save(os.path.join(save_directory, "README.md"))
# YiYi TODO: maybe order the json file to make it more readable: configs first, then components
self.save_config(save_directory=save_directory)
if push_to_hub:
self._upload_folder(
save_directory,
repo_id,

View File

@@ -18,7 +18,6 @@ import re
import urllib.parse as ul
from typing import Callable
import ftfy
import torch
from transformers import (
AutoTokenizer,
@@ -34,13 +33,13 @@ from diffusers.models.transformers.transformer_prx import PRXTransformer2DModel
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.prx.pipeline_output import PRXPipelineOutput
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
from diffusers.utils import (
logging,
replace_example_docstring,
)
from diffusers.utils import is_ftfy_available, logging, replace_example_docstring
from diffusers.utils.torch_utils import randn_tensor
if is_ftfy_available():
import ftfy
DEFAULT_RESOLUTION = 512
ASPECT_RATIO_256_BIN = {

View File

@@ -516,6 +516,9 @@ def dequantize_gguf_tensor(tensor):
block_size, type_size = GGML_QUANT_SIZES[quant_type]
# Conver to plain tensor to avoid unnecessary __torch_function__ overhead.
tensor = tensor.as_tensor()
tensor = tensor.view(torch.uint8)
shape = _quant_shape_from_byte_shape(tensor.shape, type_size, block_size)
@@ -525,7 +528,7 @@ def dequantize_gguf_tensor(tensor):
dequant = dequant_fn(blocks, block_size, type_size)
dequant = dequant.reshape(shape)
return dequant.as_tensor()
return dequant
class GGUFParameter(torch.nn.Parameter):

View File

@@ -14,6 +14,7 @@
import math
from dataclasses import dataclass
from typing import Literal
import numpy as np
import torch
@@ -41,7 +42,7 @@ class FlowMatchLCMSchedulerOutput(BaseOutput):
denoising loop.
"""
prev_sample: torch.FloatTensor
prev_sample: torch.Tensor
class FlowMatchLCMScheduler(SchedulerMixin, ConfigMixin):
@@ -79,11 +80,11 @@ class FlowMatchLCMScheduler(SchedulerMixin, ConfigMixin):
use_beta_sigmas (`bool`, defaults to False):
Whether to use beta sigmas for step sizes in the noise schedule during sampling.
time_shift_type (`str`, defaults to "exponential"):
The type of dynamic resolution-dependent timestep shifting to apply. Either "exponential" or "linear".
scale_factors ('list', defaults to None)
The type of dynamic resolution-dependent timestep shifting to apply.
scale_factors (`list[float]`, *optional*, defaults to `None`):
It defines how to scale the latents at which predictions are made.
upscale_mode ('str', defaults to 'bicubic')
Upscaling method, applied if scale-wise generation is considered
upscale_mode (`str`, *optional*, defaults to "bicubic"):
Upscaling method, applied if scale-wise generation is considered.
"""
_compatibles = []
@@ -101,16 +102,33 @@ class FlowMatchLCMScheduler(SchedulerMixin, ConfigMixin):
max_image_seq_len: int = 4096,
invert_sigmas: bool = False,
shift_terminal: float | None = None,
use_karras_sigmas: bool = False,
use_exponential_sigmas: bool = False,
use_beta_sigmas: bool = False,
time_shift_type: str = "exponential",
use_karras_sigmas: bool | None = False,
use_exponential_sigmas: bool | None = False,
use_beta_sigmas: bool | None = False,
time_shift_type: Literal["exponential", "linear"] = "exponential",
scale_factors: list[float] | None = None,
upscale_mode: str = "bicubic",
upscale_mode: Literal[
"nearest",
"linear",
"bilinear",
"bicubic",
"trilinear",
"area",
"nearest-exact",
] = "bicubic",
):
if self.config.use_beta_sigmas and not is_scipy_available():
raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
if (
sum(
[
self.config.use_beta_sigmas,
self.config.use_exponential_sigmas,
self.config.use_karras_sigmas,
]
)
> 1
):
raise ValueError(
"Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
)
@@ -162,7 +180,7 @@ class FlowMatchLCMScheduler(SchedulerMixin, ConfigMixin):
return self._begin_index
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
def set_begin_index(self, begin_index: int = 0):
def set_begin_index(self, begin_index: int = 0) -> None:
"""
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
@@ -172,18 +190,18 @@ class FlowMatchLCMScheduler(SchedulerMixin, ConfigMixin):
"""
self._begin_index = begin_index
def set_shift(self, shift: float):
def set_shift(self, shift: float) -> None:
self._shift = shift
def set_scale_factors(self, scale_factors: list, upscale_mode):
def set_scale_factors(self, scale_factors: list[float], upscale_mode: str) -> None:
"""
Sets scale factors for a scale-wise generation regime.
Args:
scale_factors (`list`):
The scale factors for each step
scale_factors (`list[float]`):
The scale factors for each step.
upscale_mode (`str`):
Upscaling method
Upscaling method.
"""
self._scale_factors = scale_factors
self._upscale_mode = upscale_mode
@@ -238,16 +256,18 @@ class FlowMatchLCMScheduler(SchedulerMixin, ConfigMixin):
return sample
def _sigma_to_t(self, sigma):
def _sigma_to_t(self, sigma: float | torch.FloatTensor) -> float | torch.FloatTensor:
return sigma * self.config.num_train_timesteps
def time_shift(self, mu: float, sigma: float, t: torch.Tensor):
def time_shift(
self, mu: float, sigma: float, t: float | np.ndarray | torch.Tensor
) -> float | np.ndarray | torch.Tensor:
if self.config.time_shift_type == "exponential":
return self._time_shift_exponential(mu, sigma, t)
elif self.config.time_shift_type == "linear":
return self._time_shift_linear(mu, sigma, t)
def stretch_shift_to_terminal(self, t: torch.Tensor) -> torch.Tensor:
def stretch_shift_to_terminal(self, t: np.ndarray | torch.Tensor) -> np.ndarray | torch.Tensor:
r"""
Stretches and shifts the timestep schedule to ensure it terminates at the configured `shift_terminal` config
value.
@@ -256,12 +276,13 @@ class FlowMatchLCMScheduler(SchedulerMixin, ConfigMixin):
https://github.com/Lightricks/LTX-Video/blob/a01a171f8fe3d99dce2728d60a73fecf4d4238ae/ltx_video/schedulers/rf.py#L51
Args:
t (`torch.Tensor`):
A tensor of timesteps to be stretched and shifted.
t (`torch.Tensor` or `np.ndarray`):
A tensor or numpy array of timesteps to be stretched and shifted.
Returns:
`torch.Tensor`:
A tensor of adjusted timesteps such that the final value equals `self.config.shift_terminal`.
`torch.Tensor` or `np.ndarray`:
A tensor or numpy array of adjusted timesteps such that the final value equals
`self.config.shift_terminal`.
"""
one_minus_z = 1 - t
scale_factor = one_minus_z[-1] / (1 - self.config.shift_terminal)
@@ -270,12 +291,12 @@ class FlowMatchLCMScheduler(SchedulerMixin, ConfigMixin):
def set_timesteps(
self,
num_inference_steps: int = None,
device: str | torch.device = None,
num_inference_steps: int | None = None,
device: str | torch.device | None = None,
sigmas: list[float] | None = None,
mu: float = None,
mu: float | None = None,
timesteps: list[float] | None = None,
):
) -> None:
"""
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
@@ -317,43 +338,45 @@ class FlowMatchLCMScheduler(SchedulerMixin, ConfigMixin):
is_timesteps_provided = timesteps is not None
if is_timesteps_provided:
timesteps = np.array(timesteps).astype(np.float32)
timesteps = np.array(timesteps).astype(np.float32) # type: ignore
if sigmas is None:
if timesteps is None:
timesteps = np.linspace(
self._sigma_to_t(self.sigma_max), self._sigma_to_t(self.sigma_min), num_inference_steps
timesteps = np.linspace( # type: ignore
self._sigma_to_t(self.sigma_max),
self._sigma_to_t(self.sigma_min),
num_inference_steps,
)
sigmas = timesteps / self.config.num_train_timesteps
sigmas = timesteps / self.config.num_train_timesteps # type: ignore
else:
sigmas = np.array(sigmas).astype(np.float32)
sigmas = np.array(sigmas).astype(np.float32) # type: ignore
num_inference_steps = len(sigmas)
# 2. Perform timestep shifting. Either no shifting is applied, or resolution-dependent shifting of
# "exponential" or "linear" type is applied
if self.config.use_dynamic_shifting:
sigmas = self.time_shift(mu, 1.0, sigmas)
sigmas = self.time_shift(mu, 1.0, sigmas) # type: ignore
else:
sigmas = self.shift * sigmas / (1 + (self.shift - 1) * sigmas)
sigmas = self.shift * sigmas / (1 + (self.shift - 1) * sigmas) # type: ignore
# 3. If required, stretch the sigmas schedule to terminate at the configured `shift_terminal` value
if self.config.shift_terminal:
sigmas = self.stretch_shift_to_terminal(sigmas)
sigmas = self.stretch_shift_to_terminal(sigmas) # type: ignore
# 4. If required, convert sigmas to one of karras, exponential, or beta sigma schedules
if self.config.use_karras_sigmas:
sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps) # type: ignore
elif self.config.use_exponential_sigmas:
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps) # type: ignore
elif self.config.use_beta_sigmas:
sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps) # type: ignore
# 5. Convert sigmas and timesteps to tensors and move to specified device
sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device)
sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device) # type: ignore
if not is_timesteps_provided:
timesteps = sigmas * self.config.num_train_timesteps
timesteps = sigmas * self.config.num_train_timesteps # type: ignore
else:
timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32, device=device)
timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32, device=device) # type: ignore
# 6. Append the terminal sigma value.
# If a model requires inverted sigma schedule for denoising but timesteps without inversion, the
@@ -370,7 +393,11 @@ class FlowMatchLCMScheduler(SchedulerMixin, ConfigMixin):
self._step_index = None
self._begin_index = None
def index_for_timestep(self, timestep, schedule_timesteps=None):
def index_for_timestep(
self,
timestep: float | torch.Tensor,
schedule_timesteps: torch.Tensor | None = None,
) -> int:
if schedule_timesteps is None:
schedule_timesteps = self.timesteps
@@ -382,9 +409,9 @@ class FlowMatchLCMScheduler(SchedulerMixin, ConfigMixin):
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
pos = 1 if len(indices) > 1 else 0
return indices[pos].item()
return int(indices[pos].item())
def _init_step_index(self, timestep):
def _init_step_index(self, timestep: float | torch.Tensor) -> None:
if self.begin_index is None:
if isinstance(timestep, torch.Tensor):
timestep = timestep.to(self.timesteps.device)
@@ -459,7 +486,12 @@ class FlowMatchLCMScheduler(SchedulerMixin, ConfigMixin):
size = [round(self._scale_factors[self._step_index] * size) for size in self._init_size]
x0_pred = torch.nn.functional.interpolate(x0_pred, size=size, mode=self._upscale_mode)
noise = randn_tensor(x0_pred.shape, generator=generator, device=x0_pred.device, dtype=x0_pred.dtype)
noise = randn_tensor(
x0_pred.shape,
generator=generator,
device=x0_pred.device,
dtype=x0_pred.dtype,
)
prev_sample = (1 - sigma_next) * x0_pred + sigma_next * noise
# upon completion increase step index by one
@@ -473,7 +505,7 @@ class FlowMatchLCMScheduler(SchedulerMixin, ConfigMixin):
return FlowMatchLCMSchedulerOutput(prev_sample=prev_sample)
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
"""
Construct the noise schedule as proposed in [Elucidating the Design Space of Diffusion-Based Generative
Models](https://huggingface.co/papers/2206.00364).
@@ -594,11 +626,15 @@ class FlowMatchLCMScheduler(SchedulerMixin, ConfigMixin):
)
return sigmas
def _time_shift_exponential(self, mu, sigma, t):
def _time_shift_exponential(
self, mu: float, sigma: float, t: float | np.ndarray | torch.Tensor
) -> float | np.ndarray | torch.Tensor:
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
def _time_shift_linear(self, mu, sigma, t):
def _time_shift_linear(
self, mu: float, sigma: float, t: float | np.ndarray | torch.Tensor
) -> float | np.ndarray | torch.Tensor:
return mu / (mu + (1 / t - 1) ** sigma)
def __len__(self):
def __len__(self) -> int:
return self.config.num_train_timesteps

View File

@@ -375,7 +375,7 @@ class LoraHotSwappingForModelTesterMixin:
# additionally check if dynamic compilation works.
if different_shapes is not None:
for height, width in different_shapes:
new_inputs_dict = self.prepare_dummy_input(height=height, width=width)
new_inputs_dict = self.get_dummy_inputs(height=height, width=width)
_ = model(**new_inputs_dict)
else:
output0_after = model(**inputs_dict)["sample"]
@@ -390,7 +390,7 @@ class LoraHotSwappingForModelTesterMixin:
with torch.inference_mode():
if different_shapes is not None:
for height, width in different_shapes:
new_inputs_dict = self.prepare_dummy_input(height=height, width=width)
new_inputs_dict = self.get_dummy_inputs(height=height, width=width)
_ = model(**new_inputs_dict)
else:
output1_after = model(**inputs_dict)["sample"]

View File

@@ -18,7 +18,7 @@ import unittest
import numpy as np
import torch
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
from transformers import AutoTokenizer, T5EncoderModel
from diffusers import AutoencoderKLCogVideoX, CogVideoXPipeline, CogVideoXTransformer3DModel, DDIMScheduler
@@ -117,9 +117,7 @@ class CogVideoXPipelineFastTests(
torch.manual_seed(0)
scheduler = DDIMScheduler()
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
config.tie_word_embeddings = False
text_encoder = T5EncoderModel(config)
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
components = {

View File

@@ -19,7 +19,7 @@ import unittest
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoConfig, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
from diffusers import (
AutoencoderKL,
@@ -97,9 +97,7 @@ class FluxControlNetPipelineFastTests(unittest.TestCase, PipelineTesterMixin, Fl
text_encoder = CLIPTextModel(clip_text_encoder_config)
torch.manual_seed(0)
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
config.tie_word_embeddings = False
text_encoder_2 = T5EncoderModel(config)
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = T5TokenizerFast.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -18,14 +18,7 @@ import unittest
import numpy as np
import torch
from transformers import (
AutoConfig,
AutoTokenizer,
CLIPTextConfig,
CLIPTextModelWithProjection,
CLIPTokenizer,
T5EncoderModel,
)
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel
from diffusers import (
AutoencoderKL,
@@ -124,9 +117,7 @@ class StableDiffusion3ControlNetPipelineFastTests(unittest.TestCase, PipelineTes
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)
torch.manual_seed(0)
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
config.tie_word_embeddings = False
text_encoder_3 = T5EncoderModel(config)
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

View File

@@ -3,7 +3,7 @@ import unittest
import numpy as np
import torch
from PIL import Image
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, FluxControlPipeline, FluxTransformer2DModel
@@ -53,9 +53,7 @@ class FluxControlPipelineFastTests(unittest.TestCase, PipelineTesterMixin):
text_encoder = CLIPTextModel(clip_text_encoder_config)
torch.manual_seed(0)
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
config.tie_word_embeddings = False
text_encoder_2 = T5EncoderModel(config)
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -3,7 +3,7 @@ import unittest
import numpy as np
import torch
from PIL import Image
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from diffusers import (
AutoencoderKL,
@@ -57,9 +57,7 @@ class FluxControlImg2ImgPipelineFastTests(unittest.TestCase, PipelineTesterMixin
text_encoder = CLIPTextModel(clip_text_encoder_config)
torch.manual_seed(0)
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
config.tie_word_embeddings = False
text_encoder_2 = T5EncoderModel(config)
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -3,7 +3,7 @@ import unittest
import numpy as np
import torch
from PIL import Image
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from diffusers import (
AutoencoderKL,
@@ -58,9 +58,7 @@ class FluxControlInpaintPipelineFastTests(unittest.TestCase, PipelineTesterMixin
text_encoder = CLIPTextModel(clip_text_encoder_config)
torch.manual_seed(0)
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
config.tie_word_embeddings = False
text_encoder_2 = T5EncoderModel(config)
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -3,7 +3,7 @@ import unittest
import numpy as np
import torch
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, FluxFillPipeline, FluxTransformer2DModel
@@ -58,9 +58,7 @@ class FluxFillPipelineFastTests(unittest.TestCase, PipelineTesterMixin):
text_encoder = CLIPTextModel(clip_text_encoder_config)
torch.manual_seed(0)
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
config.tie_word_embeddings = False
text_encoder_2 = T5EncoderModel(config)
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -3,7 +3,7 @@ import unittest
import numpy as np
import torch
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, FluxImg2ImgPipeline, FluxTransformer2DModel
@@ -55,9 +55,7 @@ class FluxImg2ImgPipelineFastTests(unittest.TestCase, PipelineTesterMixin, FluxI
text_encoder = CLIPTextModel(clip_text_encoder_config)
torch.manual_seed(0)
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
config.tie_word_embeddings = False
text_encoder_2 = T5EncoderModel(config)
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -3,7 +3,7 @@ import unittest
import numpy as np
import torch
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, FluxInpaintPipeline, FluxTransformer2DModel
@@ -55,9 +55,7 @@ class FluxInpaintPipelineFastTests(unittest.TestCase, PipelineTesterMixin, FluxI
text_encoder = CLIPTextModel(clip_text_encoder_config)
torch.manual_seed(0)
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
config.tie_word_embeddings = False
text_encoder_2 = T5EncoderModel(config)
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -3,7 +3,7 @@ import unittest
import numpy as np
import PIL.Image
import torch
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from diffusers import (
AutoencoderKL,
@@ -79,9 +79,7 @@ class FluxKontextPipelineFastTests(
text_encoder = CLIPTextModel(clip_text_encoder_config)
torch.manual_seed(0)
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
config.tie_word_embeddings = False
text_encoder_2 = T5EncoderModel(config)
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -3,7 +3,7 @@ import unittest
import numpy as np
import torch
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from diffusers import (
AutoencoderKL,
@@ -79,9 +79,7 @@ class FluxKontextInpaintPipelineFastTests(
text_encoder = CLIPTextModel(clip_text_encoder_config)
torch.manual_seed(0)
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
config.tie_word_embeddings = False
text_encoder_2 = T5EncoderModel(config)
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

View File

@@ -18,7 +18,6 @@ import unittest
import numpy as np
import torch
from transformers import (
AutoConfig,
AutoTokenizer,
CLIPTextConfig,
CLIPTextModelWithProjection,
@@ -95,9 +94,7 @@ class HiDreamImagePipelineFastTests(PipelineTesterMixin, unittest.TestCase):
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)
torch.manual_seed(0)
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
config.tie_word_embeddings = False
text_encoder_3 = T5EncoderModel(config)
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)
text_encoder_4 = LlamaForCausalLM.from_pretrained("hf-internal-testing/tiny-random-LlamaForCausalLM")

View File

@@ -19,7 +19,7 @@ import unittest
import numpy as np
import torch
from transformers import AutoConfig, AutoTokenizer, BertModel, T5EncoderModel
from transformers import AutoTokenizer, BertModel, T5EncoderModel
from diffusers import AutoencoderKL, DDPMScheduler, HunyuanDiT2DModel, HunyuanDiTPipeline
@@ -74,10 +74,7 @@ class HunyuanDiTPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
scheduler = DDPMScheduler()
text_encoder = BertModel.from_pretrained("hf-internal-testing/tiny-random-BertModel")
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel")
torch.manual_seed(0)
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
config.tie_word_embeddings = False
text_encoder_2 = T5EncoderModel(config)
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
components = {

View File

@@ -17,7 +17,7 @@ import unittest
import numpy as np
import torch
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
from transformers import AutoTokenizer, T5EncoderModel
from diffusers import AutoencoderKLLTXVideo, FlowMatchEulerDiscreteScheduler, LTXPipeline, LTXVideoTransformer3DModel
@@ -88,9 +88,7 @@ class LTXPipelineFastTests(PipelineTesterMixin, FirstBlockCacheTesterMixin, unit
torch.manual_seed(0)
scheduler = FlowMatchEulerDiscreteScheduler()
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
config.tie_word_embeddings = False
text_encoder = T5EncoderModel(config)
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
components = {

View File

@@ -1,7 +1,6 @@
import unittest
import numpy as np
import pytest
import torch
from transformers import AutoTokenizer
from transformers.models.t5gemma.configuration_t5gemma import T5GemmaConfig, T5GemmaModuleConfig
@@ -11,17 +10,11 @@ from diffusers.models import AutoencoderDC, AutoencoderKL
from diffusers.models.transformers.transformer_prx import PRXTransformer2DModel
from diffusers.pipelines.prx.pipeline_prx import PRXPipeline
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
from diffusers.utils import is_transformers_version
from ..pipeline_params import TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
@pytest.mark.xfail(
condition=is_transformers_version(">", "4.57.1"),
reason="See https://github.com/huggingface/diffusers/pull/12456#issuecomment-3424228544",
strict=False,
)
class PRXPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = PRXPipeline
params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"}

View File

@@ -4,14 +4,7 @@ import unittest
import numpy as np
import torch
from transformers import (
AutoConfig,
AutoTokenizer,
CLIPTextConfig,
CLIPTextModelWithProjection,
CLIPTokenizer,
T5EncoderModel,
)
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel
from diffusers import (
AutoencoderKL,
@@ -80,10 +73,7 @@ class StableDiffusion3Img2ImgPipelineFastTests(PipelineLatentTesterMixin, unitte
torch.manual_seed(0)
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)
torch.manual_seed(0)
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
config.tie_word_embeddings = False
text_encoder_3 = T5EncoderModel(config)
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

View File

@@ -18,7 +18,7 @@ import unittest
import numpy as np
import torch
from PIL import Image
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
from transformers import AutoTokenizer, T5EncoderModel
from diffusers import AutoencoderKLWan, UniPCMultistepScheduler, WanImageToVideoPipeline, WanTransformer3DModel
@@ -64,11 +64,7 @@ class Wan22ImageToVideoPipelineFastTests(PipelineTesterMixin, unittest.TestCase)
torch.manual_seed(0)
scheduler = UniPCMultistepScheduler(prediction_type="flow_prediction", use_flow_sigmas=True, flow_shift=3.0)
torch.manual_seed(0)
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
config.tie_word_embeddings = False
text_encoder = T5EncoderModel(config)
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)
@@ -252,11 +248,7 @@ class Wan225BImageToVideoPipelineFastTests(PipelineTesterMixin, unittest.TestCas
torch.manual_seed(0)
scheduler = UniPCMultistepScheduler(prediction_type="flow_prediction", use_flow_sigmas=True, flow_shift=3.0)
torch.manual_seed(0)
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
config.tie_word_embeddings = False
text_encoder = T5EncoderModel(config)
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)