Compare commits

...

155 Commits

Author SHA1 Message Date
sayakpaul
6b127364c4 up 2026-01-23 17:35:26 +05:30
Sayak Paul
bff672f47f fix Dockerfiles for cuda and xformers. (#13022) 2026-01-23 16:45:14 +05:30
David El Malih
d4f97d1921 Improve docstrings and type hints in scheduling_ddim_inverse.py (#13020)
docs: improve docstring scheduling_ddim_inverse.py
2026-01-22 15:42:45 -08:00
David El Malih
1d32b19ad4 Improve docstrings and type hints in scheduling_ddim_flax.py (#13010)
* docs: improve docstring scheduling_ddim_flax.py

* docs: improve docstring scheduling_ddim_flax.py

* docs: improve docstring scheduling_ddim_flax.py
2026-01-22 09:11:14 -08:00
Garry Ling
699297f647 feat: accelerate longcat-image with regional compile (#13019) 2026-01-22 20:21:45 +05:30
Aryan V S
7a02fadad3 [scheduler] Support custom sigmas in UniPCMultistepScheduler (#12109)
* update

* fix tests

* Apply suggestions from code review

* Revert default flow sigmas change so that tests relying on UniPC multistep still pass

* Remove custom timesteps for UniPC multistep set_timesteps

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: Daniel Gu <dgu8957@gmail.com>
Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>
2026-01-21 17:18:59 -08:00
David El Malih
ec37629371 Improve docstrings and type hints in scheduling_ddim_cogvideox.py (#12992)
docs: improve docstring scheduling_ddim_cogvideox.py
2026-01-20 12:33:50 -08:00
Guillaume Besson
4b843c8430 Fix variable name in docstring for PeftAdapterMixin.set_adapters (#13003)
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2026-01-20 15:43:59 +05:30
Gal Davidi
d7a1c31f4f Fibo edit pipeline (#12930)
* Feature: Add BriaFiboEditPipeline to diffusers

* Introduced BriaFiboEditPipeline class with necessary backend requirements.
* Updated import structures in relevant modules to include BriaFiboEditPipeline.
* Ensured compatibility with existing pipelines and type checking.

* Feature: Introduce Bria Fibo Edit Pipeline

* Added BriaFiboEditPipeline class for structured JSON-native image editing.
* Created documentation for the new pipeline in bria_fibo_edit.md.
* Updated import structures to include the new pipeline and its components.
* Added unit tests for the BriaFiboEditPipeline to ensure functionality and correctness.

* Enhancement: Update Bria Fibo Edit Pipeline and Documentation

* Refined the Bria Fibo Edit model description for clarity and detail.
* Added usage instructions for model authentication and login.
* Implemented mask handling functions in the BriaFiboEditPipeline for improved image editing capabilities.
* Updated unit tests to cover new mask functionalities and ensure input validation.
* Adjusted example code in documentation to reflect changes in the pipeline's usage.

* Update Bria Fibo Edit documentation with corrected Hugging Face page link

* add dreambooth training script

* style and quality

* Delete temp.py

* Enhancement: Improve JSON caption validation in DreamBoothDataset

* Updated the clean_json_caption function to handle both string and dictionary inputs for captions.
* Added error handling to raise a ValueError for invalid caption types, ensuring better input validation.

* Add datasets dependency to requirements_fibo_edit.txt

* Add bria_fibo_edit to docs table of contents

* Fix dummy objects ordering

* Fix BriaFiboEditPipeline to use passed generator parameter

The pipeline was ignoring the generator parameter and only using
the seed parameter. This caused non-deterministic outputs in tests
that pass a seeded generator.

* Remove fibo_edit training script and related files

---------

Co-authored-by: kfirbria <kfir@bria.ai>
2026-01-19 22:09:53 +05:30
Sayak Paul
29b15f41c7 [chore] make style to push new changes. (#12998)
make style to push new changes.
2026-01-19 16:02:13 +05:30
sayakpaul
75edff93a0 Revert "make style && make quality"
This reverts commit 76f51a5e92.
2026-01-19 15:35:20 +05:30
sayakpaul
76f51a5e92 make style && make quality 2026-01-19 15:34:29 +05:30
David El Malih
3996788b60 [Docs] Replace root CONTRIBUTING.md with symlink to source docs (#12986)
Chore: Replace CONTRIBUTING.md with a symlink to documentation
2026-01-16 12:36:50 -08:00
David El Malih
9fedfe58b7 Improve docstrings and type hints in scheduling_cosine_dpmsolver_multistep.py (#12936)
* docs: improve docstring scheduling_cosine_dpmsolver_multistep.py

* Update src/diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* fix

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2026-01-16 12:23:49 -08:00
Sayak Paul
ebf891a254 [core] gracefully error out when attn-backend x cp combo isn't supported. (#12832)
* gracefully error out when attn-backend x cp combo isn't supported.

* Revert "gracefully error out when attn-backend x cp combo isn't supported."

This reverts commit c8abb5d7c0.

* gracefully error out when attn-backend x cp combo isn't supported.

* up

* address PR feedback.

* up

* Update src/diffusers/models/modeling_utils.py

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* dot.

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2026-01-16 21:29:42 +05:30
dg845
8af8e86bc7 LTX 2 Single File Support (#12983)
* LTX 2 transformer single file support

* LTX 2 video VAE single file support

* LTX 2 audio VAE single file support

* Make it easier to distinguish LTX 1 and 2 models
2026-01-15 22:46:42 -08:00
Sayak Paul
74654df203 add klein docs. (#12984) 2026-01-16 10:12:42 +05:30
YiYi Xu
f112eab97e [modular] fix a bug in mellon param & improve docstrings (#12980)
* update mellonparams docstring to incude the acutal param definition render in mellon

* style

---------

Co-authored-by: yiyi@huggingface.co <yiyi@ip-26-0-160-103.ec2.internal>
2026-01-15 10:42:42 -10:00
YiYi Xu
61f175660a Flux2 klein (#12982)
* flux2-klein

* Apply suggestions from code review

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Klein tests (#2)

* tests

* up

* tests

* up

* support step-distilled

* Apply suggestions from code review

Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>

* doc string etc

* style

* more

* copies

* klein lora training scripts (#3)

* initial commit

* initial commit

* remove remote text encoder

* initial commit

* initial commit

* initial commit

* revert

* img2img fix

* text encoder + tokenizer

* text encoder + tokenizer

* update readme

* guidance

* guidance

* guidance

* test

* test

* revert changes not needed for the non klein model

* Update examples/dreambooth/train_dreambooth_lora_flux2_klein.py

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* fix guidance

* fix validation

* fix validation

* fix validation

* fix path

* space

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* style

* Update src/diffusers/pipelines/flux2/pipeline_flux2_klein.py

* Apply style fixes

* auto pipeline

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>
Co-authored-by: Linoy Tsaban <57615435+linoytsaban@users.noreply.github.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2026-01-15 09:10:54 -10:00
DefTruth
7f43cb1d79 fix Qwen-Image series context parallel (#12970)
* fix qwen-image cp

* relax attn_mask limit for cp

* CP plan compatible with zero_cond_t

* move modulate_index plan to top level
2026-01-15 15:40:24 +05:30
Hameer Abbasi
5efb81fa71 Add ChromaInpaintPipeline (#12848)
* Add `ChromaInpaintPipeline`

* Set `attention_mask` to `dtype=torch.bool` for `ChromaInpaintPipeline`.

* Revert `.gitignore`.
2026-01-15 12:58:50 +05:30
Yahweasel
b351be2379 LongCat Image pipeline: Allow offloading/quantization of text_encoder component (#12963)
* Don't attempt to move the text_encoder. Just move the generated_ids.

* The inputs to the text_encoder should be on its device
2026-01-14 21:10:57 -10:00
YiYi Xu
d8f4dd295f [Modular] mellon utils (#12978)
* up

* style

---------

Co-authored-by: yiyi@huggingface.co <yiyi@ip-26-0-160-103.ec2.internal>
2026-01-14 19:03:41 -10:00
hlky
1ecfbfe12b disable_mmap in pipeline from_pretrained (#12854)
* update

* `disable_mmap` in `from_pretrained`

---------

Co-authored-by: DN6 <dhruv.nair@gmail.com>
2026-01-14 21:29:36 +05:30
Marc Sun
d7fa445453 Remove 8bit device restriction (#12972)
* allow to

* update version

* fix version again

* again

* Update src/diffusers/pipelines/pipeline_utils.py

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>

* style

* xfail

* add pr

---------

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2026-01-14 20:33:30 +05:30
Sayak Paul
7feb4fc791 [chore] make transformers version check stricter for glm image. (#12974)
* make transformers version check stricter for glm image.

* public checkpoint.
2026-01-14 10:29:48 +05:30
Sayak Paul
3c70440d26 Update distributed_inference.md to reposition sections (#12971) 2026-01-13 11:07:39 -08:00
Sayak Paul
7299121413 Z rz rz rz rz rz rz r cogview (#12973)
* init

* add

* add 1

* Update __init__.py

* rename

* 2

* update

* init with encoder

* merge2pipeline

* Update pipeline_glm_image.py

* remove sop

* remove useless func

* Update pipeline_glm_image.py

* up

(cherry picked from commit cfe19a31b9)

* review for work only

* change place

* Update pipeline_glm_image.py

* update

* Update transformer_glm_image.py

* 1

* no  negative_prompt for GLM-Image

* remove CogView4LoraLoaderMixin

* refactor attention processor.

* update

* fix

* use staticmethod

* update

* up

* up

* update

* Update glm_image.md

* 1

* Update pipeline_glm_image.py

* Update transformer_glm_image.py

* using new transformers impl

* support

* resolution change

* fix-copies

* Update src/diffusers/pipelines/glm_image/pipeline_glm_image.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update pipeline_glm_image.py

* use cogview4

* Update pipeline_glm_image.py

* Update pipeline_glm_image.py

* revert

* update

* batch support

* update

* version guard glm image pipeline

* validate prompt_embeds and prior_token_ids

* try docs.

* 4

* up

* up

* skip properly

* fix tests

* up

* up

---------

Co-authored-by: zRzRzRzRzRzRzR <2448370773@qq.com>
Co-authored-by: yiyixuxu <yixu310@gmail.com>
2026-01-13 06:39:22 -10:00
Álvaro Somoza
3114f6a796 [Modular] Changes for using WAN I2V (#12959)
* initial

* add kayers
2026-01-13 05:25:54 -10:00
Bissmella Bahaduri
9d68742214 Add Unified Sequence Parallel attention (#12693)
* initial scheme of unified-sp

* initial all_to_all_double

* bug fixes, added cmnts

* unified attention prototype done

* remove raising value error in contextParallelConfig to enable unified attention

* bug fix

* feat: Adds Test for Unified SP Attention and Fixes a bug in Template Ring Attention

* bug fix, lse calculation, testing

bug fixes, lse calculation

-

switched to _all_to_all_single helper in _all_to_all_dim_exchange due contiguity issues

bug fix

bug fix

bug fix

* addressing comments

* sequence parallelsim bug fixes

* code format fixes

* Apply style fixes

* code formatting fix

* added unified attention docs and removed test file

* Apply style fixes

* tip for unified attention in docs at distributed_inference.md

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update distributed_inference.md, adding benchmarks

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update docs/source/en/training/distributed_inference.md

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* function name fix

* fixed benchmark in docs

---------

Co-authored-by: KarthikSundar2002 <karthiksundar30092002@gmail.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2026-01-13 09:16:51 +05:30
dg845
f1a93c765f Add Flag to PeftLoraLoaderMixinTests to Enable/Disable Text Encoder LoRA Tests (#12962)
* Improve incorrect LoRA format error message

* Add flag in PeftLoraLoaderMixinTests to disable text encoder LoRA tests

* Apply changes to LTX2LoraTests

* Further improve incorrect LoRA format error msg following review

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2026-01-12 16:01:58 -08:00
Leo Jiang
29a930a142 Bugfix for flux2 img2img2 prediction (#12855)
* Bugfix for dreambooth flux2 img2img2

* Bugfix for dreambooth flux2 img2img2

* Bugfix for dreambooth flux2 img2img2

* Bugfix for dreambooth flux2 img2img2

* Bugfix for dreambooth flux2 img2img2

* Bugfix for dreambooth flux2 img2img2

Co-authored-by: tcaimm <93749364+tcaimm@users.noreply.github.com>

---------

Co-authored-by: tcaimm <93749364+tcaimm@users.noreply.github.com>
2026-01-12 20:07:02 +05:30
Kashif Rasul
dad5cb55e6 Fix QwenImage txt_seq_lens handling (#12702)
* Fix QwenImage txt_seq_lens handling

* formatting

* formatting

* remove txt_seq_lens and use bool  mask

* use compute_text_seq_len_from_mask

* add seq_lens to dispatch_attention_fn

* use joint_seq_lens

* remove unused index_block

* WIP: Remove seq_lens parameter and use mask-based approach

- Remove seq_lens parameter from dispatch_attention_fn
- Update varlen backends to extract seqlens from masks
- Update QwenImage to pass 2D joint_attention_mask
- Fix native backend to handle 2D boolean masks
- Fix sage_varlen seqlens_q to match seqlens_k for self-attention

Note: sage_varlen still producing black images, needs further investigation

* fix formatting

* undo sage changes

* xformers support

* hub fix

* fix torch compile issues

* fix tests

* use _prepare_attn_mask_native

* proper deprecation notice

* add deprecate to txt_seq_lens

* Update src/diffusers/models/transformers/transformer_qwenimage.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/models/transformers/transformer_qwenimage.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Only create the mask if there's actual padding

* fix order of docstrings

* Adds performance benchmarks and optimization details for QwenImage

Enhances documentation with comprehensive performance insights for QwenImage pipeline:

* rope_text_seq_len = text_seq_len

* rename to max_txt_seq_len

* removed deprecated args

* undo unrelated change

* Updates QwenImage performance documentation

Removes detailed attention backend benchmarks and simplifies torch.compile performance description

Focuses on key performance improvement with torch.compile, highlighting the specific speedup from 4.70s to 1.93s on an A100 GPU

Streamlines the documentation to provide more concise and actionable performance insights

* Updates deprecation warnings for txt_seq_lens parameter

Extends deprecation timeline for txt_seq_lens from version 0.37.0 to 0.39.0 across multiple Qwen image-related models

Adds a new unit test to verify the deprecation warning behavior for the txt_seq_lens parameter

* fix compile

* formatting

* fix compile tests

* rename helper

* remove duplicate

* smaller values

* removed

* use torch.cond for torch compile

* Construct joint attention mask once

* test different backends

* construct joint attention mask once to avoid reconstructing in every block

* Update src/diffusers/models/attention_dispatch.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* formatting

* raising an error from the EditPlus pipeline when batch_size > 1

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: cdutr <dutra_carlos@hotmail.com>
2026-01-12 13:45:09 +05:30
Francisco Kurucz
b86bd99eac Fix link to diffedit implementation reference (#12708) 2026-01-10 11:13:23 -08:00
omahs
5b202111bf Fix typos (#12705) 2026-01-10 11:11:15 -08:00
Sayak Paul
4ac2b4a521 [docs] polish caching docs. (#12684)
* polish caching docs.

* Update docs/source/en/optimization/cache.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/optimization/cache.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* up

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2026-01-10 10:09:05 -08:00
YiYi Xu
418313bbf6 [Modular] better docstring (#12932)
add output to auto blocks + core denoising block for better doc string
2026-01-09 23:53:56 -10:00
Rafael Tvelov
2120c3096f Fix: typo in autoencoder_dc.py (#12687)
Fix typo in autoencoder_dc.py

Fixing typo in `get_block` function's parameter name:
"qkv_mutliscales" -> "qkv_multiscales"

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2026-01-09 22:01:54 -10:00
Sayak Paul
ed6e5ecf67 [LoRA] add LoRA support to LTX-2 (#12933)
* up

* fixes

* tests

* docs.

* fix

* change loading info.

* up

* up
2026-01-10 11:27:22 +05:30
Sayak Paul
d44b5f86e6 fix how is_fsdp is determined (#12960)
up
2026-01-10 10:34:25 +05:30
Jay Wu
02c7adc356 [ChronoEdit] support multiple loras (#12679)
Co-authored-by: wjay <wjay@nvidia.com>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2026-01-09 15:50:16 -10:00
Sayak Paul
a3cc0e7a52 [modular] error early in enable_auto_cpu_offload (#12578)
error early in auto_cpu_offload
2026-01-09 15:30:52 -10:00
Daniel Socek
2a6cdc0b3e Fix ftfy name error in Wan pipeline (#12314)
Signed-off-by: Daniel Socek <daniel.socek@intel.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2026-01-09 14:02:40 -10:00
SahilCarterr
1791306739 [Fix] syntax in QwenImageEditPlusPipeline (#12371)
* Fixes syntax for consistency among pipelines

* Update test_qwenimage_edit_plus.py
2026-01-09 13:55:42 -10:00
Samu Tamminen
df6516a716 Align HunyuanVideoConditionEmbedding with CombinedTimestepGuidanceTextProjEmbeddings (#12316)
conditioning additions inline with CombinedTimestepGuidanceTextProjEmbeddings

Co-authored-by: Samu Tamminen <samutamm@users.noreply.github.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2026-01-09 13:51:04 -10:00
Steven Liu
5794ffffbe [docs] Remote inference (#12372)
* init

* fix
2026-01-09 13:32:14 -10:00
Titong Jiang
4fb44bdf91 Fix wrong param types, docs, and handles noise=None in scale_noise of FlowMatching schedulers (#11669)
* Bug: Fix wrong params, docs, and handles noise=None

* make noise a required arg

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2026-01-09 11:42:33 -10:00
Linoy Tsaban
b7a81582ae [LoRA] add lora_alpha to sana README (#11780)
add lora alpha to readme
2026-01-09 11:28:39 -10:00
Bhavya Bahl
4b64b5603f Change timestep device to cpu for xla (#11501)
* Change timestep device to cpu for xla

* Add all pipelines

* ruff format

* Apply style fixes

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2026-01-09 11:22:51 -10:00
Kashif Rasul
2bb640f8ea [Research] Latent Perceptual Loss (LPL) for Stable Diffusion XL (#11573)
* initial

* added readme

* fix formatting

* added logging

* formatting

* use config

* debug

* better

* handle SNR

* floats have no item()

* remove debug

* formatting

* add paper link

* acknowledge reference source

* rename script

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2026-01-09 10:24:21 -10:00
Fredy Rivera
2dc9d2af50 Add thread-safe wrappers for components in pipeline (examples/server-async/utils/requestscopedpipeline.py) (#12515)
* Basic implementation of request scheduling

* Basic editing in SD and Flux Pipelines

* Small Fix

* Fix

* Update for more pipelines

* Add examples/server-async

* Add examples/server-async

* Updated RequestScopedPipeline to handle a single tokenizer lock to avoid race conditions

* Fix

* Fix _TokenizerLockWrapper

* Fix _TokenizerLockWrapper

* Delete _TokenizerLockWrapper

* Fix tokenizer

* Update examples/server-async

* Fix server-async

* Optimizations in examples/server-async

* We keep the implementation simple in examples/server-async

* Update examples/server-async/README.md

* Update examples/server-async/README.md for changes to tokenizer locks and backward-compatible retrieve_timesteps

* The changes to the diffusers core have been undone and all logic is being moved to exmaples/server-async

* Update examples/server-async/utils/*

* Fix BaseAsyncScheduler

* Rollback in the core of the diffusers

* Update examples/server-async/README.md

* Complete rollback of diffusers core files

* Simple implementation of an asynchronous server compatible with SD3-3.5 and Flux Pipelines

* Update examples/server-async/README.md

* Fixed import errors in 'examples/server-async/serverasync.py'

* Flux Pipeline Discard

* Update examples/server-async/README.md

* Apply style fixes

* Add thread-safe wrappers for components in pipeline

Refactor requestscopedpipeline.py to add thread-safe wrappers for tokenizer, VAE, and image processor. Introduce locking mechanisms to ensure thread safety during concurrent access.

* Add wrappers.py

* Apply style fixes

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2026-01-09 09:43:14 -10:00
Teriks
57e57cfae0 Store vae.config.scaling_factor to prevent missing attr reference (sdxl advanced dreambooth training script) (#12346)
Store vae.config.scaling_factor to prevent missing attr reference

In sdxl advanced dreambooth training script

vae.config.scaling_factor becomes inaccessible after: del vae

when: --cache_latents, and no --validation_prompt

Co-authored-by: Teriks <Teriks@users.noreply.github.com>
Co-authored-by: Linoy Tsaban <57615435+linoytsaban@users.noreply.github.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2026-01-09 09:42:30 -10:00
gapatron
644169433f Laplace Scheduler for DDPM (#11320)
* Add Laplace scheduler that samples more around mid-range noise levels (around log SNR=0), increasing performance (lower FID) with faster convergence speed, and robust to resolution and objective. Reference:  https://arxiv.org/pdf/2407.03297.

* Fix copies.

* Apply style fixes

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2026-01-09 09:16:02 -10:00
Ishan Modi
632765a5ee [Feature] MultiControlNet support for SD3Impainting (#11251)
* update

* update

* addressed PR comments

* update

* Apply suggestions from code review

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2026-01-09 08:55:16 -10:00
David El Malih
d36564f06a Improve docstrings and type hints in scheduling_consistency_models.py (#12931)
docs: improve docstring scheduling_consistency_models.py
2026-01-09 09:56:56 -08:00
Sayak Paul
441b69eabf [core] Handle progress bar and logging in distributed environments (#12806)
* disable progressbar in distributed.

* up

* up

* up

* up

* up

* up
2026-01-09 22:23:13 +05:30
Sayak Paul
d568c9773f [chore] remove controlnet implementations outside controlnet module. (#12152)
* remove controlnet implementations outside controlnet module.

* fix

* fix

* fix
2026-01-09 21:22:45 +05:30
Sayak Paul
3981c955ce [modular] Tests for custom blocks in modular diffusers (#12557)
* start custom block testing.

* simplify modular workflow ci.

* up

* style.

* up

* up

* up

* up

* up

* up

* Apply suggestions from code review

* up
2026-01-09 15:57:23 +05:30
YiYi Xu
1903383e94 [Modular] qwen refactor (#12872)
* 3 files

* add conditoinal pipeline

* refactor qwen modular

* add layered

* up up

* u p

* add to import

* more refacotr, make layer work

* clean up a bit git add src

* more

* style

* style
2026-01-08 23:38:49 -10:00
Leo Jiang
08f8b7af9a Bugfix for dreambooth flux2 img2img2 (#12825)
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Linoy Tsaban <57615435+linoytsaban@users.noreply.github.com>
2026-01-09 12:34:44 +05:30
Howard Zhang
2f66edc880 Torchao floatx version guard (#12923)
* Adding torchao version guard for floatx usage

Summary: TorchAO removing floatx support, added version guard in quantization_config.py

* Adding torchao version guard for floatx usage

Summary: TorchAO removing floatx support, added version guard in quantization_config.py
Altered tests in test_torchao.py to version guard floatx
Created new test to verify version guard of floatx support

* Adding torchao version guard for floatx usage

Summary: TorchAO removing floatx support, added version guard in quantization_config.py
Altered tests in test_torchao.py to version guard floatx
Created new test to verify version guard of floatx support

* Adding torchao version guard for floatx usage

Summary: TorchAO removing floatx support, added version guard in quantization_config.py
Altered tests in test_torchao.py to version guard floatx
Created new test to verify version guard of floatx support

* Adding torchao version guard for floatx usage

Summary: TorchAO removing floatx support, added version guard in quantization_config.py
Altered tests in test_torchao.py to version guard floatx
Created new test to verify version guard of floatx support

* Adding torchao version guard for floatx usage

Summary: TorchAO removing floatx support, added version guard in quantization_config.py
Altered tests in test_torchao.py to version guard floatx
Created new test to verify version guard of floatx support

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2026-01-09 10:51:53 +05:30
TmacAaron
be38f41f9f [NPU] npu attention enable ulysses (#12919)
* npu attention enable ulysses

* clean the format

* register _native_npu_attention to _supports_context_parallel

Signed-off-by: yyt <yangyit139@gmail.com>

* change npu_fusion_attention's input_layout to BSND to eliminate redundant transpose

Signed-off-by: yyt <yangyit139@gmail.com>

* Update format

---------

Signed-off-by: yyt <yangyit139@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2026-01-09 10:11:49 +05:30
MSD
91e5134175 fix the warning torch_dtype is deprecated (#12841)
* fix the warning torch_dtype is deprecated

* Add transformers version check (>= 4.56.0) for dtype parameter

* Fix linting errors
2026-01-09 08:35:26 +05:30
Salman Chishti
a812c87465 Upgrade GitHub Actions for Node 24 compatibility (#12865)
Signed-off-by: Salman Muin Kayser Chishti <13schishti@gmail.com>
2026-01-09 08:28:58 +05:30
Aditya Borate
8b9f817ef5 Fix: Remove hardcoded CUDA autocast in Kandinsky 5 to fix import warning (#12814)
* Fix: Remove hardcoded CUDA autocast in Kandinsky 5 to fix import warning

* Apply style fixes

* Fix: Remove import-time autocast in Kandinsky to prevent warnings

- Removed @torch.autocast decorator from Kandinsky classes.
- Implemented manual F.linear casting to ensure numerical parity with FP32.
- Verified bit-exact output matches main branch.

Co-authored-by: hlky <hlky@hlky.ac>

* Used _keep_in_fp32_modules to align with standards

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: hlky <hlky@hlky.ac>
2026-01-08 09:00:58 -10:00
David El Malih
b1f06b780a Improve docstrings and type hints in scheduling_consistency_decoder.py (#12928)
docs: improve docstring scheduling_consistency_decoder.py
2026-01-08 09:45:38 -08:00
Pauline Bailly-Masson
8600b4c10d Add environment variables to checkout step (#12927) 2026-01-08 13:38:06 +05:30
dg845
c10bdd9b73 Add LTX 2.0 Video Pipelines (#12915)
* Initial LTX 2.0 transformer implementation

* Add tests for LTX 2 transformer model

* Get LTX 2 transformer tests working

* Rename LTX 2 compile test class to have LTX2

* Remove RoPE debug print statements

* Get LTX 2 transformer compile tests passing

* Fix LTX 2 transformer shape errors

* Initial script to convert LTX 2 transformer to diffusers

* Add more LTX 2 transformer audio arguments

* Allow LTX 2 transformer to be loaded from local path for conversion

* Improve dummy inputs and add test for LTX 2 transformer consistency

* Fix LTX 2 transformer bugs so consistency test passes

* Initial implementation of LTX 2.0 video VAE

* Explicitly specify temporal and spatial VAE scale factors when converting

* Add initial LTX 2.0 video VAE tests

* Add initial LTX 2.0 video VAE tests (part 2)

* Get diffusers implementation on par with official LTX 2.0 video VAE implementation

* Initial LTX 2.0 vocoder implementation

* Use RMSNorm implementation closer to original for LTX 2.0 video VAE

* start audio decoder.

* init registration.

* up

* simplify and clean up

* up

* Initial LTX 2.0 text encoder implementation

* Rough initial LTX 2.0 pipeline implementation

* up

* up

* up

* up

* Add imports for LTX 2.0 Audio VAE

* Conversion script for LTX 2.0 Audio VAE Decoder

* Add Audio VAE logic to T2V pipeline

* Duplicate scheduler for audio latents

* Support num_videos_per_prompt for prompt embeddings

* LTX 2.0 scheduler and full pipeline conversion

* Add script to test full LTX2Pipeline T2V inference

* Fix pipeline return bugs

* Add LTX 2 text encoder and vocoder to ltx2 subdirectory __init__

* Fix more bugs in LTX2Pipeline.__call__

* Improve CPU offload support

* Fix pipeline audio VAE decoding dtype bug

* Fix video shape error in full pipeline test script

* Get LTX 2 T2V pipeline to produce reasonable outputs

* Make LTX 2.0 scheduler more consistent with original code

* Fix typo when applying scheduler fix in T2V inference script

* Refactor Audio VAE to be simpler and remove helpers (#7)

* remove resolve causality axes stuff.

* remove a bunch of helpers.

* remove adjust output shape helper.

* remove the use of audiolatentshape.

* move normalization and patchify out of pipeline.

* fix

* up

* up

* Remove unpatchify and patchify ops before audio latents denormalization (#9)

---------

Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>

* Add support for I2V (#8)

* start i2v.

* up

* up

* up

* up

* up

* remove uniform strategy code.

* remove unneeded code.

* Denormalize audio latents in I2V pipeline (analogous to T2V change) (#11)

* test i2v.

* Move Video and Audio Text Encoder Connectors to Transformer (#12)

* Denormalize audio latents in I2V pipeline (analogous to T2V change)

* Initial refactor to put video and audio text encoder connectors in transformer

* Get LTX 2 transformer tests working after connector refactor

* precompute run_connectors,.

* fixes

* Address review comments

* Calculate RoPE double precisions freqs using torch instead of np

* Further simplify LTX 2 RoPE freq calc

* Make connectors a separate module (#18)

* remove text_encoder.py

* address yiyi's comments.

* up

* up

* up

* up

---------

Co-authored-by: sayakpaul <spsayakpaul@gmail.com>

* up (#19)

* address initial feedback from lightricks team (#16)

* cross_attn_timestep_scale_multiplier to 1000

* implement split rope type.

* up

* propagate rope_type to rope embed classes as well.

* up

* When using split RoPE, make sure that the output dtype is same as input dtype

* Fix apply split RoPE shape error when reshaping x to 4D

* Add export_utils file for exporting LTX 2.0 videos with audio

* Tests for T2V and I2V (#6)

* add ltx2 pipeline tests.

* up

* up

* up

* up

* remove content

* style

* Denormalize audio latents in I2V pipeline (analogous to T2V change)

* Initial refactor to put video and audio text encoder connectors in transformer

* Get LTX 2 transformer tests working after connector refactor

* up

* up

* i2v tests.

* up

* Address review comments

* Calculate RoPE double precisions freqs using torch instead of np

* Further simplify LTX 2 RoPE freq calc

* revert unneded changes.

* up

* up

* update to split style rope.

* up

---------

Co-authored-by: Daniel Gu <dgu8957@gmail.com>

* up

* use export util funcs.

* Point original checkpoint to LTX 2.0 official checkpoint

* Allow the I2V pipeline to accept image URLs

* make style and make quality

* remove function map.

* remove args.

* update docs.

* update doc entries.

* disable ltx2_consistency test

* Simplify LTX 2 RoPE forward by removing coords is None logic

* make style and make quality

* Support LTX 2.0 audio VAE encoder

* Apply suggestions from code review

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Remove print statement in audio VAE

* up

* Fix bug when calculating audio RoPE coords

* Ltx 2 latent upsample pipeline (#12922)

* Initial implementation of LTX 2.0 latent upsampling pipeline

* Add new LTX 2.0 spatial latent upsampler logic

* Add test script for LTX 2.0 latent upsampling

* Add option to enable VAE tiling in upsampling test script

* Get latent upsampler working with video latents

* Fix typo in BlurDownsample

* Add latent upsample pipeline docstring and example

* Remove deprecated pipeline VAE slicing/tiling methods

* make style and make quality

* When returning latents, return unpacked and denormalized latents for T2V and I2V

* Add model_cpu_offload_seq for latent upsampling pipeline

---------

Co-authored-by: Daniel Gu <dgu8957@gmail.com>

* Fix latent upsampler filename in LTX 2 conversion script

* Add latent upsample pipeline to LTX 2 docs

* Add dummy objects for LTX 2 latent upsample pipeline

* Set default FPS to official LTX 2 ckpt default of 24.0

* Set default CFG scale to official LTX 2 ckpt default of 4.0

* Update LTX 2 pipeline example docstrings

* make style and make quality

* Remove LTX 2 test scripts

* Fix LTX 2 upsample pipeline example docstring

* Add logic to convert and save a LTX 2 upsampling pipeline

* Document LTX2VideoTransformer3DModel forward pass

---------

Co-authored-by: sayakpaul <spsayakpaul@gmail.com>
2026-01-07 21:24:27 -08:00
Álvaro Somoza
dab000e88b [Modular] Video for Mellon (#12924)
num_frames and videos
2026-01-07 12:35:59 -10:00
David El Malih
9fb6b89d49 Improve docstrings and type hints in scheduling_edm_euler.py (#12871)
* docs: add comprehensive docstrings and refine type hints for EDM scheduler methods and config parameters.

* refactor: Add type hints to DPM-Solver scheduler methods.
2026-01-07 11:18:00 -08:00
Sayak Paul
6fb4c99f5a Update wan.md to remove unneeded hfoptions (#12890) 2026-01-07 09:47:19 -08:00
Sayak Paul
961b9b27d3 [docs] fix torchao typo. (#12883)
fix torchao typo.
2026-01-07 09:43:02 -08:00
Tolga Cangöz
8f30bfff1f Add transformer cache context for SkyReels-V2 pipelines & Update docs (#12837)
* feat: Add transformer cache context for conditional and unconditional predictions for skyreels-v2 pipes.

* docs: Remove SkyReels-V2 FLF2V model link and add contributor attribution.
2026-01-06 22:30:30 -10:00
Leo Jiang
b4be29bda2 Add FSDP option for Flux2 (#12860)
* Add FSDP option for Flux2

* Apply style fixes

* Add FSDP option for Flux2

* Add FSDP option for Flux2

* Add FSDP option for Flux2

* Add FSDP option for Flux2

* Add FSDP option for Flux2

* Update examples/dreambooth/README_flux2.md

* guard accelerate import.

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2026-01-07 13:17:46 +05:30
Hu Yaoqi
98479a94c2 LTX Video 0.9.8 long multi prompt (#12614)
* LTX Video 0.9.8  long multi prompt

* Further align comfyui

- Added the “LTXEulerAncestralRFScheduler” scheduler, aligned with [sample_euler_ancestral_RF](7d6103325e/comfy/k_diffusion/sampling.py (L234))

- Updated the LTXI2VLongMultiPromptPipeline.from_pretrained() method:
  - Now uses LTXEulerAncestralRFScheduler by default, for better compatibility with the ComfyUI LTXV workflow.

- Changed the default value of cond_strength from 1.0 to 0.5, aligning with ComfyUI’s default.

- Optimized cross-window overlap blending: moved the latent-space guidance injection to before the UNet and after each step, aligned with[KSamplerX0Inpaint]([ComfyUI/comfy/samplers.py at master · comfyanonymous/ComfyUI](https://github.com/comfyanonymous/ComfyUI/blob/master/comfy/samplers.py#L391))

- Adjusted the default value of skip_steps_sigma_threshold to 1.

* align with diffusers contribute rule

* Add new pipelines and update imports

* Enhance LTXI2VLongMultiPromptPipeline with noise rescaling

Refactor LTXI2VLongMultiPromptPipeline to improve documentation and add noise rescaling functionality.

* Clean up comments in scheduling_ltx_euler_ancestral_rf.py

Removed design notes and limitations from the implementation.

* Enhance video generation example with scheduler

Updated LTXI2VLongMultiPromptPipeline example to include LTXEulerAncestralRFScheduler for ComfyUI parity.

* clean up

* style

* copies

* import ltx scheduler

* copies

* fix

* fix more

* up up

* up up up

* up upup

* Apply suggestions from code review

* Update docs/source/en/api/pipelines/ltx_video.md

* Update docs/source/en/api/pipelines/ltx_video.md

---------

Co-authored-by: yiyixuxu <yixu310@gmail.com>
2026-01-06 18:18:04 -10:00
zhangtao0408
ade1059ae2 [Flux.1] improve pos embed for ascend npu by computing on npu (#12897)
* [Flux.1] improve pos embed for ascend npu by setting it back to npu computation.

* [Flux.2] improve pos embed for ascend npu by setting it back to npu computation.

* [LongCat-Image] improve pos embed for ascend npu by setting it back to npu computation.

* [Ovis-Image] improve pos embed for ascend npu by setting it back to npu computation.

* Remove unused import of is_torch_npu_available

---------

Co-authored-by: zhangtao <zhangtao529@huawei.com>
2026-01-06 08:48:04 -10:00
dxqb
41a6e86faf Check for attention mask in backends that don't support it (#12892)
* check attention mask

* Apply style fixes

* bugfix

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2026-01-06 22:52:12 +05:30
Pauline Bailly-Masson
9b5a244653 CodeQL workflow for security analysis 2026-01-06 17:26:08 +01:00
Pauline Bailly-Masson
417f6b2d33 Delete .github/workflows/codeql.yml 2026-01-06 17:25:38 +01:00
Pauline Bailly-Masson
e46354d2d0 Add codeQL workflow (#12917)
Updated CodeQL workflow to use reusable workflow from Hugging Face and simplified language matrix.
2026-01-06 17:19:48 +01:00
Pauline Bailly-Masson
db37140474 Refactor environment variable assignments in workflow (#12916) 2026-01-06 13:39:18 +01:00
hlky
88ffb00139 Detect 2.0 vs 2.1 ZImageControlNetModel (#12861)
* Detect 2.0 vs 2.1 ZImageControlNetModel

* Possibility of control_noise_refiner being removed
2026-01-05 20:28:52 -10:00
Sayak Paul
b6098ca006 [core] remove unneeded autoencoder methods when subclassing from AutoencoderMixin (#12873)
up
2026-01-05 19:43:54 -10:00
Sayak Paul
7c6d314549 fix the use of device_map in CP docs (#12902)
up
2026-01-05 19:42:32 -10:00
DefTruth
3138e37fe6 Fix wan 2.1 i2v context parallel (#12909)
* fix wan 2.1 i2v context parallel

* fix wan 2.1 i2v context parallel

* fix wan 2.1 i2v context parallel

* format
2026-01-06 07:42:53 +05:30
Miguel Martin
0da1aa90b5 Fix typo in src/diffusers/pipelines/cosmos/pipeline_cosmos2_5_predict.py (#12914) 2026-01-05 15:44:39 -10:00
Jefri Haryono
5ffb65803d Community Pipeline: Add z-image differential img2img (#12882)
* Community Pipeline: Add z-image differential img2img

* add pipeline for z-image differential img2img diffusion examples : run make style , make quality, and fix white spaces in example doc string.

---------

Co-authored-by: r4inm4ker <jefri.yeh@gmail.com>
2026-01-05 09:53:52 -03:00
DefTruth
d0ae34d313 chore: fix dev version in setup.py (#12904) 2026-01-05 09:21:48 +05:30
hlky
47378066c0 Z-Image-Turbo from_single_file fix (#12888) 2026-01-02 22:29:24 +05:30
Maxim Balabanski
208cda8f6d fix Qwen Image Transformer single file loading mapping function to be consistent with other loader APIs (#12894)
fix Qwen single file loading to be consistent with other loader API
2026-01-02 12:59:11 +05:30
Vasiliy Kuznetsov
1cdb8723b8 fix torchao quantizer for new torchao versions (#12901)
* fix torchao quantizer for new torchao versions

Summary:

`torchao==0.16.0` (not yet released) has some bc-breaking changes, this
PR fixes the diffusers repo with those changes. Specifics on the
changes:
1. `UInt4Tensor` is removed: https://github.com/pytorch/ao/pull/3536
2. old float8 tensors v1 are removed: https://github.com/pytorch/ao/pull/3510

In this PR:
1. move the logger variable up (not sure why it was in the middle of the
   file before) to get better error messages
2. gate the old torchao objects by torchao version

Test Plan:

import diffusers objects with new versions of torchao works:

```bash
> python -c "import torchao; print(torchao.__version__); from diffusers import StableDiffusionPipeline"
0.16.0.dev20251229+cu129
```

Reviewers:

Subscribers:

Tasks:

Tags:

* Apply style fixes

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-12-30 10:04:54 +05:30
RuoyiDu
f6b6a7181e Add z-image-omni-base implementation (#12857)
* Add z-image-omni-base implementation

* Merged into one transformer for Z-Image.

* Fix bugs for controlnet after merging the main branch new feature.

* Fix for auto_pipeline, Add Styling.

* Refactor noise handling and modulation

- Add select_per_token function for per-token value selection
- Separate adaptive modulation logic
- Cleanify t_noisy/clean variable naming
- Move image_noise_mask handler from forward to pipeline

* Styling & Formatting.

* Rewrite code with more non-forward func & clean forward.

1.Change to one forward with shorter code with omni code (None).
2.Split out non-forward funcs: _build_unified_sequence, _prepare_sequence, patchify, pad.

* Styling & Formatting.

* Manual check fix-copies in controlnet, Add select_per_token, _patchify_image, _pad_with_ids; Styling.

* Add Import in pipeline __init__.py.

---------

Co-authored-by: Jerry Qilong Wu <xinglong.wql@alibaba-inc.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2025-12-23 23:45:35 -10:00
Alvaro Bartolome
52766e6a69 Use T5Tokenizer instead of MT5Tokenizer (removed in Transformers v5.0+) (#12877)
Use `T5Tokenizer` instead of `MT5Tokenizer`

Given that the `MT5Tokenizer` in `transformers` is just a "re-export" of
`T5Tokenizer` as per
https://github.com/huggingface/transformers/blob/v4.57.3/src/transformers/models/mt5/tokenization_mt5.py
)on latest available stable Transformers i.e., v4.57.3), this commit
updates the imports to point to `T5Tokenizer` instead, so that those
still work with Transformers v5.0.0rc0 onwards.
2025-12-23 06:57:41 -10:00
Miguel Martin
973a077c6a Cosmos Predict2.5 14b Conversion (#12863)
14b conversion
2025-12-22 08:02:06 -10:00
Alvaro Bartolome
0c4f6c9cff Add OvisImagePipeline in AUTO_TEXT2IMAGE_PIPELINES_MAPPING (#12876) 2025-12-22 07:14:03 -10:00
MatrixTeam-AI
262ce19bff Feature: Add Mambo-G Guidance as Guider (#12862)
* Feature: Add Mambo-G Guidance to Qwen-Image Pipeline

* change to guider implementation

* fix copied code residual

* Update src/diffusers/guiders/magnitude_aware_guidance.py

* Apply style fixes

---------

Co-authored-by: Pscgylotti <pscgylotti@github.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-12-19 13:10:40 -10:00
YiYi Xu
f7753b1bc8 more update in modular (#12560)
* move node registry to mellon

* up

* fix

* modula rpipeline update: filter out none for input_names, fix default blocks for pipe.init() and allow user pass additional kwargs_type in a dict

* qwen modular refactor, unpack before decode

* update mellon node config, adding* to required_inputs and required_model_inputs

* modularpipeline.from_pretrained: error out if no config found

* add a component_names property to modular blocks to be consistent!

* flux image_encoder -> vae_encoder

* controlnet_bundle

* refator MellonNodeConfig MellonPipelineConfig

* refactor & simplify mellon utils

* vae_image_encoder -> vae_encoder

* mellon config save keep key order

* style + copies

* add kwargs input for zimage
2025-12-18 19:25:20 -10:00
Miguel Martin
b5309683cb Cosmos Predict2.5 Base: inference pipeline, scheduler & chkpt conversion (#12852)
* cosmos predict2.5 base: convert chkpt & pipeline
- New scheduler: scheduling_flow_unipc_multistep.py
- Changes to TransformerCosmos for text embeddings via crossattn_proj

* scheduler cleanup

* simplify inference pipeline

* cleanup scheduler + tests

* Basic tests for flow unipc

* working b2b inference

* Rename everything

* Tests for pipeline present, but not working (predict2 also not working)

* docstring update

* wrapper pipelines + make style

* remove unnecessary files

* UniPCMultistep: support use_karras_sigmas=True and use_flow_sigmas=True

* use UniPCMultistepScheduler + fix tests for pipeline

* Remove FlowUniPCMultistepScheduler

* UniPCMultistepScheduler for use_flow_sigmas=True & use_karras_sigmas=True

* num_inference_steps=36 due to bug in scheduler used by predict2.5

* Address comments

* make style + make fix-copies

* fix tests + remove references to old pipelines

* address comments

* add revision in from_pretrained call

* fix tests
2025-12-19 05:38:18 +05:30
hlky
55463f7ace Z-Image-Turbo ControlNet (#12792)
* init

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-12-17 09:44:20 -10:00
naykun
f9c1e612fb Qwen Image Layered Support (#12853)
* [qwen-image] qwen image layered support

* [qwen-image] update doc

* [qwen-image] fix pr comments

* Apply style fixes

* make fix-copies

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-12-17 16:57:57 +05:30
Wang, Yi
87f7d11143 extend TorchAoTest::test_model_memory_usage to other platform (#12768)
* extend TorchAoTest::test_model_memory_usage to other platform

Signe-off-by: Wang, Yi <yi.a.wang@inel.com>

* add some comments

Signed-off-by: Wang, Yi <yi.a.wang@intel.com>

---------

Signed-off-by: Wang, Yi <yi.a.wang@intel.com>
2025-12-17 13:44:08 +05:30
junqiangwu
5e48f466b9 fix the prefix_token_len bug (#12845) 2025-12-15 22:02:25 -10:00
junqiangwu
a748a839ad Add support for LongCat-Image (#12828)
* Add  LongCat-Image

* Update src/diffusers/models/transformers/transformer_longcat_image.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/models/transformers/transformer_longcat_image.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/models/transformers/transformer_longcat_image.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/longcat_image/pipeline_longcat_image.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/longcat_image/pipeline_longcat_image.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/longcat_image/pipeline_longcat_image.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/models/transformers/transformer_longcat_image.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/longcat_image/pipeline_longcat_image.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* fix code

* add doc

* Update src/diffusers/pipelines/longcat_image/pipeline_longcat_image_edit.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/longcat_image/pipeline_longcat_image_edit.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/longcat_image/pipeline_longcat_image.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/longcat_image/pipeline_longcat_image.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/longcat_image/pipeline_longcat_image.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/longcat_image/pipeline_longcat_image.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* fix code & mask style & fix-copies

* Apply style fixes

* fix single input rewrite error

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: hadoop-imagen <hadoop-imagen@psxfb7pxrbvmh3oq-worker-0.psxfb7pxrbvmh3oq.hadoop-aipnlp.svc.cluster.local>
2025-12-15 07:45:17 -10:00
Yuqian Hong
58519283e7 Support for control-lora (#10686)
* run control-lora on diffusers

* cannot load lora adapter

* test

* 1

* add control-lora

* 1

* 1

* 1

* fix PeftAdapterMixin

* fix module_to_save bug

* delete json print

* resolve conflits

* merged but bug

* change peft.py

* 1

* delete state_dict print

* fix alpha

* Create control_lora.py

* Add files via upload

* rename

* no need modify as peft updated

* add doc

* fix code style

* styling isn't that hard 😉

* empty

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-12-15 15:52:42 +05:30
Wang, Yi
0c1ccc0775 fix pytest tests/pipelines/pixart_sigma/test_pixart.py::PixArtSigmaPi… (#12842)
fix pytest tests/pipelines/pixart_sigma/test_pixart.py::PixArtSigmaPipelineIntegrationTests::test_pixart_512 in xpu

Signed-off-by: Wang, Yi <yi.a.wang@intel.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-12-15 14:36:01 +05:30
naykun
b8a4cbac14 [qwen-image] edit 2511 support (#12839)
* [qwen-image] edit 2511 support

* Apply style fixes

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-12-15 12:35:01 +05:30
Wang, Yi
17c0e79dbd support CP in native flash attention (#12829)
Signed-off-by: Wang, Yi <yi.a.wang@intel.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-12-12 13:18:39 +05:30
Sayak Paul
1567243463 [lora] Remove lora docs unneeded and add " # Copied from ..." (#12824)
* remove unneeded docs on load_lora_weights().

* remove more.

* up[

* up

* up
2025-12-12 08:31:27 +05:30
Sayak Paul
0eac64c7a6 Update distributed_inference.md to correct syntax (#12827) 2025-12-11 08:46:43 -08:00
Sayak Paul
10e820a2dd post release 0.36.0 (#12804)
* post release 0.36.0

* Apply style fixes

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-12-11 22:01:59 +05:30
Sayak Paul
6708f5c76d [docs] improve distributed inference cp docs. (#12810)
* improve distributed inference cp docs.

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-12-10 08:25:07 -08:00
Dhruv Nair
be3c2a0667 [WIP] Add Flux2 modular (#12763)
* update

* update

* update

* update

* update

* update

* update

* update

* update

* update
2025-12-10 12:19:07 +05:30
Sayak Paul
8b4722de57 Fix Qwen Edit Plus modular for multi-image input (#12601)
* try to fix qwen edit plus multi images (modular)

* up

* up

* test

* up

* up
2025-12-09 10:08:30 -10:00
YiYi Xu
07ea0786e8 [Modular]z-image (#12808)
* initiL

* up up

* fix: z_image -> z-image

* style

* copy

* fix more

* some docstring fix
2025-12-09 08:08:41 -10:00
David El Malih
54fa0745c3 Improve docstrings and type hints in scheduling_dpmsolver_singlestep.py (#12798)
feat: add flow sigmas, dynamic shifting, and refine type hints in DPMSolverSinglestepScheduler
2025-12-08 08:58:57 -08:00
David Lacalle Castillo
3d02cd543e [PRX] Improve model compilation (#12787)
* Reimplement img2seq & seq2img in PRX to enable ONNX build without Col2Im (incompatible with TensorRT).

* Apply style fixes

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-12-08 17:42:17 +05:30
CalamitousFelicitousness
2246d2c7c4 Add ZImageImg2ImgPipeline (#12751)
* Add ZImageImg2ImgPipeline

Updated the pipeline structure to include ZImageImg2ImgPipeline
    alongside ZImagePipeline.
Implemented the ZImageImg2ImgPipeline class for image-to-image
    transformations, including necessary methods for
    encoding prompts, preparing latents, and denoising.
Enhanced the auto_pipeline to map the new ZImageImg2ImgPipeline
    for image generation tasks.
Added unit tests for ZImageImg2ImgPipeline to ensure
    functionality and performance.
Updated dummy objects to include ZImageImg2ImgPipeline for
    testing purposes.

* Address review comments for ZImageImg2ImgPipeline

- Add `# Copied from` annotations to encode_prompt and _encode_prompt
- Add ZImagePipeline to auto_pipeline.py for AutoPipeline support

* Add ZImage pipeline documentation

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: Álvaro Somoza <asomoza@users.noreply.github.com>
2025-12-07 22:06:23 -10:00
YiYi Xu
671149e036 [HunyuanVideo1.5] support step-distilled (#12802)
* support step-distilled

* style
2025-12-07 21:50:36 -10:00
jiqing-feng
f67639b0bb add post init for safty checker (#12794)
* add post init for safty checker

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* check transformers version before post init

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* Apply style fixes

---------

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-12-08 11:31:03 +05:30
jingyu-ml
5a74319715 Update the TensorRT-ModelOPT to Nvidia-ModelOPT (#12793)
Update the naming

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-12-08 10:07:04 +05:30
Tran Thanh Luan
6290fdfda4 [Feat] TaylorSeer Cache (#12648)
* init taylor_seer cache

* make compatible with any tuple size returned

* use logger for printing, add warmup feature

* still update in warmup steps

* refractor, add docs

* add configurable cache, skip compute module

* allow special cache ids only

* add stop_predicts (cooldown)

* update docs

* apply ruff

* update to handle multple calls per timestep

* refractor to use state manager

* fix format & doc

* chores: naming, remove redundancy

* add docs

* quality & style

* fix taylor precision

* Apply style fixes

* add tests

* Apply style fixes

* Remove TaylorSeerCacheTesterMixin from flux2 tests

* rename identifiers, use more expressive taylor predict loop

* torch compile compatible

* Apply style fixes

* Update src/diffusers/hooks/taylorseer_cache.py

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* update docs

* make fix-copies

* fix example usage.

* remove tests on flux kontext

---------

Co-authored-by: toilaluan <toilaluan@github.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-12-06 05:39:54 +05:30
David El Malih
256e010674 Improve docstrings and type hints in scheduling_deis_multistep.py (#12796)
* feat: Add `flow_prediction` to `prediction_type`, introduce `use_flow_sigmas`, `flow_shift`, `use_dynamic_shifting`, and `time_shift_type` parameters, and refine type hints for various arguments.

* style: reformat argument wrapping in `_convert_to_beta` and `index_for_timestep` method signatures.
2025-12-05 08:48:01 -08:00
Sayak Paul
8430ac2a2f [docs] minor fixes to kandinsky docs (#12797)
up
2025-12-05 08:33:05 -08:00
sayakpaul
bb9e713d02 move kandisnky docs. 2025-12-05 21:44:24 +07:00
Álvaro Somoza
c98c157a9e [Docs] Add Z-Image docs (#12775)
* initial

* toctree

* fix

* apply review and fix

* Update docs/source/en/api/pipelines/z_image.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/api/pipelines/z_image.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/api/pipelines/z_image.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-12-05 11:05:47 -03:00
swappy
f12d161d67 Fix broken group offloading with block_level for models with standalone layers (#12692)
* fix: group offloading to support standalone computational layers in block-level offloading

* test: for models with standalone and deeply nested layers in block-level offloading

* feat: support for block-level offloading in group offloading config

* fix: group offload block modules to AutoencoderKL and AutoencoderKLWan

* fix: update group offloading tests to use AutoencoderKL and adjust input dimensions

* refactor: streamline block offloading logic

* Apply style fixes

* update tests

* update

* fix for failing tests

* clean up

* revert to use skip_keys

* clean up

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2025-12-05 18:54:05 +05:30
David Bertoin
8d415a6f48 PRX Set downscale_freq_shift to 0 for consistency with internal implementation (#12791)
fix timestepembeddings downscale_freq_shift to be consitant with Photoroom's original code
2025-12-04 10:57:14 -10:00
Sayak Paul
7de51b826c [lora] support more ZImage LoRAs (#12790)
up

Co-authored-by: Álvaro Somoza <asomoza@users.noreply.github.com>
2025-12-04 09:01:11 -10:00
Jiang
cd00ba685b fix spatial compression ratio error for AutoEncoderKLWan doing tiled encode (#12753)
fix spatial compression ratio compute error for AutoEncoderKLWan

Co-authored-by: lirui.926 <lirui.926@bytedance.com>
2025-12-04 08:57:13 -10:00
David El Malih
2842c14c5f Improve docstrings and type hints in scheduling_unipc_multistep.py (#12767)
refactor: add type hints and update docstrings for UniPCMultistepScheduler parameters and methods.
2025-12-04 10:10:54 -08:00
Sayak Paul
c318686090 Update attention_backends.md to format kernels (#12757) 2025-12-04 07:48:23 -08:00
hlky
6028613226 Z-Image-Turbo from_single_file (#12756)
* Z-Image-Turbo `from_single_file`

* compute_dtype

* -device cast
2025-12-04 20:22:48 +05:30
Sayak Paul
a1f36ee3ef [Z-Image] various small changes, Z-Image transformer tests, etc. (#12741)
* start zimage model tests.

* up

* up

* up

* up

* up

* up

* up

* up

* up

* up

* up

* up

* Revert "up"

This reverts commit bca3e27c96.

* expand upon compilation failure reason.

* Update tests/models/transformers/test_models_transformer_z_image.py

Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>

* reinitialize the padding tokens to ones to prevent NaN problems.

* updates

* up

* skipping ZImage DiT tests

* up

* up

---------

Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>
2025-12-03 19:35:46 +05:30
Sayak Paul
d96cbacacd [tests] fix hunuyanvideo 1.5 offloading tests. (#12782)
fix hunuyanvideo 1.5 offloading tests.
2025-12-03 18:07:59 +05:30
Aditya Borate
5ab5946931 Fix: leaf_level offloading breaks after delete_adapters (#12639)
* Fix(peft): Re-apply group offloading after deleting adapters

* Test: Add regression test for group offloading + delete_adapters

* Test: Add assertions to verify output changes after deletion

* Test: Add try/finally to clean up group offloading hooks

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-12-03 17:39:11 +05:30
Lev Novitskiy
d0c54e5563 Kandinsky 5.0 Video Pro and Image Lite (#12664)
* add transformer pipeline first version


---------

Co-authored-by: Álvaro Somoza <asomoza@users.noreply.github.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: Charles <charles@huggingface.co>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: dmitrienkoae <dmitrienko.ae@phystech.edu>
Co-authored-by: nvvaulin <nvvaulin@gmail.com>
2025-12-03 00:46:37 -10:00
Dhruv Nair
1908c47600 Deprecate upcast_vae in SDXL based pipelines (#12619)
* update

* update

* Revert "update"

This reverts commit 73906381ab.

* Revert "update"

This reverts commit 21a03f93ef.

* update

* update

* update

* update

* update
2025-12-03 15:53:23 +05:30
Sayak Paul
759ea58708 [core] reuse AttentionMixin for compatible classes (#12463)
* remove attn_processors property

* more

* up

* up more.

* up

* add AttentionMixin to AuraFlow.

* up

* up

* up

* up
2025-12-03 13:58:33 +05:30
Sayak Paul
f48f9c250f [core] start varlen variants for attn backend kernels. (#12765)
* start varlen variants for attn backend kernels.

* maybe unflatten heads.

* updates

* remove unused function.

* doc

* up
2025-12-03 13:34:52 +05:30
Kimbing Ng
3c05b9f71c Fixes #12673. record_stream in group offloading is not working properly (#12721)
* Fixes #12673.

    Wrong default_stream is used. leading to wrong execution order when record_steram is enabled.

* update

* Update test

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-12-03 11:37:11 +05:30
Jerry Wu
9379b2391b Fix TPU (torch_xla) compatibility Error about tensor repeat func along with empty dim. (#12770)
* Refactor image padding logic to pervent zero tensor in transformer_z_image.py

* Apply style fixes

* Add more support to fix repeat bug on tpu devices.

* Fix for dynamo compile error for multi if-branches.

---------

Co-authored-by: Mingjia Li <mingjiali@tju.edu.cn>
Co-authored-by: Mingjia Li <mail@mingjia.li>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-12-02 12:51:23 -10:00
Guo-Hua Wang
4f136f842c Add support for Ovis-Image (#12740)
* add ovis_image

* fix code quality

* optimize pipeline_ovis_image.py according to the feedbacks

* optimize imports

* add docs

* make style

* make style

* add ovis to toctree

* oops

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2025-12-02 11:48:07 -10:00
CalamitousFelicitousness
edf36f5128 Add ZImage LoRA support and integrate into ZImagePipeline (#12750)
* Add ZImage LoRA support and integrate into ZImagePipeline

* Add LoRA test for Z-Image

* Move the LoRA test

* Fix ZImage LoRA scale support and test configuration

* Add ZImage LoRA test overrides for architecture differences

- Override test_lora_fuse_nan to use ZImage's 'layers' attribute
  instead of 'transformer_blocks'
- Skip block-level LoRA scaling test (not supported in ZImage)
- Add required imports: numpy, torch_device, check_if_lora_correctly_set

* Add ZImageLoraLoaderMixin to LoRA documentation

* Use conditional import for peft.LoraConfig in ZImage tests

* Override test_correct_lora_configs_with_different_ranks for ZImage

ZImage uses 'attention.to_k' naming convention instead of 'attn.to_k',
so the base test's module name search loop never finds a match. This
override uses the correct naming pattern for ZImage architecture.

* Add is_flaky decorator to ZImage LoRA tests initialise padding tokens

* Skip ZImage LoRA test class entirely

Skip the entire ZImageLoRATests class due to non-deterministic behavior
from complex64 RoPE operations and torch.empty padding tokens.
LoRA functionality works correctly with real models.

Clean up removed:
- Individual @unittest.skip decorators
- @is_flaky decorator overrides for inherited methods
- Custom test method overrides
- Global torch deterministic settings
- Unused imports (numpy, is_flaky, check_if_lora_correctly_set)

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Álvaro Somoza <asomoza@users.noreply.github.com>
2025-12-02 02:16:30 -03:00
Sayak Paul
564079f295 [feat]: implement "local" caption upsampling for Flux.2 (#12718)
* feat: implement caption upsampling for flux.2.

* doc

* up

* fix

* up

* fix system prompts 🤷‍

* up

* up

* up
2025-12-02 04:27:24 +05:30
Sayak Paul
394a48d169 Update bria_fibo.md with minor fixes (#12731)
* Update bria_fibo.md with minor fixes

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-12-02 04:24:19 +05:30
Gal Davidi
99784ae0d2 Rename BriaPipeline to BriaFiboPipeline in documentation (#12758) 2025-12-01 09:34:47 -10:00
DefTruth
fffd964a0f fix FLUX.2 context parallel (#12737) 2025-12-01 09:07:49 -10:00
David El Malih
859b809031 Improve docstrings and type hints in scheduling_euler_ancestral_discrete.py (#12766)
refactor: add type hints to methods and update docstrings for parameters.
2025-12-01 08:38:01 -10:00
David El Malih
d769d8a13b Improve docstrings and type hints in scheduling_heun_discrete.py (#12726)
refactor: improve type hints for `beta_schedule`, `prediction_type`, and `timestep_spacing` parameters, and add return type hints to several methods.
2025-12-01 08:09:36 -08:00
David El Malih
c25582d509 [Docs] Update Imagen Video paper link in schedulers (#12724)
docs: Update Imagen Video paper link in scheduler docstrings.
2025-12-01 08:09:22 -08:00
YiYi Xu
6156cf8f22 Hunyuanvideo15 (#12696)
* add


---------

Co-authored-by: yiyi@huggingface.co <yiyi@ip-26-0-161-123.ec2.internal>
Co-authored-by: yiyi@huggingface.co <yiyi@ip-26-0-160-103.ec2.internal>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-11-30 20:27:59 -10:00
DefTruth
152f7ca357 fix type-check for z-image transformer (#12739)
* allow type-check for ZImageTransformer2DModel

* make fix-copies
2025-11-29 14:58:33 +05:30
Dhruv Nair
b010a8ce0c [Modular] Add single file support to Modular (#12383)
* update

* update

* update

* update

* Apply style fixes

* update

* update

* update

* update

* update

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-11-28 22:23:04 +05:30
Ayush Sur
1b91856d0e Fix examples not loading LoRA adapter weights from checkpoint (#12690)
* Fix examples not loading LoRA adapter weights from checkpoint

* Updated lora saving logic with accelerate save_model_hook and load_model_hook

* Formatted the changes using ruff

* import and upcasting changed

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-11-28 11:56:39 +05:30
Sayak Paul
01e355516b Enable regional compilation on z-image transformer model (#12736)
up
2025-11-27 07:18:00 -10:00
563 changed files with 61496 additions and 9815 deletions

View File

@@ -28,7 +28,7 @@ jobs:
options: --shm-size "16gb" --ipc host --gpus all
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
uses: actions/checkout@v6
with:
fetch-depth: 2
- name: NVIDIA-SMI
@@ -58,7 +58,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v6
with:
name: benchmark_test_reports
path: benchmarks/${{ env.BASE_PATH }}

View File

@@ -28,7 +28,7 @@ jobs:
uses: docker/setup-buildx-action@v1
- name: Check out code
uses: actions/checkout@v3
uses: actions/checkout@v6
- name: Find Changed Dockerfiles
id: file_changes
@@ -99,7 +99,7 @@ jobs:
steps:
- name: Checkout repository
uses: actions/checkout@v3
uses: actions/checkout@v6
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v1
- name: Login to Docker Hub

View File

@@ -17,10 +17,10 @@ jobs:
steps:
- name: Checkout repository
uses: actions/checkout@v4
uses: actions/checkout@v6
- name: Set up Python
uses: actions/setup-python@v5
uses: actions/setup-python@v6
with:
python-version: '3.10'

22
.github/workflows/codeql.yml vendored Normal file
View File

@@ -0,0 +1,22 @@
---
name: CodeQL Security Analysis For Github Actions
on:
push:
branches: ["main"]
workflow_dispatch:
# pull_request:
jobs:
codeql:
name: CodeQL Analysis
uses: huggingface/security-workflows/.github/workflows/codeql-reusable.yml@v1
permissions:
security-events: write
packages: read
actions: read
contents: read
with:
languages: '["actions","python"]'
queries: 'security-extended,security-and-quality'
runner: 'ubuntu-latest' #optional if need custom runner

View File

@@ -24,7 +24,6 @@ jobs:
mirror_community_pipeline:
env:
SLACK_WEBHOOK_URL: ${{ secrets.SLACK_WEBHOOK_URL_COMMUNITY_MIRROR }}
runs-on: ubuntu-22.04
steps:
# Checkout to correct ref
@@ -39,37 +38,41 @@ jobs:
# If ref is 'refs/heads/main' => set 'main'
# Else it must be a tag => set {tag}
- name: Set checkout_ref and path_in_repo
env:
EVENT_NAME: ${{ github.event_name }}
EVENT_INPUT_REF: ${{ github.event.inputs.ref }}
GITHUB_REF: ${{ github.ref }}
run: |
if [ "${{ github.event_name }}" == "workflow_dispatch" ]; then
if [ -z "${{ github.event.inputs.ref }}" ]; then
if [ "$EVENT_NAME" == "workflow_dispatch" ]; then
if [ -z "$EVENT_INPUT_REF" ]; then
echo "Error: Missing ref input"
exit 1
elif [ "${{ github.event.inputs.ref }}" == "main" ]; then
elif [ "$EVENT_INPUT_REF" == "main" ]; then
echo "CHECKOUT_REF=refs/heads/main" >> $GITHUB_ENV
echo "PATH_IN_REPO=main" >> $GITHUB_ENV
else
echo "CHECKOUT_REF=refs/tags/${{ github.event.inputs.ref }}" >> $GITHUB_ENV
echo "PATH_IN_REPO=${{ github.event.inputs.ref }}" >> $GITHUB_ENV
echo "CHECKOUT_REF=refs/tags/$EVENT_INPUT_REF" >> $GITHUB_ENV
echo "PATH_IN_REPO=$EVENT_INPUT_REF" >> $GITHUB_ENV
fi
elif [ "${{ github.ref }}" == "refs/heads/main" ]; then
echo "CHECKOUT_REF=${{ github.ref }}" >> $GITHUB_ENV
elif [ "$GITHUB_REF" == "refs/heads/main" ]; then
echo "CHECKOUT_REF=$GITHUB_REF" >> $GITHUB_ENV
echo "PATH_IN_REPO=main" >> $GITHUB_ENV
else
# e.g. refs/tags/v0.28.1 -> v0.28.1
echo "CHECKOUT_REF=${{ github.ref }}" >> $GITHUB_ENV
echo "PATH_IN_REPO=$(echo ${{ github.ref }} | sed 's/^refs\/tags\///')" >> $GITHUB_ENV
echo "CHECKOUT_REF=$GITHUB_REF" >> $GITHUB_ENV
echo "PATH_IN_REPO=$(echo $GITHUB_REF | sed 's/^refs\/tags\///')" >> $GITHUB_ENV
fi
- name: Print env vars
run: |
echo "CHECKOUT_REF: ${{ env.CHECKOUT_REF }}"
echo "PATH_IN_REPO: ${{ env.PATH_IN_REPO }}"
- uses: actions/checkout@v3
- uses: actions/checkout@v6
with:
ref: ${{ env.CHECKOUT_REF }}
# Setup + install dependencies
- name: Set up Python
uses: actions/setup-python@v4
uses: actions/setup-python@v6
with:
python-version: "3.10"
- name: Install dependencies
@@ -99,4 +102,4 @@ jobs:
- name: Report failure status
if: ${{ failure() }}
run: |
pip install requests && python utils/notify_community_pipelines_mirror.py --status=failure
pip install requests && python utils/notify_community_pipelines_mirror.py --status=failure

View File

@@ -28,7 +28,7 @@ jobs:
pipeline_test_matrix: ${{ steps.fetch_pipeline_matrix.outputs.pipeline_test_matrix }}
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
uses: actions/checkout@v6
with:
fetch-depth: 2
- name: Install dependencies
@@ -44,7 +44,7 @@ jobs:
- name: Pipeline Tests Artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v6
with:
name: test-pipelines.json
path: reports
@@ -64,7 +64,7 @@ jobs:
options: --shm-size "16gb" --ipc host --gpus all
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
uses: actions/checkout@v6
with:
fetch-depth: 2
- name: NVIDIA-SMI
@@ -97,7 +97,7 @@ jobs:
cat reports/tests_pipeline_${{ matrix.module }}_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v6
with:
name: pipeline_${{ matrix.module }}_test_reports
path: reports
@@ -119,7 +119,7 @@ jobs:
module: [models, schedulers, lora, others, single_file, examples]
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
uses: actions/checkout@v6
with:
fetch-depth: 2
@@ -167,7 +167,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v6
with:
name: torch_${{ matrix.module }}_cuda_test_reports
path: reports
@@ -184,7 +184,7 @@ jobs:
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
uses: actions/checkout@v6
with:
fetch-depth: 2
@@ -211,7 +211,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v6
with:
name: torch_compile_test_reports
path: reports
@@ -228,7 +228,7 @@ jobs:
options: --shm-size "16gb" --ipc host --gpus all
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
uses: actions/checkout@v6
with:
fetch-depth: 2
- name: NVIDIA-SMI
@@ -263,7 +263,7 @@ jobs:
cat reports/tests_big_gpu_torch_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v6
with:
name: torch_cuda_big_gpu_test_reports
path: reports
@@ -280,7 +280,7 @@ jobs:
shell: bash
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
uses: actions/checkout@v6
with:
fetch-depth: 2
@@ -321,7 +321,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v6
with:
name: torch_minimum_version_cuda_test_reports
path: reports
@@ -355,7 +355,7 @@ jobs:
options: --shm-size "20gb" --ipc host --gpus all
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
uses: actions/checkout@v6
with:
fetch-depth: 2
- name: NVIDIA-SMI
@@ -391,7 +391,7 @@ jobs:
cat reports/tests_${{ matrix.config.backend }}_torch_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v6
with:
name: torch_cuda_${{ matrix.config.backend }}_reports
path: reports
@@ -408,7 +408,7 @@ jobs:
options: --shm-size "20gb" --ipc host --gpus all
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
uses: actions/checkout@v6
with:
fetch-depth: 2
- name: NVIDIA-SMI
@@ -441,7 +441,7 @@ jobs:
cat reports/tests_pipeline_level_quant_torch_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v6
with:
name: torch_cuda_pipeline_level_quant_reports
path: reports
@@ -466,7 +466,7 @@ jobs:
image: diffusers/diffusers-pytorch-cpu
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
uses: actions/checkout@v6
with:
fetch-depth: 2
@@ -474,7 +474,7 @@ jobs:
run: mkdir -p combined_reports
- name: Download all test reports
uses: actions/download-artifact@v4
uses: actions/download-artifact@v7
with:
path: artifacts
@@ -500,7 +500,7 @@ jobs:
cat $CONSOLIDATED_REPORT_PATH >> $GITHUB_STEP_SUMMARY
- name: Upload consolidated report
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v6
with:
name: consolidated_test_report
path: ${{ env.CONSOLIDATED_REPORT_PATH }}
@@ -514,7 +514,7 @@ jobs:
#
# steps:
# - name: Checkout diffusers
# uses: actions/checkout@v3
# uses: actions/checkout@v6
# with:
# fetch-depth: 2
#
@@ -554,7 +554,7 @@ jobs:
#
# - name: Test suite reports artifacts
# if: ${{ always() }}
# uses: actions/upload-artifact@v4
# uses: actions/upload-artifact@v6
# with:
# name: torch_mps_test_reports
# path: reports
@@ -570,7 +570,7 @@ jobs:
#
# steps:
# - name: Checkout diffusers
# uses: actions/checkout@v3
# uses: actions/checkout@v6
# with:
# fetch-depth: 2
#
@@ -610,7 +610,7 @@ jobs:
#
# - name: Test suite reports artifacts
# if: ${{ always() }}
# uses: actions/upload-artifact@v4
# uses: actions/upload-artifact@v6
# with:
# name: torch_mps_test_reports
# path: reports

View File

@@ -10,10 +10,10 @@ jobs:
runs-on: ubuntu-22.04
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v6
- name: Setup Python
uses: actions/setup-python@v4
uses: actions/setup-python@v6
with:
python-version: '3.8'

View File

@@ -18,9 +18,9 @@ jobs:
check_dependencies:
runs-on: ubuntu-22.04
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v6
- name: Set up Python
uses: actions/setup-python@v4
uses: actions/setup-python@v6
with:
python-version: "3.8"
- name: Install dependencies

View File

@@ -1,3 +1,4 @@
name: Fast PR tests for Modular
on:
@@ -35,9 +36,9 @@ jobs:
check_code_quality:
runs-on: ubuntu-22.04
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v6
- name: Set up Python
uses: actions/setup-python@v4
uses: actions/setup-python@v6
with:
python-version: "3.10"
- name: Install dependencies
@@ -55,9 +56,9 @@ jobs:
needs: check_code_quality
runs-on: ubuntu-22.04
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v6
- name: Set up Python
uses: actions/setup-python@v4
uses: actions/setup-python@v6
with:
python-version: "3.10"
- name: Install dependencies
@@ -77,23 +78,13 @@ jobs:
run_fast_tests:
needs: [check_code_quality, check_repository_consistency]
strategy:
fail-fast: false
matrix:
config:
- name: Fast PyTorch Modular Pipeline CPU tests
framework: pytorch_pipelines
runner: aws-highmemory-32-plus
image: diffusers/diffusers-pytorch-cpu
report: torch_cpu_modular_pipelines
name: ${{ matrix.config.name }}
name: Fast PyTorch Modular Pipeline CPU tests
runs-on:
group: ${{ matrix.config.runner }}
group: aws-highmemory-32-plus
container:
image: ${{ matrix.config.image }}
image: diffusers/diffusers-pytorch-cpu
options: --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/
defaults:
@@ -102,7 +93,7 @@ jobs:
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
uses: actions/checkout@v6
with:
fetch-depth: 2
@@ -118,22 +109,19 @@ jobs:
python utils/print_env.py
- name: Run fast PyTorch Pipeline CPU tests
if: ${{ matrix.config.framework == 'pytorch_pipelines' }}
run: |
pytest -n 8 --max-worker-restart=0 --dist=loadfile \
-k "not Flax and not Onnx" \
--make-reports=tests_${{ matrix.config.report }} \
--make-reports=tests_torch_cpu_modular_pipelines \
tests/modular_pipelines
- name: Failure short reports
if: ${{ failure() }}
run: cat reports/tests_${{ matrix.config.report }}_failures_short.txt
run: cat reports/tests_torch_cpu_modular_pipelines_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v6
with:
name: pr_${{ matrix.config.framework }}_${{ matrix.config.report }}_test_reports
name: pr_pytorch_pipelines_torch_cpu_modular_pipelines_test_reports
path: reports

View File

@@ -28,7 +28,7 @@ jobs:
test_map: ${{ steps.set_matrix.outputs.test_map }}
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
uses: actions/checkout@v6
with:
fetch-depth: 0
- name: Install dependencies
@@ -42,7 +42,7 @@ jobs:
run: |
python utils/tests_fetcher.py | tee test_preparation.txt
- name: Report fetched tests
uses: actions/upload-artifact@v3
uses: actions/upload-artifact@v6
with:
name: test_fetched
path: test_preparation.txt
@@ -83,7 +83,7 @@ jobs:
shell: bash
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
uses: actions/checkout@v6
with:
fetch-depth: 2
@@ -109,7 +109,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v3
uses: actions/upload-artifact@v6
with:
name: ${{ matrix.modules }}_test_reports
path: reports
@@ -138,7 +138,7 @@ jobs:
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
uses: actions/checkout@v6
with:
fetch-depth: 2
@@ -164,7 +164,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v6
with:
name: pr_${{ matrix.config.report }}_test_reports
path: reports

View File

@@ -31,9 +31,9 @@ jobs:
check_code_quality:
runs-on: ubuntu-22.04
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v6
- name: Set up Python
uses: actions/setup-python@v4
uses: actions/setup-python@v6
with:
python-version: "3.8"
- name: Install dependencies
@@ -51,9 +51,9 @@ jobs:
needs: check_code_quality
runs-on: ubuntu-22.04
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v6
- name: Set up Python
uses: actions/setup-python@v4
uses: actions/setup-python@v6
with:
python-version: "3.8"
- name: Install dependencies
@@ -108,7 +108,7 @@ jobs:
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
uses: actions/checkout@v6
with:
fetch-depth: 2
@@ -153,7 +153,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v6
with:
name: pr_${{ matrix.config.framework }}_${{ matrix.config.report }}_test_reports
path: reports
@@ -185,7 +185,7 @@ jobs:
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
uses: actions/checkout@v6
with:
fetch-depth: 2
@@ -211,7 +211,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v6
with:
name: pr_${{ matrix.config.report }}_test_reports
path: reports
@@ -236,7 +236,7 @@ jobs:
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
uses: actions/checkout@v6
with:
fetch-depth: 2
@@ -273,7 +273,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v6
with:
name: pr_main_test_reports
path: reports

View File

@@ -32,9 +32,9 @@ jobs:
check_code_quality:
runs-on: ubuntu-22.04
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v6
- name: Set up Python
uses: actions/setup-python@v4
uses: actions/setup-python@v6
with:
python-version: "3.8"
- name: Install dependencies
@@ -52,9 +52,9 @@ jobs:
needs: check_code_quality
runs-on: ubuntu-22.04
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v6
- name: Set up Python
uses: actions/setup-python@v4
uses: actions/setup-python@v6
with:
python-version: "3.8"
- name: Install dependencies
@@ -83,7 +83,7 @@ jobs:
pipeline_test_matrix: ${{ steps.fetch_pipeline_matrix.outputs.pipeline_test_matrix }}
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
uses: actions/checkout@v6
with:
fetch-depth: 2
- name: Install dependencies
@@ -100,7 +100,7 @@ jobs:
echo "pipeline_test_matrix=$matrix" >> $GITHUB_OUTPUT
- name: Pipeline Tests Artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v6
with:
name: test-pipelines.json
path: reports
@@ -120,7 +120,7 @@ jobs:
options: --shm-size "16gb" --ipc host --gpus all
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
uses: actions/checkout@v6
with:
fetch-depth: 2
@@ -170,7 +170,7 @@ jobs:
cat reports/tests_pipeline_${{ matrix.module }}_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v6
with:
name: pipeline_${{ matrix.module }}_test_reports
path: reports
@@ -193,7 +193,7 @@ jobs:
module: [models, schedulers, lora, others]
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
uses: actions/checkout@v6
with:
fetch-depth: 2
@@ -239,7 +239,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v6
with:
name: torch_cuda_test_reports_${{ matrix.module }}
path: reports
@@ -255,7 +255,7 @@ jobs:
options: --gpus all --shm-size "16gb" --ipc host
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
uses: actions/checkout@v6
with:
fetch-depth: 2
@@ -287,7 +287,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v6
with:
name: examples_test_reports
path: reports

View File

@@ -18,9 +18,9 @@ jobs:
check_torch_dependencies:
runs-on: ubuntu-22.04
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v6
- name: Set up Python
uses: actions/setup-python@v4
uses: actions/setup-python@v6
with:
python-version: "3.8"
- name: Install dependencies

View File

@@ -29,7 +29,7 @@ jobs:
pipeline_test_matrix: ${{ steps.fetch_pipeline_matrix.outputs.pipeline_test_matrix }}
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
uses: actions/checkout@v6
with:
fetch-depth: 2
- name: Install dependencies
@@ -46,7 +46,7 @@ jobs:
echo "pipeline_test_matrix=$matrix" >> $GITHUB_OUTPUT
- name: Pipeline Tests Artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v6
with:
name: test-pipelines.json
path: reports
@@ -66,7 +66,7 @@ jobs:
options: --shm-size "16gb" --ipc host --gpus all
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
uses: actions/checkout@v6
with:
fetch-depth: 2
- name: NVIDIA-SMI
@@ -98,7 +98,7 @@ jobs:
cat reports/tests_pipeline_${{ matrix.module }}_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v6
with:
name: pipeline_${{ matrix.module }}_test_reports
path: reports
@@ -120,7 +120,7 @@ jobs:
module: [models, schedulers, lora, others, single_file]
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
uses: actions/checkout@v6
with:
fetch-depth: 2
@@ -155,7 +155,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v6
with:
name: torch_cuda_test_reports_${{ matrix.module }}
path: reports
@@ -172,7 +172,7 @@ jobs:
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
uses: actions/checkout@v6
with:
fetch-depth: 2
@@ -199,7 +199,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v6
with:
name: torch_compile_test_reports
path: reports
@@ -216,7 +216,7 @@ jobs:
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
uses: actions/checkout@v6
with:
fetch-depth: 2
@@ -240,7 +240,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v6
with:
name: torch_xformers_test_reports
path: reports
@@ -256,7 +256,7 @@ jobs:
options: --gpus all --shm-size "16gb" --ipc host
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
uses: actions/checkout@v6
with:
fetch-depth: 2
@@ -286,7 +286,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v6
with:
name: examples_test_reports
path: reports

View File

@@ -54,7 +54,7 @@ jobs:
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
uses: actions/checkout@v6
with:
fetch-depth: 2
@@ -88,7 +88,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v6
with:
name: pr_${{ matrix.config.report }}_test_reports
path: reports

View File

@@ -23,7 +23,7 @@ jobs:
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
uses: actions/checkout@v6
with:
fetch-depth: 2
@@ -65,7 +65,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v6
with:
name: pr_torch_mps_test_reports
path: reports

View File

@@ -15,10 +15,10 @@ jobs:
latest_branch: ${{ steps.set_latest_branch.outputs.latest_branch }}
steps:
- name: Checkout Repo
uses: actions/checkout@v3
uses: actions/checkout@v6
- name: Set up Python
uses: actions/setup-python@v4
uses: actions/setup-python@v6
with:
python-version: '3.8'
@@ -40,12 +40,12 @@ jobs:
steps:
- name: Checkout Repo
uses: actions/checkout@v3
uses: actions/checkout@v6
with:
ref: ${{ needs.find-and-checkout-latest-branch.outputs.latest_branch }}
- name: Setup Python
uses: actions/setup-python@v4
uses: actions/setup-python@v6
with:
python-version: "3.8"

View File

@@ -27,7 +27,7 @@ jobs:
pipeline_test_matrix: ${{ steps.fetch_pipeline_matrix.outputs.pipeline_test_matrix }}
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
uses: actions/checkout@v6
with:
fetch-depth: 2
- name: Install dependencies
@@ -44,7 +44,7 @@ jobs:
echo "pipeline_test_matrix=$matrix" >> $GITHUB_OUTPUT
- name: Pipeline Tests Artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v6
with:
name: test-pipelines.json
path: reports
@@ -64,7 +64,7 @@ jobs:
options: --shm-size "16gb" --ipc host --gpus all
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
uses: actions/checkout@v6
with:
fetch-depth: 2
- name: NVIDIA-SMI
@@ -94,7 +94,7 @@ jobs:
cat reports/tests_pipeline_${{ matrix.module }}_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v6
with:
name: pipeline_${{ matrix.module }}_test_reports
path: reports
@@ -116,7 +116,7 @@ jobs:
module: [models, schedulers, lora, others, single_file]
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
uses: actions/checkout@v6
with:
fetch-depth: 2
@@ -149,7 +149,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v6
with:
name: torch_cuda_${{ matrix.module }}_test_reports
path: reports
@@ -166,7 +166,7 @@ jobs:
shell: bash
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
uses: actions/checkout@v6
with:
fetch-depth: 2
@@ -205,7 +205,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v6
with:
name: torch_minimum_version_cuda_test_reports
path: reports
@@ -222,7 +222,7 @@ jobs:
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
uses: actions/checkout@v6
with:
fetch-depth: 2
@@ -247,7 +247,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v6
with:
name: torch_compile_test_reports
path: reports
@@ -264,7 +264,7 @@ jobs:
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
uses: actions/checkout@v6
with:
fetch-depth: 2
@@ -288,7 +288,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v6
with:
name: torch_xformers_test_reports
path: reports
@@ -305,7 +305,7 @@ jobs:
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
uses: actions/checkout@v6
with:
fetch-depth: 2
@@ -336,7 +336,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v6
with:
name: examples_test_reports
path: reports

View File

@@ -57,7 +57,7 @@ jobs:
shell: bash -e {0}
- name: Checkout PR branch
uses: actions/checkout@v4
uses: actions/checkout@v6
with:
ref: refs/pull/${{ inputs.pr_number }}/head

View File

@@ -27,7 +27,7 @@ jobs:
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
uses: actions/checkout@v6
with:
fetch-depth: 2

View File

@@ -35,7 +35,7 @@ jobs:
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
uses: actions/checkout@v6
with:
fetch-depth: 2

View File

@@ -15,10 +15,10 @@ jobs:
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
steps:
- uses: actions/checkout@v2
- uses: actions/checkout@v6
- name: Setup Python
uses: actions/setup-python@v1
uses: actions/setup-python@v6
with:
python-version: 3.8

View File

@@ -8,7 +8,7 @@ jobs:
runs-on: ubuntu-22.04
steps:
- name: Checkout code
uses: actions/checkout@v4
uses: actions/checkout@v6
with:
fetch-depth: 0
- name: Secret Scanning

View File

@@ -8,7 +8,7 @@ jobs:
runs-on: ubuntu-22.04
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v6
- name: typos-action
uses: crate-ci/typos@v1.12.4

View File

@@ -15,7 +15,7 @@ jobs:
shell: bash -l {0}
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v6
- name: Setup environment
run: |

View File

@@ -1,506 +0,0 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# How to contribute to Diffusers 🧨
We ❤️ contributions from the open-source community! Everyone is welcome, and all types of participation not just code are valued and appreciated. Answering questions, helping others, reaching out, and improving the documentation are all immensely valuable to the community, so don't be afraid and get involved if you're up for it!
Everyone is encouraged to start by saying 👋 in our public Discord channel. We discuss the latest trends in diffusion models, ask questions, show off personal projects, help each other with contributions, or just hang out ☕. <a href="https://discord.gg/G7tWnz98XR"><img alt="Join us on Discord" src="https://img.shields.io/discord/823813159592001537?color=5865F2&logo=Discord&logoColor=white"></a>
Whichever way you choose to contribute, we strive to be part of an open, welcoming, and kind community. Please, read our [code of conduct](https://github.com/huggingface/diffusers/blob/main/CODE_OF_CONDUCT.md) and be mindful to respect it during your interactions. We also recommend you become familiar with the [ethical guidelines](https://huggingface.co/docs/diffusers/conceptual/ethical_guidelines) that guide our project and ask you to adhere to the same principles of transparency and responsibility.
We enormously value feedback from the community, so please do not be afraid to speak up if you believe you have valuable feedback that can help improve the library - every message, comment, issue, and pull request (PR) is read and considered.
## Overview
You can contribute in many ways ranging from answering questions on issues to adding new diffusion models to
the core library.
In the following, we give an overview of different ways to contribute, ranked by difficulty in ascending order. All of them are valuable to the community.
* 1. Asking and answering questions on [the Diffusers discussion forum](https://discuss.huggingface.co/c/discussion-related-to-httpsgithubcomhuggingfacediffusers) or on [Discord](https://discord.gg/G7tWnz98XR).
* 2. Opening new issues on [the GitHub Issues tab](https://github.com/huggingface/diffusers/issues/new/choose).
* 3. Answering issues on [the GitHub Issues tab](https://github.com/huggingface/diffusers/issues).
* 4. Fix a simple issue, marked by the "Good first issue" label, see [here](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22).
* 5. Contribute to the [documentation](https://github.com/huggingface/diffusers/tree/main/docs/source).
* 6. Contribute a [Community Pipeline](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3Acommunity-examples).
* 7. Contribute to the [examples](https://github.com/huggingface/diffusers/tree/main/examples).
* 8. Fix a more difficult issue, marked by the "Good second issue" label, see [here](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22Good+second+issue%22).
* 9. Add a new pipeline, model, or scheduler, see ["New Pipeline/Model"](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+pipeline%2Fmodel%22) and ["New scheduler"](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+scheduler%22) issues. For this contribution, please have a look at [Design Philosophy](https://github.com/huggingface/diffusers/blob/main/PHILOSOPHY.md).
As said before, **all contributions are valuable to the community**.
In the following, we will explain each contribution a bit more in detail.
For all contributions 4-9, you will need to open a PR. It is explained in detail how to do so in [Opening a pull request](#how-to-open-a-pr).
### 1. Asking and answering questions on the Diffusers discussion forum or on the Diffusers Discord
Any question or comment related to the Diffusers library can be asked on the [discussion forum](https://discuss.huggingface.co/c/discussion-related-to-httpsgithubcomhuggingfacediffusers/) or on [Discord](https://discord.gg/G7tWnz98XR). Such questions and comments include (but are not limited to):
- Reports of training or inference experiments in an attempt to share knowledge
- Presentation of personal projects
- Questions to non-official training examples
- Project proposals
- General feedback
- Paper summaries
- Asking for help on personal projects that build on top of the Diffusers library
- General questions
- Ethical questions regarding diffusion models
- ...
Every question that is asked on the forum or on Discord actively encourages the community to publicly
share knowledge and might very well help a beginner in the future who has the same question you're
having. Please do pose any questions you might have.
In the same spirit, you are of immense help to the community by answering such questions because this way you are publicly documenting knowledge for everybody to learn from.
**Please** keep in mind that the more effort you put into asking or answering a question, the higher
the quality of the publicly documented knowledge. In the same way, well-posed and well-answered questions create a high-quality knowledge database accessible to everybody, while badly posed questions or answers reduce the overall quality of the public knowledge database.
In short, a high quality question or answer is *precise*, *concise*, *relevant*, *easy-to-understand*, *accessible*, and *well-formatted/well-posed*. For more information, please have a look through the [How to write a good issue](#how-to-write-a-good-issue) section.
**NOTE about channels**:
[*The forum*](https://discuss.huggingface.co/c/discussion-related-to-httpsgithubcomhuggingfacediffusers/63) is much better indexed by search engines, such as Google. Posts are ranked by popularity rather than chronologically. Hence, it's easier to look up questions and answers that we posted some time ago.
In addition, questions and answers posted in the forum can easily be linked to.
In contrast, *Discord* has a chat-like format that invites fast back-and-forth communication.
While it will most likely take less time for you to get an answer to your question on Discord, your
question won't be visible anymore over time. Also, it's much harder to find information that was posted a while back on Discord. We therefore strongly recommend using the forum for high-quality questions and answers in an attempt to create long-lasting knowledge for the community. If discussions on Discord lead to very interesting answers and conclusions, we recommend posting the results on the forum to make the information more available for future readers.
### 2. Opening new issues on the GitHub issues tab
The 🧨 Diffusers library is robust and reliable thanks to the users who notify us of
the problems they encounter. So thank you for reporting an issue.
Remember, GitHub issues are reserved for technical questions directly related to the Diffusers library, bug reports, feature requests, or feedback on the library design.
In a nutshell, this means that everything that is **not** related to the **code of the Diffusers library** (including the documentation) should **not** be asked on GitHub, but rather on either the [forum](https://discuss.huggingface.co/c/discussion-related-to-httpsgithubcomhuggingfacediffusers/63) or [Discord](https://discord.gg/G7tWnz98XR).
**Please consider the following guidelines when opening a new issue**:
- Make sure you have searched whether your issue has already been asked before (use the search bar on GitHub under Issues).
- Please never report a new issue on another (related) issue. If another issue is highly related, please
open a new issue nevertheless and link to the related issue.
- Make sure your issue is written in English. Please use one of the great, free online translation services, such as [DeepL](https://www.deepl.com/translator) to translate from your native language to English if you are not comfortable in English.
- Check whether your issue might be solved by updating to the newest Diffusers version. Before posting your issue, please make sure that `python -c "import diffusers; print(diffusers.__version__)"` is higher or matches the latest Diffusers version.
- Remember that the more effort you put into opening a new issue, the higher the quality of your answer will be and the better the overall quality of the Diffusers issues.
New issues usually include the following.
#### 2.1. Reproducible, minimal bug reports
A bug report should always have a reproducible code snippet and be as minimal and concise as possible.
This means in more detail:
- Narrow the bug down as much as you can, **do not just dump your whole code file**.
- Format your code.
- Do not include any external libraries except for Diffusers depending on them.
- **Always** provide all necessary information about your environment; for this, you can run: `diffusers-cli env` in your shell and copy-paste the displayed information to the issue.
- Explain the issue. If the reader doesn't know what the issue is and why it is an issue, she cannot solve it.
- **Always** make sure the reader can reproduce your issue with as little effort as possible. If your code snippet cannot be run because of missing libraries or undefined variables, the reader cannot help you. Make sure your reproducible code snippet is as minimal as possible and can be copy-pasted into a simple Python shell.
- If in order to reproduce your issue a model and/or dataset is required, make sure the reader has access to that model or dataset. You can always upload your model or dataset to the [Hub](https://huggingface.co) to make it easily downloadable. Try to keep your model and dataset as small as possible, to make the reproduction of your issue as effortless as possible.
For more information, please have a look through the [How to write a good issue](#how-to-write-a-good-issue) section.
You can open a bug report [here](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=bug&projects=&template=bug-report.yml).
#### 2.2. Feature requests
A world-class feature request addresses the following points:
1. Motivation first:
* Is it related to a problem/frustration with the library? If so, please explain
why. Providing a code snippet that demonstrates the problem is best.
* Is it related to something you would need for a project? We'd love to hear
about it!
* Is it something you worked on and think could benefit the community?
Awesome! Tell us what problem it solved for you.
2. Write a *full paragraph* describing the feature;
3. Provide a **code snippet** that demonstrates its future use;
4. In case this is related to a paper, please attach a link;
5. Attach any additional information (drawings, screenshots, etc.) you think may help.
You can open a feature request [here](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=&template=feature_request.md&title=).
#### 2.3 Feedback
Feedback about the library design and why it is good or not good helps the core maintainers immensely to build a user-friendly library. To understand the philosophy behind the current design philosophy, please have a look [here](https://huggingface.co/docs/diffusers/conceptual/philosophy). If you feel like a certain design choice does not fit with the current design philosophy, please explain why and how it should be changed. If a certain design choice follows the design philosophy too much, hence restricting use cases, explain why and how it should be changed.
If a certain design choice is very useful for you, please also leave a note as this is great feedback for future design decisions.
You can open an issue about feedback [here](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=&template=feedback.md&title=).
#### 2.4 Technical questions
Technical questions are mainly about why certain code of the library was written in a certain way, or what a certain part of the code does. Please make sure to link to the code in question and please provide detail on
why this part of the code is difficult to understand.
You can open an issue about a technical question [here](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=bug&template=bug-report.yml).
#### 2.5 Proposal to add a new model, scheduler, or pipeline
If the diffusion model community released a new model, pipeline, or scheduler that you would like to see in the Diffusers library, please provide the following information:
* Short description of the diffusion pipeline, model, or scheduler and link to the paper or public release.
* Link to any of its open-source implementation.
* Link to the model weights if they are available.
If you are willing to contribute to the model yourself, let us know so we can best guide you. Also, don't forget
to tag the original author of the component (model, scheduler, pipeline, etc.) by GitHub handle if you can find it.
You can open a request for a model/pipeline/scheduler [here](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=New+model%2Fpipeline%2Fscheduler&template=new-model-addition.yml).
### 3. Answering issues on the GitHub issues tab
Answering issues on GitHub might require some technical knowledge of Diffusers, but we encourage everybody to give it a try even if you are not 100% certain that your answer is correct.
Some tips to give a high-quality answer to an issue:
- Be as concise and minimal as possible.
- Stay on topic. An answer to the issue should concern the issue and only the issue.
- Provide links to code, papers, or other sources that prove or encourage your point.
- Answer in code. If a simple code snippet is the answer to the issue or shows how the issue can be solved, please provide a fully reproducible code snippet.
Also, many issues tend to be simply off-topic, duplicates of other issues, or irrelevant. It is of great
help to the maintainers if you can answer such issues, encouraging the author of the issue to be
more precise, provide the link to a duplicated issue or redirect them to [the forum](https://discuss.huggingface.co/c/discussion-related-to-httpsgithubcomhuggingfacediffusers/63) or [Discord](https://discord.gg/G7tWnz98XR).
If you have verified that the issued bug report is correct and requires a correction in the source code,
please have a look at the next sections.
For all of the following contributions, you will need to open a PR. It is explained in detail how to do so in the [Opening a pull request](#how-to-open-a-pr) section.
### 4. Fixing a "Good first issue"
*Good first issues* are marked by the [Good first issue](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22) label. Usually, the issue already
explains how a potential solution should look so that it is easier to fix.
If the issue hasn't been closed and you would like to try to fix this issue, you can just leave a message "I would like to try this issue.". There are usually three scenarios:
- a.) The issue description already proposes a fix. In this case and if the solution makes sense to you, you can open a PR or draft PR to fix it.
- b.) The issue description does not propose a fix. In this case, you can ask what a proposed fix could look like and someone from the Diffusers team should answer shortly. If you have a good idea of how to fix it, feel free to directly open a PR.
- c.) There is already an open PR to fix the issue, but the issue hasn't been closed yet. If the PR has gone stale, you can simply open a new PR and link to the stale PR. PRs often go stale if the original contributor who wanted to fix the issue suddenly cannot find the time anymore to proceed. This often happens in open-source and is very normal. In this case, the community will be very happy if you give it a new try and leverage the knowledge of the existing PR. If there is already a PR and it is active, you can help the author by giving suggestions, reviewing the PR or even asking whether you can contribute to the PR.
### 5. Contribute to the documentation
A good library **always** has good documentation! The official documentation is often one of the first points of contact for new users of the library, and therefore contributing to the documentation is a **highly
valuable contribution**.
Contributing to the library can have many forms:
- Correcting spelling or grammatical errors.
- Correct incorrect formatting of the docstring. If you see that the official documentation is weirdly displayed or a link is broken, we are very happy if you take some time to correct it.
- Correct the shape or dimensions of a docstring input or output tensor.
- Clarify documentation that is hard to understand or incorrect.
- Update outdated code examples.
- Translating the documentation to another language.
Anything displayed on [the official Diffusers doc page](https://huggingface.co/docs/diffusers/index) is part of the official documentation and can be corrected, adjusted in the respective [documentation source](https://github.com/huggingface/diffusers/tree/main/docs/source).
Please have a look at [this page](https://github.com/huggingface/diffusers/tree/main/docs) on how to verify changes made to the documentation locally.
### 6. Contribute a community pipeline
[Pipelines](https://huggingface.co/docs/diffusers/api/pipelines/overview) are usually the first point of contact between the Diffusers library and the user.
Pipelines are examples of how to use Diffusers [models](https://huggingface.co/docs/diffusers/api/models/overview) and [schedulers](https://huggingface.co/docs/diffusers/api/schedulers/overview).
We support two types of pipelines:
- Official Pipelines
- Community Pipelines
Both official and community pipelines follow the same design and consist of the same type of components.
Official pipelines are tested and maintained by the core maintainers of Diffusers. Their code
resides in [src/diffusers/pipelines](https://github.com/huggingface/diffusers/tree/main/src/diffusers/pipelines).
In contrast, community pipelines are contributed and maintained purely by the **community** and are **not** tested.
They reside in [examples/community](https://github.com/huggingface/diffusers/tree/main/examples/community) and while they can be accessed via the [PyPI diffusers package](https://pypi.org/project/diffusers/), their code is not part of the PyPI distribution.
The reason for the distinction is that the core maintainers of the Diffusers library cannot maintain and test all
possible ways diffusion models can be used for inference, but some of them may be of interest to the community.
Officially released diffusion pipelines,
such as Stable Diffusion are added to the core src/diffusers/pipelines package which ensures
high quality of maintenance, no backward-breaking code changes, and testing.
More bleeding edge pipelines should be added as community pipelines. If usage for a community pipeline is high, the pipeline can be moved to the official pipelines upon request from the community. This is one of the ways we strive to be a community-driven library.
To add a community pipeline, one should add a <name-of-the-community>.py file to [examples/community](https://github.com/huggingface/diffusers/tree/main/examples/community) and adapt the [examples/community/README.md](https://github.com/huggingface/diffusers/tree/main/examples/community/README.md) to include an example of the new pipeline.
An example can be seen [here](https://github.com/huggingface/diffusers/pull/2400).
Community pipeline PRs are only checked at a superficial level and ideally they should be maintained by their original authors.
Contributing a community pipeline is a great way to understand how Diffusers models and schedulers work. Having contributed a community pipeline is usually the first stepping stone to contributing an official pipeline to the
core package.
### 7. Contribute to training examples
Diffusers examples are a collection of training scripts that reside in [examples](https://github.com/huggingface/diffusers/tree/main/examples).
We support two types of training examples:
- Official training examples
- Research training examples
Research training examples are located in [examples/research_projects](https://github.com/huggingface/diffusers/tree/main/examples/research_projects) whereas official training examples include all folders under [examples](https://github.com/huggingface/diffusers/tree/main/examples) except the `research_projects` and `community` folders.
The official training examples are maintained by the Diffusers' core maintainers whereas the research training examples are maintained by the community.
This is because of the same reasons put forward in [6. Contribute a community pipeline](#6-contribute-a-community-pipeline) for official pipelines vs. community pipelines: It is not feasible for the core maintainers to maintain all possible training methods for diffusion models.
If the Diffusers core maintainers and the community consider a certain training paradigm to be too experimental or not popular enough, the corresponding training code should be put in the `research_projects` folder and maintained by the author.
Both official training and research examples consist of a directory that contains one or more training scripts, a `requirements.txt` file, and a `README.md` file. In order for the user to make use of the
training examples, it is required to clone the repository:
```bash
git clone https://github.com/huggingface/diffusers
```
as well as to install all additional dependencies required for training:
```bash
cd diffusers
pip install -r examples/<your-example-folder>/requirements.txt
```
Therefore when adding an example, the `requirements.txt` file shall define all pip dependencies required for your training example so that once all those are installed, the user can run the example's training script. See, for example, the [DreamBooth `requirements.txt` file](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/requirements.txt).
Training examples of the Diffusers library should adhere to the following philosophy:
- All the code necessary to run the examples should be found in a single Python file.
- One should be able to run the example from the command line with `python <your-example>.py --args`.
- Examples should be kept simple and serve as **an example** on how to use Diffusers for training. The purpose of example scripts is **not** to create state-of-the-art diffusion models, but rather to reproduce known training schemes without adding too much custom logic. As a byproduct of this point, our examples also strive to serve as good educational materials.
To contribute an example, it is highly recommended to look at already existing examples such as [dreambooth](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/train_dreambooth.py) to get an idea of how they should look like.
We strongly advise contributors to make use of the [Accelerate library](https://github.com/huggingface/accelerate) as it's tightly integrated
with Diffusers.
Once an example script works, please make sure to add a comprehensive `README.md` that states how to use the example exactly. This README should include:
- An example command on how to run the example script as shown [here e.g.](https://github.com/huggingface/diffusers/tree/main/examples/dreambooth#running-locally-with-pytorch).
- A link to some training results (logs, models, ...) that show what the user can expect as shown [here e.g.](https://api.wandb.ai/report/patrickvonplaten/xm6cd5q5).
- If you are adding a non-official/research training example, **please don't forget** to add a sentence that you are maintaining this training example which includes your git handle as shown [here](https://github.com/huggingface/diffusers/tree/main/examples/research_projects/intel_opts#diffusers-examples-with-intel-optimizations).
If you are contributing to the official training examples, please also make sure to add a test to [examples/test_examples.py](https://github.com/huggingface/diffusers/blob/main/examples/test_examples.py). This is not necessary for non-official training examples.
### 8. Fixing a "Good second issue"
*Good second issues* are marked by the [Good second issue](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22Good+second+issue%22) label. Good second issues are
usually more complicated to solve than [Good first issues](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22).
The issue description usually gives less guidance on how to fix the issue and requires
a decent understanding of the library by the interested contributor.
If you are interested in tackling a good second issue, feel free to open a PR to fix it and link the PR to the issue. If you see that a PR has already been opened for this issue but did not get merged, have a look to understand why it wasn't merged and try to open an improved PR.
Good second issues are usually more difficult to get merged compared to good first issues, so don't hesitate to ask for help from the core maintainers. If your PR is almost finished the core maintainers can also jump into your PR and commit to it in order to get it merged.
### 9. Adding pipelines, models, schedulers
Pipelines, models, and schedulers are the most important pieces of the Diffusers library.
They provide easy access to state-of-the-art diffusion technologies and thus allow the community to
build powerful generative AI applications.
By adding a new model, pipeline, or scheduler you might enable a new powerful use case for any of the user interfaces relying on Diffusers which can be of immense value for the whole generative AI ecosystem.
Diffusers has a couple of open feature requests for all three components - feel free to gloss over them
if you don't know yet what specific component you would like to add:
- [Model or pipeline](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+pipeline%2Fmodel%22)
- [Scheduler](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+scheduler%22)
Before adding any of the three components, it is strongly recommended that you give the [Philosophy guide](https://github.com/huggingface/diffusers/blob/main/PHILOSOPHY.md) a read to better understand the design of any of the three components. Please be aware that
we cannot merge model, scheduler, or pipeline additions that strongly diverge from our design philosophy
as it will lead to API inconsistencies. If you fundamentally disagree with a design choice, please
open a [Feedback issue](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=&template=feedback.md&title=) instead so that it can be discussed whether a certain design
pattern/design choice shall be changed everywhere in the library and whether we shall update our design philosophy. Consistency across the library is very important for us.
Please make sure to add links to the original codebase/paper to the PR and ideally also ping the
original author directly on the PR so that they can follow the progress and potentially help with questions.
If you are unsure or stuck in the PR, don't hesitate to leave a message to ask for a first review or help.
## How to write a good issue
**The better your issue is written, the higher the chances that it will be quickly resolved.**
1. Make sure that you've used the correct template for your issue. You can pick between *Bug Report*, *Feature Request*, *Feedback about API Design*, *New model/pipeline/scheduler addition*, *Forum*, or a blank issue. Make sure to pick the correct one when opening [a new issue](https://github.com/huggingface/diffusers/issues/new/choose).
2. **Be precise**: Give your issue a fitting title. Try to formulate your issue description as simple as possible. The more precise you are when submitting an issue, the less time it takes to understand the issue and potentially solve it. Make sure to open an issue for one issue only and not for multiple issues. If you found multiple issues, simply open multiple issues. If your issue is a bug, try to be as precise as possible about what bug it is - you should not just write "Error in diffusers".
3. **Reproducibility**: No reproducible code snippet == no solution. If you encounter a bug, maintainers **have to be able to reproduce** it. Make sure that you include a code snippet that can be copy-pasted into a Python interpreter to reproduce the issue. Make sure that your code snippet works, *i.e.* that there are no missing imports or missing links to images, ... Your issue should contain an error message **and** a code snippet that can be copy-pasted without any changes to reproduce the exact same error message. If your issue is using local model weights or local data that cannot be accessed by the reader, the issue cannot be solved. If you cannot share your data or model, try to make a dummy model or dummy data.
4. **Minimalistic**: Try to help the reader as much as you can to understand the issue as quickly as possible by staying as concise as possible. Remove all code / all information that is irrelevant to the issue. If you have found a bug, try to create the easiest code example you can to demonstrate your issue, do not just dump your whole workflow into the issue as soon as you have found a bug. E.g., if you train a model and get an error at some point during the training, you should first try to understand what part of the training code is responsible for the error and try to reproduce it with a couple of lines. Try to use dummy data instead of full datasets.
5. Add links. If you are referring to a certain naming, method, or model make sure to provide a link so that the reader can better understand what you mean. If you are referring to a specific PR or issue, make sure to link it to your issue. Do not assume that the reader knows what you are talking about. The more links you add to your issue the better.
6. Formatting. Make sure to nicely format your issue by formatting code into Python code syntax, and error messages into normal code syntax. See the [official GitHub formatting docs](https://docs.github.com/en/get-started/writing-on-github/getting-started-with-writing-and-formatting-on-github/basic-writing-and-formatting-syntax) for more information.
7. Think of your issue not as a ticket to be solved, but rather as a beautiful entry to a well-written encyclopedia. Every added issue is a contribution to publicly available knowledge. By adding a nicely written issue you not only make it easier for maintainers to solve your issue, but you are helping the whole community to better understand a certain aspect of the library.
## How to write a good PR
1. Be a chameleon. Understand existing design patterns and syntax and make sure your code additions flow seamlessly into the existing code base. Pull requests that significantly diverge from existing design patterns or user interfaces will not be merged.
2. Be laser focused. A pull request should solve one problem and one problem only. Make sure to not fall into the trap of "also fixing another problem while we're adding it". It is much more difficult to review pull requests that solve multiple, unrelated problems at once.
3. If helpful, try to add a code snippet that displays an example of how your addition can be used.
4. The title of your pull request should be a summary of its contribution.
5. If your pull request addresses an issue, please mention the issue number in
the pull request description to make sure they are linked (and people
consulting the issue know you are working on it);
6. To indicate a work in progress please prefix the title with `[WIP]`. These
are useful to avoid duplicated work, and to differentiate it from PRs ready
to be merged;
7. Try to formulate and format your text as explained in [How to write a good issue](#how-to-write-a-good-issue).
8. Make sure existing tests pass;
9. Add high-coverage tests. No quality testing = no merge.
- If you are adding new `@slow` tests, make sure they pass using
`RUN_SLOW=1 python -m pytest tests/test_my_new_model.py`.
CircleCI does not run the slow tests, but GitHub Actions does every night!
10. All public methods must have informative docstrings that work nicely with markdown. See [`pipeline_latent_diffusion.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py) for an example.
11. Due to the rapidly growing repository, it is important to make sure that no files that would significantly weigh down the repository are added. This includes images, videos, and other non-text files. We prefer to leverage a hf.co hosted `dataset` like
[`hf-internal-testing`](https://huggingface.co/hf-internal-testing) or [huggingface/documentation-images](https://huggingface.co/datasets/huggingface/documentation-images) to place these files.
If an external contribution, feel free to add the images to your PR and ask a Hugging Face member to migrate your images
to this dataset.
## How to open a PR
Before writing code, we strongly advise you to search through the existing PRs or
issues to make sure that nobody is already working on the same thing. If you are
unsure, it is always a good idea to open an issue to get some feedback.
You will need basic `git` proficiency to be able to contribute to
🧨 Diffusers. `git` is not the easiest tool to use but it has the greatest
manual. Type `git --help` in a shell and enjoy. If you prefer books, [Pro
Git](https://git-scm.com/book/en/v2) is a very good reference.
Follow these steps to start contributing ([supported Python versions](https://github.com/huggingface/diffusers/blob/42f25d601a910dceadaee6c44345896b4cfa9928/setup.py#L270)):
1. Fork the [repository](https://github.com/huggingface/diffusers) by
clicking on the 'Fork' button on the repository's page. This creates a copy of the code
under your GitHub user account.
2. Clone your fork to your local disk, and add the base repository as a remote:
```bash
$ git clone git@github.com:<your GitHub handle>/diffusers.git
$ cd diffusers
$ git remote add upstream https://github.com/huggingface/diffusers.git
```
3. Create a new branch to hold your development changes:
```bash
$ git checkout -b a-descriptive-name-for-my-changes
```
**Do not** work on the `main` branch.
4. Set up a development environment by running the following command in a virtual environment:
```bash
$ pip install -e ".[dev]"
```
If you have already cloned the repo, you might need to `git pull` to get the most recent changes in the
library.
5. Develop the features on your branch.
As you work on the features, you should make sure that the test suite
passes. You should run the tests impacted by your changes like this:
```bash
$ pytest tests/<TEST_TO_RUN>.py
```
Before you run the tests, please make sure you install the dependencies required for testing. You can do so
with this command:
```bash
$ pip install -e ".[test]"
```
You can also run the full test suite with the following command, but it takes
a beefy machine to produce a result in a decent amount of time now that
Diffusers has grown a lot. Here is the command for it:
```bash
$ make test
```
🧨 Diffusers relies on `ruff` and `isort` to format its source code
consistently. After you make changes, apply automatic style corrections and code verifications
that can't be automated in one go with:
```bash
$ make style
```
🧨 Diffusers also uses `ruff` and a few custom scripts to check for coding mistakes. Quality
control runs in CI, however, you can also run the same checks with:
```bash
$ make quality
```
Once you're happy with your changes, add changed files using `git add` and
make a commit with `git commit` to record your changes locally:
```bash
$ git add modified_file.py
$ git commit -m "A descriptive message about your changes."
```
It is a good idea to sync your copy of the code with the original
repository regularly. This way you can quickly account for changes:
```bash
$ git pull upstream main
```
Push the changes to your account using:
```bash
$ git push -u origin a-descriptive-name-for-my-changes
```
6. Once you are satisfied, go to the
webpage of your fork on GitHub. Click on 'Pull request' to send your changes
to the project maintainers for review.
7. It's ok if maintainers ask you for changes. It happens to core contributors
too! So everyone can see the changes in the Pull request, work in your local
branch and push the changes to your fork. They will automatically appear in
the pull request.
### Tests
An extensive test suite is included to test the library behavior and several examples. Library tests can be found in
the [tests folder](https://github.com/huggingface/diffusers/tree/main/tests).
We like `pytest` and `pytest-xdist` because it's faster. From the root of the
repository, here's how to run tests with `pytest` for the library:
```bash
$ python -m pytest -n auto --dist=loadfile -s -v ./tests/
```
In fact, that's how `make test` is implemented!
You can specify a smaller set of tests in order to test only the feature
you're working on.
By default, slow tests are skipped. Set the `RUN_SLOW` environment variable to
`yes` to run them. This will download many gigabytes of models — make sure you
have enough disk space and a good Internet connection, or a lot of patience!
```bash
$ RUN_SLOW=yes python -m pytest -n auto --dist=loadfile -s -v ./tests/
```
`unittest` is fully supported, here's how to run tests with it:
```bash
$ python -m unittest discover -s tests -t . -v
$ python -m unittest discover -s examples -t examples -v
```
### Syncing forked main with upstream (HuggingFace) main
To avoid pinging the upstream repository which adds reference notes to each upstream PR and sends unnecessary notifications to the developers involved in these PRs,
when syncing the main branch of a forked repository, please, follow these steps:
1. When possible, avoid syncing with the upstream using a branch and PR on the forked repository. Instead, merge directly into the forked main.
2. If a PR is absolutely necessary, use the following steps after checking out your branch:
```bash
$ git checkout -b your-branch-for-syncing
$ git pull --squash --no-commit upstream main
$ git commit -m '<your message without GitHub references>'
$ git push --set-upstream origin your-branch-for-syncing
```
### Style guide
For documentation strings, 🧨 Diffusers follows the [Google style](https://google.github.io/styleguide/pyguide.html).

1
CONTRIBUTING.md Symbolic link
View File

@@ -0,0 +1 @@
docs/source/en/conceptual/contribution.md

View File

@@ -1,8 +1,8 @@
FROM nvidia/cuda:12.1.0-runtime-ubuntu20.04
FROM nvidia/cuda:12.8.0-runtime-ubuntu22.04
LABEL maintainer="Hugging Face"
LABEL repository="diffusers"
ARG PYTHON_VERSION=3.12
ARG PYTHON_VERSION=3.11
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get -y update \
@@ -32,10 +32,12 @@ RUN uv venv --python ${PYTHON_VERSION} --seed ${VIRTUAL_ENV}
ENV PATH="$VIRTUAL_ENV/bin:$PATH"
# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
# Install torch, torchvision, and torchaudio together to ensure compatibility
RUN uv pip install --no-cache-dir \
torch \
torchvision \
torchaudio
torchaudio \
--index-url https://download.pytorch.org/whl/cu128
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/diffusers.git@main#egg=diffusers[test]"

View File

@@ -1,8 +1,8 @@
FROM nvidia/cuda:12.1.0-runtime-ubuntu20.04
FROM nvidia/cuda:12.8.0-runtime-ubuntu22.04
LABEL maintainer="Hugging Face"
LABEL repository="diffusers"
ARG PYTHON_VERSION=3.12
ARG PYTHON_VERSION=3.11
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get -y update \
@@ -32,10 +32,12 @@ RUN uv venv --python ${PYTHON_VERSION} --seed ${VIRTUAL_ENV}
ENV PATH="$VIRTUAL_ENV/bin:$PATH"
# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
# Install torch, torchvision, and torchaudio together to ensure compatibility
RUN uv pip install --no-cache-dir \
torch \
torchvision \
torchaudio
torchaudio \
--index-url https://download.pytorch.org/whl/cu128
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/diffusers.git@main#egg=diffusers[test]"

View File

@@ -54,6 +54,8 @@
title: Batch inference
- local: training/distributed_inference
title: Distributed inference
- local: hybrid_inference/overview
title: Remote inference
title: Inference
- isExpanded: false
sections:
@@ -88,17 +90,6 @@
title: FreeU
title: Community optimizations
title: Inference optimization
- isExpanded: false
sections:
- local: hybrid_inference/overview
title: Overview
- local: hybrid_inference/vae_decode
title: VAE Decode
- local: hybrid_inference/vae_encode
title: VAE Encode
- local: hybrid_inference/api_reference
title: API Reference
title: Hybrid Inference
- isExpanded: false
sections:
- local: modular_diffusers/overview
@@ -270,6 +261,8 @@
title: Outputs
- local: api/quantization
title: Quantization
- local: hybrid_inference/api_reference
title: Remote inference
- local: api/parallel
title: Parallel inference
title: Main Classes
@@ -353,16 +346,24 @@
title: Flux2Transformer2DModel
- local: api/models/flux_transformer
title: FluxTransformer2DModel
- local: api/models/glm_image_transformer2d
title: GlmImageTransformer2DModel
- local: api/models/hidream_image_transformer
title: HiDreamImageTransformer2DModel
- local: api/models/hunyuan_transformer2d
title: HunyuanDiT2DModel
- local: api/models/hunyuanimage_transformer_2d
title: HunyuanImageTransformer2DModel
- local: api/models/hunyuan_video15_transformer_3d
title: HunyuanVideo15Transformer3DModel
- local: api/models/hunyuan_video_transformer_3d
title: HunyuanVideoTransformer3DModel
- local: api/models/latte_transformer3d
title: LatteTransformer3DModel
- local: api/models/longcat_image_transformer2d
title: LongCatImageTransformer2DModel
- local: api/models/ltx2_video_transformer3d
title: LTX2VideoTransformer3DModel
- local: api/models/ltx_video_transformer3d
title: LTXVideoTransformer3DModel
- local: api/models/lumina2_transformer2d
@@ -373,6 +374,8 @@
title: MochiTransformer3DModel
- local: api/models/omnigen_transformer
title: OmniGenTransformer2DModel
- local: api/models/ovisimage_transformer2d
title: OvisImageTransformer2DModel
- local: api/models/pixart_transformer2d
title: PixArtTransformer2DModel
- local: api/models/prior_transformer
@@ -397,6 +400,8 @@
title: WanAnimateTransformer3DModel
- local: api/models/wan_transformer_3d
title: WanTransformer3DModel
- local: api/models/z_image_transformer2d
title: ZImageTransformer2DModel
title: Transformers
- sections:
- local: api/models/stable_cascade_unet
@@ -433,6 +438,12 @@
title: AutoencoderKLHunyuanImageRefiner
- local: api/models/autoencoder_kl_hunyuan_video
title: AutoencoderKLHunyuanVideo
- local: api/models/autoencoder_kl_hunyuan_video15
title: AutoencoderKLHunyuanVideo15
- local: api/models/autoencoderkl_audio_ltx_2
title: AutoencoderKLLTX2Audio
- local: api/models/autoencoderkl_ltx_2
title: AutoencoderKLLTX2Video
- local: api/models/autoencoderkl_ltx_video
title: AutoencoderKLLTXVideo
- local: api/models/autoencoderkl_magvit
@@ -485,6 +496,8 @@
title: Bria 3.2
- local: api/pipelines/bria_fibo
title: Bria Fibo
- local: api/pipelines/bria_fibo_edit
title: Bria Fibo Edit
- local: api/pipelines/chroma
title: Chroma
- local: api/pipelines/cogview3
@@ -531,6 +544,8 @@
title: Flux2
- local: api/pipelines/control_flux_inpaint
title: FluxControlInpaint
- local: api/pipelines/glm_image
title: GLM-Image
- local: api/pipelines/hidream
title: HiDream-I1
- local: api/pipelines/hunyuandit
@@ -545,6 +560,8 @@
title: Kandinsky 2.2
- local: api/pipelines/kandinsky3
title: Kandinsky 3
- local: api/pipelines/kandinsky5_image
title: Kandinsky 5.0 Image
- local: api/pipelines/kolors
title: Kolors
- local: api/pipelines/latent_consistency_models
@@ -553,6 +570,8 @@
title: Latent Diffusion
- local: api/pipelines/ledits_pp
title: LEDITS++
- local: api/pipelines/longcat_image
title: LongCat-Image
- local: api/pipelines/lumina2
title: Lumina 2.0
- local: api/pipelines/lumina
@@ -563,6 +582,8 @@
title: MultiDiffusion
- local: api/pipelines/omnigen
title: OmniGen
- local: api/pipelines/ovis_image
title: Ovis-Image
- local: api/pipelines/pag
title: PAG
- local: api/pipelines/paint_by_example
@@ -638,6 +659,8 @@
title: VisualCloze
- local: api/pipelines/wuerstchen
title: Wuerstchen
- local: api/pipelines/z_image
title: Z-Image
title: Image
- sections:
- local: api/pipelines/allegro
@@ -652,12 +675,16 @@
title: Framepack
- local: api/pipelines/hunyuan_video
title: HunyuanVideo
- local: api/pipelines/hunyuan_video15
title: HunyuanVideo1.5
- local: api/pipelines/i2vgenxl
title: I2VGen-XL
- local: api/pipelines/kandinsky5_video
title: Kandinsky 5.0 Video
- local: api/pipelines/latte
title: Latte
- local: api/pipelines/ltx2
title: LTX-2
- local: api/pipelines/ltx_video
title: LTXVideo
- local: api/pipelines/mochi

View File

@@ -29,8 +29,14 @@ Cache methods speedup diffusion transformers by storing and reusing intermediate
[[autodoc]] apply_faster_cache
### FirstBlockCacheConfig
## FirstBlockCacheConfig
[[autodoc]] FirstBlockCacheConfig
[[autodoc]] apply_first_block_cache
### TaylorSeerCacheConfig
[[autodoc]] TaylorSeerCacheConfig
[[autodoc]] apply_taylorseer_cache

View File

@@ -31,7 +31,9 @@ LoRA is a fast and lightweight training method that inserts and trains a signifi
- [`AmusedLoraLoaderMixin`] is for the [`AmusedPipeline`].
- [`HiDreamImageLoraLoaderMixin`] provides similar functions for [HiDream Image](https://huggingface.co/docs/diffusers/main/en/api/pipelines/hidream)
- [`QwenImageLoraLoaderMixin`] provides similar functions for [Qwen Image](https://huggingface.co/docs/diffusers/main/en/api/pipelines/qwen).
- [`ZImageLoraLoaderMixin`] provides similar functions for [Z-Image](https://huggingface.co/docs/diffusers/main/en/api/pipelines/zimage).
- [`Flux2LoraLoaderMixin`] provides similar functions for [Flux2](https://huggingface.co/docs/diffusers/main/en/api/pipelines/flux2).
- [`LTX2LoraLoaderMixin`] provides similar functions for [Flux2](https://huggingface.co/docs/diffusers/main/en/api/pipelines/ltx2).
- [`LoraBaseMixin`] provides a base class with several utility methods to fuse, unfuse, unload, LoRAs and more.
> [!TIP]
@@ -61,6 +63,10 @@ LoRA is a fast and lightweight training method that inserts and trains a signifi
[[autodoc]] loaders.lora_pipeline.Flux2LoraLoaderMixin
## LTX2LoraLoaderMixin
[[autodoc]] loaders.lora_pipeline.LTX2LoraLoaderMixin
## CogVideoXLoraLoaderMixin
[[autodoc]] loaders.lora_pipeline.CogVideoXLoraLoaderMixin
@@ -112,6 +118,10 @@ LoRA is a fast and lightweight training method that inserts and trains a signifi
[[autodoc]] loaders.lora_pipeline.QwenImageLoraLoaderMixin
## ZImageLoraLoaderMixin
[[autodoc]] loaders.lora_pipeline.ZImageLoraLoaderMixin
## KandinskyLoraLoaderMixin
[[autodoc]] loaders.lora_pipeline.KandinskyLoraLoaderMixin

View File

@@ -0,0 +1,36 @@
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# AutoencoderKLHunyuanVideo15
The 3D variational autoencoder (VAE) model with KL loss used in [HunyuanVideo1.5](https://github.com/Tencent/HunyuanVideo1-1.5) by Tencent.
The model can be loaded with the following code snippet.
```python
from diffusers import AutoencoderKLHunyuanVideo15
vae = AutoencoderKLHunyuanVideo15.from_pretrained("hunyuanvideo-community/HunyuanVideo-1.5-Diffusers-480p_t2v", subfolder="vae", torch_dtype=torch.float32)
# make sure to enable tiling to avoid OOM
vae.enable_tiling()
```
## AutoencoderKLHunyuanVideo15
[[autodoc]] AutoencoderKLHunyuanVideo15
- decode
- encode
- all
## DecoderOutput
[[autodoc]] models.autoencoders.vae.DecoderOutput

View File

@@ -0,0 +1,29 @@
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# AutoencoderKLLTX2Audio
The 3D variational autoencoder (VAE) model with KL loss used in [LTX-2](https://huggingface.co/Lightricks/LTX-2) was introduced by Lightricks. This is for encoding and decoding audio latent representations.
The model can be loaded with the following code snippet.
```python
from diffusers import AutoencoderKLLTX2Audio
vae = AutoencoderKLLTX2Audio.from_pretrained("Lightricks/LTX-2", subfolder="vae", torch_dtype=torch.float32).to("cuda")
```
## AutoencoderKLLTX2Audio
[[autodoc]] AutoencoderKLLTX2Audio
- encode
- decode
- all

View File

@@ -0,0 +1,29 @@
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# AutoencoderKLLTX2Video
The 3D variational autoencoder (VAE) model with KL loss used in [LTX-2](https://huggingface.co/Lightricks/LTX-2) was introduced by Lightricks.
The model can be loaded with the following code snippet.
```python
from diffusers import AutoencoderKLLTX2Video
vae = AutoencoderKLLTX2Video.from_pretrained("Lightricks/LTX-2", subfolder="vae", torch_dtype=torch.float32).to("cuda")
```
## AutoencoderKLLTX2Video
[[autodoc]] AutoencoderKLLTX2Video
- decode
- encode
- all

View File

@@ -33,6 +33,21 @@ url = "https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5/blob/m
pipe = StableDiffusionControlNetPipeline.from_single_file(url, controlnet=controlnet)
```
## Loading from Control LoRA
Control-LoRA is introduced by Stability AI in [stabilityai/control-lora](https://huggingface.co/stabilityai/control-lora) by adding low-rank parameter efficient fine tuning to ControlNet. This approach offers a more efficient and compact method to bring model control to a wider variety of consumer GPUs.
```py
from diffusers import ControlNetModel, UNet2DConditionModel
lora_id = "stabilityai/control-lora"
lora_filename = "control-LoRAs-rank128/control-lora-canny-rank128.safetensors"
unet = UNet2DConditionModel.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="unet", torch_dtype=torch.bfloat16).to("cuda")
controlnet = ControlNetModel.from_unet(unet).to(device="cuda", dtype=torch.bfloat16)
controlnet.load_lora_adapter(lora_id, weight_name=lora_filename, prefix=None, controlnet_config=controlnet.config)
```
## ControlNetModel
[[autodoc]] ControlNetModel

View File

@@ -42,4 +42,4 @@ pipe = FluxControlNetPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", co
## FluxControlNetOutput
[[autodoc]] models.controlnet_flux.FluxControlNetOutput
[[autodoc]] models.controlnets.controlnet_flux.FluxControlNetOutput

View File

@@ -43,4 +43,4 @@ controlnet = SparseControlNetModel.from_pretrained("guoyww/animatediff-sparsectr
## SparseControlNetOutput
[[autodoc]] models.controlnet_sparsectrl.SparseControlNetOutput
[[autodoc]] models.controlnets.controlnet_sparsectrl.SparseControlNetOutput

View File

@@ -0,0 +1,18 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# GlmImageTransformer2DModel
A Diffusion Transformer model for 2D data from [GlmImageTransformer2DModel] (TODO).
## GlmImageTransformer2DModel
[[autodoc]] GlmImageTransformer2DModel

View File

@@ -0,0 +1,30 @@
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# HunyuanVideo15Transformer3DModel
A Diffusion Transformer model for 3D video-like data used in [HunyuanVideo1.5](https://github.com/Tencent/HunyuanVideo1-1.5).
The model can be loaded with the following code snippet.
```python
from diffusers import HunyuanVideo15Transformer3DModel
transformer = HunyuanVideo15Transformer3DModel.from_pretrained("hunyuanvideo-community/HunyuanVideo-1.5-Diffusers-480p_t2v" subfolder="transformer", torch_dtype=torch.bfloat16)
```
## HunyuanVideo15Transformer3DModel
[[autodoc]] HunyuanVideo15Transformer3DModel
## Transformer2DModelOutput
[[autodoc]] models.modeling_outputs.Transformer2DModelOutput

View File

@@ -0,0 +1,25 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# LongCatImageTransformer2DModel
The model can be loaded with the following code snippet.
```python
from diffusers import LongCatImageTransformer2DModel
transformer = LongCatImageTransformer2DModel.from_pretrained("meituan-longcat/LongCat-Image ", subfolder="transformer", torch_dtype=torch.bfloat16)
```
## LongCatImageTransformer2DModel
[[autodoc]] LongCatImageTransformer2DModel

View File

@@ -0,0 +1,26 @@
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# LTX2VideoTransformer3DModel
A Diffusion Transformer model for 3D data from [LTX](https://huggingface.co/Lightricks/LTX-2) was introduced by Lightricks.
The model can be loaded with the following code snippet.
```python
from diffusers import LTX2VideoTransformer3DModel
transformer = LTX2VideoTransformer3DModel.from_pretrained("Lightricks/LTX-2", subfolder="transformer", torch_dtype=torch.bfloat16).to("cuda")
```
## LTX2VideoTransformer3DModel
[[autodoc]] LTX2VideoTransformer3DModel

View File

@@ -0,0 +1,24 @@
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# OvisImageTransformer2DModel
The model can be loaded with the following code snippet.
```python
from diffusers import OvisImageTransformer2DModel
transformer = OvisImageTransformer2DModel.from_pretrained("AIDC-AI/Ovis-Image-7B", subfolder="transformer", torch_dtype=torch.bfloat16)
```
## OvisImageTransformer2DModel
[[autodoc]] OvisImageTransformer2DModel

View File

@@ -0,0 +1,19 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# ZImageTransformer2DModel
A Transformer model for image-like data from [Z-Image](https://huggingface.co/Tongyi-MAI/Z-Image-Turbo).
## ZImageTransformer2DModel
[[autodoc]] ZImageTransformer2DModel

View File

@@ -21,9 +21,10 @@ With only 8 billion parameters, FIBO provides a new level of image quality, prom
FIBO is trained exclusively on a structured prompt and will not work with freeform text prompts.
you can use the [FIBO-VLM-prompt-to-JSON](https://huggingface.co/briaai/FIBO-VLM-prompt-to-JSON) model or the [FIBO-gemini-prompt-to-JSON](https://huggingface.co/briaai/FIBO-gemini-prompt-to-JSON) to convert your freeform text prompt to a structured JSON prompt.
its not recommended to use freeform text prompts directly with FIBO, as it will not produce the best results.
> [!NOTE]
> Avoid using freeform text prompts directly with FIBO because it does not produce the best results.
you can learn more about FIBO in [Bria Fibo Hugging Face page](https://huggingface.co/briaai/FIBO).
Refer to the Bria Fibo Hugging Face [page](https://huggingface.co/briaai/FIBO) to learn more.
## Usage
@@ -37,9 +38,8 @@ hf auth login
```
## BriaPipeline
## BriaFiboPipeline
[[autodoc]] BriaPipeline
[[autodoc]] BriaFiboPipeline
- all
- __call__
- __call__

View File

@@ -0,0 +1,33 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Bria Fibo Edit
Fibo Edit is an 8B parameter image-to-image model that introduces a new paradigm of structured control, operating on JSON inputs paired with source images to enable deterministic and repeatable editing workflows.
Featuring native masking for granular precision, it moves beyond simple prompt-based diffusion to offer explicit, interpretable control optimized for production environments.
Its lightweight architecture is designed for deep customization, empowering researchers to build specialized "Edit" models for domain-specific tasks while delivering top-tier aesthetic quality
## Usage
_As the model is gated, before using it with diffusers you first need to go to the [Bria Fibo Hugging Face page](https://huggingface.co/briaai/Fibo-Edit), fill in the form and accept the gate. Once you are in, you need to login so that your system knows youve accepted the gate._
Use the command below to log in:
```bash
hf auth login
```
## BriaFiboEditPipeline
[[autodoc]] BriaFiboEditPipeline
- all
- __call__

View File

@@ -99,3 +99,9 @@ image.save("chroma-single-file.png")
[[autodoc]] ChromaImg2ImgPipeline
- all
- __call__
## ChromaInpaintPipeline
[[autodoc]] ChromaInpaintPipeline
- all
- __call__

View File

@@ -30,6 +30,10 @@
The ChronoEdit pipeline is developed by the ChronoEdit Team. The original code is available on [GitHub](https://github.com/nv-tlabs/ChronoEdit), and pretrained models can be found in the [nvidia/ChronoEdit](https://huggingface.co/collections/nvidia/chronoedit) collection on Hugging Face.
Available Models/LoRAs:
- [nvidia/ChronoEdit-14B-Diffusers](https://huggingface.co/nvidia/ChronoEdit-14B-Diffusers)
- [nvidia/ChronoEdit-14B-Diffusers-Upscaler-Lora](https://huggingface.co/nvidia/ChronoEdit-14B-Diffusers-Upscaler-Lora)
- [nvidia/ChronoEdit-14B-Diffusers-Paint-Brush-Lora](https://huggingface.co/nvidia/ChronoEdit-14B-Diffusers-Paint-Brush-Lora)
### Image Editing
@@ -100,6 +104,7 @@ Image.fromarray((output[-1] * 255).clip(0, 255).astype("uint8")).save("output.pn
import torch
import numpy as np
from diffusers import AutoencoderKLWan, ChronoEditTransformer3DModel, ChronoEditPipeline
from diffusers.schedulers import UniPCMultistepScheduler
from diffusers.utils import export_to_video, load_image
from transformers import CLIPVisionModel
from PIL import Image
@@ -109,9 +114,8 @@ image_encoder = CLIPVisionModel.from_pretrained(model_id, subfolder="image_encod
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
transformer = ChronoEditTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.bfloat16)
pipe = ChronoEditPipeline.from_pretrained(model_id, image_encoder=image_encoder, transformer=transformer, vae=vae, torch_dtype=torch.bfloat16)
lora_path = hf_hub_download(repo_id=model_id, filename="lora/chronoedit_distill_lora.safetensors")
pipe.load_lora_weights(lora_path)
pipe.fuse_lora(lora_scale=1.0)
pipe.load_lora_weights("nvidia/ChronoEdit-14B-Diffusers", weight_name="lora/chronoedit_distill_lora.safetensors", adapter_name="distill")
pipe.fuse_lora(adapter_names=["distill"], lora_scale=1.0)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=2.0)
pipe.to("cuda")
@@ -145,6 +149,57 @@ export_to_video(output, "output.mp4", fps=16)
Image.fromarray((output[-1] * 255).clip(0, 255).astype("uint8")).save("output.png")
```
### Inference with Multiple LoRAs
```py
import torch
import numpy as np
from diffusers import AutoencoderKLWan, ChronoEditTransformer3DModel, ChronoEditPipeline
from diffusers.schedulers import UniPCMultistepScheduler
from diffusers.utils import export_to_video, load_image
from transformers import CLIPVisionModel
from PIL import Image
model_id = "nvidia/ChronoEdit-14B-Diffusers"
image_encoder = CLIPVisionModel.from_pretrained(model_id, subfolder="image_encoder", torch_dtype=torch.float32)
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
transformer = ChronoEditTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.bfloat16)
pipe = ChronoEditPipeline.from_pretrained(model_id, image_encoder=image_encoder, transformer=transformer, vae=vae, torch_dtype=torch.bfloat16)
pipe.load_lora_weights("nvidia/ChronoEdit-14B-Diffusers-Paint-Brush-Lora", weight_name="paintbrush_lora_diffusers.safetensors", adapter_name="paintbrush")
pipe.load_lora_weights("nvidia/ChronoEdit-14B-Diffusers", weight_name="lora/chronoedit_distill_lora.safetensors", adapter_name="distill")
pipe.fuse_lora(adapter_names=["paintbrush", "distill"], lora_scale=1.0)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=2.0)
pipe.to("cuda")
image = load_image(
"https://raw.githubusercontent.com/nv-tlabs/ChronoEdit/refs/heads/main/assets/images/input_paintbrush.png"
)
max_area = 720 * 1280
aspect_ratio = image.height / image.width
mod_value = pipe.vae_scale_factor_spatial * pipe.transformer.config.patch_size[1]
height = round(np.sqrt(max_area * aspect_ratio)) // mod_value * mod_value
width = round(np.sqrt(max_area / aspect_ratio)) // mod_value * mod_value
print("width", width, "height", height)
image = image.resize((width, height))
prompt = (
"Turn the pencil sketch in the image into an actual object that is consistent with the images content. The user wants to change the sketch to a crown and a hat."
)
output = pipe(
image=image,
prompt=prompt,
height=height,
width=width,
num_frames=5,
num_inference_steps=8,
guidance_scale=1.0,
enable_temporal_reasoning=False,
num_temporal_reasoning_steps=0,
).frames[0]
export_to_video(output, "output.mp4", fps=16)
Image.fromarray((output[-1] * 255).clip(0, 255).astype("uint8")).save("output_1.png")
```
## ChronoEditPipeline
[[autodoc]] ChronoEditPipeline

View File

@@ -70,6 +70,12 @@ output.save("output.png")
- all
- __call__
## Cosmos2_5_PredictBasePipeline
[[autodoc]] Cosmos2_5_PredictBasePipeline
- all
- __call__
## CosmosPipelineOutput
[[autodoc]] pipelines.cosmos.pipeline_output.CosmosPipelineOutput

View File

@@ -21,7 +21,7 @@ The abstract from the paper is:
*Image generation has recently seen tremendous advances, with diffusion models allowing to synthesize convincing images for a large variety of text prompts. In this article, we propose DiffEdit, a method to take advantage of text-conditioned diffusion models for the task of semantic image editing, where the goal is to edit an image based on a text query. Semantic image editing is an extension of image generation, with the additional constraint that the generated image should be as similar as possible to a given input image. Current editing methods based on diffusion models usually require to provide a mask, making the task much easier by treating it as a conditional inpainting task. In contrast, our main contribution is able to automatically generate a mask highlighting regions of the input image that need to be edited, by contrasting predictions of a diffusion model conditioned on different text prompts. Moreover, we rely on latent inference to preserve content in those regions of interest and show excellent synergies with mask-based diffusion. DiffEdit achieves state-of-the-art editing performance on ImageNet. In addition, we evaluate semantic image editing in more challenging settings, using images from the COCO dataset as well as text-based generated images.*
The original codebase can be found at [Xiang-cd/DiffEdit-stable-diffusion](https://github.com/Xiang-cd/DiffEdit-stable-diffusion), and you can try it out in this [demo](https://blog.problemsolversguild.com/technical/research/2022/11/02/DiffEdit-Implementation.html).
The original codebase can be found at [Xiang-cd/DiffEdit-stable-diffusion](https://github.com/Xiang-cd/DiffEdit-stable-diffusion), and you can try it out in this [demo](https://blog.problemsolversguild.com/posts/2022-11-02-diffedit-implementation.html).
This pipeline was contributed by [clarencechen](https://github.com/clarencechen). ❤️

View File

@@ -26,8 +26,20 @@ Original model checkpoints for Flux can be found [here](https://huggingface.co/b
>
> [Caching](../../optimization/cache) may also speed up inference by storing and reusing intermediate outputs.
## Caption upsampling
Flux.2 can potentially generate better better outputs with better prompts. We can "upsample"
an input prompt by setting the `caption_upsample_temperature` argument in the pipeline call arguments.
The [official implementation](https://github.com/black-forest-labs/flux2/blob/5a5d316b1b42f6b59a8c9194b77c8256be848432/src/flux2/text_encoder.py#L140) recommends this value to be 0.15.
## Flux2Pipeline
[[autodoc]] Flux2Pipeline
- all
- __call__
## Flux2KleinPipeline
[[autodoc]] Flux2KleinPipeline
- all
- __call__

View File

@@ -0,0 +1,95 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
-->
# GLM-Image
## Overview
GLM-Image is an image generation model adopts a hybrid autoregressive + diffusion decoder architecture, effectively pushing the upper bound of visual fidelity and fine-grained details. In general image generation quality, it aligns with industry-standard LDM-based approaches, while demonstrating significant advantages in knowledge-intensive image generation scenarios.
Model architecture: a hybrid autoregressive + diffusion decoder design、
+ Autoregressive generator: a 9B-parameter model initialized from [GLM-4-9B-0414](https://huggingface.co/zai-org/GLM-4-9B-0414), with an expanded vocabulary to incorporate visual tokens. The model first generates a compact encoding of approximately 256 tokens, then expands to 1K4K tokens, corresponding to 1K2K high-resolution image outputs. You can check AR model in class `GlmImageForConditionalGeneration` of `transformers` library.
+ Diffusion Decoder: a 7B-parameter decoder based on a single-stream DiT architecture for latent-space image decoding. It is equipped with a Glyph Encoder text module, significantly improving accurate text rendering within images.
Post-training with decoupled reinforcement learning: the model introduces a fine-grained, modular feedback strategy using the GRPO algorithm, substantially enhancing both semantic understanding and visual detail quality.
+ Autoregressive module: provides low-frequency feedback signals focused on aesthetics and semantic alignment, improving instruction following and artistic expressiveness.
+ Decoder module: delivers high-frequency feedback targeting detail fidelity and text accuracy, resulting in highly realistic textures, lighting, and color reproduction, as well as more precise text rendering.
GLM-Image supports both text-to-image and image-to-image generation within a single model
+ Text-to-image: generates high-detail images from textual descriptions, with particularly strong performance in information-dense scenarios.
+ Image-to-image: supports a wide range of tasks, including image editing, style transfer, multi-subject consistency, and identity-preserving generation for people and objects.
This pipeline was contributed by [zRzRzRzRzRzRzR](https://github.com/zRzRzRzRzRzRzR). The codebase can be found [here](https://huggingface.co/zai-org/GLM-Image).
## Usage examples
### Text to Image Generation
```python
import torch
from diffusers.pipelines.glm_image import GlmImagePipeline
pipe = GlmImagePipeline.from_pretrained("zai-org/GLM-Image",torch_dtype=torch.bfloat16,device_map="cuda")
prompt = "A beautifully designed modern food magazine style dessert recipe illustration, themed around a raspberry mousse cake. The overall layout is clean and bright, divided into four main areas: the top left features a bold black title 'Raspberry Mousse Cake Recipe Guide', with a soft-lit close-up photo of the finished cake on the right, showcasing a light pink cake adorned with fresh raspberries and mint leaves; the bottom left contains an ingredient list section, titled 'Ingredients' in a simple font, listing 'Flour 150g', 'Eggs 3', 'Sugar 120g', 'Raspberry puree 200g', 'Gelatin sheets 10g', 'Whipping cream 300ml', and 'Fresh raspberries', each accompanied by minimalist line icons (like a flour bag, eggs, sugar jar, etc.); the bottom right displays four equally sized step boxes, each containing high-definition macro photos and corresponding instructions, arranged from top to bottom as follows: Step 1 shows a whisk whipping white foam (with the instruction 'Whip egg whites to stiff peaks'), Step 2 shows a red-and-white mixture being folded with a spatula (with the instruction 'Gently fold in the puree and batter'), Step 3 shows pink liquid being poured into a round mold (with the instruction 'Pour into mold and chill for 4 hours'), Step 4 shows the finished cake decorated with raspberries and mint leaves (with the instruction 'Decorate with raspberries and mint'); a light brown information bar runs along the bottom edge, with icons on the left representing 'Preparation time: 30 minutes', 'Cooking time: 20 minutes', and 'Servings: 8'. The overall color scheme is dominated by creamy white and light pink, with a subtle paper texture in the background, featuring compact and orderly text and image layout with clear information hierarchy."
image = pipe(
prompt=prompt,
height=32 * 32,
width=36 * 32,
num_inference_steps=30,
guidance_scale=1.5,
generator=torch.Generator(device="cuda").manual_seed(42),
).images[0]
image.save("output_t2i.png")
```
### Image to Image Generation
```python
import torch
from diffusers.pipelines.glm_image import GlmImagePipeline
from PIL import Image
pipe = GlmImagePipeline.from_pretrained("zai-org/GLM-Image",torch_dtype=torch.bfloat16,device_map="cuda")
image_path = "cond.jpg"
prompt = "Replace the background of the snow forest with an underground station featuring an automatic escalator."
image = Image.open(image_path).convert("RGB")
image = pipe(
prompt=prompt,
image=[image], # can input multiple images for multi-image-to-image generation such as [image, image1]
height=33 * 32,
width=32 * 32,
num_inference_steps=30,
guidance_scale=1.5,
generator=torch.Generator(device="cuda").manual_seed(42),
).images[0]
image.save("output_i2i.png")
```
+ Since the AR model used in GLM-Image is configured with `do_sample=True` and a temperature of `0.95` by default, the generated images can vary significantly across runs. We do not recommend setting do_sample=False, as this may lead to incorrect or degenerate outputs from the AR model.
## GlmImagePipeline
[[autodoc]] pipelines.glm_image.pipeline_glm_image.GlmImagePipeline
- all
- __call__
## GlmImagePipelineOutput
[[autodoc]] pipelines.glm_image.pipeline_output.GlmImagePipelineOutput

View File

@@ -0,0 +1,120 @@
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License. -->
# HunyuanVideo-1.5
HunyuanVideo-1.5 is a lightweight yet powerful video generation model that achieves state-of-the-art visual quality and motion coherence with only 8.3 billion parameters, enabling efficient inference on consumer-grade GPUs. This achievement is built upon several key components, including meticulous data curation, an advanced DiT architecture with selective and sliding tile attention (SSTA), enhanced bilingual understanding through glyph-aware text encoding, progressive pre-training and post-training, and an efficient video super-resolution network. Leveraging these designs, we developed a unified framework capable of high-quality text-to-video and image-to-video generation across multiple durations and resolutions. Extensive experiments demonstrate that this compact and proficient model establishes a new state-of-the-art among open-source models.
You can find all the original HunyuanVideo checkpoints under the [Tencent](https://huggingface.co/tencent) organization.
> [!TIP]
> Click on the HunyuanVideo models in the right sidebar for more examples of video generation tasks.
>
> The examples below use a checkpoint from [hunyuanvideo-community](https://huggingface.co/hunyuanvideo-community) because the weights are stored in a layout compatible with Diffusers.
The example below demonstrates how to generate a video optimized for memory or inference speed.
<hfoptions id="usage">
<hfoption id="memory">
Refer to the [Reduce memory usage](../../optimization/memory) guide for more details about the various memory saving techniques.
```py
import torch
from diffusers import AutoModel, HunyuanVideo15Pipeline
from diffusers.utils import export_to_video
pipeline = HunyuanVideo15Pipeline.from_pretrained(
"HunyuanVideo-1.5-Diffusers-480p_t2v",
torch_dtype=torch.bfloat16,
)
# model-offloading and tiling
pipeline.enable_model_cpu_offload()
pipeline.vae.enable_tiling()
prompt = "A fluffy teddy bear sits on a bed of soft pillows surrounded by children's toys."
video = pipeline(prompt=prompt, num_frames=61, num_inference_steps=30).frames[0]
export_to_video(video, "output.mp4", fps=15)
```
## Notes
- HunyuanVideo1.5 use attention masks with variable-length sequences. For best performance, we recommend using an attention backend that handles padding efficiently.
- **H100/H800:** `_flash_3_hub` or `_flash_3_varlen_hub`
- **A100/A800/RTX 4090:** `flash_hub` or `flash_varlen_hub`
- **Other GPUs:** `sage_hub`
Refer to the [Attention backends](../../optimization/attention_backends) guide for more details about using a different backend.
```py
pipe.transformer.set_attention_backend("flash_hub") # or your preferred backend
```
- [`HunyuanVideo15Pipeline`] use guider and does not take `guidance_scale` parameter at runtime.
You can check the default guider configuration using `pipe.guider`:
```py
>>> pipe.guider
ClassifierFreeGuidance {
"_class_name": "ClassifierFreeGuidance",
"_diffusers_version": "0.36.0.dev0",
"enabled": true,
"guidance_rescale": 0.0,
"guidance_scale": 6.0,
"start": 0.0,
"stop": 1.0,
"use_original_formulation": false
}
State:
step: None
num_inference_steps: None
timestep: None
count_prepared: 0
enabled: True
num_conditions: 2
```
To update guider configuration, you can run `pipe.guider = pipe.guider.new(...)`
```py
pipe.guider = pipe.guider.new(guidance_scale=5.0)
```
Read more on Guider [here](../../modular_diffusers/guiders).
## HunyuanVideo15Pipeline
[[autodoc]] HunyuanVideo15Pipeline
- all
- __call__
## HunyuanVideo15ImageToVideoPipeline
[[autodoc]] HunyuanVideo15ImageToVideoPipeline
- all
- __call__
## HunyuanVideo15PipelineOutput
[[autodoc]] pipelines.hunyuan_video1_5.pipeline_output.HunyuanVideo15PipelineOutput

View File

@@ -0,0 +1,116 @@
<!--Copyright 2025 The HuggingFace Team and Kandinsky Lab Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Kandinsky 5.0 Image
[Kandinsky 5.0](https://arxiv.org/abs/2511.14993) is a family of diffusion models for Video & Image generation.
Kandinsky 5.0 Image Lite is a lightweight image generation model (6B parameters).
The model introduces several key innovations:
- **Latent diffusion pipeline** with **Flow Matching** for improved training stability
- **Diffusion Transformer (DiT)** as the main generative backbone with cross-attention to text embeddings
- Dual text encoding using **Qwen2.5-VL** and **CLIP** for comprehensive text understanding
- **Flux VAE** for efficient image encoding and decoding
The original codebase can be found at [kandinskylab/Kandinsky-5](https://github.com/kandinskylab/Kandinsky-5).
> [!TIP]
> Check out the [Kandinsky Lab](https://huggingface.co/kandinskylab) organization on the Hub for the official model checkpoints for text-to-video generation, including pretrained, SFT, no-CFG, and distilled variants.
## Available Models
Kandinsky 5.0 Image Lite:
| model_id | Description | Use Cases |
|------------|-------------|-----------|
| [**kandinskylab/Kandinsky-5.0-T2I-Lite-sft-Diffusers**](https://huggingface.co/kandinskylab/Kandinsky-5.0-T2I-Lite-sft-Diffusers) | 6B image Supervised Fine-Tuned model | Highest generation quality |
| [**kandinskylab/Kandinsky-5.0-I2I-Lite-sft-Diffusers**](https://huggingface.co/kandinskylab/Kandinsky-5.0-I2I-Lite-sft-Diffusers) | 6B image editing Supervised Fine-Tuned model | Highest generation quality |
| [**kandinskylab/Kandinsky-5.0-T2I-Lite-pretrain-Diffusers**](https://huggingface.co/kandinskylab/Kandinsky-5.0-T2I-Lite-pretrain-Diffusers) | 6B image Base pretrained model | Research and fine-tuning |
| [**kandinskylab/Kandinsky-5.0-I2I-Lite-pretrain-Diffusers**](https://huggingface.co/kandinskylab/Kandinsky-5.0-I2I-Lite-pretrain-Diffusers) | 6B image editing Base pretrained model | Research and fine-tuning |
## Usage Examples
### Basic Text-to-Image Generation
```python
import torch
from diffusers import Kandinsky5T2IPipeline
# Load the pipeline
model_id = "kandinskylab/Kandinsky-5.0-T2I-Lite-sft-Diffusers"
pipe = Kandinsky5T2IPipeline.from_pretrained(model_id)
_ = pipe.to(device='cuda',dtype=torch.bfloat16)
# Generate image
prompt = "A fluffy, expressive cat wearing a bright red hat with a soft, slightly textured fabric. The hat should look cozy and well-fitted on the cats head. On the front of the hat, add clean, bold white text that reads “SWEET”, clearly visible and neatly centered. Ensure the overall lighting highlights the hats color and the cats fur details."
output = pipe(
prompt=prompt,
negative_prompt="",
height=1024,
width=1024,
num_inference_steps=50,
guidance_scale=3.5,
).image[0]
```
### Basic Image-to-Image Generation
```python
import torch
from diffusers import Kandinsky5I2IPipeline
from diffusers.utils import load_image
# Load the pipeline
model_id = "kandinskylab/Kandinsky-5.0-I2I-Lite-sft-Diffusers"
pipe = Kandinsky5I2IPipeline.from_pretrained(model_id)
_ = pipe.to(device='cuda',dtype=torch.bfloat16)
pipe.enable_model_cpu_offload() # <--- Enable CPU offloading for single GPU inference
# Edit the input image
image = load_image(
"https://huggingface.co/kandinsky-community/kandinsky-3/resolve/main/assets/title.jpg?download=true"
)
prompt = "Change the background from a winter night scene to a bright summer day. Place the character on a sandy beach with clear blue sky, soft sunlight, and gentle waves in the distance. Replace the winter clothing with a light short-sleeved T-shirt (in soft pastel colors) and casual shorts. Ensure the characters fur reflects warm daylight instead of cold winter tones. Add small beach details such as seashells, footprints in the sand, and a few scattered beach toys nearby. Keep the oranges in the scene, but place them naturally on the sand."
negative_prompt = ""
output = pipe(
image=image,
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=3.5,
).image[0]
```
## Kandinsky5T2IPipeline
[[autodoc]] Kandinsky5T2IPipeline
- all
- __call__
## Kandinsky5I2IPipeline
[[autodoc]] Kandinsky5I2IPipeline
- all
- __call__
## Citation
```bibtex
@misc{kandinsky2025,
author = {Alexander Belykh and Alexander Varlamov and Alexey Letunovskiy and Anastasia Aliaskina and Anastasia Maltseva and Anastasiia Kargapoltseva and Andrey Shutkin and Anna Averchenkova and Anna Dmitrienko and Bulat Akhmatov and Denis Dimitrov and Denis Koposov and Denis Parkhomenko and Dmitrii and Ilya Vasiliev and Ivan Kirillov and Julia Agafonova and Kirill Chernyshev and Kormilitsyn Semen and Lev Novitskiy and Maria Kovaleva and Mikhail Mamaev and Mikhailov and Nikita Kiselev and Nikita Osterov and Nikolai Gerasimenko and Nikolai Vaulin and Olga Kim and Olga Vdovchenko and Polina Gavrilova and Polina Mikhailova and Tatiana Nikulina and Viacheslav Vasilev and Vladimir Arkhipkin and Vladimir Korviakov and Vladimir Polovnikov and Yury Kolabushin},
title = {Kandinsky 5.0: A family of diffusion models for Video & Image generation},
howpublished = {\url{https://github.com/kandinskylab/Kandinsky-5}},
year = 2025
}
```

View File

@@ -1,4 +1,4 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
<!--Copyright 2025 The HuggingFace Team Kandinsky Lab Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
@@ -9,10 +9,11 @@ specific language governing permissions and limitations under the License.
# Kandinsky 5.0 Video
Kandinsky 5.0 Video is created by the Kandinsky team: Alexey Letunovskiy, Maria Kovaleva, Ivan Kirillov, Lev Novitskiy, Denis Koposov, Dmitrii Mikhailov, Anna Averchenkova, Andrey Shutkin, Julia Agafonova, Olga Kim, Anastasiia Kargapoltseva, Nikita Kiselev, Anna Dmitrienko, Anastasia Maltseva, Kirill Chernyshev, Ilia Vasiliev, Viacheslav Vasilev, Vladimir Polovnikov, Yury Kolabushin, Alexander Belykh, Mikhail Mamaev, Anastasia Aliaskina, Tatiana Nikulina, Polina Gavrilova, Vladimir Arkhipkin, Vladimir Korviakov, Nikolai Gerasimenko, Denis Parkhomenko, Denis Dimitrov
[Kandinsky 5.0](https://arxiv.org/abs/2511.14993) is a family of diffusion models for Video & Image generation.
Kandinsky 5.0 Lite line-up of lightweight video generation models (2B parameters) that ranks #1 among open-source models in its class. It outperforms larger models and offers the best understanding of Russian concepts in the open-source ecosystem.
Kandinsky 5.0 is a family of diffusion models for Video & Image generation. Kandinsky 5.0 T2V Lite is a lightweight video generation model (2B parameters) that ranks #1 among open-source models in its class. It outperforms larger models and offers the best understanding of Russian concepts in the open-source ecosystem.
Kandinsky 5.0 Pro line-up of large high quality video generation models (19B parameters). It offers high qualty generation in HD and more generation formats like I2V.
The model introduces several key innovations:
- **Latent diffusion pipeline** with **Flow Matching** for improved training stability
@@ -21,45 +22,78 @@ The model introduces several key innovations:
- **HunyuanVideo 3D VAE** for efficient video encoding and decoding
- **Sparse attention mechanisms** (NABLA) for efficient long-sequence processing
The original codebase can be found at [ai-forever/Kandinsky-5](https://github.com/ai-forever/Kandinsky-5).
The original codebase can be found at [kandinskylab/Kandinsky-5](https://github.com/kandinskylab/Kandinsky-5).
> [!TIP]
> Check out the [AI Forever](https://huggingface.co/ai-forever) organization on the Hub for the official model checkpoints for text-to-video generation, including pretrained, SFT, no-CFG, and distilled variants.
> Check out the [Kandinsky Lab](https://huggingface.co/kandinskylab) organization on the Hub for the official model checkpoints for text-to-video generation, including pretrained, SFT, no-CFG, and distilled variants.
## Available Models
Kandinsky 5.0 T2V Lite comes in several variants optimized for different use cases:
Kandinsky 5.0 T2V Pro:
| model_id | Description | Use Cases |
|------------|-------------|-----------|
| **ai-forever/Kandinsky-5.0-T2V-Lite-sft-5s-Diffusers** | 5 second Supervised Fine-Tuned model | Highest generation quality |
| **ai-forever/Kandinsky-5.0-T2V-Lite-sft-10s-Diffusers** | 10 second Supervised Fine-Tuned model | Highest generation quality |
| **ai-forever/Kandinsky-5.0-T2V-Lite-nocfg-5s-Diffusers** | 5 second Classifier-Free Guidance distilled | 2× faster inference |
| **ai-forever/Kandinsky-5.0-T2V-Lite-nocfg-10s-Diffusers** | 10 second Classifier-Free Guidance distilled | 2× faster inference |
| **ai-forever/Kandinsky-5.0-T2V-Lite-distilled16steps-5s-Diffusers** | 5 second Diffusion distilled to 16 steps | 6× faster inference, minimal quality loss |
| **ai-forever/Kandinsky-5.0-T2V-Lite-distilled16steps-10s-Diffusers** | 10 second Diffusion distilled to 16 steps | 6× faster inference, minimal quality loss |
| **ai-forever/Kandinsky-5.0-T2V-Lite-pretrain-5s-Diffusers** | 5 second Base pretrained model | Research and fine-tuning |
| **ai-forever/Kandinsky-5.0-T2V-Lite-pretrain-10s-Diffusers** | 10 second Base pretrained model | Research and fine-tuning |
| **kandinskylab/Kandinsky-5.0-T2V-Pro-sft-5s-Diffusers** | 5 second Text-to-Video Pro model | High-quality text-to-video generation |
| **kandinskylab/Kandinsky-5.0-I2V-Pro-sft-5s-Diffusers** | 5 second Image-to-Video Pro model | High-quality image-to-video generation |
All models are available in 5-second and 10-second video generation versions.
Kandinsky 5.0 T2V Lite:
| model_id | Description | Use Cases |
|------------|-------------|-----------|
| **kandinskylab/Kandinsky-5.0-T2V-Lite-sft-5s-Diffusers** | 5 second Supervised Fine-Tuned model | Highest generation quality |
| **kandinskylab/Kandinsky-5.0-T2V-Lite-sft-10s-Diffusers** | 10 second Supervised Fine-Tuned model | Highest generation quality |
| **kandinskylab/Kandinsky-5.0-T2V-Lite-nocfg-5s-Diffusers** | 5 second Classifier-Free Guidance distilled | 2× faster inference |
| **kandinskylab/Kandinsky-5.0-T2V-Lite-nocfg-10s-Diffusers** | 10 second Classifier-Free Guidance distilled | 2× faster inference |
| **kandinskylab/Kandinsky-5.0-T2V-Lite-distilled16steps-5s-Diffusers** | 5 second Diffusion distilled to 16 steps | 6× faster inference, minimal quality loss |
| **kandinskylab/Kandinsky-5.0-T2V-Lite-distilled16steps-10s-Diffusers** | 10 second Diffusion distilled to 16 steps | 6× faster inference, minimal quality loss |
| **kandinskylab/Kandinsky-5.0-T2V-Lite-pretrain-5s-Diffusers** | 5 second Base pretrained model | Research and fine-tuning |
| **kandinskylab/Kandinsky-5.0-T2V-Lite-pretrain-10s-Diffusers** | 10 second Base pretrained model | Research and fine-tuning |
## Kandinsky5T2VPipeline
[[autodoc]] Kandinsky5T2VPipeline
- all
- __call__
## Usage Examples
### Basic Text-to-Video Generation
#### Pro
**⚠️ Warning!** all Pro models should be infered with pipeline.enable_model_cpu_offload()
```python
import torch
from diffusers import Kandinsky5T2VPipeline
from diffusers.utils import export_to_video
# Load the pipeline
model_id = "ai-forever/Kandinsky-5.0-T2V-Lite-sft-5s-Diffusers"
model_id = "kandinskylab/Kandinsky-5.0-T2V-Pro-sft-5s-Diffusers"
pipe = Kandinsky5T2VPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16)
pipe = pipe.to("cuda")
pipeline.transformer.set_attention_backend("flex") # <--- Set attention bakend to Flex
pipeline.enable_model_cpu_offload() # <--- Enable cpu offloading for single GPU inference
pipeline.transformer.compile(mode="max-autotune-no-cudagraphs", dynamic=True) # <--- Compile with max-autotune-no-cudagraphs
# Generate video
prompt = "A cat and a dog baking a cake together in a kitchen."
negative_prompt = "Static, 2D cartoon, cartoon, 2d animation, paintings, images, worst quality, low quality, ugly, deformed, walking backwards"
output = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
height=768,
width=1024,
num_frames=121, # ~5 seconds at 24fps
num_inference_steps=50,
guidance_scale=5.0,
).frames[0]
export_to_video(output, "output.mp4", fps=24, quality=9)
```
#### Lite
```python
import torch
from diffusers import Kandinsky5T2VPipeline
from diffusers.utils import export_to_video
# Load the pipeline
model_id = "kandinskylab/Kandinsky-5.0-T2V-Lite-sft-5s-Diffusers"
pipe = Kandinsky5T2VPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16)
pipe = pipe.to("cuda")
@@ -85,14 +119,14 @@ export_to_video(output, "output.mp4", fps=24, quality=9)
```python
pipe = Kandinsky5T2VPipeline.from_pretrained(
"ai-forever/Kandinsky-5.0-T2V-Lite-sft-10s-Diffusers",
"kandinskylab/Kandinsky-5.0-T2V-Lite-sft-10s-Diffusers",
torch_dtype=torch.bfloat16
)
pipe = pipe.to("cuda")
pipe.transformer.set_attention_backend(
"flex"
) # <--- Sett attention bakend to Flex
) # <--- Set attention bakend to Flex
pipe.transformer.compile(
mode="max-autotune-no-cudagraphs",
dynamic=True
@@ -118,7 +152,7 @@ export_to_video(output, "output.mp4", fps=24, quality=9)
**⚠️ Warning!** all nocfg and diffusion distilled models should be infered wothout CFG (```guidance_scale=1.0```):
```python
model_id = "ai-forever/Kandinsky-5.0-T2V-Lite-distilled16steps-5s-Diffusers"
model_id = "kandinskylab/Kandinsky-5.0-T2V-Lite-distilled16steps-5s-Diffusers"
pipe = Kandinsky5T2VPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16)
pipe = pipe.to("cuda")
@@ -132,18 +166,145 @@ export_to_video(output, "output.mp4", fps=24, quality=9)
```
### Basic Image-to-Video Generation
**⚠️ Warning!** all Pro models should be infered with pipeline.enable_model_cpu_offload()
```python
import torch
from diffusers import Kandinsky5T2VPipeline
from diffusers.utils import export_to_video
# Load the pipeline
model_id = "kandinskylab/Kandinsky-5.0-I2V-Pro-sft-5s-Diffusers"
pipe = Kandinsky5T2VPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16)
pipe = pipe.to("cuda")
pipeline.transformer.set_attention_backend("flex") # <--- Set attention bakend to Flex
pipeline.enable_model_cpu_offload() # <--- Enable cpu offloading for single GPU inference
pipeline.transformer.compile(mode="max-autotune-no-cudagraphs", dynamic=True) # <--- Compile with max-autotune-no-cudagraphs
# Generate video
image = load_image(
"https://huggingface.co/kandinsky-community/kandinsky-3/resolve/main/assets/title.jpg?download=true"
)
height = 896
width = 896
image = image.resize((width, height))
prompt = "An funny furry creture smiles happily and holds a sign that says 'Kandinsky'"
negative_prompt = ""
output = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
height=height,
width=width,
num_frames=121, # ~5 seconds at 24fps
num_inference_steps=50,
guidance_scale=5.0,
).frames[0]
export_to_video(output, "output.mp4", fps=24, quality=9)
```
## Kandinsky 5.0 Pro Side-by-Side evaluation
<table border="0" style="width: 200; text-align: left; margin-top: 20px;">
<tr>
<td>
<img width="200" alt="image" src="https://github.com/user-attachments/assets/73e5ff00-2735-40fd-8f01-767de9181918" />
</td>
<td>
<img width="200" alt="image" src="https://github.com/user-attachments/assets/f449a9e7-74b7-481d-82da-02723e396acd" />
</td>
<tr>
<td>
Comparison with Veo 3
</td>
<td>
Comparison with Veo 3 fast
</td>
<tr>
<td>
<img width="200" alt="image" src="https://github.com/user-attachments/assets/a6902fb6-b5e8-4093-adad-aa4caab79c6d" />
</td>
<td>
<img width="200" alt="image" src="https://github.com/user-attachments/assets/09986015-3d07-4de8-b942-c145039b9b2d" />
</td>
<tr>
<td>
Comparison with Wan 2.2 A14B Text-to-Video mode
</td>
<td>
Comparison with Wan 2.2 A14B Image-to-Video mode
</td>
</table>
## Kandinsky 5.0 Lite Side-by-Side evaluation
The evaluation is based on the expanded prompts from the [Movie Gen benchmark](https://github.com/facebookresearch/MovieGenBench), which are available in the expanded_prompt column of the benchmark/moviegen_bench.csv file.
<table border="0" style="width: 400; text-align: left; margin-top: 20px;">
<tr>
<td>
<img src="https://github.com/kandinskylab/kandinsky-5/raw/main/assets/sbs/kandinsky_5_video_lite_vs_sora.jpg" width=400 >
</td>
<td>
<img src="https://github.com/kandinskylab/kandinsky-5/raw/main/assets/sbs/kandinsky_5_video_lite_vs_wan_2.1_14B.jpg" width=400 >
</td>
<tr>
<td>
<img src="https://github.com/kandinskylab/kandinsky-5/raw/main/assets/sbs/kandinsky_5_video_lite_vs_wan_2.2_5B.jpg" width=400 >
</td>
<td>
<img src="https://github.com/kandinskylab/kandinsky-5/raw/main/assets/sbs/kandinsky_5_video_lite_vs_wan_2.2_A14B.jpg" width=400 >
</td>
<tr>
<td>
<img src="https://github.com/kandinskylab/kandinsky-5/raw/main/assets/sbs/kandinsky_5_video_lite_vs_wan_2.1_1.3B.jpg" width=400 >
</td>
</table>
## Kandinsky 5.0 Lite Distill Side-by-Side evaluation
<table border="0" style="width: 400; text-align: left; margin-top: 20px;">
<tr>
<td>
<img src="https://github.com/kandinskylab/kandinsky-5/raw/main/assets/sbs/kandinsky_5_video_lite_5s_vs_kandinsky_5_video_lite_distill_5s.jpg" width=400 >
</td>
<td>
<img src="https://github.com/kandinskylab/kandinsky-5/raw/main/assets/sbs/kandinsky_5_video_lite_10s_vs_kandinsky_5_video_lite_distill_10s.jpg" width=400 >
</td>
</table>
## Kandinsky5T2VPipeline
[[autodoc]] Kandinsky5T2VPipeline
- all
- __call__
## Kandinsky5I2VPipeline
[[autodoc]] Kandinsky5I2VPipeline
- all
- __call__
## Citation
```bibtex
@misc{kandinsky2025,
author = {Alexey Letunovskiy and Maria Kovaleva and Ivan Kirillov and Lev Novitskiy and Denis Koposov and
Dmitrii Mikhailov and Anna Averchenkova and Andrey Shutkin and Julia Agafonova and Olga Kim and
Anastasiia Kargapoltseva and Nikita Kiselev and Vladimir Arkhipkin and Vladimir Korviakov and
Nikolai Gerasimenko and Denis Parkhomenko and Anna Dmitrienko and Anastasia Maltseva and
Kirill Chernyshev and Ilia Vasiliev and Viacheslav Vasilev and Vladimir Polovnikov and
Yury Kolabushin and Alexander Belykh and Mikhail Mamaev and Anastasia Aliaskina and
Tatiana Nikulina and Polina Gavrilova and Denis Dimitrov},
author = {Alexander Belykh and Alexander Varlamov and Alexey Letunovskiy and Anastasia Aliaskina and Anastasia Maltseva and Anastasiia Kargapoltseva and Andrey Shutkin and Anna Averchenkova and Anna Dmitrienko and Bulat Akhmatov and Denis Dimitrov and Denis Koposov and Denis Parkhomenko and Dmitrii and Ilya Vasiliev and Ivan Kirillov and Julia Agafonova and Kirill Chernyshev and Kormilitsyn Semen and Lev Novitskiy and Maria Kovaleva and Mikhail Mamaev and Mikhailov and Nikita Kiselev and Nikita Osterov and Nikolai Gerasimenko and Nikolai Vaulin and Olga Kim and Olga Vdovchenko and Polina Gavrilova and Polina Mikhailova and Tatiana Nikulina and Viacheslav Vasilev and Vladimir Arkhipkin and Vladimir Korviakov and Vladimir Polovnikov and Yury Kolabushin},
title = {Kandinsky 5.0: A family of diffusion models for Video & Image generation},
howpublished = {\url{https://github.com/ai-forever/Kandinsky-5}},
howpublished = {\url{https://github.com/kandinskylab/Kandinsky-5}},
year = 2025
}
```

View File

@@ -0,0 +1,114 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# LongCat-Image
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</div>
We introduce LongCat-Image, a pioneering open-source and bilingual (Chinese-English) foundation model for image generation, designed to address core challenges in multilingual text rendering, photorealism, deployment efficiency, and developer accessibility prevalent in current leading models.
### Key Features
- 🌟 **Exceptional Efficiency and Performance**: With only **6B parameters**, LongCat-Image surpasses numerous open-source models that are several times larger across multiple benchmarks, demonstrating the immense potential of efficient model design.
- 🌟 **Superior Editing Performance**: LongCat-Image-Edit model achieves state-of-the-art performance among open-source models, delivering leading instruction-following and image quality with superior visual consistency.
- 🌟 **Powerful Chinese Text Rendering**: LongCat-Image demonstrates superior accuracy and stability in rendering common Chinese characters compared to existing SOTA open-source models and achieves industry-leading coverage of the Chinese dictionary.
- 🌟 **Remarkable Photorealism**: Through an innovative data strategy and training framework, LongCat-Image achieves remarkable photorealism in generated images.
- 🌟 **Comprehensive Open-Source Ecosystem**: We provide a complete toolchain, from intermediate checkpoints to full training code, significantly lowering the barrier for further research and development.
For more details, please refer to the comprehensive [***LongCat-Image Technical Report***](https://arxiv.org/abs/2412.11963)
## Usage Example
```py
import torch
import diffusers
from diffusers import LongCatImagePipeline
weight_dtype = torch.bfloat16
pipe = LongCatImagePipeline.from_pretrained("meituan-longcat/LongCat-Image", torch_dtype=torch.bfloat16 )
pipe.to('cuda')
# pipe.enable_model_cpu_offload()
prompt = '一个年轻的亚裔女性,身穿黄色针织衫,搭配白色项链。她的双手放在膝盖上,表情恬静。背景是一堵粗糙的砖墙,午后的阳光温暖地洒在她身上,营造出一种宁静而温馨的氛围。镜头采用中距离视角,突出她的神态和服饰的细节。光线柔和地打在她的脸上,强调她的五官和饰品的质感,增加画面的层次感与亲和力。整个画面构图简洁,砖墙的纹理与阳光的光影效果相得益彰,突显出人物的优雅与从容。'
image = pipe(
prompt,
height=768,
width=1344,
guidance_scale=4.0,
num_inference_steps=50,
num_images_per_prompt=1,
generator=torch.Generator("cpu").manual_seed(43),
enable_cfg_renorm=True,
enable_prompt_rewrite=True,
).images[0]
image.save(f'./longcat_image_t2i_example.png')
```
This pipeline was contributed by LongCat-Image Team. The original codebase can be found [here](https://github.com/meituan-longcat/LongCat-Image).
Available models:
<div style="overflow-x: auto; margin-bottom: 16px;">
<table style="border-collapse: collapse; width: 100%;">
<thead>
<tr>
<th style="white-space: nowrap; padding: 8px; border: 1px solid #d0d7de; background-color: #f6f8fa;">Models</th>
<th style="white-space: nowrap; padding: 8px; border: 1px solid #d0d7de; background-color: #f6f8fa;">Type</th>
<th style="padding: 8px; border: 1px solid #d0d7de; background-color: #f6f8fa;">Description</th>
<th style="padding: 8px; border: 1px solid #d0d7de; background-color: #f6f8fa;">Download Link</th>
</tr>
</thead>
<tbody>
<tr>
<td style="white-space: nowrap; padding: 8px; border: 1px solid #d0d7de;">LongCat&#8209;Image</td>
<td style="white-space: nowrap; padding: 8px; border: 1px solid #d0d7de;">Text&#8209;to&#8209;Image</td>
<td style="padding: 8px; border: 1px solid #d0d7de;">Final Release. The standard model for out&#8209;of&#8209;the&#8209;box inference.</td>
<td style="padding: 8px; border: 1px solid #d0d7de;">
<span style="white-space: nowrap;">🤗&nbsp;<a href="https://huggingface.co/meituan-longcat/LongCat-Image">Huggingface</a></span>
</td>
</tr>
<tr>
<td style="white-space: nowrap; padding: 8px; border: 1px solid #d0d7de;">LongCat&#8209;Image&#8209;Dev</td>
<td style="white-space: nowrap; padding: 8px; border: 1px solid #d0d7de;">Text&#8209;to&#8209;Image</td>
<td style="padding: 8px; border: 1px solid #d0d7de;">Development. Mid-training checkpoint, suitable for fine-tuning.</td>
<td style="padding: 8px; border: 1px solid #d0d7de;">
<span style="white-space: nowrap;">🤗&nbsp;<a href="https://huggingface.co/meituan-longcat/LongCat-Image-Dev">Huggingface</a></span>
</td>
</tr>
<tr>
<td style="white-space: nowrap; padding: 8px; border: 1px solid #d0d7de;">LongCat&#8209;Image&#8209;Edit</td>
<td style="white-space: nowrap; padding: 8px; border: 1px solid #d0d7de;">Image Editing</td>
<td style="padding: 8px; border: 1px solid #d0d7de;">Specialized model for image editing.</td>
<td style="padding: 8px; border: 1px solid #d0d7de;">
<span style="white-space: nowrap;">🤗&nbsp;<a href="https://huggingface.co/meituan-longcat/LongCat-Image-Edit">Huggingface</a></span>
</td>
</tr>
</tbody>
</table>
</div>
## LongCatImagePipeline
[[autodoc]] LongCatImagePipeline
- all
- __call__
## LongCatImagePipelineOutput
[[autodoc]] pipelines.longcat_image.pipeline_output.LongCatImagePipelineOutput

View File

@@ -0,0 +1,47 @@
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License. -->
# LTX-2
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</div>
LTX-2 is a DiT-based audio-video foundation model designed to generate synchronized video and audio within a single model. It brings together the core building blocks of modern video generation, with open weights and a focus on practical, local execution.
You can find all the original LTX-Video checkpoints under the [Lightricks](https://huggingface.co/Lightricks) organization.
The original codebase for LTX-2 can be found [here](https://github.com/Lightricks/LTX-2).
## LTX2Pipeline
[[autodoc]] LTX2Pipeline
- all
- __call__
## LTX2ImageToVideoPipeline
[[autodoc]] LTX2ImageToVideoPipeline
- all
- __call__
## LTX2LatentUpsamplePipeline
[[autodoc]] LTX2LatentUpsamplePipeline
- all
- __call__
## LTX2PipelineOutput
[[autodoc]] pipelines.ltx2.pipeline_output.LTX2PipelineOutput

View File

@@ -136,7 +136,7 @@ export_to_video(video, "output.mp4", fps=24)
- The recommended dtype for the transformer, VAE, and text encoder is `torch.bfloat16`. The VAE and text encoder can also be `torch.float32` or `torch.float16`.
- For guidance-distilled variants of LTX-Video, set `guidance_scale` to `1.0`. The `guidance_scale` for any other model should be set higher, like `5.0`, for good generation quality.
- For timestep-aware VAE variants (LTX-Video 0.9.1 and above), set `decode_timestep` to `0.05` and `image_cond_noise_scale` to `0.025`.
- For variants that support interpolation between multiple conditioning images and videos (LTX-Video 0.9.5 and above), use similar images and videos for the best results. Divergence from the conditioning inputs may lead to abrupt transitionts in the generated video.
- For variants that support interpolation between multiple conditioning images and videos (LTX-Video 0.9.5 and above), use similar images and videos for the best results. Divergence from the conditioning inputs may lead to abrupt transitions in the generated video.
- LTX-Video 0.9.7 includes a spatial latent upscaler and a 13B parameter transformer. During inference, a low resolution video is quickly generated first and then upscaled and refined.
@@ -329,7 +329,7 @@ export_to_video(video, "output.mp4", fps=24)
<details>
<summary>Show example code</summary>
```python
import torch
from diffusers import LTXConditionPipeline, LTXLatentUpsamplePipeline
@@ -474,6 +474,12 @@ export_to_video(video, "output.mp4", fps=24)
</details>
## LTXI2VLongMultiPromptPipeline
[[autodoc]] LTXI2VLongMultiPromptPipeline
- all
- __call__
## LTXPipeline
[[autodoc]] LTXPipeline

View File

@@ -0,0 +1,50 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Ovis-Image
![concepts](https://github.com/AIDC-AI/Ovis-Image/blob/main/docs/imgs/ovis_image_case.png)
Ovis-Image is a 7B text-to-image model specifically optimized for high-quality text rendering, designed to operate efficiently under stringent computational constraints.
[Ovis-Image Technical Report](https://arxiv.org/abs/2511.22982) from Alibaba Group, by Guo-Hua Wang, Liangfu Cao, Tianyu Cui, Minghao Fu, Xiaohao Chen, Pengxin Zhan, Jianshan Zhao, Lan Li, Bowen Fu, Jiaqi Liu, Qing-Guo Chen.
The abstract from the paper is:
*We introduce Ovis-Image, a 7B text-to-image model specifically optimized for high-quality text rendering, designed to operate efficiently under stringent computational constraints. Built upon our previous Ovis-U1 framework, Ovis-Image integrates a diffusion-based visual decoder with the stronger Ovis 2.5 multimodal backbone, leveraging a text-centric training pipeline that combines large-scale pre-training with carefully tailored post-training refinements. Despite its compact architecture, Ovis-Image achieves text rendering performance on par with significantly larger open models such as Qwen-Image and approaches closed-source systems like Seedream and GPT4o. Crucially, the model remains deployable on a single high-end GPU with moderate memory, narrowing the gap between frontier-level text rendering and practical deployment. Our results indicate that combining a strong multimodal backbone with a carefully designed, text-focused training recipe is sufficient to achieve reliable bilingual text rendering without resorting to oversized or proprietary models.*
**Highlights**:
* **Strong text rendering at a compact 7B scale**: Ovis-Image is a 7B text-to-image model that delivers text rendering quality comparable to much larger 20B-class systems such as Qwen-Image and competitive with leading closed-source models like GPT4o in text-centric scenarios, while remaining small enough to run on widely accessible hardware.
* **High fidelity on text-heavy, layout-sensitive prompts**: The model excels on prompts that demand tight alignment between linguistic content and rendered typography (e.g., posters, banners, logos, UI mockups, infographics), producing legible, correctly spelled, and semantically consistent text across diverse fonts, sizes, and aspect ratios without compromising overall visual quality.
* **Efficiency and deployability**: With its 7B parameter budget and streamlined architecture, Ovis-Image fits on a single high-end GPU with moderate memory, supports low-latency interactive use, and scales to batch production serving, bringing nearfrontier text rendering to applications where tens-of-billionsparameter models are impractical.
This pipeline was contributed by Ovis-Image Team. The original codebase can be found [here](https://github.com/AIDC-AI/Ovis-Image).
Available models:
| Model | Recommended dtype |
|:-----:|:-----------------:|
| [`AIDC-AI/Ovis-Image-7B`](https://huggingface.co/AIDC-AI/Ovis-Image-7B) | `torch.bfloat16` |
Refer to [this](https://huggingface.co/collections/AIDC-AI/ovis-image) collection for more information.
## OvisImagePipeline
[[autodoc]] OvisImagePipeline
- all
- __call__
## OvisImagePipelineOutput
[[autodoc]] pipelines.ovis_image.pipeline_output.OvisImagePipelineOutput

View File

@@ -95,7 +95,7 @@ image.save("qwen_fewsteps.png")
With [`QwenImageEditPlusPipeline`], one can provide multiple images as input reference.
```
```py
import torch
from PIL import Image
from diffusers import QwenImageEditPlusPipeline
@@ -108,12 +108,46 @@ pipe = QwenImageEditPlusPipeline.from_pretrained(
image_1 = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/grumpy.jpg")
image_2 = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/peng.png")
image = pipe(
image=[image_1, image_2],
prompt='''put the penguin and the cat at a game show called "Qwen Edit Plus Games"''',
image=[image_1, image_2],
prompt='''put the penguin and the cat at a game show called "Qwen Edit Plus Games"''',
num_inference_steps=50
).images[0]
```
## Performance
### torch.compile
Using `torch.compile` on the transformer provides ~2.4x speedup (A100 80GB: 4.70s → 1.93s):
```python
import torch
from diffusers import QwenImagePipeline
pipe = QwenImagePipeline.from_pretrained("Qwen/Qwen-Image", torch_dtype=torch.bfloat16).to("cuda")
pipe.transformer = torch.compile(pipe.transformer)
# First call triggers compilation (~7s overhead)
# Subsequent calls run at ~2.4x faster
image = pipe("a cat", num_inference_steps=50).images[0]
```
### Batched Inference with Variable-Length Prompts
When using classifier-free guidance (CFG) with prompts of different lengths, the pipeline properly handles padding through attention masking. This ensures padding tokens do not influence the generated output.
```python
# CFG with different prompt lengths works correctly
image = pipe(
prompt="A cat",
negative_prompt="blurry, low quality, distorted",
true_cfg_scale=3.5,
num_inference_steps=50,
).images[0]
```
For detailed benchmark scripts and results, see [this gist](https://gist.github.com/cdutr/bea337e4680268168550292d7819dc2f).
## QwenImagePipeline
[[autodoc]] QwenImagePipeline

View File

@@ -37,7 +37,8 @@ The following SkyReels-V2 models are supported in Diffusers:
- [SkyReels-V2 I2V 1.3B - 540P](https://huggingface.co/Skywork/SkyReels-V2-I2V-1.3B-540P-Diffusers)
- [SkyReels-V2 I2V 14B - 540P](https://huggingface.co/Skywork/SkyReels-V2-I2V-14B-540P-Diffusers)
- [SkyReels-V2 I2V 14B - 720P](https://huggingface.co/Skywork/SkyReels-V2-I2V-14B-720P-Diffusers)
- [SkyReels-V2 FLF2V 1.3B - 540P](https://huggingface.co/Skywork/SkyReels-V2-FLF2V-1.3B-540P-Diffusers)
This model was contributed by [M. Tolga Cangöz](https://github.com/tolgacangoz).
> [!TIP]
> Click on the SkyReels-V2 models in the right sidebar for more examples of video generation.

View File

@@ -250,9 +250,6 @@ The code snippets available in [this](https://github.com/huggingface/diffusers/p
The general rule of thumb to keep in mind when preparing inputs for the VACE pipeline is that the input images, or frames of a video that you want to use for conditioning, should have a corresponding mask that is black in color. The black mask signifies that the model will not generate new content for that area, and only use those parts for conditioning the generation process. For parts/frames that should be generated by the model, the mask should be white in color.
</hfoption>
</hfoptions>
### Wan-Animate: Unified Character Animation and Replacement with Holistic Replication
[Wan-Animate](https://huggingface.co/papers/2509.14055) by the Wan Team.

View File

@@ -0,0 +1,66 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Z-Image
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</div>
[Z-Image](https://huggingface.co/papers/2511.22699) is a powerful and highly efficient image generation model with 6B parameters. Currently there's only one model with two more to be released:
|Model|Hugging Face|
|---|---|
|Z-Image-Turbo|https://huggingface.co/Tongyi-MAI/Z-Image-Turbo|
## Z-Image-Turbo
Z-Image-Turbo is a distilled version of Z-Image that matches or exceeds leading competitors with only 8 NFEs (Number of Function Evaluations). It offers sub-second inference latency on enterprise-grade H800 GPUs and fits comfortably within 16G VRAM consumer devices. It excels in photorealistic image generation, bilingual text rendering (English & Chinese), and robust instruction adherence.
## Image-to-image
Use [`ZImageImg2ImgPipeline`] to transform an existing image based on a text prompt.
```python
import torch
from diffusers import ZImageImg2ImgPipeline
from diffusers.utils import load_image
pipe = ZImageImg2ImgPipeline.from_pretrained("Tongyi-MAI/Z-Image-Turbo", torch_dtype=torch.bfloat16)
pipe.to("cuda")
url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
init_image = load_image(url).resize((1024, 1024))
prompt = "A fantasy landscape with mountains and a river, detailed, vibrant colors"
image = pipe(
prompt,
image=init_image,
strength=0.6,
num_inference_steps=9,
guidance_scale=0.0,
generator=torch.Generator("cuda").manual_seed(42),
).images[0]
image.save("zimage_img2img.png")
```
## ZImagePipeline
[[autodoc]] ZImagePipeline
- all
- __call__
## ZImageImg2ImgPipeline
[[autodoc]] ZImageImg2ImgPipeline
- all
- __call__

View File

@@ -1,9 +1,11 @@
# Hybrid Inference API Reference
# Remote inference
## Remote Decode
Remote inference provides access to an [Inference Endpoint](https://huggingface.co/docs/inference-endpoints/index) to offload local generation requirements for decoding and encoding.
## remote_decode
[[autodoc]] utils.remote_utils.remote_decode
## Remote Encode
## remote_encode
[[autodoc]] utils.remote_utils.remote_encode

View File

@@ -10,51 +10,296 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# Hybrid Inference
**Empowering local AI builders with Hybrid Inference**
# Remote inference
> [!TIP]
> Hybrid Inference is an [experimental feature](https://huggingface.co/blog/remote_vae).
> Feedback can be provided [here](https://github.com/huggingface/diffusers/issues/new?template=remote-vae-pilot-feedback.yml).
> This is currently an experimental feature, and if you have any feedback, please feel free to leave it [here](https://github.com/huggingface/diffusers/issues/new?template=remote-vae-pilot-feedback.yml).
Remote inference offloads the decoding and encoding process to a remote endpoint to relax the memory requirements for local inference with large models. This feature is powered by [Inference Endpoints](https://huggingface.co/docs/inference-endpoints/index). Refer to the table below for the supported models and endpoint.
| Model | Endpoint | Checkpoint | Support |
|---|---|---|---|
| Stable Diffusion v1 | https://q1bj3bpq6kzilnsu.us-east-1.aws.endpoints.huggingface.cloud | [stabilityai/sd-vae-ft-mse](https://huggingface.co/stabilityai/sd-vae-ft-mse) | encode/decode |
| Stable Diffusion XL | https://x2dmsqunjd6k9prw.us-east-1.aws.endpoints.huggingface.cloud | [madebyollin/sdxl-vae-fp16-fix](https://huggingface.co/madebyollin/sdxl-vae-fp16-fix) | encode/decode |
| Flux | https://whhx50ex1aryqvw6.us-east-1.aws.endpoints.huggingface.cloud | [black-forest-labs/FLUX.1-schnell](https://huggingface.co/black-forest-labs/FLUX.1-schnell) | encode/decode |
| HunyuanVideo | https://o7ywnmrahorts457.us-east-1.aws.endpoints.huggingface.cloud | [hunyuanvideo-community/HunyuanVideo](https://huggingface.co/hunyuanvideo-community/HunyuanVideo) | decode |
This guide will show you how to encode and decode latents with remote inference.
## Encoding
Encoding converts images and videos into latent representations. Refer to the table below for the supported VAEs.
Pass an image to [`~utils.remote_encode`] to encode it. The specific `scaling_factor` and `shift_factor` values for each model can be found in the [Remote inference](../hybrid_inference/api_reference) API reference.
```py
import torch
from diffusers import FluxPipeline
from diffusers.utils import load_image
from diffusers.utils.remote_utils import remote_encode
pipeline = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-schnell",
torch_dtype=torch.float16,
vae=None,
device_map="cuda"
)
init_image = load_image(
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg"
)
init_image = init_image.resize((768, 512))
init_latent = remote_encode(
endpoint="https://whhx50ex1aryqvw6.us-east-1.aws.endpoints.huggingface.cloud",
image=init_image,
scaling_factor=0.3611,
shift_factor=0.1159
)
```
## Decoding
Decoding converts latent representations back into images or videos. Refer to the table below for the available and supported VAEs.
Set the output type to `"latent"` in the pipeline and set the `vae` to `None`. Pass the latents to the [`~utils.remote_decode`] function. For Flux, the latents are packed so the `height` and `width` also need to be passed. The specific `scaling_factor` and `shift_factor` values for each model can be found in the [Remote inference](../hybrid_inference/api_reference) API reference.
<hfoptions id="decode">
<hfoption id="Flux">
```py
from diffusers import FluxPipeline
pipeline = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-schnell",
torch_dtype=torch.bfloat16,
vae=None,
device_map="cuda"
)
prompt = """
A photorealistic Apollo-era photograph of a cat in a small astronaut suit with a bubble helmet, standing on the Moon and holding a flagpole planted in the dusty lunar soil. The flag shows a colorful paw-print emblem. Earth glows in the black sky above the stark gray surface, with sharp shadows and high-contrast lighting like vintage NASA photos.
"""
latent = pipeline(
prompt=prompt,
guidance_scale=0.0,
num_inference_steps=4,
output_type="latent",
).images
image = remote_decode(
endpoint="https://whhx50ex1aryqvw6.us-east-1.aws.endpoints.huggingface.cloud/",
tensor=latent,
height=1024,
width=1024,
scaling_factor=0.3611,
shift_factor=0.1159,
)
image.save("image.jpg")
```
</hfoption>
<hfoption id="HunyuanVideo">
```py
import torch
from diffusers import HunyuanVideoPipeline, HunyuanVideoTransformer3DModel
transformer = HunyuanVideoTransformer3DModel.from_pretrained(
"hunyuanvideo-community/HunyuanVideo", subfolder="transformer", torch_dtype=torch.bfloat16
)
pipeline = HunyuanVideoPipeline.from_pretrained(
model_id, transformer=transformer, vae=None, torch_dtype=torch.float16, device_map="cuda"
)
latent = pipeline(
prompt="A cat walks on the grass, realistic",
height=320,
width=512,
num_frames=61,
num_inference_steps=30,
output_type="latent",
).frames
video = remote_decode(
endpoint="https://o7ywnmrahorts457.us-east-1.aws.endpoints.huggingface.cloud/",
tensor=latent,
output_type="mp4",
)
if isinstance(video, bytes):
with open("video.mp4", "wb") as f:
f.write(video)
```
</hfoption>
</hfoptions>
## Queuing
Remote inference supports queuing to process multiple generation requests. While the current latent is being decoded, you can queue the next prompt.
```py
import queue
import threading
from IPython.display import display
from diffusers import StableDiffusionXLPipeline
def decode_worker(q: queue.Queue):
while True:
item = q.get()
if item is None:
break
image = remote_decode(
endpoint="https://q1bj3bpq6kzilnsu.us-east-1.aws.endpoints.huggingface.cloud/",
tensor=item,
scaling_factor=0.13025,
)
display(image)
q.task_done()
q = queue.Queue()
thread = threading.Thread(target=decode_worker, args=(q,), daemon=True)
thread.start()
def decode(latent: torch.Tensor):
q.put(latent)
prompts = [
"A grainy Apollo-era style photograph of a cat in a snug astronaut suit with a bubble helmet, standing on the lunar surface and gripping a flag with a paw-print emblem. The gray Moon landscape stretches behind it, Earth glowing vividly in the black sky, shadows crisp and high-contrast.",
"A vintage 1960s sci-fi pulp magazine cover illustration of a heroic cat astronaut planting a flag on the Moon. Bold, saturated colors, exaggerated space gear, playful typography floating in the background, Earth painted in bright blues and greens.",
"A hyper-detailed cinematic shot of a cat astronaut on the Moon holding a fluttering flag, fur visible through the helmet glass, lunar dust scattering under its feet. The vastness of space and Earth in the distance create an epic, awe-inspiring tone.",
"A colorful cartoon drawing of a happy cat wearing a chunky, oversized spacesuit, proudly holding a flag with a big paw print on it. The Moons surface is simplified with craters drawn like doodles, and Earth in the sky has a smiling face.",
"A monochrome 1969-style press photo of a “first cat on the Moon” moment. The cat, in a tiny astronaut suit, stands by a planted flag, with grainy textures, scratches, and a blurred Earth in the background, mimicking old archival space photos."
]
pipeline = StableDiffusionXLPipeline.from_pretrained(
"https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16,
vae=None,
device_map="cuda"
)
## Why use Hybrid Inference?
pipeline.unet = pipeline.unet.to(memory_format=torch.channels_last)
pipeline.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
Hybrid Inference offers a fast and simple way to offload local generation requirements.
_ = pipeline(
prompt=prompts[0],
output_type="latent",
)
- 🚀 **Reduced Requirements:** Access powerful models without expensive hardware.
- 💎 **Without Compromise:** Achieve the highest quality without sacrificing performance.
- 💰 **Cost Effective:** It's free! 🤑
- 🎯 **Diverse Use Cases:** Fully compatible with Diffusers 🧨 and the wider community.
- 🔧 **Developer-Friendly:** Simple requests, fast responses.
for prompt in prompts:
latent = pipeline(
prompt=prompt,
output_type="latent",
).images
decode(latent)
---
q.put(None)
thread.join()
```
## Available Models
## Benchmarks
* **VAE Decode 🖼️:** Quickly decode latent representations into high-quality images without compromising performance or workflow speed.
* **VAE Encode 🔢:** Efficiently encode images into latent representations for generation and training.
* **Text Encoders 📃 (coming soon):** Compute text embeddings for your prompts quickly and accurately, ensuring a smooth and high-quality workflow.
The tables demonstrate the memory requirements for encoding and decoding with Stable Diffusion v1.5 and SDXL on different GPUs.
---
For the majority of these GPUs, the memory usage dictates whether other models (text encoders, UNet/transformer) need to be offloaded or required tiled encoding. The latter two techniques increases inference time and impacts quality.
## Integrations
<details><summary>Encoding - Stable Diffusion v1.5</summary>
* **[SD.Next](https://github.com/vladmandic/sdnext):** All-in-one UI with direct supports Hybrid Inference.
* **[ComfyUI-HFRemoteVae](https://github.com/kijai/ComfyUI-HFRemoteVae):** ComfyUI node for Hybrid Inference.
| GPU | Resolution | Time (seconds) | Memory (%) | Tiled Time (secs) | Tiled Memory (%) |
|:------------------------------|:-------------|-----------------:|-------------:|--------------------:|-------------------:|
| NVIDIA GeForce RTX 4090 | 512x512 | 0.015 | 3.51901 | 0.015 | 3.51901 |
| NVIDIA GeForce RTX 4090 | 256x256 | 0.004 | 1.3154 | 0.005 | 1.3154 |
| NVIDIA GeForce RTX 4090 | 2048x2048 | 0.402 | 47.1852 | 0.496 | 3.51901 |
| NVIDIA GeForce RTX 4090 | 1024x1024 | 0.078 | 12.2658 | 0.094 | 3.51901 |
| NVIDIA GeForce RTX 4080 SUPER | 512x512 | 0.023 | 5.30105 | 0.023 | 5.30105 |
| NVIDIA GeForce RTX 4080 SUPER | 256x256 | 0.006 | 1.98152 | 0.006 | 1.98152 |
| NVIDIA GeForce RTX 4080 SUPER | 2048x2048 | 0.574 | 71.08 | 0.656 | 5.30105 |
| NVIDIA GeForce RTX 4080 SUPER | 1024x1024 | 0.111 | 18.4772 | 0.14 | 5.30105 |
| NVIDIA GeForce RTX 3090 | 512x512 | 0.032 | 3.52782 | 0.032 | 3.52782 |
| NVIDIA GeForce RTX 3090 | 256x256 | 0.01 | 1.31869 | 0.009 | 1.31869 |
| NVIDIA GeForce RTX 3090 | 2048x2048 | 0.742 | 47.3033 | 0.954 | 3.52782 |
| NVIDIA GeForce RTX 3090 | 1024x1024 | 0.136 | 12.2965 | 0.207 | 3.52782 |
| NVIDIA GeForce RTX 3080 | 512x512 | 0.036 | 8.51761 | 0.036 | 8.51761 |
| NVIDIA GeForce RTX 3080 | 256x256 | 0.01 | 3.18387 | 0.01 | 3.18387 |
| NVIDIA GeForce RTX 3080 | 2048x2048 | 0.863 | 86.7424 | 1.191 | 8.51761 |
| NVIDIA GeForce RTX 3080 | 1024x1024 | 0.157 | 29.6888 | 0.227 | 8.51761 |
| NVIDIA GeForce RTX 3070 | 512x512 | 0.051 | 10.6941 | 0.051 | 10.6941 |
| NVIDIA GeForce RTX 3070 | 256x256 | 0.015 | 3.99743 | 0.015 | 3.99743 |
| NVIDIA GeForce RTX 3070 | 2048x2048 | 1.217 | 96.054 | 1.482 | 10.6941 |
| NVIDIA GeForce RTX 3070 | 1024x1024 | 0.223 | 37.2751 | 0.327 | 10.6941 |
## Changelog
</details>
- March 10 2025: Added VAE encode
- March 2 2025: Initial release with VAE decoding
<details><summary>Encoding SDXL</summary>
## Contents
| GPU | Resolution | Time (seconds) | Memory Consumed (%) | Tiled Time (seconds) | Tiled Memory (%) |
|:------------------------------|:-------------|-----------------:|----------------------:|-----------------------:|-------------------:|
| NVIDIA GeForce RTX 4090 | 512x512 | 0.029 | 4.95707 | 0.029 | 4.95707 |
| NVIDIA GeForce RTX 4090 | 256x256 | 0.007 | 2.29666 | 0.007 | 2.29666 |
| NVIDIA GeForce RTX 4090 | 2048x2048 | 0.873 | 66.3452 | 0.863 | 15.5649 |
| NVIDIA GeForce RTX 4090 | 1024x1024 | 0.142 | 15.5479 | 0.143 | 15.5479 |
| NVIDIA GeForce RTX 4080 SUPER | 512x512 | 0.044 | 7.46735 | 0.044 | 7.46735 |
| NVIDIA GeForce RTX 4080 SUPER | 256x256 | 0.01 | 3.4597 | 0.01 | 3.4597 |
| NVIDIA GeForce RTX 4080 SUPER | 2048x2048 | 1.317 | 87.1615 | 1.291 | 23.447 |
| NVIDIA GeForce RTX 4080 SUPER | 1024x1024 | 0.213 | 23.4215 | 0.214 | 23.4215 |
| NVIDIA GeForce RTX 3090 | 512x512 | 0.058 | 5.65638 | 0.058 | 5.65638 |
| NVIDIA GeForce RTX 3090 | 256x256 | 0.016 | 2.45081 | 0.016 | 2.45081 |
| NVIDIA GeForce RTX 3090 | 2048x2048 | 1.755 | 77.8239 | 1.614 | 18.4193 |
| NVIDIA GeForce RTX 3090 | 1024x1024 | 0.265 | 18.4023 | 0.265 | 18.4023 |
| NVIDIA GeForce RTX 3080 | 512x512 | 0.064 | 13.6568 | 0.064 | 13.6568 |
| NVIDIA GeForce RTX 3080 | 256x256 | 0.018 | 5.91728 | 0.018 | 5.91728 |
| NVIDIA GeForce RTX 3080 | 2048x2048 | OOM | OOM | 1.866 | 44.4717 |
| NVIDIA GeForce RTX 3080 | 1024x1024 | 0.302 | 44.4308 | 0.302 | 44.4308 |
| NVIDIA GeForce RTX 3070 | 512x512 | 0.093 | 17.1465 | 0.093 | 17.1465 |
| NVIDIA GeForce RTX 3070 | 256x256 | 0.025 | 7.42931 | 0.026 | 7.42931 |
| NVIDIA GeForce RTX 3070 | 2048x2048 | OOM | OOM | 2.674 | 55.8355 |
| NVIDIA GeForce RTX 3070 | 1024x1024 | 0.443 | 55.7841 | 0.443 | 55.7841 |
The documentation is organized into three sections:
</details>
* **VAE Decode** Learn the basics of how to use VAE Decode with Hybrid Inference.
* **VAE Encode** Learn the basics of how to use VAE Encode with Hybrid Inference.
* **API Reference** Dive into task-specific settings and parameters.
<details><summary>Decoding - Stable Diffusion v1.5</summary>
| GPU | Resolution | Time (seconds) | Memory (%) | Tiled Time (secs) | Tiled Memory (%) |
| --- | --- | --- | --- | --- | --- |
| NVIDIA GeForce RTX 4090 | 512x512 | 0.031 | 5.60% | 0.031 (0%) | 5.60% |
| NVIDIA GeForce RTX 4090 | 1024x1024 | 0.148 | 20.00% | 0.301 (+103%) | 5.60% |
| NVIDIA GeForce RTX 4080 | 512x512 | 0.05 | 8.40% | 0.050 (0%) | 8.40% |
| NVIDIA GeForce RTX 4080 | 1024x1024 | 0.224 | 30.00% | 0.356 (+59%) | 8.40% |
| NVIDIA GeForce RTX 4070 Ti | 512x512 | 0.066 | 11.30% | 0.066 (0%) | 11.30% |
| NVIDIA GeForce RTX 4070 Ti | 1024x1024 | 0.284 | 40.50% | 0.454 (+60%) | 11.40% |
| NVIDIA GeForce RTX 3090 | 512x512 | 0.062 | 5.20% | 0.062 (0%) | 5.20% |
| NVIDIA GeForce RTX 3090 | 1024x1024 | 0.253 | 18.50% | 0.464 (+83%) | 5.20% |
| NVIDIA GeForce RTX 3080 | 512x512 | 0.07 | 12.80% | 0.070 (0%) | 12.80% |
| NVIDIA GeForce RTX 3080 | 1024x1024 | 0.286 | 45.30% | 0.466 (+63%) | 12.90% |
| NVIDIA GeForce RTX 3070 | 512x512 | 0.102 | 15.90% | 0.102 (0%) | 15.90% |
| NVIDIA GeForce RTX 3070 | 1024x1024 | 0.421 | 56.30% | 0.746 (+77%) | 16.00% |
</details>
<details><summary>Decoding SDXL</summary>
| GPU | Resolution | Time (seconds) | Memory Consumed (%) | Tiled Time (seconds) | Tiled Memory (%) |
| --- | --- | --- | --- | --- | --- |
| NVIDIA GeForce RTX 4090 | 512x512 | 0.057 | 10.00% | 0.057 (0%) | 10.00% |
| NVIDIA GeForce RTX 4090 | 1024x1024 | 0.256 | 35.50% | 0.257 (+0.4%) | 35.50% |
| NVIDIA GeForce RTX 4080 | 512x512 | 0.092 | 15.00% | 0.092 (0%) | 15.00% |
| NVIDIA GeForce RTX 4080 | 1024x1024 | 0.406 | 53.30% | 0.406 (0%) | 53.30% |
| NVIDIA GeForce RTX 4070 Ti | 512x512 | 0.121 | 20.20% | 0.120 (-0.8%) | 20.20% |
| NVIDIA GeForce RTX 4070 Ti | 1024x1024 | 0.519 | 72.00% | 0.519 (0%) | 72.00% |
| NVIDIA GeForce RTX 3090 | 512x512 | 0.107 | 10.50% | 0.107 (0%) | 10.50% |
| NVIDIA GeForce RTX 3090 | 1024x1024 | 0.459 | 38.00% | 0.460 (+0.2%) | 38.00% |
| NVIDIA GeForce RTX 3080 | 512x512 | 0.121 | 25.60% | 0.121 (0%) | 25.60% |
| NVIDIA GeForce RTX 3080 | 1024x1024 | 0.524 | 93.00% | 0.524 (0%) | 93.00% |
| NVIDIA GeForce RTX 3070 | 512x512 | 0.183 | 31.80% | 0.183 (0%) | 31.80% |
| NVIDIA GeForce RTX 3070 | 1024x1024 | 0.794 | 96.40% | 0.794 (0%) | 96.40% |
</details>
## Resources
- Remote inference is also supported in [SD.Next](https://github.com/vladmandic/sdnext) and [ComfyUI-HFRemoteVae](https://github.com/kijai/ComfyUI-HFRemoteVae).
- Refer to the [Remote VAEs for decoding with Inference Endpoints](https://huggingface.co/blog/remote_vae) blog post to learn more.

View File

@@ -1,345 +0,0 @@
# Getting Started: VAE Decode with Hybrid Inference
VAE decode is an essential component of diffusion models - turning latent representations into images or videos.
## Memory
These tables demonstrate the VRAM requirements for VAE decode with SD v1 and SD XL on different GPUs.
For the majority of these GPUs the memory usage % dictates other models (text encoders, UNet/Transformer) must be offloaded, or tiled decoding has to be used which increases time taken and impacts quality.
<details><summary>SD v1.5</summary>
| GPU | Resolution | Time (seconds) | Memory (%) | Tiled Time (secs) | Tiled Memory (%) |
| --- | --- | --- | --- | --- | --- |
| NVIDIA GeForce RTX 4090 | 512x512 | 0.031 | 5.60% | 0.031 (0%) | 5.60% |
| NVIDIA GeForce RTX 4090 | 1024x1024 | 0.148 | 20.00% | 0.301 (+103%) | 5.60% |
| NVIDIA GeForce RTX 4080 | 512x512 | 0.05 | 8.40% | 0.050 (0%) | 8.40% |
| NVIDIA GeForce RTX 4080 | 1024x1024 | 0.224 | 30.00% | 0.356 (+59%) | 8.40% |
| NVIDIA GeForce RTX 4070 Ti | 512x512 | 0.066 | 11.30% | 0.066 (0%) | 11.30% |
| NVIDIA GeForce RTX 4070 Ti | 1024x1024 | 0.284 | 40.50% | 0.454 (+60%) | 11.40% |
| NVIDIA GeForce RTX 3090 | 512x512 | 0.062 | 5.20% | 0.062 (0%) | 5.20% |
| NVIDIA GeForce RTX 3090 | 1024x1024 | 0.253 | 18.50% | 0.464 (+83%) | 5.20% |
| NVIDIA GeForce RTX 3080 | 512x512 | 0.07 | 12.80% | 0.070 (0%) | 12.80% |
| NVIDIA GeForce RTX 3080 | 1024x1024 | 0.286 | 45.30% | 0.466 (+63%) | 12.90% |
| NVIDIA GeForce RTX 3070 | 512x512 | 0.102 | 15.90% | 0.102 (0%) | 15.90% |
| NVIDIA GeForce RTX 3070 | 1024x1024 | 0.421 | 56.30% | 0.746 (+77%) | 16.00% |
</details>
<details><summary>SDXL</summary>
| GPU | Resolution | Time (seconds) | Memory Consumed (%) | Tiled Time (seconds) | Tiled Memory (%) |
| --- | --- | --- | --- | --- | --- |
| NVIDIA GeForce RTX 4090 | 512x512 | 0.057 | 10.00% | 0.057 (0%) | 10.00% |
| NVIDIA GeForce RTX 4090 | 1024x1024 | 0.256 | 35.50% | 0.257 (+0.4%) | 35.50% |
| NVIDIA GeForce RTX 4080 | 512x512 | 0.092 | 15.00% | 0.092 (0%) | 15.00% |
| NVIDIA GeForce RTX 4080 | 1024x1024 | 0.406 | 53.30% | 0.406 (0%) | 53.30% |
| NVIDIA GeForce RTX 4070 Ti | 512x512 | 0.121 | 20.20% | 0.120 (-0.8%) | 20.20% |
| NVIDIA GeForce RTX 4070 Ti | 1024x1024 | 0.519 | 72.00% | 0.519 (0%) | 72.00% |
| NVIDIA GeForce RTX 3090 | 512x512 | 0.107 | 10.50% | 0.107 (0%) | 10.50% |
| NVIDIA GeForce RTX 3090 | 1024x1024 | 0.459 | 38.00% | 0.460 (+0.2%) | 38.00% |
| NVIDIA GeForce RTX 3080 | 512x512 | 0.121 | 25.60% | 0.121 (0%) | 25.60% |
| NVIDIA GeForce RTX 3080 | 1024x1024 | 0.524 | 93.00% | 0.524 (0%) | 93.00% |
| NVIDIA GeForce RTX 3070 | 512x512 | 0.183 | 31.80% | 0.183 (0%) | 31.80% |
| NVIDIA GeForce RTX 3070 | 1024x1024 | 0.794 | 96.40% | 0.794 (0%) | 96.40% |
</details>
## Available VAEs
| | **Endpoint** | **Model** |
|:-:|:-----------:|:--------:|
| **Stable Diffusion v1** | [https://q1bj3bpq6kzilnsu.us-east-1.aws.endpoints.huggingface.cloud](https://q1bj3bpq6kzilnsu.us-east-1.aws.endpoints.huggingface.cloud) | [`stabilityai/sd-vae-ft-mse`](https://hf.co/stabilityai/sd-vae-ft-mse) |
| **Stable Diffusion XL** | [https://x2dmsqunjd6k9prw.us-east-1.aws.endpoints.huggingface.cloud](https://x2dmsqunjd6k9prw.us-east-1.aws.endpoints.huggingface.cloud) | [`madebyollin/sdxl-vae-fp16-fix`](https://hf.co/madebyollin/sdxl-vae-fp16-fix) |
| **Flux** | [https://whhx50ex1aryqvw6.us-east-1.aws.endpoints.huggingface.cloud](https://whhx50ex1aryqvw6.us-east-1.aws.endpoints.huggingface.cloud) | [`black-forest-labs/FLUX.1-schnell`](https://hf.co/black-forest-labs/FLUX.1-schnell) |
| **HunyuanVideo** | [https://o7ywnmrahorts457.us-east-1.aws.endpoints.huggingface.cloud](https://o7ywnmrahorts457.us-east-1.aws.endpoints.huggingface.cloud) | [`hunyuanvideo-community/HunyuanVideo`](https://hf.co/hunyuanvideo-community/HunyuanVideo) |
> [!TIP]
> Model support can be requested [here](https://github.com/huggingface/diffusers/issues/new?template=remote-vae-pilot-feedback.yml).
## Code
> [!TIP]
> Install `diffusers` from `main` to run the code: `pip install git+https://github.com/huggingface/diffusers@main`
A helper method simplifies interacting with Hybrid Inference.
```python
from diffusers.utils.remote_utils import remote_decode
```
### Basic example
Here, we show how to use the remote VAE on random tensors.
<details><summary>Code</summary>
```python
image = remote_decode(
endpoint="https://q1bj3bpq6kzilnsu.us-east-1.aws.endpoints.huggingface.cloud/",
tensor=torch.randn([1, 4, 64, 64], dtype=torch.float16),
scaling_factor=0.18215,
)
```
</details>
<figure class="image flex flex-col items-center justify-center text-center m-0 w-full">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/remote_vae/output.png"/>
</figure>
Usage for Flux is slightly different. Flux latents are packed so we need to send the `height` and `width`.
<details><summary>Code</summary>
```python
image = remote_decode(
endpoint="https://whhx50ex1aryqvw6.us-east-1.aws.endpoints.huggingface.cloud/",
tensor=torch.randn([1, 4096, 64], dtype=torch.float16),
height=1024,
width=1024,
scaling_factor=0.3611,
shift_factor=0.1159,
)
```
</details>
<figure class="image flex flex-col items-center justify-center text-center m-0 w-full">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/remote_vae/flux_random_latent.png"/>
</figure>
Finally, an example for HunyuanVideo.
<details><summary>Code</summary>
```python
video = remote_decode(
endpoint="https://o7ywnmrahorts457.us-east-1.aws.endpoints.huggingface.cloud/",
tensor=torch.randn([1, 16, 3, 40, 64], dtype=torch.float16),
output_type="mp4",
)
with open("video.mp4", "wb") as f:
f.write(video)
```
</details>
<figure class="image flex flex-col items-center justify-center text-center m-0 w-full">
<video
alt="queue.mp4"
autoplay loop autobuffer muted playsinline
>
<source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/remote_vae/video_1.mp4" type="video/mp4">
</video>
</figure>
### Generation
But we want to use the VAE on an actual pipeline to get an actual image, not random noise. The example below shows how to do it with SD v1.5.
<details><summary>Code</summary>
```python
from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5",
torch_dtype=torch.float16,
variant="fp16",
vae=None,
).to("cuda")
prompt = "Strawberry ice cream, in a stylish modern glass, coconut, splashing milk cream and honey, in a gradient purple background, fluid motion, dynamic movement, cinematic lighting, Mysterious"
latent = pipe(
prompt=prompt,
output_type="latent",
).images
image = remote_decode(
endpoint="https://q1bj3bpq6kzilnsu.us-east-1.aws.endpoints.huggingface.cloud/",
tensor=latent,
scaling_factor=0.18215,
)
image.save("test.jpg")
```
</details>
<figure class="image flex flex-col items-center justify-center text-center m-0 w-full">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/remote_vae/test.jpg"/>
</figure>
Heres another example with Flux.
<details><summary>Code</summary>
```python
from diffusers import FluxPipeline
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-schnell",
torch_dtype=torch.bfloat16,
vae=None,
).to("cuda")
prompt = "Strawberry ice cream, in a stylish modern glass, coconut, splashing milk cream and honey, in a gradient purple background, fluid motion, dynamic movement, cinematic lighting, Mysterious"
latent = pipe(
prompt=prompt,
guidance_scale=0.0,
num_inference_steps=4,
output_type="latent",
).images
image = remote_decode(
endpoint="https://whhx50ex1aryqvw6.us-east-1.aws.endpoints.huggingface.cloud/",
tensor=latent,
height=1024,
width=1024,
scaling_factor=0.3611,
shift_factor=0.1159,
)
image.save("test.jpg")
```
</details>
<figure class="image flex flex-col items-center justify-center text-center m-0 w-full">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/remote_vae/test_1.jpg"/>
</figure>
Heres an example with HunyuanVideo.
<details><summary>Code</summary>
```python
from diffusers import HunyuanVideoPipeline, HunyuanVideoTransformer3DModel
model_id = "hunyuanvideo-community/HunyuanVideo"
transformer = HunyuanVideoTransformer3DModel.from_pretrained(
model_id, subfolder="transformer", torch_dtype=torch.bfloat16
)
pipe = HunyuanVideoPipeline.from_pretrained(
model_id, transformer=transformer, vae=None, torch_dtype=torch.float16
).to("cuda")
latent = pipe(
prompt="A cat walks on the grass, realistic",
height=320,
width=512,
num_frames=61,
num_inference_steps=30,
output_type="latent",
).frames
video = remote_decode(
endpoint="https://o7ywnmrahorts457.us-east-1.aws.endpoints.huggingface.cloud/",
tensor=latent,
output_type="mp4",
)
if isinstance(video, bytes):
with open("video.mp4", "wb") as f:
f.write(video)
```
</details>
<figure class="image flex flex-col items-center justify-center text-center m-0 w-full">
<video
alt="queue.mp4"
autoplay loop autobuffer muted playsinline
>
<source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/remote_vae/video.mp4" type="video/mp4">
</video>
</figure>
### Queueing
One of the great benefits of using a remote VAE is that we can queue multiple generation requests. While the current latent is being processed for decoding, we can already queue another one. This helps improve concurrency.
<details><summary>Code</summary>
```python
import queue
import threading
from IPython.display import display
from diffusers import StableDiffusionPipeline
def decode_worker(q: queue.Queue):
while True:
item = q.get()
if item is None:
break
image = remote_decode(
endpoint="https://q1bj3bpq6kzilnsu.us-east-1.aws.endpoints.huggingface.cloud/",
tensor=item,
scaling_factor=0.18215,
)
display(image)
q.task_done()
q = queue.Queue()
thread = threading.Thread(target=decode_worker, args=(q,), daemon=True)
thread.start()
def decode(latent: torch.Tensor):
q.put(latent)
prompts = [
"Blueberry ice cream, in a stylish modern glass , ice cubes, nuts, mint leaves, splashing milk cream, in a gradient purple background, fluid motion, dynamic movement, cinematic lighting, Mysterious",
"Lemonade in a glass, mint leaves, in an aqua and white background, flowers, ice cubes, halo, fluid motion, dynamic movement, soft lighting, digital painting, rule of thirds composition, Art by Greg rutkowski, Coby whitmore",
"Comic book art, beautiful, vintage, pastel neon colors, extremely detailed pupils, delicate features, light on face, slight smile, Artgerm, Mary Blair, Edmund Dulac, long dark locks, bangs, glowing, fashionable style, fairytale ambience, hot pink.",
"Masterpiece, vanilla cone ice cream garnished with chocolate syrup, crushed nuts, choco flakes, in a brown background, gold, cinematic lighting, Art by WLOP",
"A bowl of milk, falling cornflakes, berries, blueberries, in a white background, soft lighting, intricate details, rule of thirds, octane render, volumetric lighting",
"Cold Coffee with cream, crushed almonds, in a glass, choco flakes, ice cubes, wet, in a wooden background, cinematic lighting, hyper realistic painting, art by Carne Griffiths, octane render, volumetric lighting, fluid motion, dynamic movement, muted colors,",
]
pipe = StableDiffusionPipeline.from_pretrained(
"Lykon/dreamshaper-8",
torch_dtype=torch.float16,
vae=None,
).to("cuda")
pipe.unet = pipe.unet.to(memory_format=torch.channels_last)
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
_ = pipe(
prompt=prompts[0],
output_type="latent",
)
for prompt in prompts:
latent = pipe(
prompt=prompt,
output_type="latent",
).images
decode(latent)
q.put(None)
thread.join()
```
</details>
<figure class="image flex flex-col items-center justify-center text-center m-0 w-full">
<video
alt="queue.mp4"
autoplay loop autobuffer muted playsinline
>
<source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/remote_vae/queue.mp4" type="video/mp4">
</video>
</figure>
## Integrations
* **[SD.Next](https://github.com/vladmandic/sdnext):** All-in-one UI with direct supports Hybrid Inference.
* **[ComfyUI-HFRemoteVae](https://github.com/kijai/ComfyUI-HFRemoteVae):** ComfyUI node for Hybrid Inference.

View File

@@ -1,183 +0,0 @@
# Getting Started: VAE Encode with Hybrid Inference
VAE encode is used for training, image-to-image and image-to-video - turning into images or videos into latent representations.
## Memory
These tables demonstrate the VRAM requirements for VAE encode with SD v1 and SD XL on different GPUs.
For the majority of these GPUs the memory usage % dictates other models (text encoders, UNet/Transformer) must be offloaded, or tiled encoding has to be used which increases time taken and impacts quality.
<details><summary>SD v1.5</summary>
| GPU | Resolution | Time (seconds) | Memory (%) | Tiled Time (secs) | Tiled Memory (%) |
|:------------------------------|:-------------|-----------------:|-------------:|--------------------:|-------------------:|
| NVIDIA GeForce RTX 4090 | 512x512 | 0.015 | 3.51901 | 0.015 | 3.51901 |
| NVIDIA GeForce RTX 4090 | 256x256 | 0.004 | 1.3154 | 0.005 | 1.3154 |
| NVIDIA GeForce RTX 4090 | 2048x2048 | 0.402 | 47.1852 | 0.496 | 3.51901 |
| NVIDIA GeForce RTX 4090 | 1024x1024 | 0.078 | 12.2658 | 0.094 | 3.51901 |
| NVIDIA GeForce RTX 4080 SUPER | 512x512 | 0.023 | 5.30105 | 0.023 | 5.30105 |
| NVIDIA GeForce RTX 4080 SUPER | 256x256 | 0.006 | 1.98152 | 0.006 | 1.98152 |
| NVIDIA GeForce RTX 4080 SUPER | 2048x2048 | 0.574 | 71.08 | 0.656 | 5.30105 |
| NVIDIA GeForce RTX 4080 SUPER | 1024x1024 | 0.111 | 18.4772 | 0.14 | 5.30105 |
| NVIDIA GeForce RTX 3090 | 512x512 | 0.032 | 3.52782 | 0.032 | 3.52782 |
| NVIDIA GeForce RTX 3090 | 256x256 | 0.01 | 1.31869 | 0.009 | 1.31869 |
| NVIDIA GeForce RTX 3090 | 2048x2048 | 0.742 | 47.3033 | 0.954 | 3.52782 |
| NVIDIA GeForce RTX 3090 | 1024x1024 | 0.136 | 12.2965 | 0.207 | 3.52782 |
| NVIDIA GeForce RTX 3080 | 512x512 | 0.036 | 8.51761 | 0.036 | 8.51761 |
| NVIDIA GeForce RTX 3080 | 256x256 | 0.01 | 3.18387 | 0.01 | 3.18387 |
| NVIDIA GeForce RTX 3080 | 2048x2048 | 0.863 | 86.7424 | 1.191 | 8.51761 |
| NVIDIA GeForce RTX 3080 | 1024x1024 | 0.157 | 29.6888 | 0.227 | 8.51761 |
| NVIDIA GeForce RTX 3070 | 512x512 | 0.051 | 10.6941 | 0.051 | 10.6941 |
| NVIDIA GeForce RTX 3070 | 256x256 | 0.015 | 3.99743 | 0.015 | 3.99743 |
| NVIDIA GeForce RTX 3070 | 2048x2048 | 1.217 | 96.054 | 1.482 | 10.6941 |
| NVIDIA GeForce RTX 3070 | 1024x1024 | 0.223 | 37.2751 | 0.327 | 10.6941 |
</details>
<details><summary>SDXL</summary>
| GPU | Resolution | Time (seconds) | Memory Consumed (%) | Tiled Time (seconds) | Tiled Memory (%) |
|:------------------------------|:-------------|-----------------:|----------------------:|-----------------------:|-------------------:|
| NVIDIA GeForce RTX 4090 | 512x512 | 0.029 | 4.95707 | 0.029 | 4.95707 |
| NVIDIA GeForce RTX 4090 | 256x256 | 0.007 | 2.29666 | 0.007 | 2.29666 |
| NVIDIA GeForce RTX 4090 | 2048x2048 | 0.873 | 66.3452 | 0.863 | 15.5649 |
| NVIDIA GeForce RTX 4090 | 1024x1024 | 0.142 | 15.5479 | 0.143 | 15.5479 |
| NVIDIA GeForce RTX 4080 SUPER | 512x512 | 0.044 | 7.46735 | 0.044 | 7.46735 |
| NVIDIA GeForce RTX 4080 SUPER | 256x256 | 0.01 | 3.4597 | 0.01 | 3.4597 |
| NVIDIA GeForce RTX 4080 SUPER | 2048x2048 | 1.317 | 87.1615 | 1.291 | 23.447 |
| NVIDIA GeForce RTX 4080 SUPER | 1024x1024 | 0.213 | 23.4215 | 0.214 | 23.4215 |
| NVIDIA GeForce RTX 3090 | 512x512 | 0.058 | 5.65638 | 0.058 | 5.65638 |
| NVIDIA GeForce RTX 3090 | 256x256 | 0.016 | 2.45081 | 0.016 | 2.45081 |
| NVIDIA GeForce RTX 3090 | 2048x2048 | 1.755 | 77.8239 | 1.614 | 18.4193 |
| NVIDIA GeForce RTX 3090 | 1024x1024 | 0.265 | 18.4023 | 0.265 | 18.4023 |
| NVIDIA GeForce RTX 3080 | 512x512 | 0.064 | 13.6568 | 0.064 | 13.6568 |
| NVIDIA GeForce RTX 3080 | 256x256 | 0.018 | 5.91728 | 0.018 | 5.91728 |
| NVIDIA GeForce RTX 3080 | 2048x2048 | OOM | OOM | 1.866 | 44.4717 |
| NVIDIA GeForce RTX 3080 | 1024x1024 | 0.302 | 44.4308 | 0.302 | 44.4308 |
| NVIDIA GeForce RTX 3070 | 512x512 | 0.093 | 17.1465 | 0.093 | 17.1465 |
| NVIDIA GeForce RTX 3070 | 256x256 | 0.025 | 7.42931 | 0.026 | 7.42931 |
| NVIDIA GeForce RTX 3070 | 2048x2048 | OOM | OOM | 2.674 | 55.8355 |
| NVIDIA GeForce RTX 3070 | 1024x1024 | 0.443 | 55.7841 | 0.443 | 55.7841 |
</details>
## Available VAEs
| | **Endpoint** | **Model** |
|:-:|:-----------:|:--------:|
| **Stable Diffusion v1** | [https://qc6479g0aac6qwy9.us-east-1.aws.endpoints.huggingface.cloud](https://qc6479g0aac6qwy9.us-east-1.aws.endpoints.huggingface.cloud) | [`stabilityai/sd-vae-ft-mse`](https://hf.co/stabilityai/sd-vae-ft-mse) |
| **Stable Diffusion XL** | [https://xjqqhmyn62rog84g.us-east-1.aws.endpoints.huggingface.cloud](https://xjqqhmyn62rog84g.us-east-1.aws.endpoints.huggingface.cloud) | [`madebyollin/sdxl-vae-fp16-fix`](https://hf.co/madebyollin/sdxl-vae-fp16-fix) |
| **Flux** | [https://ptccx55jz97f9zgo.us-east-1.aws.endpoints.huggingface.cloud](https://ptccx55jz97f9zgo.us-east-1.aws.endpoints.huggingface.cloud) | [`black-forest-labs/FLUX.1-schnell`](https://hf.co/black-forest-labs/FLUX.1-schnell) |
> [!TIP]
> Model support can be requested [here](https://github.com/huggingface/diffusers/issues/new?template=remote-vae-pilot-feedback.yml).
## Code
> [!TIP]
> Install `diffusers` from `main` to run the code: `pip install git+https://github.com/huggingface/diffusers@main`
A helper method simplifies interacting with Hybrid Inference.
```python
from diffusers.utils.remote_utils import remote_encode
```
### Basic example
Let's encode an image, then decode it to demonstrate.
<figure class="image flex flex-col items-center justify-center text-center m-0 w-full">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg"/>
</figure>
<details><summary>Code</summary>
```python
from diffusers.utils import load_image
from diffusers.utils.remote_utils import remote_decode
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg?download=true")
latent = remote_encode(
endpoint="https://ptccx55jz97f9zgo.us-east-1.aws.endpoints.huggingface.cloud/",
scaling_factor=0.3611,
shift_factor=0.1159,
)
decoded = remote_decode(
endpoint="https://whhx50ex1aryqvw6.us-east-1.aws.endpoints.huggingface.cloud/",
tensor=latent,
scaling_factor=0.3611,
shift_factor=0.1159,
)
```
</details>
<figure class="image flex flex-col items-center justify-center text-center m-0 w-full">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/remote_vae/decoded.png"/>
</figure>
### Generation
Now let's look at a generation example, we'll encode the image, generate then remotely decode too!
<details><summary>Code</summary>
```python
import torch
from diffusers import StableDiffusionImg2ImgPipeline
from diffusers.utils import load_image
from diffusers.utils.remote_utils import remote_decode, remote_encode
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5",
torch_dtype=torch.float16,
variant="fp16",
vae=None,
).to("cuda")
init_image = load_image(
"https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
)
init_image = init_image.resize((768, 512))
init_latent = remote_encode(
endpoint="https://qc6479g0aac6qwy9.us-east-1.aws.endpoints.huggingface.cloud/",
image=init_image,
scaling_factor=0.18215,
)
prompt = "A fantasy landscape, trending on artstation"
latent = pipe(
prompt=prompt,
image=init_latent,
strength=0.75,
output_type="latent",
).images
image = remote_decode(
endpoint="https://q1bj3bpq6kzilnsu.us-east-1.aws.endpoints.huggingface.cloud/",
tensor=latent,
scaling_factor=0.18215,
)
image.save("fantasy_landscape.jpg")
```
</details>
<figure class="image flex flex-col items-center justify-center text-center m-0 w-full">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/remote_vae/fantasy_landscape.png"/>
</figure>
## Integrations
* **[SD.Next](https://github.com/vladmandic/sdnext):** All-in-one UI with direct supports Hybrid Inference.
* **[ComfyUI-HFRemoteVae](https://github.com/kijai/ComfyUI-HFRemoteVae):** ComfyUI node for Hybrid Inference.

View File

@@ -140,7 +140,7 @@ class Florence2ImageAnnotatorBlock(ModularPipelineBlocks):
type_hint=str,
required=True,
default="mask_image",
description="""Output type from annotation predictions. Availabe options are
description="""Output type from annotation predictions. Available options are
mask_image:
-black and white mask image for the given image based on the task type
mask_overlay:
@@ -256,7 +256,7 @@ class Florence2ImageAnnotatorBlock(ModularPipelineBlocks):
type_hint=str,
required=True,
default="mask_image",
description="""Output type from annotation predictions. Availabe options are
description="""Output type from annotation predictions. Available options are
mask_image:
-black and white mask image for the given image based on the task type
mask_overlay:

View File

@@ -159,7 +159,7 @@ Change the [`~ComponentSpec.default_creation_method`] to `from_pretrained` and u
```py
guider_spec = t2i_pipeline.get_component_spec("guider")
guider_spec.default_creation_method="from_pretrained"
guider_spec.repo="YiYiXu/modular-loader-t2i-guider"
guider_spec.pretrained_model_name_or_path="YiYiXu/modular-loader-t2i-guider"
guider_spec.subfolder="pag_guider"
pag_guider = guider_spec.load()
t2i_pipeline.update_components(guider=pag_guider)

View File

@@ -53,7 +53,7 @@ The loop wrapper can pass additional arguments, like current iteration index, to
A loop block is a [`~modular_pipelines.ModularPipelineBlocks`], but the `__call__` method behaves differently.
- It recieves the iteration variable from the loop wrapper.
- It receives the iteration variable from the loop wrapper.
- It works directly with the [`~modular_pipelines.BlockState`] instead of the [`~modular_pipelines.PipelineState`].
- It doesn't require retrieving or updating the [`~modular_pipelines.BlockState`].

View File

@@ -313,14 +313,14 @@ unet_spec
ComponentSpec(
name='unet',
type_hint=<class 'diffusers.models.unets.unet_2d_condition.UNet2DConditionModel'>,
repo='RunDiffusion/Juggernaut-XL-v9',
pretrained_model_name_or_path='RunDiffusion/Juggernaut-XL-v9',
subfolder='unet',
variant='fp16',
default_creation_method='from_pretrained'
)
# modify to load from a different repository
unet_spec.repo = "stabilityai/stable-diffusion-xl-base-1.0"
unet_spec.pretrained_model_name_or_path = "stabilityai/stable-diffusion-xl-base-1.0"
# load component with modified spec
unet = unet_spec.load(torch_dtype=torch.float16)

View File

@@ -32,7 +32,7 @@ This guide will show you how to set and use the different attention backends.
The [`~ModelMixin.set_attention_backend`] method iterates through all the modules in the model and sets the appropriate attention backend to use. The attention backend setting persists until [`~ModelMixin.reset_attention_backend`] is called.
The example below demonstrates how to enable the `_flash_3_hub` implementation for FlashAttention-3 from the [kernel](https://github.com/huggingface/kernels) library, which allows you to instantly use optimized compute kernels from the Hub without requiring any setup.
The example below demonstrates how to enable the `_flash_3_hub` implementation for FlashAttention-3 from the [`kernels`](https://github.com/huggingface/kernels) library, which allows you to instantly use optimized compute kernels from the Hub without requiring any setup.
> [!NOTE]
> FlashAttention-3 is not supported for non-Hopper architectures, in which case, use FlashAttention with `set_attention_backend("flash")`.
@@ -141,10 +141,12 @@ Refer to the table below for a complete list of available attention backends and
| `flash` | [FlashAttention](https://github.com/Dao-AILab/flash-attention) | FlashAttention-2 |
| `flash_hub` | [FlashAttention](https://github.com/Dao-AILab/flash-attention) | FlashAttention-2 from kernels |
| `flash_varlen` | [FlashAttention](https://github.com/Dao-AILab/flash-attention) | Variable length FlashAttention |
| `flash_varlen_hub` | [FlashAttention](https://github.com/Dao-AILab/flash-attention) | Variable length FlashAttention from kernels |
| `aiter` | [AI Tensor Engine for ROCm](https://github.com/ROCm/aiter) | FlashAttention for AMD ROCm |
| `_flash_3` | [FlashAttention](https://github.com/Dao-AILab/flash-attention) | FlashAttention-3 |
| `_flash_varlen_3` | [FlashAttention](https://github.com/Dao-AILab/flash-attention) | Variable length FlashAttention-3 |
| `_flash_3_hub` | [FlashAttention](https://github.com/Dao-AILab/flash-attention) | FlashAttention-3 from kernels |
| `_flash_3_varlen_hub` | [FlashAttention](https://github.com/Dao-AILab/flash-attention) | Variable length FlashAttention-3 from kernels |
| `sage` | [SageAttention](https://github.com/thu-ml/SageAttention) | Quantized attention (INT8 QK) |
| `sage_hub` | [SageAttention](https://github.com/thu-ml/SageAttention) | Quantized attention (INT8 QK) from kernels |
| `sage_varlen` | [SageAttention](https://github.com/thu-ml/SageAttention) | Variable length SageAttention |
@@ -154,4 +156,4 @@ Refer to the table below for a complete list of available attention backends and
| `_sage_qk_int8_pv_fp16_triton` | [SageAttention](https://github.com/thu-ml/SageAttention) | INT8 QK + FP16 PV (Triton) |
| `xformers` | [xFormers](https://github.com/facebookresearch/xformers) | Memory-efficient attention |
</details>
</details>

View File

@@ -66,4 +66,48 @@ config = FasterCacheConfig(
tensor_format="BFCHW",
)
pipeline.transformer.enable_cache(config)
```
```
## FirstBlockCache
[FirstBlock Cache](https://huggingface.co/docs/diffusers/main/en/api/cache#diffusers.FirstBlockCacheConfig) checks how much the early layers of the denoiser changes from one timestep to the next. If the change is small, the model skips the expensive later layers and reuses the previous output.
```py
import torch
from diffusers import DiffusionPipeline
from diffusers.hooks import apply_first_block_cache, FirstBlockCacheConfig
pipeline = DiffusionPipeline.from_pretrained(
"Qwen/Qwen-Image", torch_dtype=torch.bfloat16
)
apply_first_block_cache(pipeline.transformer, FirstBlockCacheConfig(threshold=0.2))
```
## TaylorSeer Cache
[TaylorSeer Cache](https://huggingface.co/papers/2403.06923) accelerates diffusion inference by using Taylor series expansions to approximate and cache intermediate activations across denoising steps. The method predicts future outputs based on past computations, reusing them at specified intervals to reduce redundant calculations.
This caching mechanism delivers strong results with minimal additional memory overhead. For detailed performance analysis, see [our findings here](https://github.com/huggingface/diffusers/pull/12648#issuecomment-3610615080).
To enable TaylorSeer Cache, create a [`TaylorSeerCacheConfig`] and pass it to your pipeline's transformer:
- `cache_interval`: Number of steps to reuse cached outputs before performing a full forward pass
- `disable_cache_before_step`: Initial steps that use full computations to gather data for approximations
- `max_order`: Approximation accuracy (in theory, higher values improve quality but increase memory usage but we recommend it should be set to `1`)
```python
import torch
from diffusers import FluxPipeline, TaylorSeerCacheConfig
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=torch.bfloat16,
).to("cuda")
config = TaylorSeerCacheConfig(
cache_interval=5,
max_order=1,
disable_cache_before_step=10,
taylor_factors_dtype=torch.bfloat16,
)
pipe.transformer.enable_cache(config)
```

View File

@@ -11,7 +11,7 @@ specific language governing permissions and limitations under the License. -->
# NVIDIA ModelOpt
[NVIDIA-ModelOpt](https://github.com/NVIDIA/TensorRT-Model-Optimizer) is a unified library of state-of-the-art model optimization techniques like quantization, pruning, distillation, speculative decoding, etc. It compresses deep learning models for downstream deployment frameworks like TensorRT-LLM or TensorRT to optimize inference speed.
[NVIDIA-ModelOpt](https://github.com/NVIDIA/Model-Optimizer) is a unified library of state-of-the-art model optimization techniques like quantization, pruning, distillation, speculative decoding, etc. It compresses deep learning models for downstream deployment frameworks like TensorRT-LLM or TensorRT to optimize inference speed.
Before you begin, make sure you have nvidia_modelopt installed.
@@ -57,7 +57,7 @@ image.save("output.png")
>
> The quantization methods in NVIDIA-ModelOpt are designed to reduce the memory footprint of model weights using various QAT (Quantization-Aware Training) and PTQ (Post-Training Quantization) techniques while maintaining model performance. However, the actual performance gain during inference depends on the deployment framework (e.g., TRT-LLM, TensorRT) and the specific hardware configuration.
>
> More details can be found [here](https://github.com/NVIDIA/TensorRT-Model-Optimizer/tree/main/examples).
> More details can be found [here](https://github.com/NVIDIA/Model-Optimizer/tree/main/examples).
## NVIDIAModelOptConfig
@@ -86,7 +86,7 @@ The quantization methods supported are as follows:
| **NVFP4** | `nvfp4 weight only`, `nvfp4 block quantization` | `quant_type`, `quant_type + channel_quantize + block_quantize` | `channel_quantize = -1 is only supported for now`|
Refer to the [official modelopt documentation](https://nvidia.github.io/TensorRT-Model-Optimizer/) for a better understanding of the available quantization methods and the exhaustive list of configuration options available.
Refer to the [official modelopt documentation](https://nvidia.github.io/Model-Optimizer/) for a better understanding of the available quantization methods and the exhaustive list of configuration options available.
## Serializing and Deserializing quantized models

View File

@@ -33,7 +33,7 @@ pipeline_quant_config = PipelineQuantizationConfig(
)
pipeline = DiffusionPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
quantzation_config=pipeline_quant_config,
quantization_config=pipeline_quant_config,
torch_dtype=torch.bfloat16,
device_map="cuda"
)
@@ -50,7 +50,7 @@ pipeline_quant_config = PipelineQuantizationConfig(
)
pipeline = DiffusionPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
quantzation_config=pipeline_quant_config,
quantization_config=pipeline_quant_config,
torch_dtype=torch.bfloat16,
device_map="cuda"
)
@@ -70,7 +70,7 @@ pipeline_quant_config = PipelineQuantizationConfig(
)
pipeline = DiffusionPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
quantzation_config=pipeline_quant_config,
quantization_config=pipeline_quant_config,
torch_dtype=torch.bfloat16,
device_map="cuda"
)

View File

@@ -237,6 +237,8 @@ By selectively loading and unloading the models you need at a given stage and sh
Use [`~ModelMixin.set_attention_backend`] to switch to a more optimized attention backend. Refer to this [table](../optimization/attention_backends#available-backends) for a complete list of available backends.
Most attention backends are compatible with context parallelism. Open an [issue](https://github.com/huggingface/diffusers/issues/new) if a backend is not compatible.
### Ring Attention
Key (K) and value (V) representations communicate between devices using [Ring Attention](https://huggingface.co/papers/2310.01889). This ensures each split sees every other token's K/V. Each GPU computes attention for its local K/V and passes it to the next GPU in the ring. No single GPU holds the full sequence, which reduces communication latency.
@@ -245,38 +247,58 @@ Pass a [`ContextParallelConfig`] to the `parallel_config` argument of the transf
```py
import torch
from diffusers import AutoModel, QwenImagePipeline, ContextParallelConfig
from torch import distributed as dist
from diffusers import DiffusionPipeline, ContextParallelConfig
try:
torch.distributed.init_process_group("nccl")
rank = torch.distributed.get_rank()
device = torch.device("cuda", rank % torch.cuda.device_count())
def setup_distributed():
if not dist.is_initialized():
dist.init_process_group(backend="nccl")
rank = dist.get_rank()
device = torch.device(f"cuda:{rank}")
torch.cuda.set_device(device)
transformer = AutoModel.from_pretrained("Qwen/Qwen-Image", subfolder="transformer", torch_dtype=torch.bfloat16, parallel_config=ContextParallelConfig(ring_degree=2))
pipeline = QwenImagePipeline.from_pretrained("Qwen/Qwen-Image", transformer=transformer, torch_dtype=torch.bfloat16, device_map="cuda")
pipeline.transformer.set_attention_backend("flash")
return device
def main():
device = setup_distributed()
world_size = dist.get_world_size()
pipeline = DiffusionPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16
).to(device)
pipeline.transformer.set_attention_backend("_native_cudnn")
cp_config = ContextParallelConfig(ring_degree=world_size)
pipeline.transformer.enable_parallelism(config=cp_config)
prompt = """
cinematic film still of a cat sipping a margarita in a pool in Palm Springs, California
highly detailed, high budget hollywood movie, cinemascope, moody, epic, gorgeous, film grain
"""
# Must specify generator so all ranks start with same latents (or pass your own)
generator = torch.Generator().manual_seed(42)
image = pipeline(prompt, num_inference_steps=50, generator=generator).images[0]
if rank == 0:
image.save("output.png")
image = pipeline(
prompt,
guidance_scale=3.5,
num_inference_steps=50,
generator=generator,
).images[0]
except Exception as e:
print(f"An error occurred: {e}")
torch.distributed.breakpoint()
raise
if dist.get_rank() == 0:
image.save(f"output.png")
finally:
if torch.distributed.is_initialized():
torch.distributed.destroy_process_group()
if dist.is_initialized():
dist.destroy_process_group()
if __name__ == "__main__":
main()
```
The script above needs to be run with a distributed launcher, such as [torchrun](https://docs.pytorch.org/docs/stable/elastic/run.html), that is compatible with PyTorch. `--nproc-per-node` is set to the number of GPUs available.
```shell
torchrun --nproc-per-node 2 above_script.py
```
### Ulysses Attention
@@ -288,5 +310,55 @@ finally:
Pass the [`ContextParallelConfig`] to [`~ModelMixin.enable_parallelism`].
```py
# Depending on the number of GPUs available.
pipeline.transformer.enable_parallelism(config=ContextParallelConfig(ulysses_degree=2))
```
```
### Unified Attention
[Unified Sequence Parallelism](https://huggingface.co/papers/2405.07719) combines Ring Attention and Ulysses Attention into a single approach for efficient long-sequence processing. It applies Ulysses's *all-to-all* communication first to redistribute heads and sequence tokens, then uses Ring Attention to process the redistributed data, and finally reverses the *all-to-all* to restore the original layout.
This hybrid approach leverages the strengths of both methods:
- **Ulysses Attention** efficiently parallelizes across attention heads
- **Ring Attention** handles very long sequences with minimal memory overhead
- Together, they enable 2D parallelization across both heads and sequence dimensions
[`ContextParallelConfig`] supports Unified Attention by specifying both `ulysses_degree` and `ring_degree`. The total number of devices used is `ulysses_degree * ring_degree`, arranged in a 2D grid where Ulysses and Ring groups are orthogonal (non-overlapping).
Pass the [`ContextParallelConfig`] with both `ulysses_degree` and `ring_degree` set to bigger than 1 to [`~ModelMixin.enable_parallelism`].
```py
pipeline.transformer.enable_parallelism(config=ContextParallelConfig(ulysses_degree=2, ring_degree=2))
```
> [!TIP]
> Unified Attention is to be used when there are enough devices to arrange in a 2D grid (at least 4 devices).
We ran a benchmark with Ulysess, Ring, and Unified Attention with [this script](https://github.com/huggingface/diffusers/pull/12693#issuecomment-3694727532) on a node of 4 H100 GPUs. The results are summarized as follows:
| CP Backend | Time / Iter (ms) | Steps / Sec | Peak Memory (GB) |
|--------------------|------------------|-------------|------------------|
| ulysses | 6670.789 | 7.50 | 33.85 |
| ring | 13076.492 | 3.82 | 56.02 |
| unified_balanced | 11068.705 | 4.52 | 33.85 |
From the above table, it's clear that Ulysses provides better throughput, but the number of devices it can use remains limited to the number of attention heads, a limitation that is solved by unified attention.
### parallel_config
Pass `parallel_config` during model initialization to enable context parallelism.
```py
CKPT_ID = "black-forest-labs/FLUX.1-dev"
cp_config = ContextParallelConfig(ring_degree=2)
transformer = AutoModel.from_pretrained(
CKPT_ID,
subfolder="transformer",
torch_dtype=torch.bfloat16,
parallel_config=cp_config
)
pipeline = DiffusionPipeline.from_pretrained(
CKPT_ID, transformer=transformer, torch_dtype=torch.bfloat16,
).to(device)
```

View File

@@ -157,7 +157,7 @@ guider.push_to_hub("YiYiXu/modular-loader-t2i-guider", subfolder="pag_guider")
```py
guider_spec = t2i_pipeline.get_component_spec("guider")
guider_spec.default_creation_method="from_pretrained"
guider_spec.repo="YiYiXu/modular-loader-t2i-guider"
guider_spec.pretrained_model_name_or_path="YiYiXu/modular-loader-t2i-guider"
guider_spec.subfolder="pag_guider"
pag_guider = guider_spec.load()
t2i_pipeline.update_components(guider=pag_guider)

View File

@@ -313,14 +313,14 @@ unet_spec
ComponentSpec(
name='unet',
type_hint=<class 'diffusers.models.unets.unet_2d_condition.UNet2DConditionModel'>,
repo='RunDiffusion/Juggernaut-XL-v9',
pretrained_model_name_or_path='RunDiffusion/Juggernaut-XL-v9',
subfolder='unet',
variant='fp16',
default_creation_method='from_pretrained'
)
# 修改以从不同的仓库加载
unet_spec.repo = "stabilityai/stable-diffusion-xl-base-1.0"
unet_spec.pretrained_model_name_or_path = "stabilityai/stable-diffusion-xl-base-1.0"
# 使用修改后的规范加载组件
unet = unet_spec.load(torch_dtype=torch.float16)

View File

@@ -94,7 +94,7 @@ if is_wandb_available():
import wandb
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.36.0.dev0")
check_min_version("0.37.0.dev0")
logger = get_logger(__name__)

View File

@@ -88,7 +88,7 @@ from diffusers.utils.import_utils import is_xformers_available
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.36.0.dev0")
check_min_version("0.37.0.dev0")
logger = get_logger(__name__)

View File

@@ -95,7 +95,7 @@ if is_wandb_available():
import wandb
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.36.0.dev0")
check_min_version("0.37.0.dev0")
logger = get_logger(__name__)
@@ -1929,6 +1929,8 @@ def main(args):
if args.cache_latents:
latents_cache = []
# Store vae config before potential deletion
vae_scaling_factor = vae.config.scaling_factor
for batch in tqdm(train_dataloader, desc="Caching latents"):
with torch.no_grad():
batch["pixel_values"] = batch["pixel_values"].to(
@@ -1940,6 +1942,8 @@ def main(args):
del vae
if torch.cuda.is_available():
torch.cuda.empty_cache()
else:
vae_scaling_factor = vae.config.scaling_factor
# Scheduler and math around the number of training steps.
# Check the PR https://github.com/huggingface/diffusers/pull/8312 for detailed explanation.
@@ -2109,13 +2113,13 @@ def main(args):
model_input = vae.encode(pixel_values).latent_dist.sample()
if latents_mean is None and latents_std is None:
model_input = model_input * vae.config.scaling_factor
model_input = model_input * vae_scaling_factor
if args.pretrained_vae_model_name_or_path is None:
model_input = model_input.to(weight_dtype)
else:
latents_mean = latents_mean.to(device=model_input.device, dtype=model_input.dtype)
latents_std = latents_std.to(device=model_input.device, dtype=model_input.dtype)
model_input = (model_input - latents_mean) * vae.config.scaling_factor / latents_std
model_input = (model_input - latents_mean) * vae_scaling_factor / latents_std
model_input = model_input.to(dtype=weight_dtype)
# Sample noise that we'll add to the latents

View File

@@ -61,7 +61,7 @@ if is_wandb_available():
import wandb
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.36.0.dev0")
check_min_version("0.37.0.dev0")
logger = get_logger(__name__)
@@ -149,13 +149,13 @@ def get_args():
"--validation_prompt",
type=str,
default=None,
help="One or more prompt(s) that is used during validation to verify that the model is learning. Multiple validation prompts should be separated by the '--validation_prompt_seperator' string.",
help="One or more prompt(s) that is used during validation to verify that the model is learning. Multiple validation prompts should be separated by the '--validation_prompt_separator' string.",
)
parser.add_argument(
"--validation_images",
type=str,
default=None,
help="One or more image path(s) that is used during validation to verify that the model is learning. Multiple validation paths should be separated by the '--validation_prompt_seperator' string. These should correspond to the order of the validation prompts.",
help="One or more image path(s) that is used during validation to verify that the model is learning. Multiple validation paths should be separated by the '--validation_prompt_separator' string. These should correspond to the order of the validation prompts.",
)
parser.add_argument(
"--validation_prompt_separator",

View File

@@ -52,7 +52,7 @@ if is_wandb_available():
import wandb
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.36.0.dev0")
check_min_version("0.37.0.dev0")
logger = get_logger(__name__)
@@ -140,7 +140,7 @@ def get_args():
"--validation_prompt",
type=str,
default=None,
help="One or more prompt(s) that is used during validation to verify that the model is learning. Multiple validation prompts should be separated by the '--validation_prompt_seperator' string.",
help="One or more prompt(s) that is used during validation to verify that the model is learning. Multiple validation prompts should be separated by the '--validation_prompt_separator' string.",
)
parser.add_argument(
"--validation_prompt_separator",

View File

@@ -60,7 +60,7 @@ if is_wandb_available():
import wandb
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.36.0.dev0")
check_min_version("0.37.0.dev0")
logger = get_logger(__name__)

View File

@@ -29,7 +29,6 @@ from diffusers.loaders import (
TextualInversionLoaderMixin,
)
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
from diffusers.models.attention_processor import AttnProcessor2_0, XFormersAttnProcessor
from diffusers.models.lora import adjust_lora_scale_text_encoder
from diffusers.pipelines.pipeline_utils import StableDiffusionMixin
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
@@ -1328,18 +1327,8 @@ class SDXLLongPromptWeightingPipeline(
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
def upcast_vae(self):
dtype = self.vae.dtype
deprecate("upcast_vae", "1.0.0", "`upcast_vae` is deprecated. Please use `pipe.vae.to(torch.float32)`")
self.vae.to(dtype=torch.float32)
use_torch_2_0_or_xformers = isinstance(
self.vae.decoder.mid_block.attentions[0].processor,
(AttnProcessor2_0, XFormersAttnProcessor),
)
# if xformers or torch_2_0 is used attention block does not need
# to be in float32 which can save lots of memory
if use_torch_2_0_or_xformers:
self.vae.post_quant_conv.to(dtype)
self.vae.decoder.conv_in.to(dtype)
self.vae.decoder.mid_block.to(dtype)
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):

View File

@@ -43,7 +43,7 @@ from diffusers.utils import BaseOutput, check_min_version
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.36.0.dev0")
check_min_version("0.37.0.dev0")
class MarigoldDepthOutput(BaseOutput):

View File

@@ -30,17 +30,13 @@ from diffusers.loaders import (
TextualInversionLoaderMixin,
)
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.models.attention_processor import (
AttnProcessor2_0,
FusedAttnProcessor2_0,
XFormersAttnProcessor,
)
from diffusers.models.lora import adjust_lora_scale_text_encoder
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
from diffusers.schedulers import KarrasDiffusionSchedulers, LMSDiscreteScheduler
from diffusers.utils import (
USE_PEFT_BACKEND,
deprecate,
is_invisible_watermark_available,
is_torch_xla_available,
logging,
@@ -710,22 +706,8 @@ class StableDiffusionXLTilingPipeline(
return torch.tile(weights_torch, (nbatches, self.unet.config.in_channels, 1, 1))
def upcast_vae(self):
dtype = self.vae.dtype
deprecate("upcast_vae", "1.0.0", "`upcast_vae` is deprecated. Please use `pipe.vae.to(torch.float32)`")
self.vae.to(dtype=torch.float32)
use_torch_2_0_or_xformers = isinstance(
self.vae.decoder.mid_block.attentions[0].processor,
(
AttnProcessor2_0,
XFormersAttnProcessor,
FusedAttnProcessor2_0,
),
)
# if xformers or torch_2_0 is used attention block does not need
# to be in float32 which can save lots of memory
if use_torch_2_0_or_xformers:
self.vae.post_quant_conv.to(dtype)
self.vae.decoder.conv_in.to(dtype)
self.vae.decoder.mid_block.to(dtype)
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
def get_guidance_scale_embedding(

View File

@@ -39,16 +39,13 @@ from diffusers.models import (
MultiControlNetModel,
UNet2DConditionModel,
)
from diffusers.models.attention_processor import (
AttnProcessor2_0,
XFormersAttnProcessor,
)
from diffusers.models.lora import adjust_lora_scale_text_encoder
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
from diffusers.schedulers import KarrasDiffusionSchedulers, LMSDiscreteScheduler
from diffusers.utils import (
USE_PEFT_BACKEND,
deprecate,
logging,
replace_example_docstring,
scale_lora_layers,
@@ -1220,23 +1217,9 @@ class StableDiffusionXLControlNetTileSRPipeline(
return tile_weights, tile_row_overlaps, tile_col_overlaps
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
def upcast_vae(self):
dtype = self.vae.dtype
deprecate("upcast_vae", "1.0.0", "`upcast_vae` is deprecated. Please use `pipe.vae.to(torch.float32)`")
self.vae.to(dtype=torch.float32)
use_torch_2_0_or_xformers = isinstance(
self.vae.decoder.mid_block.attentions[0].processor,
(
AttnProcessor2_0,
XFormersAttnProcessor,
),
)
# if xformers or torch_2_0 is used attention block does not need
# to be in float32 which can save lots of memory
if use_torch_2_0_or_xformers:
self.vae.post_quant_conv.to(dtype)
self.vae.decoder.conv_in.to(dtype)
self.vae.decoder.mid_block.to(dtype)
@property
def guidance_scale(self):

View File

@@ -40,10 +40,6 @@ from diffusers.models import (
MultiControlNetModel,
UNet2DConditionModel,
)
from diffusers.models.attention_processor import (
AttnProcessor2_0,
XFormersAttnProcessor,
)
from diffusers.pipelines.kolors import ChatGLMModel, ChatGLMTokenizer
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
@@ -760,21 +756,8 @@ class KolorsControlNetPipeline(
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
def upcast_vae(self):
dtype = self.vae.dtype
deprecate("upcast_vae", "1.0.0", "`upcast_vae` is deprecated. Please use `pipe.vae.to(torch.float32)`")
self.vae.to(dtype=torch.float32)
use_torch_2_0_or_xformers = isinstance(
self.vae.decoder.mid_block.attentions[0].processor,
(
AttnProcessor2_0,
XFormersAttnProcessor,
),
)
# if xformers or torch_2_0 is used attention block does not need
# to be in float32 which can save lots of memory
if use_torch_2_0_or_xformers:
self.vae.post_quant_conv.to(dtype)
self.vae.decoder.conv_in.to(dtype)
self.vae.decoder.mid_block.to(dtype)
@property
def guidance_scale(self):

View File

@@ -40,10 +40,6 @@ from diffusers.models import (
MultiControlNetModel,
UNet2DConditionModel,
)
from diffusers.models.attention_processor import (
AttnProcessor2_0,
XFormersAttnProcessor,
)
from diffusers.pipelines.kolors import ChatGLMModel, ChatGLMTokenizer
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
@@ -930,21 +926,8 @@ class KolorsControlNetImg2ImgPipeline(
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
def upcast_vae(self):
dtype = self.vae.dtype
deprecate("upcast_vae", "1.0.0", "`upcast_vae` is deprecated. Please use `pipe.vae.to(torch.float32)`")
self.vae.to(dtype=torch.float32)
use_torch_2_0_or_xformers = isinstance(
self.vae.decoder.mid_block.attentions[0].processor,
(
AttnProcessor2_0,
XFormersAttnProcessor,
),
)
# if xformers or torch_2_0 is used attention block does not need
# to be in float32 which can save lots of memory
if use_torch_2_0_or_xformers:
self.vae.post_quant_conv.to(dtype)
self.vae.decoder.conv_in.to(dtype)
self.vae.decoder.mid_block.to(dtype)
@property
def guidance_scale(self):

View File

@@ -39,10 +39,6 @@ from diffusers.models import (
MultiControlNetModel,
UNet2DConditionModel,
)
from diffusers.models.attention_processor import (
AttnProcessor2_0,
XFormersAttnProcessor,
)
from diffusers.pipelines.kolors import ChatGLMModel, ChatGLMTokenizer
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
@@ -1006,21 +1002,8 @@ class KolorsControlNetInpaintPipeline(
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
def upcast_vae(self):
dtype = self.vae.dtype
deprecate("upcast_vae", "1.0.0", "`upcast_vae` is deprecated. Please use `pipe.vae.to(torch.float32)`")
self.vae.to(dtype=torch.float32)
use_torch_2_0_or_xformers = isinstance(
self.vae.decoder.mid_block.attentions[0].processor,
(
AttnProcessor2_0,
XFormersAttnProcessor,
),
)
# if xformers or torch_2_0 is used attention block does not need
# to be in float32 which can save lots of memory
if use_torch_2_0_or_xformers:
self.vae.post_quant_conv.to(dtype)
self.vae.decoder.conv_in.to(dtype)
self.vae.decoder.mid_block.to(dtype)
@property
def denoising_end(self):

View File

@@ -16,11 +16,11 @@ from diffusers.loaders import (
TextualInversionLoaderMixin,
)
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.models.attention_processor import AttnProcessor2_0, XFormersAttnProcessor
from diffusers.models.lora import adjust_lora_scale_text_encoder
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import (
deprecate,
is_accelerate_available,
is_accelerate_version,
is_invisible_watermark_available,
@@ -612,20 +612,9 @@ class DemoFusionSDXLPipeline(
return image
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
def upcast_vae(self):
dtype = self.vae.dtype
deprecate("upcast_vae", "1.0.0", "`upcast_vae` is deprecated. Please use `pipe.vae.to(torch.float32)`")
self.vae.to(dtype=torch.float32)
use_torch_2_0_or_xformers = isinstance(
self.vae.decoder.mid_block.attentions[0].processor,
(AttnProcessor2_0, XFormersAttnProcessor),
)
# if xformers or torch_2_0 is used attention block does not need
# to be in float32 which can save lots of memory
if use_torch_2_0_or_xformers:
self.vae.post_quant_conv.to(dtype)
self.vae.decoder.conv_in.to(dtype)
self.vae.decoder.mid_block.to(dtype)
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)

View File

@@ -40,13 +40,6 @@ from diffusers.loaders import (
UNet2DConditionLoadersMixin,
)
from diffusers.models import AutoencoderKL
from diffusers.models.attention_processor import (
AttnProcessor2_0,
FusedAttnProcessor2_0,
LoRAAttnProcessor2_0,
LoRAXFormersAttnProcessor,
XFormersAttnProcessor,
)
from diffusers.models.lora import adjust_lora_scale_text_encoder
from diffusers.models.unets.unet_2d_blocks import UNetMidBlock2D, get_down_block
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
@@ -1642,24 +1635,8 @@ class FaithDiffStableDiffusionXLPipeline(
return latents
def upcast_vae(self):
dtype = self.vae.dtype
deprecate("upcast_vae", "1.0.0", "`upcast_vae` is deprecated. Please use `pipe.vae.to(torch.float32)`")
self.vae.to(dtype=torch.float32)
use_torch_2_0_or_xformers = isinstance(
self.vae.decoder.mid_block.attentions[0].processor,
(
AttnProcessor2_0,
XFormersAttnProcessor,
LoRAXFormersAttnProcessor,
LoRAAttnProcessor2_0,
FusedAttnProcessor2_0,
),
)
# if xformers or torch_2_0 is used attention block does not need
# to be in float32 which can save lots of memory
if use_torch_2_0_or_xformers:
self.vae.post_quant_conv.to(dtype)
self.vae.decoder.conv_in.to(dtype)
self.vae.decoder.mid_block.to(dtype)
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
def get_guidance_scale_embedding(

View File

@@ -21,8 +21,8 @@ from transformers import (
BertModel,
BertTokenizer,
CLIPImageProcessor,
MT5Tokenizer,
T5EncoderModel,
T5Tokenizer,
)
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
@@ -260,7 +260,7 @@ class HunyuanDiTDifferentialImg2ImgPipeline(DiffusionPipeline):
The HunyuanDiT model designed by Tencent Hunyuan.
text_encoder_2 (`T5EncoderModel`):
The mT5 embedder. Specifically, it is 't5-v1_1-xxl'.
tokenizer_2 (`MT5Tokenizer`):
tokenizer_2 (`T5Tokenizer`):
The tokenizer for the mT5 embedder.
scheduler ([`DDPMScheduler`]):
A scheduler to be used in combination with HunyuanDiT to denoise the encoded image latents.
@@ -295,7 +295,7 @@ class HunyuanDiTDifferentialImg2ImgPipeline(DiffusionPipeline):
feature_extractor: CLIPImageProcessor,
requires_safety_checker: bool = True,
text_encoder_2=T5EncoderModel,
tokenizer_2=MT5Tokenizer,
tokenizer_2=T5Tokenizer,
):
super().__init__()

View File

@@ -22,13 +22,12 @@ from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
from diffusers.loaders import IPAdapterMixin, StableDiffusionXLLoraLoaderMixin
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
from diffusers.models.attention_processor import AttnProcessor2_0, FusedAttnProcessor2_0, XFormersAttnProcessor
from diffusers.pipelines.kolors.pipeline_output import KolorsPipelineOutput
from diffusers.pipelines.kolors.text_encoder import ChatGLMModel
from diffusers.pipelines.kolors.tokenizer import ChatGLMTokenizer
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import is_torch_xla_available, logging, replace_example_docstring
from diffusers.utils import deprecate, is_torch_xla_available, logging, replace_example_docstring
from diffusers.utils.torch_utils import randn_tensor
@@ -709,24 +708,9 @@ class KolorsDifferentialImg2ImgPipeline(
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
return add_time_ids
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.upcast_vae
def upcast_vae(self):
dtype = self.vae.dtype
deprecate("upcast_vae", "1.0.0", "`upcast_vae` is deprecated. Please use `pipe.vae.to(torch.float32)`")
self.vae.to(dtype=torch.float32)
use_torch_2_0_or_xformers = isinstance(
self.vae.decoder.mid_block.attentions[0].processor,
(
AttnProcessor2_0,
XFormersAttnProcessor,
FusedAttnProcessor2_0,
),
)
# if xformers or torch_2_0 is used attention block does not need
# to be in float32 which can save lots of memory
if use_torch_2_0_or_xformers:
self.vae.post_quant_conv.to(dtype)
self.vae.decoder.conv_in.to(dtype)
self.vae.decoder.mid_block.to(dtype)
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
def get_guidance_scale_embedding(

View File

@@ -32,12 +32,6 @@ from diffusers.loaders import (
TextualInversionLoaderMixin,
)
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
from diffusers.models.attention_processor import (
AttnProcessor2_0,
LoRAAttnProcessor2_0,
LoRAXFormersAttnProcessor,
XFormersAttnProcessor,
)
from diffusers.pipelines.kolors import ChatGLMModel, ChatGLMTokenizer
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
@@ -1008,23 +1002,8 @@ class KolorsInpaintPipeline(
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
def upcast_vae(self):
dtype = self.vae.dtype
deprecate("upcast_vae", "1.0.0", "`upcast_vae` is deprecated. Please use `pipe.vae.to(torch.float32)`")
self.vae.to(dtype=torch.float32)
use_torch_2_0_or_xformers = isinstance(
self.vae.decoder.mid_block.attentions[0].processor,
(
AttnProcessor2_0,
XFormersAttnProcessor,
LoRAXFormersAttnProcessor,
LoRAAttnProcessor2_0,
),
)
# if xformers or torch_2_0 is used attention block does not need
# to be in float32 which can save lots of memory
if use_torch_2_0_or_xformers:
self.vae.post_quant_conv.to(dtype)
self.vae.decoder.conv_in.to(dtype)
self.vae.decoder.mid_block.to(dtype)
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
def get_guidance_scale_embedding(

View File

@@ -45,8 +45,6 @@ from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionMode
from diffusers.models.attention_processor import (
Attention,
AttnProcessor2_0,
FusedAttnProcessor2_0,
XFormersAttnProcessor,
)
from diffusers.models.lora import adjust_lora_scale_text_encoder
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
@@ -1151,22 +1149,8 @@ class StyleAlignedSDXLPipeline(
return add_time_ids
def upcast_vae(self):
dtype = self.vae.dtype
deprecate("upcast_vae", "1.0.0", "`upcast_vae` is deprecated. Please use `pipe.vae.to(torch.float32)`")
self.vae.to(dtype=torch.float32)
use_torch_2_0_or_xformers = isinstance(
self.vae.decoder.mid_block.attentions[0].processor,
(
AttnProcessor2_0,
XFormersAttnProcessor,
FusedAttnProcessor2_0,
),
)
# if xformers or torch_2_0 is used attention block does not need
# to be in float32 which can save lots of memory
if use_torch_2_0_or_xformers:
self.vae.post_quant_conv.to(dtype)
self.vae.decoder.conv_in.to(dtype)
self.vae.decoder.mid_block.to(dtype)
def _enable_shared_attention_processors(
self,

View File

@@ -503,24 +503,9 @@ class StableDiffusionUpscaleLDM3DPipeline(
latents = latents * self.scheduler.init_noise_sigma
return latents
# def upcast_vae(self):
# dtype = self.vae.dtype
# self.vae.to(dtype=torch.float32)
# use_torch_2_0_or_xformers = isinstance(
# self.vae.decoder.mid_block.attentions[0].processor,
# (
# AttnProcessor2_0,
# XFormersAttnProcessor,
# LoRAXFormersAttnProcessor,
# LoRAAttnProcessor2_0,
# ),
# )
# # if xformers or torch_2_0 is used attention block does not need
# # to be in float32 which can save lots of memory
# if use_torch_2_0_or_xformers:
# self.vae.post_quant_conv.to(dtype)
# self.vae.decoder.conv_in.to(dtype)
# self.vae.decoder.mid_block.to(dtype)
def upcast_vae(self):
deprecate("upcast_vae", "1.0.0", "`upcast_vae` is deprecated. Please use `pipe.vae.to(torch.float32)`")
self.vae.to(dtype=torch.float32)
@torch.no_grad()
def __call__(

View File

@@ -35,12 +35,6 @@ from diffusers.loaders import (
TextualInversionLoaderMixin,
)
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
from diffusers.models.attention_processor import (
AttnProcessor2_0,
LoRAAttnProcessor2_0,
LoRAXFormersAttnProcessor,
XFormersAttnProcessor,
)
from diffusers.models.lora import adjust_lora_scale_text_encoder
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
@@ -1282,23 +1276,8 @@ class StableDiffusionXL_AE_Pipeline(
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
def upcast_vae(self):
dtype = self.vae.dtype
deprecate("upcast_vae", "1.0.0", "`upcast_vae` is deprecated. Please use `pipe.vae.to(torch.float32)`")
self.vae.to(dtype=torch.float32)
use_torch_2_0_or_xformers = isinstance(
self.vae.decoder.mid_block.attentions[0].processor,
(
AttnProcessor2_0,
XFormersAttnProcessor,
LoRAXFormersAttnProcessor,
LoRAAttnProcessor2_0,
),
)
# if xformers or torch_2_0 is used attention block does not need
# to be in float32 which can save lots of memory
if use_torch_2_0_or_xformers:
self.vae.post_quant_conv.to(dtype)
self.vae.decoder.conv_in.to(dtype)
self.vae.decoder.mid_block.to(dtype)
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):

View File

@@ -25,7 +25,6 @@ from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokeniz
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
from diffusers.loaders import FromSingleFileMixin, StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin
from diffusers.models import AutoencoderKL, ControlNetModel, MultiAdapter, T2IAdapter, UNet2DConditionModel
from diffusers.models.attention_processor import AttnProcessor2_0, XFormersAttnProcessor
from diffusers.models.lora import adjust_lora_scale_text_encoder
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
@@ -34,6 +33,7 @@ from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import (
PIL_INTERPOLATION,
USE_PEFT_BACKEND,
deprecate,
logging,
replace_example_docstring,
scale_lora_layers,
@@ -793,20 +793,9 @@ class StableDiffusionXLControlNetAdapterPipeline(
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
return add_time_ids
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
def upcast_vae(self):
dtype = self.vae.dtype
deprecate("upcast_vae", "1.0.0", "`upcast_vae` is deprecated. Please use `pipe.vae.to(torch.float32)`")
self.vae.to(dtype=torch.float32)
use_torch_2_0_or_xformers = isinstance(
self.vae.decoder.mid_block.attentions[0].processor,
(AttnProcessor2_0, XFormersAttnProcessor),
)
# if xformers or torch_2_0 is used attention block does not need
# to be in float32 which can save lots of memory
if use_torch_2_0_or_xformers:
self.vae.post_quant_conv.to(dtype)
self.vae.decoder.conv_in.to(dtype)
self.vae.decoder.mid_block.to(dtype)
# Copied from diffusers.pipelines.t2i_adapter.pipeline_stable_diffusion_adapter.StableDiffusionAdapterPipeline._default_height_width
def _default_height_width(self, height, width, image):

Some files were not shown because too many files have changed in this diff Show More