Compare commits

..

154 Commits

Author SHA1 Message Date
sayakpaul
78f678a800 change to 3.10 2025-12-08 16:13:04 +05:30
sayakpaul
9cbf9769e2 updates in the pypi publication workflow. 2025-12-08 16:11:32 +05:30
CalamitousFelicitousness
2246d2c7c4 Add ZImageImg2ImgPipeline (#12751)
* Add ZImageImg2ImgPipeline

Updated the pipeline structure to include ZImageImg2ImgPipeline
    alongside ZImagePipeline.
Implemented the ZImageImg2ImgPipeline class for image-to-image
    transformations, including necessary methods for
    encoding prompts, preparing latents, and denoising.
Enhanced the auto_pipeline to map the new ZImageImg2ImgPipeline
    for image generation tasks.
Added unit tests for ZImageImg2ImgPipeline to ensure
    functionality and performance.
Updated dummy objects to include ZImageImg2ImgPipeline for
    testing purposes.

* Address review comments for ZImageImg2ImgPipeline

- Add `# Copied from` annotations to encode_prompt and _encode_prompt
- Add ZImagePipeline to auto_pipeline.py for AutoPipeline support

* Add ZImage pipeline documentation

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: Álvaro Somoza <asomoza@users.noreply.github.com>
2025-12-07 22:06:23 -10:00
YiYi Xu
671149e036 [HunyuanVideo1.5] support step-distilled (#12802)
* support step-distilled

* style
2025-12-07 21:50:36 -10:00
jiqing-feng
f67639b0bb add post init for safty checker (#12794)
* add post init for safty checker

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* check transformers version before post init

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* Apply style fixes

---------

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-12-08 11:31:03 +05:30
jingyu-ml
5a74319715 Update the TensorRT-ModelOPT to Nvidia-ModelOPT (#12793)
Update the naming

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-12-08 10:07:04 +05:30
Tran Thanh Luan
6290fdfda4 [Feat] TaylorSeer Cache (#12648)
* init taylor_seer cache

* make compatible with any tuple size returned

* use logger for printing, add warmup feature

* still update in warmup steps

* refractor, add docs

* add configurable cache, skip compute module

* allow special cache ids only

* add stop_predicts (cooldown)

* update docs

* apply ruff

* update to handle multple calls per timestep

* refractor to use state manager

* fix format & doc

* chores: naming, remove redundancy

* add docs

* quality & style

* fix taylor precision

* Apply style fixes

* add tests

* Apply style fixes

* Remove TaylorSeerCacheTesterMixin from flux2 tests

* rename identifiers, use more expressive taylor predict loop

* torch compile compatible

* Apply style fixes

* Update src/diffusers/hooks/taylorseer_cache.py

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* update docs

* make fix-copies

* fix example usage.

* remove tests on flux kontext

---------

Co-authored-by: toilaluan <toilaluan@github.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-12-06 05:39:54 +05:30
David El Malih
256e010674 Improve docstrings and type hints in scheduling_deis_multistep.py (#12796)
* feat: Add `flow_prediction` to `prediction_type`, introduce `use_flow_sigmas`, `flow_shift`, `use_dynamic_shifting`, and `time_shift_type` parameters, and refine type hints for various arguments.

* style: reformat argument wrapping in `_convert_to_beta` and `index_for_timestep` method signatures.
2025-12-05 08:48:01 -08:00
Sayak Paul
8430ac2a2f [docs] minor fixes to kandinsky docs (#12797)
up
2025-12-05 08:33:05 -08:00
sayakpaul
bb9e713d02 move kandisnky docs. 2025-12-05 21:44:24 +07:00
Álvaro Somoza
c98c157a9e [Docs] Add Z-Image docs (#12775)
* initial

* toctree

* fix

* apply review and fix

* Update docs/source/en/api/pipelines/z_image.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/api/pipelines/z_image.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/api/pipelines/z_image.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-12-05 11:05:47 -03:00
swappy
f12d161d67 Fix broken group offloading with block_level for models with standalone layers (#12692)
* fix: group offloading to support standalone computational layers in block-level offloading

* test: for models with standalone and deeply nested layers in block-level offloading

* feat: support for block-level offloading in group offloading config

* fix: group offload block modules to AutoencoderKL and AutoencoderKLWan

* fix: update group offloading tests to use AutoencoderKL and adjust input dimensions

* refactor: streamline block offloading logic

* Apply style fixes

* update tests

* update

* fix for failing tests

* clean up

* revert to use skip_keys

* clean up

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2025-12-05 18:54:05 +05:30
David Bertoin
8d415a6f48 PRX Set downscale_freq_shift to 0 for consistency with internal implementation (#12791)
fix timestepembeddings downscale_freq_shift to be consitant with Photoroom's original code
2025-12-04 10:57:14 -10:00
Sayak Paul
7de51b826c [lora] support more ZImage LoRAs (#12790)
up

Co-authored-by: Álvaro Somoza <asomoza@users.noreply.github.com>
2025-12-04 09:01:11 -10:00
Jiang
cd00ba685b fix spatial compression ratio error for AutoEncoderKLWan doing tiled encode (#12753)
fix spatial compression ratio compute error for AutoEncoderKLWan

Co-authored-by: lirui.926 <lirui.926@bytedance.com>
2025-12-04 08:57:13 -10:00
David El Malih
2842c14c5f Improve docstrings and type hints in scheduling_unipc_multistep.py (#12767)
refactor: add type hints and update docstrings for UniPCMultistepScheduler parameters and methods.
2025-12-04 10:10:54 -08:00
Sayak Paul
c318686090 Update attention_backends.md to format kernels (#12757) 2025-12-04 07:48:23 -08:00
hlky
6028613226 Z-Image-Turbo from_single_file (#12756)
* Z-Image-Turbo `from_single_file`

* compute_dtype

* -device cast
2025-12-04 20:22:48 +05:30
Sayak Paul
a1f36ee3ef [Z-Image] various small changes, Z-Image transformer tests, etc. (#12741)
* start zimage model tests.

* up

* up

* up

* up

* up

* up

* up

* up

* up

* up

* up

* up

* Revert "up"

This reverts commit bca3e27c96.

* expand upon compilation failure reason.

* Update tests/models/transformers/test_models_transformer_z_image.py

Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>

* reinitialize the padding tokens to ones to prevent NaN problems.

* updates

* up

* skipping ZImage DiT tests

* up

* up

---------

Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>
2025-12-03 19:35:46 +05:30
Sayak Paul
d96cbacacd [tests] fix hunuyanvideo 1.5 offloading tests. (#12782)
fix hunuyanvideo 1.5 offloading tests.
2025-12-03 18:07:59 +05:30
Aditya Borate
5ab5946931 Fix: leaf_level offloading breaks after delete_adapters (#12639)
* Fix(peft): Re-apply group offloading after deleting adapters

* Test: Add regression test for group offloading + delete_adapters

* Test: Add assertions to verify output changes after deletion

* Test: Add try/finally to clean up group offloading hooks

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-12-03 17:39:11 +05:30
Lev Novitskiy
d0c54e5563 Kandinsky 5.0 Video Pro and Image Lite (#12664)
* add transformer pipeline first version


---------

Co-authored-by: Álvaro Somoza <asomoza@users.noreply.github.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: Charles <charles@huggingface.co>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: dmitrienkoae <dmitrienko.ae@phystech.edu>
Co-authored-by: nvvaulin <nvvaulin@gmail.com>
2025-12-03 00:46:37 -10:00
Dhruv Nair
1908c47600 Deprecate upcast_vae in SDXL based pipelines (#12619)
* update

* update

* Revert "update"

This reverts commit 73906381ab.

* Revert "update"

This reverts commit 21a03f93ef.

* update

* update

* update

* update

* update
2025-12-03 15:53:23 +05:30
Sayak Paul
759ea58708 [core] reuse AttentionMixin for compatible classes (#12463)
* remove attn_processors property

* more

* up

* up more.

* up

* add AttentionMixin to AuraFlow.

* up

* up

* up

* up
2025-12-03 13:58:33 +05:30
Sayak Paul
f48f9c250f [core] start varlen variants for attn backend kernels. (#12765)
* start varlen variants for attn backend kernels.

* maybe unflatten heads.

* updates

* remove unused function.

* doc

* up
2025-12-03 13:34:52 +05:30
Kimbing Ng
3c05b9f71c Fixes #12673. record_stream in group offloading is not working properly (#12721)
* Fixes #12673.

    Wrong default_stream is used. leading to wrong execution order when record_steram is enabled.

* update

* Update test

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-12-03 11:37:11 +05:30
Jerry Wu
9379b2391b Fix TPU (torch_xla) compatibility Error about tensor repeat func along with empty dim. (#12770)
* Refactor image padding logic to pervent zero tensor in transformer_z_image.py

* Apply style fixes

* Add more support to fix repeat bug on tpu devices.

* Fix for dynamo compile error for multi if-branches.

---------

Co-authored-by: Mingjia Li <mingjiali@tju.edu.cn>
Co-authored-by: Mingjia Li <mail@mingjia.li>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-12-02 12:51:23 -10:00
Guo-Hua Wang
4f136f842c Add support for Ovis-Image (#12740)
* add ovis_image

* fix code quality

* optimize pipeline_ovis_image.py according to the feedbacks

* optimize imports

* add docs

* make style

* make style

* add ovis to toctree

* oops

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2025-12-02 11:48:07 -10:00
CalamitousFelicitousness
edf36f5128 Add ZImage LoRA support and integrate into ZImagePipeline (#12750)
* Add ZImage LoRA support and integrate into ZImagePipeline

* Add LoRA test for Z-Image

* Move the LoRA test

* Fix ZImage LoRA scale support and test configuration

* Add ZImage LoRA test overrides for architecture differences

- Override test_lora_fuse_nan to use ZImage's 'layers' attribute
  instead of 'transformer_blocks'
- Skip block-level LoRA scaling test (not supported in ZImage)
- Add required imports: numpy, torch_device, check_if_lora_correctly_set

* Add ZImageLoraLoaderMixin to LoRA documentation

* Use conditional import for peft.LoraConfig in ZImage tests

* Override test_correct_lora_configs_with_different_ranks for ZImage

ZImage uses 'attention.to_k' naming convention instead of 'attn.to_k',
so the base test's module name search loop never finds a match. This
override uses the correct naming pattern for ZImage architecture.

* Add is_flaky decorator to ZImage LoRA tests initialise padding tokens

* Skip ZImage LoRA test class entirely

Skip the entire ZImageLoRATests class due to non-deterministic behavior
from complex64 RoPE operations and torch.empty padding tokens.
LoRA functionality works correctly with real models.

Clean up removed:
- Individual @unittest.skip decorators
- @is_flaky decorator overrides for inherited methods
- Custom test method overrides
- Global torch deterministic settings
- Unused imports (numpy, is_flaky, check_if_lora_correctly_set)

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Álvaro Somoza <asomoza@users.noreply.github.com>
2025-12-02 02:16:30 -03:00
Sayak Paul
564079f295 [feat]: implement "local" caption upsampling for Flux.2 (#12718)
* feat: implement caption upsampling for flux.2.

* doc

* up

* fix

* up

* fix system prompts 🤷‍

* up

* up

* up
2025-12-02 04:27:24 +05:30
Sayak Paul
394a48d169 Update bria_fibo.md with minor fixes (#12731)
* Update bria_fibo.md with minor fixes

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-12-02 04:24:19 +05:30
Gal Davidi
99784ae0d2 Rename BriaPipeline to BriaFiboPipeline in documentation (#12758) 2025-12-01 09:34:47 -10:00
DefTruth
fffd964a0f fix FLUX.2 context parallel (#12737) 2025-12-01 09:07:49 -10:00
David El Malih
859b809031 Improve docstrings and type hints in scheduling_euler_ancestral_discrete.py (#12766)
refactor: add type hints to methods and update docstrings for parameters.
2025-12-01 08:38:01 -10:00
David El Malih
d769d8a13b Improve docstrings and type hints in scheduling_heun_discrete.py (#12726)
refactor: improve type hints for `beta_schedule`, `prediction_type`, and `timestep_spacing` parameters, and add return type hints to several methods.
2025-12-01 08:09:36 -08:00
David El Malih
c25582d509 [Docs] Update Imagen Video paper link in schedulers (#12724)
docs: Update Imagen Video paper link in scheduler docstrings.
2025-12-01 08:09:22 -08:00
YiYi Xu
6156cf8f22 Hunyuanvideo15 (#12696)
* add


---------

Co-authored-by: yiyi@huggingface.co <yiyi@ip-26-0-161-123.ec2.internal>
Co-authored-by: yiyi@huggingface.co <yiyi@ip-26-0-160-103.ec2.internal>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-11-30 20:27:59 -10:00
DefTruth
152f7ca357 fix type-check for z-image transformer (#12739)
* allow type-check for ZImageTransformer2DModel

* make fix-copies
2025-11-29 14:58:33 +05:30
Dhruv Nair
b010a8ce0c [Modular] Add single file support to Modular (#12383)
* update

* update

* update

* update

* Apply style fixes

* update

* update

* update

* update

* update

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-11-28 22:23:04 +05:30
Ayush Sur
1b91856d0e Fix examples not loading LoRA adapter weights from checkpoint (#12690)
* Fix examples not loading LoRA adapter weights from checkpoint

* Updated lora saving logic with accelerate save_model_hook and load_model_hook

* Formatted the changes using ruff

* import and upcasting changed

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-11-28 11:56:39 +05:30
Sayak Paul
01e355516b Enable regional compilation on z-image transformer model (#12736)
up
2025-11-27 07:18:00 -10:00
Sayak Paul
6bf668c4d2 [chore] remove torch.save from remnant code. (#12717)
remove torch.save from remnant code.
2025-11-27 13:04:09 +05:30
Jerry Wu
e6d4612309 Support unittest for Z-image ️ (#12715)
* Add Support for Z-Image.

* Reformatting with make style, black & isort.

* Remove init, Modify import utils, Merge forward in transformers block, Remove once func in pipeline.

* modified main model forward, freqs_cis left

* refactored to add B dim

* fixed stack issue

* fixed modulation bug

* fixed modulation bug

* fix bug

* remove value_from_time_aware_config

* styling

* Fix neg embed and devide / bug; Reuse pad zero tensor; Turn cat -> repeat; Add hint for attn processor.

* Replace padding with pad_sequence; Add gradient checkpointing.

* Fix flash_attn3 in dispatch attn backend by _flash_attn_forward, replace its origin implement; Add DocString in pipeline for that.

* Fix Docstring and Make Style.

* Revert "Fix flash_attn3 in dispatch attn backend by _flash_attn_forward, replace its origin implement; Add DocString in pipeline for that."

This reverts commit fbf26b7ed1.

* update z-image docstring

* Revert attention dispatcher

* update z-image docstring

* styling

* Recover attention_dispatch.py with its origin impl, later would special commit for fa3 compatibility.

* Fix prev bug, and support for prompt_embeds pass in args after prompt pre-encode as List of torch Tensor.

* Remove einop dependency.

* remove redundant imports & make fix-copies

* fix import

* Support for num_images_per_prompt>1; Remove redundant unquote variables.

* Fix bugs for num_images_per_prompt with actual batch.

* Add unit tests for Z-Image.

* Refine unitest and skip for cases needed separate test env; Fix compatibility with unitest in model, mostly precision formating.

* Add clean env for test_save_load_float16 separ test; Add Note; Styling.

* Update dtype mentioned by yiyi.

---------

Co-authored-by: liudongyang <liudongyang0114@gmail.com>
2025-11-26 07:18:57 -10:00
David El Malih
a88a7b4f03 Improve docstrings and type hints in scheduling_dpmsolver_multistep.py (#12710)
* Improve docstrings and type hints in multiple diffusion schedulers

* docs: update Imagen Video paper link to Hugging Face Papers.
2025-11-26 08:38:41 -08:00
Sayak Paul
c8656ed73c [docs] put autopipeline after overview and hunyuanimage in images (#12548)
put autopipeline after overview and hunyuanimage in images
2025-11-26 15:34:22 +05:30
Sayak Paul
94c9613f99 [docs] Correct flux2 links (#12716)
* fix links

* up
2025-11-26 10:46:51 +05:30
Sayak Paul
b91e8c0d0b [lora]: Fix Flux2 LoRA NaN test (#12714)
* up

* Update tests/lora/test_lora_layers_flux2.py

Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>

---------

Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>
2025-11-26 09:07:48 +05:30
Andrei Filatov
ac7864624b Update script names in README for Flux2 training (#12713) 2025-11-26 07:02:18 +05:30
Sayak Paul
5ffb73d4ae let's go Flux2 🚀 (#12711)
* add vae

* Initial commit for Flux 2 Transformer implementation

* add pipeline part

* small edits to the pipeline and conversion

* update conversion script

* fix

* up up

* finish pipeline

* Remove Flux IP Adapter logic for now

* Remove deprecated 3D id logic

* Remove ControlNet logic for now

* Add link to ViT-22B paper as reference for parallel transformer blocks such as the Flux 2 single stream block

* update pipeline

* Don't use biases for input projs and output AdaNorm

* up

* Remove bias for double stream block text QKV projections

* Add script to convert Flux 2 transformer to diffusers

* make style and make quality

* fix a few things.

* allow sft files to go.

* fix image processor

* fix batch

* style a bit

* Fix some bugs in Flux 2 transformer implementation

* Fix dummy input preparation and fix some test bugs

* fix dtype casting in timestep guidance module.

* resolve conflicts.,

* remove ip adapter stuff.

* Fix Flux 2 transformer consistency test

* Fix bug in Flux2TransformerBlock (double stream block)

* Get remaining Flux 2 transformer tests passing

* make style; make quality; make fix-copies

* remove stuff.

* fix type annotaton.

* remove unneeded stuff from tests

* tests

* up

* up

* add sf support

* Remove unused IP Adapter and ControlNet logic from transformer (#9)

* copied from

* Apply suggestions from code review

Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: apolinário <joaopaulo.passos@gmail.com>

* up

* up

* up

* up

* up

* Refactor Flux2Attention into separate classes for double stream and single stream attention

* Add _supports_qkv_fusion to AttentionModuleMixin to allow subclasses to disable QKV fusion

* Have Flux2ParallelSelfAttention inherit from AttentionModuleMixin with _supports_qkv_fusion=False

* Log debug message when calling fuse_projections on a AttentionModuleMixin subclass that does not support QKV fusion

* Address review comments

* Update src/diffusers/pipelines/flux2/pipeline_flux2.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* up

* Remove maybe_allow_in_graph decorators for Flux 2 transformer blocks (#12)

* up

* support ostris loras. (#13)

* up

* update schdule

* up

* up (#17)

* add training scripts (#16)

* add training scripts

Co-authored-by: Linoy Tsaban <linoytsaban@gmail.com>

* model cpu offload in validation.

* add flux.2 readme

* add img2img and tests

* cpu offload in log validation

* Apply suggestions from code review

* fix

* up

* fixes

* remove i2i training tests for now.

---------

Co-authored-by: Linoy Tsaban <linoytsaban@gmail.com>
Co-authored-by: linoytsaban <linoy@huggingface.co>

* up

---------

Co-authored-by: yiyixuxu <yixu310@gmail.com>
Co-authored-by: Daniel Gu <dgu8957@gmail.com>
Co-authored-by: yiyi@huggingface.co <yiyi@ip-10-53-87-203.ec2.internal>
Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
Co-authored-by: apolinário <joaopaulo.passos@gmail.com>
Co-authored-by: yiyi@huggingface.co <yiyi@ip-26-0-160-103.ec2.internal>
Co-authored-by: Linoy Tsaban <linoytsaban@gmail.com>
Co-authored-by: linoytsaban <linoy@huggingface.co>
2025-11-25 21:49:04 +05:30
Jerry Wu
4088e8a851 Add Support for Z-Image Series (#12703)
* Add Support for Z-Image.

* Reformatting with make style, black & isort.

* Remove init, Modify import utils, Merge forward in transformers block, Remove once func in pipeline.

* modified main model forward, freqs_cis left

* refactored to add B dim

* fixed stack issue

* fixed modulation bug

* fixed modulation bug

* fix bug

* remove value_from_time_aware_config

* styling

* Fix neg embed and devide / bug; Reuse pad zero tensor; Turn cat -> repeat; Add hint for attn processor.

* Replace padding with pad_sequence; Add gradient checkpointing.

* Fix flash_attn3 in dispatch attn backend by _flash_attn_forward, replace its origin implement; Add DocString in pipeline for that.

* Fix Docstring and Make Style.

* Revert "Fix flash_attn3 in dispatch attn backend by _flash_attn_forward, replace its origin implement; Add DocString in pipeline for that."

This reverts commit fbf26b7ed1.

* update z-image docstring

* Revert attention dispatcher

* update z-image docstring

* styling

* Recover attention_dispatch.py with its origin impl, later would special commit for fa3 compatibility.

* Fix prev bug, and support for prompt_embeds pass in args after prompt pre-encode as List of torch Tensor.

* Remove einop dependency.

* remove redundant imports & make fix-copies

* fix import

---------

Co-authored-by: liudongyang <liudongyang0114@gmail.com>
2025-11-25 05:50:00 -10:00
Junsong Chen
d33d9f6715 fix typo in docs (#12675)
* fix typo in docs

* Update docs/source/en/api/pipelines/sana_video.md

Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>

---------

Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>
2025-11-24 19:42:16 -08:00
sq
dde8754ba2 Fix variable naming typos in community FluxControlNetFillInpaintPipeline (#12701)
- Fixed variable naming typos (maskkk -> mask_fill, mask_imagee -> mask_image_fill, masked_imagee -> masked_image_fill, masked_image_latentsss -> masked_latents_fill)

These changes improve code readability without affecting functionality.
2025-11-24 15:16:11 -08:00
cdutr
fbcd3ba6b2 [i8n-pt] Fix grammar and expand Portuguese documentation (#12598)
* Updates Portuguese documentation for Diffusers library

Enhances the Portuguese documentation with:
- Restructured table of contents for improved navigation
- Added placeholder page for in-translation content
- Refined language and improved readability in existing pages
- Introduced a new page on basic Stable Diffusion performance guidance

Improves overall documentation structure and user experience for Portuguese-speaking users

* Removes untranslated sections from Portuguese documentation

Cleans up the Portuguese documentation table of contents by removing placeholder sections marked as "Em tradução" (In translation)

Removes the in_translation.md file and associated table of contents entries for sections that are not yet translated, improving documentation clarity
2025-11-24 14:07:32 -08:00
Sayak Paul
d176f61fcf [core] support sage attention + FA2 through kernels (#12439)
* up

* support automatic dispatch.

* disable compile support for now./

* up

* flash too.

* document.

* up

* up

* up

* up
2025-11-24 16:58:07 +05:30
DefTruth
354d35adb0 bugfix: fix chrono-edit context parallel (#12660)
* bugfix: fix chrono-edit context parallel

* bugfix: fix chrono-edit context parallel

* Update src/diffusers/models/transformers/transformer_chronoedit.py

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* Update src/diffusers/models/transformers/transformer_chronoedit.py

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* Clean up comments in transformer_chronoedit.py

Removed unnecessary comments regarding parallelization in cross-attention.

* fix style

* fix qc

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2025-11-24 16:36:53 +05:30
SwayStar123
544ba677dd Add FluxLoraLoaderMixin to Fibo pipeline (#12688)
Update pipeline_bria_fibo.py
2025-11-24 13:31:31 +05:30
David El Malih
6f1042e36c Improve docstrings and type hints in scheduling_lms_discrete.py (#12678)
* Enhance type hints and docstrings in LMSDiscreteScheduler class

Updated type hints for function parameters and return types to improve code clarity and maintainability. Enhanced docstrings for several methods, providing clearer descriptions of their functionality and expected arguments. Notable changes include specifying Literal types for certain parameters and ensuring consistent return type annotations across the class.

* docs: Add specific paper reference to `_convert_to_karras` docstring.

* Refactor `_convert_to_karras` docstring in DPMSolverSDEScheduler to include detailed descriptions and a specific paper reference, enhancing clarity and documentation consistency.
2025-11-21 10:18:09 -08:00
Pratim Dasude
d5da453de5 Community Pipeline: FluxFillControlNetInpaintPipeline for FLUX Fill-Based Inpainting with ControlNet (#12649)
* new flux fill controlnet inpaint pipline

* Delete src/diffusers/pipelines/flux/pipline_flux_fill_controlnet_Inpaint.py

deleting from main flux pipeline

* Fluc_fill_controlnet community pipline

* Update README.md

* Apply style fixes
2025-11-19 16:18:46 -03:00
David El Malih
15370f8412 Improve docstrings and type hints in scheduling_pndm.py (#12676)
* Enhance docstrings and type hints in PNDMScheduler class

- Updated parameter descriptions to include default values and specific types using Literal for better clarity.
- Improved docstring formatting and consistency across methods, including detailed explanations for the `_get_prev_sample` method.
- Added type hints for method return types to enhance code readability and maintainability.

* Refactor docstring in PNDMScheduler class to enhance clarity

- Simplified the explanation of the method for computing the previous sample from the current sample.
- Updated the reference to the PNDM paper for better accessibility.
- Removed redundant notation explanations to streamline the documentation.
2025-11-19 09:36:41 -08:00
Dhruv Nair
a96b145304 [CI] Fix failing Pipeline CPU tests (#12681)
update

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-11-19 21:19:24 +05:30
Dhruv Nair
6d8973ffe2 [CI] Fix indentation issue in workflow files (#12685)
update
2025-11-19 09:30:04 +05:30
Sayak Paul
ab71f3c864 [core] Refactor hub attn kernels (#12475)
* refactor how attention kernels from hub are used.

* up

* refactor according to Dhruv's ideas.

Co-authored-by: Dhruv Nair <dhruv@huggingface.co>

* empty

Co-authored-by: Dhruv Nair <dhruv@huggingface.co>

* empty

Co-authored-by: Dhruv Nair <dhruv@huggingface.co>

* empty

Co-authored-by: dn6 <dhruv@huggingface.co>

* up

---------

Co-authored-by: Dhruv Nair <dhruv@huggingface.co>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2025-11-19 08:19:00 +05:30
Dhruv Nair
b7df4a5387 [CI] Temporarily pin transformers (#12677)
* update

* update

* update

* update
2025-11-18 14:43:06 +05:30
dg845
67dc65e2e3 Revert AutoencoderKLWan's dim_mult default value back to list (#12640)
Revert dim_mult back to list and fix type annotation
2025-11-17 18:39:53 +05:30
Dhruv Nair
3579fdabf9 [CI] Make CI logs less verbose (#12674)
update
2025-11-17 14:23:09 +05:30
Junsong Chen
1afc21855e SANA-Video Image to Video pipeline SanaImageToVideoPipeline support (#12634)
* move sana-video to a new dir and add `SanaImageToVideoPipeline` with no modify;

* fix bug and run text/image-to-vidoe success;

* make style; quality; fix-copies;

* add sana image-to-video pipeline in markdown;

* add test case for sana image-to-video;

* make style;

* add a init file in sana-video test dir;

* Update src/diffusers/pipelines/sana_video/pipeline_sana_video_i2v.py

Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>

* Update tests/pipelines/sana_video/test_sana_video_i2v.py

Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>

* Update src/diffusers/pipelines/sana_video/pipeline_sana_video_i2v.py

Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>

* Update src/diffusers/pipelines/sana_video/pipeline_sana_video_i2v.py

Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>

* Update tests/pipelines/sana_video/test_sana_video_i2v.py

Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>

* minor update;

* fix bug and skip fp16 save test;

Co-authored-by: Yuyang Zhao <43061147+HeliosZhao@users.noreply.github.com>

* Update src/diffusers/pipelines/sana_video/pipeline_sana_video_i2v.py

Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>

* Update src/diffusers/pipelines/sana_video/pipeline_sana_video_i2v.py

Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>

* Update src/diffusers/pipelines/sana_video/pipeline_sana_video_i2v.py

Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>

* Update src/diffusers/pipelines/sana_video/pipeline_sana_video_i2v.py

Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>

* add copied from for `encode_prompt`

* Apply style fixes

---------

Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>
Co-authored-by: Yuyang Zhao <43061147+HeliosZhao@users.noreply.github.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-11-17 00:23:34 -08:00
David Bertoin
0c35b580fe [PRX pipeline]: add 1024 resolution ratio bins (#12670)
add 1024 ratio bins
2025-11-17 10:37:40 +05:30
David Bertoin
01a56927f1 Rope in float32 for mps or npu compatibility (#12665)
rope in float32
2025-11-15 20:44:34 +05:30
dg845
a9e4883b6a Update Wan Animate Docs (#12658)
* Update the Wan Animate docs to reflect the most recent code

* Further explain input preprocessing and link to original Wan Animate preprocessing scripts
2025-11-14 16:06:22 -08:00
David El Malih
63dd601758 Improve docstrings and type hints in scheduling_euler_discrete.py (#12654)
* refactor: enhance type hints and documentation in EulerDiscreteScheduler

Updated type hints for function parameters and return types in the EulerDiscreteScheduler class to improve code clarity and maintainability. Enhanced docstrings for several methods to provide clearer descriptions of their functionality and expected arguments. This includes specifying Literal types for certain parameters and ensuring consistent return type annotations across the class.

* refactor: enhance type hints and documentation across multiple schedulers

Updated type hints and improved docstrings in various scheduler classes, including CMStochasticIterativeScheduler, CosineDPMSolverMultistepScheduler, and others. This includes specifying parameter types, return types, and providing clearer descriptions of method functionalities. Notable changes include the addition of default values in the begin_index argument and enhanced explanations for noise addition methods. These improvements aim to enhance code clarity and maintainability across the scheduling module.

* refactor: update docstrings to clarify noise schedule construction

Revised docstrings across multiple scheduler classes to enhance clarity regarding the construction of noise schedules. Updated references to relevant papers, ensuring accurate citations for the methodologies used. This includes changes in DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, and others, improving documentation consistency and readability.
2025-11-14 15:12:24 -08:00
Dhruv Nair
eeae0338e7 [Modular] Add Custom Blocks guide to doc (#12339)
* update

* update

* Update docs/source/en/modular_diffusers/custom_blocks.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/modular_diffusers/custom_blocks.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/_toctree.yml

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/modular_diffusers/custom_blocks.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Apply suggestion from @stevhliu

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Apply suggestion from @stevhliu

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* update

* update

* update

* Apply suggestion from @stevhliu

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Apply suggestion from @stevhliu

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* update

* update

* update

* update

* update

* Update docs/source/en/modular_diffusers/custom_blocks.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-11-14 10:59:59 +05:30
David El Malih
3c1ca869d7 Improve docstrings and type hints in scheduling_ddpm.py (#12651)
* Enhance type hints and docstrings in scheduling_ddpm.py

- Added type hints for function parameters and return types across the DDPMScheduler class and related functions.
- Improved docstrings for clarity, including detailed descriptions of parameters and return values.
- Updated the alpha_transform_type and beta_schedule parameters to use Literal types for better type safety.
- Refined the _get_variance and previous_timestep methods with comprehensive documentation.

* Refactor docstrings and type hints in scheduling_ddpm.py

- Cleaned up whitespace in the rescale_zero_terminal_snr function.
- Enhanced the variance_type parameter in the DDPMScheduler class with improved formatting for better readability.
- Updated the docstring for the compute_variance method to maintain consistency and clarity in parameter descriptions and return values.

* Apply `make fix-copies`

* Refactor type hints across multiple scheduler files

- Updated type hints to include `Literal` for improved type safety in various scheduling files.
- Ensured consistency in type hinting for parameters and return types across the affected modules.
- This change enhances code clarity and maintainability.
2025-11-13 14:46:23 -08:00
David El Malih
6fe4a6ff8e Improve docstrings and type hints in scheduling_ddim.py (#12622)
* Improve docstrings and type hints in scheduling_ddim.py

- Add complete type hints for all function parameters
- Enhance docstrings to follow project conventions
- Add missing parameter descriptions

Fixes #9567

* Enhance docstrings and type hints in scheduling_ddim.py

- Update parameter types and descriptions for clarity
- Improve explanations in method docstrings to align with project standards
- Add optional annotations for parameters where applicable

* Refine type hints and docstrings in scheduling_ddim.py

- Update parameter types to use Literal for specific string options
- Enhance docstring descriptions for clarity and consistency
- Ensure all parameters have appropriate type annotations and defaults

* Apply review feedback on scheduling_ddim.py

- Replace "prevent singularities" with "avoid numerical instability" for better clarity
- Add backticks around `alpha_bar` variable name for consistent formatting
- Convert Imagen Video paper URLs to Hugging Face papers references

* Propagate changes using 'make fix-copies'

* Add missing Literal
2025-11-13 14:45:58 -08:00
Steven Liu
40de88af8c [docs] AutoModel (#12644)
* automodel

* fix
2025-11-13 08:43:24 -08:00
Steven Liu
6a2309b98d [utils] Update check_doc_toc (#12642)
update

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-11-13 08:42:31 -08:00
Sayak Paul
cd3bbe2910 skip autoencoderdl layerwise casting memory (#12647) 2025-11-13 12:56:22 +05:30
kaixuanliu
7a001c3ee2 adjust unit tests for test_save_load_float16 (#12500)
* adjust unit tests for wan pipeline

Signed-off-by: Liu, Kaixuan <kaixuan.liu@intel.com>

* update code

Signed-off-by: Liu, Kaixuan <kaixuan.liu@intel.com>

* avoid adjusting common `get_dummy_components` API

Signed-off-by: Liu, Kaixuan <kaixuan.liu@intel.com>

* use `form_pretrained` to `transformer` and `transformer_2`

Signed-off-by: Liu, Kaixuan <kaixuan.liu@intel.com>

* update code

Signed-off-by: Liu, Kaixuan <kaixuan.liu@intel.com>

* update

Signed-off-by: Liu, Kaixuan <kaixuan.liu@intel.com>

---------

Signed-off-by: Liu, Kaixuan <kaixuan.liu@intel.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2025-11-13 11:57:12 +05:30
dg845
d8e4805816 [WIP]Add Wan2.2 Animate Pipeline (Continuation of #12442 by tolgacangoz) (#12526)
---------

Co-authored-by: Tolga Cangöz <mtcangoz@gmail.com>
Co-authored-by: Tolga Cangöz <46008593+tolgacangoz@users.noreply.github.com>
2025-11-12 16:52:31 -10:00
David El Malih
44c3101685 Improve docstrings and type hints in scheduling_amused.py (#12623)
* Improve docstrings and type hints in scheduling_amused.py

- Add complete type hints for helper functions (gumbel_noise, mask_by_random_topk)
- Enhance AmusedSchedulerOutput with proper Optional typing
- Add comprehensive docstrings for AmusedScheduler class
- Improve __init__, set_timesteps, step, and add_noise methods
- Fix type hints to match documentation conventions
- All changes follow project standards from issue #9567

* Enhance type hints and docstrings in scheduling_amused.py

- Update type hints for `prev_sample` and `pred_original_sample` in `AmusedSchedulerOutput` to reflect their tensor types.
- Improve docstring for `gumbel_noise` to specify the output tensor's dtype and device.
- Refine `AmusedScheduler` class documentation, including detailed descriptions of the masking schedule and temperature parameters.
- Adjust type hints in `set_timesteps` and `step` methods for better clarity and consistency.

* Apply review feedback on scheduling_amused.py

- Replace generic [Amused] reference with specific [`AmusedPipeline`] reference for consistency with project documentation conventions
2025-11-12 17:26:10 -08:00
YiYi Xu
d6c63bb956 [modular] add a check (#12628)
* add

* fix
2025-11-12 07:59:18 -10:00
Steven Liu
2f44d63046 [docs] Update install instructions (#12626)
remove commit

Removed specific commit reference for installation instructions.

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Álvaro Somoza <asomoza@users.noreply.github.com>
2025-11-12 09:21:24 -08:00
Quentin Gallouédec
f3db38c1e7 ArXiv -> HF Papers (#12583)
* Update pipeline_skyreels_v2_i2v.py

* Update README.md

* Update torch_utils.py

* Update torch_utils.py

* Update guider_utils.py

* Update pipeline_ltx.py

* Update pipeline_bria.py

* Apply suggestion from @qgallouedec

* Update autoencoder_kl_qwenimage.py

* Update pipeline_prx.py

* Update pipeline_wan_vace.py

* Update pipeline_skyreels_v2.py

* Update pipeline_skyreels_v2_diffusion_forcing.py

* Update pipeline_bria_fibo.py

* Update pipeline_skyreels_v2_diffusion_forcing_i2v.py

* Update pipeline_ltx_condition.py

* Update pipeline_ltx_image2video.py

* Update regional_prompting_stable_diffusion.py

* make style

* style

* style
2025-11-12 08:37:21 -08:00
Sayak Paul
f5e5f34823 [modular] add tests for qwen modular (#12585)
* add tests for qwenimage modular.

* qwenimage edit.

* qwenimage edit plus.

* empty

* align with the latest structure

* up

* up

* reason

* up

* fix multiple issues.

* up

* up

* fix

* up

* make it similar to the original pipeline.
2025-11-12 17:37:42 +05:30
YiYi Xu
093cd3f040 fix dispatch_attention_fn check (#12636)
* fix

* fix
2025-11-11 19:16:13 -10:00
a120092009
aecf0c53bf Add MLU Support. (#12629)
* Add MLU Support.

* fix comment.

* rename is_mlu_available to is_torch_mlu_available

* Apply style fixes

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-11-11 19:15:26 -10:00
YiYi Xu
0c7589293b fix copies (#12637)
* fix

* remoce cocpies instead
2025-11-11 15:44:55 -10:00
Charchit Sharma
ff263947ad Fix rotary positional embedding dimension mismatch in Wan and SkyReels V2 transformers (#12594)
* Fix rotary positional embedding dimension mismatch in Wan and SkyReels V2 transformers

- Store t_dim, h_dim, w_dim as instance variables in WanRotaryPosEmbed and SkyReelsV2RotaryPosEmbed __init__
- Use stored dimensions in forward() instead of recalculating with different formula
- Fixes inconsistency between init (using // 6) and forward (using // 3)
- Ensures split_sizes matches the dimensions used to create rotary embeddings

* quality fix

---------

Co-authored-by: Charchit Sharma <charchitsharma@A-267.local>
2025-11-11 11:45:36 -10:00
Dhruv Nair
66e6a0215f [CI] Remove unittest dependency from testing_utils.py (#12621)
* update

* Update tests/testing_utils.py

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update tests/testing_utils.py

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Apply style fixes

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-11-11 16:40:39 +05:30
Cesaryuan
5a47442f92 Fix: update type hints for Tuple parameters across multiple files to support variable-length tuples (#12544)
* Fix: update type hints for Tuple parameters across multiple files to support variable-length tuples

* Apply style fixes

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-11-10 13:57:52 -08:00
Dhruv Nair
8f6328c4a4 [Modular] Clean up docs (#12604)
update

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2025-11-10 23:37:29 +05:30
Dhruv Nair
8d45f219d0 Fix Context Parallel validation checks (#12446)
* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-11-10 23:37:07 +05:30
Yashwant Bezawada
0fd58c7706 fix: correct import path for load_model_dict_into_meta in conversion scripts (#12616)
The function load_model_dict_into_meta was moved from modeling_utils.py to
model_loading_utils.py but the imports in the conversion scripts were not
updated, causing ImportError when running these scripts.

This fixes the import in 6 conversion scripts:
- scripts/convert_sd3_to_diffusers.py
- scripts/convert_stable_cascade_lite.py
- scripts/convert_stable_cascade.py
- scripts/convert_stable_audio.py
- scripts/convert_sana_to_diffusers.py
- scripts/convert_sana_controlnet_to_diffusers.py

Fixes #12606
2025-11-10 14:47:18 +05:30
Dhruv Nair
35d703310c [CI] Fix typo in uv install (#12618)
update
2025-11-10 13:22:46 +05:30
YiYi Xu
b455dc94a2 [modular] wan! (#12611)
* update, remove intermediaate_inputs

* support image2video

* revert dynamic steps to simplify

* refactor vae encoder block

* support flf2video!

* add support for wan2.2 14B

* style

* Apply suggestions from code review

* input dynamic step -> additiional input step

* up

* fix init

* update dtype
2025-11-09 21:48:50 -10:00
Jay Wu
04f9d2bf3d add ChronoEdit (#12593)
* add ChronoEdit

* add ref to  original function & remove wan2.2 logics

* Update src/diffusers/pipelines/chronoedit/pipeline_chronoedit.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/chronoedit/pipeline_chronoedit.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* add ChronoeEdit test

* add docs

* add docs

* make fix-copies

* fix chronoedit test

---------

Co-authored-by: wjay <wjay@nvidia.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-11-09 22:07:00 -08:00
Dhruv Nair
bc8fd864eb [CI] Push test fix (#12617)
update
2025-11-10 09:26:14 +05:30
Wang, Yi
a9cb08af39 fix the crash in Wan-AI/Wan2.2-TI2V-5B-Diffusers if CP is enabled (#12562)
* fix the crash in Wan-AI/Wan2.2-TI2V-5B-Diffusers if CP is enabled

Signed-off-by: Wang, Yi <yi.a.wang@intel.com>

* address review comment

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* refine

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

---------

Signed-off-by: Wang, Yi <yi.a.wang@intel.com>
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2025-11-07 20:00:13 +05:30
DefTruth
9f669e7b5d feat: enable attention dispatch for huanyuan video (#12591)
* feat: enable attention dispatch for huanyuan video

* feat: enable attention dispatch for huanyuan video
2025-11-07 11:22:41 +05:30
Dhruv Nair
8ac17cd2cb [Modular] Some clean up for Modular tests (#12579)
* update

* update

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-11-07 08:19:15 +05:30
Mohammad Sadegh Salehi
e4393fa613 Fix overflow and dtype handling in rgblike_to_depthmap (NumPy + PyTorch) (#12546)
* Fix overflow in rgblike_to_depthmap by safe dtype casting (torch & NumPy)

* Fix: store original dtype and cast back after safe computation

* Apply style fixes

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-11-06 08:18:21 -10:00
Junsong Chen
b3e9dfced7 [SANA-Video] Adding 5s pre-trained 480p SANA-Video inference (#12584)
* 1. add `SanaVideoTransformer3DModel` in transformer_sana_video.py
2. add `SanaVideoPipeline` in pipeline_sana_video.py
3. add all code we need for import `SanaVideoPipeline`

* add a sample about how to use sana-video;

* code update;

* update hf model path;

* update code;

* sana-video can run now;

* 1. add aspect ratio in sana-video-pipeline;
2. add reshape function in sana-video-processor;
3. fix convert pth to safetensor bugs;

* default to use `use_resolution_binning`;

* make style;

* remove unused code;

* Update src/diffusers/models/transformers/transformer_sana_video.py

Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>

* Update src/diffusers/models/transformers/transformer_sana_video.py

Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>

* Update src/diffusers/models/transformers/transformer_sana_video.py

Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>

* Update src/diffusers/pipelines/sana/pipeline_sana_video.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/models/transformers/transformer_sana_video.py

Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>

* Update src/diffusers/models/transformers/transformer_sana_video.py

Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>

* Update src/diffusers/models/transformers/transformer_sana_video.py

* Update src/diffusers/pipelines/sana/pipeline_sana_video.py

Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>

* Update src/diffusers/models/transformers/transformer_sana_video.py

Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>

* Update src/diffusers/pipelines/sana/pipeline_sana_video.py

Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>

* support `dispatch_attention_fn`

* 1. add sana-video markdown;
2. fix typos;

* add two test case for sana-video (need check)

* fix text-encoder in test-sana-video;

* Update tests/pipelines/sana/test_sana_video.py

* Update tests/pipelines/sana/test_sana_video.py

Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>

* Update tests/pipelines/sana/test_sana_video.py

Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>

* Update tests/pipelines/sana/test_sana_video.py

Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>

* Update tests/pipelines/sana/test_sana_video.py

Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>

* Update tests/pipelines/sana/test_sana_video.py

Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>

* Update src/diffusers/pipelines/sana/pipeline_sana_video.py

Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>

* Update src/diffusers/video_processor.py

Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>

* make style
make quality
make fix-copies

* toctree yaml update;

* add sana-video-transformer3d markdown;

* Apply style fixes

---------

Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-11-05 21:08:47 -08:00
Joseph Turian
58f3771545 Add optional precision-preserving preprocessing for examples/unconditional_image_generation/train_unconditional.py (#12596)
* Add optional precision-preserving preprocessing

* Document decoder caveat for precision flag

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-11-06 09:37:31 +05:30
Dhruv Nair
6198f8a12b [Modular] Allow ModularPipeline to load from revisions (#12592)
* update

* update

* update

* update

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2025-11-06 07:54:24 +05:30
Linoy Tsaban
dcfb18a2d3 [LoRA] add support for more Qwen LoRAs (#12581)
* fix bug when offload and cache_latents both enabled

* fix
2025-11-04 14:27:25 +02:00
Sayak Paul
ac5a1e28fc [docs] sort doc (#12586)
sort doc
2025-11-04 10:26:07 +05:30
Lev Novitskiy
325a95051b Kandinsky 5.0 Docs fixes (#12582)
* add transformer pipeline first version

* updates

* fix 5sec generation

* rewrite Kandinsky5T2VPipeline to diffusers style

* add multiprompt support

* remove prints in pipeline

* add nabla attention

* Wrap Transformer in Diffusers style

* fix license

* fix prompt type

* add gradient checkpointing and peft support

* add usage example

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: Álvaro Somoza <asomoza@users.noreply.github.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: Álvaro Somoza <asomoza@users.noreply.github.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: Álvaro Somoza <asomoza@users.noreply.github.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: Álvaro Somoza <asomoza@users.noreply.github.com>

* Update src/diffusers/models/transformers/transformer_kandinsky.py

Co-authored-by: Álvaro Somoza <asomoza@users.noreply.github.com>

* remove unused imports

* add 10 second models support

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* remove no_grad and simplified prompt paddings

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* moved template to __init__

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/models/transformers/transformer_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* moved sdps inside processor

* remove oneline function

* remove reset_dtype methods

* Transformer: move all methods to forward

* separated prompt encoding

* Update src/diffusers/models/transformers/transformer_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* refactoring

* Update src/diffusers/models/transformers/transformer_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* refactoring acording to acabbc0033

* Update src/diffusers/models/transformers/transformer_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/models/transformers/transformer_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/models/transformers/transformer_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/models/transformers/transformer_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/models/transformers/transformer_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/models/transformers/transformer_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/models/transformers/transformer_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/models/transformers/transformer_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/models/transformers/transformer_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* fixed

* style +copies

* Update src/diffusers/models/transformers/transformer_kandinsky.py

Co-authored-by: Charles <charles@huggingface.co>

* more

* Apply suggestions from code review

* add lora loader doc

* add compiled Nabla Attention

* all needed changes for 10 sec models are added!

* add docs

* Apply style fixes

* update docs

* add kandinsky5 to toctree

* add tests

* fix tests

* Apply style fixes

* update tests

* minor docs refactoring

* refactor Kandinsky 5.0 Vide docs

* Update docs/source/en/_toctree.yml

---------

Co-authored-by: Álvaro Somoza <asomoza@users.noreply.github.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: Charles <charles@huggingface.co>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-11-03 14:38:07 -10:00
Wang, Yi
1ec28a2c77 ulysses enabling in native attention path (#12563)
* ulysses enabling in native attention path

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* address review comment

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* add supports_context_parallel for native attention

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* update templated attention

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

---------

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-11-03 11:48:20 -10:00
YiYi Xu
de6173c683 [modular]pass hub_kwargs to load_config (#12577)
pass hub_kwargs to load_config
2025-11-03 09:44:42 -10:00
Sayak Paul
8f80dda193 [tests] add tests for flux modular (t2i, i2i, kontext) (#12566)
* start flux modular tests.

* up

* add kontext

* up

* up

* up

* Update src/diffusers/modular_pipelines/flux/denoise.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* up

* up

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2025-11-02 10:51:11 +05:30
YiYi Xu
cdbf0ad883 [modular] better warn message (#12573)
better warn message
2025-11-01 18:45:09 -10:00
Dhruv Nair
5e8415a311 Fix custom code loading in Automodel (#12571)
update
2025-11-01 17:04:31 -10:00
Friedrich Schöller
051c8a1c0f Fix Stable Diffusion 3.x pooled prompt embedding with multiple images (#12306) 2025-10-31 10:25:13 -10:00
Dhruv Nair
d54622c267 [Modular] Allow custom blocks to be saved to local_dir (#12381)
update

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2025-10-31 13:47:02 +05:30
Dhruv Nair
df8dd77817 [Modular] Fix for custom block kwargs (#12561)
update
2025-10-31 00:14:24 +05:30
Pavle Padjin
9f3c0fdcd8 Avoiding graph break by changing the way we infer dtype in vae.decoder (#12512)
* Changing the way we infer dtype to avoid force evaluation of lazy tensors

* changing way to infer dtype to ensure type consistency

* more robust infering of dtype

* removing the upscale dtype entirely
2025-10-30 08:39:40 +05:30
galbria
84e16575e4 Bria fibo (#12545)
* Bria FIBO pipeline

* style fixs

* fix CR

* Refactor BriaFibo classes and update pipeline parameters

- Updated BriaFiboAttnProcessor and BriaFiboAttention classes to reflect changes from Flux equivalents.
- Modified the _unpack_latents method in BriaFiboPipeline to improve clarity.
- Increased the default max_sequence_length to 3000 and added a new optional parameter do_patching.
- Cleaned up test_pipeline_bria_fibo.py by removing unused imports and skipping unsupported tests.

* edit the docs of FIBO

* Remove unused BriaFibo imports and update CPU offload method in BriaFiboPipeline

* Refactor FIBO classes to BriaFibo naming convention

- Updated class names from FIBO to BriaFibo for consistency across the module.
- Modified instances of FIBOEmbedND, FIBOTimesteps, TextProjection, and TimestepProjEmbeddings to reflect the new naming.
- Ensured all references in the BriaFiboTransformer2DModel are updated accordingly.

* Add BriaFiboTransformer2DModel import to transformers module

* Remove unused BriaFibo imports from modular pipelines and add BriaFiboTransformer2DModel and BriaFiboPipeline classes to dummy objects for enhanced compatibility with torch and transformers.

* Update BriaFibo classes with copied documentation and fix import typo in pipeline module

- Added documentation comments indicating the source of copied code in BriaFiboTransformerBlock and _pack_latents methods.
- Corrected the import statement for BriaFiboPipeline in the pipelines module.

* Remove unused BriaFibo imports from __init__.py to streamline modular pipelines.

* Refactor documentation comments in BriaFibo classes to indicate inspiration from existing implementations

- Updated comments in BriaFiboAttnProcessor, BriaFiboAttention, and BriaFiboPipeline to reflect that the code is inspired by other modules rather than copied.
- Enhanced clarity on the origins of the methods to maintain proper attribution.

* change Inspired by to Based on

* add reference link and fix trailing whitespace

* Add BriaFiboTransformer2DModel documentation and update comments in BriaFibo classes

- Introduced a new documentation file for BriaFiboTransformer2DModel.
- Updated comments in BriaFiboAttnProcessor, BriaFiboAttention, and BriaFiboPipeline to clarify the origins of the code, indicating copied sources for better attribution.

---------

Co-authored-by: sayakpaul <spsayakpaul@gmail.com>
2025-10-28 16:27:48 +05:30
Sayak Paul
55d49d4379 [ci] don't run sana layerwise casting tests in CI. (#12551)
* don't run sana layerwise casting tests in CI.

* up
2025-10-28 13:29:51 +05:30
Meatfucker
40528e9ae7 Fix typos in kandinsky5 docs (#12552)
Update kandinsky5.md

Fix typos
2025-10-28 02:54:24 -03:00
Wang, Yi
dc622a95d0 fix crash if tiling mode is enabled (#12521)
* fix crash in tiling mode is enabled

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* fmt

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

---------

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-10-27 17:59:20 -10:00
Dhruv Nair
ecfbc8f952 [Pipelines] Enable Wan VACE to run since single transformer (#12428)
* update

* update

* update

* update

* update
2025-10-28 09:21:31 +05:30
Sayak Paul
df0e2a4f2c support latest few-step wan LoRA. (#12541)
* support latest few-step wan LoRA.

* up

* up
2025-10-28 08:55:24 +05:30
G.O.D
303efd2b8d Improve pos embed for Flux.1 inference on Ascend NPU (#12534)
improve pos embed for ascend npu

Co-authored-by: felix01.yu <felix01.yu@vipshop.com>
2025-10-27 16:55:36 -10:00
Lev Novitskiy
5afbcce176 Kandinsky 5 10 sec (NABLA suport) (#12520)
* add transformer pipeline first version

* updates

* fix 5sec generation

* rewrite Kandinsky5T2VPipeline to diffusers style

* add multiprompt support

* remove prints in pipeline

* add nabla attention

* Wrap Transformer in Diffusers style

* fix license

* fix prompt type

* add gradient checkpointing and peft support

* add usage example

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: Álvaro Somoza <asomoza@users.noreply.github.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: Álvaro Somoza <asomoza@users.noreply.github.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: Álvaro Somoza <asomoza@users.noreply.github.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: Álvaro Somoza <asomoza@users.noreply.github.com>

* Update src/diffusers/models/transformers/transformer_kandinsky.py

Co-authored-by: Álvaro Somoza <asomoza@users.noreply.github.com>

* remove unused imports

* add 10 second models support

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* remove no_grad and simplified prompt paddings

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* moved template to __init__

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/models/transformers/transformer_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* moved sdps inside processor

* remove oneline function

* remove reset_dtype methods

* Transformer: move all methods to forward

* separated prompt encoding

* Update src/diffusers/models/transformers/transformer_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* refactoring

* Update src/diffusers/models/transformers/transformer_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* refactoring acording to acabbc0033

* Update src/diffusers/models/transformers/transformer_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/models/transformers/transformer_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/models/transformers/transformer_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/models/transformers/transformer_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/models/transformers/transformer_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/models/transformers/transformer_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/models/transformers/transformer_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/models/transformers/transformer_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/models/transformers/transformer_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/kandinsky5/pipeline_kandinsky.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* fixed

* style +copies

* Update src/diffusers/models/transformers/transformer_kandinsky.py

Co-authored-by: Charles <charles@huggingface.co>

* more

* Apply suggestions from code review

* add lora loader doc

* add compiled Nabla Attention

* all needed changes for 10 sec models are added!

* add docs

* Apply style fixes

* update docs

* add kandinsky5 to toctree

* add tests

* fix tests

* Apply style fixes

* update tests

---------

Co-authored-by: Álvaro Somoza <asomoza@users.noreply.github.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: Charles <charles@huggingface.co>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-10-28 07:47:18 +05:30
alirezafarashah
6d1a648602 Fix small inconsistency in output dimension of "_get_t5_prompt_embeds" function in sd3 pipeline (#12531)
* Fix small inconsistency in output dimension of t5 embeds when text_encoder_3 is None

* first commit

---------

Co-authored-by: Alireza Farashah <alireza.farashah@cn-g017.server.mila.quebec>
Co-authored-by: Alireza Farashah <alireza.farashah@login-2.server.mila.quebec>
2025-10-27 07:16:43 -10:00
Mikko Lauri
250f5cb53d Add AITER attention backend (#12549)
* add aiter attention backend

* Apply style fixes

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-10-27 20:25:02 +05:30
josephrocca
dc6bd1511a Fix Chroma attention padding order and update docs to use lodestones/Chroma1-HD (#12508)
* [Fix] Move attention mask padding after T5 embedding

* [Fix] Move attention mask padding after T5 embedding

* Clean up whitespace in pipeline_chroma.py

Removed unnecessary blank lines for cleaner code.

* Fix

* Fix

* Update model to final Chroma1-HD checkpoint

* Update to Chroma1-HD

* Update model to Chroma1-HD

* Update model to Chroma1-HD

* Update Chroma model links to Chroma1-HD

* Add comment about padding/masking

* Fix checkpoint/repo references

* Apply style fixes

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2025-10-27 16:25:20 +05:30
Sayak Paul
500b9cf184 [chore] Move guiders experimental warning (#12543)
* move guiders experimental warning to init.

* up
2025-10-26 07:41:23 -10:00
Dhruv Nair
d34b18c783 Deprecate Stable Cascade (#12537)
* update

* update

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-10-24 22:06:31 +05:30
kaixuanliu
7536f647e4 Loose the criteria tolerance appropriately for Intel XPU devices (#12460)
* Loose the criteria tolerance appropriately for Intel XPU devices

Signed-off-by: Liu, Kaixuan <kaixuan.liu@intel.com>

* change back the atol value

Signed-off-by: Liu, Kaixuan <kaixuan.liu@intel.com>

* use expectations

Signed-off-by: Liu, Kaixuan <kaixuan.liu@intel.com>

* Update tests/pipelines/kandinsky2_2/test_kandinsky_controlnet.py

---------

Signed-off-by: Liu, Kaixuan <kaixuan.liu@intel.com>
Co-authored-by: Ilyas Moutawwakil <57442720+IlyasMoutawwakil@users.noreply.github.com>
2025-10-24 12:18:15 +02:00
YiYi Xu
a138d71ec1 HunyuanImage21 (#12333)
* add hunyuanimage2.1


---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-10-23 22:31:12 -10:00
Sayak Paul
bc4039886d fix constants.py to user upper() (#12479) 2025-10-24 12:00:02 +05:30
Dhruv Nair
9c3b58dcf1 Handle deprecated transformer classes (#12517)
* update

* update

* update
2025-10-23 16:22:07 +05:30
Aishwarya Badlani
74b5fed434 Fix MPS compatibility in get_1d_sincos_pos_embed_from_grid #12432 (#12449)
* Fix MPS compatibility in get_1d_sincos_pos_embed_from_grid #12432

* Fix trailing whitespace in docstring

* Apply style fixes

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-10-23 16:18:07 +05:30
kaixuanliu
85eb505672 fix CI bug for kandinsky3_img2img case (#12474)
* fix CI bug for kandinsky3_img2img case

Signed-off-by: Liu, Kaixuan <kaixuan.liu@intel.com>

* update code

Signed-off-by: Liu, Kaixuan <kaixuan.liu@intel.com>

---------

Signed-off-by: Liu, Kaixuan <kaixuan.liu@intel.com>
2025-10-23 16:17:22 +05:30
Sayak Paul
ccdd96ca52 [tests] Test attention backends (#12388)
* add a lightweight test suite for attention backends.

* up

* up

* Apply suggestions from code review

* formatting
2025-10-23 15:09:41 +05:30
Sayak Paul
4c723d8ec3 [CI] xfail the test_wuerstchen_prior test (#12530)
xfail the test_wuerstchen_prior test
2025-10-22 08:45:47 -10:00
YiYi Xu
bec2d8eaea Fix: Add _skip_keys for AutoencoderKLWan (#12523)
add
2025-10-22 07:53:13 -10:00
Álvaro Somoza
a0a51eb098 Kandinsky5 No cfg fix (#12527)
fix
2025-10-22 22:02:47 +05:30
Sayak Paul
a5a0ccf86a [core] AutoencoderMixin to abstract common methods (#12473)
* up

* correct wording.

* up

* up

* up
2025-10-22 08:52:06 +05:30
David Bertoin
dd07b19e27 Prx (#12525)
* rename photon to prx

* rename photon into prx

* Revert .gitignore to state before commit b7fb0fe9d6

* rename photon to prx

* rename photon into prx

* Revert .gitignore to state before commit b7fb0fe9d6

* make fix-copies
2025-10-21 17:09:22 -07:00
vb
57636ad4f4 purge HF_HUB_ENABLE_HF_TRANSFER; promote Xet (#12497)
* purge HF_HUB_ENABLE_HF_TRANSFER; promote Xet

* purge HF_HUB_ENABLE_HF_TRANSFER; promote Xet x2

* restrict docker build test to the ones we actually use in CI.

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-10-22 00:59:20 +05:30
David Bertoin
cefc2cf82d Add Photon model and pipeline support (#12456)
* Add Photon model and pipeline support

This commit adds support for the Photon image generation model:
- PhotonTransformer2DModel: Core transformer architecture
- PhotonPipeline: Text-to-image generation pipeline
- Attention processor updates for Photon-specific attention mechanism
- Conversion script for loading Photon checkpoints
- Documentation and tests

* just store the T5Gemma encoder

* enhance_vae_properties if vae is provided only

* remove autocast for text encoder forwad

* BF16 example

* conditioned CFG

* remove enhance vae and use vae.config directly when possible

* move PhotonAttnProcessor2_0 in transformer_photon

* remove einops dependency and now inherits from AttentionMixin

* unify the structure of the forward block

* update doc

* update doc

* fix T5Gemma loading from hub

* fix timestep shift

* remove lora support from doc

* Rename EmbedND for PhotoEmbedND

* remove modulation dataclass

* put _attn_forward and _ffn_forward logic in PhotonBlock's forward

* renam LastLayer for FinalLayer

* remove lora related code

* rename vae_spatial_compression_ratio for vae_scale_factor

* support prompt_embeds in call

* move xattention conditionning out computation out of the denoising loop

* add negative prompts

* Use _import_structure for lazy loading

* make quality + style

* add pipeline test + corresponding fixes

* utility function that determines the default resolution given the VAE

* Refactor PhotonAttention to match Flux pattern

* built-in RMSNorm

* Revert accidental .gitignore change

* parameter names match the standard diffusers conventions

* renaming and remove unecessary attributes setting

* Update docs/source/en/api/pipelines/photon.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* quantization example

* added doc to toctree

* Update docs/source/en/api/pipelines/photon.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/api/pipelines/photon.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/api/pipelines/photon.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* use dispatch_attention_fn for multiple attention backend support

* naming changes

* make fix copy

* Update docs/source/en/api/pipelines/photon.md

Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>

* Add PhotonTransformer2DModel to TYPE_CHECKING imports

* make fix-copies

* Use Tuple instead of tuple

Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>

* restrict the version of transformers

Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>

* Update tests/pipelines/photon/test_pipeline_photon.py

Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>

* Update tests/pipelines/photon/test_pipeline_photon.py

Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>

* change | for Optional

* fix nits.

* use typing Dict

---------

Co-authored-by: davidb <davidb@worker-10.soperator-worker-svc.soperator.svc.cluster.local>
Co-authored-by: David Briand <david@photoroom.com>
Co-authored-by: davidb <davidb@worker-8.soperator-worker-svc.soperator.svc.cluster.local>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>
Co-authored-by: sayakpaul <spsayakpaul@gmail.com>
2025-10-21 20:55:55 +05:30
Sayak Paul
b3e56e71fb styling issues. (#12522) 2025-10-21 20:04:54 +05:30
Steven Liu
5b5fa49a89 [docs] Organize toctree by modality (#12514)
* reorganize

* fix

---------

Co-authored-by: Álvaro Somoza <asomoza@users.noreply.github.com>
2025-10-21 10:18:54 +05:30
Fei Xie
decfa3c9e1 Fix: Use incorrect temporary variable key when replacing adapter name… (#12502)
Fix: Use incorrect temporary variable key when replacing adapter name in state dict within load_lora_adapter function

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-10-20 15:45:37 -10:00
Dhruv Nair
48305755bf Raise warning instead of error when imports are missing for custom code (#12513)
update
2025-10-20 07:02:23 -10:00
dg845
7853bfbed7 Remove Qwen Image Redundant RoPE Cache (#12452)
Refactor QwenEmbedRope to only use the LRU cache for RoPE caching
2025-10-19 18:41:58 -07:00
Lev Novitskiy
23ebbb4bc8 Kandinsky 5 is finally in Diffusers! (#12478)
* add kandinsky5 transformer pipeline first version

---------

Co-authored-by: Álvaro Somoza <asomoza@users.noreply.github.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: Charles <charles@huggingface.co>
2025-10-17 18:34:30 -10:00
Ali Imran
1b456bd5d5 docs: cleanup of runway model (#12503)
* cleanup of runway model

* quality fixes
2025-10-17 14:10:50 -07:00
Sayak Paul
af769881d3 [tests] introduce VAETesterMixin to consolidate tests for slicing and tiling (#12374)
* up

* up

* up

* up

* up

* u[

* up

* up

* up
2025-10-17 12:02:29 +05:30
Sayak Paul
4715c5c769 [ci] xfail more incorrect transformer imports. (#12455)
* xfail more incorrect transformer imports.

* xfail more.

* up

* up

* up
2025-10-17 10:35:19 +05:30
Steven Liu
dbe413668d [CI] Check links (#12491)
* check links

* update

* feedback

* remove
2025-10-16 10:38:16 -07:00
Steven Liu
26475082cb [docs] Attention checks (#12486)
* checks

* feedback

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-10-16 09:19:30 -07:00
YiYi Xu
f072c64bf2 ltx0.9.8 (without IC lora, autoregressive sampling) (#12493)
update

Co-authored-by: Aryan <aryan@huggingface.co>
2025-10-15 07:41:17 -10:00
549 changed files with 57967 additions and 6624 deletions

View File

@@ -7,7 +7,7 @@ on:
env:
DIFFUSERS_IS_CI: yes
HF_HUB_ENABLE_HF_TRANSFER: 1
HF_XET_HIGH_PERFORMANCE: 1
HF_HOME: /mnt/cache
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8

View File

@@ -42,18 +42,39 @@ jobs:
CHANGED_FILES: ${{ steps.file_changes.outputs.all }}
run: |
echo "$CHANGED_FILES"
for FILE in $CHANGED_FILES; do
ALLOWED_IMAGES=(
diffusers-pytorch-cpu
diffusers-pytorch-cuda
diffusers-pytorch-xformers-cuda
diffusers-pytorch-minimum-cuda
diffusers-doc-builder
)
declare -A IMAGES_TO_BUILD=()
for FILE in $CHANGED_FILES; do
# skip anything that isn't still on disk
if [[ ! -f "$FILE" ]]; then
if [[ ! -e "$FILE" ]]; then
echo "Skipping removed file $FILE"
continue
fi
if [[ "$FILE" == docker/*Dockerfile ]]; then
DOCKER_PATH="${FILE%/Dockerfile}"
DOCKER_TAG=$(basename "$DOCKER_PATH")
echo "Building Docker image for $DOCKER_TAG"
docker build -t "$DOCKER_TAG" "$DOCKER_PATH"
fi
for IMAGE in "${ALLOWED_IMAGES[@]}"; do
if [[ "$FILE" == docker/${IMAGE}/* ]]; then
IMAGES_TO_BUILD["$IMAGE"]=1
fi
done
done
if [[ ${#IMAGES_TO_BUILD[@]} -eq 0 ]]; then
echo "No relevant Docker changes detected."
exit 0
fi
for IMAGE in "${!IMAGES_TO_BUILD[@]}"; do
DOCKER_PATH="docker/${IMAGE}"
echo "Building Docker image for $IMAGE"
docker build -t "$IMAGE" "$DOCKER_PATH"
done
if: steps.file_changes.outputs.all != ''

View File

@@ -12,7 +12,33 @@ concurrency:
cancel-in-progress: true
jobs:
check-links:
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: '3.10'
- name: Install uv
run: |
curl -LsSf https://astral.sh/uv/install.sh | sh
echo "$HOME/.cargo/bin" >> $GITHUB_PATH
- name: Install doc-builder
run: |
uv pip install --system git+https://github.com/huggingface/doc-builder.git@main
- name: Check documentation links
run: |
uv run doc-builder check-links docs/source/en
build:
needs: check-links
uses: huggingface/doc-builder/.github/workflows/build_pr_documentation.yml@main
with:
commit_sha: ${{ github.event.pull_request.head.sha }}

View File

@@ -7,7 +7,7 @@ on:
env:
DIFFUSERS_IS_CI: yes
HF_HUB_ENABLE_HF_TRANSFER: 1
HF_XET_HIGH_PERFORMANCE: 1
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
PYTEST_TIMEOUT: 600
@@ -73,6 +73,8 @@ jobs:
run: |
uv pip install -e ".[quality]"
uv pip uninstall accelerate && uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
#uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
uv pip uninstall transformers huggingface_hub && uv pip install transformers==4.57.1
uv pip install pytest-reportlog
- name: Environment
run: |
@@ -84,7 +86,7 @@ jobs:
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
-k "not Flax and not Onnx" \
--make-reports=tests_pipeline_${{ matrix.module }}_cuda \
--report-log=tests_pipeline_${{ matrix.module }}_cuda.log \
tests/pipelines/${{ matrix.module }}
@@ -126,6 +128,8 @@ jobs:
uv pip install -e ".[quality]"
uv pip install peft@git+https://github.com/huggingface/peft.git
uv pip uninstall accelerate && uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
#uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
uv pip uninstall transformers huggingface_hub && uv pip install transformers==4.57.1
uv pip install pytest-reportlog
- name: Environment
run: python utils/print_env.py
@@ -138,7 +142,7 @@ jobs:
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
-k "not Flax and not Onnx" \
--make-reports=tests_torch_${{ matrix.module }}_cuda \
--report-log=tests_torch_${{ matrix.module }}_cuda.log \
tests/${{ matrix.module }}
@@ -151,7 +155,7 @@ jobs:
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v --make-reports=examples_torch_cuda \
--make-reports=examples_torch_cuda \
--report-log=examples_torch_cuda.log \
examples/
@@ -190,6 +194,8 @@ jobs:
- name: Install dependencies
run: |
uv pip install -e ".[quality,training]"
#uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
uv pip uninstall transformers huggingface_hub && uv pip install transformers==4.57.1
- name: Environment
run: |
python utils/print_env.py
@@ -198,7 +204,7 @@ jobs:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
RUN_COMPILE: yes
run: |
pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v -k "compile" --make-reports=tests_torch_compile_cuda tests/
pytest -n 1 --max-worker-restart=0 --dist=loadfile -k "compile" --make-reports=tests_torch_compile_cuda tests/
- name: Failure short reports
if: ${{ failure() }}
run: cat reports/tests_torch_compile_cuda_failures_short.txt
@@ -232,6 +238,8 @@ jobs:
uv pip install -e ".[quality]"
uv pip install peft@git+https://github.com/huggingface/peft.git
uv pip uninstall accelerate && uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
#uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
uv pip uninstall transformers huggingface_hub && uv pip install transformers==4.57.1
uv pip install pytest-reportlog
- name: Environment
run: |
@@ -281,6 +289,8 @@ jobs:
uv pip install -e ".[quality]"
uv pip install peft@git+https://github.com/huggingface/peft.git
uv pip uninstall accelerate && uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
#uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
uv pip uninstall transformers huggingface_hub && uv pip install transformers==4.57.1
- name: Environment
run: |
@@ -293,7 +303,7 @@ jobs:
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
-k "not Flax and not Onnx" \
--make-reports=tests_torch_minimum_version_cuda \
tests/models/test_modeling_common.py \
tests/pipelines/test_pipelines_common.py \
@@ -358,6 +368,8 @@ jobs:
uv pip install ${{ join(matrix.config.additional_deps, ' ') }}
fi
uv pip install pytest-reportlog
#uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
uv pip uninstall transformers huggingface_hub && uv pip install transformers==4.57.1
- name: Environment
run: |
python utils/print_env.py
@@ -405,6 +417,8 @@ jobs:
run: |
uv pip install -e ".[quality]"
uv pip install -U bitsandbytes optimum_quanto
#uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
uv pip uninstall transformers huggingface_hub && uv pip install transformers==4.57.1
uv pip install pytest-reportlog
- name: Environment
run: |
@@ -531,7 +545,7 @@ jobs:
# HF_HOME: /System/Volumes/Data/mnt/cache
# HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
# run: |
# ${CONDA_RUN} pytest -n 1 -s -v --make-reports=tests_torch_mps \
# ${CONDA_RUN} pytest -n 1 --make-reports=tests_torch_mps \
# --report-log=tests_torch_mps.log \
# tests/
# - name: Failure short reports
@@ -587,7 +601,7 @@ jobs:
# HF_HOME: /System/Volumes/Data/mnt/cache
# HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
# run: |
# ${CONDA_RUN} pytest -n 1 -s -v --make-reports=tests_torch_mps \
# ${CONDA_RUN} pytest -n 1 --make-reports=tests_torch_mps \
# --report-log=tests_torch_mps.log \
# tests/
# - name: Failure short reports

View File

@@ -26,7 +26,7 @@ concurrency:
env:
DIFFUSERS_IS_CI: yes
HF_HUB_ENABLE_HF_TRANSFER: 1
HF_XET_HIGH_PERFORMANCE: 1
OMP_NUM_THREADS: 4
MKL_NUM_THREADS: 4
PYTEST_TIMEOUT: 60
@@ -109,7 +109,8 @@ jobs:
- name: Install dependencies
run: |
uv pip install -e ".[quality]"
uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
#uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
uv pip uninstall transformers huggingface_hub && uv pip install transformers==4.57.1
uv pip uninstall accelerate && uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git --no-deps
- name: Environment
@@ -120,7 +121,7 @@ jobs:
if: ${{ matrix.config.framework == 'pytorch_pipelines' }}
run: |
pytest -n 8 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
-k "not Flax and not Onnx" \
--make-reports=tests_${{ matrix.config.report }} \
tests/modular_pipelines

View File

@@ -22,7 +22,7 @@ concurrency:
env:
DIFFUSERS_IS_CI: yes
HF_HUB_ENABLE_HF_TRANSFER: 1
HF_XET_HIGH_PERFORMANCE: 1
OMP_NUM_THREADS: 4
MKL_NUM_THREADS: 4
PYTEST_TIMEOUT: 60
@@ -115,7 +115,8 @@ jobs:
- name: Install dependencies
run: |
uv pip install -e ".[quality]"
uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
#uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
uv pip uninstall transformers huggingface_hub && uv pip install transformers==4.57.1
uv pip uninstall accelerate && uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git --no-deps
- name: Environment
@@ -126,7 +127,7 @@ jobs:
if: ${{ matrix.config.framework == 'pytorch_pipelines' }}
run: |
pytest -n 8 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
-k "not Flax and not Onnx" \
--make-reports=tests_${{ matrix.config.report }} \
tests/pipelines
@@ -134,7 +135,7 @@ jobs:
if: ${{ matrix.config.framework == 'pytorch_models' }}
run: |
pytest -n 4 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx and not Dependency" \
-k "not Flax and not Onnx and not Dependency" \
--make-reports=tests_${{ matrix.config.report }} \
tests/models tests/schedulers tests/others
@@ -246,7 +247,8 @@ jobs:
uv pip install -U peft@git+https://github.com/huggingface/peft.git --no-deps
uv pip install -U tokenizers
uv pip uninstall accelerate && uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git --no-deps
uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
#uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
uv pip uninstall transformers huggingface_hub && uv pip install transformers==4.57.1
- name: Environment
run: |
@@ -255,11 +257,11 @@ jobs:
- name: Run fast PyTorch LoRA tests with PEFT
run: |
pytest -n 4 --max-worker-restart=0 --dist=loadfile \
-s -v \
\
--make-reports=tests_peft_main \
tests/lora/
pytest -n 4 --max-worker-restart=0 --dist=loadfile \
-s -v \
\
--make-reports=tests_models_lora_peft_main \
tests/models/ -k "lora"

View File

@@ -1,4 +1,4 @@
name: Fast GPU Tests on PR
name: Fast GPU Tests on PR
on:
pull_request:
@@ -24,7 +24,7 @@ env:
DIFFUSERS_IS_CI: yes
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
HF_HUB_ENABLE_HF_TRANSFER: 1
HF_XET_HIGH_PERFORMANCE: 1
PYTEST_TIMEOUT: 600
PIPELINE_USAGE_CUTOFF: 1000000000 # set high cutoff so that only always-test pipelines run
@@ -71,7 +71,7 @@ jobs:
if: ${{ failure() }}
run: |
echo "Repo consistency check failed. Please ensure the right dependency versions are installed with 'pip install -e .[quality]' and run 'make fix-copies'" >> $GITHUB_STEP_SUMMARY
setup_torch_cuda_pipeline_matrix:
needs: [check_code_quality, check_repository_consistency]
name: Setup Torch Pipelines CUDA Slow Tests Matrix
@@ -131,7 +131,8 @@ jobs:
run: |
uv pip install -e ".[quality]"
uv pip uninstall accelerate && uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
#uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
uv pip uninstall transformers huggingface_hub && uv pip install transformers==4.57.1
- name: Environment
run: |
@@ -149,18 +150,18 @@ jobs:
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
if [ "${{ matrix.module }}" = "ip_adapters" ]; then
if [ "${{ matrix.module }}" = "ip_adapters" ]; then
pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
-k "not Flax and not Onnx" \
--make-reports=tests_pipeline_${{ matrix.module }}_cuda \
tests/pipelines/${{ matrix.module }}
else
else
pattern=$(cat ${{ steps.extract_tests.outputs.pattern_file }})
pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx and $pattern" \
-k "not Flax and not Onnx and $pattern" \
--make-reports=tests_pipeline_${{ matrix.module }}_cuda \
tests/pipelines/${{ matrix.module }}
fi
fi
- name: Failure short reports
if: ${{ failure() }}
@@ -201,7 +202,8 @@ jobs:
uv pip install -e ".[quality]"
uv pip install peft@git+https://github.com/huggingface/peft.git
uv pip uninstall accelerate && uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
#uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
uv pip uninstall transformers huggingface_hub && uv pip install transformers==4.57.1
- name: Environment
run: |
@@ -222,11 +224,11 @@ jobs:
run: |
pattern=$(cat ${{ steps.extract_tests.outputs.pattern_file }})
if [ -z "$pattern" ]; then
pytest -n 1 -sv --max-worker-restart=0 --dist=loadfile -k "not Flax and not Onnx" tests/${{ matrix.module }} \
--make-reports=tests_torch_cuda_${{ matrix.module }}
pytest -n 1 --max-worker-restart=0 --dist=loadfile -k "not Flax and not Onnx" tests/${{ matrix.module }} \
--make-reports=tests_torch_cuda_${{ matrix.module }}
else
pytest -n 1 -sv --max-worker-restart=0 --dist=loadfile -k "not Flax and not Onnx and $pattern" tests/${{ matrix.module }} \
--make-reports=tests_torch_cuda_${{ matrix.module }}
pytest -n 1 --max-worker-restart=0 --dist=loadfile -k "not Flax and not Onnx and $pattern" tests/${{ matrix.module }} \
--make-reports=tests_torch_cuda_${{ matrix.module }}
fi
- name: Failure short reports
@@ -262,7 +264,8 @@ jobs:
nvidia-smi
- name: Install dependencies
run: |
uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
#uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
uv pip uninstall transformers huggingface_hub && uv pip install transformers==4.57.1
uv pip install -e ".[quality,training]"
- name: Environment
@@ -274,7 +277,7 @@ jobs:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
run: |
uv pip install ".[training]"
pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v --make-reports=examples_torch_cuda examples/
pytest -n 1 --max-worker-restart=0 --dist=loadfile --make-reports=examples_torch_cuda examples/
- name: Failure short reports
if: ${{ failure() }}

View File

@@ -14,7 +14,7 @@ env:
DIFFUSERS_IS_CI: yes
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
HF_HUB_ENABLE_HF_TRANSFER: 1
HF_XET_HIGH_PERFORMANCE: 1
PYTEST_TIMEOUT: 600
PIPELINE_USAGE_CUTOFF: 50000
@@ -76,6 +76,8 @@ jobs:
run: |
uv pip install -e ".[quality]"
uv pip uninstall accelerate && uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
#uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
uv pip uninstall transformers huggingface_hub && uv pip install transformers==4.57.1
- name: Environment
run: |
python utils/print_env.py
@@ -86,7 +88,7 @@ jobs:
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
-k "not Flax and not Onnx" \
--make-reports=tests_pipeline_${{ matrix.module }}_cuda \
tests/pipelines/${{ matrix.module }}
- name: Failure short reports
@@ -127,6 +129,8 @@ jobs:
uv pip install -e ".[quality]"
uv pip install peft@git+https://github.com/huggingface/peft.git
uv pip uninstall accelerate && uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
#uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
uv pip uninstall transformers huggingface_hub && uv pip install transformers==4.57.1
- name: Environment
run: |
@@ -139,7 +143,7 @@ jobs:
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
-k "not Flax and not Onnx" \
--make-reports=tests_torch_cuda_${{ matrix.module }} \
tests/${{ matrix.module }}
@@ -178,6 +182,8 @@ jobs:
- name: Install dependencies
run: |
uv pip install -e ".[quality,training]"
#uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
uv pip uninstall transformers huggingface_hub && uv pip install transformers==4.57.1
- name: Environment
run: |
python utils/print_env.py
@@ -186,7 +192,7 @@ jobs:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
RUN_COMPILE: yes
run: |
pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v -k "compile" --make-reports=tests_torch_compile_cuda tests/
pytest -n 1 --max-worker-restart=0 --dist=loadfile -k "compile" --make-reports=tests_torch_compile_cuda tests/
- name: Failure short reports
if: ${{ failure() }}
run: cat reports/tests_torch_compile_cuda_failures_short.txt
@@ -227,7 +233,7 @@ jobs:
env:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
run: |
pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v -k "xformers" --make-reports=tests_torch_xformers_cuda tests/
pytest -n 1 --max-worker-restart=0 --dist=loadfile -k "xformers" --make-reports=tests_torch_xformers_cuda tests/
- name: Failure short reports
if: ${{ failure() }}
run: cat reports/tests_torch_xformers_cuda_failures_short.txt
@@ -270,7 +276,7 @@ jobs:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
run: |
uv pip install ".[training]"
pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v --make-reports=examples_torch_cuda examples/
pytest -n 1 --max-worker-restart=0 --dist=loadfile --make-reports=examples_torch_cuda examples/
- name: Failure short reports
if: ${{ failure() }}

View File

@@ -18,7 +18,7 @@ env:
HF_HOME: /mnt/cache
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
HF_HUB_ENABLE_HF_TRANSFER: 1
HF_XET_HIGH_PERFORMANCE: 1
PYTEST_TIMEOUT: 600
RUN_SLOW: no
@@ -70,7 +70,7 @@ jobs:
if: ${{ matrix.config.framework == 'pytorch' }}
run: |
pytest -n 4 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
-k "not Flax and not Onnx" \
--make-reports=tests_${{ matrix.config.report }} \
tests/

View File

@@ -8,7 +8,7 @@ env:
HF_HOME: /mnt/cache
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
HF_HUB_ENABLE_HF_TRANSFER: 1
HF_XET_HIGH_PERFORMANCE: 1
PYTEST_TIMEOUT: 600
RUN_SLOW: no
@@ -57,7 +57,7 @@ jobs:
HF_HOME: /System/Volumes/Data/mnt/cache
HF_TOKEN: ${{ secrets.HF_TOKEN }}
run: |
${CONDA_RUN} python -m pytest -n 0 -s -v --make-reports=tests_torch_mps tests/
${CONDA_RUN} python -m pytest -n 0 --make-reports=tests_torch_mps tests/
- name: Failure short reports
if: ${{ failure() }}

View File

@@ -20,7 +20,7 @@ jobs:
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: '3.8'
python-version: '3.10'
- name: Fetch latest branch
id: fetch_latest_branch
@@ -54,7 +54,6 @@ jobs:
python -m pip install --upgrade pip
pip install -U setuptools wheel twine
pip install -U torch --index-url https://download.pytorch.org/whl/cpu
pip install -U transformers
- name: Build the dist files
run: python setup.py bdist_wheel && python setup.py sdist
@@ -69,6 +68,8 @@ jobs:
run: |
pip install diffusers && pip uninstall diffusers -y
pip install -i https://test.pypi.org/simple/ diffusers
pip install -U transformers
python utils/print_env.py
python -c "from diffusers import __version__; print(__version__)"
python -c "from diffusers import DiffusionPipeline; pipe = DiffusionPipeline.from_pretrained('fusing/unet-ldm-dummy-update'); pipe()"
python -c "from diffusers import DiffusionPipeline; pipe = DiffusionPipeline.from_pretrained('hf-internal-testing/tiny-stable-diffusion-pipe', safety_checker=None); pipe('ah suh du')"

View File

@@ -84,7 +84,7 @@ jobs:
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
-k "not Flax and not Onnx" \
--make-reports=tests_pipeline_${{ matrix.module }}_cuda \
tests/pipelines/${{ matrix.module }}
- name: Failure short reports
@@ -137,7 +137,7 @@ jobs:
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
-k "not Flax and not Onnx" \
--make-reports=tests_torch_${{ matrix.module }}_cuda \
tests/${{ matrix.module }}
@@ -187,7 +187,7 @@ jobs:
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
-k "not Flax and not Onnx" \
--make-reports=tests_torch_minimum_cuda \
tests/models/test_modeling_common.py \
tests/pipelines/test_pipelines_common.py \
@@ -240,7 +240,7 @@ jobs:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
RUN_COMPILE: yes
run: |
pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v -k "compile" --make-reports=tests_torch_compile_cuda tests/
pytest -n 1 --max-worker-restart=0 --dist=loadfile -k "compile" --make-reports=tests_torch_compile_cuda tests/
- name: Failure short reports
if: ${{ failure() }}
run: cat reports/tests_torch_compile_cuda_failures_short.txt
@@ -281,7 +281,7 @@ jobs:
env:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
run: |
pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v -k "xformers" --make-reports=tests_torch_xformers_cuda tests/
pytest -n 1 --max-worker-restart=0 --dist=loadfile -k "xformers" --make-reports=tests_torch_xformers_cuda tests/
- name: Failure short reports
if: ${{ failure() }}
run: cat reports/tests_torch_xformers_cuda_failures_short.txt
@@ -326,7 +326,7 @@ jobs:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
run: |
uv pip install ".[training]"
pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v --make-reports=examples_torch_cuda examples/
pytest -n 1 --max-worker-restart=0 --dist=loadfile --make-reports=examples_torch_cuda examples/
- name: Failure short reports
if: ${{ failure() }}

View File

@@ -171,7 +171,7 @@ Also, say 👋 in our public Discord channel <a href="https://discord.gg/G7tWnz9
<tr style="border-top: 2px solid black">
<td>Text-guided Image Inpainting</td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/inpaint">Stable Diffusion Inpainting</a></td>
<td><a href="https://huggingface.co/runwayml/stable-diffusion-inpainting"> runwayml/stable-diffusion-inpainting </a></td>
<td><a href="https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-inpainting"> stable-diffusion-v1-5/stable-diffusion-inpainting </a></td>
</tr>
<tr style="border-top: 2px solid black">
<td>Image Variation</td>

View File

@@ -33,7 +33,7 @@ RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/diffusers.
RUN uv pip install --no-cache-dir \
accelerate \
numpy==1.26.4 \
hf_transfer \
hf_xet \
setuptools==69.5.1 \
bitsandbytes \
torchao \

View File

@@ -44,6 +44,6 @@ RUN python3 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
scipy \
tensorboard \
transformers \
hf_transfer
hf_xet
CMD ["/bin/bash"]

View File

@@ -38,13 +38,12 @@ RUN python3.10 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
datasets \
hf-doc-builder \
huggingface-hub \
hf_transfer \
hf_xet \
Jinja2 \
librosa \
numpy==1.26.4 \
scipy \
tensorboard \
transformers \
hf_transfer
transformers
CMD ["/bin/bash"]

View File

@@ -31,7 +31,7 @@ RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/diffusers.
RUN uv pip install --no-cache-dir \
accelerate \
numpy==1.26.4 \
hf_transfer
hf_xet
RUN apt-get clean && rm -rf /var/lib/apt/lists/* && apt-get autoremove && apt-get autoclean

View File

@@ -44,6 +44,6 @@ RUN uv pip install --no-cache-dir \
accelerate \
numpy==1.26.4 \
pytorch-lightning \
hf_transfer
hf_xet
CMD ["/bin/bash"]

View File

@@ -47,6 +47,6 @@ RUN uv pip install --no-cache-dir \
accelerate \
numpy==1.26.4 \
pytorch-lightning \
hf_transfer
hf_xet
CMD ["/bin/bash"]

View File

@@ -44,7 +44,7 @@ RUN uv pip install --no-cache-dir \
accelerate \
numpy==1.26.4 \
pytorch-lightning \
hf_transfer \
hf_xet \
xformers
CMD ["/bin/bash"]

View File

@@ -1,5 +1,4 @@
- title: Get started
sections:
- sections:
- local: index
title: Diffusers
- local: installation
@@ -8,9 +7,8 @@
title: Quickstart
- local: stable_diffusion
title: Basic performance
- title: Pipelines
isExpanded: false
title: Get started
- isExpanded: false
sections:
- local: using-diffusers/loading
title: DiffusionPipeline
@@ -24,13 +22,14 @@
title: Reproducibility
- local: using-diffusers/schedulers
title: Schedulers
- local: using-diffusers/automodel
title: AutoModel
- local: using-diffusers/other-formats
title: Model formats
- local: using-diffusers/push_to_hub
title: Sharing pipelines and models
- title: Adapters
isExpanded: false
title: Pipelines
- isExpanded: false
sections:
- local: tutorials/using_peft_for_inference
title: LoRA
@@ -44,9 +43,8 @@
title: DreamBooth
- local: using-diffusers/textual_inversion_inference
title: Textual inversion
- title: Inference
isExpanded: false
title: Adapters
- isExpanded: false
sections:
- local: using-diffusers/weighted_prompts
title: Prompting
@@ -56,9 +54,8 @@
title: Batch inference
- local: training/distributed_inference
title: Distributed inference
- title: Inference optimization
isExpanded: false
title: Inference
- isExpanded: false
sections:
- local: optimization/fp16
title: Accelerate inference
@@ -70,8 +67,7 @@
title: Reduce memory usage
- local: optimization/speed-memory-optims
title: Compiling and offloading quantized models
- title: Community optimizations
sections:
- sections:
- local: optimization/pruna
title: Pruna
- local: optimization/xformers
@@ -90,9 +86,9 @@
title: ParaAttention
- local: using-diffusers/image_quality
title: FreeU
- title: Hybrid Inference
isExpanded: false
title: Community optimizations
title: Inference optimization
- isExpanded: false
sections:
- local: hybrid_inference/overview
title: Overview
@@ -102,9 +98,8 @@
title: VAE Encode
- local: hybrid_inference/api_reference
title: API Reference
- title: Modular Diffusers
isExpanded: false
title: Hybrid Inference
- isExpanded: false
sections:
- local: modular_diffusers/overview
title: Overview
@@ -126,9 +121,10 @@
title: ComponentsManager
- local: modular_diffusers/guiders
title: Guiders
- title: Training
isExpanded: false
- local: modular_diffusers/custom_blocks
title: Building Custom Blocks
title: Modular Diffusers
- isExpanded: false
sections:
- local: training/overview
title: Overview
@@ -138,8 +134,7 @@
title: Adapt a model to a new task
- local: tutorials/basic_training
title: Train a diffusion model
- title: Models
sections:
- sections:
- local: training/unconditional_training
title: Unconditional image generation
- local: training/text2image
@@ -158,8 +153,8 @@
title: InstructPix2Pix
- local: training/cogvideox
title: CogVideoX
- title: Methods
sections:
title: Models
- sections:
- local: training/text_inversion
title: Textual Inversion
- local: training/dreambooth
@@ -172,9 +167,9 @@
title: Latent Consistency Distillation
- local: training/ddpo
title: Reinforcement learning training with DDPO
- title: Quantization
isExpanded: false
title: Methods
title: Training
- isExpanded: false
sections:
- local: quantization/overview
title: Getting started
@@ -188,9 +183,8 @@
title: quanto
- local: quantization/modelopt
title: NVIDIA ModelOpt
- title: Model accelerators and hardware
isExpanded: false
title: Quantization
- isExpanded: false
sections:
- local: optimization/onnx
title: ONNX
@@ -204,9 +198,8 @@
title: Intel Gaudi
- local: optimization/neuron
title: AWS Neuron
- title: Specific pipeline examples
isExpanded: false
title: Model accelerators and hardware
- isExpanded: false
sections:
- local: using-diffusers/consisid
title: ConsisID
@@ -232,12 +225,10 @@
title: Stable Video Diffusion
- local: using-diffusers/marigold_usage
title: Marigold Computer Vision
- title: Resources
isExpanded: false
title: Specific pipeline examples
- isExpanded: false
sections:
- title: Task recipes
sections:
- sections:
- local: using-diffusers/unconditional_image_generation
title: Unconditional image generation
- local: using-diffusers/conditional_image_generation
@@ -252,6 +243,7 @@
title: Video generation
- local: using-diffusers/depth2img
title: Depth-to-image
title: Task recipes
- local: using-diffusers/write_own_pipeline
title: Understanding pipelines, models and schedulers
- local: community_projects
@@ -266,12 +258,10 @@
title: Diffusers' Ethical Guidelines
- local: conceptual/evaluation
title: Evaluating Diffusion Models
- title: API
isExpanded: false
title: Resources
- isExpanded: false
sections:
- title: Main Classes
sections:
- sections:
- local: api/configuration
title: Configuration
- local: api/logging
@@ -282,8 +272,8 @@
title: Quantization
- local: api/parallel
title: Parallel inference
- title: Modular
sections:
title: Main Classes
- sections:
- local: api/modular_diffusers/pipeline
title: Pipeline
- local: api/modular_diffusers/pipeline_blocks
@@ -294,8 +284,8 @@
title: Components and configs
- local: api/modular_diffusers/guiders
title: Guiders
- title: Loaders
sections:
title: Modular
- sections:
- local: api/loaders/ip_adapter
title: IP-Adapter
- local: api/loaders/lora
@@ -310,14 +300,13 @@
title: SD3Transformer2D
- local: api/loaders/peft
title: PEFT
- title: Models
sections:
title: Loaders
- sections:
- local: api/models/overview
title: Overview
- local: api/models/auto_model
title: AutoModel
- title: ControlNets
sections:
- sections:
- local: api/models/controlnet
title: ControlNetModel
- local: api/models/controlnet_union
@@ -332,16 +321,20 @@
title: SD3ControlNetModel
- local: api/models/controlnet_sparsectrl
title: SparseControlNetModel
- title: Transformers
sections:
title: ControlNets
- sections:
- local: api/models/allegro_transformer3d
title: AllegroTransformer3DModel
- local: api/models/aura_flow_transformer2d
title: AuraFlowTransformer2DModel
- local: api/models/transformer_bria_fibo
title: BriaFiboTransformer2DModel
- local: api/models/bria_transformer
title: BriaTransformer2DModel
- local: api/models/chroma_transformer
title: ChromaTransformer2DModel
- local: api/models/chronoedit_transformer_3d
title: ChronoEditTransformer3DModel
- local: api/models/cogvideox_transformer3d
title: CogVideoXTransformer3DModel
- local: api/models/cogview3plus_transformer2d
@@ -356,12 +349,18 @@
title: DiTTransformer2DModel
- local: api/models/easyanimate_transformer3d
title: EasyAnimateTransformer3DModel
- local: api/models/flux2_transformer
title: Flux2Transformer2DModel
- local: api/models/flux_transformer
title: FluxTransformer2DModel
- local: api/models/hidream_image_transformer
title: HiDreamImageTransformer2DModel
- local: api/models/hunyuan_transformer2d
title: HunyuanDiT2DModel
- local: api/models/hunyuanimage_transformer_2d
title: HunyuanImageTransformer2DModel
- local: api/models/hunyuan_video15_transformer_3d
title: HunyuanVideo15Transformer3DModel
- local: api/models/hunyuan_video_transformer_3d
title: HunyuanVideoTransformer3DModel
- local: api/models/latte_transformer3d
@@ -376,6 +375,8 @@
title: MochiTransformer3DModel
- local: api/models/omnigen_transformer
title: OmniGenTransformer2DModel
- local: api/models/ovisimage_transformer2d
title: OvisImageTransformer2DModel
- local: api/models/pixart_transformer2d
title: PixArtTransformer2DModel
- local: api/models/prior_transformer
@@ -384,6 +385,8 @@
title: QwenImageTransformer2DModel
- local: api/models/sana_transformer2d
title: SanaTransformer2DModel
- local: api/models/sana_video_transformer3d
title: SanaVideoTransformer3DModel
- local: api/models/sd3_transformer2d
title: SD3Transformer2DModel
- local: api/models/skyreels_v2_transformer_3d
@@ -394,10 +397,14 @@
title: Transformer2DModel
- local: api/models/transformer_temporal
title: TransformerTemporalModel
- local: api/models/wan_animate_transformer_3d
title: WanAnimateTransformer3DModel
- local: api/models/wan_transformer_3d
title: WanTransformer3DModel
- title: UNets
sections:
- local: api/models/z_image_transformer2d
title: ZImageTransformer2DModel
title: Transformers
- sections:
- local: api/models/stable_cascade_unet
title: StableCascadeUNet
- local: api/models/unet
@@ -412,8 +419,8 @@
title: UNetMotionModel
- local: api/models/uvit2d
title: UViT2DModel
- title: VAEs
sections:
title: UNets
- sections:
- local: api/models/asymmetricautoencoderkl
title: AsymmetricAutoencoderKL
- local: api/models/autoencoder_dc
@@ -426,8 +433,14 @@
title: AutoencoderKLCogVideoX
- local: api/models/autoencoderkl_cosmos
title: AutoencoderKLCosmos
- local: api/models/autoencoder_kl_hunyuanimage
title: AutoencoderKLHunyuanImage
- local: api/models/autoencoder_kl_hunyuanimage_refiner
title: AutoencoderKLHunyuanImageRefiner
- local: api/models/autoencoder_kl_hunyuan_video
title: AutoencoderKLHunyuanVideo
- local: api/models/autoencoder_kl_hunyuan_video15
title: AutoencoderKLHunyuanVideo15
- local: api/models/autoencoderkl_ltx_video
title: AutoencoderKLLTXVideo
- local: api/models/autoencoderkl_magvit
@@ -446,210 +459,240 @@
title: Tiny AutoEncoder
- local: api/models/vq
title: VQModel
- title: Pipelines
sections:
title: VAEs
title: Models
- sections:
- local: api/pipelines/overview
title: Overview
- local: api/pipelines/allegro
title: Allegro
- local: api/pipelines/amused
title: aMUSEd
- local: api/pipelines/animatediff
title: AnimateDiff
- local: api/pipelines/attend_and_excite
title: Attend-and-Excite
- local: api/pipelines/audioldm
title: AudioLDM
- local: api/pipelines/audioldm2
title: AudioLDM 2
- local: api/pipelines/aura_flow
title: AuraFlow
- local: api/pipelines/auto_pipeline
title: AutoPipeline
- local: api/pipelines/blip_diffusion
title: BLIP-Diffusion
- local: api/pipelines/bria_3_2
title: Bria 3.2
- local: api/pipelines/chroma
title: Chroma
- local: api/pipelines/cogvideox
title: CogVideoX
- local: api/pipelines/cogview3
title: CogView3
- local: api/pipelines/cogview4
title: CogView4
- local: api/pipelines/consisid
title: ConsisID
- local: api/pipelines/consistency_models
title: Consistency Models
- local: api/pipelines/controlnet
title: ControlNet
- local: api/pipelines/controlnet_flux
title: ControlNet with Flux.1
- local: api/pipelines/controlnet_hunyuandit
title: ControlNet with Hunyuan-DiT
- local: api/pipelines/controlnet_sd3
title: ControlNet with Stable Diffusion 3
- local: api/pipelines/controlnet_sdxl
title: ControlNet with Stable Diffusion XL
- local: api/pipelines/controlnet_sana
title: ControlNet-Sana
- local: api/pipelines/controlnetxs
title: ControlNet-XS
- local: api/pipelines/controlnetxs_sdxl
title: ControlNet-XS with Stable Diffusion XL
- local: api/pipelines/controlnet_union
title: ControlNetUnion
- local: api/pipelines/cosmos
title: Cosmos
- local: api/pipelines/dance_diffusion
title: Dance Diffusion
- local: api/pipelines/ddim
title: DDIM
- local: api/pipelines/ddpm
title: DDPM
- local: api/pipelines/deepfloyd_if
title: DeepFloyd IF
- local: api/pipelines/diffedit
title: DiffEdit
- local: api/pipelines/dit
title: DiT
- local: api/pipelines/easyanimate
title: EasyAnimate
- local: api/pipelines/flux
title: Flux
- local: api/pipelines/control_flux_inpaint
title: FluxControlInpaint
- local: api/pipelines/framepack
title: Framepack
- local: api/pipelines/hidream
title: HiDream-I1
- local: api/pipelines/hunyuandit
title: Hunyuan-DiT
- local: api/pipelines/hunyuan_video
title: HunyuanVideo
- local: api/pipelines/i2vgenxl
title: I2VGen-XL
- local: api/pipelines/pix2pix
title: InstructPix2Pix
- local: api/pipelines/kandinsky
title: Kandinsky 2.1
- local: api/pipelines/kandinsky_v22
title: Kandinsky 2.2
- local: api/pipelines/kandinsky3
title: Kandinsky 3
- local: api/pipelines/kolors
title: Kolors
- local: api/pipelines/latent_consistency_models
title: Latent Consistency Models
- local: api/pipelines/latent_diffusion
title: Latent Diffusion
- local: api/pipelines/latte
title: Latte
- local: api/pipelines/ledits_pp
title: LEDITS++
- local: api/pipelines/ltx_video
title: LTXVideo
- local: api/pipelines/lumina2
title: Lumina 2.0
- local: api/pipelines/lumina
title: Lumina-T2X
- local: api/pipelines/marigold
title: Marigold
- local: api/pipelines/mochi
title: Mochi
- local: api/pipelines/panorama
title: MultiDiffusion
- local: api/pipelines/musicldm
title: MusicLDM
- local: api/pipelines/omnigen
title: OmniGen
- local: api/pipelines/pag
title: PAG
- local: api/pipelines/paint_by_example
title: Paint by Example
- local: api/pipelines/pia
title: Personalized Image Animator (PIA)
- local: api/pipelines/pixart
title: PixArt-α
- local: api/pipelines/pixart_sigma
title: PixArt-Σ
- local: api/pipelines/qwenimage
title: QwenImage
- local: api/pipelines/sana
title: Sana
- local: api/pipelines/sana_sprint
title: Sana Sprint
- local: api/pipelines/self_attention_guidance
title: Self-Attention Guidance
- local: api/pipelines/semantic_stable_diffusion
title: Semantic Guidance
- local: api/pipelines/shap_e
title: Shap-E
- local: api/pipelines/skyreels_v2
title: SkyReels-V2
- local: api/pipelines/stable_audio
title: Stable Audio
- local: api/pipelines/stable_cascade
title: Stable Cascade
- title: Stable Diffusion
sections:
- local: api/pipelines/stable_diffusion/overview
title: Overview
- local: api/pipelines/stable_diffusion/depth2img
title: Depth-to-image
- local: api/pipelines/stable_diffusion/gligen
title: GLIGEN (Grounded Language-to-Image Generation)
- local: api/pipelines/stable_diffusion/image_variation
title: Image variation
- local: api/pipelines/stable_diffusion/img2img
title: Image-to-image
- sections:
- local: api/pipelines/audioldm
title: AudioLDM
- local: api/pipelines/audioldm2
title: AudioLDM 2
- local: api/pipelines/dance_diffusion
title: Dance Diffusion
- local: api/pipelines/musicldm
title: MusicLDM
- local: api/pipelines/stable_audio
title: Stable Audio
title: Audio
- sections:
- local: api/pipelines/amused
title: aMUSEd
- local: api/pipelines/animatediff
title: AnimateDiff
- local: api/pipelines/attend_and_excite
title: Attend-and-Excite
- local: api/pipelines/aura_flow
title: AuraFlow
- local: api/pipelines/blip_diffusion
title: BLIP-Diffusion
- local: api/pipelines/bria_3_2
title: Bria 3.2
- local: api/pipelines/bria_fibo
title: Bria Fibo
- local: api/pipelines/chroma
title: Chroma
- local: api/pipelines/cogview3
title: CogView3
- local: api/pipelines/cogview4
title: CogView4
- local: api/pipelines/consistency_models
title: Consistency Models
- local: api/pipelines/controlnet
title: ControlNet
- local: api/pipelines/controlnet_flux
title: ControlNet with Flux.1
- local: api/pipelines/controlnet_hunyuandit
title: ControlNet with Hunyuan-DiT
- local: api/pipelines/controlnet_sd3
title: ControlNet with Stable Diffusion 3
- local: api/pipelines/controlnet_sdxl
title: ControlNet with Stable Diffusion XL
- local: api/pipelines/controlnet_sana
title: ControlNet-Sana
- local: api/pipelines/controlnetxs
title: ControlNet-XS
- local: api/pipelines/controlnetxs_sdxl
title: ControlNet-XS with Stable Diffusion XL
- local: api/pipelines/controlnet_union
title: ControlNetUnion
- local: api/pipelines/cosmos
title: Cosmos
- local: api/pipelines/ddim
title: DDIM
- local: api/pipelines/ddpm
title: DDPM
- local: api/pipelines/deepfloyd_if
title: DeepFloyd IF
- local: api/pipelines/diffedit
title: DiffEdit
- local: api/pipelines/dit
title: DiT
- local: api/pipelines/easyanimate
title: EasyAnimate
- local: api/pipelines/flux
title: Flux
- local: api/pipelines/flux2
title: Flux2
- local: api/pipelines/control_flux_inpaint
title: FluxControlInpaint
- local: api/pipelines/hidream
title: HiDream-I1
- local: api/pipelines/hunyuandit
title: Hunyuan-DiT
- local: api/pipelines/hunyuanimage21
title: HunyuanImage2.1
- local: api/pipelines/pix2pix
title: InstructPix2Pix
- local: api/pipelines/kandinsky
title: Kandinsky 2.1
- local: api/pipelines/kandinsky_v22
title: Kandinsky 2.2
- local: api/pipelines/kandinsky3
title: Kandinsky 3
- local: api/pipelines/kandinsky5_image
title: Kandinsky 5.0 Image
- local: api/pipelines/kolors
title: Kolors
- local: api/pipelines/latent_consistency_models
title: Latent Consistency Models
- local: api/pipelines/latent_diffusion
title: Latent Diffusion
- local: api/pipelines/ledits_pp
title: LEDITS++
- local: api/pipelines/lumina2
title: Lumina 2.0
- local: api/pipelines/lumina
title: Lumina-T2X
- local: api/pipelines/marigold
title: Marigold
- local: api/pipelines/panorama
title: MultiDiffusion
- local: api/pipelines/omnigen
title: OmniGen
- local: api/pipelines/ovis_image
title: Ovis-Image
- local: api/pipelines/pag
title: PAG
- local: api/pipelines/paint_by_example
title: Paint by Example
- local: api/pipelines/pixart
title: PixArt-α
- local: api/pipelines/pixart_sigma
title: PixArt-Σ
- local: api/pipelines/prx
title: PRX
- local: api/pipelines/qwenimage
title: QwenImage
- local: api/pipelines/sana
title: Sana
- local: api/pipelines/sana_sprint
title: Sana Sprint
- local: api/pipelines/sana_video
title: Sana Video
- local: api/pipelines/self_attention_guidance
title: Self-Attention Guidance
- local: api/pipelines/semantic_stable_diffusion
title: Semantic Guidance
- local: api/pipelines/shap_e
title: Shap-E
- local: api/pipelines/stable_cascade
title: Stable Cascade
- sections:
- local: api/pipelines/stable_diffusion/overview
title: Overview
- local: api/pipelines/stable_diffusion/depth2img
title: Depth-to-image
- local: api/pipelines/stable_diffusion/gligen
title: GLIGEN (Grounded Language-to-Image Generation)
- local: api/pipelines/stable_diffusion/image_variation
title: Image variation
- local: api/pipelines/stable_diffusion/img2img
title: Image-to-image
- local: api/pipelines/stable_diffusion/inpaint
title: Inpainting
- local: api/pipelines/stable_diffusion/k_diffusion
title: K-Diffusion
- local: api/pipelines/stable_diffusion/latent_upscale
title: Latent upscaler
- local: api/pipelines/stable_diffusion/ldm3d_diffusion
title: LDM3D Text-to-(RGB, Depth), Text-to-(RGB-pano, Depth-pano), LDM3D
Upscaler
- local: api/pipelines/stable_diffusion/stable_diffusion_safe
title: Safe Stable Diffusion
- local: api/pipelines/stable_diffusion/sdxl_turbo
title: SDXL Turbo
- local: api/pipelines/stable_diffusion/stable_diffusion_2
title: Stable Diffusion 2
- local: api/pipelines/stable_diffusion/stable_diffusion_3
title: Stable Diffusion 3
- local: api/pipelines/stable_diffusion/stable_diffusion_xl
title: Stable Diffusion XL
- local: api/pipelines/stable_diffusion/upscale
title: Super-resolution
- local: api/pipelines/stable_diffusion/adapter
title: T2I-Adapter
- local: api/pipelines/stable_diffusion/text2img
title: Text-to-image
title: Stable Diffusion
- local: api/pipelines/stable_unclip
title: Stable unCLIP
- local: api/pipelines/unclip
title: unCLIP
- local: api/pipelines/unidiffuser
title: UniDiffuser
- local: api/pipelines/value_guided_sampling
title: Value-guided sampling
- local: api/pipelines/visualcloze
title: VisualCloze
- local: api/pipelines/wuerstchen
title: Wuerstchen
- local: api/pipelines/z_image
title: Z-Image
title: Image
- sections:
- local: api/pipelines/allegro
title: Allegro
- local: api/pipelines/chronoedit
title: ChronoEdit
- local: api/pipelines/cogvideox
title: CogVideoX
- local: api/pipelines/consisid
title: ConsisID
- local: api/pipelines/framepack
title: Framepack
- local: api/pipelines/hunyuan_video
title: HunyuanVideo
- local: api/pipelines/hunyuan_video15
title: HunyuanVideo1.5
- local: api/pipelines/i2vgenxl
title: I2VGen-XL
- local: api/pipelines/kandinsky5_video
title: Kandinsky 5.0 Video
- local: api/pipelines/latte
title: Latte
- local: api/pipelines/ltx_video
title: LTXVideo
- local: api/pipelines/mochi
title: Mochi
- local: api/pipelines/pia
title: Personalized Image Animator (PIA)
- local: api/pipelines/skyreels_v2
title: SkyReels-V2
- local: api/pipelines/stable_diffusion/svd
title: Image-to-video
- local: api/pipelines/stable_diffusion/inpaint
title: Inpainting
- local: api/pipelines/stable_diffusion/k_diffusion
title: K-Diffusion
- local: api/pipelines/stable_diffusion/latent_upscale
title: Latent upscaler
- local: api/pipelines/stable_diffusion/ldm3d_diffusion
title: LDM3D Text-to-(RGB, Depth), Text-to-(RGB-pano, Depth-pano), LDM3D Upscaler
- local: api/pipelines/stable_diffusion/stable_diffusion_safe
title: Safe Stable Diffusion
- local: api/pipelines/stable_diffusion/sdxl_turbo
title: SDXL Turbo
- local: api/pipelines/stable_diffusion/stable_diffusion_2
title: Stable Diffusion 2
- local: api/pipelines/stable_diffusion/stable_diffusion_3
title: Stable Diffusion 3
- local: api/pipelines/stable_diffusion/stable_diffusion_xl
title: Stable Diffusion XL
- local: api/pipelines/stable_diffusion/upscale
title: Super-resolution
- local: api/pipelines/stable_diffusion/adapter
title: T2I-Adapter
- local: api/pipelines/stable_diffusion/text2img
title: Text-to-image
- local: api/pipelines/stable_unclip
title: Stable unCLIP
- local: api/pipelines/text_to_video
title: Text-to-video
- local: api/pipelines/text_to_video_zero
title: Text2Video-Zero
- local: api/pipelines/unclip
title: unCLIP
- local: api/pipelines/unidiffuser
title: UniDiffuser
- local: api/pipelines/value_guided_sampling
title: Value-guided sampling
- local: api/pipelines/visualcloze
title: VisualCloze
- local: api/pipelines/wan
title: Wan
- local: api/pipelines/wuerstchen
title: Wuerstchen
- title: Schedulers
sections:
title: Stable Video Diffusion
- local: api/pipelines/text_to_video
title: Text-to-video
- local: api/pipelines/text_to_video_zero
title: Text2Video-Zero
- local: api/pipelines/wan
title: Wan
title: Video
title: Pipelines
- sections:
- local: api/schedulers/overview
title: Overview
- local: api/schedulers/cm_stochastic_iterative
@@ -718,8 +761,8 @@
title: UniPCMultistepScheduler
- local: api/schedulers/vq_diffusion
title: VQDiffusionScheduler
- title: Internal classes
sections:
title: Schedulers
- sections:
- local: api/internal_classes_overview
title: Overview
- local: api/attnprocessor
@@ -736,3 +779,5 @@
title: VAE Image Processor
- local: api/video_processor
title: Video Processor
title: Internal classes
title: API

View File

@@ -34,3 +34,9 @@ Cache methods speedup diffusion transformers by storing and reusing intermediate
[[autodoc]] FirstBlockCacheConfig
[[autodoc]] apply_first_block_cache
### TaylorSeerCacheConfig
[[autodoc]] TaylorSeerCacheConfig
[[autodoc]] apply_taylorseer_cache

View File

@@ -30,7 +30,9 @@ LoRA is a fast and lightweight training method that inserts and trains a signifi
- [`CogView4LoraLoaderMixin`] provides similar functions for [CogView4](https://huggingface.co/docs/diffusers/main/en/api/pipelines/cogview4).
- [`AmusedLoraLoaderMixin`] is for the [`AmusedPipeline`].
- [`HiDreamImageLoraLoaderMixin`] provides similar functions for [HiDream Image](https://huggingface.co/docs/diffusers/main/en/api/pipelines/hidream)
- [`QwenImageLoraLoaderMixin`] provides similar functions for [Qwen Image](https://huggingface.co/docs/diffusers/main/en/api/pipelines/qwen)
- [`QwenImageLoraLoaderMixin`] provides similar functions for [Qwen Image](https://huggingface.co/docs/diffusers/main/en/api/pipelines/qwen).
- [`ZImageLoraLoaderMixin`] provides similar functions for [Z-Image](https://huggingface.co/docs/diffusers/main/en/api/pipelines/zimage).
- [`Flux2LoraLoaderMixin`] provides similar functions for [Flux2](https://huggingface.co/docs/diffusers/main/en/api/pipelines/flux2).
- [`LoraBaseMixin`] provides a base class with several utility methods to fuse, unfuse, unload, LoRAs and more.
> [!TIP]
@@ -56,6 +58,10 @@ LoRA is a fast and lightweight training method that inserts and trains a signifi
[[autodoc]] loaders.lora_pipeline.FluxLoraLoaderMixin
## Flux2LoraLoaderMixin
[[autodoc]] loaders.lora_pipeline.Flux2LoraLoaderMixin
## CogVideoXLoraLoaderMixin
[[autodoc]] loaders.lora_pipeline.CogVideoXLoraLoaderMixin
@@ -107,6 +113,13 @@ LoRA is a fast and lightweight training method that inserts and trains a signifi
[[autodoc]] loaders.lora_pipeline.QwenImageLoraLoaderMixin
## ZImageLoraLoaderMixin
[[autodoc]] loaders.lora_pipeline.ZImageLoraLoaderMixin
## KandinskyLoraLoaderMixin
[[autodoc]] loaders.lora_pipeline.KandinskyLoraLoaderMixin
## LoraBaseMixin
[[autodoc]] loaders.lora_base.LoraBaseMixin

View File

@@ -39,7 +39,7 @@ mask_url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images
original_image = load_image(img_url).resize((512, 512))
mask_image = load_image(mask_url).resize((512, 512))
pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
pipe = StableDiffusionInpaintPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-inpainting")
pipe.vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5")
pipe.to("cuda")

View File

@@ -12,15 +12,7 @@ specific language governing permissions and limitations under the License.
# AutoModel
The `AutoModel` is designed to make it easy to load a checkpoint without needing to know the specific model class. `AutoModel` automatically retrieves the correct model class from the checkpoint `config.json` file.
```python
from diffusers import AutoModel, AutoPipelineForText2Image
unet = AutoModel.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", subfolder="unet")
pipe = AutoPipelineForText2Image.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", unet=unet)
```
[`AutoModel`] automatically retrieves the correct model class from the checkpoint `config.json` file.
## AutoModel

View File

@@ -0,0 +1,36 @@
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# AutoencoderKLHunyuanVideo15
The 3D variational autoencoder (VAE) model with KL loss used in [HunyuanVideo1.5](https://github.com/Tencent/HunyuanVideo1-1.5) by Tencent.
The model can be loaded with the following code snippet.
```python
from diffusers import AutoencoderKLHunyuanVideo15
vae = AutoencoderKLHunyuanVideo15.from_pretrained("hunyuanvideo-community/HunyuanVideo-1.5-Diffusers-480p_t2v", subfolder="vae", torch_dtype=torch.float32)
# make sure to enable tiling to avoid OOM
vae.enable_tiling()
```
## AutoencoderKLHunyuanVideo15
[[autodoc]] AutoencoderKLHunyuanVideo15
- decode
- encode
- all
## DecoderOutput
[[autodoc]] models.autoencoders.vae.DecoderOutput

View File

@@ -0,0 +1,32 @@
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# AutoencoderKLHunyuanImage
The 2D variational autoencoder (VAE) model with KL loss used in [HunyuanImage2.1].
The model can be loaded with the following code snippet.
```python
from diffusers import AutoencoderKLHunyuanImage
vae = AutoencoderKLHunyuanImage.from_pretrained("hunyuanvideo-community/HunyuanImage-2.1-Diffusers", subfolder="vae", torch_dtype=torch.bfloat16)
```
## AutoencoderKLHunyuanImage
[[autodoc]] AutoencoderKLHunyuanImage
- decode
- all
## DecoderOutput
[[autodoc]] models.autoencoders.vae.DecoderOutput

View File

@@ -0,0 +1,32 @@
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# AutoencoderKLHunyuanImageRefiner
The 3D variational autoencoder (VAE) model with KL loss used in [HunyuanImage2.1](https://github.com/Tencent-Hunyuan/HunyuanImage-2.1) for its refiner pipeline.
The model can be loaded with the following code snippet.
```python
from diffusers import AutoencoderKLHunyuanImageRefiner
vae = AutoencoderKLHunyuanImageRefiner.from_pretrained("hunyuanvideo-community/HunyuanImage-2.1-Refiner-Diffusers", subfolder="vae", torch_dtype=torch.bfloat16)
```
## AutoencoderKLHunyuanImageRefiner
[[autodoc]] AutoencoderKLHunyuanImageRefiner
- decode
- all
## DecoderOutput
[[autodoc]] models.autoencoders.vae.DecoderOutput

View File

@@ -12,7 +12,7 @@ specific language governing permissions and limitations under the License.
# ChromaTransformer2DModel
A modified flux Transformer model from [Chroma](https://huggingface.co/lodestones/Chroma)
A modified flux Transformer model from [Chroma](https://huggingface.co/lodestones/Chroma1-HD)
## ChromaTransformer2DModel

View File

@@ -0,0 +1,32 @@
<!-- Copyright 2025 The ChronoEdit Team and HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# ChronoEditTransformer3DModel
A Diffusion Transformer model for 3D video-like data from [ChronoEdit: Towards Temporal Reasoning for Image Editing and World Simulation](https://huggingface.co/papers/2510.04290) from NVIDIA and University of Toronto, by Jay Zhangjie Wu, Xuanchi Ren, Tianchang Shen, Tianshi Cao, Kai He, Yifan Lu, Ruiyuan Gao, Enze Xie, Shiyi Lan, Jose M. Alvarez, Jun Gao, Sanja Fidler, Zian Wang, Huan Ling.
> **TL;DR:** ChronoEdit reframes image editing as a video generation task, using input and edited images as start/end frames to leverage pretrained video models with temporal consistency. A temporal reasoning stage introduces reasoning tokens to ensure physically plausible edits and visualize the editing trajectory.
The model can be loaded with the following code snippet.
```python
from diffusers import ChronoEditTransformer3DModel
transformer = ChronoEditTransformer3DModel.from_pretrained("nvidia/ChronoEdit-14B-Diffusers", subfolder="transformer", torch_dtype=torch.bfloat16)
```
## ChronoEditTransformer3DModel
[[autodoc]] ChronoEditTransformer3DModel
## Transformer2DModelOutput
[[autodoc]] models.modeling_outputs.Transformer2DModelOutput

View File

@@ -0,0 +1,19 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Flux2Transformer2DModel
A Transformer model for image-like data from [Flux2](https://hf.co/black-forest-labs/FLUX.2-dev).
## Flux2Transformer2DModel
[[autodoc]] Flux2Transformer2DModel

View File

@@ -0,0 +1,30 @@
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# HunyuanVideo15Transformer3DModel
A Diffusion Transformer model for 3D video-like data used in [HunyuanVideo1.5](https://github.com/Tencent/HunyuanVideo1-1.5).
The model can be loaded with the following code snippet.
```python
from diffusers import HunyuanVideo15Transformer3DModel
transformer = HunyuanVideo15Transformer3DModel.from_pretrained("hunyuanvideo-community/HunyuanVideo-1.5-Diffusers-480p_t2v" subfolder="transformer", torch_dtype=torch.bfloat16)
```
## HunyuanVideo15Transformer3DModel
[[autodoc]] HunyuanVideo15Transformer3DModel
## Transformer2DModelOutput
[[autodoc]] models.modeling_outputs.Transformer2DModelOutput

View File

@@ -0,0 +1,30 @@
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# HunyuanImageTransformer2DModel
A Diffusion Transformer model for [HunyuanImage2.1](https://github.com/Tencent-Hunyuan/HunyuanImage-2.1).
The model can be loaded with the following code snippet.
```python
from diffusers import HunyuanImageTransformer2DModel
transformer = HunyuanImageTransformer2DModel.from_pretrained("hunyuanvideo-community/HunyuanImage-2.1-Diffusers", subfolder="transformer", torch_dtype=torch.bfloat16)
```
## HunyuanImageTransformer2DModel
[[autodoc]] HunyuanImageTransformer2DModel
## Transformer2DModelOutput
[[autodoc]] models.modeling_outputs.Transformer2DModelOutput

View File

@@ -0,0 +1,24 @@
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# OvisImageTransformer2DModel
The model can be loaded with the following code snippet.
```python
from diffusers import OvisImageTransformer2DModel
transformer = OvisImageTransformer2DModel.from_pretrained("AIDC-AI/Ovis-Image-7B", subfolder="transformer", torch_dtype=torch.bfloat16)
```
## OvisImageTransformer2DModel
[[autodoc]] OvisImageTransformer2DModel

View File

@@ -0,0 +1,36 @@
<!-- Copyright 2025 The SANA-Video Authors and HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# SanaVideoTransformer3DModel
A Diffusion Transformer model for 3D data (video) from [SANA-Video: Efficient Video Generation with Block Linear Diffusion Transformer](https://huggingface.co/papers/2509.24695) from NVIDIA and MIT HAN Lab, by Junsong Chen, Yuyang Zhao, Jincheng Yu, Ruihang Chu, Junyu Chen, Shuai Yang, Xianbang Wang, Yicheng Pan, Daquan Zhou, Huan Ling, Haozhe Liu, Hongwei Yi, Hao Zhang, Muyang Li, Yukang Chen, Han Cai, Sanja Fidler, Ping Luo, Song Han, Enze Xie.
The abstract from the paper is:
*We introduce SANA-Video, a small diffusion model that can efficiently generate videos up to 720x1280 resolution and minute-length duration. SANA-Video synthesizes high-resolution, high-quality and long videos with strong text-video alignment at a remarkably fast speed, deployable on RTX 5090 GPU. Two core designs ensure our efficient, effective and long video generation: (1) Linear DiT: We leverage linear attention as the core operation, which is more efficient than vanilla attention given the large number of tokens processed in video generation. (2) Constant-Memory KV cache for Block Linear Attention: we design block-wise autoregressive approach for long video generation by employing a constant-memory state, derived from the cumulative properties of linear attention. This KV cache provides the Linear DiT with global context at a fixed memory cost, eliminating the need for a traditional KV cache and enabling efficient, minute-long video generation. In addition, we explore effective data filters and model training strategies, narrowing the training cost to 12 days on 64 H100 GPUs, which is only 1% of the cost of MovieGen. Given its low cost, SANA-Video achieves competitive performance compared to modern state-of-the-art small diffusion models (e.g., Wan 2.1-1.3B and SkyReel-V2-1.3B) while being 16x faster in measured latency. Moreover, SANA-Video can be deployed on RTX 5090 GPUs with NVFP4 precision, accelerating the inference speed of generating a 5-second 720p video from 71s to 29s (2.4x speedup). In summary, SANA-Video enables low-cost, high-quality video generation.*
The model can be loaded with the following code snippet.
```python
from diffusers import SanaVideoTransformer3DModel
import torch
transformer = SanaVideoTransformer3DModel.from_pretrained("Efficient-Large-Model/SANA-Video_2B_480p_diffusers", subfolder="transformer", torch_dtype=torch.bfloat16)
```
## SanaVideoTransformer3DModel
[[autodoc]] SanaVideoTransformer3DModel
## Transformer2DModelOutput
[[autodoc]] models.modeling_outputs.Transformer2DModelOutput

View File

@@ -0,0 +1,19 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# BriaFiboTransformer2DModel
A modified flux Transformer model from [Bria](https://huggingface.co/briaai/FIBO)
## BriaFiboTransformer2DModel
[[autodoc]] BriaFiboTransformer2DModel

View File

@@ -0,0 +1,30 @@
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# WanAnimateTransformer3DModel
A Diffusion Transformer model for 3D video-like data was introduced in [Wan Animate](https://github.com/Wan-Video/Wan2.2) by the Alibaba Wan Team.
The model can be loaded with the following code snippet.
```python
from diffusers import WanAnimateTransformer3DModel
transformer = WanAnimateTransformer3DModel.from_pretrained("Wan-AI/Wan2.2-Animate-14B-Diffusers", subfolder="transformer", torch_dtype=torch.bfloat16)
```
## WanAnimateTransformer3DModel
[[autodoc]] WanAnimateTransformer3DModel
## Transformer2DModelOutput
[[autodoc]] models.modeling_outputs.Transformer2DModelOutput

View File

@@ -0,0 +1,19 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# ZImageTransformer2DModel
A Transformer model for image-like data from [Z-Image](https://huggingface.co/Tongyi-MAI/Z-Image-Turbo).
## ZImageTransformer2DModel
[[autodoc]] ZImageTransformer2DModel

View File

@@ -0,0 +1,45 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Bria Fibo
Text-to-image models have mastered imagination - but not control. FIBO changes that.
FIBO is trained on structured JSON captions up to 1,000+ words and designed to understand and control different visual parameters such as lighting, composition, color, and camera settings, enabling precise and reproducible outputs.
With only 8 billion parameters, FIBO provides a new level of image quality, prompt adherence and proffesional control.
FIBO is trained exclusively on a structured prompt and will not work with freeform text prompts.
you can use the [FIBO-VLM-prompt-to-JSON](https://huggingface.co/briaai/FIBO-VLM-prompt-to-JSON) model or the [FIBO-gemini-prompt-to-JSON](https://huggingface.co/briaai/FIBO-gemini-prompt-to-JSON) to convert your freeform text prompt to a structured JSON prompt.
> [!NOTE]
> Avoid using freeform text prompts directly with FIBO because it does not produce the best results.
Refer to the Bria Fibo Hugging Face [page](https://huggingface.co/briaai/FIBO) to learn more.
## Usage
_As the model is gated, before using it with diffusers you first need to go to the [Bria Fibo Hugging Face page](https://huggingface.co/briaai/FIBO), fill in the form and accept the gate. Once you are in, you need to login so that your system knows youve accepted the gate._
Use the command below to log in:
```bash
hf auth login
```
## BriaFiboPipeline
[[autodoc]] BriaFiboPipeline
- all
- __call__

View File

@@ -19,20 +19,21 @@ specific language governing permissions and limitations under the License.
Chroma is a text to image generation model based on Flux.
Original model checkpoints for Chroma can be found [here](https://huggingface.co/lodestones/Chroma).
Original model checkpoints for Chroma can be found here:
* High-resolution finetune: [lodestones/Chroma1-HD](https://huggingface.co/lodestones/Chroma1-HD)
* Base model: [lodestones/Chroma1-Base](https://huggingface.co/lodestones/Chroma1-Base)
* Original repo with progress checkpoints: [lodestones/Chroma](https://huggingface.co/lodestones/Chroma) (loading this repo with `from_pretrained` will load a Diffusers-compatible version of the `unlocked-v37` checkpoint)
> [!TIP]
> Chroma can use all the same optimizations as Flux.
## Inference
The Diffusers version of Chroma is based on the [`unlocked-v37`](https://huggingface.co/lodestones/Chroma/blob/main/chroma-unlocked-v37.safetensors) version of the original model, which is available in the [Chroma repository](https://huggingface.co/lodestones/Chroma).
```python
import torch
from diffusers import ChromaPipeline
pipe = ChromaPipeline.from_pretrained("lodestones/Chroma", torch_dtype=torch.bfloat16)
pipe = ChromaPipeline.from_pretrained("lodestones/Chroma1-HD", torch_dtype=torch.bfloat16)
pipe.enable_model_cpu_offload()
prompt = [
@@ -63,10 +64,10 @@ Then run the following example
import torch
from diffusers import ChromaTransformer2DModel, ChromaPipeline
model_id = "lodestones/Chroma"
model_id = "lodestones/Chroma1-HD"
dtype = torch.bfloat16
transformer = ChromaTransformer2DModel.from_single_file("https://huggingface.co/lodestones/Chroma/blob/main/chroma-unlocked-v37.safetensors", torch_dtype=dtype)
transformer = ChromaTransformer2DModel.from_single_file("https://huggingface.co/lodestones/Chroma1-HD/blob/main/Chroma1-HD.safetensors", torch_dtype=dtype)
pipe = ChromaPipeline.from_pretrained(model_id, transformer=transformer, torch_dtype=dtype)
pipe.enable_model_cpu_offload()

View File

@@ -0,0 +1,156 @@
<!-- Copyright 2025 The ChronoEdit Team and HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License. -->
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<a href="https://huggingface.co/docs/diffusers/main/en/tutorials/using_peft_for_inference" target="_blank" rel="noopener">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</a>
</div>
</div>
# ChronoEdit
[ChronoEdit: Towards Temporal Reasoning for Image Editing and World Simulation](https://huggingface.co/papers/2510.04290) from NVIDIA and University of Toronto, by Jay Zhangjie Wu, Xuanchi Ren, Tianchang Shen, Tianshi Cao, Kai He, Yifan Lu, Ruiyuan Gao, Enze Xie, Shiyi Lan, Jose M. Alvarez, Jun Gao, Sanja Fidler, Zian Wang, Huan Ling.
> **TL;DR:** ChronoEdit reframes image editing as a video generation task, using input and edited images as start/end frames to leverage pretrained video models with temporal consistency. A temporal reasoning stage introduces reasoning tokens to ensure physically plausible edits and visualize the editing trajectory.
*Recent advances in large generative models have greatly enhanced both image editing and in-context image generation, yet a critical gap remains in ensuring physical consistency, where edited objects must remain coherent. This capability is especially vital for world simulation related tasks. In this paper, we present ChronoEdit, a framework that reframes image editing as a video generation problem. First, ChronoEdit treats the input and edited images as the first and last frames of a video, allowing it to leverage large pretrained video generative models that capture not only object appearance but also the implicit physics of motion and interaction through learned temporal consistency. Second, ChronoEdit introduces a temporal reasoning stage that explicitly performs editing at inference time. Under this setting, target frame is jointly denoised with reasoning tokens to imagine a plausible editing trajectory that constrains the solution space to physically viable transformations. The reasoning tokens are then dropped after a few steps to avoid the high computational cost of rendering a full video. To validate ChronoEdit, we introduce PBench-Edit, a new benchmark of image-prompt pairs for contexts that require physical consistency, and demonstrate that ChronoEdit surpasses state-of-the-art baselines in both visual fidelity and physical plausibility. Project page for code and models: [this https URL](https://research.nvidia.com/labs/toronto-ai/chronoedit).*
The ChronoEdit pipeline is developed by the ChronoEdit Team. The original code is available on [GitHub](https://github.com/nv-tlabs/ChronoEdit), and pretrained models can be found in the [nvidia/ChronoEdit](https://huggingface.co/collections/nvidia/chronoedit) collection on Hugging Face.
### Image Editing
```py
import torch
import numpy as np
from diffusers import AutoencoderKLWan, ChronoEditTransformer3DModel, ChronoEditPipeline
from diffusers.utils import export_to_video, load_image
from transformers import CLIPVisionModel
from PIL import Image
model_id = "nvidia/ChronoEdit-14B-Diffusers"
image_encoder = CLIPVisionModel.from_pretrained(model_id, subfolder="image_encoder", torch_dtype=torch.float32)
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
transformer = ChronoEditTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.bfloat16)
pipe = ChronoEditPipeline.from_pretrained(model_id, image_encoder=image_encoder, transformer=transformer, vae=vae, torch_dtype=torch.bfloat16)
pipe.to("cuda")
image = load_image(
"https://huggingface.co/spaces/nvidia/ChronoEdit/resolve/main/examples/3.png"
)
max_area = 720 * 1280
aspect_ratio = image.height / image.width
mod_value = pipe.vae_scale_factor_spatial * pipe.transformer.config.patch_size[1]
height = round(np.sqrt(max_area * aspect_ratio)) // mod_value * mod_value
width = round(np.sqrt(max_area / aspect_ratio)) // mod_value * mod_value
print("width", width, "height", height)
image = image.resize((width, height))
prompt = (
"The user wants to transform the image by adding a small, cute mouse sitting inside the floral teacup, enjoying a spa bath. The mouse should appear relaxed and cheerful, with a tiny white bath towel draped over its head like a turban. It should be positioned comfortably in the cups liquid, with gentle steam rising around it to blend with the cozy atmosphere. "
"The mouses pose should be natural—perhaps sitting upright with paws resting lightly on the rim or submerged in the tea. The teacups floral design, gold trim, and warm lighting must remain unchanged to preserve the original aesthetic. The steam should softly swirl around the mouse, enhancing the spa-like, whimsical mood."
)
output = pipe(
image=image,
prompt=prompt,
height=height,
width=width,
num_frames=5,
num_inference_steps=50,
guidance_scale=5.0,
enable_temporal_reasoning=False,
num_temporal_reasoning_steps=0,
).frames[0]
Image.fromarray((output[-1] * 255).clip(0, 255).astype("uint8")).save("output.png")
```
Optionally, enable **temporal reasoning** for improved physical consistency:
```py
output = pipe(
image=image,
prompt=prompt,
height=height,
width=width,
num_frames=29,
num_inference_steps=50,
guidance_scale=5.0,
enable_temporal_reasoning=True,
num_temporal_reasoning_steps=50,
).frames[0]
export_to_video(output, "output.mp4", fps=16)
Image.fromarray((output[-1] * 255).clip(0, 255).astype("uint8")).save("output.png")
```
### Inference with 8-Step Distillation Lora
```py
import torch
import numpy as np
from diffusers import AutoencoderKLWan, ChronoEditTransformer3DModel, ChronoEditPipeline
from diffusers.utils import export_to_video, load_image
from transformers import CLIPVisionModel
from PIL import Image
model_id = "nvidia/ChronoEdit-14B-Diffusers"
image_encoder = CLIPVisionModel.from_pretrained(model_id, subfolder="image_encoder", torch_dtype=torch.float32)
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
transformer = ChronoEditTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.bfloat16)
pipe = ChronoEditPipeline.from_pretrained(model_id, image_encoder=image_encoder, transformer=transformer, vae=vae, torch_dtype=torch.bfloat16)
lora_path = hf_hub_download(repo_id=model_id, filename="lora/chronoedit_distill_lora.safetensors")
pipe.load_lora_weights(lora_path)
pipe.fuse_lora(lora_scale=1.0)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=2.0)
pipe.to("cuda")
image = load_image(
"https://huggingface.co/spaces/nvidia/ChronoEdit/resolve/main/examples/3.png"
)
max_area = 720 * 1280
aspect_ratio = image.height / image.width
mod_value = pipe.vae_scale_factor_spatial * pipe.transformer.config.patch_size[1]
height = round(np.sqrt(max_area * aspect_ratio)) // mod_value * mod_value
width = round(np.sqrt(max_area / aspect_ratio)) // mod_value * mod_value
print("width", width, "height", height)
image = image.resize((width, height))
prompt = (
"The user wants to transform the image by adding a small, cute mouse sitting inside the floral teacup, enjoying a spa bath. The mouse should appear relaxed and cheerful, with a tiny white bath towel draped over its head like a turban. It should be positioned comfortably in the cups liquid, with gentle steam rising around it to blend with the cozy atmosphere. "
"The mouses pose should be natural—perhaps sitting upright with paws resting lightly on the rim or submerged in the tea. The teacups floral design, gold trim, and warm lighting must remain unchanged to preserve the original aesthetic. The steam should softly swirl around the mouse, enhancing the spa-like, whimsical mood."
)
output = pipe(
image=image,
prompt=prompt,
height=height,
width=width,
num_frames=5,
num_inference_steps=8,
guidance_scale=1.0,
enable_temporal_reasoning=False,
num_temporal_reasoning_steps=0,
).frames[0]
export_to_video(output, "output.mp4", fps=16)
Image.fromarray((output[-1] * 255).clip(0, 255).astype("uint8")).save("output.png")
```
## ChronoEditPipeline
[[autodoc]] ChronoEditPipeline
- all
- __call__
## ChronoEditPipelineOutput
[[autodoc]] pipelines.chronoedit.pipeline_output.ChronoEditPipelineOutput

View File

@@ -0,0 +1,39 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Flux2
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
<img alt="MPS" src="https://img.shields.io/badge/MPS-000000?style=flat&logo=apple&logoColor=white%22">
</div>
Flux.2 is the recent series of image generation models from Black Forest Labs, preceded by the [Flux.1](./flux.md) series. It is an entirely new model with a new architecture and pre-training done from scratch!
Original model checkpoints for Flux can be found [here](https://huggingface.co/black-forest-labs). Original inference code can be found [here](https://github.com/black-forest-labs/flux2).
> [!TIP]
> Flux2 can be quite expensive to run on consumer hardware devices. However, you can perform a suite of optimizations to run it faster and in a more memory-friendly manner. Check out [this section](https://huggingface.co/blog/sd3#memory-optimizations-for-sd3) for more details. Additionally, Flux can benefit from quantization for memory efficiency with a trade-off in inference latency. Refer to [this blog post](https://huggingface.co/blog/quanto-diffusers) to learn more.
>
> [Caching](../../optimization/cache) may also speed up inference by storing and reusing intermediate outputs.
## Caption upsampling
Flux.2 can potentially generate better better outputs with better prompts. We can "upsample"
an input prompt by setting the `caption_upsample_temperature` argument in the pipeline call arguments.
The [official implementation](https://github.com/black-forest-labs/flux2/blob/5a5d316b1b42f6b59a8c9194b77c8256be848432/src/flux2/text_encoder.py#L140) recommends this value to be 0.15.
## Flux2Pipeline
[[autodoc]] Flux2Pipeline
- all
- __call__

View File

@@ -0,0 +1,120 @@
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License. -->
# HunyuanVideo-1.5
HunyuanVideo-1.5 is a lightweight yet powerful video generation model that achieves state-of-the-art visual quality and motion coherence with only 8.3 billion parameters, enabling efficient inference on consumer-grade GPUs. This achievement is built upon several key components, including meticulous data curation, an advanced DiT architecture with selective and sliding tile attention (SSTA), enhanced bilingual understanding through glyph-aware text encoding, progressive pre-training and post-training, and an efficient video super-resolution network. Leveraging these designs, we developed a unified framework capable of high-quality text-to-video and image-to-video generation across multiple durations and resolutions. Extensive experiments demonstrate that this compact and proficient model establishes a new state-of-the-art among open-source models.
You can find all the original HunyuanVideo checkpoints under the [Tencent](https://huggingface.co/tencent) organization.
> [!TIP]
> Click on the HunyuanVideo models in the right sidebar for more examples of video generation tasks.
>
> The examples below use a checkpoint from [hunyuanvideo-community](https://huggingface.co/hunyuanvideo-community) because the weights are stored in a layout compatible with Diffusers.
The example below demonstrates how to generate a video optimized for memory or inference speed.
<hfoptions id="usage">
<hfoption id="memory">
Refer to the [Reduce memory usage](../../optimization/memory) guide for more details about the various memory saving techniques.
```py
import torch
from diffusers import AutoModel, HunyuanVideo15Pipeline
from diffusers.utils import export_to_video
pipeline = HunyuanVideo15Pipeline.from_pretrained(
"HunyuanVideo-1.5-Diffusers-480p_t2v",
torch_dtype=torch.bfloat16,
)
# model-offloading and tiling
pipeline.enable_model_cpu_offload()
pipeline.vae.enable_tiling()
prompt = "A fluffy teddy bear sits on a bed of soft pillows surrounded by children's toys."
video = pipeline(prompt=prompt, num_frames=61, num_inference_steps=30).frames[0]
export_to_video(video, "output.mp4", fps=15)
```
## Notes
- HunyuanVideo1.5 use attention masks with variable-length sequences. For best performance, we recommend using an attention backend that handles padding efficiently.
- **H100/H800:** `_flash_3_hub` or `_flash_3_varlen_hub`
- **A100/A800/RTX 4090:** `flash_hub` or `flash_varlen_hub`
- **Other GPUs:** `sage_hub`
Refer to the [Attention backends](../../optimization/attention_backends) guide for more details about using a different backend.
```py
pipe.transformer.set_attention_backend("flash_hub") # or your preferred backend
```
- [`HunyuanVideo15Pipeline`] use guider and does not take `guidance_scale` parameter at runtime.
You can check the default guider configuration using `pipe.guider`:
```py
>>> pipe.guider
ClassifierFreeGuidance {
"_class_name": "ClassifierFreeGuidance",
"_diffusers_version": "0.36.0.dev0",
"enabled": true,
"guidance_rescale": 0.0,
"guidance_scale": 6.0,
"start": 0.0,
"stop": 1.0,
"use_original_formulation": false
}
State:
step: None
num_inference_steps: None
timestep: None
count_prepared: 0
enabled: True
num_conditions: 2
```
To update guider configuration, you can run `pipe.guider = pipe.guider.new(...)`
```py
pipe.guider = pipe.guider.new(guidance_scale=5.0)
```
Read more on Guider [here](../../modular_diffusers/guiders).
## HunyuanVideo15Pipeline
[[autodoc]] HunyuanVideo15Pipeline
- all
- __call__
## HunyuanVideo15ImageToVideoPipeline
[[autodoc]] HunyuanVideo15ImageToVideoPipeline
- all
- __call__
## HunyuanVideo15PipelineOutput
[[autodoc]] pipelines.hunyuan_video1_5.pipeline_output.HunyuanVideo15PipelineOutput

View File

@@ -0,0 +1,152 @@
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License. -->
# HunyuanImage2.1
HunyuanImage-2.1 is a 17B text-to-image model that is capable of generating 2K (2048 x 2048) resolution images
HunyuanImage-2.1 comes in the following variants:
| model type | model id |
|:----------:|:--------:|
| HunyuanImage-2.1 | [hunyuanvideo-community/HunyuanImage-2.1-Diffusers](https://huggingface.co/hunyuanvideo-community/HunyuanImage-2.1-Diffusers) |
| HunyuanImage-2.1-Distilled | [hunyuanvideo-community/HunyuanImage-2.1-Distilled-Diffusers](https://huggingface.co/hunyuanvideo-community/HunyuanImage-2.1-Distilled-Diffusers) |
| HunyuanImage-2.1-Refiner | [hunyuanvideo-community/HunyuanImage-2.1-Refiner-Diffusers](https://huggingface.co/hunyuanvideo-community/HunyuanImage-2.1-Refiner-Diffusers) |
> [!TIP]
> [Caching](../../optimization/cache) may also speed up inference by storing and reusing intermediate outputs.
## HunyuanImage-2.1
HunyuanImage-2.1 applies [Adaptive Projected Guidance (APG)](https://huggingface.co/papers/2410.02416) combined with Classifier-Free Guidance (CFG) in the denoising loop. `HunyuanImagePipeline` has a `guider` component (read more about [Guider](../modular_diffusers/guiders.md)) and does not take a `guidance_scale` parameter at runtime. To change guider-related parameters, e.g., `guidance_scale`, you can update the `guider` configuration instead.
```python
import torch
from diffusers import HunyuanImagePipeline
pipe = HunyuanImagePipeline.from_pretrained(
"hunyuanvideo-community/HunyuanImage-2.1-Diffusers",
torch_dtype=torch.bfloat16
)
pipe = pipe.to("cuda")
```
You can inspect the `guider` object:
```py
>>> pipe.guider
AdaptiveProjectedMixGuidance {
"_class_name": "AdaptiveProjectedMixGuidance",
"_diffusers_version": "0.36.0.dev0",
"adaptive_projected_guidance_momentum": -0.5,
"adaptive_projected_guidance_rescale": 10.0,
"adaptive_projected_guidance_scale": 10.0,
"adaptive_projected_guidance_start_step": 5,
"enabled": true,
"eta": 0.0,
"guidance_rescale": 0.0,
"guidance_scale": 3.5,
"start": 0.0,
"stop": 1.0,
"use_original_formulation": false
}
State:
step: None
num_inference_steps: None
timestep: None
count_prepared: 0
enabled: True
num_conditions: 2
momentum_buffer: None
is_apg_enabled: False
is_cfg_enabled: True
```
To update the guider with a different configuration, use the `new()` method. For example, to generate an image with `guidance_scale=5.0` while keeping all other default guidance parameters:
```py
import torch
from diffusers import HunyuanImagePipeline
pipe = HunyuanImagePipeline.from_pretrained(
"hunyuanvideo-community/HunyuanImage-2.1-Diffusers",
torch_dtype=torch.bfloat16
)
pipe = pipe.to("cuda")
# Update the guider configuration
pipe.guider = pipe.guider.new(guidance_scale=5.0)
prompt = (
"A cute, cartoon-style anthropomorphic penguin plush toy with fluffy fur, standing in a painting studio, "
"wearing a red knitted scarf and a red beret with the word 'Tencent' on it, holding a paintbrush with a "
"focused expression as it paints an oil painting of the Mona Lisa, rendered in a photorealistic photographic style."
)
image = pipe(
prompt=prompt,
num_inference_steps=50,
height=2048,
width=2048,
).images[0]
image.save("image.png")
```
## HunyuanImage-2.1-Distilled
use `distilled_guidance_scale` with the guidance-distilled checkpoint,
```py
import torch
from diffusers import HunyuanImagePipeline
pipe = HunyuanImagePipeline.from_pretrained("hunyuanvideo-community/HunyuanImage-2.1-Distilled-Diffusers", torch_dtype=torch.bfloat16)
pipe = pipe.to("cuda")
prompt = (
"A cute, cartoon-style anthropomorphic penguin plush toy with fluffy fur, standing in a painting studio, "
"wearing a red knitted scarf and a red beret with the word 'Tencent' on it, holding a paintbrush with a "
"focused expression as it paints an oil painting of the Mona Lisa, rendered in a photorealistic photographic style."
)
out = pipe(
prompt,
num_inference_steps=8,
distilled_guidance_scale=3.25,
height=2048,
width=2048,
generator=generator,
).images[0]
```
## HunyuanImagePipeline
[[autodoc]] HunyuanImagePipeline
- all
- __call__
## HunyuanImageRefinerPipeline
[[autodoc]] HunyuanImageRefinerPipeline
- all
- __call__
## HunyuanImagePipelineOutput
[[autodoc]] pipelines.hunyuan_image.pipeline_output.HunyuanImagePipelineOutput

View File

@@ -0,0 +1,116 @@
<!--Copyright 2025 The HuggingFace Team and Kandinsky Lab Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Kandinsky 5.0 Image
[Kandinsky 5.0](https://arxiv.org/abs/2511.14993) is a family of diffusion models for Video & Image generation.
Kandinsky 5.0 Image Lite is a lightweight image generation model (6B parameters).
The model introduces several key innovations:
- **Latent diffusion pipeline** with **Flow Matching** for improved training stability
- **Diffusion Transformer (DiT)** as the main generative backbone with cross-attention to text embeddings
- Dual text encoding using **Qwen2.5-VL** and **CLIP** for comprehensive text understanding
- **Flux VAE** for efficient image encoding and decoding
The original codebase can be found at [kandinskylab/Kandinsky-5](https://github.com/kandinskylab/Kandinsky-5).
> [!TIP]
> Check out the [Kandinsky Lab](https://huggingface.co/kandinskylab) organization on the Hub for the official model checkpoints for text-to-video generation, including pretrained, SFT, no-CFG, and distilled variants.
## Available Models
Kandinsky 5.0 Image Lite:
| model_id | Description | Use Cases |
|------------|-------------|-----------|
| [**kandinskylab/Kandinsky-5.0-T2I-Lite-sft-Diffusers**](https://huggingface.co/kandinskylab/Kandinsky-5.0-T2I-Lite-sft-Diffusers) | 6B image Supervised Fine-Tuned model | Highest generation quality |
| [**kandinskylab/Kandinsky-5.0-I2I-Lite-sft-Diffusers**](https://huggingface.co/kandinskylab/Kandinsky-5.0-I2I-Lite-sft-Diffusers) | 6B image editing Supervised Fine-Tuned model | Highest generation quality |
| [**kandinskylab/Kandinsky-5.0-T2I-Lite-pretrain-Diffusers**](https://huggingface.co/kandinskylab/Kandinsky-5.0-T2I-Lite-pretrain-Diffusers) | 6B image Base pretrained model | Research and fine-tuning |
| [**kandinskylab/Kandinsky-5.0-I2I-Lite-pretrain-Diffusers**](https://huggingface.co/kandinskylab/Kandinsky-5.0-I2I-Lite-pretrain-Diffusers) | 6B image editing Base pretrained model | Research and fine-tuning |
## Usage Examples
### Basic Text-to-Image Generation
```python
import torch
from diffusers import Kandinsky5T2IPipeline
# Load the pipeline
model_id = "kandinskylab/Kandinsky-5.0-T2I-Lite-sft-Diffusers"
pipe = Kandinsky5T2IPipeline.from_pretrained(model_id)
_ = pipe.to(device='cuda',dtype=torch.bfloat16)
# Generate image
prompt = "A fluffy, expressive cat wearing a bright red hat with a soft, slightly textured fabric. The hat should look cozy and well-fitted on the cats head. On the front of the hat, add clean, bold white text that reads “SWEET”, clearly visible and neatly centered. Ensure the overall lighting highlights the hats color and the cats fur details."
output = pipe(
prompt=prompt,
negative_prompt="",
height=1024,
width=1024,
num_inference_steps=50,
guidance_scale=3.5,
).image[0]
```
### Basic Image-to-Image Generation
```python
import torch
from diffusers import Kandinsky5I2IPipeline
from diffusers.utils import load_image
# Load the pipeline
model_id = "kandinskylab/Kandinsky-5.0-I2I-Lite-sft-Diffusers"
pipe = Kandinsky5I2IPipeline.from_pretrained(model_id)
_ = pipe.to(device='cuda',dtype=torch.bfloat16)
pipe.enable_model_cpu_offload() # <--- Enable CPU offloading for single GPU inference
# Edit the input image
image = load_image(
"https://huggingface.co/kandinsky-community/kandinsky-3/resolve/main/assets/title.jpg?download=true"
)
prompt = "Change the background from a winter night scene to a bright summer day. Place the character on a sandy beach with clear blue sky, soft sunlight, and gentle waves in the distance. Replace the winter clothing with a light short-sleeved T-shirt (in soft pastel colors) and casual shorts. Ensure the characters fur reflects warm daylight instead of cold winter tones. Add small beach details such as seashells, footprints in the sand, and a few scattered beach toys nearby. Keep the oranges in the scene, but place them naturally on the sand."
negative_prompt = ""
output = pipe(
image=image,
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=3.5,
).image[0]
```
## Kandinsky5T2IPipeline
[[autodoc]] Kandinsky5T2IPipeline
- all
- __call__
## Kandinsky5I2IPipeline
[[autodoc]] Kandinsky5I2IPipeline
- all
- __call__
## Citation
```bibtex
@misc{kandinsky2025,
author = {Alexander Belykh and Alexander Varlamov and Alexey Letunovskiy and Anastasia Aliaskina and Anastasia Maltseva and Anastasiia Kargapoltseva and Andrey Shutkin and Anna Averchenkova and Anna Dmitrienko and Bulat Akhmatov and Denis Dimitrov and Denis Koposov and Denis Parkhomenko and Dmitrii and Ilya Vasiliev and Ivan Kirillov and Julia Agafonova and Kirill Chernyshev and Kormilitsyn Semen and Lev Novitskiy and Maria Kovaleva and Mikhail Mamaev and Mikhailov and Nikita Kiselev and Nikita Osterov and Nikolai Gerasimenko and Nikolai Vaulin and Olga Kim and Olga Vdovchenko and Polina Gavrilova and Polina Mikhailova and Tatiana Nikulina and Viacheslav Vasilev and Vladimir Arkhipkin and Vladimir Korviakov and Vladimir Polovnikov and Yury Kolabushin},
title = {Kandinsky 5.0: A family of diffusion models for Video & Image generation},
howpublished = {\url{https://github.com/kandinskylab/Kandinsky-5}},
year = 2025
}
```

View File

@@ -0,0 +1,310 @@
<!--Copyright 2025 The HuggingFace Team Kandinsky Lab Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Kandinsky 5.0 Video
[Kandinsky 5.0](https://arxiv.org/abs/2511.14993) is a family of diffusion models for Video & Image generation.
Kandinsky 5.0 Lite line-up of lightweight video generation models (2B parameters) that ranks #1 among open-source models in its class. It outperforms larger models and offers the best understanding of Russian concepts in the open-source ecosystem.
Kandinsky 5.0 Pro line-up of large high quality video generation models (19B parameters). It offers high qualty generation in HD and more generation formats like I2V.
The model introduces several key innovations:
- **Latent diffusion pipeline** with **Flow Matching** for improved training stability
- **Diffusion Transformer (DiT)** as the main generative backbone with cross-attention to text embeddings
- Dual text encoding using **Qwen2.5-VL** and **CLIP** for comprehensive text understanding
- **HunyuanVideo 3D VAE** for efficient video encoding and decoding
- **Sparse attention mechanisms** (NABLA) for efficient long-sequence processing
The original codebase can be found at [kandinskylab/Kandinsky-5](https://github.com/kandinskylab/Kandinsky-5).
> [!TIP]
> Check out the [Kandinsky Lab](https://huggingface.co/kandinskylab) organization on the Hub for the official model checkpoints for text-to-video generation, including pretrained, SFT, no-CFG, and distilled variants.
## Available Models
Kandinsky 5.0 T2V Pro:
| model_id | Description | Use Cases |
|------------|-------------|-----------|
| **kandinskylab/Kandinsky-5.0-T2V-Pro-sft-5s-Diffusers** | 5 second Text-to-Video Pro model | High-quality text-to-video generation |
| **kandinskylab/Kandinsky-5.0-I2V-Pro-sft-5s-Diffusers** | 5 second Image-to-Video Pro model | High-quality image-to-video generation |
Kandinsky 5.0 T2V Lite:
| model_id | Description | Use Cases |
|------------|-------------|-----------|
| **kandinskylab/Kandinsky-5.0-T2V-Lite-sft-5s-Diffusers** | 5 second Supervised Fine-Tuned model | Highest generation quality |
| **kandinskylab/Kandinsky-5.0-T2V-Lite-sft-10s-Diffusers** | 10 second Supervised Fine-Tuned model | Highest generation quality |
| **kandinskylab/Kandinsky-5.0-T2V-Lite-nocfg-5s-Diffusers** | 5 second Classifier-Free Guidance distilled | 2× faster inference |
| **kandinskylab/Kandinsky-5.0-T2V-Lite-nocfg-10s-Diffusers** | 10 second Classifier-Free Guidance distilled | 2× faster inference |
| **kandinskylab/Kandinsky-5.0-T2V-Lite-distilled16steps-5s-Diffusers** | 5 second Diffusion distilled to 16 steps | 6× faster inference, minimal quality loss |
| **kandinskylab/Kandinsky-5.0-T2V-Lite-distilled16steps-10s-Diffusers** | 10 second Diffusion distilled to 16 steps | 6× faster inference, minimal quality loss |
| **kandinskylab/Kandinsky-5.0-T2V-Lite-pretrain-5s-Diffusers** | 5 second Base pretrained model | Research and fine-tuning |
| **kandinskylab/Kandinsky-5.0-T2V-Lite-pretrain-10s-Diffusers** | 10 second Base pretrained model | Research and fine-tuning |
## Usage Examples
### Basic Text-to-Video Generation
#### Pro
**⚠️ Warning!** all Pro models should be infered with pipeline.enable_model_cpu_offload()
```python
import torch
from diffusers import Kandinsky5T2VPipeline
from diffusers.utils import export_to_video
# Load the pipeline
model_id = "kandinskylab/Kandinsky-5.0-T2V-Pro-sft-5s-Diffusers"
pipe = Kandinsky5T2VPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16)
pipe = pipe.to("cuda")
pipeline.transformer.set_attention_backend("flex") # <--- Set attention bakend to Flex
pipeline.enable_model_cpu_offload() # <--- Enable cpu offloading for single GPU inference
pipeline.transformer.compile(mode="max-autotune-no-cudagraphs", dynamic=True) # <--- Compile with max-autotune-no-cudagraphs
# Generate video
prompt = "A cat and a dog baking a cake together in a kitchen."
negative_prompt = "Static, 2D cartoon, cartoon, 2d animation, paintings, images, worst quality, low quality, ugly, deformed, walking backwards"
output = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
height=768,
width=1024,
num_frames=121, # ~5 seconds at 24fps
num_inference_steps=50,
guidance_scale=5.0,
).frames[0]
export_to_video(output, "output.mp4", fps=24, quality=9)
```
#### Lite
```python
import torch
from diffusers import Kandinsky5T2VPipeline
from diffusers.utils import export_to_video
# Load the pipeline
model_id = "kandinskylab/Kandinsky-5.0-T2V-Lite-sft-5s-Diffusers"
pipe = Kandinsky5T2VPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16)
pipe = pipe.to("cuda")
# Generate video
prompt = "A cat and a dog baking a cake together in a kitchen."
negative_prompt = "Static, 2D cartoon, cartoon, 2d animation, paintings, images, worst quality, low quality, ugly, deformed, walking backwards"
output = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
height=512,
width=768,
num_frames=121, # ~5 seconds at 24fps
num_inference_steps=50,
guidance_scale=5.0,
).frames[0]
export_to_video(output, "output.mp4", fps=24, quality=9)
```
### 10 second Models
**⚠️ Warning!** all 10 second models should be used with Flex attention and max-autotune-no-cudagraphs compilation:
```python
pipe = Kandinsky5T2VPipeline.from_pretrained(
"kandinskylab/Kandinsky-5.0-T2V-Lite-sft-10s-Diffusers",
torch_dtype=torch.bfloat16
)
pipe = pipe.to("cuda")
pipe.transformer.set_attention_backend(
"flex"
) # <--- Set attention bakend to Flex
pipe.transformer.compile(
mode="max-autotune-no-cudagraphs",
dynamic=True
) # <--- Compile with max-autotune-no-cudagraphs
prompt = "A cat and a dog baking a cake together in a kitchen."
negative_prompt = "Static, 2D cartoon, cartoon, 2d animation, paintings, images, worst quality, low quality, ugly, deformed, walking backwards"
output = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
height=512,
width=768,
num_frames=241,
num_inference_steps=50,
guidance_scale=5.0,
).frames[0]
export_to_video(output, "output.mp4", fps=24, quality=9)
```
### Diffusion Distilled model
**⚠️ Warning!** all nocfg and diffusion distilled models should be infered wothout CFG (```guidance_scale=1.0```):
```python
model_id = "kandinskylab/Kandinsky-5.0-T2V-Lite-distilled16steps-5s-Diffusers"
pipe = Kandinsky5T2VPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16)
pipe = pipe.to("cuda")
output = pipe(
prompt="A beautiful sunset over mountains",
num_inference_steps=16, # <--- Model is distilled in 16 steps
guidance_scale=1.0, # <--- no CFG
).frames[0]
export_to_video(output, "output.mp4", fps=24, quality=9)
```
### Basic Image-to-Video Generation
**⚠️ Warning!** all Pro models should be infered with pipeline.enable_model_cpu_offload()
```python
import torch
from diffusers import Kandinsky5T2VPipeline
from diffusers.utils import export_to_video
# Load the pipeline
model_id = "kandinskylab/Kandinsky-5.0-I2V-Pro-sft-5s-Diffusers"
pipe = Kandinsky5T2VPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16)
pipe = pipe.to("cuda")
pipeline.transformer.set_attention_backend("flex") # <--- Set attention bakend to Flex
pipeline.enable_model_cpu_offload() # <--- Enable cpu offloading for single GPU inference
pipeline.transformer.compile(mode="max-autotune-no-cudagraphs", dynamic=True) # <--- Compile with max-autotune-no-cudagraphs
# Generate video
image = load_image(
"https://huggingface.co/kandinsky-community/kandinsky-3/resolve/main/assets/title.jpg?download=true"
)
height = 896
width = 896
image = image.resize((width, height))
prompt = "An funny furry creture smiles happily and holds a sign that says 'Kandinsky'"
negative_prompt = ""
output = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
height=height,
width=width,
num_frames=121, # ~5 seconds at 24fps
num_inference_steps=50,
guidance_scale=5.0,
).frames[0]
export_to_video(output, "output.mp4", fps=24, quality=9)
```
## Kandinsky 5.0 Pro Side-by-Side evaluation
<table border="0" style="width: 200; text-align: left; margin-top: 20px;">
<tr>
<td>
<img width="200" alt="image" src="https://github.com/user-attachments/assets/73e5ff00-2735-40fd-8f01-767de9181918" />
</td>
<td>
<img width="200" alt="image" src="https://github.com/user-attachments/assets/f449a9e7-74b7-481d-82da-02723e396acd" />
</td>
<tr>
<td>
Comparison with Veo 3
</td>
<td>
Comparison with Veo 3 fast
</td>
<tr>
<td>
<img width="200" alt="image" src="https://github.com/user-attachments/assets/a6902fb6-b5e8-4093-adad-aa4caab79c6d" />
</td>
<td>
<img width="200" alt="image" src="https://github.com/user-attachments/assets/09986015-3d07-4de8-b942-c145039b9b2d" />
</td>
<tr>
<td>
Comparison with Wan 2.2 A14B Text-to-Video mode
</td>
<td>
Comparison with Wan 2.2 A14B Image-to-Video mode
</td>
</table>
## Kandinsky 5.0 Lite Side-by-Side evaluation
The evaluation is based on the expanded prompts from the [Movie Gen benchmark](https://github.com/facebookresearch/MovieGenBench), which are available in the expanded_prompt column of the benchmark/moviegen_bench.csv file.
<table border="0" style="width: 400; text-align: left; margin-top: 20px;">
<tr>
<td>
<img src="https://github.com/kandinskylab/kandinsky-5/raw/main/assets/sbs/kandinsky_5_video_lite_vs_sora.jpg" width=400 >
</td>
<td>
<img src="https://github.com/kandinskylab/kandinsky-5/raw/main/assets/sbs/kandinsky_5_video_lite_vs_wan_2.1_14B.jpg" width=400 >
</td>
<tr>
<td>
<img src="https://github.com/kandinskylab/kandinsky-5/raw/main/assets/sbs/kandinsky_5_video_lite_vs_wan_2.2_5B.jpg" width=400 >
</td>
<td>
<img src="https://github.com/kandinskylab/kandinsky-5/raw/main/assets/sbs/kandinsky_5_video_lite_vs_wan_2.2_A14B.jpg" width=400 >
</td>
<tr>
<td>
<img src="https://github.com/kandinskylab/kandinsky-5/raw/main/assets/sbs/kandinsky_5_video_lite_vs_wan_2.1_1.3B.jpg" width=400 >
</td>
</table>
## Kandinsky 5.0 Lite Distill Side-by-Side evaluation
<table border="0" style="width: 400; text-align: left; margin-top: 20px;">
<tr>
<td>
<img src="https://github.com/kandinskylab/kandinsky-5/raw/main/assets/sbs/kandinsky_5_video_lite_5s_vs_kandinsky_5_video_lite_distill_5s.jpg" width=400 >
</td>
<td>
<img src="https://github.com/kandinskylab/kandinsky-5/raw/main/assets/sbs/kandinsky_5_video_lite_10s_vs_kandinsky_5_video_lite_distill_10s.jpg" width=400 >
</td>
</table>
## Kandinsky5T2VPipeline
[[autodoc]] Kandinsky5T2VPipeline
- all
- __call__
## Kandinsky5I2VPipeline
[[autodoc]] Kandinsky5I2VPipeline
- all
- __call__
## Citation
```bibtex
@misc{kandinsky2025,
author = {Alexander Belykh and Alexander Varlamov and Alexey Letunovskiy and Anastasia Aliaskina and Anastasia Maltseva and Anastasiia Kargapoltseva and Andrey Shutkin and Anna Averchenkova and Anna Dmitrienko and Bulat Akhmatov and Denis Dimitrov and Denis Koposov and Denis Parkhomenko and Dmitrii and Ilya Vasiliev and Ivan Kirillov and Julia Agafonova and Kirill Chernyshev and Kormilitsyn Semen and Lev Novitskiy and Maria Kovaleva and Mikhail Mamaev and Mikhailov and Nikita Kiselev and Nikita Osterov and Nikolai Gerasimenko and Nikolai Vaulin and Olga Kim and Olga Vdovchenko and Polina Gavrilova and Polina Mikhailova and Tatiana Nikulina and Viacheslav Vasilev and Vladimir Arkhipkin and Vladimir Korviakov and Vladimir Polovnikov and Yury Kolabushin},
title = {Kandinsky 5.0: A family of diffusion models for Video & Image generation},
howpublished = {\url{https://github.com/kandinskylab/Kandinsky-5}},
year = 2025
}
```

View File

@@ -0,0 +1,50 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Ovis-Image
![concepts](https://github.com/AIDC-AI/Ovis-Image/blob/main/docs/imgs/ovis_image_case.png)
Ovis-Image is a 7B text-to-image model specifically optimized for high-quality text rendering, designed to operate efficiently under stringent computational constraints.
[Ovis-Image Technical Report](https://arxiv.org/abs/2511.22982) from Alibaba Group, by Guo-Hua Wang, Liangfu Cao, Tianyu Cui, Minghao Fu, Xiaohao Chen, Pengxin Zhan, Jianshan Zhao, Lan Li, Bowen Fu, Jiaqi Liu, Qing-Guo Chen.
The abstract from the paper is:
*We introduce Ovis-Image, a 7B text-to-image model specifically optimized for high-quality text rendering, designed to operate efficiently under stringent computational constraints. Built upon our previous Ovis-U1 framework, Ovis-Image integrates a diffusion-based visual decoder with the stronger Ovis 2.5 multimodal backbone, leveraging a text-centric training pipeline that combines large-scale pre-training with carefully tailored post-training refinements. Despite its compact architecture, Ovis-Image achieves text rendering performance on par with significantly larger open models such as Qwen-Image and approaches closed-source systems like Seedream and GPT4o. Crucially, the model remains deployable on a single high-end GPU with moderate memory, narrowing the gap between frontier-level text rendering and practical deployment. Our results indicate that combining a strong multimodal backbone with a carefully designed, text-focused training recipe is sufficient to achieve reliable bilingual text rendering without resorting to oversized or proprietary models.*
**Highlights**:
* **Strong text rendering at a compact 7B scale**: Ovis-Image is a 7B text-to-image model that delivers text rendering quality comparable to much larger 20B-class systems such as Qwen-Image and competitive with leading closed-source models like GPT4o in text-centric scenarios, while remaining small enough to run on widely accessible hardware.
* **High fidelity on text-heavy, layout-sensitive prompts**: The model excels on prompts that demand tight alignment between linguistic content and rendered typography (e.g., posters, banners, logos, UI mockups, infographics), producing legible, correctly spelled, and semantically consistent text across diverse fonts, sizes, and aspect ratios without compromising overall visual quality.
* **Efficiency and deployability**: With its 7B parameter budget and streamlined architecture, Ovis-Image fits on a single high-end GPU with moderate memory, supports low-latency interactive use, and scales to batch production serving, bringing nearfrontier text rendering to applications where tens-of-billionsparameter models are impractical.
This pipeline was contributed by Ovis-Image Team. The original codebase can be found [here](https://github.com/AIDC-AI/Ovis-Image).
Available models:
| Model | Recommended dtype |
|:-----:|:-----------------:|
| [`AIDC-AI/Ovis-Image-7B`](https://huggingface.co/AIDC-AI/Ovis-Image-7B) | `torch.bfloat16` |
Refer to [this](https://huggingface.co/collections/AIDC-AI/ovis-image) collection for more information.
## OvisImagePipeline
[[autodoc]] OvisImagePipeline
- all
- __call__
## OvisImagePipelineOutput
[[autodoc]] pipelines.ovis_image.pipeline_output.OvisImagePipelineOutput

View File

@@ -0,0 +1,131 @@
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License. -->
# PRX
PRX generates high-quality images from text using a simplified MMDIT architecture where text tokens don't update through transformer blocks. It employs flow matching with discrete scheduling for efficient sampling and uses Google's T5Gemma-2B-2B-UL2 model for multi-language text encoding. The ~1.3B parameter transformer delivers fast inference without sacrificing quality. You can choose between Flux VAE (8x compression, 16 latent channels) for balanced quality and speed or DC-AE (32x compression, 32 latent channels) for latent compression and faster processing.
## Available models
PRX offers multiple variants with different VAE configurations, each optimized for specific resolutions. Base models excel with detailed prompts, capturing complex compositions and subtle details. Fine-tuned models trained on the [Alchemist dataset](https://huggingface.co/datasets/yandex/alchemist) improve aesthetic quality, especially with simpler prompts.
| Model | Resolution | Fine-tuned | Distilled | Description | Suggested prompts | Suggested parameters | Recommended dtype |
|:-----:|:-----------------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|
| [`Photoroom/prx-256-t2i`](https://huggingface.co/Photoroom/prx-256-t2i)| 256 | No | No | Base model pre-trained at 256 with Flux VAE|Works best with detailed prompts in natural language|28 steps, cfg=5.0| `torch.bfloat16` |
| [`Photoroom/prx-256-t2i-sft`](https://huggingface.co/Photoroom/prx-256-t2i-sft)| 512 | Yes | No | Fine-tuned on the [Alchemist dataset](https://huggingface.co/datasets/yandex/alchemist) dataset with Flux VAE | Can handle less detailed prompts|28 steps, cfg=5.0| `torch.bfloat16` |
| [`Photoroom/prx-512-t2i`](https://huggingface.co/Photoroom/prx-512-t2i)| 512 | No | No | Base model pre-trained at 512 with Flux VAE |Works best with detailed prompts in natural language|28 steps, cfg=5.0| `torch.bfloat16` |
| [`Photoroom/prx-512-t2i-sft`](https://huggingface.co/Photoroom/prx-512-t2i-sft)| 512 | Yes | No | Fine-tuned on the [Alchemist dataset](https://huggingface.co/datasets/yandex/alchemist) dataset with Flux VAE | Can handle less detailed prompts in natural language|28 steps, cfg=5.0| `torch.bfloat16` |
| [`Photoroom/prx-512-t2i-sft-distilled`](https://huggingface.co/Photoroom/prx-512-t2i-sft-distilled)| 512 | Yes | Yes | 8-step distilled model from [`Photoroom/prx-512-t2i-sft`](https://huggingface.co/Photoroom/prx-512-t2i-sft) | Can handle less detailed prompts in natural language|8 steps, cfg=1.0| `torch.bfloat16` |
| [`Photoroom/prx-512-t2i-dc-ae`](https://huggingface.co/Photoroom/prx-512-t2i-dc-ae)| 512 | No | No | Base model pre-trained at 512 with [Deep Compression Autoencoder (DC-AE)](https://hanlab.mit.edu/projects/dc-ae)|Works best with detailed prompts in natural language|28 steps, cfg=5.0| `torch.bfloat16` |
| [`Photoroom/prx-512-t2i-dc-ae-sft`](https://huggingface.co/Photoroom/prx-512-t2i-dc-ae-sft)| 512 | Yes | No | Fine-tuned on the [Alchemist dataset](https://huggingface.co/datasets/yandex/alchemist) dataset with [Deep Compression Autoencoder (DC-AE)](https://hanlab.mit.edu/projects/dc-ae) | Can handle less detailed prompts in natural language|28 steps, cfg=5.0| `torch.bfloat16` |
| [`Photoroom/prx-512-t2i-dc-ae-sft-distilled`](https://huggingface.co/Photoroom/prx-512-t2i-dc-ae-sft-distilled)| 512 | Yes | Yes | 8-step distilled model from [`Photoroom/prx-512-t2i-dc-ae-sft-distilled`](https://huggingface.co/Photoroom/prx-512-t2i-dc-ae-sft-distilled) | Can handle less detailed prompts in natural language|8 steps, cfg=1.0| `torch.bfloat16` |s
Refer to [this](https://huggingface.co/collections/Photoroom/prx-models-68e66254c202ebfab99ad38e) collection for more information.
## Loading the pipeline
Load the pipeline with [`~DiffusionPipeline.from_pretrained`].
```py
from diffusers.pipelines.prx import PRXPipeline
# Load pipeline - VAE and text encoder will be loaded from HuggingFace
pipe = PRXPipeline.from_pretrained("Photoroom/prx-512-t2i-sft", torch_dtype=torch.bfloat16)
pipe.to("cuda")
prompt = "A front-facing portrait of a lion the golden savanna at sunset."
image = pipe(prompt, num_inference_steps=28, guidance_scale=5.0).images[0]
image.save("prx_output.png")
```
### Manual Component Loading
Load components individually to customize the pipeline for instance to use quantized models.
```py
import torch
from diffusers.pipelines.prx import PRXPipeline
from diffusers.models import AutoencoderKL, AutoencoderDC
from diffusers.models.transformers.transformer_prx import PRXTransformer2DModel
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
from transformers import T5GemmaModel, GemmaTokenizerFast
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig
from transformers import BitsAndBytesConfig as BitsAndBytesConfig
quant_config = DiffusersBitsAndBytesConfig(load_in_8bit=True)
# Load transformer
transformer = PRXTransformer2DModel.from_pretrained(
"checkpoints/prx-512-t2i-sft",
subfolder="transformer",
quantization_config=quant_config,
torch_dtype=torch.bfloat16,
)
# Load scheduler
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
"checkpoints/prx-512-t2i-sft", subfolder="scheduler"
)
# Load T5Gemma text encoder
t5gemma_model = T5GemmaModel.from_pretrained("google/t5gemma-2b-2b-ul2",
quantization_config=quant_config,
torch_dtype=torch.bfloat16)
text_encoder = t5gemma_model.encoder.to(dtype=torch.bfloat16)
tokenizer = GemmaTokenizerFast.from_pretrained("google/t5gemma-2b-2b-ul2")
tokenizer.model_max_length = 256
# Load VAE - choose either Flux VAE or DC-AE
# Flux VAE
vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev",
subfolder="vae",
quantization_config=quant_config,
torch_dtype=torch.bfloat16)
pipe = PRXPipeline(
transformer=transformer,
scheduler=scheduler,
text_encoder=text_encoder,
tokenizer=tokenizer,
vae=vae
)
pipe.to("cuda")
```
## Memory Optimization
For memory-constrained environments:
```py
import torch
from diffusers.pipelines.prx import PRXPipeline
pipe = PRXPipeline.from_pretrained("Photoroom/prx-512-t2i-sft", torch_dtype=torch.bfloat16)
pipe.enable_model_cpu_offload() # Offload components to CPU when not in use
# Or use sequential CPU offload for even lower memory
pipe.enable_sequential_cpu_offload()
```
## PRXPipeline
[[autodoc]] PRXPipeline
- all
- __call__
## PRXPipelineOutput
[[autodoc]] pipelines.prx.pipeline_output.PRXPipelineOutput

View File

@@ -24,9 +24,6 @@ The abstract from the paper is:
*This paper presents SANA-Sprint, an efficient diffusion model for ultra-fast text-to-image (T2I) generation. SANA-Sprint is built on a pre-trained foundation model and augmented with hybrid distillation, dramatically reducing inference steps from 20 to 1-4. We introduce three key innovations: (1) We propose a training-free approach that transforms a pre-trained flow-matching model for continuous-time consistency distillation (sCM), eliminating costly training from scratch and achieving high training efficiency. Our hybrid distillation strategy combines sCM with latent adversarial distillation (LADD): sCM ensures alignment with the teacher model, while LADD enhances single-step generation fidelity. (2) SANA-Sprint is a unified step-adaptive model that achieves high-quality generation in 1-4 steps, eliminating step-specific training and improving efficiency. (3) We integrate ControlNet with SANA-Sprint for real-time interactive image generation, enabling instant visual feedback for user interaction. SANA-Sprint establishes a new Pareto frontier in speed-quality tradeoffs, achieving state-of-the-art performance with 7.59 FID and 0.74 GenEval in only 1 step — outperforming FLUX-schnell (7.94 FID / 0.71 GenEval) while being 10× faster (0.1s vs 1.1s on H100). It also achieves 0.1s (T2I) and 0.25s (ControlNet) latency for 1024×1024 images on H100, and 0.31s (T2I) on an RTX 4090, showcasing its exceptional efficiency and potential for AI-powered consumer applications (AIPC). Code and pre-trained models will be open-sourced.*
> [!TIP]
> Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
This pipeline was contributed by [lawrence-cj](https://github.com/lawrence-cj), [shuchen Xue](https://github.com/scxue) and [Enze Xie](https://github.com/xieenze). The original codebase can be found [here](https://github.com/NVlabs/Sana). The original weights can be found under [hf.co/Efficient-Large-Model](https://huggingface.co/Efficient-Large-Model/).
Available models:

View File

@@ -0,0 +1,189 @@
<!-- Copyright 2025 The SANA-Video Authors and HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License. -->
# Sana-Video
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
<img alt="MPS" src="https://img.shields.io/badge/MPS-000000?style=flat&logo=apple&logoColor=white%22">
</div>
[SANA-Video: Efficient Video Generation with Block Linear Diffusion Transformer](https://huggingface.co/papers/2509.24695) from NVIDIA and MIT HAN Lab, by Junsong Chen, Yuyang Zhao, Jincheng Yu, Ruihang Chu, Junyu Chen, Shuai Yang, Xianbang Wang, Yicheng Pan, Daquan Zhou, Huan Ling, Haozhe Liu, Hongwei Yi, Hao Zhang, Muyang Li, Yukang Chen, Han Cai, Sanja Fidler, Ping Luo, Song Han, Enze Xie.
The abstract from the paper is:
*We introduce SANA-Video, a small diffusion model that can efficiently generate videos up to 720x1280 resolution and minute-length duration. SANA-Video synthesizes high-resolution, high-quality and long videos with strong text-video alignment at a remarkably fast speed, deployable on RTX 5090 GPU. Two core designs ensure our efficient, effective and long video generation: (1) Linear DiT: We leverage linear attention as the core operation, which is more efficient than vanilla attention given the large number of tokens processed in video generation. (2) Constant-Memory KV cache for Block Linear Attention: we design block-wise autoregressive approach for long video generation by employing a constant-memory state, derived from the cumulative properties of linear attention. This KV cache provides the Linear DiT with global context at a fixed memory cost, eliminating the need for a traditional KV cache and enabling efficient, minute-long video generation. In addition, we explore effective data filters and model training strategies, narrowing the training cost to 12 days on 64 H100 GPUs, which is only 1% of the cost of MovieGen. Given its low cost, SANA-Video achieves competitive performance compared to modern state-of-the-art small diffusion models (e.g., Wan 2.1-1.3B and SkyReel-V2-1.3B) while being 16x faster in measured latency. Moreover, SANA-Video can be deployed on RTX 5090 GPUs with NVFP4 precision, accelerating the inference speed of generating a 5-second 720p video from 71s to 29s (2.4x speedup). In summary, SANA-Video enables low-cost, high-quality video generation. [this https URL](https://github.com/NVlabs/SANA).*
This pipeline was contributed by SANA Team. The original codebase can be found [here](https://github.com/NVlabs/Sana). The original weights can be found under [hf.co/Efficient-Large-Model](https://hf.co/collections/Efficient-Large-Model/sana-video).
Available models:
| Model | Recommended dtype |
|:-----:|:-----------------:|
| [`Efficient-Large-Model/SANA-Video_2B_480p_diffusers`](https://huggingface.co/Efficient-Large-Model/ANA-Video_2B_480p_diffusers) | `torch.bfloat16` |
Refer to [this](https://huggingface.co/collections/Efficient-Large-Model/sana-video) collection for more information.
Note: The recommended dtype mentioned is for the transformer weights. The text encoder and VAE weights must stay in `torch.bfloat16` or `torch.float32` for the model to work correctly. Please refer to the inference example below to see how to load the model with the recommended dtype.
## Generation Pipelines
<hfoptions id="generation pipelines">`
<hfoption id="Text-to-Video">
The example below demonstrates how to use the text-to-video pipeline to generate a video using a text description.
```python
pipe = SanaVideoPipeline.from_pretrained(
"Efficient-Large-Model/SANA-Video_2B_480p_diffusers",
torch_dtype=torch.bfloat16,
)
pipe.text_encoder.to(torch.bfloat16)
pipe.vae.to(torch.float32)
pipe.to("cuda")
prompt = "A cat and a dog baking a cake together in a kitchen. The cat is carefully measuring flour, while the dog is stirring the batter with a wooden spoon. The kitchen is cozy, with sunlight streaming through the window."
negative_prompt = "A chaotic sequence with misshapen, deformed limbs in heavy motion blur, sudden disappearance, jump cuts, jerky movements, rapid shot changes, frames out of sync, inconsistent character shapes, temporal artifacts, jitter, and ghosting effects, creating a disorienting visual experience."
motion_scale = 30
motion_prompt = f" motion score: {motion_scale}."
prompt = prompt + motion_prompt
video = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
height=480,
width=832,
frames=81,
guidance_scale=6,
num_inference_steps=50,
generator=torch.Generator(device="cuda").manual_seed(0),
).frames[0]
export_to_video(video, "sana_video.mp4", fps=16)
```
</hfoption>
<hfoption id="Image-to-Video">
The example below demonstrates how to use the image-to-video pipeline to generate a video using a text description and a starting frame.
```python
pipe = SanaImageToVideoPipeline.from_pretrained(
"Efficient-Large-Model/SANA-Video_2B_480p_diffusers",
torch_dtype=torch.bfloat16,
)
pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_config(pipe.scheduler.config, flow_shift=8.0)
pipe.vae.to(torch.float32)
pipe.text_encoder.to(torch.bfloat16)
pipe.to("cuda")
image = load_image("https://raw.githubusercontent.com/NVlabs/Sana/refs/heads/main/asset/samples/i2v-1.png")
prompt = "A woman stands against a stunning sunset backdrop, her long, wavy brown hair gently blowing in the breeze. She wears a sleeveless, light-colored blouse with a deep V-neckline, which accentuates her graceful posture. The warm hues of the setting sun cast a golden glow across her face and hair, creating a serene and ethereal atmosphere. The background features a blurred landscape with soft, rolling hills and scattered clouds, adding depth to the scene. The camera remains steady, capturing the tranquil moment from a medium close-up angle."
negative_prompt = "A chaotic sequence with misshapen, deformed limbs in heavy motion blur, sudden disappearance, jump cuts, jerky movements, rapid shot changes, frames out of sync, inconsistent character shapes, temporal artifacts, jitter, and ghosting effects, creating a disorienting visual experience."
motion_scale = 30
motion_prompt = f" motion score: {motion_scale}."
prompt = prompt + motion_prompt
motion_scale = 30.0
video = pipe(
image=image,
prompt=prompt,
negative_prompt=negative_prompt,
height=480,
width=832,
frames=81,
guidance_scale=6,
num_inference_steps=50,
generator=torch.Generator(device="cuda").manual_seed(0),
).frames[0]
export_to_video(video, "sana-i2v.mp4", fps=16)
```
</hfoption>
</hfoptions>
## Quantization
Quantization helps reduce the memory requirements of very large models by storing model weights in a lower precision data type. However, quantization may have varying impact on video quality depending on the video model.
Refer to the [Quantization](../../quantization/overview) overview to learn more about supported quantization backends and selecting a quantization backend that supports your use case. The example below demonstrates how to load a quantized [`SanaVideoPipeline`] for inference with bitsandbytes.
```py
import torch
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig, SanaVideoTransformer3DModel, SanaVideoPipeline
from transformers import BitsAndBytesConfig as BitsAndBytesConfig, AutoModel
quant_config = BitsAndBytesConfig(load_in_8bit=True)
text_encoder_8bit = AutoModel.from_pretrained(
"Efficient-Large-Model/SANA-Video_2B_480p_diffusers",
subfolder="text_encoder",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
quant_config = DiffusersBitsAndBytesConfig(load_in_8bit=True)
transformer_8bit = SanaVideoTransformer3DModel.from_pretrained(
"Efficient-Large-Model/SANA-Video_2B_480p_diffusers",
subfolder="transformer",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
pipeline = SanaVideoPipeline.from_pretrained(
"Efficient-Large-Model/SANA-Video_2B_480p_diffusers",
text_encoder=text_encoder_8bit,
transformer=transformer_8bit,
torch_dtype=torch.float16,
device_map="balanced",
)
model_score = 30
prompt = "Evening, backlight, side lighting, soft light, high contrast, mid-shot, centered composition, clean solo shot, warm color. A young Caucasian man stands in a forest, golden light glimmers on his hair as sunlight filters through the leaves. He wears a light shirt, wind gently blowing his hair and collar, light dances across his face with his movements. The background is blurred, with dappled light and soft tree shadows in the distance. The camera focuses on his lifted gaze, clear and emotional."
negative_prompt = "A chaotic sequence with misshapen, deformed limbs in heavy motion blur, sudden disappearance, jump cuts, jerky movements, rapid shot changes, frames out of sync, inconsistent character shapes, temporal artifacts, jitter, and ghosting effects, creating a disorienting visual experience."
motion_prompt = f" motion score: {model_score}."
prompt = prompt + motion_prompt
output = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
height=480,
width=832,
num_frames=81,
guidance_scale=6.0,
num_inference_steps=50
).frames[0]
export_to_video(output, "sana-video-output.mp4", fps=16)
```
## SanaVideoPipeline
[[autodoc]] SanaVideoPipeline
- all
- __call__
## SanaImageToVideoPipeline
[[autodoc]] SanaImageToVideoPipeline
- all
- __call__
## SanaVideoPipelineOutput
[[autodoc]] pipelines.sana_video.pipeline_sana_video.SanaVideoPipelineOutput

View File

@@ -21,7 +21,7 @@ The Stable Diffusion model can also infer depth based on an image using [MiDaS](
> [!TIP]
> Make sure to check out the Stable Diffusion [Tips](overview#tips) section to learn how to explore the tradeoff between scheduler speed and quality, and how to reuse pipeline components efficiently!
>
> If you're interested in using one of the official checkpoints for a task, explore the [CompVis](https://huggingface.co/CompVis), [Runway](https://huggingface.co/runwayml), and [Stability AI](https://huggingface.co/stabilityai) Hub organizations!
> If you're interested in using one of the official checkpoints for a task, explore the [CompVis](https://huggingface.co/CompVis) and [Stability AI](https://huggingface.co/stabilityai) Hub organizations!
## StableDiffusionDepth2ImgPipeline

View File

@@ -21,14 +21,14 @@ The Stable Diffusion model can also be applied to inpainting which lets you edit
## Tips
It is recommended to use this pipeline with checkpoints that have been specifically fine-tuned for inpainting, such
as [runwayml/stable-diffusion-inpainting](https://huggingface.co/runwayml/stable-diffusion-inpainting). Default
as [stable-diffusion-v1-5/stable-diffusion-inpainting](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-inpainting). Default
text-to-image Stable Diffusion checkpoints, such as
[stable-diffusion-v1-5/stable-diffusion-v1-5](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) are also compatible but they might be less performant.
> [!TIP]
> Make sure to check out the Stable Diffusion [Tips](overview#tips) section to learn how to explore the tradeoff between scheduler speed and quality, and how to reuse pipeline components efficiently!
>
> If you're interested in using one of the official checkpoints for a task, explore the [CompVis](https://huggingface.co/CompVis), [Runway](https://huggingface.co/runwayml), and [Stability AI](https://huggingface.co/stabilityai) Hub organizations!
> If you're interested in using one of the official checkpoints for a task, explore the [CompVis](https://huggingface.co/CompVis) and [Stability AI](https://huggingface.co/stabilityai) Hub organizations!
## StableDiffusionInpaintPipeline

View File

@@ -17,7 +17,7 @@ The Stable Diffusion latent upscaler model was created by [Katherine Crowson](ht
> [!TIP]
> Make sure to check out the Stable Diffusion [Tips](overview#tips) section to learn how to explore the tradeoff between scheduler speed and quality, and how to reuse pipeline components efficiently!
>
> If you're interested in using one of the official checkpoints for a task, explore the [CompVis](https://huggingface.co/CompVis), [Runway](https://huggingface.co/runwayml), and [Stability AI](https://huggingface.co/stabilityai) Hub organizations!
> If you're interested in using one of the official checkpoints for a task, explore the [CompVis](https://huggingface.co/CompVis) and [Stability AI](https://huggingface.co/stabilityai) Hub organizations!
## StableDiffusionLatentUpscalePipeline

View File

@@ -22,7 +22,7 @@ Stable Diffusion is trained on 512x512 images from a subset of the LAION-5B data
For more details about how Stable Diffusion works and how it differs from the base latent diffusion model, take a look at the Stability AI [announcement](https://stability.ai/blog/stable-diffusion-announcement) and our own [blog post](https://huggingface.co/blog/stable_diffusion#how-does-stable-diffusion-work) for more technical details.
You can find the original codebase for Stable Diffusion v1.0 at [CompVis/stable-diffusion](https://github.com/CompVis/stable-diffusion) and Stable Diffusion v2.0 at [Stability-AI/stablediffusion](https://github.com/Stability-AI/stablediffusion) as well as their original scripts for various tasks. Additional official checkpoints for the different Stable Diffusion versions and tasks can be found on the [CompVis](https://huggingface.co/CompVis), [Runway](https://huggingface.co/runwayml), and [Stability AI](https://huggingface.co/stabilityai) Hub organizations. Explore these organizations to find the best checkpoint for your use-case!
You can find the original codebase for Stable Diffusion v1.0 at [CompVis/stable-diffusion](https://github.com/CompVis/stable-diffusion) and Stable Diffusion v2.0 at [Stability-AI/stablediffusion](https://github.com/Stability-AI/stablediffusion) as well as their original scripts for various tasks. Additional official checkpoints for the different Stable Diffusion versions and tasks can be found on the [CompVis](https://huggingface.co/CompVis) and [Stability AI](https://huggingface.co/stabilityai) Hub organizations. Explore these organizations to find the best checkpoint for your use-case!
The table below summarizes the available Stable Diffusion pipelines, their supported tasks, and an interactive demo:
@@ -64,7 +64,7 @@ The table below summarizes the available Stable Diffusion pipelines, their suppo
<a href="./inpaint">StableDiffusionInpaint</a>
</td>
<td class="px-4 py-2 text-gray-700">inpainting</td>
<td class="px-4 py-2"><a href="https://huggingface.co/spaces/runwayml/stable-diffusion-inpainting"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue"/></a>
<td class="px-4 py-2"><a href="https://huggingface.co/spaces/stable-diffusion-v1-5/stable-diffusion-inpainting"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue"/></a>
</td>
</tr>
<tr>

View File

@@ -36,7 +36,7 @@ Here are some examples for how to use Stable Diffusion 2 for each task:
> [!TIP]
> Make sure to check out the Stable Diffusion [Tips](overview#tips) section to learn how to explore the tradeoff between scheduler speed and quality, and how to reuse pipeline components efficiently!
>
> If you're interested in using one of the official checkpoints for a task, explore the [CompVis](https://huggingface.co/CompVis), [Runway](https://huggingface.co/runwayml), and [Stability AI](https://huggingface.co/stabilityai) Hub organizations!
> If you're interested in using one of the official checkpoints for a task, explore the [CompVis](https://huggingface.co/CompVis) and [Stability AI](https://huggingface.co/stabilityai) Hub organizations!
## Text-to-image

View File

@@ -25,7 +25,7 @@ The abstract from the paper is:
> [!TIP]
> Make sure to check out the Stable Diffusion [Tips](overview#tips) section to learn how to explore the tradeoff between scheduler speed and quality, and how to reuse pipeline components efficiently!
>
> If you're interested in using one of the official checkpoints for a task, explore the [CompVis](https://huggingface.co/CompVis), [Runway](https://huggingface.co/runwayml), and [Stability AI](https://huggingface.co/stabilityai) Hub organizations!
> If you're interested in using one of the official checkpoints for a task, explore the [CompVis](https://huggingface.co/CompVis) and [Stability AI](https://huggingface.co/stabilityai) Hub organizations!
## StableDiffusionPipeline

View File

@@ -21,7 +21,7 @@ The Stable Diffusion upscaler diffusion model was created by the researchers and
> [!TIP]
> Make sure to check out the Stable Diffusion [Tips](overview#tips) section to learn how to explore the tradeoff between scheduler speed and quality, and how to reuse pipeline components efficiently!
>
> If you're interested in using one of the official checkpoints for a task, explore the [CompVis](https://huggingface.co/CompVis), [Runway](https://huggingface.co/runwayml), and [Stability AI](https://huggingface.co/stabilityai) Hub organizations!
> If you're interested in using one of the official checkpoints for a task, explore the [CompVis](https://huggingface.co/CompVis) and [Stability AI](https://huggingface.co/stabilityai) Hub organizations!
## StableDiffusionUpscalePipeline

View File

@@ -40,6 +40,7 @@ The following Wan models are supported in Diffusers:
- [Wan 2.2 T2V 14B](https://huggingface.co/Wan-AI/Wan2.2-T2V-A14B-Diffusers)
- [Wan 2.2 I2V 14B](https://huggingface.co/Wan-AI/Wan2.2-I2V-A14B-Diffusers)
- [Wan 2.2 TI2V 5B](https://huggingface.co/Wan-AI/Wan2.2-TI2V-5B-Diffusers)
- [Wan 2.2 Animate 14B](https://huggingface.co/Wan-AI/Wan2.2-Animate-14B-Diffusers)
> [!TIP]
> Click on the Wan models in the right sidebar for more examples of video generation.
@@ -95,15 +96,15 @@ pipeline = WanPipeline.from_pretrained(
pipeline.to("cuda")
prompt = """
The camera rushes from far to near in a low-angle shot,
revealing a white ferret on a log. It plays, leaps into the water, and emerges, as the camera zooms in
for a close-up. Water splashes berry bushes nearby, while moss, snow, and leaves blanket the ground.
Birch trees and a light blue sky frame the scene, with ferns in the foreground. Side lighting casts dynamic
The camera rushes from far to near in a low-angle shot,
revealing a white ferret on a log. It plays, leaps into the water, and emerges, as the camera zooms in
for a close-up. Water splashes berry bushes nearby, while moss, snow, and leaves blanket the ground.
Birch trees and a light blue sky frame the scene, with ferns in the foreground. Side lighting casts dynamic
shadows and warm highlights. Medium composition, front view, low angle, with depth of field.
"""
negative_prompt = """
Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality,
low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured,
Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality,
low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured,
misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards
"""
@@ -150,15 +151,15 @@ pipeline.transformer = torch.compile(
)
prompt = """
The camera rushes from far to near in a low-angle shot,
revealing a white ferret on a log. It plays, leaps into the water, and emerges, as the camera zooms in
for a close-up. Water splashes berry bushes nearby, while moss, snow, and leaves blanket the ground.
Birch trees and a light blue sky frame the scene, with ferns in the foreground. Side lighting casts dynamic
The camera rushes from far to near in a low-angle shot,
revealing a white ferret on a log. It plays, leaps into the water, and emerges, as the camera zooms in
for a close-up. Water splashes berry bushes nearby, while moss, snow, and leaves blanket the ground.
Birch trees and a light blue sky frame the scene, with ferns in the foreground. Side lighting casts dynamic
shadows and warm highlights. Medium composition, front view, low angle, with depth of field.
"""
negative_prompt = """
Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality,
low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured,
Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality,
low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured,
misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards
"""
@@ -249,6 +250,208 @@ The code snippets available in [this](https://github.com/huggingface/diffusers/p
The general rule of thumb to keep in mind when preparing inputs for the VACE pipeline is that the input images, or frames of a video that you want to use for conditioning, should have a corresponding mask that is black in color. The black mask signifies that the model will not generate new content for that area, and only use those parts for conditioning the generation process. For parts/frames that should be generated by the model, the mask should be white in color.
</hfoption>
</hfoptions>
### Wan-Animate: Unified Character Animation and Replacement with Holistic Replication
[Wan-Animate](https://huggingface.co/papers/2509.14055) by the Wan Team.
*We introduce Wan-Animate, a unified framework for character animation and replacement. Given a character image and a reference video, Wan-Animate can animate the character by precisely replicating the expressions and movements of the character in the video to generate high-fidelity character videos. Alternatively, it can integrate the animated character into the reference video to replace the original character, replicating the scene's lighting and color tone to achieve seamless environmental integration. Wan-Animate is built upon the Wan model. To adapt it for character animation tasks, we employ a modified input paradigm to differentiate between reference conditions and regions for generation. This design unifies multiple tasks into a common symbolic representation. We use spatially-aligned skeleton signals to replicate body motion and implicit facial features extracted from source images to reenact expressions, enabling the generation of character videos with high controllability and expressiveness. Furthermore, to enhance environmental integration during character replacement, we develop an auxiliary Relighting LoRA. This module preserves the character's appearance consistency while applying the appropriate environmental lighting and color tone. Experimental results demonstrate that Wan-Animate achieves state-of-the-art performance. We are committed to open-sourcing the model weights and its source code.*
The project page: https://humanaigc.github.io/wan-animate
This model was mostly contributed by [M. Tolga Cangöz](https://github.com/tolgacangoz).
#### Usage
The Wan-Animate pipeline supports two modes of operation:
1. **Animation Mode** (default): Animates a character image based on motion and expression from reference videos
2. **Replacement Mode**: Replaces a character in a background video with a new character while preserving the scene
##### Prerequisites
Before using the pipeline, you need to preprocess your reference video to extract:
- **Pose video**: Contains skeletal keypoints representing body motion
- **Face video**: Contains facial feature representations for expression control
For replacement mode, you additionally need:
- **Background video**: The original video containing the scene
- **Mask video**: A mask indicating where to generate content (white) vs. preserve original (black)
> [!NOTE]
> Raw videos should not be used for inputs such as `pose_video`, which the pipeline expects to be preprocessed to extract the proper information. Preprocessing scripts to prepare these inputs are available in the [original Wan-Animate repository](https://github.com/Wan-Video/Wan2.2?tab=readme-ov-file#1-preprocessing). Integration of these preprocessing steps into Diffusers is planned for a future release.
The example below demonstrates how to use the Wan-Animate pipeline:
<hfoptions id="Animate usage">
<hfoption id="Animation mode">
```python
import numpy as np
import torch
from diffusers import AutoencoderKLWan, WanAnimatePipeline
from diffusers.utils import export_to_video, load_image, load_video
model_id = "Wan-AI/Wan2.2-Animate-14B-Diffusers"
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
pipe = WanAnimatePipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16)
pipe.to("cuda")
# Load character image and preprocessed videos
image = load_image("path/to/character.jpg")
pose_video = load_video("path/to/pose_video.mp4") # Preprocessed skeletal keypoints
face_video = load_video("path/to/face_video.mp4") # Preprocessed facial features
# Resize image to match VAE constraints
def aspect_ratio_resize(image, pipe, max_area=720 * 1280):
aspect_ratio = image.height / image.width
mod_value = pipe.vae_scale_factor_spatial * pipe.transformer.config.patch_size[1]
height = round(np.sqrt(max_area * aspect_ratio)) // mod_value * mod_value
width = round(np.sqrt(max_area / aspect_ratio)) // mod_value * mod_value
image = image.resize((width, height))
return image, height, width
image, height, width = aspect_ratio_resize(image, pipe)
prompt = "A person dancing energetically in a studio with dynamic lighting and professional camera work"
negative_prompt = "blurry, low quality, distorted, deformed, static, poorly drawn"
# Generate animated video
output = pipe(
image=image,
pose_video=pose_video,
face_video=face_video,
prompt=prompt,
negative_prompt=negative_prompt,
height=height,
width=width,
segment_frame_length=77,
guidance_scale=1.0,
mode="animate", # Animation mode (default)
).frames[0]
export_to_video(output, "animated_character.mp4", fps=30)
```
</hfoption>
<hfoption id="Replacement mode">
```python
import numpy as np
import torch
from diffusers import AutoencoderKLWan, WanAnimatePipeline
from diffusers.utils import export_to_video, load_image, load_video
model_id = "Wan-AI/Wan2.2-Animate-14B-Diffusers"
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
pipe = WanAnimatePipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16)
pipe.to("cuda")
# Load all required inputs for replacement mode
image = load_image("path/to/new_character.jpg")
pose_video = load_video("path/to/pose_video.mp4") # Preprocessed skeletal keypoints
face_video = load_video("path/to/face_video.mp4") # Preprocessed facial features
background_video = load_video("path/to/background_video.mp4") # Original scene
mask_video = load_video("path/to/mask_video.mp4") # Black: preserve, White: generate
# Resize image to match video dimensions
def aspect_ratio_resize(image, pipe, max_area=720 * 1280):
aspect_ratio = image.height / image.width
mod_value = pipe.vae_scale_factor_spatial * pipe.transformer.config.patch_size[1]
height = round(np.sqrt(max_area * aspect_ratio)) // mod_value * mod_value
width = round(np.sqrt(max_area / aspect_ratio)) // mod_value * mod_value
image = image.resize((width, height))
return image, height, width
image, height, width = aspect_ratio_resize(image, pipe)
prompt = "A person seamlessly integrated into the scene with consistent lighting and environment"
negative_prompt = "blurry, low quality, inconsistent lighting, floating, disconnected from scene"
# Replace character in background video
output = pipe(
image=image,
pose_video=pose_video,
face_video=face_video,
background_video=background_video,
mask_video=mask_video,
prompt=prompt,
negative_prompt=negative_prompt,
height=height,
width=width,
segment_frame_lengths=77,
guidance_scale=1.0,
mode="replace", # Replacement mode
).frames[0]
export_to_video(output, "character_replaced.mp4", fps=30)
```
</hfoption>
<hfoption id="Advanced options">
```python
import numpy as np
import torch
from diffusers import AutoencoderKLWan, WanAnimatePipeline
from diffusers.utils import export_to_video, load_image, load_video
model_id = "Wan-AI/Wan2.2-Animate-14B-Diffusers"
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
pipe = WanAnimatePipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16)
pipe.to("cuda")
image = load_image("path/to/character.jpg")
pose_video = load_video("path/to/pose_video.mp4")
face_video = load_video("path/to/face_video.mp4")
def aspect_ratio_resize(image, pipe, max_area=720 * 1280):
aspect_ratio = image.height / image.width
mod_value = pipe.vae_scale_factor_spatial * pipe.transformer.config.patch_size[1]
height = round(np.sqrt(max_area * aspect_ratio)) // mod_value * mod_value
width = round(np.sqrt(max_area / aspect_ratio)) // mod_value * mod_value
image = image.resize((width, height))
return image, height, width
image, height, width = aspect_ratio_resize(image, pipe)
prompt = "A person dancing energetically in a studio"
negative_prompt = "blurry, low quality"
# Advanced: Use temporal guidance and custom callback
def callback_fn(pipe, step_index, timestep, callback_kwargs):
# You can modify latents or other tensors here
print(f"Step {step_index}, Timestep {timestep}")
return callback_kwargs
output = pipe(
image=image,
pose_video=pose_video,
face_video=face_video,
prompt=prompt,
negative_prompt=negative_prompt,
height=height,
width=width,
segment_frame_length=77,
num_inference_steps=50,
guidance_scale=5.0,
prev_segment_conditioning_frames=5, # Use 5 frames for temporal guidance (1 or 5 recommended)
callback_on_step_end=callback_fn,
callback_on_step_end_tensor_inputs=["latents"],
).frames[0]
export_to_video(output, "animated_advanced.mp4", fps=30)
```
</hfoption>
</hfoptions>
#### Key Parameters
- **mode**: Choose between `"animate"` (default) or `"replace"`
- **prev_segment_conditioning_frames**: Number of frames for temporal guidance (1 or 5 recommended). Using 5 provides better temporal consistency but requires more memory
- **guidance_scale**: Controls how closely the output follows the text prompt. Higher values (5-7) produce results more aligned with the prompt. For Wan-Animate, CFG is disabled by default (`guidance_scale=1.0`) but can be enabled to support negative prompts and finer control over facial expressions. (Note that CFG will only target the text prompt and face conditioning.)
## Notes
- Wan2.1 supports LoRAs with [`~loaders.WanLoraLoaderMixin.load_lora_weights`].
@@ -281,10 +484,10 @@ The general rule of thumb to keep in mind when preparing inputs for the VACE pip
# use "steamboat willie style" to trigger the LoRA
prompt = """
steamboat willie style, golden era animation, The camera rushes from far to near in a low-angle shot,
revealing a white ferret on a log. It plays, leaps into the water, and emerges, as the camera zooms in
for a close-up. Water splashes berry bushes nearby, while moss, snow, and leaves blanket the ground.
Birch trees and a light blue sky frame the scene, with ferns in the foreground. Side lighting casts dynamic
steamboat willie style, golden era animation, The camera rushes from far to near in a low-angle shot,
revealing a white ferret on a log. It plays, leaps into the water, and emerges, as the camera zooms in
for a close-up. Water splashes berry bushes nearby, while moss, snow, and leaves blanket the ground.
Birch trees and a light blue sky frame the scene, with ferns in the foreground. Side lighting casts dynamic
shadows and warm highlights. Medium composition, front view, low angle, with depth of field.
"""
@@ -359,6 +562,12 @@ The general rule of thumb to keep in mind when preparing inputs for the VACE pip
- all
- __call__
## WanAnimatePipeline
[[autodoc]] WanAnimatePipeline
- all
- __call__
## WanPipelineOutput
[[autodoc]] pipelines.wan.pipeline_output.WanPipelineOutput
[[autodoc]] pipelines.wan.pipeline_output.WanPipelineOutput

View File

@@ -0,0 +1,66 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Z-Image
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</div>
[Z-Image](https://huggingface.co/papers/2511.22699) is a powerful and highly efficient image generation model with 6B parameters. Currently there's only one model with two more to be released:
|Model|Hugging Face|
|---|---|
|Z-Image-Turbo|https://huggingface.co/Tongyi-MAI/Z-Image-Turbo|
## Z-Image-Turbo
Z-Image-Turbo is a distilled version of Z-Image that matches or exceeds leading competitors with only 8 NFEs (Number of Function Evaluations). It offers sub-second inference latency on enterprise-grade H800 GPUs and fits comfortably within 16G VRAM consumer devices. It excels in photorealistic image generation, bilingual text rendering (English & Chinese), and robust instruction adherence.
## Image-to-image
Use [`ZImageImg2ImgPipeline`] to transform an existing image based on a text prompt.
```python
import torch
from diffusers import ZImageImg2ImgPipeline
from diffusers.utils import load_image
pipe = ZImageImg2ImgPipeline.from_pretrained("Tongyi-MAI/Z-Image-Turbo", torch_dtype=torch.bfloat16)
pipe.to("cuda")
url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
init_image = load_image(url).resize((1024, 1024))
prompt = "A fantasy landscape with mountains and a river, detailed, vibrant colors"
image = pipe(
prompt,
image=init_image,
strength=0.6,
num_inference_steps=9,
guidance_scale=0.0,
generator=torch.Generator("cuda").manual_seed(42),
).images[0]
image.save("zimage_img2img.png")
```
## ZImagePipeline
[[autodoc]] ZImagePipeline
- all
- __call__
## ZImageImg2ImgPipeline
[[autodoc]] ZImageImg2ImgPipeline
- all
- __call__

View File

@@ -0,0 +1,492 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Building Custom Blocks
[ModularPipelineBlocks](./pipeline_block) are the fundamental building blocks of a [`ModularPipeline`]. You can create custom blocks by defining their inputs, outputs, and computation logic. This guide demonstrates how to create and use a custom block.
> [!TIP]
> Explore the [Modular Diffusers Custom Blocks](https://huggingface.co/collections/diffusers/modular-diffusers-custom-blocks) collection for official custom modular blocks like Nano Banana.
## Project Structure
Your custom block project should use the following structure:
```shell
.
├── block.py
└── modular_config.json
```
- `block.py` contains the custom block implementation
- `modular_config.json` contains the metadata needed to load the block
## Example: Florence 2 Inpainting Block
In this example we will create a custom block that uses the [Florence 2](https://huggingface.co/docs/transformers/model_doc/florence2) model to process an input image and generate a mask for inpainting.
The first step is to define the components that the block will use. In this case, we will need to use the `Florence2ForConditionalGeneration` model and its corresponding processor `AutoProcessor`. When defining components, we must specify the name of the component within our pipeline, model class via `type_hint`, and provide a `pretrained_model_name_or_path` for the component if we intend to load the model weights from a specific repository on the Hub.
```py
# Inside block.py
from diffusers.modular_pipelines import (
ModularPipelineBlocks,
ComponentSpec,
)
from transformers import AutoProcessor, Florence2ForConditionalGeneration
class Florence2ImageAnnotatorBlock(ModularPipelineBlocks):
@property
def expected_components(self):
return [
ComponentSpec(
name="image_annotator",
type_hint=Florence2ForConditionalGeneration,
pretrained_model_name_or_path="florence-community/Florence-2-base-ft",
),
ComponentSpec(
name="image_annotator_processor",
type_hint=AutoProcessor,
pretrained_model_name_or_path="florence-community/Florence-2-base-ft",
),
]
```
Next, we define the inputs and outputs of the block. The inputs include the image to be annotated, the annotation task, and the annotation prompt. The outputs include the generated mask image and annotations.
```py
from typing import List, Union
from PIL import Image, ImageDraw
import torch
import numpy as np
from diffusers.modular_pipelines import (
PipelineState,
ModularPipelineBlocks,
InputParam,
ComponentSpec,
OutputParam,
)
from transformers import AutoProcessor, Florence2ForConditionalGeneration
class Florence2ImageAnnotatorBlock(ModularPipelineBlocks):
@property
def expected_components(self):
return [
ComponentSpec(
name="image_annotator",
type_hint=Florence2ForConditionalGeneration,
pretrained_model_name_or_path="florence-community/Florence-2-base-ft",
),
ComponentSpec(
name="image_annotator_processor",
type_hint=AutoProcessor,
pretrained_model_name_or_path="florence-community/Florence-2-base-ft",
),
]
@property
def inputs(self) -> List[InputParam]:
return [
InputParam(
"image",
type_hint=Union[Image.Image, List[Image.Image]],
required=True,
description="Image(s) to annotate",
),
InputParam(
"annotation_task",
type_hint=Union[str, List[str]],
required=True,
default="<REFERRING_EXPRESSION_SEGMENTATION>",
description="""Annotation Task to perform on the image.
Supported Tasks:
<OD>
<REFERRING_EXPRESSION_SEGMENTATION>
<CAPTION>
<DETAILED_CAPTION>
<MORE_DETAILED_CAPTION>
<DENSE_REGION_CAPTION>
<CAPTION_TO_PHRASE_GROUNDING>
<OPEN_VOCABULARY_DETECTION>
""",
),
InputParam(
"annotation_prompt",
type_hint=Union[str, List[str]],
required=True,
description="""Annotation Prompt to provide more context to the task.
Can be used to detect or segment out specific elements in the image
""",
),
InputParam(
"annotation_output_type",
type_hint=str,
required=True,
default="mask_image",
description="""Output type from annotation predictions. Availabe options are
mask_image:
-black and white mask image for the given image based on the task type
mask_overlay:
- mask overlayed on the original image
bounding_box:
- bounding boxes drawn on the original image
""",
),
InputParam(
"annotation_overlay",
type_hint=bool,
required=True,
default=False,
description="",
),
]
@property
def intermediate_outputs(self) -> List[OutputParam]:
return [
OutputParam(
"mask_image",
type_hint=Image,
description="Inpainting Mask for input Image(s)",
),
OutputParam(
"annotations",
type_hint=dict,
description="Annotations Predictions for input Image(s)",
),
OutputParam(
"image",
type_hint=Image,
description="Annotated input Image(s)",
),
]
```
Now we implement the `__call__` method, which contains the logic for processing the input image and generating the mask.
```py
from typing import List, Union
from PIL import Image, ImageDraw
import torch
import numpy as np
from diffusers.modular_pipelines import (
PipelineState,
ModularPipelineBlocks,
InputParam,
ComponentSpec,
OutputParam,
)
from transformers import AutoProcessor, Florence2ForConditionalGeneration
class Florence2ImageAnnotatorBlock(ModularPipelineBlocks):
@property
def expected_components(self):
return [
ComponentSpec(
name="image_annotator",
type_hint=Florence2ForConditionalGeneration,
pretrained_model_name_or_path="florence-community/Florence-2-base-ft",
),
ComponentSpec(
name="image_annotator_processor",
type_hint=AutoProcessor,
pretrained_model_name_or_path="florence-community/Florence-2-base-ft",
),
]
@property
def inputs(self) -> List[InputParam]:
return [
InputParam(
"image",
type_hint=Union[Image.Image, List[Image.Image]],
required=True,
description="Image(s) to annotate",
),
InputParam(
"annotation_task",
type_hint=Union[str, List[str]],
required=True,
default="<REFERRING_EXPRESSION_SEGMENTATION>",
description="""Annotation Task to perform on the image.
Supported Tasks:
<OD>
<REFERRING_EXPRESSION_SEGMENTATION>
<CAPTION>
<DETAILED_CAPTION>
<MORE_DETAILED_CAPTION>
<DENSE_REGION_CAPTION>
<CAPTION_TO_PHRASE_GROUNDING>
<OPEN_VOCABULARY_DETECTION>
""",
),
InputParam(
"annotation_prompt",
type_hint=Union[str, List[str]],
required=True,
description="""Annotation Prompt to provide more context to the task.
Can be used to detect or segment out specific elements in the image
""",
),
InputParam(
"annotation_output_type",
type_hint=str,
required=True,
default="mask_image",
description="""Output type from annotation predictions. Availabe options are
mask_image:
-black and white mask image for the given image based on the task type
mask_overlay:
- mask overlayed on the original image
bounding_box:
- bounding boxes drawn on the original image
""",
),
InputParam(
"annotation_overlay",
type_hint=bool,
required=True,
default=False,
description="",
),
]
@property
def intermediate_outputs(self) -> List[OutputParam]:
return [
OutputParam(
"mask_image",
type_hint=Image,
description="Inpainting Mask for input Image(s)",
),
OutputParam(
"annotations",
type_hint=dict,
description="Annotations Predictions for input Image(s)",
),
OutputParam(
"image",
type_hint=Image,
description="Annotated input Image(s)",
),
]
def get_annotations(self, components, images, prompts, task):
task_prompts = [task + prompt for prompt in prompts]
inputs = components.image_annotator_processor(
text=task_prompts, images=images, return_tensors="pt"
).to(components.image_annotator.device, components.image_annotator.dtype)
generated_ids = components.image_annotator.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
early_stopping=False,
do_sample=False,
num_beams=3,
)
annotations = components.image_annotator_processor.batch_decode(
generated_ids, skip_special_tokens=False
)
outputs = []
for image, annotation in zip(images, annotations):
outputs.append(
components.image_annotator_processor.post_process_generation(
annotation, task=task, image_size=(image.width, image.height)
)
)
return outputs
def prepare_mask(self, images, annotations, overlay=False, fill="white"):
masks = []
for image, annotation in zip(images, annotations):
mask_image = image.copy() if overlay else Image.new("L", image.size, 0)
draw = ImageDraw.Draw(mask_image)
for _, _annotation in annotation.items():
if "polygons" in _annotation:
for polygon in _annotation["polygons"]:
polygon = np.array(polygon).reshape(-1, 2)
if len(polygon) < 3:
continue
polygon = polygon.reshape(-1).tolist()
draw.polygon(polygon, fill=fill)
elif "bbox" in _annotation:
bbox = _annotation["bbox"]
draw.rectangle(bbox, fill="white")
masks.append(mask_image)
return masks
def prepare_bounding_boxes(self, images, annotations):
outputs = []
for image, annotation in zip(images, annotations):
image_copy = image.copy()
draw = ImageDraw.Draw(image_copy)
for _, _annotation in annotation.items():
bbox = _annotation["bbox"]
label = _annotation["label"]
draw.rectangle(bbox, outline="red", width=3)
draw.text((bbox[0], bbox[1] - 20), label, fill="red")
outputs.append(image_copy)
return outputs
def prepare_inputs(self, images, prompts):
prompts = prompts or ""
if isinstance(images, Image.Image):
images = [images]
if isinstance(prompts, str):
prompts = [prompts]
if len(images) != len(prompts):
raise ValueError("Number of images and annotation prompts must match.")
return images, prompts
@torch.no_grad()
def __call__(self, components, state: PipelineState) -> PipelineState:
block_state = self.get_block_state(state)
images, annotation_task_prompt = self.prepare_inputs(
block_state.image, block_state.annotation_prompt
)
task = block_state.annotation_task
fill = block_state.fill
annotations = self.get_annotations(
components, images, annotation_task_prompt, task
)
block_state.annotations = annotations
if block_state.annotation_output_type == "mask_image":
block_state.mask_image = self.prepare_mask(images, annotations)
else:
block_state.mask_image = None
if block_state.annotation_output_type == "mask_overlay":
block_state.image = self.prepare_mask(images, annotations, overlay=True, fill=fill)
elif block_state.annotation_output_type == "bounding_box":
block_state.image = self.prepare_bounding_boxes(images, annotations)
self.set_block_state(state, block_state)
return components, state
```
Once we have defined our custom block, we can save it to the Hub, using either the CLI or the [`push_to_hub`] method. This will make it easy to share and reuse our custom block with other pipelines.
<hfoptions id="share">
<hfoption id="hf CLI">
```shell
# In the folder with the `block.py` file, run:
diffusers-cli custom_block
```
Then upload the block to the Hub:
```shell
hf upload <your repo id> . .
```
</hfoption>
<hfoption id="push_to_hub">
```py
from block import Florence2ImageAnnotatorBlock
block = Florence2ImageAnnotatorBlock()
block.push_to_hub("<your repo id>")
```
</hfoption>
</hfoptions>
## Using Custom Blocks
Load the custom block with [`~ModularPipelineBlocks.from_pretrained`] and set `trust_remote_code=True`.
```py
import torch
from diffusers.modular_pipelines import ModularPipelineBlocks, SequentialPipelineBlocks
from diffusers.modular_pipelines.stable_diffusion_xl import INPAINT_BLOCKS
from diffusers.utils import load_image
# Fetch the Florence2 image annotator block that will create our mask
image_annotator_block = ModularPipelineBlocks.from_pretrained("diffusers/florence-2-custom-block", trust_remote_code=True)
my_blocks = INPAINT_BLOCKS.copy()
# insert the annotation block before the image encoding step
my_blocks.insert("image_annotator", image_annotator_block, 1)
# Create our initial set of inpainting blocks
blocks = SequentialPipelineBlocks.from_blocks_dict(my_blocks)
repo_id = "diffusers/modular-stable-diffusion-xl-base-1.0"
pipe = blocks.init_pipeline(repo_id)
pipe.load_components(torch_dtype=torch.float16, device_map="cuda", trust_remote_code=True)
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true")
image = image.resize((1024, 1024))
prompt = ["A red car"]
annotation_task = "<REFERRING_EXPRESSION_SEGMENTATION>"
annotation_prompt = ["the car"]
output = pipe(
prompt=prompt,
image=image,
annotation_task=annotation_task,
annotation_prompt=annotation_prompt,
annotation_output_type="mask_image",
num_inference_steps=35,
guidance_scale=7.5,
strength=0.95,
output="images"
)
output[0].save("florence-inpainting.png")
```
## Editing Custom Blocks
By default, custom blocks are saved in your cache directory. Use the `local_dir` argument to download and edit a custom block in a specific folder.
```py
import torch
from diffusers.modular_pipelines import ModularPipelineBlocks, SequentialPipelineBlocks
from diffusers.modular_pipelines.stable_diffusion_xl import INPAINT_BLOCKS
from diffusers.utils import load_image
# Fetch the Florence2 image annotator block that will create our mask
image_annotator_block = ModularPipelineBlocks.from_pretrained("diffusers/florence-2-custom-block", trust_remote_code=True, local_dir="/my-local-folder")
```
Any changes made to the block files in this folder will be reflected when you load the block again.

View File

@@ -159,7 +159,7 @@ Change the [`~ComponentSpec.default_creation_method`] to `from_pretrained` and u
```py
guider_spec = t2i_pipeline.get_component_spec("guider")
guider_spec.default_creation_method="from_pretrained"
guider_spec.repo="YiYiXu/modular-loader-t2i-guider"
guider_spec.pretrained_model_name_or_path="YiYiXu/modular-loader-t2i-guider"
guider_spec.subfolder="pag_guider"
pag_guider = guider_spec.load()
t2i_pipeline.update_components(guider=pag_guider)

View File

@@ -12,7 +12,7 @@ specific language governing permissions and limitations under the License.
# LoopSequentialPipelineBlocks
[`~modular_pipelines.LoopSequentialPipelineBlocks`] are a multi-block type that composes other [`~modular_pipelines.ModularPipelineBlocks`] together in a loop. Data flows circularly, using `intermediate_inputs` and `intermediate_outputs`, and each block is run iteratively. This is typically used to create a denoising loop which is iterative by default.
[`~modular_pipelines.LoopSequentialPipelineBlocks`] are a multi-block type that composes other [`~modular_pipelines.ModularPipelineBlocks`] together in a loop. Data flows circularly, using `inputs` and `intermediate_outputs`, and each block is run iteratively. This is typically used to create a denoising loop which is iterative by default.
This guide shows you how to create [`~modular_pipelines.LoopSequentialPipelineBlocks`].
@@ -21,7 +21,6 @@ This guide shows you how to create [`~modular_pipelines.LoopSequentialPipelineBl
[`~modular_pipelines.LoopSequentialPipelineBlocks`], is also known as the *loop wrapper* because it defines the loop structure, iteration variables, and configuration. Within the loop wrapper, you need the following variables.
- `loop_inputs` are user provided values and equivalent to [`~modular_pipelines.ModularPipelineBlocks.inputs`].
- `loop_intermediate_inputs` are intermediate variables from the [`~modular_pipelines.PipelineState`] and equivalent to [`~modular_pipelines.ModularPipelineBlocks.intermediate_inputs`].
- `loop_intermediate_outputs` are new intermediate variables created by the block and added to the [`~modular_pipelines.PipelineState`]. It is equivalent to [`~modular_pipelines.ModularPipelineBlocks.intermediate_outputs`].
- `__call__` method defines the loop structure and iteration logic.
@@ -90,4 +89,4 @@ Add more loop blocks to run within each iteration with [`~modular_pipelines.Loop
```py
loop = LoopWrapper.from_blocks_dict({"block1": LoopBlock(), "block2": LoopBlock})
```
```

View File

@@ -313,14 +313,14 @@ unet_spec
ComponentSpec(
name='unet',
type_hint=<class 'diffusers.models.unets.unet_2d_condition.UNet2DConditionModel'>,
repo='RunDiffusion/Juggernaut-XL-v9',
pretrained_model_name_or_path='RunDiffusion/Juggernaut-XL-v9',
subfolder='unet',
variant='fp16',
default_creation_method='from_pretrained'
)
# modify to load from a different repository
unet_spec.repo = "stabilityai/stable-diffusion-xl-base-1.0"
unet_spec.pretrained_model_name_or_path = "stabilityai/stable-diffusion-xl-base-1.0"
# load component with modified spec
unet = unet_spec.load(torch_dtype=torch.float16)

View File

@@ -37,17 +37,7 @@ A [`~modular_pipelines.ModularPipelineBlocks`] requires `inputs`, and `intermedi
]
```
- `intermediate_inputs` are values typically created from a previous block but it can also be directly provided if no preceding block generates them. Unlike `inputs`, `intermediate_inputs` can be modified.
Use `InputParam` to define `intermediate_inputs`.
```py
user_intermediate_inputs = [
InputParam(name="processed_image", type_hint="torch.Tensor", description="image that has been preprocessed and normalized"),
]
```
- `intermediate_outputs` are new values created by a block and added to the [`~modular_pipelines.PipelineState`]. The `intermediate_outputs` are available as `intermediate_inputs` for subsequent blocks or available as the final output from running the pipeline.
- `intermediate_outputs` are new values created by a block and added to the [`~modular_pipelines.PipelineState`]. The `intermediate_outputs` are available as `inputs` for subsequent blocks or available as the final output from running the pipeline.
Use `OutputParam` to define `intermediate_outputs`.
@@ -65,8 +55,8 @@ The intermediate inputs and outputs share data to connect blocks. They are acces
The computation a block performs is defined in the `__call__` method and it follows a specific structure.
1. Retrieve the [`~modular_pipelines.BlockState`] to get a local view of the `inputs` and `intermediate_inputs`.
2. Implement the computation logic on the `inputs` and `intermediate_inputs`.
1. Retrieve the [`~modular_pipelines.BlockState`] to get a local view of the `inputs`
2. Implement the computation logic on the `inputs`.
3. Update [`~modular_pipelines.PipelineState`] to push changes from the local [`~modular_pipelines.BlockState`] back to the global [`~modular_pipelines.PipelineState`].
4. Return the components and state which becomes available to the next block.
@@ -76,7 +66,7 @@ def __call__(self, components, state):
block_state = self.get_block_state(state)
# Your computation logic here
# block_state contains all your inputs and intermediate_inputs
# block_state contains all your inputs
# Access them like: block_state.image, block_state.processed_image
# Update the pipeline state with your updated block_states
@@ -112,4 +102,4 @@ def __call__(self, components, state):
unet = components.unet
vae = components.vae
scheduler = components.scheduler
```
```

View File

@@ -183,7 +183,7 @@ from diffusers.modular_pipelines import ComponentsManager
components = ComponentManager()
dd_pipeline = dd_blocks.init_pipeline("YiYiXu/modular-demo-auto", components_manager=components, collection="diffdiff")
dd_pipeline.load_default_componenets(torch_dtype=torch.float16)
dd_pipeline.load_componenets(torch_dtype=torch.float16)
dd_pipeline.to("cuda")
```

View File

@@ -12,11 +12,11 @@ specific language governing permissions and limitations under the License.
# SequentialPipelineBlocks
[`~modular_pipelines.SequentialPipelineBlocks`] are a multi-block type that composes other [`~modular_pipelines.ModularPipelineBlocks`] together in a sequence. Data flows linearly from one block to the next using `intermediate_inputs` and `intermediate_outputs`. Each block in [`~modular_pipelines.SequentialPipelineBlocks`] usually represents a step in the pipeline, and by combining them, you gradually build a pipeline.
[`~modular_pipelines.SequentialPipelineBlocks`] are a multi-block type that composes other [`~modular_pipelines.ModularPipelineBlocks`] together in a sequence. Data flows linearly from one block to the next using `inputs` and `intermediate_outputs`. Each block in [`~modular_pipelines.SequentialPipelineBlocks`] usually represents a step in the pipeline, and by combining them, you gradually build a pipeline.
This guide shows you how to connect two blocks into a [`~modular_pipelines.SequentialPipelineBlocks`].
Create two [`~modular_pipelines.ModularPipelineBlocks`]. The first block, `InputBlock`, outputs a `batch_size` value and the second block, `ImageEncoderBlock` uses `batch_size` as `intermediate_inputs`.
Create two [`~modular_pipelines.ModularPipelineBlocks`]. The first block, `InputBlock`, outputs a `batch_size` value and the second block, `ImageEncoderBlock` uses `batch_size` as `inputs`.
<hfoptions id="sequential">
<hfoption id="InputBlock">
@@ -110,4 +110,4 @@ Inspect the sub-blocks in [`~modular_pipelines.SequentialPipelineBlocks`] by cal
```py
print(blocks)
print(blocks.doc)
```
```

View File

@@ -21,6 +21,7 @@ Refer to the table below for an overview of the available attention families and
| attention family | main feature |
|---|---|
| FlashAttention | minimizes memory reads/writes through tiling and recomputation |
| AI Tensor Engine for ROCm | FlashAttention implementation optimized for AMD ROCm accelerators |
| SageAttention | quantizes attention to int8 |
| PyTorch native | built-in PyTorch implementation using [scaled_dot_product_attention](./fp16#scaled-dot-product-attention) |
| xFormers | memory-efficient attention with support for various attention kernels |
@@ -31,7 +32,7 @@ This guide will show you how to set and use the different attention backends.
The [`~ModelMixin.set_attention_backend`] method iterates through all the modules in the model and sets the appropriate attention backend to use. The attention backend setting persists until [`~ModelMixin.reset_attention_backend`] is called.
The example below demonstrates how to enable the `_flash_3_hub` implementation for FlashAttention-3 from the [kernel](https://github.com/huggingface/kernels) library, which allows you to instantly use optimized compute kernels from the Hub without requiring any setup.
The example below demonstrates how to enable the `_flash_3_hub` implementation for FlashAttention-3 from the [`kernels`](https://github.com/huggingface/kernels) library, which allows you to instantly use optimized compute kernels from the Hub without requiring any setup.
> [!NOTE]
> FlashAttention-3 is not supported for non-Hopper architectures, in which case, use FlashAttention with `set_attention_backend("flash")`.
@@ -81,6 +82,45 @@ with attention_backend("_flash_3_hub"):
> [!TIP]
> Most attention backends support `torch.compile` without graph breaks and can be used to further speed up inference.
## Checks
The attention dispatcher includes debugging checks that catch common errors before they cause problems.
1. Device checks verify that query, key, and value tensors live on the same device.
2. Data type checks confirm tensors have matching dtypes and use either bfloat16 or float16.
3. Shape checks validate tensor dimensions and prevent mixing attention masks with causal flags.
Enable these checks by setting the `DIFFUSERS_ATTN_CHECKS` environment variable. Checks add overhead to every attention operation, so they're disabled by default.
```bash
export DIFFUSERS_ATTN_CHECKS=yes
```
The checks are run now before every attention operation.
```py
import torch
query = torch.randn(1, 10, 8, 64, dtype=torch.bfloat16, device="cuda")
key = torch.randn(1, 10, 8, 64, dtype=torch.bfloat16, device="cuda")
value = torch.randn(1, 10, 8, 64, dtype=torch.bfloat16, device="cuda")
try:
with attention_backend("flash"):
output = dispatch_attention_fn(query, key, value)
print("✓ Flash Attention works with checks enabled")
except Exception as e:
print(f"✗ Flash Attention failed: {e}")
```
You can also configure the registry directly.
```py
from diffusers.models.attention_dispatch import _AttentionBackendRegistry
_AttentionBackendRegistry._checks_enabled = True
```
## Available backends
Refer to the table below for a complete list of available attention backends and their variants.
@@ -99,11 +139,16 @@ Refer to the table below for a complete list of available attention backends and
| `_native_npu` | [PyTorch native](https://docs.pytorch.org/docs/stable/generated/torch.nn.attention.SDPBackend.html#torch.nn.attention.SDPBackend) | NPU-optimized attention |
| `_native_xla` | [PyTorch native](https://docs.pytorch.org/docs/stable/generated/torch.nn.attention.SDPBackend.html#torch.nn.attention.SDPBackend) | XLA-optimized attention |
| `flash` | [FlashAttention](https://github.com/Dao-AILab/flash-attention) | FlashAttention-2 |
| `flash_hub` | [FlashAttention](https://github.com/Dao-AILab/flash-attention) | FlashAttention-2 from kernels |
| `flash_varlen` | [FlashAttention](https://github.com/Dao-AILab/flash-attention) | Variable length FlashAttention |
| `flash_varlen_hub` | [FlashAttention](https://github.com/Dao-AILab/flash-attention) | Variable length FlashAttention from kernels |
| `aiter` | [AI Tensor Engine for ROCm](https://github.com/ROCm/aiter) | FlashAttention for AMD ROCm |
| `_flash_3` | [FlashAttention](https://github.com/Dao-AILab/flash-attention) | FlashAttention-3 |
| `_flash_varlen_3` | [FlashAttention](https://github.com/Dao-AILab/flash-attention) | Variable length FlashAttention-3 |
| `_flash_3_hub` | [FlashAttention](https://github.com/Dao-AILab/flash-attention) | FlashAttention-3 from kernels |
| `_flash_3_varlen_hub` | [FlashAttention](https://github.com/Dao-AILab/flash-attention) | Variable length FlashAttention-3 from kernels |
| `sage` | [SageAttention](https://github.com/thu-ml/SageAttention) | Quantized attention (INT8 QK) |
| `sage_hub` | [SageAttention](https://github.com/thu-ml/SageAttention) | Quantized attention (INT8 QK) from kernels |
| `sage_varlen` | [SageAttention](https://github.com/thu-ml/SageAttention) | Variable length SageAttention |
| `_sage_qk_int8_pv_fp8_cuda` | [SageAttention](https://github.com/thu-ml/SageAttention) | INT8 QK + FP8 PV (CUDA) |
| `_sage_qk_int8_pv_fp8_cuda_sm90` | [SageAttention](https://github.com/thu-ml/SageAttention) | INT8 QK + FP8 PV (SM90) |
@@ -111,4 +156,4 @@ Refer to the table below for a complete list of available attention backends and
| `_sage_qk_int8_pv_fp16_triton` | [SageAttention](https://github.com/thu-ml/SageAttention) | INT8 QK + FP16 PV (Triton) |
| `xformers` | [xFormers](https://github.com/facebookresearch/xformers) | Memory-efficient attention |
</details>
</details>

View File

@@ -66,4 +66,35 @@ config = FasterCacheConfig(
tensor_format="BFCHW",
)
pipeline.transformer.enable_cache(config)
```
## TaylorSeer Cache
[TaylorSeer Cache](https://huggingface.co/papers/2403.06923) accelerates diffusion inference by using Taylor series expansions to approximate and cache intermediate activations across denoising steps. The method predicts future outputs based on past computations, reusing them at specified intervals to reduce redundant calculations.
This caching mechanism delivers strong results with minimal additional memory overhead. For detailed performance analysis, see [our findings here](https://github.com/huggingface/diffusers/pull/12648#issuecomment-3610615080).
To enable TaylorSeer Cache, create a [`TaylorSeerCacheConfig`] and pass it to your pipeline's transformer:
- `cache_interval`: Number of steps to reuse cached outputs before performing a full forward pass
- `disable_cache_before_step`: Initial steps that use full computations to gather data for approximations
- `max_order`: Approximation accuracy (in theory, higher values improve quality but increase memory usage but we recommend it should be set to `1`)
```python
import torch
from diffusers import FluxPipeline, TaylorSeerCacheConfig
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=torch.bfloat16,
)
pipe.to("cuda")
config = TaylorSeerCacheConfig(
cache_interval=5,
max_order=1,
disable_cache_before_step=10,
taylor_factors_dtype=torch.bfloat16,
)
pipe.transformer.enable_cache(config)
```

View File

@@ -11,7 +11,7 @@ specific language governing permissions and limitations under the License. -->
# NVIDIA ModelOpt
[NVIDIA-ModelOpt](https://github.com/NVIDIA/TensorRT-Model-Optimizer) is a unified library of state-of-the-art model optimization techniques like quantization, pruning, distillation, speculative decoding, etc. It compresses deep learning models for downstream deployment frameworks like TensorRT-LLM or TensorRT to optimize inference speed.
[NVIDIA-ModelOpt](https://github.com/NVIDIA/Model-Optimizer) is a unified library of state-of-the-art model optimization techniques like quantization, pruning, distillation, speculative decoding, etc. It compresses deep learning models for downstream deployment frameworks like TensorRT-LLM or TensorRT to optimize inference speed.
Before you begin, make sure you have nvidia_modelopt installed.
@@ -57,7 +57,7 @@ image.save("output.png")
>
> The quantization methods in NVIDIA-ModelOpt are designed to reduce the memory footprint of model weights using various QAT (Quantization-Aware Training) and PTQ (Post-Training Quantization) techniques while maintaining model performance. However, the actual performance gain during inference depends on the deployment framework (e.g., TRT-LLM, TensorRT) and the specific hardware configuration.
>
> More details can be found [here](https://github.com/NVIDIA/TensorRT-Model-Optimizer/tree/main/examples).
> More details can be found [here](https://github.com/NVIDIA/Model-Optimizer/tree/main/examples).
## NVIDIAModelOptConfig
@@ -86,7 +86,7 @@ The quantization methods supported are as follows:
| **NVFP4** | `nvfp4 weight only`, `nvfp4 block quantization` | `quant_type`, `quant_type + channel_quantize + block_quantize` | `channel_quantize = -1 is only supported for now`|
Refer to the [official modelopt documentation](https://nvidia.github.io/TensorRT-Model-Optimizer/) for a better understanding of the available quantization methods and the exhaustive list of configuration options available.
Refer to the [official modelopt documentation](https://nvidia.github.io/Model-Optimizer/) for a better understanding of the available quantization methods and the exhaustive list of configuration options available.
## Serializing and Deserializing quantized models

View File

@@ -16,12 +16,12 @@ pipeline.unet.config["in_channels"]
4
```
Inpainting requires 9 channels in the input sample. You can check this value in a pretrained inpainting model like [`runwayml/stable-diffusion-inpainting`](https://huggingface.co/runwayml/stable-diffusion-inpainting):
Inpainting requires 9 channels in the input sample. You can check this value in a pretrained inpainting model like [`stable-diffusion-v1-5/stable-diffusion-inpainting`](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-inpainting):
```py
from diffusers import StableDiffusionPipeline
pipeline = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-inpainting", use_safetensors=True)
pipeline = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-inpainting", use_safetensors=True)
pipeline.unet.config["in_channels"]
9
```

View File

@@ -0,0 +1,46 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# AutoModel
The [`AutoModel`] class automatically detects and loads the correct model class (UNet, transformer, VAE) from a `config.json` file. You don't need to know the specific model class name ahead of time. It supports data types and device placement, and works across model types and libraries.
The example below loads a transformer from Diffusers and a text encoder from Transformers. Use the `subfolder` parameter to specify where to load the `config.json` file from.
```py
import torch
from diffusers import AutoModel, DiffusionPipeline
transformer = AutoModel.from_pretrained(
"Qwen/Qwen-Image", subfolder="transformer", torch_dtype=torch.bfloat16, device_map="cuda"
)
text_encoder = AutoModel.from_pretrained(
"Qwen/Qwen-Image", subfolder="text_encoder", torch_dtype=torch.bfloat16, device_map="cuda"
)
```
[`AutoModel`] also loads models from the [Hub](https://huggingface.co/models) that aren't included in Diffusers. Set `trust_remote_code=True` in [`AutoModel.from_pretrained`] to load custom models.
```py
import torch
from diffusers import AutoModel
transformer = AutoModel.from_pretrained(
"custom/custom-transformer-model", trust_remote_code=True, torch_dtype=torch.bfloat16, device_map="cuda"
)
```
If the custom model inherits from the [`ModelMixin`] class, it gets access to the same features as Diffusers model classes, like [regional compilation](../optimization/fp16#regional-compilation) and [group offloading](../optimization/memory#group-offloading).
> [!NOTE]
> Learn more about implementing custom models in the [Community components](../using-diffusers/custom_pipeline_overview#community-components) guide.

View File

@@ -215,7 +215,7 @@ from diffusers import AutoPipelineForInpainting, LCMScheduler
from diffusers.utils import load_image, make_image_grid
pipe = AutoPipelineForInpainting.from_pretrained(
"runwayml/stable-diffusion-inpainting",
"stable-diffusion-v1-5/stable-diffusion-inpainting",
torch_dtype=torch.float16,
variant="fp16",
).to("cuda")

View File

@@ -112,7 +112,7 @@ blurred_mask
## Popular models
[Stable Diffusion Inpainting](https://huggingface.co/runwayml/stable-diffusion-inpainting), [Stable Diffusion XL (SDXL) Inpainting](https://huggingface.co/diffusers/stable-diffusion-xl-1.0-inpainting-0.1), and [Kandinsky 2.2 Inpainting](https://huggingface.co/kandinsky-community/kandinsky-2-2-decoder-inpaint) are among the most popular models for inpainting. SDXL typically produces higher resolution images than Stable Diffusion v1.5, and Kandinsky 2.2 is also capable of generating high-quality images.
[Stable Diffusion Inpainting](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-inpainting), [Stable Diffusion XL (SDXL) Inpainting](https://huggingface.co/diffusers/stable-diffusion-xl-1.0-inpainting-0.1), and [Kandinsky 2.2 Inpainting](https://huggingface.co/kandinsky-community/kandinsky-2-2-decoder-inpaint) are among the most popular models for inpainting. SDXL typically produces higher resolution images than Stable Diffusion v1.5, and Kandinsky 2.2 is also capable of generating high-quality images.
### Stable Diffusion Inpainting
@@ -124,7 +124,7 @@ from diffusers import AutoPipelineForInpainting
from diffusers.utils import load_image, make_image_grid
pipeline = AutoPipelineForInpainting.from_pretrained(
"runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16, variant="fp16"
"stable-diffusion-v1-5/stable-diffusion-inpainting", torch_dtype=torch.float16, variant="fp16"
)
pipeline.enable_model_cpu_offload()
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
@@ -244,7 +244,7 @@ make_image_grid([init_image, image], rows=1, cols=2)
```
</hfoption>
<hfoption id="runwayml/stable-diffusion-inpainting">
<hfoption id="stable-diffusion-v1-5/stable-diffusion-inpainting">
```py
import torch
@@ -252,7 +252,7 @@ from diffusers import AutoPipelineForInpainting
from diffusers.utils import load_image, make_image_grid
pipeline = AutoPipelineForInpainting.from_pretrained(
"runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16, variant="fp16"
"stable-diffusion-v1-5/stable-diffusion-inpainting", torch_dtype=torch.float16, variant="fp16"
)
pipeline.enable_model_cpu_offload()
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
@@ -278,7 +278,7 @@ make_image_grid([init_image, image], rows=1, cols=2)
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint-specific.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">runwayml/stable-diffusion-inpainting</figcaption>
<figcaption class="mt-2 text-center text-sm text-gray-500">stable-diffusion-v1-5/stable-diffusion-inpainting</figcaption>
</div>
</div>
@@ -308,7 +308,7 @@ make_image_grid([init_image, image], rows=1, cols=2)
```
</hfoption>
<hfoption id="runwayml/stable-diffusion-inpaint">
<hfoption id="stable-diffusion-v1-5/stable-diffusion-inpaint">
```py
import torch
@@ -316,7 +316,7 @@ from diffusers import AutoPipelineForInpainting
from diffusers.utils import load_image, make_image_grid
pipeline = AutoPipelineForInpainting.from_pretrained(
"runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16, variant="fp16"
"stable-diffusion-v1-5/stable-diffusion-inpainting", torch_dtype=torch.float16, variant="fp16"
)
pipeline.enable_model_cpu_offload()
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
@@ -340,7 +340,7 @@ make_image_grid([init_image, image], rows=1, cols=2)
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/specific-inpaint-basic.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">runwayml/stable-diffusion-inpainting</figcaption>
<figcaption class="mt-2 text-center text-sm text-gray-500">stable-diffusion-v1-5/stable-diffusion-inpainting</figcaption>
</div>
</div>
@@ -358,7 +358,7 @@ from diffusers.utils import load_image, make_image_grid
device = "cuda"
pipeline = AutoPipelineForInpainting.from_pretrained(
"runwayml/stable-diffusion-inpainting",
"stable-diffusion-v1-5/stable-diffusion-inpainting",
torch_dtype=torch.float16,
variant="fp16"
)
@@ -396,7 +396,7 @@ from diffusers import AutoPipelineForInpainting
from diffusers.utils import load_image, make_image_grid
pipeline = AutoPipelineForInpainting.from_pretrained(
"runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16, variant="fp16"
"stable-diffusion-v1-5/stable-diffusion-inpainting", torch_dtype=torch.float16, variant="fp16"
)
pipeline.enable_model_cpu_offload()
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
@@ -441,7 +441,7 @@ from diffusers import AutoPipelineForInpainting
from diffusers.utils import load_image, make_image_grid
pipeline = AutoPipelineForInpainting.from_pretrained(
"runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16, variant="fp16"
"stable-diffusion-v1-5/stable-diffusion-inpainting", torch_dtype=torch.float16, variant="fp16"
)
pipeline.enable_model_cpu_offload()
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
@@ -481,7 +481,7 @@ from diffusers import AutoPipelineForInpainting
from diffusers.utils import load_image, make_image_grid
pipeline = AutoPipelineForInpainting.from_pretrained(
"runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16, variant="fp16"
"stable-diffusion-v1-5/stable-diffusion-inpainting", torch_dtype=torch.float16, variant="fp16"
)
pipeline.enable_model_cpu_offload()
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
@@ -606,7 +606,7 @@ from diffusers import AutoPipelineForInpainting, AutoPipelineForImage2Image
from diffusers.utils import load_image, make_image_grid
pipeline = AutoPipelineForInpainting.from_pretrained(
"runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16, variant="fp16"
"stable-diffusion-v1-5/stable-diffusion-inpainting", torch_dtype=torch.float16, variant="fp16"
)
pipeline.enable_model_cpu_offload()
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
@@ -683,7 +683,7 @@ from diffusers import AutoPipelineForInpainting
from diffusers.utils import make_image_grid
pipeline = AutoPipelineForInpainting.from_pretrained(
"runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16,
"stable-diffusion-v1-5/stable-diffusion-inpainting", torch_dtype=torch.float16,
)
pipeline.enable_model_cpu_offload()
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
@@ -714,7 +714,7 @@ controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_inpai
# pass ControlNet to the pipeline
pipeline = StableDiffusionControlNetInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting", controlnet=controlnet, torch_dtype=torch.float16, variant="fp16"
"stable-diffusion-v1-5/stable-diffusion-inpainting", controlnet=controlnet, torch_dtype=torch.float16, variant="fp16"
)
pipeline.enable_model_cpu_offload()
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed

View File

@@ -173,7 +173,7 @@ mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data
init_image = download_image(img_url).resize((512, 512))
mask_image = download_image(mask_url).resize((512, 512))
path = "runwayml/stable-diffusion-inpainting"
path = "stable-diffusion-v1-5/stable-diffusion-inpainting"
run_compile = True # Set True / False

View File

@@ -28,12 +28,12 @@ pipeline.unet.config["in_channels"]
4
```
인페인팅은 입력 샘플에 9개의 채널이 필요합니다. [`runwayml/stable-diffusion-inpainting`](https://huggingface.co/runwayml/stable-diffusion-inpainting)와 같은 사전학습된 인페인팅 모델에서 이 값을 확인할 수 있습니다:
인페인팅은 입력 샘플에 9개의 채널이 필요합니다. [`stable-diffusion-v1-5/stable-diffusion-inpainting`](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-inpainting)와 같은 사전학습된 인페인팅 모델에서 이 값을 확인할 수 있습니다:
```py
from diffusers import StableDiffusionPipeline
pipeline = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
pipeline = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-inpainting")
pipeline.unet.config["in_channels"]
9
```

View File

@@ -14,7 +14,7 @@ specific language governing permissions and limitations under the License.
[[open-in-colab]]
[`StableDiffusionInpaintPipeline`]은 마스크와 텍스트 프롬프트를 제공하여 이미지의 특정 부분을 편집할 수 있도록 합니다. 이 기능은 인페인팅 작업을 위해 특별히 훈련된 [`runwayml/stable-diffusion-inpainting`](https://huggingface.co/runwayml/stable-diffusion-inpainting)과 같은 Stable Diffusion 버전을 사용합니다.
[`StableDiffusionInpaintPipeline`]은 마스크와 텍스트 프롬프트를 제공하여 이미지의 특정 부분을 편집할 수 있도록 합니다. 이 기능은 인페인팅 작업을 위해 특별히 훈련된 [`stable-diffusion-v1-5/stable-diffusion-inpainting`](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-inpainting)과 같은 Stable Diffusion 버전을 사용합니다.
먼저 [`StableDiffusionInpaintPipeline`] 인스턴스를 불러옵니다:
@@ -27,7 +27,7 @@ from io import BytesIO
from diffusers import StableDiffusionInpaintPipeline
pipeline = StableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting",
"stable-diffusion-v1-5/stable-diffusion-inpainting",
torch_dtype=torch.float16,
)
pipeline = pipeline.to("cuda")
@@ -61,12 +61,3 @@ image = pipe(prompt=prompt, image=init_image, mask_image=mask_image).images[0]
> [!WARNING]
> 이전의 실험적인 인페인팅 구현에서는 품질이 낮은 다른 프로세스를 사용했습니다. 이전 버전과의 호환성을 보장하기 위해 새 모델이 포함되지 않은 사전학습된 파이프라인을 불러오면 이전 인페인팅 방법이 계속 적용됩니다.
아래 Space에서 이미지 인페인팅을 직접 해보세요!
<iframe
src="https://runwayml-stable-diffusion-inpainting.hf.space"
frameborder="0"
width="850"
height="500"
></iframe>

View File

@@ -1,8 +1,10 @@
- sections:
- local: index
title: 🧨 Diffusers
- local: quicktour
title: Tour rápido
- local: installation
title: Instalação
- local: index
title: Diffusers
- local: installation
title: Instalação
- local: quicktour
title: Tour rápido
- local: stable_diffusion
title: Desempenho básico
title: Primeiros passos

View File

@@ -18,11 +18,11 @@ specific language governing permissions and limitations under the License.
# Diffusers
🤗 Diffusers é uma biblioteca de modelos de difusão de última geração para geração de imagens, áudio e até mesmo estruturas 3D de moléculas. Se você está procurando uma solução de geração simples ou queira treinar seu próprio modelo de difusão, 🤗 Diffusers é uma modular caixa de ferramentas que suporta ambos. Nossa biblioteca é desenhada com foco em [usabilidade em vez de desempenho](conceptual/philosophy#usability-over-performance), [simples em vez de fácil](conceptual/philosophy#simple-over-easy) e [customizável em vez de abstrações](conceptual/philosophy#tweakable-contributorfriendly-over-abstraction).
🤗 Diffusers é uma biblioteca de modelos de difusão de última geração para geração de imagens, áudio e até mesmo estruturas 3D de moléculas. Se você está procurando uma solução de geração simples ou quer treinar seu próprio modelo de difusão, 🤗 Diffusers é uma caixa de ferramentas modular que suporta ambos. Nossa biblioteca é desenhada com foco em [usabilidade em vez de desempenho](conceptual/philosophy#usability-over-performance), [simples em vez de fácil](conceptual/philosophy#simple-over-easy) e [customizável em vez de abstrações](conceptual/philosophy#tweakable-contributorfriendly-over-abstraction).
A Biblioteca tem três componentes principais:
- Pipelines de última geração para a geração em poucas linhas de código. Têm muitos pipelines no 🤗 Diffusers, veja a tabela no pipeline [Visão geral](api/pipelines/overview) para uma lista completa de pipelines disponíveis e as tarefas que eles resolvem.
- Pipelines de última geração para a geração em poucas linhas de código. muitos pipelines no 🤗 Diffusers, veja a tabela no pipeline [Visão geral](api/pipelines/overview) para uma lista completa de pipelines disponíveis e as tarefas que eles resolvem.
- Intercambiáveis [agendadores de ruído](api/schedulers/overview) para balancear as compensações entre velocidade e qualidade de geração.
- [Modelos](api/models) pré-treinados que podem ser usados como se fossem blocos de construção, e combinados com agendadores, para criar seu próprio sistema de difusão de ponta a ponta.

View File

@@ -21,7 +21,7 @@ specific language governing permissions and limitations under the License.
Recomenda-se instalar 🤗 Diffusers em um [ambiente virtual](https://docs.python.org/3/library/venv.html).
Se você não está familiarizado com ambiente virtuals, veja o [guia](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/).
Um ambiente virtual deixa mais fácil gerenciar diferentes projetos e evitar problemas de compatibilidade entre dependências.
Um ambiente virtual facilita gerenciar diferentes projetos e evitar problemas de compatibilidade entre dependências.
Comece criando um ambiente virtual no diretório do projeto:
@@ -100,12 +100,12 @@ pip install -e ".[flax]"
</jax>
</frameworkcontent>
Esses comandos irá linkar a pasta que você clonou o repositório e os caminhos das suas bibliotecas Python.
Esses comandos irão vincular a pasta que você clonou o repositório e os caminhos das suas bibliotecas Python.
Python então irá procurar dentro da pasta que você clonou além dos caminhos normais das bibliotecas.
Por exemplo, se o pacote python for tipicamente instalado no `~/anaconda3/envs/main/lib/python3.10/site-packages/`, o Python também irá procurar na pasta `~/diffusers/` que você clonou.
> [!WARNING]
> Você deve deixar a pasta `diffusers` se você quiser continuar usando a biblioteca.
> Você deve manter a pasta `diffusers` se quiser continuar usando a biblioteca.
Agora você pode facilmente atualizar seu clone para a última versão do 🤗 Diffusers com o seguinte comando:

View File

@@ -0,0 +1,132 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
[[open-in-colab]]
# Desempenho básico
Difusão é um processo aleatório que demanda muito processamento. Você pode precisar executar o [`DiffusionPipeline`] várias vezes antes de obter o resultado desejado. Por isso é importante equilibrar cuidadosamente a velocidade de geração e o uso de memória para iterar mais rápido.
Este guia recomenda algumas dicas básicas de desempenho para usar o [`DiffusionPipeline`]. Consulte a seção de documentação sobre Otimização de Inferência, como [Acelerar inferência](./optimization/fp16) ou [Reduzir uso de memória](./optimization/memory) para guias de desempenho mais detalhados.
## Uso de memória
Reduzir a quantidade de memória usada indiretamente acelera a geração e pode ajudar um modelo a caber no dispositivo.
O método [`~DiffusionPipeline.enable_model_cpu_offload`] move um modelo para a CPU quando não está em uso para economizar memória da GPU.
```py
import torch
from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.bfloat16,
device_map="cuda"
)
pipeline.enable_model_cpu_offload()
prompt = """
cinematic film still of a cat sipping a margarita in a pool in Palm Springs, California
highly detailed, high budget hollywood movie, cinemascope, moody, epic, gorgeous, film grain
"""
pipeline(prompt).images[0]
print(f"Memória máxima reservada: {torch.cuda.max_memory_allocated() / 1024**3:.2f} GB")
```
## Velocidade de inferência
O processo de remoção de ruído é o mais exigente computacionalmente durante a difusão. Métodos que otimizam este processo aceleram a velocidade de inferência. Experimente os seguintes métodos para acelerar.
- Adicione `device_map="cuda"` para colocar o pipeline em uma GPU. Colocar um modelo em um acelerador, como uma GPU, aumenta a velocidade porque realiza computações em paralelo.
- Defina `torch_dtype=torch.bfloat16` para executar o pipeline em meia-precisão. Reduzir a precisão do tipo de dado aumenta a velocidade porque leva menos tempo para realizar computações em precisão mais baixa.
```py
import torch
import time
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
pipeline = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.bfloat16,
device_map="cuda"
)
```
- Use um agendador mais rápido, como [`DPMSolverMultistepScheduler`], que requer apenas ~20-25 passos.
- Defina `num_inference_steps` para um valor menor. Reduzir o número de passos de inferência reduz o número total de computações. No entanto, isso pode resultar em menor qualidade de geração.
```py
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
prompt = """
cinematic film still of a cat sipping a margarita in a pool in Palm Springs, California
highly detailed, high budget hollywood movie, cinemascope, moody, epic, gorgeous, film grain
"""
start_time = time.perf_counter()
image = pipeline(prompt).images[0]
end_time = time.perf_counter()
print(f"Geração de imagem levou {end_time - start_time:.3f} segundos")
```
## Qualidade de geração
Muitos modelos de difusão modernos entregam imagens de alta qualidade imediatamente. No entanto, você ainda pode melhorar a qualidade de geração experimentando o seguinte.
- Experimente um prompt mais detalhado e descritivo. Inclua detalhes como o meio da imagem, assunto, estilo e estética. Um prompt negativo também pode ajudar, guiando um modelo para longe de características indesejáveis usando palavras como baixa qualidade ou desfocado.
```py
import torch
from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.bfloat16,
device_map="cuda"
)
prompt = """
cinematic film still of a cat sipping a margarita in a pool in Palm Springs, California
highly detailed, high budget hollywood movie, cinemascope, moody, epic, gorgeous, film grain
"""
negative_prompt = "low quality, blurry, ugly, poor details"
pipeline(prompt, negative_prompt=negative_prompt).images[0]
```
Para mais detalhes sobre como criar prompts melhores, consulte a documentação sobre [Técnicas de prompt](./using-diffusers/weighted_prompts).
- Experimente um agendador diferente, como [`HeunDiscreteScheduler`] ou [`LMSDiscreteScheduler`], que sacrifica velocidade de geração por qualidade.
```py
import torch
from diffusers import DiffusionPipeline, HeunDiscreteScheduler
pipeline = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.bfloat16,
device_map="cuda"
)
pipeline.scheduler = HeunDiscreteScheduler.from_config(pipeline.scheduler.config)
prompt = """
cinematic film still of a cat sipping a margarita in a pool in Palm Springs, California
highly detailed, high budget hollywood movie, cinemascope, moody, epic, gorgeous, film grain
"""
negative_prompt = "low quality, blurry, ugly, poor details"
pipeline(prompt, negative_prompt=negative_prompt).images[0]
```
## Próximos passos
Diffusers oferece otimizações mais avançadas e poderosas, como [group-offloading](./optimization/memory#group-offloading) e [compilação regional](./optimization/fp16#regional-compilation). Para saber mais sobre como maximizar o desempenho, consulte a seção sobre Otimização de Inferência.

View File

@@ -157,7 +157,7 @@ guider.push_to_hub("YiYiXu/modular-loader-t2i-guider", subfolder="pag_guider")
```py
guider_spec = t2i_pipeline.get_component_spec("guider")
guider_spec.default_creation_method="from_pretrained"
guider_spec.repo="YiYiXu/modular-loader-t2i-guider"
guider_spec.pretrained_model_name_or_path="YiYiXu/modular-loader-t2i-guider"
guider_spec.subfolder="pag_guider"
pag_guider = guider_spec.load()
t2i_pipeline.update_components(guider=pag_guider)

View File

@@ -313,14 +313,14 @@ unet_spec
ComponentSpec(
name='unet',
type_hint=<class 'diffusers.models.unets.unet_2d_condition.UNet2DConditionModel'>,
repo='RunDiffusion/Juggernaut-XL-v9',
pretrained_model_name_or_path='RunDiffusion/Juggernaut-XL-v9',
subfolder='unet',
variant='fp16',
default_creation_method='from_pretrained'
)
# 修改以从不同的仓库加载
unet_spec.repo = "stabilityai/stable-diffusion-xl-base-1.0"
unet_spec.pretrained_model_name_or_path = "stabilityai/stable-diffusion-xl-base-1.0"
# 使用修改后的规范加载组件
unet = unet_spec.load(torch_dtype=torch.float16)

View File

@@ -16,12 +16,12 @@ pipeline.unet.config["in_channels"]
4
```
而图像修复任务需要输入样本具有9个通道。您可以在 [`runwayml/stable-diffusion-inpainting`](https://huggingface.co/runwayml/stable-diffusion-inpainting) 这样的预训练修复模型中验证此参数:
而图像修复任务需要输入样本具有9个通道。您可以在 [`stable-diffusion-v1-5/stable-diffusion-inpainting`](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-inpainting) 这样的预训练修复模型中验证此参数:
```python
from diffusers import StableDiffusionPipeline
pipeline = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-inpainting", use_safetensors=True)
pipeline = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-inpainting", use_safetensors=True)
pipeline.unet.config["in_channels"]
9
```

View File

@@ -88,7 +88,7 @@ PIXART-α Controlnet pipeline | Implementation of the controlnet model for pixar
| FaithDiff Stable Diffusion XL Pipeline | Implementation of [(CVPR 2025) FaithDiff: Unleashing Diffusion Priors for Faithful Image Super-resolutionUnleashing Diffusion Priors for Faithful Image Super-resolution](https://huggingface.co/papers/2411.18824) - FaithDiff is a faithful image super-resolution method that leverages latent diffusion models by actively adapting the diffusion prior and jointly fine-tuning its components (encoder and diffusion model) with an alignment module to ensure high fidelity and structural consistency. | [FaithDiff Stable Diffusion XL Pipeline](#faithdiff-stable-diffusion-xl-pipeline) | [![Hugging Face Models](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Models-blue)](https://huggingface.co/jychen9811/FaithDiff) | [Junyang Chen, Jinshan Pan, Jiangxin Dong, IMAG Lab, (Adapted by Eliseu Silva)](https://github.com/JyChen9811/FaithDiff) |
| Stable Diffusion 3 InstructPix2Pix Pipeline | Implementation of Stable Diffusion 3 InstructPix2Pix Pipeline | [Stable Diffusion 3 InstructPix2Pix Pipeline](#stable-diffusion-3-instructpix2pix-pipeline) | [![Hugging Face Models](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Models-blue)](https://huggingface.co/BleachNick/SD3_UltraEdit_freeform) [![Hugging Face Models](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Models-blue)](https://huggingface.co/CaptainZZZ/sd3-instructpix2pix) | [Jiayu Zhang](https://github.com/xduzhangjiayu) and [Haozhe Zhao](https://github.com/HaozheZhao)|
| Flux Kontext multiple images | A modified version of the `FluxKontextPipeline` that supports calling Flux Kontext with multiple reference images.| [Flux Kontext multiple input Pipeline](#flux-kontext-multiple-images) | - | [Net-Mist](https://github.com/Net-Mist) |
| Flux Fill ControlNet Pipeline | A modified version of the `FluxFillPipeline` and `FluxControlNetInpaintPipeline` that supports Controlnet with Flux Fill model.| [Flux Fill ControlNet Pipeline](#Flux-Fill-ControlNet-Pipeline) | - | [pratim4dasude](https://github.com/pratim4dasude) |
To load a custom pipeline you just need to pass the `custom_pipeline` argument to `DiffusionPipeline`, as one of the files in `diffusers/examples/community`. Feel free to send a PR with your own pipelines, we will merge them quickly.
@@ -1328,7 +1328,7 @@ model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined"
# Load Stable Diffusion Inpainting Pipeline with custom pipeline
pipe = DiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting",
"stable-diffusion-v1-5/stable-diffusion-inpainting",
custom_pipeline="text_inpainting",
segmentation_model=model,
segmentation_processor=processor
@@ -5488,7 +5488,7 @@ Editing at Scale", many thanks to their contribution!
This implementation of Flux Kontext allows users to pass multiple reference images. Each image is encoded separately, and the resulting latent vectors are concatenated.
As explained in Section 3 of [the paper](https://arxiv.org/pdf/2506.15742), the model's sequence concatenation mechanism can extend its capabilities to handle multiple reference images. However, note that the current version of Flux Kontext was not trained for this use case. In practice, stacking along the first axis does not yield correct results, while stacking along the other two axes appears to work.
As explained in Section 3 of [the paper](https://huggingface.co/papers/2506.15742), the model's sequence concatenation mechanism can extend its capabilities to handle multiple reference images. However, note that the current version of Flux Kontext was not trained for this use case. In practice, stacking along the first axis does not yield correct results, while stacking along the other two axes appears to work.
## Example Usage
@@ -5527,3 +5527,106 @@ images = pipe(
).images
images[0].save("pizzeria.png")
```
# Flux Fill ControlNet Pipeline
This implementation of Flux Fill + ControlNet Inpaint combines the fill-style masked editing of FLUX.1-Fill-dev with full ControlNet conditioning. The base image is processed through the Fill model while the ControlNet receives the corresponding conditioning input (depth, canny, pose, etc.), and both outputs are fused during denoising to guide structure and composition.
While FLUX.1-Fill-dev is designed for mask-based edits, it was not originally trained to operate jointly with ControlNet. In practice, this combined setup works well for structured inpainting tasks, though results may vary depending on the conditioning strength and the alignment between the mask and the control input.
## Example Usage
```python
import torch
from diffusers import (
FluxControlNetModel,
FluxPriorReduxPipeline,
)
from diffusers.utils import load_image
# NEW PIPELINE (updated name)
from pipline_flux_fill_controlnet_Inpaint import FluxControlNetFillInpaintPipeline
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.bfloat16
# Models
base_model = "black-forest-labs/FLUX.1-Fill-dev"
controlnet_model = "Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro-2.0"
prior_model = "black-forest-labs/FLUX.1-Redux-dev"
# Load ControlNet
controlnet = FluxControlNetModel.from_pretrained(
controlnet_model,
torch_dtype=dtype,
)
# Load Fill + ControlNet Pipeline
fill_pipe = FluxControlNetFillInpaintPipeline.from_pretrained(
base_model,
controlnet=controlnet,
torch_dtype=dtype,
).to(device)
# OPTIONAL FP8
# fill_pipe.transformer.enable_layerwise_casting(
# storage_dtype=torch.float8_e4m3fn,
# compute_dtype=torch.bfloat16
# )
# OPTIONAL Prior Redux
#pipe_prior_redux = FluxPriorReduxPipeline.from_pretrained(
# prior_model,
# torch_dtype=dtype,
#).to(device)
# Inputs
# combined_image = load_image("person_input.png")
# 1. Prior conditioning
#prior_out = pipe_prior_redux(
# image=cloth_image,
# prompt=cloth_prompt,
#)
# 2. Fill Inpaint with ControlNet
# canny (0), tile (1), depth (2), blur (3), pose (4), gray (5), low quality (6).
img = load_image(r"imgs/background.jpg")
mask = load_image(r"imgs/mask.png")
control_image_depth = load_image(r"imgs/dog_depth _2.png")
result = fill_pipe(
prompt="a dog on a bench",
image=img,
mask_image=mask,
control_image=control_image_depth,
control_mode=[2], # union mode
control_guidance_start=0.0,
control_guidance_end=0.8,
controlnet_conditioning_scale=0.9,
height=1024,
width=1024,
strength=1.0,
guidance_scale=50.0,
num_inference_steps=60,
max_sequence_length=512,
# **prior_out,
)
# result.images[0].save("flux_fill_controlnet_inpaint.png")
from datetime import datetime
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
result.images[0].save(f"flux_fill_controlnet_inpaint_depth{timestamp}.jpg")
```

View File

@@ -126,7 +126,7 @@ EXAMPLE_DOC_STRING = """
... "lllyasviel/control_v11p_sd15_inpaint", torch_dtype=torch.float16
... )
>>> pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
... "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
... "stable-diffusion-v1-5/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
... )
>>> pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
@@ -347,7 +347,7 @@ class AdaptiveMaskInpaintPipeline(
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details
about a model's potential harms.
feature_extractor ([`~transformers.CLIPImageProcessor`]):
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
@@ -429,8 +429,8 @@ class AdaptiveMaskInpaintPipeline(
"The configuration file of the unet has set the default `sample_size` to smaller than"
" 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the"
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- stable-diffusion-v1-5/stable-diffusion-v1-5"
" \n- stable-diffusion-v1-5/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
" in the config might lead to incorrect results in future versions. If you have downloaded this"
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
@@ -970,7 +970,7 @@ class AdaptiveMaskInpaintPipeline(
>>> default_mask_image = download_image(mask_url).resize((512, 512))
>>> pipe = AdaptiveMaskInpaintPipeline.from_pretrained(
... "runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16
... "stable-diffusion-v1-5/stable-diffusion-inpainting", torch_dtype=torch.float16
... )
>>> pipe = pipe.to("cuda")
@@ -1095,7 +1095,7 @@ class AdaptiveMaskInpaintPipeline(
# 8. Check that sizes of mask, masked image and latents match
if num_channels_unet == 9:
# default case for runwayml/stable-diffusion-inpainting
# default case for stable-diffusion-v1-5/stable-diffusion-inpainting
num_channels_mask = mask.shape[1]
num_channels_masked_image = masked_image_latents.shape[1]
if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels:

View File

@@ -62,7 +62,7 @@ class ComposableStableDiffusionPipeline(DiffusionPipeline, StableDiffusionMixin)
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
Please, refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for details.
feature_extractor ([`CLIPImageProcessor`]):
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
"""
@@ -145,8 +145,8 @@ class ComposableStableDiffusionPipeline(DiffusionPipeline, StableDiffusionMixin)
"The configuration file of the unet has set the default `sample_size` to smaller than"
" 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- stable-diffusion-v1-5/stable-diffusion-v1-5"
" \n- stable-diffusion-v1-5/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
" in the config might lead to incorrect results in future versions. If you have downloaded this"
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"

View File

@@ -1276,7 +1276,7 @@ class FrescoV2VPipeline(StableDiffusionControlNetImg2ImgPipeline):
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details
about a model's potential harms.
feature_extractor ([`~transformers.CLIPImageProcessor`]):
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.

View File

@@ -678,7 +678,7 @@ class StableDiffusionHDPainterPipeline(StableDiffusionInpaintPipeline):
# 8. Check that sizes of mask, masked image and latents match
if num_channels_unet == 9:
# default case for runwayml/stable-diffusion-inpainting
# default case for stable-diffusion-v1-5/stable-diffusion-inpainting
num_channels_mask = mask.shape[1]
num_channels_masked_image = masked_image_latents.shape[1]
if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels:

View File

@@ -45,7 +45,7 @@ def check_size(image, height, width):
raise ValueError(f"Image size should be {height}x{width}, but got {h}x{w}")
def overlay_inner_image(image, inner_image, paste_offset: Tuple[int] = (0, 0)):
def overlay_inner_image(image, inner_image, paste_offset: Tuple[int, ...] = (0, 0)):
inner_image = inner_image.convert("RGBA")
image = image.convert("RGB")
@@ -78,7 +78,7 @@ class ImageToImageInpaintingPipeline(DiffusionPipeline):
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
Please, refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for details.
feature_extractor ([`CLIPImageProcessor`]):
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
"""

View File

@@ -86,7 +86,7 @@ class InstaFlowPipeline(
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details
about a model's potential harms.
feature_extractor ([`~transformers.CLIPImageProcessor`]):
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
@@ -165,8 +165,8 @@ class InstaFlowPipeline(
"The configuration file of the unet has set the default `sample_size` to smaller than"
" 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- stable-diffusion-v1-5/stable-diffusion-v1-5"
" \n- stable-diffusion-v1-5/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
" in the config might lead to incorrect results in future versions. If you have downloaded this"
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"

View File

@@ -166,7 +166,7 @@ class IPAdapterFaceIDStableDiffusionPipeline(
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details
about a model's potential harms.
feature_extractor ([`~transformers.CLIPImageProcessor`]):
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
@@ -247,8 +247,8 @@ class IPAdapterFaceIDStableDiffusionPipeline(
"The configuration file of the unet has set the default `sample_size` to smaller than"
" 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- stable-diffusion-v1-5/stable-diffusion-v1-5"
" \n- stable-diffusion-v1-5/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
" in the config might lead to incorrect results in future versions. If you have downloaded this"
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"

View File

@@ -414,7 +414,7 @@ class StableDiffusionHighResFixPipeline(StableDiffusionPipeline):
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details
about a model's potential harms.
feature_extractor ([`~transformers.CLIPImageProcessor`]):
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.

View File

@@ -222,7 +222,7 @@ class LatentConsistencyModelWalkPipeline(
supports [`LCMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details
about a model's potential harms.
feature_extractor ([`~transformers.CLIPImageProcessor`]):
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.

View File

@@ -302,7 +302,7 @@ class LLMGroundedDiffusionPipeline(
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details
about a model's potential harms.
feature_extractor ([`~transformers.CLIPImageProcessor`]):
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
@@ -392,8 +392,8 @@ class LLMGroundedDiffusionPipeline(
"The configuration file of the unet has set the default `sample_size` to smaller than"
" 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- stable-diffusion-v1-5/stable-diffusion-v1-5"
" \n- stable-diffusion-v1-5/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
" in the config might lead to incorrect results in future versions. If you have downloaded this"
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"

View File

@@ -552,8 +552,8 @@ class StableDiffusionLongPromptWeightingPipeline(
"The configuration file of the unet has set the default `sample_size` to smaller than"
" 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- stable-diffusion-v1-5/stable-diffusion-v1-5"
" \n- stable-diffusion-v1-5/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
" in the config might lead to incorrect results in future versions. If you have downloaded this"
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"

View File

@@ -29,7 +29,6 @@ from diffusers.loaders import (
TextualInversionLoaderMixin,
)
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
from diffusers.models.attention_processor import AttnProcessor2_0, XFormersAttnProcessor
from diffusers.models.lora import adjust_lora_scale_text_encoder
from diffusers.pipelines.pipeline_utils import StableDiffusionMixin
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
@@ -1328,18 +1327,8 @@ class SDXLLongPromptWeightingPipeline(
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
def upcast_vae(self):
dtype = self.vae.dtype
deprecate("upcast_vae", "1.0.0", "`upcast_vae` is deprecated. Please use `pipe.vae.to(torch.float32)`")
self.vae.to(dtype=torch.float32)
use_torch_2_0_or_xformers = isinstance(
self.vae.decoder.mid_block.attentions[0].processor,
(AttnProcessor2_0, XFormersAttnProcessor),
)
# if xformers or torch_2_0 is used attention block does not need
# to be in float32 which can save lots of memory
if use_torch_2_0_or_xformers:
self.vae.post_quant_conv.to(dtype)
self.vae.decoder.conv_in.to(dtype)
self.vae.decoder.mid_block.to(dtype)
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
@@ -1765,7 +1754,7 @@ class SDXLLongPromptWeightingPipeline(
# Check that sizes of mask, masked image and latents match
if num_channels_unet == 9:
# default case for runwayml/stable-diffusion-inpainting
# default case for stable-diffusion-v1-5/stable-diffusion-inpainting
num_channels_mask = mask.shape[1]
num_channels_masked_image = masked_image_latents.shape[1]
if num_channels_latents + num_channels_mask + num_channels_masked_image != num_channels_unet:

View File

@@ -1966,16 +1966,21 @@ class MatryoshkaUNet2DConditionModel(
center_input_sample: bool = False,
flip_sin_to_cos: bool = True,
freq_shift: int = 0,
down_block_types: Tuple[str] = (
down_block_types: Tuple[str, ...] = (
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"DownBlock2D",
),
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
up_block_types: Tuple[str, ...] = (
"UpBlock2D",
"CrossAttnUpBlock2D",
"CrossAttnUpBlock2D",
"CrossAttnUpBlock2D",
),
only_cross_attention: Union[bool, Tuple[bool]] = False,
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280),
layers_per_block: Union[int, Tuple[int]] = 2,
downsample_padding: int = 1,
mid_block_scale_factor: float = 1,
@@ -2294,10 +2299,10 @@ class MatryoshkaUNet2DConditionModel(
def _check_config(
self,
down_block_types: Tuple[str],
up_block_types: Tuple[str],
down_block_types: Tuple[str, ...],
up_block_types: Tuple[str, ...],
only_cross_attention: Union[bool, Tuple[bool]],
block_out_channels: Tuple[int],
block_out_channels: Tuple[int, ...],
layers_per_block: Union[int, Tuple[int]],
cross_attention_dim: Union[int, Tuple[int]],
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple[int]]],
@@ -3729,8 +3734,8 @@ class MatryoshkaPipeline(
"The configuration file of the unet has set the default `sample_size` to smaller than"
" 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- stable-diffusion-v1-5/stable-diffusion-v1-5"
" \n- stable-diffusion-v1-5/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
" in the config might lead to incorrect results in future versions. If you have downloaded this"
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"

View File

@@ -30,17 +30,13 @@ from diffusers.loaders import (
TextualInversionLoaderMixin,
)
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.models.attention_processor import (
AttnProcessor2_0,
FusedAttnProcessor2_0,
XFormersAttnProcessor,
)
from diffusers.models.lora import adjust_lora_scale_text_encoder
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
from diffusers.schedulers import KarrasDiffusionSchedulers, LMSDiscreteScheduler
from diffusers.utils import (
USE_PEFT_BACKEND,
deprecate,
is_invisible_watermark_available,
is_torch_xla_available,
logging,
@@ -710,22 +706,8 @@ class StableDiffusionXLTilingPipeline(
return torch.tile(weights_torch, (nbatches, self.unet.config.in_channels, 1, 1))
def upcast_vae(self):
dtype = self.vae.dtype
deprecate("upcast_vae", "1.0.0", "`upcast_vae` is deprecated. Please use `pipe.vae.to(torch.float32)`")
self.vae.to(dtype=torch.float32)
use_torch_2_0_or_xformers = isinstance(
self.vae.decoder.mid_block.attentions[0].processor,
(
AttnProcessor2_0,
XFormersAttnProcessor,
FusedAttnProcessor2_0,
),
)
# if xformers or torch_2_0 is used attention block does not need
# to be in float32 which can save lots of memory
if use_torch_2_0_or_xformers:
self.vae.post_quant_conv.to(dtype)
self.vae.decoder.conv_in.to(dtype)
self.vae.decoder.mid_block.to(dtype)
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
def get_guidance_scale_embedding(

View File

@@ -39,16 +39,13 @@ from diffusers.models import (
MultiControlNetModel,
UNet2DConditionModel,
)
from diffusers.models.attention_processor import (
AttnProcessor2_0,
XFormersAttnProcessor,
)
from diffusers.models.lora import adjust_lora_scale_text_encoder
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
from diffusers.schedulers import KarrasDiffusionSchedulers, LMSDiscreteScheduler
from diffusers.utils import (
USE_PEFT_BACKEND,
deprecate,
logging,
replace_example_docstring,
scale_lora_layers,
@@ -1220,23 +1217,9 @@ class StableDiffusionXLControlNetTileSRPipeline(
return tile_weights, tile_row_overlaps, tile_col_overlaps
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
def upcast_vae(self):
dtype = self.vae.dtype
deprecate("upcast_vae", "1.0.0", "`upcast_vae` is deprecated. Please use `pipe.vae.to(torch.float32)`")
self.vae.to(dtype=torch.float32)
use_torch_2_0_or_xformers = isinstance(
self.vae.decoder.mid_block.attentions[0].processor,
(
AttnProcessor2_0,
XFormersAttnProcessor,
),
)
# if xformers or torch_2_0 is used attention block does not need
# to be in float32 which can save lots of memory
if use_torch_2_0_or_xformers:
self.vae.post_quant_conv.to(dtype)
self.vae.decoder.conv_in.to(dtype)
self.vae.decoder.mid_block.to(dtype)
@property
def guidance_scale(self):

View File

@@ -78,7 +78,7 @@ class MultilingualStableDiffusion(DiffusionPipeline, StableDiffusionMixin):
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
Please, refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for details.
feature_extractor ([`CLIPImageProcessor`]):
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
"""

Some files were not shown because too many files have changed in this diff Show More