Compare commits

..

1 Commits

Author SHA1 Message Date
DN6
c3fccd4489 update 2026-02-08 14:03:36 +05:30
3 changed files with 139 additions and 291 deletions

View File

@@ -29,8 +29,31 @@ text_encoder = AutoModel.from_pretrained(
)
```
## Custom models
[`AutoModel`] also loads models from the [Hub](https://huggingface.co/models) that aren't included in Diffusers. Set `trust_remote_code=True` in [`AutoModel.from_pretrained`] to load custom models.
A custom model repository needs a Python module with the model class, and a `config.json` with an `auto_map` entry that maps `"AutoModel"` to `"module_file.ClassName"`.
```
custom/custom-transformer-model/
├── config.json
├── my_model.py
└── diffusion_pytorch_model.safetensors
```
The `config.json` includes the `auto_map` field pointing to the custom class.
```json
{
"auto_map": {
"AutoModel": "my_model.MyCustomModel"
}
}
```
Then load it with `trust_remote_code=True`.
```py
import torch
from diffusers import AutoModel
@@ -40,7 +63,39 @@ transformer = AutoModel.from_pretrained(
)
```
For a real-world example, [Overworld/Waypoint-1-Small](https://huggingface.co/Overworld/Waypoint-1-Small/tree/main/transformer) hosts a custom `WorldModel` class across several modules in its `transformer` subfolder.
```
transformer/
├── config.json # auto_map: "model.WorldModel"
├── model.py
├── attn.py
├── nn.py
├── cache.py
├── quantize.py
├── __init__.py
└── diffusion_pytorch_model.safetensors
```
```py
import torch
from diffusers import AutoModel
transformer = AutoModel.from_pretrained(
"Overworld/Waypoint-1-Small", subfolder="transformer", trust_remote_code=True, torch_dtype=torch.bfloat16, device_map="cuda"
)
```
If the custom model inherits from the [`ModelMixin`] class, it gets access to the same features as Diffusers model classes, like [regional compilation](../optimization/fp16#regional-compilation) and [group offloading](../optimization/memory#group-offloading).
> [!WARNING]
> As a precaution with `trust_remote_code=True`, pass a commit hash to the `revision` argument in [`AutoModel.from_pretrained`] to make sure the code hasn't been updated with new malicious code (unless you fully trust the model owners).
>
> ```py
> transformer = AutoModel.from_pretrained(
> "Overworld/Waypoint-1-Small", subfolder="transformer", trust_remote_code=True, revision="a3d8cb2"
> )
> ```
> [!NOTE]
> Learn more about implementing custom models in the [Community components](../using-diffusers/custom_pipeline_overview#community-components) guide.

View File

@@ -219,10 +219,6 @@ class TestFluxTransformerMemory(FluxTransformerTesterConfig, MemoryTesterMixin):
class TestFluxTransformerTraining(FluxTransformerTesterConfig, TrainingTesterMixin):
"""Training tests for Flux Transformer."""
def test_gradient_checkpointing_is_applied(self):
expected_set = {"FluxTransformer2DModel"}
super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
class TestFluxTransformerAttention(FluxTransformerTesterConfig, AttentionTesterMixin):
"""Attention processor tests for Flux Transformer."""

View File

@@ -13,88 +13,48 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import torch
from diffusers import Flux2Transformer2DModel
from diffusers.utils.torch_utils import randn_tensor
from diffusers import Flux2Transformer2DModel, attention_backend
from ...testing_utils import enable_full_determinism, torch_device
from ..testing_utils import (
AttentionTesterMixin,
BaseModelTesterConfig,
BitsAndBytesTesterMixin,
ContextParallelTesterMixin,
GGUFCompileTesterMixin,
GGUFTesterMixin,
LoraHotSwappingForModelTesterMixin,
LoraTesterMixin,
MemoryTesterMixin,
ModelTesterMixin,
TorchAoTesterMixin,
TorchCompileTesterMixin,
TrainingTesterMixin,
)
from ..test_modeling_common import LoraHotSwappingForModelTesterMixin, ModelTesterMixin, TorchCompileTesterMixin
enable_full_determinism()
class Flux2TransformerTesterConfig(BaseModelTesterConfig):
@property
def model_class(self):
return Flux2Transformer2DModel
class Flux2TransformerTests(ModelTesterMixin, unittest.TestCase):
model_class = Flux2Transformer2DModel
main_input_name = "hidden_states"
# We override the items here because the transformer under consideration is small.
model_split_percents = [0.7, 0.6, 0.6]
# Skip setting testing with default: AttnProcessor
uses_custom_attn_processor = True
@property
def output_shape(self) -> tuple[int, int]:
def dummy_input(self):
return self.prepare_dummy_input()
@property
def input_shape(self):
return (16, 4)
@property
def input_shape(self) -> tuple[int, int]:
def output_shape(self):
return (16, 4)
@property
def model_split_percents(self) -> list:
# We override the items here because the transformer under consideration is small.
return [0.7, 0.6, 0.6]
@property
def main_input_name(self) -> str:
return "hidden_states"
@property
def uses_custom_attn_processor(self) -> bool:
# Skip setting testing with default: AttnProcessor
return True
@property
def generator(self):
return torch.Generator("cpu").manual_seed(0)
def get_init_dict(self) -> dict[str, int | list[int]]:
return {
"patch_size": 1,
"in_channels": 4,
"num_layers": 1,
"num_single_layers": 1,
"attention_head_dim": 16,
"num_attention_heads": 2,
"joint_attention_dim": 32,
"timestep_guidance_channels": 256, # Hardcoded in original code
"axes_dims_rope": [4, 4, 4, 4],
}
def get_dummy_inputs(self, height: int = 4, width: int = 4) -> dict[str, torch.Tensor]:
def prepare_dummy_input(self, height=4, width=4):
batch_size = 1
num_latent_channels = 4
sequence_length = 48
embedding_dim = 32
hidden_states = randn_tensor(
(batch_size, height * width, num_latent_channels), generator=self.generator, device=torch_device
)
encoder_hidden_states = randn_tensor(
(batch_size, sequence_length, embedding_dim), generator=self.generator, device=torch_device
)
hidden_states = torch.randn((batch_size, height * width, num_latent_channels)).to(torch_device)
encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device)
t_coords = torch.arange(1)
h_coords = torch.arange(height)
@@ -122,244 +82,81 @@ class Flux2TransformerTesterConfig(BaseModelTesterConfig):
"guidance": guidance,
}
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"patch_size": 1,
"in_channels": 4,
"num_layers": 1,
"num_single_layers": 1,
"attention_head_dim": 16,
"num_attention_heads": 2,
"joint_attention_dim": 32,
"timestep_guidance_channels": 256, # Hardcoded in original code
"axes_dims_rope": [4, 4, 4, 4],
}
class TestFlux2Transformer(Flux2TransformerTesterConfig, ModelTesterMixin):
pass
inputs_dict = self.dummy_input
return init_dict, inputs_dict
# TODO (Daniel, Sayak): We can remove this test.
def test_flux2_consistency(self, seed=0):
torch.manual_seed(seed)
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
class TestFlux2TransformerMemory(Flux2TransformerTesterConfig, MemoryTesterMixin):
"""Memory optimization tests for Flux2 Transformer."""
torch.manual_seed(seed)
model = self.model_class(**init_dict)
# state_dict = model.state_dict()
# for key, param in state_dict.items():
# print(f"{key} | {param.shape}")
# torch.save(state_dict, "/raid/daniel_gu/test_flux2_params/diffusers.pt")
model.to(torch_device)
model.eval()
with attention_backend("native"):
with torch.no_grad():
output = model(**inputs_dict)
class TestFlux2TransformerTraining(Flux2TransformerTesterConfig, TrainingTesterMixin):
"""Training tests for Flux2 Transformer."""
if isinstance(output, dict):
output = output.to_tuple()[0]
self.assertIsNotNone(output)
# input & output have to have the same shape
input_tensor = inputs_dict[self.main_input_name]
expected_shape = input_tensor.shape
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
# Check against expected slice
# fmt: off
expected_slice = torch.tensor([-0.3662, 0.4844, 0.6334, -0.3497, 0.2162, 0.0188, 0.0521, -0.2061, -0.2041, -0.0342, -0.7107, 0.4797, -0.3280, 0.7059, -0.0849, 0.4416])
# fmt: on
flat_output = output.cpu().flatten()
generated_slice = torch.cat([flat_output[:8], flat_output[-8:]])
self.assertTrue(torch.allclose(generated_slice, expected_slice, atol=1e-4))
def test_gradient_checkpointing_is_applied(self):
expected_set = {"Flux2Transformer2DModel"}
super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
class TestFlux2TransformerAttention(Flux2TransformerTesterConfig, AttentionTesterMixin):
"""Attention processor tests for Flux2 Transformer."""
class Flux2TransformerCompileTests(TorchCompileTesterMixin, unittest.TestCase):
model_class = Flux2Transformer2DModel
different_shapes_for_compilation = [(4, 4), (4, 8), (8, 8)]
def prepare_init_args_and_inputs_for_common(self):
return Flux2TransformerTests().prepare_init_args_and_inputs_for_common()
def prepare_dummy_input(self, height, width):
return Flux2TransformerTests().prepare_dummy_input(height=height, width=width)
class TestFlux2TransformerContextParallel(Flux2TransformerTesterConfig, ContextParallelTesterMixin):
"""Context Parallel inference tests for Flux2 Transformer."""
class Flux2TransformerLoRAHotSwapTests(LoraHotSwappingForModelTesterMixin, unittest.TestCase):
model_class = Flux2Transformer2DModel
different_shapes_for_compilation = [(4, 4), (4, 8), (8, 8)]
def prepare_init_args_and_inputs_for_common(self):
return Flux2TransformerTests().prepare_init_args_and_inputs_for_common()
class TestFlux2TransformerLoRA(Flux2TransformerTesterConfig, LoraTesterMixin):
"""LoRA adapter tests for Flux2 Transformer."""
class TestFlux2TransformerLoRAHotSwap(Flux2TransformerTesterConfig, LoraHotSwappingForModelTesterMixin):
"""LoRA hot-swapping tests for Flux2 Transformer."""
@property
def different_shapes_for_compilation(self):
return [(4, 4), (4, 8), (8, 8)]
def get_dummy_inputs(self, height: int = 4, width: int = 4) -> dict[str, torch.Tensor]:
"""Override to support dynamic height/width for LoRA hotswap tests."""
batch_size = 1
num_latent_channels = 4
sequence_length = 48
embedding_dim = 32
hidden_states = randn_tensor(
(batch_size, height * width, num_latent_channels), generator=self.generator, device=torch_device
)
encoder_hidden_states = randn_tensor(
(batch_size, sequence_length, embedding_dim), generator=self.generator, device=torch_device
)
t_coords = torch.arange(1)
h_coords = torch.arange(height)
w_coords = torch.arange(width)
l_coords = torch.arange(1)
image_ids = torch.cartesian_prod(t_coords, h_coords, w_coords, l_coords)
image_ids = image_ids.unsqueeze(0).expand(batch_size, -1, -1).to(torch_device)
text_t_coords = torch.arange(1)
text_h_coords = torch.arange(1)
text_w_coords = torch.arange(1)
text_l_coords = torch.arange(sequence_length)
text_ids = torch.cartesian_prod(text_t_coords, text_h_coords, text_w_coords, text_l_coords)
text_ids = text_ids.unsqueeze(0).expand(batch_size, -1, -1).to(torch_device)
timestep = torch.tensor([1.0]).to(torch_device).expand(batch_size)
guidance = torch.tensor([1.0]).to(torch_device).expand(batch_size)
return {
"hidden_states": hidden_states,
"encoder_hidden_states": encoder_hidden_states,
"img_ids": image_ids,
"txt_ids": text_ids,
"timestep": timestep,
"guidance": guidance,
}
class TestFlux2TransformerCompile(Flux2TransformerTesterConfig, TorchCompileTesterMixin):
@property
def different_shapes_for_compilation(self):
return [(4, 4), (4, 8), (8, 8)]
def get_dummy_inputs(self, height: int = 4, width: int = 4) -> dict[str, torch.Tensor]:
"""Override to support dynamic height/width for compilation tests."""
batch_size = 1
num_latent_channels = 4
sequence_length = 48
embedding_dim = 32
hidden_states = randn_tensor(
(batch_size, height * width, num_latent_channels), generator=self.generator, device=torch_device
)
encoder_hidden_states = randn_tensor(
(batch_size, sequence_length, embedding_dim), generator=self.generator, device=torch_device
)
t_coords = torch.arange(1)
h_coords = torch.arange(height)
w_coords = torch.arange(width)
l_coords = torch.arange(1)
image_ids = torch.cartesian_prod(t_coords, h_coords, w_coords, l_coords)
image_ids = image_ids.unsqueeze(0).expand(batch_size, -1, -1).to(torch_device)
text_t_coords = torch.arange(1)
text_h_coords = torch.arange(1)
text_w_coords = torch.arange(1)
text_l_coords = torch.arange(sequence_length)
text_ids = torch.cartesian_prod(text_t_coords, text_h_coords, text_w_coords, text_l_coords)
text_ids = text_ids.unsqueeze(0).expand(batch_size, -1, -1).to(torch_device)
timestep = torch.tensor([1.0]).to(torch_device).expand(batch_size)
guidance = torch.tensor([1.0]).to(torch_device).expand(batch_size)
return {
"hidden_states": hidden_states,
"encoder_hidden_states": encoder_hidden_states,
"img_ids": image_ids,
"txt_ids": text_ids,
"timestep": timestep,
"guidance": guidance,
}
class TestFlux2TransformerBitsAndBytes(Flux2TransformerTesterConfig, BitsAndBytesTesterMixin):
"""BitsAndBytes quantization tests for Flux2 Transformer."""
class TestFlux2TransformerTorchAo(Flux2TransformerTesterConfig, TorchAoTesterMixin):
"""TorchAO quantization tests for Flux2 Transformer."""
class TestFlux2TransformerGGUF(Flux2TransformerTesterConfig, GGUFTesterMixin):
"""GGUF quantization tests for Flux2 Transformer."""
@property
def gguf_filename(self):
return "https://huggingface.co/unsloth/FLUX.2-dev-GGUF/blob/main/flux2-dev-Q2_K.gguf"
@property
def torch_dtype(self):
return torch.bfloat16
def get_dummy_inputs(self):
"""Override to provide inputs matching the real FLUX2 model dimensions.
Flux2 defaults: in_channels=128, joint_attention_dim=15360
"""
batch_size = 1
height = 64
width = 64
sequence_length = 512
hidden_states = randn_tensor(
(batch_size, height * width, 128), generator=self.generator, device=torch_device, dtype=self.torch_dtype
)
encoder_hidden_states = randn_tensor(
(batch_size, sequence_length, 15360), generator=self.generator, device=torch_device, dtype=self.torch_dtype
)
# Flux2 uses 4D image/text IDs (t, h, w, l)
t_coords = torch.arange(1)
h_coords = torch.arange(height)
w_coords = torch.arange(width)
l_coords = torch.arange(1)
image_ids = torch.cartesian_prod(t_coords, h_coords, w_coords, l_coords)
image_ids = image_ids.unsqueeze(0).expand(batch_size, -1, -1).to(torch_device)
text_t_coords = torch.arange(1)
text_h_coords = torch.arange(1)
text_w_coords = torch.arange(1)
text_l_coords = torch.arange(sequence_length)
text_ids = torch.cartesian_prod(text_t_coords, text_h_coords, text_w_coords, text_l_coords)
text_ids = text_ids.unsqueeze(0).expand(batch_size, -1, -1).to(torch_device)
timestep = torch.tensor([1.0]).to(torch_device, self.torch_dtype)
guidance = torch.tensor([3.5]).to(torch_device, self.torch_dtype)
return {
"hidden_states": hidden_states,
"encoder_hidden_states": encoder_hidden_states,
"img_ids": image_ids,
"txt_ids": text_ids,
"timestep": timestep,
"guidance": guidance,
}
class TestFlux2TransformerGGUFCompile(Flux2TransformerTesterConfig, GGUFCompileTesterMixin):
"""GGUF + compile tests for Flux2 Transformer."""
@property
def gguf_filename(self):
return "https://huggingface.co/unsloth/FLUX.2-dev-GGUF/blob/main/flux2-dev-Q2_K.gguf"
@property
def torch_dtype(self):
return torch.bfloat16
def get_dummy_inputs(self):
"""Override to provide inputs matching the real FLUX2 model dimensions.
Flux2 defaults: in_channels=128, joint_attention_dim=15360
"""
batch_size = 1
height = 64
width = 64
sequence_length = 512
hidden_states = randn_tensor(
(batch_size, height * width, 128), generator=self.generator, device=torch_device, dtype=self.torch_dtype
)
encoder_hidden_states = randn_tensor(
(batch_size, sequence_length, 15360), generator=self.generator, device=torch_device, dtype=self.torch_dtype
)
# Flux2 uses 4D image/text IDs (t, h, w, l)
t_coords = torch.arange(1)
h_coords = torch.arange(height)
w_coords = torch.arange(width)
l_coords = torch.arange(1)
image_ids = torch.cartesian_prod(t_coords, h_coords, w_coords, l_coords)
image_ids = image_ids.unsqueeze(0).expand(batch_size, -1, -1).to(torch_device)
text_t_coords = torch.arange(1)
text_h_coords = torch.arange(1)
text_w_coords = torch.arange(1)
text_l_coords = torch.arange(sequence_length)
text_ids = torch.cartesian_prod(text_t_coords, text_h_coords, text_w_coords, text_l_coords)
text_ids = text_ids.unsqueeze(0).expand(batch_size, -1, -1).to(torch_device)
timestep = torch.tensor([1.0]).to(torch_device, self.torch_dtype)
guidance = torch.tensor([3.5]).to(torch_device, self.torch_dtype)
return {
"hidden_states": hidden_states,
"encoder_hidden_states": encoder_hidden_states,
"img_ids": image_ids,
"txt_ids": text_ids,
"timestep": timestep,
"guidance": guidance,
}
def prepare_dummy_input(self, height, width):
return Flux2TransformerTests().prepare_dummy_input(height=height, width=width)