Compare commits

...

283 Commits

Author SHA1 Message Date
Dhruv Nair
f319e27318 update 2024-04-17 12:07:13 +00:00
Sayak Paul
30c977d1f5 [Workflows] remove installation of redundant modules from flax PR tests (#7662)
remove installation of redundant modules from flax PR tests
2024-04-17 15:16:04 +05:30
Dhruv Nair
f0fa17dd8e Don't install PEFT with UV in slow tests (#7697)
* update

* update
2024-04-17 15:10:38 +05:30
Sai-Suraj-27
c726d02beb fix: Updated ruff configuration to avoid deprecated configuration warning (#7637)
Updated ruff configuration to avoid depreceated config.

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-04-16 15:02:55 -10:00
Wentian
a68503f221 [Docs] Add TGATE in section optimization (#7639)
* Create tgate.md

* Update _toctree.yml

* Update docs/source/en/optimization/tgate.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/optimization/tgate.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/optimization/tgate.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/optimization/tgate.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/optimization/tgate.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/optimization/tgate.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/optimization/tgate.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/optimization/tgate.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/optimization/tgate.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/optimization/tgate.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update tgate.md

* Update tgate.md

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-04-16 17:58:27 -07:00
Sayak Paul
9d50f7eec1 [Core] is_cosxl_edit arg in SDXL ip2p. (#7650)
* is_cosxl_edit arg in SDXL ip2p.

* Empty-Commit

Co-authored-by: Yiyi Xu <yixu310@gmail.com>

* doc

* remove redundant logic.

* reflect drhuv's comments.

---------

Co-authored-by: Yiyi Xu <yixu310@gmail.com>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2024-04-16 22:15:55 +05:30
UmerHA
fda1531d8a Fixing implementation of ControlNet-XS (#6772)
* CheckIn - created DownSubBlocks

* Added extra channels, implemented subblock fwd

* Fixed connection sizes

* checkin

* Removed iter, next in forward

* Models for SD21 & SDXL run through

* Added back pipelines, cleared up connections

* Cleaned up connection creation

* added debug logs

* updated logs

* logs: added input loading

* Update umer_debug_logger.py

* log: Loading hint

* Update umer_debug_logger.py

* added logs

* Changed debug logging

* debug: added more logs

* Fixed num_norm_groups

* Debug: Logging all of SDXL input

* Update umer_debug_logger.py

* debug: updated logs

* checkim

* Readded tests

* Removed debug logs

* Fixed Slow Tests

* Added value ckecks | Updated model_cpu_offload_seq

* accelerate-offloading works ; fast tests work

* Made unet & addon explicit in controlnet

* Updated slow tests

* Added dtype/device to ControlNetXS

* Filled in test model paths

* Added image_encoder/feature_extractor to XL pipe

* Fixed fast tests

* Added comments and docstrings

* Fixed copies

* Added docs ; Updates slow tests

* Moved changes to UNetMidBlock2DCrossAttn

* tiny cleanups

* Removed stray prints

* Removed ip adapters + freeU

- Removed ip adapters + freeU as they don't make sense for ControlNet-XS
- Fixed imports of UNet components

* Fixed test_save_load_float16

* Make style, quality, fix-copies

* Changed loading/saving API for ControlNetXS

- Changed loading/saving API for ControlNetXS
- other small fixes

* Removed ControlNet-XS from research examples

* Make style, quality, fix-copies

* Small fixes

- deleted ControlNetXSModel.init_original
- added time_embedding_mix to StableDiffusionControlNetXSPipeline .from_pretrained / StableDiffusionXLControlNetXSPipeline.from_pretrained
- fixed copy hints

* checkin May 11 '23

* CheckIn Mar 12 '24

* Fixed tests for SD

* Added tests for UNetControlNetXSModel

* Fixed SDXL tests

* cleanup

* Delete Pipfile

* CheckIn Mar 20

Started replacing sub blocks  by `ControlNetXSCrossAttnDownBlock2D` and `ControlNetXSCrossAttnUplock2D`

* check-in Mar 23

* checkin 24 Mar

* Created init for UNetCnxs and CnxsAddon

* CheckIn

* Made from_modules, from_unet and no_control work

* make style,quality,fix-copies & small changes

* Fixed freezing

* Added gradient ckpt'ing; fixed tests

* Fix slow tests(+compile) ; clear naming confusion

* Don't create UNet in init ; removed class_emb

* Incorporated review feedback

- Deleted get_base_pipeline /  get_controlnet_addon for pipes
- Pipes inherit from StableDiffusionXLPipeline
- Made module dicts for cnxs-addon's down/mid/up classes
- Added support for qkv fusion and freeU

* Make style, quality, fix-copies

* Implemented review feedback

* Removed compatibility check for vae/ctrl embedding

* make style, quality, fix-copies

* Delete Pipfile

* Integrated review feedback

- Importing ControlNetConditioningEmbedding now
- get_down/mid/up_block_addon now outside class
- renamed `do_control` to `apply_control`

* Reduced size of test tensors

For this, added `norm_num_groups` as parameter everywhere

* Renamed cnxs-`Addon` to cnxs-`Adapter`

- `ControlNetXSAddon` -> `ControlNetXSAdapter`
- `ControlNetXSAddonDownBlockComponents` -> `DownBlockControlNetXSAdapter`, and similarly for mid/up
- `get_mid_block_addon` -> `get_mid_block_adapter`, and similarly for mid/up

* Fixed save_pretrained/from_pretrained bug

* Removed redundant code

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2024-04-16 21:56:20 +05:30
Sayak Paul
cf6e0407e0 don't install peft from the source with uv for now. (#7679) 2024-04-15 09:33:02 +05:30
Sayak Paul
1c000d46e1 fix: metadata token (#7631) 2024-04-15 08:32:27 +05:30
Sayak Paul
08bf754507 make docker-buildx mandatory. (#7652) 2024-04-13 07:26:34 +05:30
kabachuha
2f23437618 Add (Scheduled) Pseudo-Huber Loss training scripts to research projects (#7527)
* add scheduled pseudo-huber loss training scripts

See #7488

* add reduction modes to huber loss

* [DB Lora] *2 multiplier to huber loss cause of 1/2 a^2 conv.

pairing of c6495def1f

* [DB Lora] add option for smooth l1 (huber / delta)

Pairing of dd22958caa

* [DB Lora] unify huber scheduling

Pairing of 19a834c3ab

* [DB Lora] add snr huber scheduler

Pairing of 47fb1a6854

* fixup examples link

* use snr schedule by default in DB

* update all huber scripts with snr

* code quality

* huber: make style && make quality

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-04-13 07:26:08 +05:30
Benjamin Bossan
2523390c26 FIX Setting device for DoRA parameters (#7655)
Fix a bug that causes the the call to set_lora_device to ignore the DoRA
parameters.
2024-04-12 13:55:46 +02:00
Sai-Suraj-27
279de3c3ff fix: Replaced deprecated logger.warn with logger.warning (#7643)
Fixed deprecated logger.warn with logger.warning.
2024-04-11 09:43:01 -10:00
Yiqin Zhao
8e14535708 Fixed YAML loading. (#7579) 2024-04-11 09:08:42 -10:00
dg845
0bee4d336b LCM Distill Scripts Fix Bug when Initializing Target U-Net (#6848)
* Initialize target_unet from unet rather than teacher_unet so that we correctly add time_embedding.cond_proj if necessary.

* Use UNet2DConditionModel.from_config to initialize target_unet from unet's config.

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-04-11 07:52:12 -10:00
Steven Munn
42f25d601a Skip PEFT LoRA Scaling if the scale is 1.0 (#7576)
* Skip scaling if scale is identity

* move check for weight one to scale and unscale lora

* fix code style/quality

* Empty-Commit

---------

Co-authored-by: Steven Munn <stevenjmunn@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Steven Munn <5297082+stevenjlm@users.noreply.github.com>
2024-04-11 11:02:31 +05:30
Sayak Paul
33c5d125cb [Core] fix img2img pipeline for Playground (#7627)
* playground vae encoding should use std and mean of the vae.

* style.

* fix-copies.
2024-04-11 09:07:38 +05:30
YiYi Xu
aa1f00fd01 Fix cpu offload related slow tests (#7618)
* fix

* up

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
2024-04-10 14:53:45 -10:00
Steven Liu
d95b993427 [docs] T2I (#7623)
* refactor t2i

* add code snippets
2024-04-10 17:10:41 -07:00
Steven Liu
1d480298c1 [docs] Prompt enhancer (#7565)
* prompt enhance

* edits

* align titles

* feedback

* feedback

* feedback

* link to style
2024-04-10 16:09:06 -07:00
Sayak Paul
b2323aa2b7 [Tests] reduce the model sizes in the SD fast tests (#7580)
* give it a shot.

* print.

* correct assertion.

* gather results from the rest of the tests.

* change the assertion values where needed.

* remove print statements.
2024-04-10 11:36:28 -10:00
satani99
37e9d695af Modularize instruct_pix2pix SD inferencing during and after training in examples (#7603)
* Modularize instruct_pix2pix code

* quality check

* quality check

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-04-10 11:19:16 +05:30
Sayak Paul
a402431de0 [docs] remove duplicate tip block. (#7625)
remove duplicate tip block.
2024-04-10 10:31:11 +05:30
IDKiro
b99b1617cf add the option of upsample function for tiny vae (#7604)
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-04-10 09:27:39 +05:30
Sayak Paul
3e4a6bd2d4 [Core] add "balanced" device_map support to pipelines (#6857)
* get device <-> component mapping when using multiple gpus.

* condition the device_map bits.

* relax condition

* device_map progress.

* device_map enhancement

* some cleaning up and debugging

* Apply suggestions from code review

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* incorporate suggestions from PR.

* remove multi-gpu condition for now.

* guard check the component -> device mapping

* fix: device_memory variable

* dispatching transformers model to have force_hooks=True

* better guarding for transformers device_map

* introduce support balanced_low_memory and balanced_ultra_low_memory.

* remove device_map patch.

* fix: intermediate variable scoping.

* fix: condition in cpu offload.

* fix: flax class restrictions.

* remove modifications from cpu_offload and model_offload

* incorporate changes.

* add a simple forward pass test

* add: torch_device in get_inputs()

* add: tests

* remove print

* safe-guard to(), model offloading and cpu offloading when balanced is used as a device_map.

* style

* remove .

* safeguard device_map with more checks and remove invalid device_mapping strategues.

* make  a class attribute and adjust tests accordingly.

* fix device_map check

* fix test

* adjust comment

* fix: device_map attribute

* fix: dispatching.

* max_memory test for pipeline

* version guard the tests

* fix guard.

* address review feedback.

* reset_device_map method.

* add: test for reset_hf_device_map

* fix a couple things.

* add reset_device_map() in the error message.

* add tests for checking reset_device_map doesn't have unintended consequences.

* fix reset_device_map and offloading tests.

* create _get_final_device_map utility.

* hf_device_map -> _hf_device_map

* add documentation

* add notes suggested by Marc.

* styling.

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* move updates within gpu condition.

* other docs related things

* note on ignore a device not specified in .

* provide a suggestion if device mapping errors out.

* fix: typo.

* _hf_device_map -> hf_device_map

* Empty-Commit

* add: example hf_device_map.

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2024-04-10 08:59:05 +05:30
Sayak Paul
c827e94da0 [Workflows] remove installation of libsndfile1-dev and libgl1 from workflows (#7543)
* remove libsndfile1-dev and libgl1 from workflows and ensure that re present in the respective dockerfiles.

* change to self-hosted runner; let's see 🤞

* add libsndfile1-dev libgl1 for now

* use self-hosted runners for building and push too.
2024-04-10 08:34:56 +05:30
Sayak Paul
44f6b859bf [Core] refactor transformer_2d forward logic into meaningful conditions. (#7489)
* refactor transformer_2d forward logic into meaningful conditions.

* Empty-Commit

* fix: _operate_on_patched_inputs

* fix: _operate_on_patched_inputs

* check

* fix: patch output computation block.

* fix: _operate_on_patched_inputs.

* remove print.

* move operations to blocks.

* more readability neats.

* empty commit

* Apply suggestions from code review

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* Revert "Apply suggestions from code review"

This reverts commit 12178b1aa0.

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2024-04-10 08:33:19 +05:30
Sayak Paul
ac7ff7d4a3 add utilities for updating diffusers pipeline metadata. (#7573)
* add utilities for updating diffusers pipeline metadata.

* style

* remove first empty line
2024-04-10 08:28:49 +05:30
Fabio Rigano
a0cf607667 Multi-image masking for single IP Adapter (#7499)
* Support multiimage masking

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-04-09 09:20:57 -10:00
YiYi Xu
a341b536a8 disable test_conversion_when_using_device_map (#7620)
* disable test

* update

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
2024-04-09 09:01:19 -10:00
Christopher Beckham
8e46d97cd8 Add missing restore() EMA call in train SDXL script (#7599)
* Restore unet params back to normal from EMA when validation call is finished

* empty commit

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-04-09 18:07:55 +05:30
Junjie
7e808e768a [Docs] fix bugs in callback docs (#7594) 2024-04-08 08:46:30 -10:00
w4ffl35
7e39516627 Allow more arguments to be passed to convert_from_ckpt (#7222)
Allow safety and feature extractor arguments to be passed to convert_from_ckpt

Allows management of safety checker and feature extractor
from outside of the convert ckpt class.

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-04-08 10:13:48 +05:30
Nguyễn Công Tú Anh
56a76082ed Add AudioLDM2 TTS (#5381)
* add audioldm2 tts

* change gpt2 max new tokens

* remove unnecessary pipeline and class

* add TTS to AudioLDM2Pipeline

* add TTS docs

* delete unnecessary file

* remove unnecessary import

* add audioldm2 slow testcase

* fix code quality

* remove AudioLDMLearnablePositionalEmbedding

* add variable check vits encoder

* add use_learned_position_embedding

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2024-04-08 10:11:24 +05:30
YiYi Xu
6133d98ff7 [IF| add set_begin_index for all IF pipelines (#7577)
add set_begin_index for all if pipelines
2024-04-05 06:54:07 -10:00
Sayak Paul
1c60e094de [Tests] reduce block sizes of UNet and VAE tests (#7560)
* reduce block sizes for unet1d.

* reduce blocks for unet_2d.

* reduce block size for unet_motion

* increase channels.

* correctly increase channels.

* reduce number of layers in unet2dconditionmodel tests.

* reduce block sizes for unet2dconditionmodel tests

* reduce block sizes for unet3dconditionmodel.

* fix: test_feed_forward_chunking

* fix: test_forward_with_norm_groups

* skip spatiotemporal tests on MPS.

* reduce block size in AutoencoderKL.

* reduce block sizes for vqmodel.

* further reduce block size.

* make style.

* Empty-Commit

* reduce sizes for ConsistencyDecoderVAETests

* further reduction.

* further block reductions in AutoencoderKL and AssymetricAutoencoderKL.

* massively reduce the block size in unet2dcontionmodel.

* reduce sizes for unet3d

* fix tests in unet3d.

* reduce blocks further in motion unet.

* fix: output shape

* add attention_head_dim to the test configuration.

* remove unexpected keyword arg

* up a bit.

* groups.

* up again

* fix
2024-04-05 10:08:32 +05:30
UmerHA
71f49a5d2a Skip test_freeu_enabled on MPS (#7570)
* Skip `test_freeu_enabled ` on MPS

* Small fixes

- import skip_mps correctly
- disable all instances of test_freeu_enabled

* Empty commit to trigger tests

* Empty commit to trigger CI
2024-04-04 12:16:04 +02:00
Abhinav Gopal
35db2fdea9 Update pipeline_animatediff_video2video.py (#7457)
* Update pipeline_animatediff_video2video.py

* commit with test for whether latent input can be passed into animatediffvid2vid
2024-04-03 19:34:28 +05:30
Sayak Paul
ad55ce6100 [Chore] increase number of workers for the tests. (#7558)
* increase number of workers for the tests.

* move to beefier runner.

* improve the fast push tests too.

* use a beefy machine for pytorch pipeline tests

* up the number of workers further.
2024-04-03 17:11:42 +05:30
Sayak Paul
a9a5b14f35 [Core] refactor transformers 2d into multiple init variants. (#7491)
* refactor transformers 2d into multiple legacy variants.

* fix: init.

* fix recursive init.

* add inits.

* make transformer block creation more modular.

* complete refactor.

* remove forward

* debug

* remove legacy blocks and refactor within the module itself.

* remove print

* guard caption projection

* remove fetcher.

* reduce the number of args.

* fix: norm_type

* group variables that are shared.

* remove _get_transformer_blocks

* harmonize the init function signatures.

* transformer_blocks to common

* repeat .
2024-04-03 12:56:17 +05:30
Beinsezii
aa19025989 UniPC Multistep add rescale_betas_zero_snr (#7531)
* UniPC Multistep add `rescale_betas_zero_snr`

Same patch as DPM and Euler with the patched final alpha cumprod

BF16 doesn't seem to break down, I think cause UniPC upcasts during some
phases already? We could still force an upcast since it only
loses ≈ 0.005 it/s for me but the difference in output is very small. A
better endeavor might upcasting in step() and removing all the other
upcasts elsewhere?

* UniPC ZSNR UT

* Re-add `rescale_betas_zsnr` doc oops
2024-04-02 17:23:55 -10:00
Beinsezii
19ab04ff56 UniPC Multistep fix tensor dtype/device on order=3 (#7532)
* UniPC UTs iterate solvers on FP16

It wasn't catching errs on order==3. Might be excessive?

* UniPC Multistep fix tensor dtype/device on order=3

* UniPC UTs Add v_pred to fp16 test iter

For completions sake. Probably overkill?
2024-04-02 15:41:29 -10:00
Sayak Paul
4a34307702 add: utility to format our docs too 📜 (#7314)
* add: utility to format our docs too 📜

* debugging saga

* fix: message

* checking

* should be fixed.

* revert pipeline_fixture

* remove empty line

* make style

* fix: setup.py

* style.
2024-04-02 20:49:43 +05:30
Bagheera
8e963d1c2a 7529 do not disable autocast for cuda devices (#7530)
* 7529 do not disable autocast for cuda devices

* Remove typecasting error check for non-mps platforms, as a correct autocast implementation makes it a non-issue

* add autocast fix to other training examples

* disable native_amp for dreambooth (sdxl)

* disable native_amp for pix2pix (sdxl)

* remove tests from remaining files

* disable native_amp on huggingface accelerator for every training example that uses it

* convert more usages of autocast to nullcontext, make style fixes

* make style fixes

* style.

* Empty-Commit

---------

Co-authored-by: bghira <bghira@users.github.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-04-02 20:15:06 +05:30
Sayak Paul
2b04ec2ff7 [Tests] Speed up fast pipelines part II (#7521)
* start printing the tensors.

* print full throttle

* set static slices for 7 tests.

* remove printing.

* flatten

* disable test for controlnet

* what happens when things are seeded properly?

* set the right value

* style./

* make pia test fail to check things

* print.

* fix pia.

* checking for animatediff.

* fix: animatediff.

* video synthesis

* final piece.

* style.

* print guess.

* fix: assertion for control guess.

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2024-04-02 13:24:56 +05:30
Sayak Paul
000fa82a1e [Chore] remove class assignments for linear and conv. (#7553)
* remove class assignments for linear and conv.

* fix: self.nn
2024-04-02 13:01:04 +05:30
Sayak Paul
5d83f50c23 [Release tests] make nightly workflow dispatchable. (#7541)
* make nightly workflow dispatchable.

* add a note about running the release tests to setup.py
2024-04-02 12:21:17 +05:30
Dhruv Nair
5d21d4a204 Fix FreeU tests (#7540)
update
2024-04-02 11:05:50 +05:30
Álvaro Somoza
73ba81090e [Community pipeline] SDXL Differential Diffusion Img2Img Pipeline (#7550)
* initial-commit pipeline created

* updated README.md
2024-04-01 18:15:30 -10:00
YiYi Xu
7956c36aaa add a from_pipe method to DiffusionPipeline (#7241)
* add from_pipe



---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2024-04-01 13:02:00 -10:00
haikmanukyan
5266ab7935 add HD-Painter pipeline (#7520)
* add HD-Painter pipeline

* style fixing

* refactor, change doc, fix ruff

* fix docs

* used correct ruff version

---------

Co-authored-by: Hayk Manukyan <youremail@yourdomain.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-04-01 15:10:44 +05:30
YiYi Xu
7f724a930e fix the cpu offload tests (#7544)
fix
2024-04-01 14:27:14 +05:30
Jianbing Wu
9bef9f4be7 Fix SVD bug (shape of time_context) (#7268)
* Fix SVD bug (shape of `time_context`)

* Formatting code

* Formatting src/diffusers/models/transformers/transformer_temporal.py by `make style && make quality`

---------

Co-authored-by: kevinkhwu <kevinkhwu@tencent.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2024-04-01 14:05:52 +05:30
Dhruv Nair
7aa4514260 Fix typo in CPU offload test (#7542)
update
2024-03-31 22:07:17 -10:00
Bingxin Ke
c2e87869be [Community pipeline] Marigold depth estimation update -- align with marigold v0.1.5 (#7524)
* add resample option; check denoise_step; update ckpt path

* Add seeding in pipeline to increase reproducibility

* fix typo

* fix typo
2024-03-30 07:09:02 -10:00
Stephen
ca61287daa Fix IP Adapter Support for SAG Pipeline (#7260)
* fix ip adapter support

* Update sag pipelines tests, adjust sag pipeline to pass tests

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-03-30 06:15:29 -10:00
Beinsezii
f0c81562a4 Add final_sigma_zero to UniPCMultistep (#7517)
* Add `final_sigma_zero` to UniPCMultistep

Effectively the same trick as DDIM's `set_alpha_to_one` and
DPM's `final_sigma_type='zero'`.
Currently False by default but maybe this should be True?

* `final_sigma_zero: bool` -> `final_sigmas_type: str`

Should 1:1 match DPM Multistep now.

* Set `final_sigmas_type='sigma_min'` in UniPC UTs
2024-03-29 22:23:45 -10:00
Hyoungwon Cho
9d20ed37a2 Perturbed-Attention Guidance (#7512)
* pag_initial

* pag_docs

* edit_docs

* custom

* typo

* delete_docs

* whitespace

* make style

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-03-30 10:52:51 +05:30
Linoy Tsaban
bda1d4faf8 add Instant id sdxl image2image pipeline (#7507)
* initial commit - instantid img2img

* adapting to img2img

* change add_time_ids

* change add_time_ids

* WIP changes

* add strength to timesteps

* check insightface import

* style

* check insightface import changed to warning

* check insightface import changed to warning

* style

---------

Co-authored-by: apolinário <joaopaulo.passos@gmail.com>
2024-03-30 10:25:21 +05:30
UmerHA
77103d71ca Quick-Fix for #7352 block-lora (#7523)
Fixed important typo
2024-03-30 06:42:28 +05:30
UmerHA
0302446819 Implements Blockwise lora (#7352)
* Initial commit

* Implemented block lora

- implemented block lora
- updated docs
- added tests

* Finishing up

* Reverted unrelated changes made by make style

* Fixed typo

* Fixed bug + Made text_encoder_2 scalable

* Integrated some review feedback

* Incorporated review feedback

* Fix tests

* Made every module configurable

* Adapter to new lora test structure

* Final cleanup

* Some more final fixes

- Included examples in `using_peft_for_inference.md`
- Added hint that only attns are scaled
- Removed NoneTypes
- Added test to check mismatching lens of adapter names / weights raise error

* Update using_peft_for_inference.md

* Update using_peft_for_inference.md

* Make style, quality, fix-copies

* Updated tutorial;Warning if scale/adapter mismatch

* floats are forwarded as-is; changed tutorial scale

* make style, quality, fix-copies

* Fixed typo in tutorial

* Moved some warnings into `lora_loader_utils.py`

* Moved scale/lora mismatch warnings back

* Integrated final review suggestions

* Empty commit to trigger CI

* Reverted emoty commit to trigger CI

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-03-29 21:15:57 +05:30
Dhruv Nair
4d39b7483d Memory clean up on all Slow Tests (#7514)
* update

* update

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-03-29 14:23:28 +05:30
Sayak Paul
fac761694a [Tests] Speed up some fast pipeline tests (#7477)
* speed up test_vae_slicing in animatediff

* speed up test_karras_schedulers_shape for attend and excite.

* style.

* get the static slices out.

* specify torch print options.

* modify

* test run with controlnet

* specify kwarg

* fix: things

* not None

* flatten

* controlnet img2img

* complete controlet sd

* finish more

* finish more

* finish more

* finish more

* finish the final batch

* add cpu check for expected_pipe_slice.

* finish the rest

* remove print

* style

* fix ssd1b controlnet test

* checking ssd1b

* disable the test.

* make the test_ip_adapter_single controlnet test more robust

* fix: simple inpaint

* multi

* disable panorama

* enable again

* panorama is shaky so leave it for now

* remove print

* raise tolerance.
2024-03-29 14:11:38 +05:30
YiYi Xu
34c90dbb31 fix OOM for test_vae_tiling (#7510)
use float16 and add torch.no_grad()
2024-03-29 08:22:39 +05:30
Lvkesheng Shen
e49c04d5d6 Bug fix for controlnetpipeline check_image (#7103)
* Bug fix for controlnetpipeline check_image

Bug fix for controlnetpipeline check_image when using multicontrolnet and prompt list

* Update test_inference_multiple_prompt_input function

* Update test_controlnet.py

add test for multiple prompts and multiple image conditioning

* Update test_controlnet.py

Fix format error

---------

Co-authored-by: Lvkesheng Shen <45848260+Fantast416@users.noreply.github.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-03-28 08:25:18 -10:00
YiYi Xu
f238cb0736 cpu_offload: remove all hooks before offload (#7448)
* add remove_all_hooks

* a few more fix and tests

* up

* Update src/diffusers/pipelines/pipeline_utils.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* split tests

* add

---------

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2024-03-28 08:23:02 -10:00
Bagheera
d78acdedc1 apple mps: training support for SDXL (ControlNet, LoRA, Dreambooth, T2I) (#7447)
* apple mps: training support for SDXL LoRA

* sdxl: support training lora, dreambooth, t2i, pix2pix, and controlnet on apple mps

---------

Co-authored-by: bghira <bghira@users.github.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-03-28 14:26:18 +05:30
Sayak Paul
6df103deba add: a helpful message when quality and repo consistency checks fail. (#7475) 2024-03-28 13:51:56 +05:30
Sayak Paul
73f28708be Improve nightly tests (#7385)
* flesh out the nightly tests

* address feedback.
2024-03-28 13:26:34 +05:30
Sayak Paul
0cbc78f04c [Modeling utils chore] import load_model_dict_into_meta only once (#7437)
import load_model_dict_into_meta only once
2024-03-28 13:01:53 +05:30
Thomas Liang
0cc5630945 [Chore] Fix Colab notebook links in README.md (#7495) 2024-03-27 12:36:36 -10:00
UmerHA
0b8e29289d Skip test_lora_fuse_nan on mps (#7481)
Skipping test_lora_fuse_nan on mps

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-03-27 14:35:59 +05:30
Sayak Paul
ab38ddf64f [chore] make the istructions on fetching all commits clearer. (#7474)
* make the istructions on fetching all commits clearer.

* Update setup.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-03-27 08:16:46 +05:30
YiYi Xu
ead82fedea fix torch.compile for multi-controlnet of sdxl inpaint (#7476)
fix

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-03-27 08:08:32 +05:30
Disty0
45b42d1203 Add device arg to offloading with combined pipelines (#7471)
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-03-26 13:45:16 -10:00
Long(Tony) Lian
5199ee4f7b Fix missing raise statements in check_inputs (#7473)
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-03-26 13:34:28 -10:00
Bagheera
544710ef0f diffusers#7426 fix stable diffusion xl inference on MPS when dtypes shift unexpectedly due to pytorch bugs (#7446)
* mps: fix XL pipeline inference at training time due to upstream pytorch bug

* Update src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* apply the safe-guarding logic elsewhere.

---------

Co-authored-by: bghira <bghira@users.github.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-03-26 20:05:49 +05:30
M. Tolga Cangöz
443aa14e41 Fix Tiling in ConsistencyDecoderVAE (#7290)
* Fix typos

* Add docstring to `decode` method in `ConsistencyDecoderVAE`

* Fix tiling

* Enable tiled VAE decoding with customizable tile sample size and overlap factor

* Revert "Enable tiled VAE decoding with customizable tile sample size and overlap factor"

This reverts commit 181049675e.

* Add VAE tiling test for `ConsistencyDecoderVAE`

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-03-26 17:59:08 +05:30
Sayak Paul
288632adf6 [Training utils] add kohya conversion dict. (#7435)
* add kohya conversion dict.

* update readme

* typo

* add filename
2024-03-26 17:31:22 +05:30
Ernie Chu
5ce79cbded Update train_dreambooth_lora_sd15_advanced.py (#7433)
you cannot specify `type="bool"` and `action="store_true"` at the same time.
remove excessive and buggy `type=bool`.

Co-authored-by: Linoy Tsaban <57615435+linoytsaban@users.noreply.github.com>
2024-03-26 12:53:02 +02:00
Marçal Comajoan Cara
d52f3e30f8 Fix broken link (#7472)
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-03-26 10:29:08 +05:30
Sayak Paul
699dfb084c feat: support DoRA LoRA from community (#7371)
* feat: support dora loras from community

* safe-guard dora operations under peft version.

* pop use_dora when False

* make dora lora from kohya work.

* fix: kohya conversion utils.

* add a fast test for DoRA compatibility..

* add a nightly test.
2024-03-26 09:37:33 +05:30
Sayak Paul
484c8ef399 [tests] skip dynamo tests when python is 3.12. (#7458)
skip dynamo tests when python is 3.12.
2024-03-26 08:39:48 +05:30
estelleafl
0dd0528851 Small ldm3d fix (#7464)
* fixed typo

* updated doc to be consistent in naming

* make style/quality

* preprocessing for 4 channels and not 6

* make style

* test for 4c

* make style/quality

* fixed test on cpu

* fixed doc typo

* changed default ckpt to 4c

* Update pipeline_stable_diffusion_ldm3d.py

* fix bug

---------

Co-authored-by: Aflalo <estellea@isl-iam1.rr.intel.com>
Co-authored-by: Aflalo <estellea@isl-gpu33.rr.intel.com>
Co-authored-by: Aflalo <estellea@isl-gpu38.rr.intel.com>
2024-03-25 15:33:43 -10:00
UmerHA
1cd4732e7f Fixed minor error in test_lora_layers_peft.py (#7394)
* Update test_lora_layers_peft.py

* Update utils.py
2024-03-25 11:35:27 -10:00
M. Tolga Cangöz
a51b6cc86a [Docs] Fix typos (#7451)
* Fix typos

* Fix typos

* Fix typos

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-03-25 11:48:02 -07:00
Dhruv Nair
3bce0f3da1 Fix for str_to_bool definition in testing utils (#7461)
update
2024-03-25 13:33:09 +05:30
Dhruv Nair
9a34953823 Additional Memory clean up for slow tests (#7436)
* update

* update

* update
2024-03-25 12:19:21 +05:30
Sayak Paul
e29f16cfaa [Research Projects] ORPO diffusion for alignment (#7423)
* barebones orpo

* remove reference model.

* full implementation

* change default of beta_orpo

* add a training command.

* fix: dataloading issues.

* interpreting the formulation.

* revert styling

* add: wds full blown version

* fix: per_gpu_batch_siz

* start debuggin

* debugging

* remove print

* fix

* remove filter keys.

* turn on non-blocking calls.

* device_placement

* let's see.

* add bigger training run command

* reinitialize generator for fair repro

* add: detailed readme and requirements

---------

Co-authored-by: Sayak Paul <sayakpaul@Sayaks-MacBook-Pro-2.local>
2024-03-25 08:37:41 +05:30
M. Tolga Cangöz
f7dfcfd971 [IP-Adapter] Fix IP-Adapter Support and Refactor Callback for StableDiffusionPanoramaPipeline (#7262)
* Add properties and `IPAdapterTesterMixin` tests for `StableDiffusionPanoramaPipeline`

* Update torch manual seed to use `torch.Generator(device=device)`

* Refactor 📞🔙 to support `callback_on_step_end`

* make fix-copies
2024-03-24 16:07:02 -10:00
Sayak Paul
3c67864c5a Remove distutils (#7455)
* strtobool

* replace Command from setuptools.
2024-03-25 06:44:53 +05:30
Aryan
363699044e [refactor] Fix FreeInit behaviour (#7410)
* fix freeinit impl

* fix progress bar

* fix progress bar and remove old code

* fix num_inference_steps==1 case for freeinit by atleast running 1 step when fast sampling enabled
2024-03-22 19:20:00 +05:30
Sayak Paul
9613576191 add: space for calculating memory usagee. (#7414)
* add: space for calculating memory usahe.

* Update docs/source/en/using-diffusers/loading.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-03-22 08:43:21 +05:30
YiYi Xu
e4356d6488 add a "Community Scripts" section (#7358)
* add

* add tiling

* fix

* fix

* fix

* give community script its own readme

* Update examples/community/README_community_scripts.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update examples/community/README_community_scripts.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update examples/community/README_community_scripts.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update examples/community/README_community_scripts.md

---------

Co-authored-by: Alexis Rolland <alexis.rolland@ubisoft.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-03-21 10:05:07 -10:00
Sayak Paul
82441460ef [Docs] add missing output image (#7425)
add missing output image
2024-03-21 09:22:06 -07:00
sayakpaul
3e1097cb63 Revert "add: space within docs to calculate mememory usage."
This reverts commit 78990dd960.
2024-03-21 08:33:02 +05:30
sayakpaul
78990dd960 add: space within docs to calculate mememory usage. 2024-03-21 08:32:37 +05:30
Yuanhao Zhai
405a1facd2 fix: enable unet_3d_condition to support time_cond_proj_dim (#7364)
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-03-21 07:46:32 +05:30
M. Tolga Cangöz
3028089e5e Fix typos (#7411)
* Fix typos

* Fix typo in SVD.md
2024-03-20 18:46:47 -07:00
Sayak Paul
b536f39818 [Custom Pipelines with Custom Components] fix multiple things (#7304)
* checking to improve pipelines.

* more fixes.

* add: tip to encourage the usage of revision

* Apply suggestions from code review

* retrigger ci

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-03-20 18:49:00 +05:30
Sayak Paul
e25e525fde [LoRA test suite] refactor the test suite and cleanse it (#7316)
* cleanse and refactor lora testing suite.

* more cleanup.

* make check_if_lora_correctly_set a utility function

* fix: typo

* retrigger ci

* style
2024-03-20 17:13:52 +05:30
Sayak Paul
de9adb907c clean dep installation step in push_tests (#7382)
* clean dep installation step in push_tests

* fix: deps
2024-03-20 07:30:43 +05:30
Sayak Paul
bf861e65dc [Chore] add: fives names to citations. (#7395)
* add: four names to citations.

* add: steven
2024-03-20 06:37:57 +05:30
Dhruv Nair
4da810b943 Remove insecure torch.load calls (#7393)
update
2024-03-19 12:41:50 -10:00
Stephen
161c6e14b6 Change path to posix (modeling_utils.py) (#6781)
* Change path to posix

* running isort

* run style and quality checks

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-03-19 11:50:34 -10:00
laksjdjf
a6c9015c4e Fix ControlNetModel.from_unet do not load add_embedding (#7269)
* Fix ControlNetModel.from_unet do not load add_embedding

* delete white space in blank line

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-03-19 09:45:08 -10:00
PJC
e6a5f99e5c Update pipeline_controlnet_sd_xl_img2img.py (#7353)
* Update pipeline_controlnet_sd_xl_img2img.py

fix: safetensors load error

* fix for pass test

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-03-19 09:29:39 -10:00
Dhruv Nair
80ff4ba63e Fix issue with prompt embeds and latents in SD Cascade Decoder with multiple image embeddings for a single prompt. (#7381)
* fix

* update

* update

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-03-19 07:40:14 -10:00
Sayak Paul
b09a2aa308 [LoRA] fix cross_attention_kwargs problems and tighten tests (#7388)
* debugging

* let's see the numbers

* let's see the numbers

* let's see the numbers

* restrict tolerance.

* increase inference steps.

* shallow copy of cross_attentionkwargs

* remove print
2024-03-19 17:53:38 +05:30
YiYi Xu
63b6846849 [scheduler] fix a bug in add_noise (#7386)
* fix

* fix

* add a tests

* fix

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: yiyixuxu <yixu310@gmail,com>
2024-03-19 00:50:58 -10:00
lawfordp2017
139f707e6e Correction for non-integral image resolutions with quantizations other than float32 (#7356)
* Correction for non-integral image resolutions with quantizations other than float32.

* Support for training, and use of diffusers-style casting.
2024-03-19 16:17:44 +05:30
Aryan
e4546fd5bb [docs] Add missing copied from statements in TCD Scheduler (#7360)
* add missing copied from statements in tcd scheduler

* update docstring

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-03-19 00:45:36 -10:00
Dhruv Nair
d44e31aec2 Add FreeInit Outputs to Docs Page (#7384)
* update

* fix
2024-03-19 14:13:41 +05:30
Sayak Paul
ce9825b56b [LoRA] pop the LoRA scale so that it doesn't get propagated to the weeds (#7338)
* pop scale from the top-level unet instead of getting it.

* improve readability.

* Apply suggestions from code review

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* fix a little bit.

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-03-19 09:12:05 +05:30
M. Tolga Cangöz
85f9d92883 Fix conditional statement in test_schedulers.py (#7323)
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-03-19 08:28:47 +05:30
M. Tolga Cangöz
916d9812a8 Update loading of config from a file in test_config.py (#7344)
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-03-18 11:47:36 -10:00
M. Tolga Cangöz
e6a8492242 Use PyTorch's conventional inplace functions (#7332)
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-03-18 09:12:15 -10:00
Beinsezii
ad0308b3f1 Add Cascade to Auto T2I + Decoder mappings (#7362)
* Add Cascade to Auto T2I + Decoder mappings

* ruff autofix

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-03-18 08:58:20 -10:00
M. Tolga Cangöz
e97a633b63 Update access of configuration attributes (#7343)
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-03-18 08:53:29 -10:00
Sayak Paul
01ac37b331 [LoRA] Clean Kohya conversion utils (#7374)
* clean up the kohya_conversion utility

* state dict assignment
2024-03-18 06:53:37 -10:00
M. Tolga Cangöz
6a05b274cc Fix Typos (#7325)
* Fix PyTorch's convention for inplace functions

* Fix import structure in __init__.py and update config loading logic in test_config.py

* Update configuration access

* Fix typos

* Trim trailing white spaces

* Fix typo in logger name

* Revert "Fix PyTorch's convention for inplace functions"

This reverts commit f65dc4afcb.

* Fix typo in step_index property description

* Revert "Update configuration access"

This reverts commit 8d44e870b8.

* Revert "Fix import structure in __init__.py and update config loading logic in test_config.py"

This reverts commit 2ad5e8bca2.

* Fix typos

* Fix typos

* Fix typos

* Fix a typo: tranform -> transform
2024-03-18 09:48:40 -07:00
Anatoly Belikov
98d46a3f08 delete vae and text encoders after use in SDXL training script (#6693)
delete vae and text encoders after use

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-03-18 20:03:53 +05:30
Dhruv Nair
4330a747d4 [Tests] Fix ControlNet Single File tests (#7315)
* update

* update

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-03-18 11:28:59 +05:30
Sayak Paul
76de6a09fb post-release v0.27.0 (#7329)
* post-release

* quality
2024-03-18 10:52:20 +05:30
Sayak Paul
25caf24ef9 Fix release workflow deps (#7339)
* pop scale from the top-level unet instead of getting it.

* improve readability.

* fix: pypi workflow deps

* revert
2024-03-16 07:18:11 +05:30
Abubakar Abid
8db3c9bc9f Adds docs for gradio.Interface.from_pipeline() (#7346)
* gradio docs

* Update docs/source/en/api/pipelines/stable_diffusion/overview.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* changes

* changes

* changes

* Update docs/source/en/api/pipelines/stable_diffusion/overview.md

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-03-16 07:11:28 +05:30
Sayak Paul
e0e9f81971 add: torch to the pypi step. (#7328) 2024-03-15 12:28:12 +05:30
M. Tolga Cangöz
5d848ec07c [Tests] Update a deprecated parameter in test files and fix several typos (#7277)
* Add properties and `IPAdapterTesterMixin` tests for `StableDiffusionPanoramaPipeline`

* Fix variable name typo and update comments

* Update deprecated `output_type="numpy"` to "np" in test files

* Discard changes to src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py

* Update test_stable_diffusion_panorama.py

* Update numbers in README.md

* Update get_guidance_scale_embedding method to use timesteps instead of w

* Update number of checkpoints in README.md

* Add type hints and fix var name

* Fix PyTorch's convention for inplace functions

* Fix a typo

* Revert "Fix PyTorch's convention for inplace functions"

This reverts commit 74350cf65b.

* Fix typos

* Indent

* Refactor get_guidance_scale_embedding method in LEditsPPPipelineStableDiffusionXL class
2024-03-14 12:17:35 -07:00
Dhruv Nair
4974b84564 Update Cascade Tests (#7324)
* update

* update

* update
2024-03-14 20:51:22 +05:30
Linoy Tsaban
83062fb872 [Advanced DreamBooth LoRA SDXL] Support EDM-style training (follow up of #7126) (#7182)
* add edm style training

* style

* finish adding edm training feature

* import fix

* fix latents mean

* minor adjustments

* add edm to readme

* style

* fix autocast and scheduler config issues when using edm

* style

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-03-14 18:40:14 +05:30
Suraj Patil
b6d7e31d10 add edm schedulers in doc (#7319)
* add edm schedulers in doc

* add in toctree

* address reviewe comments
2024-03-14 11:52:25 +01:00
Anatoly Belikov
53e9aacc10 log loss per image (#7278)
* log loss per image

* add commandline param for per image loss logging

* style

* debug-loss -> debug_loss

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-03-14 11:41:43 +05:30
Dhruv Nair
41424466e3 [Tests] Fix incorrect constant in VAE scaling test. (#7301)
update
2024-03-14 10:24:01 +05:30
Sayak Paul
95de1981c9 add: pytest log installation (#7313) 2024-03-14 10:01:16 +05:30
Kenneth Gerald Hamilton
0b45b58867 update get_order_list if statement (#7309)
* update get_order_list if statement

* revery
2024-03-13 18:29:42 -10:00
Beinsezii
d3986f18be Change step_offset scheduler docstrings (#7128)
* Change step_offset scheduler docstrings

* Mention it may be needed by some models

* More docstrings

These ones failed literal S&R because I performed it case-sensitive
which is fun.

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-03-13 15:12:00 -10:00
Alexander Bonnet
ee6a3a993d Fix typos in UNet2DConditionModel documentation (#7291)
* fix typo in UNet2DConditionModel documentation

* Fix indentation that may fix doc rendering

* Fix squished doc lines
2024-03-13 09:31:29 -07:00
Michael
b300517305 Add Intro page of TCD (#7259)
* add tcd intro

* resolve repos

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* revise NFEs related

* change inpainting location

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-03-13 09:21:51 -07:00
jnhuang
ac07b6dc6a Fix Wrong Text-encoder Grad Setting in Custom_Diffusion Training (#7302)
fix index in set textencoder grad

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-03-13 20:22:44 +05:30
Sayak Paul
46ab56a468 add: support for notifying maintainers about the nightly test status (#7117)
* add: support for notifying maintainers about the nightly test status

* add: a tempoerary workflow for validation.

* cancel in progress.

* runs-on

* clean up

* add: peft dep

* change device.

* multiple edits.

* remove temp workflow.
2024-03-13 16:48:11 +05:30
Sayak Paul
038ff70023 [PyPI publishing] feat: automate the process of pypi publication to some extent. (#7270)
* feat: automate the process of pypi publication to some extent.

* utility to fetch the latest release branch

* correct package name.
2024-03-13 16:27:59 +05:30
Manuel Brack
00eca4b887 [Pipeline] Add LEDITS++ pipelines (#6074)
* Setup LEdits++ file structure

* Fix import

* LEditsPP Stable Diffusion pipeline

* Include variable image aspect ratios

* Implement LEDITS++ for SDXL

* clean up LEditsPPPipelineStableDiffusion

* Adjust inversion output

* Added docu, more cleanup for LEditsPPPipelineStableDiffusion

* clean up LEditsPPPipelineStableDiffusionXL

* Update documentation

* Fix documentation import

* Add skeleton IF implementation

* Fix documentation typo

* Add LEDTIS docu to toctree

* Add missing title

* Finalize SD documentation

* Finalize SD-XL documentation

* Fix code style and quality

* Fix typo

* Fix return types

* added LEditsPPPipelineIF; minor changes for LEditsPPPipelineStableDiffusion and LEditsPPPipelineStableDiffusionXL

* Fix copy reference

* add documentation for IF

* Add first tests

* Fix batching for SD-XL

* Fix text encoding and perfect reconstruction for SD-XL

* Add tests for SD-XL, minor changes

* move user_mask to correct device, use cross_attention_kwargs also for inversion

* Example docstring

* Fix attention resolution for non-square images

* Refactoring for PR review

* Safely remove ledits_utils.py

* Style fixes

* Replace assertions with ValueError

* Remove LEditsPPPipelineIF

* Remove unecessary input checks

* Refactoring of CrossAttnProcessor

* Revert unecessary changes to scheduler

* Remove first progress-bar in inversion

* Refactor scheduler usage and reset

* Use imageprocessor instead of custom logic

* Fix scheduler init warning

* Fix error when running the pipeline in fp16

* Update documentation wrt perfect inversion

* Update tests

* Fix code quality and copy consistency

* Update LEditsPP import

* Remove enable/disable methods that are now in StableDiffusionMixin

* Change import in docs

* Revert import structure change

* Fix ledits imports

---------

Co-authored-by: Katharina Kornmeier <katharina.kornmeier@stud.tu-darmstadt.de>
2024-03-13 12:43:47 +02:00
Dhruv Nair
30132aba30 Update Stable Cascade Conversion Scripts (#7271)
* update

* update

* update

* update

* update

* update

* update

* update

* update

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-03-13 12:35:44 +05:30
Dhruv Nair
a17d6d6858 Update Cascade documentation (#7257)
* updates

* update

* update

* Update docs/source/en/api/pipelines/stable_cascade.md

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* update

* update

* update

* update

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Kashif Rasul <kashif.rasul@gmail.com>
2024-03-13 11:29:59 +05:30
Sayak Paul
8efd9ce787 [Chore] clean residue from copy-pasting in the UNet single file loader (#7295)
clean residue from copy-pasting
2024-03-13 11:20:13 +05:30
Dhruv Nair
299c16d0f5 Fix loading Img2Img refiner components in from_single_file (#7282)
* update

* update

* update

* update
2024-03-13 09:25:53 +05:30
Dhruv Nair
69f49195ac Fix passing pooled prompt embeds to Cascade Decoder and Combined Pipeline (#7287)
* update

* update

* update

* update
2024-03-13 09:21:41 +05:30
Dhruv Nair
ed224f94ba Add single file support for Stable Cascade (#7274)
* update

* update

* update

* update

* update

* update

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-03-13 08:37:31 +05:30
Sayak Paul
531e719163 [LoRA] use the PyTorch classes wherever needed and start depcrecation cycles (#7204)
* fix PyTorch classes and start deprecsation cycles.

* remove args crafting for accommodating scale.

* remove scale check in feedforward.

* assert against nn.Linear and not CompatibleLinear.

* remove conv_cls and lineaR_cls.

* remove scale

* 👋 scale.

* fix: unet2dcondition

* fix attention.py

* fix: attention.py again

* fix: unet_2d_blocks.

* fix-copies.

* more fixes.

* fix: resnet.py

* more fixes

* fix i2vgenxl unet.

* depcrecate scale gently.

* fix-copies

* Apply suggestions from code review

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* quality

* throw warning when scale is passed to the the BasicTransformerBlock class.

* remove scale from signature.

* cross_attention_kwargs, very nice catch by Yiyi

* fix: logger.warn

* make deprecation message clearer.

* address final comments.

* maintain same depcrecation message and also add it to activations.

* address yiyi

* fix copies

* Apply suggestions from code review

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* more depcrecation

* fix-copies

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-03-13 07:56:19 +05:30
Sayak Paul
4fbd310fd2 [Chore] switch to logger.warning (#7289)
switch to logger.warning
2024-03-13 06:56:43 +05:30
Dhruv Nair
2ea28d69dc Change export_to_video default (#6990)
update

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-03-12 17:13:12 +05:30
erliding
a1cb106459 instruct pix2pix pipeline: remove sigma scaling when computing classifier free guidance (#7006)
remove sigma scaling when computing cfg

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-03-11 10:23:31 +01:00
Sayak Paul
5dd8e04d4b [Dockerfiles] add: a workflow to check if docker containers can be built in case of modifications (#7129)
* add: a workflow to check if docker containers can be built if the files are modified.

* type

* unify docker image build test and push

* make it run on prs too.

* check

* check

* check

* check again.

* remove docker test build file.

* remove extra dependencies./

* check
2024-03-11 08:54:00 +05:30
pravdomil
165af7edd3 Inline InputPadder (#6582)
inline InputPadder
2024-03-09 11:24:07 -10:00
Haofan Wang
6c5f0de713 Support latents_mean and latents_std (#7132)
* update latents_mean and latents_std

* fix typos

* Update src/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py

* format

---------

Co-authored-by: ResearcherXman <xhs.research@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-03-09 08:54:19 -10:00
pravdomil
e64fdcf2ce Fix gmflow_dir (#6583)
* remove sys.path

* update readme
2024-03-09 08:53:17 -10:00
Sayak Paul
ec64f371b1 [Chore] remove tf mention (#7245)
remove tf mention
2024-03-09 11:39:04 +05:30
Aryan
cd6e1f1171 [docs/nits] Fix return values based on return_dict and minor doc updates (#7105)
* fix returns and docs

* handle latent output_type correctly

* revert to old tensor2vid impl

* make fix-copies

* fix return in community animatediff pipes

* fix return docstring

* fix return docs

* add missing quote

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2024-03-08 18:47:24 -10:00
Xiaodong Wang
6f2b310a17 [UNet_Spatio_Temporal_Condition] fix default num_attention_heads in unet_spatio_temporal_condition (#7205)
fix default num_attention_heads in unet_spatio_temporal_condition

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-03-08 18:29:06 -10:00
YiYi Xu
e3cd6cae50 update the signature of from_single_file (#7216)
* update the signature of from_single_file

* Update src/diffusers/loaders/single_file.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/diffusers/loaders/single_file.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/diffusers/loaders/single_file.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/diffusers/loaders/single_file.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-03-08 17:51:51 -10:00
qqii
e5ee05da76 [Community Pipeline] Skip Marigold depth_colored with color_map=None (#7170)
[Community Pipeline] Skip Marigold depth_colored generation by passing color_map=None
2024-03-08 17:51:11 -10:00
Mengqing Cao
e6ff752840 Add npu support (#7144)
* Add npu support

* fix for code quality check

* fix for code quality check
2024-03-08 17:12:55 -10:00
UmerHA
3f9c746fb2 Adds denoising_end parameter to ControlNetPipeline for SDXL (#6175)
* Initial commit

* Removed copy hints, as in original SDXLControlNetPipeline

Removed copy hints, as in original SDXLControlNetPipeline, as the `make fix-copies` seems to have issues with the @property decorator.

* Reverted changes to ControlNetXS

* Addendum to: Removed changes to ControlNetXS

* Added test+docs for mixture of denoiser

* Update docs/source/en/using-diffusers/controlnet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/using-diffusers/controlnet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-03-08 16:42:02 -10:00
Steven Liu
1f22c98820 [docs] IP-Adapter image embedding (#7226)
* update

* fix parameter name

* feedback

* add no mask version

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-03-08 08:49:58 -08:00
Sayak Paul
b4226bd6a7 [Tests] fix config checking tests (#7247)
* debig

* cast tuples to lists.

* debug

* handle upcast attention

* handle downblock types for vae.

* remove print.

* address Dhruv's comments.

* fix: upblock types.

* upcast attention

* debug

* debug

* debug

* better guarding.

* style
2024-03-08 18:53:07 +05:30
Chi
46fac824be Solve missing clip_sample implementation in FlaxDDIMScheduler. (#7017)
* I added a new doc string to the class. This is more flexible to understanding other developers what are doing and where it's using.

* Update src/diffusers/models/unet_2d_blocks.py

This changes suggest by maintener.

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update src/diffusers/models/unet_2d_blocks.py

Add suggested text

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update unet_2d_blocks.py

I changed the Parameter to Args text.

* Update unet_2d_blocks.py

proper indentation set in this file.

* Update unet_2d_blocks.py

a little bit of change in the act_fun argument line.

* I run the black command to reformat style in the code

* Update unet_2d_blocks.py

similar doc-string add to have in the original diffusion repository.

* Fix bug for mention in this issue section #6901

* Update src/diffusers/schedulers/scheduling_ddim_flax.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Fix linter

* Restore empty line

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2024-03-08 12:01:59 +01:00
Martin Müller
b33b64f595 Make mid block optional for flax UNet (#7083)
* make mid block optional for flax UNet

* make style
2024-03-08 11:35:06 +01:00
Sayak Paul
9d9744075e [Easy] fix: save_model_card utility of the DreamBooth SDXL LoRA script (#7258)
* fix: save_model_card utility.

* fix a little more to make it more lenient.

* remove lower()
2024-03-08 15:22:23 +05:30
Sayak Paul
d9a3b69806 [Utils] Improve " # Copied from ..." statements in the pipelines (#6917)
* copied from for t2i pipelines without ip adapter support.

* two more pipelines with proper copied from comments.

* revert to the original implementation
2024-03-08 14:42:26 +05:30
Sayak Paul
f7e5954d5e [Tests] fix: VAE tiling tests when setting the right device (#7246)
* debug

* checking

* fix more

* remove device.

* fix-copies
2024-03-08 10:01:25 +05:30
Sayak Paul
8e19c073e5 [Core] throw error when patch inputs and layernorm are provided for Transformers2D (#7200)
* throw error when patch inputs and layernorm are provided for transformers2d.

* add comment on supported norm_types in transformers2d

* more check

* fix: norm _type handling
2024-03-08 09:41:02 +05:30
Steven Liu
f6df16cbb8 [docs] Community tips (#7137)
* tips

* feedback

* callback only
2024-03-07 15:17:26 -08:00
pravdomil
b24f78349c use self.device (#6595)
* use self.device

* use device

* fix

* fix
2024-03-07 12:46:23 -10:00
Steven Liu
3ce905c9d0 [docs] Merge LoRAs (#7213)
* merge loras

* feedback

* torch.compile

* feedback
2024-03-07 11:28:50 -08:00
bimsarapathiraja
f539497ab4 Remove the line. Using it create wrong output (#7075)
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-03-07 10:04:31 -08:00
Dhruv Nair
39dfb7abbd Raise an error when trying to use SD Cascade Decoder with dtype bfloat16 and torch < 2.2 (#7244)
update
2024-03-07 17:55:46 +05:30
Sayak Paul
196835695e fix: support for loading playground v2.5 single file checkpoint. (#7230)
* fix: support for loading playground v2.5 single file checkpoint.

* remove is_playground_model.

* fix: edm key

* apply Dhruv's comments but errors.

* fix: things.

* delegate model_type inference to a function.

* address Dhruv's comment.

* address rest of the comments.

* fix: kwargs

* fix

* update

---------

Co-authored-by: DN6 <dhruv.nair@gmail.com>
2024-03-07 15:31:03 +05:30
Sayak Paul
0d4dfbbd0a [Examples] fix: prior preservation setting in DreamBooth LoRA SDXL script. (#7242)
fix: prior preservation setting in DreamBooth LoRA SDXL script.

Co-authored-by: Linoy Tsaban <57615435+linoytsaban@users.noreply.github.com>
2024-03-07 15:19:58 +05:30
Rinne
ada3bb941b fix: remove duplicated code in TemporalBasicTransformerBlock. (#7212)
fix: remove duplicate code in TemporalBasicTransformerBlock.

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-03-07 13:25:22 +05:30
Linoy Tsaban
b5814c5555 add DoRA training feature to sdxl dreambooth lora script (#7235)
* dora in canonical script

* add mention of DoRA to readme
2024-03-07 11:43:37 +05:30
Paakhhi
9940573618 Refactor Prompt2Prompt: Inherit from DiffusionPipeline (#7211)
refactor: inherit from DiffusionPipeline instead of StableDiffusionPipeline
2024-03-06 19:34:40 -10:00
Sayak Paul
59433ca1ae [Core] move out the utilities from pipeline_utils.py (#7234)
move out the utilities from pipeline_utils.py
2024-03-07 08:45:24 +05:30
Nate Landman
534f5d54fa Update train_dreambooth_lora_sdxl_advanced.py (#7227)
adding the type gives you

```
TypeError: _StoreTrueAction.__init__() got an unexpected keyword argument 'type'
```
2024-03-06 12:41:48 +01:00
Kashif Rasul
40aa47b998 [Pipiline] Wuerstchen v3 aka Stable Cascasde pipeline (#6487)
* initial diffNext v3

* move to v3 folder

* imports

* dry up the unets

* no switch_level

* fix init

* add switch_level tp config

* Fixed some things

* Added pooled text embeddings

* Initial work on adding image encoder

* changes from @dome272

* Stuff for the image encoder processing and variable naming in decoder

* fix arg name

* inference fixes

* inference fixes

* default TimestepBlock without conds

* c_skip=0 by default

* fix bfloat16 to cpu

* use config

* undo temp change

* fix gen_c_embeddings args

* change text encoding

* text encoding

* undo print

* undo .gitignore change

* Allow WuerstchenV3PriorPipeline to use the base DDPM & DDIM schedulers

* use WuerstchenV3Unet in both pipelines

* fix imports

* initial failing tests

* cleanup

* use scheduler.timesterps

* some fixes to the tests, still not fully working

* fix tests

* fix prior tests

* add dropout to the model_kwargs

* more tests passing

* update expected_slice

* initial rename

* rename tests

* rename class names

* make fix-copies

* initial docs

* autodocs

* typos

* fix arg docs

* add text_encoder info

* combined pipeline has optional image arg

* fix documentation

* Update src/diffusers/pipelines/stable_cascade/modeling_stable_cascade_common.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/pipelines/stable_cascade/modeling_stable_cascade_common.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/pipelines/stable_cascade/modeling_stable_cascade_common.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/stable_cascade/modeling_stable_cascade_common.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/stable_cascade/modeling_stable_cascade_common.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* use self.config

* Update src/diffusers/pipelines/stable_cascade/modeling_stable_cascade_common.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* c_in -> in_channels

* removed kwargs from unet's forward

* Update src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* remove older callback api

* removed kwargs and fixed decoder guidance > 1

* decoder takes emeds

* check and use image_embeds

* fixed all but one decoder test

* fix decoder tests

* update callback api

* fix some more combined tests

* push combined pipeline

* initial docs

* fix doc_string

* update combined api

* no test_callback_inputs test for combined pipeline

* add optional components

* fix ordering of components

* fix combined tests

* update convert script

* Update src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* fix imports

* move effnet out of deniosing loop

* prompt_embeds_pooled only when doing guidance

* Fix repeat shape

* move StableCascadeUnet to models/unets/

* more descriptive names

* converted when numpy()

* StableCascadePriorPipelineOutput docs

* rename StableCascadeUNet

* add slow tests

* fix slow tests

* update

* update

* updated model_path

* add args for weights

* set push_to_hub to false

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

---------

Co-authored-by: Dominic Rampas <d6582533@gmail.com>
Co-authored-by: Pablo Pernias <pablo@pernias.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: 99991 <99991@users.noreply.github.com>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2024-03-06 15:07:25 +05:30
Jinay Jain
1bc0d37ffe [bug] Fix float/int guidance scale not working in StableVideoDiffusionPipeline (#7143)
* [bug] Fix float/int guidance scale not working in `StableVideoDiffusionPipeline`

* Add test to disable CFG on SVD

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-03-06 14:05:07 +05:30
bram-w
eb942b866a SDXL Turbo support and example launch (#6473)
* support and example launch for sdxl turbo

* White space fixes

* Trailing whitespace character

* ruff format

* fix guidance_scale and steps for turbo mode

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Radames Ajna <radamajna@gmail.com>
2024-03-06 11:51:01 +05:30
Michael
687bc27727 add TCD Scheduler (#7174)
* add: support TCD scheduler


---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-03-04 19:43:34 -10:00
iczaw
6246c70d21 [Community] PromptDiffusion Pipeline (#6752)
* Create promptdiffusioncontrolnet.py

* Update __init__.py

Added PromptDiffusionControlNetModel

* Update __init__.py

Added PromptDiffusionControlNetModel

* Update promptdiffusioncontrolnet.py

* Create pipeline_prompt_diffusion.py

Added Prompt Diffusion pipeline.

* Create convert_original_promptdiffusion_to_diffusers.py

* Update convert_from_ckpt.py

Added download_promptdiffusion_from_original_ckpt, convert_promptdiffusion_checkpoint

* Update promptdiffusioncontrolnet.py

* Update pipeline_prompt_diffusion.py

* Update README.md

* Update pipeline_prompt_diffusion.py

* Delete src/diffusers/models/promptdiffusioncontrolnet.py

* Update __init__.py

* Update __init__.py

* Delete scripts/convert_original_promptdiffusion_to_diffusers.py

* Update convert_from_ckpt.py

* Update README.md

* Delete examples/community/pipeline_prompt_diffusion.py

* Create README.md

* Create promptdiffusioncontrolnet.py

* Create convert_original_promptdiffusion_to_diffusers.py

* Create pipeline_prompt_diffusion.py

* Update README.md

* Update pipeline_prompt_diffusion.py

* Update README.md

* Update pipeline_prompt_diffusion.py

* Update convert_original_promptdiffusion_to_diffusers.py

* Update promptdiffusioncontrolnet.py

* Update README.md

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-03-05 09:06:02 +05:30
Sayak Paul
577b8a2783 [Core] errors should be caught as soon as possible. (#7203)
errors should be caught as soon as possible.
2024-03-05 08:57:38 +05:30
Vinh H. Pham
13f0c8b219 [Docs] Update callback.md code example (#7150)
Update callback.md

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-03-05 08:44:19 +05:30
Aryan
fa1bdce3d4 [docs] Improve SVD pipeline docs (#7087)
* update svd docs

* fix example doc string

* update return type hints/docs

* update type hints

* Fix typos in pipeline_stable_video_diffusion.py

* make style && make fix-copies

* Update src/diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* update based on suggestion

---------

Co-authored-by: M. Tolga Cangöz <mtcangoz@gmail.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-03-04 12:12:38 -08:00
Thiago Crepaldi
ca6cdc77a9 Enable PyTorch's FakeTensorMode for EulerDiscreteScheduler scheduler (#7151)
* Enable FakeTensorMode for EulerDiscreteScheduler scheduler

PyTorch's FakeTensorMode does not support `.numpy()` or `numpy.array()`
calls.

This PR replaces `sigmas` numpy tensor by a PyTorch tensor equivalent

Repro

```python
with torch._subclasses.FakeTensorMode() as fake_mode, ONNXTorchPatcher():
    fake_model = DiffusionPipeline.from_pretrained(model_name, low_cpu_mem_usage=False)
```

that otherwise would fail with
`RuntimeError: .numpy() is not supported for tensor subclasses.`

* Address comments
2024-03-04 09:19:59 -10:00
M. Tolga Cangöz
f4977abcd8 Fix typos (#7181)
* Fix typos

* Fix typos

* Fix typos and update documentation in lora.md
2024-03-04 10:28:23 -08:00
fpgaminer
df8559a7f9 Fix: UNet2DModel::__init__ type hints; fixes issue #4806 (#7175)
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-03-04 09:50:34 -08:00
YiYi Xu
8f206a5873 fix a bug in from_config (#7192)
* fix

* fix

* update comment

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
2024-03-04 07:18:59 -10:00
Linoy Tsaban
8da360aa12 [training scripts] add tags of diffusers-training (#7206)
* add tags for diffusers training

* add tags for diffusers training

* add tags for diffusers training

* add tags for diffusers training

* add tags for diffusers training

* add tags for diffusers training

* add dora tags for drambooth lora scripts

* style
2024-03-04 22:17:25 +05:30
Dhruv Nair
869bad3e52 FIx torch and cuda version in ONNX tests (#7164)
update

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-03-04 15:46:39 +05:30
Linoy Tsaban
01ee0978cc [advanced dreambooth lora sdxl] add DoRA training feature (#7072)
* add is_dora arg

* style

* add dora training feature to sd 1.5 script

* added notes about DoRA training

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-03-04 11:07:54 +01:00
Sayak Paul
56b68459f5 Update requirements.txt to remove huggingface-cli (#7202)
Internal message: https://huggingface.slack.com/archives/C03Q18WK18T/p1709529892062479
2024-03-04 11:29:01 +05:30
Vinh H. Pham
2ca264244b adding callback_on_step_end for StableDiffusionLDM3DPipeline (#7149)
* refactor callback

* run make style

* add copy

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-03-03 18:44:14 -10:00
Sayak Paul
b9e1c30d0e [Docs] more elaborate example for peft torch.compile (#7161)
more elaborate example for peft torch.compile
2024-03-04 08:55:30 +05:30
Sayak Paul
03cd62520f feat: add ip adapter benchmark (#6936)
* feat: add ip adapter benchmark

* sdxl support too.

* Empty-Commit
2024-03-03 15:10:55 +05:30
Álvaro Somoza
001b14023e [ip-adapter] fix problem using embeds with the plus version of ip adapters (#7189)
* initial

* check_inputs fix to the rest of pipelines

* add fix for no cfg too

* use of variable

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-03-02 21:37:00 -10:00
Junsong Chen
f55873b783 Fix PixArt 256px inference (#6789)
* feat 256px diffusers inference bug

* change the max_length of T5 to pipeline config file

* fix bug in convert_pixart_alpha_to_diffusers.py

* Update scripts/convert_pixart_alpha_to_diffusers.py

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* remove multi_scale_train parser

* Update src/diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* styling

* change `model_token_max_length` to call argument.

* Refactoring

* add: max_sequence_length to the docstring.

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-03-03 10:31:21 +05:30
Sayak Paul
ccb93dcad1 Support EDM-style training in DreamBooth LoRA SDXL script (#7126)
* add: dreambooth lora script for Playground v2.5

* fix: kwarg

* address suraj's comments.

* Apply suggestions from code review

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* apply suraj's suggestion

* incorporate changes in the canonical script./

* tracker naming

* fix: schedule determination

* add: two simple tests

* remove playground script

* note about edm-style training

* address pedro's comments.

* address part of Suraj's comments.

* Apply suggestions from code review

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* remove guidance_scale.

* use mse_loss.

* add comments for preconditioning.

* quality

* Update examples/dreambooth/train_dreambooth_lora_sdxl.py

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* tackle v-pred.

* Empty-Commit

* support edm for sdxl too.

* address suraj's comments.

* Empty-Commit

---------

Co-authored-by: Suraj Patil <surajp815@gmail.com>
2024-03-03 09:28:57 +05:30
YiYi Xu
ec953047bc [stalebot] fix a bug (#7156)
fix

Co-authored-by: yiyixuxu <yixu310@gmail,com>
2024-03-01 09:44:00 -10:00
Oleh
9a2600ede9 Map speedup (#6745)
* Speed up dataset mapping

* Fix missing columns

* Remove cache files cleanup

* Update examples/text_to_image/train_text_to_image_sdxl.py

* make style

* Fix code style

* style

* Empty-Commit

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Quentin Lhoest <42851186+lhoestq@users.noreply.github.com>
Co-authored-by: Quentin Lhoest <lhoest.q@gmail.com>
2024-03-01 21:38:21 +05:30
Sayak Paul
5f150c4cef fix: loading problem for sdxl lora dreambooth (#7166) 2024-03-01 19:30:48 +05:30
Quentin Lhoest
66f8bd6869 Fix vae_encodings_fn hash in train_text_to_image_sdxl.py (#7171)
Update train_text_to_image_sdxl.py
2024-03-01 16:56:54 +05:30
Dhruv Nair
64a8cd627a [CI] Remove max parallel flag on slow test runners (#7162)
update
2024-03-01 11:38:21 +05:30
Sayak Paul
5d3923b670 Fix LCM benchmark test (#7158)
* make workflow dispatchable.

* fix: lcm lora compile
2024-03-01 10:33:44 +05:30
Sayak Paul
9451235e5a [Urgent][Docker CI] pin uv version for now and a minor change in the Slack notification (#7155)
pin uv version for now.
2024-03-01 10:11:07 +05:30
Sayak Paul
c2b6ac4e34 [CI] fix path filtering in the documentation workflows (#7153)
fix: path
2024-03-01 07:18:49 +05:30
YiYi Xu
06b01ea87e [ip-adapter] refactor prepare_ip_adapter_image_embeds and skip load image_encoder (#7016)
* add

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-02-29 15:38:49 -10:00
M. Tolga Cangöz
f4fc75035f [Docs] Fix typos (#7131)
* Add copyright notice to relevant files and fix typos

* Set `timestep_spacing` parameter of `StableDiffusionXLPipeline`'s scheduler to `'trailing'`.

* Update `StableDiffusionXLPipeline.from_single_file` by including EulerAncestralDiscreteScheduler with `timestep_spacing="trailing"` param.

* Update model loading method in SDXL Turbo documentation
2024-02-29 13:03:01 -08:00
Dhruv Nair
8f2d13c684 Fix setting fp16 dtype in AnimateDiff convert script. (#7127)
* update

* update
2024-02-29 22:47:39 +05:30
Sayak Paul
fcfa270fbd add: support for notifying the maintainers about the docker ci status. (#7113) 2024-02-29 19:28:52 +05:30
Sayak Paul
56dac1cedc limit documentation workflow runs for relevant changes. (#7125) 2024-02-29 19:01:54 +05:30
Sayak Paul
3daebe2b44 use uv for installing stuff in the workflows. (#7116)
* use uv for installing stuff in the workflows.

* fix: from source installation command when using uv.

* fix uv venv issue

* edit editable installation.

* fix quality installation

* checking

* make editable.

* more check

* check

* add: export step

* venv handling.

* checking.

* fix: dependency workflows.

* peft tests.

* proper way to initialize env.

* Empty-Commit

* Empty-Commit
2024-02-29 08:27:24 +05:30
Aryan
abd922bd0c [docs] unet type hints (#7134)
update
2024-02-28 10:39:01 -10:00
elucida
fa633ed6de refactor: move model helper function in pipeline to a mixin class (#6571)
* move model helper function in pipeline to EfficiencyMixin

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-02-28 09:26:39 -10:00
YiYi Xu
2cad1a8465 [stalebot] don't close the issue if the stale label is removed (#7106)
* fix

* fix

* remove stalebot's ability to close issues

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
2024-02-28 08:04:28 -10:00
Dhruv Nair
e6cf21906d [Diffusers CI] Switch slow test runners (#7123)
update
2024-02-28 22:15:04 +05:30
Sayak Paul
7db935a141 fix kwarg in the SDXL LoRA DreamBooth (#7124)
* fix kwarg

* Empty-Commit
2024-02-28 10:21:28 +05:30
Sayak Paul
fa9bc029b4 [Tests] make test steps dependent on certain things and general cleanup of the workflows (#7026)
make tests conditional and other things.
2024-02-28 08:26:46 +05:30
Beinsezii
2e31a759b5 DPMSolverMultistep add rescale_betas_zero_snr (#7097)
* DPMMultistep rescale_betas_zero_snr

* DPM upcast samples in step()

* DPM rescale_betas_zero_snr UT

* DPMSolverMulti move sample upcast after model convert

Avoids having to re-use the dtype.

* Add a newline for Ruff
2024-02-27 11:37:34 -10:00
M. Tolga Cangöz
e51862bbed [Docs] Fix typos (#7118)
Fix typos, formatting and remove trailing whitespace
2024-02-27 12:38:00 -08:00
Suraj Patil
8492db2332 add DPM scheduler with EDM formulation (#7120)
* add DPM scheduler with EDM formulation

* set sigmas in init

* add _compute_sigmas

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* address some review comments

* up,

* add tests

---------

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2024-02-27 23:39:38 +05:30
Suraj Patil
f57e7bd92c Add EDMEulerScheduler (#7109)
* Add EDMEulerScheduler

* address review comments

* fix import

* fix test

* add tests

* add co-author

Co-authored-by:  @dg845 dgu8957@gmail.com
2024-02-27 17:51:19 +05:30
Sayak Paul
3e3d46924b [Dockerfile] remove uv from docker jax tpu (#7115)
remove uv from docker jax tpu
2024-02-27 16:25:50 +05:30
Suraj Patil
d71ecad8cd denormalize latents with the mean and std if available (#7111)
* denormalize latents with the mean and std if available

* fix denormalize

* add latent mean and std in vae config

* address sayak's comment
2024-02-27 16:20:05 +05:30
Dhruv Nair
ac49f97a75 Add tests to check configs when using single file loading (#7099)
* update

* update

* update

* update

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-02-27 15:47:23 +05:30
Sayak Paul
04bafcbbc2 move to uv in the Dockerfiles. (#7094)
move to uv in the Dockerfiles.
2024-02-27 15:11:28 +05:30
Sayak Paul
7081a25618 [Examples] Multiple enhancements to the ControlNet training scripts (#7096)
* log_validation unification for controlnet.

* additional fixes.

* remove print.

* better reuse and loading

* make final inference run conditional.

* Update examples/controlnet/README_sdxl.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* resize the control image in the snippet.

---------

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2024-02-27 09:18:46 +05:30
Sayak Paul
848f9fe6ce [Core] pass revision in the loading_kwargs. (#7019)
* pass revision in the loading_kwarhs.

* remove revision from load_sub_model.
2024-02-27 08:52:38 +05:30
Younes Belkada
8a692739c0 FIX [PEFT / Core] Copy the state dict when passing it to load_lora_weights (#7058)
* copy the state dict in load lora weights

* fixup
2024-02-27 02:42:23 +01:00
Sayak Paul
5aa31bd674 [Easy] edit issue and PR templates (#7092)
edit templates to remove patrick's name.
2024-02-27 07:10:03 +05:30
jinghuan-Chen
88aa7f6ebf Make LoRACompatibleConv padding_mode work. (#6031)
* Make LoRACompatibleConv padding_mode work.

* Format code style.

* add fast test

* Update src/diffusers/models/lora.py

Simplify the code by patrickvonplaten.

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* code refactor

* apply patrickvonplaten suggestion to simplify the code.

* rm test_lora_layers_old_backend.py and add test case in test_lora_layers_peft.py

* update test case.

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-02-26 14:05:13 -10:00
M. Tolga Cangöz
ad310af0d6 Fix EMA in train_text_to_image_sdxl.py (#7048)
* Fix typos
2024-02-26 10:39:57 -10:00
Dhruv Nair
d603ccb614 Small change to download in dance diffusion convert script (#7070)
* update

* make style
2024-02-26 12:05:19 +05:30
jiqing-feng
fd0f469568 Resize image before crop (#7095)
resize first

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-02-26 11:14:08 +05:30
Stephen
ae84e405a3 Pass use_linear_projection parameter to mid block in UNetMotionModel (#7035)
* pass linear projection parameter to mid block

* add cond_proj_dim to motion UNet

* run style and quality checks
2024-02-26 10:49:14 +05:30
Aryan
3a66113306 [Community] Bug fix + Latest IP-Adapter impl. for AnimateDiff img2vid/controlnet (#7086)
* fix img2vid; update to latest ip-adapter impl

* update README

* update animatediff controlnet to latest impl
2024-02-26 10:27:42 +05:30
Vinh H. Pham
7f16187182 Modularize Dreambooth LoRA SDXL inferencing during and after training (#6655)
* modularize log validation

* run make style

* revert import wandb

* fix code quality & import wandb

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-02-26 09:53:12 +05:30
Vinh H. Pham
f11b922b4f Modularize Dreambooth LoRA SD inferencing during and after training (#6654)
* modulize log validation

* run make style and refactor wanddb support

* remove redundant initialization

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-02-26 09:01:39 +05:30
Steven Liu
3dd4168d4c [docs] Minor updates (#7063)
* updates

* feedback
2024-02-25 09:38:02 -08:00
Fabio Rigano
1c47d1fc05 Fix head_to_batch_dim for IPAdapterAttnProcessor (#7077)
* Fix IPAdapterAttnProcessor

* Fix batch_to_head_dim and revert reshape
2024-02-25 00:05:46 -10:00
Aryan
bbf70c8739 Fix truthy-ness condition in pipelines that use denoising_start (#6912)
* fix denoising start

* fix tests

* remove debug
2024-02-24 23:39:22 -10:00
M. Tolga Cangöz
738c986957 [Refactor] StableDiffusionReferencePipeline inheriting from DiffusionPipeline (#7071)
Refactor StableDiffusionReferencePipeline to inherit from DiffusionPipeline rather than StableDiffusionPipeline
2024-02-23 22:04:31 -10:00
caiyueliang
c09bb588d3 fix: TensorRTStableDiffusionPipeline cannot set guidance_scale (#7065) 2024-02-23 14:59:02 -10:00
bimsarapathiraja
66a7160f9d Change images to image. The variable images is not used anywhere (#7074) 2024-02-23 10:40:21 -10:00
Chong-U Lim
f05ee56b2f Fix docstring of community pipeline imagic (#7062) 2024-02-23 09:37:52 -08:00
M. Tolga Cangöz
34cc7f9b98 Fix typos (#7068) 2024-02-23 09:24:51 -08:00
M. Tolga Cangöz
53605ed00a [Refactor] save_model_card function in text_to_image examples (#7051)
* Refactor save_model_card function to handle images and repo_folder parameters

* Discard changes to examples/text_to_image/train_text_to_image.py

* Discard changes to examples/text_to_image/train_text_to_image_lora_sdxl.py

* Update train_text_to_image_lora.py

* Update train_text_to_image_sdxl.py
2024-02-23 20:57:37 +05:30
Aryan
bb1b76d3bf IPAdapterTesterMixin (#6862)
* begin IPAdapterTesterMixin



---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-02-22 14:25:33 -10:00
YiYi Xu
e4b8f173b9 re-add unet refactor PR (#7044)
* add

* remove copied from

---------

Co-authored-by: ultranity <1095429904@qq.com>
Co-authored-by: yiyixuxu <yixu310@gmail,com>
2024-02-21 22:00:32 -10:00
Hezi Zisman
f0216b7756 allow explicit tokenizer & text_encoder in unload_textual_inversion (#6977)
* allow passing tokenizer & text_encoder to unload_textual_inversion


---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: Fabio Rigano <fabio2rigano@gmail.com>
Co-authored-by: Linoy Tsaban <57615435+linoytsaban@users.noreply.github.com>
2024-02-21 16:53:25 -10:00
Lincoln Stein
d5f444de4b Update checkpoint_merger pipeline to pass the "variant" argument (#6670)
* make checkpoint_merger pipeline pass the "variant" argument to from_pretrained()

* make style

---------

Co-authored-by: Lincoln Stein <lstein@gmail.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-02-21 15:45:50 -10:00
M. Tolga Cangöz
5a54dc9e95 Fix typos in text_to_image examples (#7050)
Update copyright information and fix typos in text_to_image examples
2024-02-21 16:40:45 -08:00
YiYi Xu
6fedbd850a fix doc example for fom_single_file (#7015)
* fix doc

* remove use_safetensors from signature

* more

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
2024-02-21 19:11:21 +05:30
pravdomil
1b3cfb1b10 update header (#6596)
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-02-20 10:09:15 -08:00
Dhruv Nair
af13a90ebd Remove disable_full_determinism from StableVideoDiffusion xformers test. (#7039)
* update

* update
2024-02-20 21:43:23 +05:30
Dhruv Nair
3067da1261 Fix load_model_dict_into_meta for ControlNet from_single_file (#7034)
update
2024-02-20 11:01:02 +05:30
Dhruv Nair
6bceaea3fe Update ControlNet Inpaint single file test (#7022)
update
2024-02-20 10:58:30 +05:30
Dhruv Nair
baf9924be7 Fix alt text and image links in AnimateLCM docs (#7029)
update
2024-02-20 08:30:44 +05:30
Nontapat Kaewamporn
d8d208acde Supper IP Adapter weight loading in StableDiffusionXLControlNetInpaintPipeline (#7031)
* support ip adapter loading

* fix style
2024-02-19 09:44:35 -10:00
Vinh H. Pham
e0f33dfca4 IP-Adapter support for StableDiffusionXLControlNetInpaintPipeline (#6941)
* add ip-adapter support

* support ip image embeds

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-02-19 08:20:24 -10:00
Dhruv Nair
15b125bb0e Add section on AnimateLCM to docs (#7024)
* update

* update

* update
2024-02-19 22:20:37 +05:30
ustcuna
12004bf3a7 [Community Pipelines]Accelerate inference of stable diffusion xl (SDXL) by IPEX on CPU (#6683)
* add stable_diffusion_xl_ipex community pipeline

* make style for code quality check

* update docs as suggested

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2024-02-19 13:39:08 +01:00
Dhruv Nair
d2fc5ebb95 [Refactor] FreeInit for AnimateDiff based pipelines (#6874)
* update

* update

* update

* update

* update

* update

* update

* update

* update

* update
2024-02-19 11:11:42 +05:30
YiYi Xu
779eef95b4 [from_single_file] pass torch_dtype to set_module_tensor_to_device (#6994)
fix

Co-authored-by: yiyixuxu <yixu310@gmail,com>
2024-02-19 10:09:19 +05:30
Dhruv Nair
d5b8d1ca04 Fix Pixart Slow Tests (#6962)
* update

* update
2024-02-19 09:50:18 +05:30
Fabio Rigano
eba7e7a6d7 IP-Adapter attention masking (#6847)
* Add attention masking to attn processors

* Update tensor conversion

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-02-18 18:06:14 -10:00
Sayak Paul
31de879fb4 [IP2P] Make text encoder truly optional in InstructPi2Pix (#6995)
* make text encoder component truly optional.

* more fixes

* Apply suggestions from code review

Co-authored-by: YiYi Xu <yixu310@gmail.com>

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-02-18 20:21:22 +05:30
nbpppp
07349c25fe Fix deprecation warning for torch.utils._pytree._register_pytree_node in PyTorch 2.2 (#7008)
Fixed deprecation warning for torch.utils._pytree._register_pytree_node in PyTorch 2.2

Co-authored-by: Yinghua <yzho0423@uni.sydney.edu.au>
2024-02-18 20:11:33 +05:30
YiYi Xu
8974c50bff [SVD] fix a bug when passing image as tensor (#6999)
* fix

* update docstring

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
2024-02-17 23:10:31 -10:00
Mikhail Koltakov
c18058b405 Fixed typos in dosctrings of __init__() and in forward() of Unet3DConditionModel (#6663)
* Fixed typos in __init__ and in forward of Unet3DConditionModel

* Resolving conflicts

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-02-17 21:56:16 -10:00
Thomas Lips
2938d5a672 Add documentation for strength parameter in Controlnet_img2img pipelines (#6951)
copy docstring for `strength` from  stablediffusion img2img pipeline to controlnet img2img pipelines
2024-02-17 21:47:02 -10:00
Sayak Paul
d4ade821cd start depcrecation cycle for lora_attention_proc 👋 (#7007) 2024-02-18 13:11:30 +05:30
Steven Liu
3a7e481611 [docs] Video generation (#6701)
* first draft

* fix path

* fix path

* i2vgen-xl

* review

* modelscopet2v

* feedback
2024-02-16 16:35:37 -08:00
Steven Liu
d649d6c6f3 [docs] Fix callout (#6998)
Update ip_adapter.md
2024-02-16 10:37:12 -10:00
Bhavay Malhotra
777063e1bf Update textual_inversion.py (#6952)
* Update textual_inversion.py

* Apply suggestions from code review

* Update textual_inversion.py

* Update textual_inversion.py

* Update textual_inversion.py

* Update textual_inversion.py

* Update examples/textual_inversion/textual_inversion.py

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update textual_inversion.py

* styling

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-02-16 15:39:51 +05:30
Stephen
104afbce84 Standardize model card for textual inversion sdxl (#6963)
* standardize model card

* fix tags

* correct import styling and update tags

* run make style and make quality

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-02-16 14:27:11 +05:30
585 changed files with 58222 additions and 14194 deletions

View File

@@ -66,32 +66,32 @@ body:
Questions on DiffusionPipeline (Saving, Loading, From pretrained, ...):
Questions on pipelines:
- Stable Diffusion @yiyixuxu @DN6 @sayakpaul @patrickvonplaten
- Stable Diffusion XL @yiyixuxu @sayakpaul @DN6 @patrickvonplaten
- Kandinsky @yiyixuxu @patrickvonplaten
- ControlNet @sayakpaul @yiyixuxu @DN6 @patrickvonplaten
- T2I Adapter @sayakpaul @yiyixuxu @DN6 @patrickvonplaten
- IF @DN6 @patrickvonplaten
- Text-to-Video / Video-to-Video @DN6 @sayakpaul @patrickvonplaten
- Wuerstchen @DN6 @patrickvonplaten
- Stable Diffusion @yiyixuxu @DN6 @sayakpaul
- Stable Diffusion XL @yiyixuxu @sayakpaul @DN6
- Kandinsky @yiyixuxu
- ControlNet @sayakpaul @yiyixuxu @DN6
- T2I Adapter @sayakpaul @yiyixuxu @DN6
- IF @DN6
- Text-to-Video / Video-to-Video @DN6 @sayakpaul
- Wuerstchen @DN6
- Other: @yiyixuxu @DN6
Questions on models:
- UNet @DN6 @yiyixuxu @sayakpaul @patrickvonplaten
- VAE @sayakpaul @DN6 @yiyixuxu @patrickvonplaten
- Transformers/Attention @DN6 @yiyixuxu @sayakpaul @DN6 @patrickvonplaten
- UNet @DN6 @yiyixuxu @sayakpaul
- VAE @sayakpaul @DN6 @yiyixuxu
- Transformers/Attention @DN6 @yiyixuxu @sayakpaul @DN6
Questions on Schedulers: @yiyixuxu @patrickvonplaten
Questions on Schedulers: @yiyixuxu
Questions on LoRA: @sayakpaul @patrickvonplaten
Questions on LoRA: @sayakpaul
Questions on Textual Inversion: @sayakpaul @patrickvonplaten
Questions on Textual Inversion: @sayakpaul
Questions on Training:
- DreamBooth @sayakpaul @patrickvonplaten
- Text-to-Image Fine-tuning @sayakpaul @patrickvonplaten
- Textual Inversion @sayakpaul @patrickvonplaten
- ControlNet @sayakpaul @patrickvonplaten
- DreamBooth @sayakpaul
- Text-to-Image Fine-tuning @sayakpaul
- Textual Inversion @sayakpaul
- ControlNet @sayakpaul
Questions on Tests: @DN6 @sayakpaul @yiyixuxu
@@ -99,7 +99,7 @@ body:
Questions on JAX- and MPS-related things: @pcuenca
Questions on audio pipelines: @DN6 @patrickvonplaten
Questions on audio pipelines: @DN6

View File

@@ -38,13 +38,13 @@ members/contributors who may be interested in your PR.
Core library:
- Schedulers: @yiyixuxu and @patrickvonplaten
- Pipelines: @patrickvonplaten and @sayakpaul
- Training examples: @sayakpaul and @patrickvonplaten
- Docs: @stevhliu and @yiyixuxu
- Schedulers: @yiyixuxu
- Pipelines: @sayakpaul @yiyixuxu @DN6
- Training examples: @sayakpaul
- Docs: @stevhliu and @sayakpaul
- JAX and MPS: @pcuenca
- Audio: @sanchit-gandhi
- General functionalities: @patrickvonplaten and @sayakpaul
- General functionalities: @sayakpaul @yiyixuxu @DN6
Integrations:

View File

@@ -1,6 +1,7 @@
name: Benchmarking tests
on:
workflow_dispatch:
schedule:
- cron: "30 1 1,15 * *" # every 2 weeks on the 1st and the 15th of every month at 1:30 AM
@@ -30,9 +31,9 @@ jobs:
nvidia-smi
- name: Install dependencies
run: |
apt-get update && apt-get install libsndfile1-dev libgl1 -y
python -m pip install -e .[quality,test]
python -m pip install pandas peft
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install pandas peft
- name: Environment
run: |
python utils/print_env.py

View File

@@ -1,21 +1,58 @@
name: Build Docker images (nightly)
name: Test, build, and push Docker images
on:
pull_request: # During PRs, we just check if the changes Dockerfiles can be successfully built
branches:
- main
paths:
- "docker/**"
workflow_dispatch:
schedule:
- cron: "0 0 * * *" # every day at midnight
concurrency:
group: docker-image-builds
cancel-in-progress: false
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
env:
REGISTRY: diffusers
CI_SLACK_CHANNEL: ${{ secrets.CI_DOCKER_CHANNEL }}
jobs:
build-docker-images:
runs-on: ubuntu-latest
test-build-docker-images:
runs-on: [ self-hosted, intel-cpu, 8-cpu, ci ]
if: github.event_name == 'pull_request'
steps:
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v1
- name: Check out code
uses: actions/checkout@v3
- name: Find Changed Dockerfiles
id: file_changes
uses: jitterbit/get-changed-files@v1
with:
format: 'space-delimited'
token: ${{ secrets.GITHUB_TOKEN }}
- name: Build Changed Docker Images
run: |
CHANGED_FILES="${{ steps.file_changes.outputs.all }}"
for FILE in $CHANGED_FILES; do
if [[ "$FILE" == docker/*Dockerfile ]]; then
DOCKER_PATH="${FILE%/Dockerfile}"
DOCKER_TAG=$(basename "$DOCKER_PATH")
echo "Building Docker image for $DOCKER_TAG"
docker build -t "$DOCKER_TAG" "$DOCKER_PATH"
fi
done
if: steps.file_changes.outputs.all != ''
build-and-push-docker-images:
runs-on: [ self-hosted, intel-cpu, 8-cpu, ci ]
if: github.event_name != 'pull_request'
permissions:
contents: read
packages: write
@@ -36,13 +73,13 @@ jobs:
steps:
- name: Checkout repository
uses: actions/checkout@v3
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v1
- name: Login to Docker Hub
uses: docker/login-action@v2
with:
username: ${{ env.REGISTRY }}
password: ${{ secrets.DOCKERHUB_TOKEN }}
- name: Build and push
uses: docker/build-push-action@v3
with:
@@ -50,3 +87,27 @@ jobs:
context: ./docker/${{ matrix.image-name }}
push: true
tags: ${{ env.REGISTRY }}/${{ matrix.image-name }}:latest
- name: Post to a Slack channel
id: slack
uses: slackapi/slack-github-action@6c661ce58804a1a20f6dc5fbee7f0381b469e001
with:
# Slack channel id, channel name, or user id to post message.
# See also: https://api.slack.com/methods/chat.postMessage#channels
channel-id: ${{ env.CI_SLACK_CHANNEL }}
# For posting a rich message using Block Kit
payload: |
{
"text": "${{ matrix.image-name }} Docker Image build result: ${{ job.status }}\n${{ github.event.head_commit.url }}",
"blocks": [
{
"type": "section",
"text": {
"type": "mrkdwn",
"text": "${{ matrix.image-name }} Docker Image build result: ${{ job.status }}\n${{ github.event.head_commit.url }}"
}
}
]
}
env:
SLACK_BOT_TOKEN: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}

View File

@@ -7,6 +7,10 @@ on:
- doc-builder*
- v*-release
- v*-patch
paths:
- "src/diffusers/**.py"
- "examples/**"
- "docs/**"
jobs:
build:

View File

@@ -2,6 +2,10 @@ name: Build PR Documentation
on:
pull_request:
paths:
- "src/diffusers/**.py"
- "examples/**"
- "docs/**"
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}

View File

@@ -1,6 +1,7 @@
name: Nightly tests on main
name: Nightly and release tests on main/release branch
on:
workflow_dispatch:
schedule:
- cron: "0 0 * * *" # every day at midnight
@@ -12,106 +13,348 @@ env:
PYTEST_TIMEOUT: 600
RUN_SLOW: yes
RUN_NIGHTLY: yes
PIPELINE_USAGE_CUTOFF: 5000
SLACK_API_TOKEN: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
jobs:
run_nightly_tests:
strategy:
fail-fast: false
matrix:
config:
- name: Nightly PyTorch CUDA tests on Ubuntu
framework: pytorch
runner: docker-gpu
image: diffusers/diffusers-pytorch-cuda
report: torch_cuda
- name: Nightly Flax TPU tests on Ubuntu
framework: flax
runner: docker-tpu
image: diffusers/diffusers-flax-tpu
report: flax_tpu
- name: Nightly ONNXRuntime CUDA tests on Ubuntu
framework: onnxruntime
runner: docker-gpu
image: diffusers/diffusers-onnxruntime-cuda
report: onnx_cuda
name: ${{ matrix.config.name }}
runs-on: ${{ matrix.config.runner }}
container:
image: ${{ matrix.config.image }}
options: --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/ ${{ matrix.config.runner == 'docker-tpu' && '--privileged' || '--gpus 0'}}
defaults:
run:
shell: bash
setup_torch_cuda_pipeline_matrix:
name: Setup Torch Pipelines Matrix
runs-on: ubuntu-latest
outputs:
pipeline_test_matrix: ${{ steps.fetch_pipeline_matrix.outputs.pipeline_test_matrix }}
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: NVIDIA-SMI
if: ${{ matrix.config.runner == 'docker-gpu' }}
run: |
nvidia-smi
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: "3.8"
- name: Install dependencies
run: |
python -m pip install -e .[quality,test]
python -m pip install -U git+https://github.com/huggingface/transformers
python -m pip install git+https://github.com/huggingface/accelerate
pip install -e .
pip install huggingface_hub
- name: Fetch Pipeline Matrix
id: fetch_pipeline_matrix
run: |
matrix=$(python utils/fetch_torch_cuda_pipeline_test_matrix.py)
echo $matrix
echo "pipeline_test_matrix=$matrix" >> $GITHUB_OUTPUT
- name: Pipeline Tests Artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: test-pipelines.json
path: reports
run_nightly_tests_for_torch_pipelines:
name: Torch Pipelines CUDA Nightly Tests
needs: setup_torch_cuda_pipeline_matrix
strategy:
fail-fast: false
matrix:
module: ${{ fromJson(needs.setup_torch_cuda_pipeline_matrix.outputs.pipeline_test_matrix) }}
runs-on: [single-gpu, nvidia-gpu, t4, ci]
container:
image: diffusers/diffusers-pytorch-cuda
options: --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/ --gpus 0
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: NVIDIA-SMI
run: nvidia-smi
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate.git
python -m uv pip install pytest-reportlog
- name: Environment
run: |
python utils/print_env.py
- name: Run nightly PyTorch CUDA tests
if: ${{ matrix.config.framework == 'pytorch' }}
- name: Nightly PyTorch CUDA checkpoint (pipelines) tests
env:
HUGGING_FACE_HUB_TOKEN: ${{ secrets.HUGGING_FACE_HUB_TOKEN }}
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
--make-reports=tests_${{ matrix.config.report }} \
tests/
- name: Run nightly Flax TPU tests
if: ${{ matrix.config.framework == 'flax' }}
env:
HUGGING_FACE_HUB_TOKEN: ${{ secrets.HUGGING_FACE_HUB_TOKEN }}
run: |
python -m pytest -n 0 \
-s -v -k "Flax" \
--make-reports=tests_${{ matrix.config.report }} \
tests/
- name: Run nightly ONNXRuntime CUDA tests
if: ${{ matrix.config.framework == 'onnxruntime' }}
env:
HUGGING_FACE_HUB_TOKEN: ${{ secrets.HUGGING_FACE_HUB_TOKEN }}
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "Onnx" \
--make-reports=tests_${{ matrix.config.report }} \
tests/
--make-reports=tests_pipeline_${{ matrix.module }}_cuda \
--report-log=tests_pipeline_${{ matrix.module }}_cuda.log \
tests/pipelines/${{ matrix.module }}
- name: Failure short reports
if: ${{ failure() }}
run: cat reports/tests_${{ matrix.config.report }}_failures_short.txt
run: |
cat reports/tests_pipeline_${{ matrix.module }}_cuda_stats.txt
cat reports/tests_pipeline_${{ matrix.module }}_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: ${{ matrix.config.report }}_test_reports
name: pipeline_${{ matrix.module }}_test_reports
path: reports
- name: Generate Report and Notify Channel
if: always()
run: |
pip install slack_sdk tabulate
python scripts/log_reports.py >> $GITHUB_STEP_SUMMARY
run_nightly_tests_for_other_torch_modules:
name: Torch Non-Pipelines CUDA Nightly Tests
runs-on: docker-gpu
container:
image: diffusers/diffusers-pytorch-cuda
options: --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/ --gpus 0
defaults:
run:
shell: bash
strategy:
matrix:
module: [models, schedulers, others, examples]
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate.git
python -m uv pip install pytest-reportlog
- name: Environment
run: python utils/print_env.py
- name: Run nightly PyTorch CUDA tests for non-pipeline modules
if: ${{ matrix.module != 'examples'}}
env:
HUGGING_FACE_HUB_TOKEN: ${{ secrets.HUGGING_FACE_HUB_TOKEN }}
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
--make-reports=tests_torch_${{ matrix.module }}_cuda \
--report-log=tests_torch_${{ matrix.module }}_cuda.log \
tests/${{ matrix.module }}
- name: Run nightly example tests with Torch
if: ${{ matrix.module == 'examples' }}
env:
HUGGING_FACE_HUB_TOKEN: ${{ secrets.HUGGING_FACE_HUB_TOKEN }}
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
python -m uv pip install peft@git+https://github.com/huggingface/peft.git
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v --make-reports=examples_torch_cuda \
--report-log=examples_torch_cuda.log \
examples/
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_torch_${{ matrix.module }}_cuda_stats.txt
cat reports/tests_torch_${{ matrix.module }}_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: torch_${{ matrix.module }}_cuda_test_reports
path: reports
- name: Generate Report and Notify Channel
if: always()
run: |
pip install slack_sdk tabulate
python scripts/log_reports.py >> $GITHUB_STEP_SUMMARY
run_lora_nightly_tests:
name: Nightly LoRA Tests with PEFT and TORCH
runs-on: docker-gpu
container:
image: diffusers/diffusers-pytorch-cuda
options: --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/ --gpus 0
defaults:
run:
shell: bash
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate.git
python -m uv pip install peft@git+https://github.com/huggingface/peft.git
python -m uv pip install pytest-reportlog
- name: Environment
run: python utils/print_env.py
- name: Run nightly LoRA tests with PEFT and Torch
env:
HUGGING_FACE_HUB_TOKEN: ${{ secrets.HUGGING_FACE_HUB_TOKEN }}
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
--make-reports=tests_torch_lora_cuda \
--report-log=tests_torch_lora_cuda.log \
tests/lora
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_torch_lora_cuda_stats.txt
cat reports/tests_torch_lora_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: torch_lora_cuda_test_reports
path: reports
- name: Generate Report and Notify Channel
if: always()
run: |
pip install slack_sdk tabulate
python scripts/log_reports.py >> $GITHUB_STEP_SUMMARY
run_flax_tpu_tests:
name: Nightly Flax TPU Tests
runs-on: docker-tpu
if: github.event_name == 'schedule'
container:
image: diffusers/diffusers-flax-tpu
options: --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/ --privileged
defaults:
run:
shell: bash
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate.git
python -m uv pip install pytest-reportlog
- name: Environment
run: python utils/print_env.py
- name: Run nightly Flax TPU tests
env:
HUGGING_FACE_HUB_TOKEN: ${{ secrets.HUGGING_FACE_HUB_TOKEN }}
run: |
python -m pytest -n 0 \
-s -v -k "Flax" \
--make-reports=tests_flax_tpu \
--report-log=tests_flax_tpu.log \
tests/
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_flax_tpu_stats.txt
cat reports/tests_flax_tpu_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: flax_tpu_test_reports
path: reports
- name: Generate Report and Notify Channel
if: always()
run: |
pip install slack_sdk tabulate
python scripts/log_reports.py >> $GITHUB_STEP_SUMMARY
run_nightly_onnx_tests:
name: Nightly ONNXRuntime CUDA tests on Ubuntu
runs-on: docker-gpu
container:
image: diffusers/diffusers-onnxruntime-cuda
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: NVIDIA-SMI
run: nvidia-smi
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate.git
python -m uv pip install pytest-reportlog
- name: Environment
run: python utils/print_env.py
- name: Run nightly ONNXRuntime CUDA tests
env:
HUGGING_FACE_HUB_TOKEN: ${{ secrets.HUGGING_FACE_HUB_TOKEN }}
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "Onnx" \
--make-reports=tests_onnx_cuda \
--report-log=tests_onnx_cuda.log \
tests/
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_onnx_cuda_stats.txt
cat reports/tests_onnx_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: ${{ matrix.config.report }}_test_reports
path: reports
- name: Generate Report and Notify Channel
if: always()
run: |
pip install slack_sdk tabulate
python scripts/log_reports.py >> $GITHUB_STEP_SUMMARY
run_nightly_tests_apple_m1:
name: Nightly PyTorch MPS tests on MacOS
runs-on: [ self-hosted, apple-m1 ]
if: github.event_name == 'schedule'
steps:
- name: Checkout diffusers
@@ -132,10 +375,11 @@ jobs:
- name: Install dependencies
shell: arch -arch arm64 bash {0}
run: |
${CONDA_RUN} python -m pip install --upgrade pip
${CONDA_RUN} python -m pip install -e .[quality,test]
${CONDA_RUN} python -m pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu
${CONDA_RUN} python -m pip install git+https://github.com/huggingface/accelerate
${CONDA_RUN} python -m pip install --upgrade pip uv
${CONDA_RUN} python -m uv pip install -e [quality,test]
${CONDA_RUN} python -m uv pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu
${CONDA_RUN} python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate
${CONDA_RUN} python -m uv pip install pytest-reportlog
- name: Environment
shell: arch -arch arm64 bash {0}
@@ -148,7 +392,9 @@ jobs:
HF_HOME: /System/Volumes/Data/mnt/cache
HUGGING_FACE_HUB_TOKEN: ${{ secrets.HUGGING_FACE_HUB_TOKEN }}
run: |
${CONDA_RUN} python -m pytest -n 1 -s -v --make-reports=tests_torch_mps tests/
${CONDA_RUN} python -m pytest -n 1 -s -v --make-reports=tests_torch_mps \
--report-log=tests_torch_mps.log \
tests/
- name: Failure short reports
if: ${{ failure() }}
@@ -160,3 +406,9 @@ jobs:
with:
name: torch_mps_test_reports
path: reports
- name: Generate Report and Notify Channel
if: always()
run: |
pip install slack_sdk tabulate
python scripts/log_reports.py >> $GITHUB_STEP_SUMMARY

View File

@@ -0,0 +1,23 @@
name: Notify Slack about a release
on:
workflow_dispatch:
release:
types: [published]
jobs:
build:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Setup Python
uses: actions/setup-python@v4
with:
python-version: '3.8'
- name: Notify Slack about the release
env:
SLACK_WEBHOOK_URL: ${{ secrets.SLACK_WEBHOOK_URL }}
run: pip install requests && python utils/notify_slack_about_release.py

View File

@@ -4,6 +4,8 @@ on:
pull_request:
branches:
- main
paths:
- "src/diffusers/**.py"
push:
branches:
- main
@@ -23,10 +25,12 @@ jobs:
python-version: "3.8"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install -e .
pip install pytest
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m pip install --upgrade pip uv
python -m uv pip install -e .
python -m uv pip install pytest
- name: Check for soft dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
pytest tests/others/test_dependencies.py

View File

@@ -4,6 +4,8 @@ on:
pull_request:
branches:
- main
paths:
- "src/diffusers/**.py"
push:
branches:
- main
@@ -23,12 +25,14 @@ jobs:
python-version: "3.8"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install -e .
pip install "jax[cpu]>=0.2.16,!=0.3.2"
pip install "flax>=0.4.1"
pip install "jaxlib>=0.1.65"
pip install pytest
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m pip install --upgrade pip uv
python -m uv pip install -e .
python -m uv pip install "jax[cpu]>=0.2.16,!=0.3.2"
python -m uv pip install "flax>=0.4.1"
python -m uv pip install "jaxlib>=0.1.65"
python -m uv pip install pytest
- name: Check for soft dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
pytest tests/others/test_dependencies.py

View File

@@ -1,49 +0,0 @@
name: Run code quality checks
on:
pull_request:
branches:
- main
push:
branches:
- main
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
jobs:
check_code_quality:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: "3.8"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install .[quality]
- name: Check quality
run: |
ruff check examples tests src utils scripts
ruff format examples tests src utils scripts --check
check_repository_consistency:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: "3.8"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install .[quality]
- name: Check quality
run: |
python utils/check_copies.py
python utils/check_dummies.py
make deps_table_check_updated

View File

@@ -32,8 +32,8 @@ jobs:
fetch-depth: 0
- name: Install dependencies
run: |
apt-get update && apt-get install libsndfile1-dev libgl1 -y
python -m pip install -e .[quality,test]
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
- name: Environment
run: |
python utils/print_env.py
@@ -88,16 +88,18 @@ jobs:
- name: Install dependencies
run: |
apt-get update && apt-get install libsndfile1-dev libgl1 -y
python -m pip install -e .[quality,test]
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m pip install -e [quality,test]
python -m pip install accelerate
- name: Environment
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python utils/print_env.py
- name: Run all selected tests on CPU
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m pytest -n 2 --dist=loadfile -v --make-reports=${{ matrix.modules }}_tests_cpu ${{ fromJson(needs.setup_pr_tests.outputs.test_map)[matrix.modules] }}
- name: Failure short reports
@@ -143,16 +145,18 @@ jobs:
- name: Install dependencies
run: |
apt-get update && apt-get install libsndfile1-dev libgl1 -y
python -m pip install -e .[quality,test]
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m pip install -e [quality,test]
- name: Environment
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python utils/print_env.py
- name: Run Hub tests for models, schedulers, and pipelines on a staging env
if: ${{ matrix.config.framework == 'hub_tests_pytorch' }}
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
HUGGINGFACE_CO_STAGING=true python -m pytest \
-m "is_staging_test" \
--make-reports=tests_${{ matrix.config.report }} \

View File

@@ -4,6 +4,9 @@ on:
pull_request:
branches:
- main
paths:
- "src/diffusers/**.py"
- "tests/**.py"
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
@@ -16,7 +19,50 @@ env:
PYTEST_TIMEOUT: 60
jobs:
check_code_quality:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: "3.8"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install .[quality]
- name: Check quality
run: make quality
- name: Check if failure
if: ${{ failure() }}
run: |
echo "Quality check failed. Please ensure the right dependency versions are installed with 'pip install -e .[quality]' and run 'make style && make quality'" >> $GITHUB_STEP_SUMMARY
check_repository_consistency:
needs: check_code_quality
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: "3.8"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install .[quality]
- name: Check repo consistency
run: |
python utils/check_copies.py
python utils/check_dummies.py
make deps_table_check_updated
- name: Check if failure
if: ${{ failure() }}
run: |
echo "Repo consistency check failed. Please ensure the right dependency versions are installed with 'pip install -e .[quality]' and run 'make fix-copies'" >> $GITHUB_STEP_SUMMARY
run_fast_tests:
needs: [check_code_quality, check_repository_consistency]
strategy:
fail-fast: false
matrix:
@@ -25,7 +71,7 @@ jobs:
name: LoRA - ${{ matrix.lib-versions }}
runs-on: docker-cpu
runs-on: [ self-hosted, intel-cpu, 8-cpu, ci ]
container:
image: diffusers/diffusers-pytorch-cpu
@@ -43,23 +89,25 @@ jobs:
- name: Install dependencies
run: |
apt-get update && apt-get install libsndfile1-dev libgl1 -y
python -m pip install -e .[quality,test]
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
if [ "${{ matrix.lib-versions }}" == "main" ]; then
python -m pip install -U git+https://github.com/huggingface/peft.git
python -m pip install -U git+https://github.com/huggingface/transformers.git
python -m pip install -U git+https://github.com/huggingface/accelerate.git
python -m pip install -U peft@git+https://github.com/huggingface/peft.git
python -m uv pip install -U transformers@git+https://github.com/huggingface/transformers.git
python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
else
python -m pip install -U peft transformers accelerate
python -m uv pip install -U peft transformers accelerate
fi
- name: Environment
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python utils/print_env.py
- name: Run fast PyTorch LoRA CPU tests with PEFT backend
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m pytest -n 4 --max-worker-restart=0 --dist=loadfile \
-s -v \
--make-reports=tests_${{ matrix.config.report }} \
tests/lora/test_lora_layers_peft.py
tests/lora/

View File

@@ -4,6 +4,14 @@ on:
pull_request:
branches:
- main
paths:
- "src/diffusers/**.py"
- "benchmarks/**.py"
- "examples/**.py"
- "scripts/**.py"
- "tests/**.py"
- ".github/**.yml"
- "utils/**.py"
push:
branches:
- ci-*
@@ -19,29 +27,72 @@ env:
PYTEST_TIMEOUT: 60
jobs:
check_code_quality:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: "3.8"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install .[quality]
- name: Check quality
run: make quality
- name: Check if failure
if: ${{ failure() }}
run: |
echo "Quality check failed. Please ensure the right dependency versions are installed with 'pip install -e .[quality]' and run 'make style && make quality'" >> $GITHUB_STEP_SUMMARY
check_repository_consistency:
needs: check_code_quality
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: "3.8"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install .[quality]
- name: Check repo consistency
run: |
python utils/check_copies.py
python utils/check_dummies.py
make deps_table_check_updated
- name: Check if failure
if: ${{ failure() }}
run: |
echo "Repo consistency check failed. Please ensure the right dependency versions are installed with 'pip install -e .[quality]' and run 'make fix-copies'" >> $GITHUB_STEP_SUMMARY
run_fast_tests:
needs: [check_code_quality, check_repository_consistency]
strategy:
fail-fast: false
matrix:
config:
- name: Fast PyTorch Pipeline CPU tests
framework: pytorch_pipelines
runner: docker-cpu
runner: [ self-hosted, intel-cpu, 32-cpu, 256-ram, ci ]
image: diffusers/diffusers-pytorch-cpu
report: torch_cpu_pipelines
- name: Fast PyTorch Models & Schedulers CPU tests
framework: pytorch_models
runner: docker-cpu
runner: [ self-hosted, intel-cpu, 8-cpu, ci ]
image: diffusers/diffusers-pytorch-cpu
report: torch_cpu_models_schedulers
- name: Fast Flax CPU tests
framework: flax
runner: docker-cpu
runner: [ self-hosted, intel-cpu, 8-cpu, ci ]
image: diffusers/diffusers-flax-cpu
report: flax_cpu
- name: PyTorch Example CPU tests
framework: pytorch_examples
runner: docker-cpu
runner: [ self-hosted, intel-cpu, 8-cpu, ci ]
image: diffusers/diffusers-pytorch-cpu
report: torch_example_cpu
@@ -65,18 +116,20 @@ jobs:
- name: Install dependencies
run: |
apt-get update && apt-get install libsndfile1-dev libgl1 -y
python -m pip install -e .[quality,test]
python -m pip install accelerate
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install accelerate
- name: Environment
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python utils/print_env.py
- name: Run fast PyTorch Pipeline CPU tests
if: ${{ matrix.config.framework == 'pytorch_pipelines' }}
run: |
python -m pytest -n 2 --max-worker-restart=0 --dist=loadfile \
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m pytest -n 8 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
--make-reports=tests_${{ matrix.config.report }} \
tests/pipelines
@@ -84,7 +137,8 @@ jobs:
- name: Run fast PyTorch Model Scheduler CPU tests
if: ${{ matrix.config.framework == 'pytorch_models' }}
run: |
python -m pytest -n 2 --max-worker-restart=0 --dist=loadfile \
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m pytest -n 4 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx and not Dependency" \
--make-reports=tests_${{ matrix.config.report }} \
tests/models tests/schedulers tests/others
@@ -92,7 +146,8 @@ jobs:
- name: Run fast Flax TPU tests
if: ${{ matrix.config.framework == 'flax' }}
run: |
python -m pytest -n 2 --max-worker-restart=0 --dist=loadfile \
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m pytest -n 4 --max-worker-restart=0 --dist=loadfile \
-s -v -k "Flax" \
--make-reports=tests_${{ matrix.config.report }} \
tests
@@ -100,8 +155,9 @@ jobs:
- name: Run example PyTorch CPU tests
if: ${{ matrix.config.framework == 'pytorch_examples' }}
run: |
python -m pip install peft
python -m pytest -n 2 --max-worker-restart=0 --dist=loadfile \
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install peft
python -m pytest -n 4 --max-worker-restart=0 --dist=loadfile \
--make-reports=tests_${{ matrix.config.report }} \
examples
@@ -117,13 +173,14 @@ jobs:
path: reports
run_staging_tests:
needs: [check_code_quality, check_repository_consistency]
strategy:
fail-fast: false
matrix:
config:
- name: Hub tests for models, schedulers, and pipelines
framework: hub_tests_pytorch
runner: docker-cpu
runner: [ self-hosted, intel-cpu, 8-cpu, ci ]
image: diffusers/diffusers-pytorch-cpu
report: torch_hub
@@ -147,16 +204,18 @@ jobs:
- name: Install dependencies
run: |
apt-get update && apt-get install libsndfile1-dev libgl1 -y
python -m pip install -e .[quality,test]
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
- name: Environment
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python utils/print_env.py
- name: Run Hub tests for models, schedulers, and pipelines on a staging env
if: ${{ matrix.config.framework == 'hub_tests_pytorch' }}
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
HUGGINGFACE_CO_STAGING=true python -m pytest \
-m "is_staging_test" \
--make-reports=tests_${{ matrix.config.report }} \

View File

@@ -4,6 +4,8 @@ on:
pull_request:
branches:
- main
paths:
- "src/diffusers/**.py"
push:
branches:
- main
@@ -23,10 +25,12 @@ jobs:
python-version: "3.8"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install -e .
pip install torch torchvision torchaudio
pip install pytest
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m pip install --upgrade pip uv
python -m uv pip install -e .
python -m uv pip install torch torchvision torchaudio
python -m uv pip install pytest
- name: Check for soft dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
pytest tests/others/test_dependencies.py

View File

@@ -4,7 +4,10 @@ on:
push:
branches:
- main
paths:
- "src/diffusers/**.py"
- "examples/**.py"
- "tests/**.py"
env:
DIFFUSERS_IS_CI: yes
@@ -18,10 +21,7 @@ env:
jobs:
setup_torch_cuda_pipeline_matrix:
name: Setup Torch Pipelines CUDA Slow Tests Matrix
runs-on: docker-gpu
container:
image: diffusers/diffusers-pytorch-cpu # this is a CPU image, but we need it to fetch the matrix
options: --shm-size "16gb" --ipc host
runs-on: ubuntu-latest
outputs:
pipeline_test_matrix: ${{ steps.fetch_pipeline_matrix.outputs.pipeline_test_matrix }}
steps:
@@ -29,23 +29,20 @@ jobs:
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: "3.8"
- name: Install dependencies
run: |
apt-get update && apt-get install libsndfile1-dev libgl1 -y
python -m pip install -e .[quality,test]
python -m pip install git+https://github.com/huggingface/accelerate.git
- name: Environment
run: |
python utils/print_env.py
pip install -e .
pip install huggingface_hub
- name: Fetch Pipeline Matrix
id: fetch_pipeline_matrix
run: |
matrix=$(python utils/fetch_torch_cuda_pipeline_test_matrix.py)
echo $matrix
echo "pipeline_test_matrix=$matrix" >> $GITHUB_OUTPUT
- name: Pipeline Tests Artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
@@ -58,10 +55,9 @@ jobs:
needs: setup_torch_cuda_pipeline_matrix
strategy:
fail-fast: false
max-parallel: 1
matrix:
module: ${{ fromJson(needs.setup_torch_cuda_pipeline_matrix.outputs.pipeline_test_matrix) }}
runs-on: docker-gpu
runs-on: [single-gpu, nvidia-gpu, t4, ci]
container:
image: diffusers/diffusers-pytorch-cuda
options: --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/ --gpus 0
@@ -75,9 +71,9 @@ jobs:
nvidia-smi
- name: Install dependencies
run: |
apt-get update && apt-get install libsndfile1-dev libgl1 -y
python -m pip install -e .[quality,test]
python -m pip install git+https://github.com/huggingface/accelerate.git
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate.git
- name: Environment
run: |
python utils/print_env.py
@@ -124,9 +120,9 @@ jobs:
- name: Install dependencies
run: |
apt-get update && apt-get install libsndfile1-dev libgl1 -y
python -m pip install -e .[quality,test]
python -m pip install git+https://github.com/huggingface/accelerate.git
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate.git
- name: Environment
run: |
@@ -173,10 +169,10 @@ jobs:
- name: Install dependencies
run: |
apt-get update && apt-get install libsndfile1-dev libgl1 -y
python -m pip install -e .[quality,test]
python -m pip install git+https://github.com/huggingface/accelerate.git
python -m pip install git+https://github.com/huggingface/peft.git
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate.git
python -m pip install -U peft@git+https://github.com/huggingface/peft.git
- name: Environment
run: |
@@ -223,9 +219,9 @@ jobs:
- name: Install dependencies
run: |
apt-get update && apt-get install libsndfile1-dev libgl1 -y
python -m pip install -e .[quality,test]
python -m pip install git+https://github.com/huggingface/accelerate.git
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate.git
- name: Environment
run: |
@@ -270,9 +266,9 @@ jobs:
- name: Install dependencies
run: |
apt-get update && apt-get install libsndfile1-dev libgl1 -y
python -m pip install -e .[quality,test]
python -m pip install git+https://github.com/huggingface/accelerate.git
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate.git
- name: Environment
run: |
@@ -320,7 +316,8 @@ jobs:
nvidia-smi
- name: Install dependencies
run: |
python -m pip install -e .[quality,test,training]
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test,training]
- name: Environment
run: |
python utils/print_env.py
@@ -360,7 +357,8 @@ jobs:
nvidia-smi
- name: Install dependencies
run: |
python -m pip install -e .[quality,test,training]
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test,training]
- name: Environment
run: |
python utils/print_env.py
@@ -401,16 +399,19 @@ jobs:
- name: Install dependencies
run: |
python -m pip install -e .[quality,test,training]
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test,training]
- name: Environment
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python utils/print_env.py
- name: Run example tests on GPU
env:
HUGGING_FACE_HUB_TOKEN: ${{ secrets.HUGGING_FACE_HUB_TOKEN }}
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v --make-reports=examples_torch_cuda examples/
- name: Failure short reports

View File

@@ -4,6 +4,10 @@ on:
push:
branches:
- main
paths:
- "src/diffusers/**.py"
- "examples/**.py"
- "tests/**.py"
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
@@ -25,22 +29,22 @@ jobs:
config:
- name: Fast PyTorch CPU tests on Ubuntu
framework: pytorch
runner: docker-cpu
runner: [ self-hosted, intel-cpu, 8-cpu, ci ]
image: diffusers/diffusers-pytorch-cpu
report: torch_cpu
- name: Fast Flax CPU tests on Ubuntu
framework: flax
runner: docker-cpu
runner: [ self-hosted, intel-cpu, 8-cpu, ci ]
image: diffusers/diffusers-flax-cpu
report: flax_cpu
- name: Fast ONNXRuntime CPU tests on Ubuntu
framework: onnxruntime
runner: docker-cpu
runner: [ self-hosted, intel-cpu, 8-cpu, ci ]
image: diffusers/diffusers-onnxruntime-cpu
report: onnx_cpu
- name: PyTorch Example CPU tests on Ubuntu
framework: pytorch_examples
runner: docker-cpu
runner: [ self-hosted, intel-cpu, 8-cpu, ci ]
image: diffusers/diffusers-pytorch-cpu
report: torch_example_cpu
@@ -64,17 +68,19 @@ jobs:
- name: Install dependencies
run: |
apt-get update && apt-get install libsndfile1-dev libgl1 -y
python -m pip install -e .[quality,test]
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
- name: Environment
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python utils/print_env.py
- name: Run fast PyTorch CPU tests
if: ${{ matrix.config.framework == 'pytorch' }}
run: |
python -m pytest -n 2 --max-worker-restart=0 --dist=loadfile \
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m pytest -n 4 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
--make-reports=tests_${{ matrix.config.report }} \
tests/
@@ -82,7 +88,8 @@ jobs:
- name: Run fast Flax TPU tests
if: ${{ matrix.config.framework == 'flax' }}
run: |
python -m pytest -n 2 --max-worker-restart=0 --dist=loadfile \
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m pytest -n 4 --max-worker-restart=0 --dist=loadfile \
-s -v -k "Flax" \
--make-reports=tests_${{ matrix.config.report }} \
tests/
@@ -90,7 +97,8 @@ jobs:
- name: Run fast ONNXRuntime CPU tests
if: ${{ matrix.config.framework == 'onnxruntime' }}
run: |
python -m pytest -n 2 --max-worker-restart=0 --dist=loadfile \
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m pytest -n 4 --max-worker-restart=0 --dist=loadfile \
-s -v -k "Onnx" \
--make-reports=tests_${{ matrix.config.report }} \
tests/
@@ -98,8 +106,9 @@ jobs:
- name: Run example PyTorch CPU tests
if: ${{ matrix.config.framework == 'pytorch_examples' }}
run: |
python -m pip install peft
python -m pytest -n 2 --max-worker-restart=0 --dist=loadfile \
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install peft
python -m pytest -n 4 --max-worker-restart=0 --dist=loadfile \
--make-reports=tests_${{ matrix.config.report }} \
examples

View File

@@ -4,6 +4,9 @@ on:
push:
branches:
- main
paths:
- "src/diffusers/**.py"
- "tests/**.py"
env:
DIFFUSERS_IS_CI: yes
@@ -41,11 +44,11 @@ jobs:
- name: Install dependencies
shell: arch -arch arm64 bash {0}
run: |
${CONDA_RUN} python -m pip install --upgrade pip
${CONDA_RUN} python -m pip install -e .[quality,test]
${CONDA_RUN} python -m pip install torch torchvision torchaudio
${CONDA_RUN} python -m pip install git+https://github.com/huggingface/accelerate.git
${CONDA_RUN} python -m pip install transformers --upgrade
${CONDA_RUN} python -m pip install --upgrade pip uv
${CONDA_RUN} python -m uv pip install -e [quality,test]
${CONDA_RUN} python -m uv pip install torch torchvision torchaudio
${CONDA_RUN} python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate.git
${CONDA_RUN} python -m uv pip install transformers --upgrade
- name: Environment
shell: arch -arch arm64 bash {0}

81
.github/workflows/pypi_publish.yaml vendored Normal file
View File

@@ -0,0 +1,81 @@
# Adapted from https://blog.deepjyoti30.dev/pypi-release-github-action
name: PyPI release
on:
workflow_dispatch:
push:
tags:
- "*"
jobs:
find-and-checkout-latest-branch:
runs-on: ubuntu-latest
outputs:
latest_branch: ${{ steps.set_latest_branch.outputs.latest_branch }}
steps:
- name: Checkout Repo
uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: '3.8'
- name: Fetch latest branch
id: fetch_latest_branch
run: |
pip install -U requests packaging
LATEST_BRANCH=$(python utils/fetch_latest_release_branch.py)
echo "Latest branch: $LATEST_BRANCH"
echo "latest_branch=$LATEST_BRANCH" >> $GITHUB_ENV
- name: Set latest branch output
id: set_latest_branch
run: echo "::set-output name=latest_branch::${{ env.latest_branch }}"
release:
needs: find-and-checkout-latest-branch
runs-on: ubuntu-latest
steps:
- name: Checkout Repo
uses: actions/checkout@v3
with:
ref: ${{ needs.find-and-checkout-latest-branch.outputs.latest_branch }}
- name: Setup Python
uses: actions/setup-python@v4
with:
python-version: "3.8"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install -U setuptools wheel twine
pip install -U torch --index-url https://download.pytorch.org/whl/cpu
pip install -U transformers
- name: Build the dist files
run: python setup.py bdist_wheel && python setup.py sdist
- name: Publish to the test PyPI
env:
TWINE_USERNAME: ${{ secrets.TEST_PYPI_USERNAME }}
TWINE_PASSWORD: ${{ secrets.TEST_PYPI_PASSWORD }}
run: twine upload dist/* -r pypitest --repository-url=https://test.pypi.org/legacy/
- name: Test installing diffusers and importing
run: |
pip install diffusers && pip uninstall diffusers -y
pip install -i https://testpypi.python.org/pypi diffusers
python -c "from diffusers import __version__; print(__version__)"
python -c "from diffusers import DiffusionPipeline; pipe = DiffusionPipeline.from_pretrained('fusing/unet-ldm-dummy-update'); pipe()"
python -c "from diffusers import DiffusionPipeline; pipe = DiffusionPipeline.from_pretrained('hf-internal-testing/tiny-stable-diffusion-pipe', safety_checker=None); pipe('ah suh du')"
python -c "from diffusers import *"
- name: Publish to PyPI
env:
TWINE_USERNAME: ${{ secrets.PYPI_USERNAME }}
TWINE_PASSWORD: ${{ secrets.PYPI_PASSWORD }}
run: twine upload dist/* -r pypi

30
.github/workflows/update_metadata.yml vendored Normal file
View File

@@ -0,0 +1,30 @@
name: Update Diffusers metadata
on:
workflow_dispatch:
push:
branches:
- main
- update_diffusers_metadata*
jobs:
update_metadata:
runs-on: ubuntu-22.04
defaults:
run:
shell: bash -l {0}
steps:
- uses: actions/checkout@v3
- name: Setup environment
run: |
pip install --upgrade pip
pip install datasets pandas
pip install .[torch]
- name: Update metadata
env:
HUGGING_FACE_HUB_TOKEN: ${{ secrets.SAYAK_HF_TOKEN }}
run: |
python utils/update_metadata.py --commit_sha ${{ github.sha }}

View File

@@ -19,6 +19,16 @@ authors:
family-names: Rasul
- given-names: Mishig
family-names: Davaadorj
- given-names: Dhruv
family-names: Nair
- given-names: Sayak
family-names: Paul
- given-names: Steven
family-names: Liu
- given-names: William
family-names: Berman
- given-names: Yiyi
family-names: Xu
- given-names: Thomas
family-names: Wolf
repository-code: 'https://github.com/huggingface/diffusers'

View File

@@ -42,6 +42,7 @@ repo-consistency:
quality:
ruff check $(check_dirs) setup.py
ruff format --check $(check_dirs) setup.py
doc-builder style src/diffusers docs/source --max_len 119 --check_only
python utils/check_doc_toc.py
# Format source code automatically and check is there are any problems left that need manual fixing
@@ -55,6 +56,7 @@ extra_style_checks:
style:
ruff check $(check_dirs) setup.py --fix
ruff format $(check_dirs) setup.py
doc-builder style src/diffusers docs/source --max_len 119
${MAKE} autogenerate_code
${MAKE} extra_style_checks

View File

@@ -77,7 +77,7 @@ Please refer to the [How to use Stable Diffusion in Apple Silicon](https://huggi
## Quickstart
Generating outputs is super easy with 🤗 Diffusers. To generate an image from text, use the `from_pretrained` method to load any pretrained diffusion model (browse the [Hub](https://huggingface.co/models?library=diffusers&sort=downloads) for 19000+ checkpoints):
Generating outputs is super easy with 🤗 Diffusers. To generate an image from text, use the `from_pretrained` method to load any pretrained diffusion model (browse the [Hub](https://huggingface.co/models?library=diffusers&sort=downloads) for 22000+ checkpoints):
```python
from diffusers import DiffusionPipeline
@@ -219,7 +219,7 @@ Also, say 👋 in our public Discord channel <a href="https://discord.gg/G7tWnz9
- https://github.com/deep-floyd/IF
- https://github.com/bentoml/BentoML
- https://github.com/bmaltais/kohya_ss
- +8000 other amazing GitHub repositories 💪
- +9000 other amazing GitHub repositories 💪
Thank you for using us ❤️.
@@ -238,7 +238,7 @@ We also want to thank @heejkoo for the very helpful overview of papers, code and
```bibtex
@misc{von-platen-etal-2022-diffusers,
author = {Patrick von Platen and Suraj Patil and Anton Lozhkov and Pedro Cuenca and Nathan Lambert and Kashif Rasul and Mishig Davaadorj and Thomas Wolf},
author = {Patrick von Platen and Suraj Patil and Anton Lozhkov and Pedro Cuenca and Nathan Lambert and Kashif Rasul and Mishig Davaadorj and Dhruv Nair and Sayak Paul and William Berman and Yiyi Xu and Steven Liu and Thomas Wolf},
title = {Diffusers: State-of-the-art diffusion models},
year = {2022},
publisher = {GitHub},

View File

@@ -141,6 +141,7 @@ class LCMLoRATextToImageBenchmark(TextToImageBenchmark):
super().__init__(args)
self.pipe.load_lora_weights(self.lora_id)
self.pipe.fuse_lora()
self.pipe.unload_lora_weights()
self.pipe.scheduler = LCMScheduler.from_config(self.pipe.scheduler.config)
def get_result_filepath(self, args):
@@ -235,6 +236,35 @@ class InpaintingBenchmark(ImageToImageBenchmark):
)
class IPAdapterTextToImageBenchmark(TextToImageBenchmark):
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/load_neg_embed.png"
image = load_image(url)
def __init__(self, args):
pipe = self.pipeline_class.from_pretrained(args.ckpt, torch_dtype=torch.float16).to("cuda")
pipe.load_ip_adapter(
args.ip_adapter_id[0],
subfolder="models" if "sdxl" not in args.ip_adapter_id[1] else "sdxl_models",
weight_name=args.ip_adapter_id[1],
)
if args.run_compile:
pipe.unet.to(memory_format=torch.channels_last)
print("Run torch compile")
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
pipe.set_progress_bar_config(disable=True)
self.pipe = pipe
def run_inference(self, pipe, args):
_ = pipe(
prompt=PROMPT,
ip_adapter_image=self.image,
num_inference_steps=args.num_inference_steps,
num_images_per_prompt=args.batch_size,
)
class ControlNetBenchmark(TextToImageBenchmark):
pipeline_class = StableDiffusionControlNetPipeline
aux_network_class = ControlNetModel

View File

@@ -0,0 +1,32 @@
import argparse
import sys
sys.path.append(".")
from base_classes import IPAdapterTextToImageBenchmark # noqa: E402
IP_ADAPTER_CKPTS = {
"runwayml/stable-diffusion-v1-5": ("h94/IP-Adapter", "ip-adapter_sd15.bin"),
"stabilityai/stable-diffusion-xl-base-1.0": ("h94/IP-Adapter", "ip-adapter_sdxl.bin"),
}
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--ckpt",
type=str,
default="runwayml/stable-diffusion-v1-5",
choices=list(IP_ADAPTER_CKPTS.keys()),
)
parser.add_argument("--batch_size", type=int, default=1)
parser.add_argument("--num_inference_steps", type=int, default=50)
parser.add_argument("--model_cpu_offload", action="store_true")
parser.add_argument("--run_compile", action="store_true")
args = parser.parse_args()
args.ip_adapter_id = IP_ADAPTER_CKPTS[args.ckpt]
benchmark_pipe = IPAdapterTextToImageBenchmark(args)
args.ckpt = f"{args.ckpt} (IP-Adapter)"
benchmark_pipe.benchmark(args)

View File

@@ -72,7 +72,7 @@ def main():
command += " --run_compile"
run_command(command.split())
elif file == "benchmark_sd_inpainting.py":
elif file in ["benchmark_sd_inpainting.py", "benchmark_ip_adapters.py"]:
sdxl_ckpt = "stabilityai/stable-diffusion-xl-base-1.0"
command = f"python {file} --ckpt {sdxl_ckpt}"
run_command(command.split())

View File

@@ -12,6 +12,7 @@ RUN apt update && \
curl \
ca-certificates \
libsndfile1-dev \
libgl1 \
python3.8 \
python3-pip \
python3.8-venv && \
@@ -23,13 +24,13 @@ ENV PATH="/opt/venv/bin:$PATH"
# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
# follow the instructions here: https://cloud.google.com/tpu/docs/run-in-container#train_a_jax_model_in_a_docker_container
RUN python3 -m pip install --no-cache-dir --upgrade pip && \
python3 -m pip install --upgrade --no-cache-dir \
RUN python3 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
python3 -m uv pip install --upgrade --no-cache-dir \
clu \
"jax[cpu]>=0.2.16,!=0.3.2" \
"flax>=0.4.1" \
"jaxlib>=0.1.65" && \
python3 -m pip install --no-cache-dir \
python3 -m uv pip install --no-cache-dir \
accelerate \
datasets \
hf-doc-builder \

View File

@@ -12,6 +12,7 @@ RUN apt update && \
curl \
ca-certificates \
libsndfile1-dev \
libgl1 \
python3.8 \
python3-pip \
python3.8-venv && \
@@ -23,15 +24,15 @@ ENV PATH="/opt/venv/bin:$PATH"
# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
# follow the instructions here: https://cloud.google.com/tpu/docs/run-in-container#train_a_jax_model_in_a_docker_container
RUN python3 -m pip install --no-cache-dir --upgrade pip && \
RUN python3 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
python3 -m pip install --no-cache-dir \
"jax[tpu]>=0.2.16,!=0.3.2" \
-f https://storage.googleapis.com/jax-releases/libtpu_releases.html && \
python3 -m pip install --upgrade --no-cache-dir \
python3 -m uv pip install --upgrade --no-cache-dir \
clu \
"flax>=0.4.1" \
"jaxlib>=0.1.65" && \
python3 -m pip install --no-cache-dir \
python3 -m uv pip install --no-cache-dir \
accelerate \
datasets \
hf-doc-builder \

View File

@@ -12,6 +12,7 @@ RUN apt update && \
curl \
ca-certificates \
libsndfile1-dev \
libgl1 \
python3.8 \
python3-pip \
python3.8-venv && \
@@ -22,14 +23,14 @@ RUN python3 -m venv /opt/venv
ENV PATH="/opt/venv/bin:$PATH"
# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
RUN python3 -m pip install --no-cache-dir --upgrade pip && \
python3 -m pip install --no-cache-dir \
RUN python3 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
python3 -m uv pip install --no-cache-dir \
torch==2.1.2 \
torchvision==0.16.2 \
torchaudio==2.1.2 \
onnxruntime \
--extra-index-url https://download.pytorch.org/whl/cpu && \
python3 -m pip install --no-cache-dir \
python3 -m uv pip install --no-cache-dir \
accelerate \
datasets \
hf-doc-builder \

View File

@@ -1,4 +1,4 @@
FROM nvidia/cuda:11.6.2-cudnn8-devel-ubuntu20.04
FROM nvidia/cuda:12.1.0-runtime-ubuntu20.04
LABEL maintainer="Hugging Face"
LABEL repository="diffusers"
@@ -12,6 +12,7 @@ RUN apt update && \
curl \
ca-certificates \
libsndfile1-dev \
libgl1 \
python3.8 \
python3-pip \
python3.8-venv && \
@@ -22,14 +23,14 @@ RUN python3 -m venv /opt/venv
ENV PATH="/opt/venv/bin:$PATH"
# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
RUN python3 -m pip install --no-cache-dir --upgrade pip && \
python3 -m pip install --no-cache-dir \
torch==2.1.2 \
torchvision==0.16.2 \
torchaudio==2.1.2 \
RUN python3 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
python3 -m uv pip install --no-cache-dir \
torch \
torchvision \
torchaudio \
"onnxruntime-gpu>=1.13.1" \
--extra-index-url https://download.pytorch.org/whl/cu117 && \
python3 -m pip install --no-cache-dir \
python3 -m uv pip install --no-cache-dir \
accelerate \
datasets \
hf-doc-builder \

View File

@@ -24,8 +24,8 @@ RUN python3.9 -m venv /opt/venv
ENV PATH="/opt/venv/bin:$PATH"
# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
RUN python3.9 -m pip install --no-cache-dir --upgrade pip && \
python3.9 -m pip install --no-cache-dir \
RUN python3.9 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
python3.9 -m uv pip install --no-cache-dir \
torch \
torchvision \
torchaudio \

View File

@@ -23,14 +23,14 @@ RUN python3 -m venv /opt/venv
ENV PATH="/opt/venv/bin:$PATH"
# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
RUN python3 -m pip install --no-cache-dir --upgrade pip && \
python3 -m pip install --no-cache-dir \
RUN python3 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
python3 -m uv pip install --no-cache-dir \
torch \
torchvision \
torchaudio \
invisible_watermark \
--extra-index-url https://download.pytorch.org/whl/cpu && \
python3 -m pip install --no-cache-dir \
python3 -m uv pip install --no-cache-dir \
accelerate \
datasets \
hf-doc-builder \
@@ -40,6 +40,6 @@ RUN python3 -m pip install --no-cache-dir --upgrade pip && \
numpy \
scipy \
tensorboard \
transformers
transformers matplotlib
CMD ["/bin/bash"]

View File

@@ -23,8 +23,8 @@ RUN python3 -m venv /opt/venv
ENV PATH="/opt/venv/bin:$PATH"
# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
RUN python3 -m pip install --no-cache-dir --upgrade pip && \
python3 -m pip install --no-cache-dir \
RUN python3 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
python3 -m uv pip install --no-cache-dir \
torch \
torchvision \
torchaudio \

View File

@@ -23,13 +23,13 @@ RUN python3 -m venv /opt/venv
ENV PATH="/opt/venv/bin:$PATH"
# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
RUN python3 -m pip install --no-cache-dir --upgrade pip && \
RUN python3 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
python3 -m pip install --no-cache-dir \
torch \
torchvision \
torchaudio \
invisible_watermark && \
python3 -m pip install --no-cache-dir \
python3 -m uv pip install --no-cache-dir \
accelerate \
datasets \
hf-doc-builder \

View File

@@ -18,7 +18,7 @@
- local: tutorials/basic_training
title: Train a diffusion model
- local: tutorials/using_peft_for_inference
title: Inference with PEFT
title: Load LoRAs for inference
- local: tutorials/fast_diffusion
title: Accelerate inference of text-to-image diffusion models
title: Tutorials
@@ -52,6 +52,8 @@
title: Image-to-image
- local: using-diffusers/inpaint
title: Inpainting
- local: using-diffusers/text-img2vid
title: Text or image-to-video
- local: using-diffusers/depth2img
title: Depth-to-image
title: Tasks
@@ -60,6 +62,8 @@
title: Textual inversion
- local: using-diffusers/ip_adapter
title: IP-Adapter
- local: using-diffusers/merge_loras
title: Merge LoRAs
- local: training/distributed_inference
title: Distributed inference with multiple GPUs
- local: using-diffusers/reusing_seeds
@@ -67,7 +71,7 @@
- local: using-diffusers/control_brightness
title: Control image brightness
- local: using-diffusers/weighted_prompts
title: Prompt weighting
title: Prompt techniques
- local: using-diffusers/freeu
title: Improve generation quality with FreeU
title: Techniques
@@ -82,6 +86,8 @@
title: Kandinsky
- local: using-diffusers/controlnet
title: ControlNet
- local: using-diffusers/t2i_adapter
title: T2I-Adapter
- local: using-diffusers/shap-e
title: Shap-E
- local: using-diffusers/diffedit
@@ -100,6 +106,8 @@
title: Latent Consistency Model-LoRA
- local: using-diffusers/inference_with_lcm
title: Latent Consistency Model
- local: using-diffusers/inference_with_tcd_lora
title: Trajectory Consistency Distillation-LoRA
- local: using-diffusers/svd
title: Stable Video Diffusion
title: Specific pipeline examples
@@ -164,6 +172,8 @@
title: Token merging
- local: optimization/deepcache
title: DeepCache
- local: optimization/tgate
title: TGATE
title: General optimizations
- sections:
- local: using-diffusers/stable_diffusion_jax_how_to
@@ -274,6 +284,10 @@
title: ControlNet
- local: api/pipelines/controlnet_sdxl
title: ControlNet with Stable Diffusion XL
- local: api/pipelines/controlnetxs
title: ControlNet-XS
- local: api/pipelines/controlnetxs_sdxl
title: ControlNet-XS with Stable Diffusion XL
- local: api/pipelines/dance_diffusion
title: Dance Diffusion
- local: api/pipelines/ddim
@@ -300,6 +314,8 @@
title: Latent Consistency Models
- local: api/pipelines/latent_diffusion
title: Latent Diffusion
- local: api/pipelines/ledits_pp
title: LEDITS++
- local: api/pipelines/panorama
title: MultiDiffusion
- local: api/pipelines/musicldm
@@ -316,6 +332,8 @@
title: Semantic Guidance
- local: api/pipelines/shap_e
title: Shap-E
- local: api/pipelines/stable_cascade
title: Stable Cascade
- sections:
- local: api/pipelines/stable_diffusion/overview
title: Overview
@@ -323,6 +341,8 @@
title: Text-to-image
- local: api/pipelines/stable_diffusion/img2img
title: Image-to-image
- local: api/pipelines/stable_diffusion/svd
title: Image-to-video
- local: api/pipelines/stable_diffusion/inpaint
title: Inpainting
- local: api/pipelines/stable_diffusion/depth2img
@@ -346,7 +366,7 @@
- local: api/pipelines/stable_diffusion/ldm3d_diffusion
title: LDM3D Text-to-(RGB, Depth), Text-to-(RGB-pano, Depth-pano), LDM3D Upscaler
- local: api/pipelines/stable_diffusion/adapter
title: Stable Diffusion T2I-Adapter
title: T2I-Adapter
- local: api/pipelines/stable_diffusion/gligen
title: GLIGEN (Grounded Language-to-Image Generation)
title: Stable Diffusion
@@ -388,6 +408,10 @@
title: DPMSolverSDEScheduler
- local: api/schedulers/singlestep_dpm_solver
title: DPMSolverSinglestepScheduler
- local: api/schedulers/edm_multistep_dpm_solver
title: EDMDPMSolverMultistepScheduler
- local: api/schedulers/edm_euler
title: EDMEulerScheduler
- local: api/schedulers/euler_ancestral
title: EulerAncestralDiscreteScheduler
- local: api/schedulers/euler
@@ -414,6 +438,8 @@
title: ScoreSdeVeScheduler
- local: api/schedulers/score_sde_vp
title: ScoreSdeVpScheduler
- local: api/schedulers/tcd
title: TCDScheduler
- local: api/schedulers/unipc
title: UniPCMultistepScheduler
- local: api/schedulers/vq_diffusion

View File

@@ -20,14 +20,14 @@ An attention processor is a class for applying different types of attention mech
## AttnProcessor2_0
[[autodoc]] models.attention_processor.AttnProcessor2_0
## FusedAttnProcessor2_0
[[autodoc]] models.attention_processor.FusedAttnProcessor2_0
## AttnAddedKVProcessor
[[autodoc]] models.attention_processor.AttnAddedKVProcessor
## LoRAAttnProcessor
[[autodoc]] models.attention_processor.LoRAAttnProcessor
## AttnAddedKVProcessor2_0
[[autodoc]] models.attention_processor.AttnAddedKVProcessor2_0
## LoRAAttnProcessor2_0
[[autodoc]] models.attention_processor.LoRAAttnProcessor2_0
## CrossFrameAttnProcessor
[[autodoc]] pipelines.text_to_video_synthesis.pipeline_text_to_video_zero.CrossFrameAttnProcessor
## CustomDiffusionAttnProcessor
[[autodoc]] models.attention_processor.CustomDiffusionAttnProcessor
@@ -35,26 +35,23 @@ An attention processor is a class for applying different types of attention mech
## CustomDiffusionAttnProcessor2_0
[[autodoc]] models.attention_processor.CustomDiffusionAttnProcessor2_0
## AttnAddedKVProcessor
[[autodoc]] models.attention_processor.AttnAddedKVProcessor
## CustomDiffusionXFormersAttnProcessor
[[autodoc]] models.attention_processor.CustomDiffusionXFormersAttnProcessor
## AttnAddedKVProcessor2_0
[[autodoc]] models.attention_processor.AttnAddedKVProcessor2_0
## FusedAttnProcessor2_0
[[autodoc]] models.attention_processor.FusedAttnProcessor2_0
## LoRAAttnAddedKVProcessor
[[autodoc]] models.attention_processor.LoRAAttnAddedKVProcessor
## XFormersAttnProcessor
[[autodoc]] models.attention_processor.XFormersAttnProcessor
## LoRAXFormersAttnProcessor
[[autodoc]] models.attention_processor.LoRAXFormersAttnProcessor
## CustomDiffusionXFormersAttnProcessor
[[autodoc]] models.attention_processor.CustomDiffusionXFormersAttnProcessor
## SlicedAttnProcessor
[[autodoc]] models.attention_processor.SlicedAttnProcessor
## SlicedAttnAddedKVProcessor
[[autodoc]] models.attention_processor.SlicedAttnAddedKVProcessor
## XFormersAttnProcessor
[[autodoc]] models.attention_processor.XFormersAttnProcessor

View File

@@ -23,3 +23,7 @@ Learn how to load an IP-Adapter checkpoint and image in the IP-Adapter [loading]
## IPAdapterMixin
[[autodoc]] loaders.ip_adapter.IPAdapterMixin
## IPAdapterMaskProcessor
[[autodoc]] image_processor.IPAdapterMaskProcessor

View File

@@ -1,6 +1,18 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Consistency Decoder
Consistency decoder can be used to decode the latents from the denoising UNet in the [`StableDiffusionPipeline`]. This decoder was introduced in the [DALL-E 3 technical report](https://openai.com/dall-e-3).
Consistency decoder can be used to decode the latents from the denoising UNet in the [`StableDiffusionPipeline`]. This decoder was introduced in the [DALL-E 3 technical report](https://openai.com/dall-e-3).
The original codebase can be found at [openai/consistencydecoder](https://github.com/openai/consistencydecoder).

View File

@@ -408,6 +408,114 @@ Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers)
</Tip>
<table>
<tr>
<th align=center>Without FreeInit enabled</th>
<th align=center>With FreeInit enabled</th>
</tr>
<tr>
<td align=center>
panda playing a guitar
<br />
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-no-freeinit.gif"
alt="panda playing a guitar"
style="width: 300px;" />
</td>
<td align=center>
panda playing a guitar
<br/>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-freeinit.gif"
alt="panda playing a guitar"
style="width: 300px;" />
</td>
</tr>
</table>
## Using AnimateLCM
[AnimateLCM](https://animatelcm.github.io/) is a motion module checkpoint and an [LCM LoRA](https://huggingface.co/docs/diffusers/using-diffusers/inference_with_lcm_lora) that have been created using a consistency learning strategy that decouples the distillation of the image generation priors and the motion generation priors.
```python
import torch
from diffusers import AnimateDiffPipeline, LCMScheduler, MotionAdapter
from diffusers.utils import export_to_gif
adapter = MotionAdapter.from_pretrained("wangfuyun/AnimateLCM")
pipe = AnimateDiffPipeline.from_pretrained("emilianJR/epiCRealism", motion_adapter=adapter)
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config, beta_schedule="linear")
pipe.load_lora_weights("wangfuyun/AnimateLCM", weight_name="sd15_lora_beta.safetensors", adapter_name="lcm-lora")
pipe.enable_vae_slicing()
pipe.enable_model_cpu_offload()
output = pipe(
prompt="A space rocket with trails of smoke behind it launching into space from the desert, 4k, high resolution",
negative_prompt="bad quality, worse quality, low resolution",
num_frames=16,
guidance_scale=1.5,
num_inference_steps=6,
generator=torch.Generator("cpu").manual_seed(0),
)
frames = output.frames[0]
export_to_gif(frames, "animatelcm.gif")
```
<table>
<tr>
<td><center>
A space rocket, 4K.
<br>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatelcm-output.gif"
alt="A space rocket, 4K"
style="width: 300px;" />
</center></td>
</tr>
</table>
AnimateLCM is also compatible with existing [Motion LoRAs](https://huggingface.co/collections/dn6/animatediff-motion-loras-654cb8ad732b9e3cf4d3c17e).
```python
import torch
from diffusers import AnimateDiffPipeline, LCMScheduler, MotionAdapter
from diffusers.utils import export_to_gif
adapter = MotionAdapter.from_pretrained("wangfuyun/AnimateLCM")
pipe = AnimateDiffPipeline.from_pretrained("emilianJR/epiCRealism", motion_adapter=adapter)
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config, beta_schedule="linear")
pipe.load_lora_weights("wangfuyun/AnimateLCM", weight_name="sd15_lora_beta.safetensors", adapter_name="lcm-lora")
pipe.load_lora_weights("guoyww/animatediff-motion-lora-tilt-up", adapter_name="tilt-up")
pipe.set_adapters(["lcm-lora", "tilt-up"], [1.0, 0.8])
pipe.enable_vae_slicing()
pipe.enable_model_cpu_offload()
output = pipe(
prompt="A space rocket with trails of smoke behind it launching into space from the desert, 4k, high resolution",
negative_prompt="bad quality, worse quality, low resolution",
num_frames=16,
guidance_scale=1.5,
num_inference_steps=6,
generator=torch.Generator("cpu").manual_seed(0),
)
frames = output.frames[0]
export_to_gif(frames, "animatelcm-motion-lora.gif")
```
<table>
<tr>
<td><center>
A space rocket, 4K.
<br>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatelcm-motion-lora.gif"
alt="A space rocket, 4K"
style="width: 300px;" />
</center></td>
</tr>
</table>
## AnimateDiffPipeline
[[autodoc]] AnimateDiffPipeline

View File

@@ -20,7 +20,8 @@ The abstract of the paper is the following:
*Although audio generation shares commonalities across different types of audio, such as speech, music, and sound effects, designing models for each type requires careful consideration of specific objectives and biases that can significantly differ from those of other types. To bring us closer to a unified perspective of audio generation, this paper proposes a framework that utilizes the same learning method for speech, music, and sound effect generation. Our framework introduces a general representation of audio, called "language of audio" (LOA). Any audio can be translated into LOA based on AudioMAE, a self-supervised pre-trained representation learning model. In the generation process, we translate any modalities into LOA by using a GPT-2 model, and we perform self-supervised audio generation learning with a latent diffusion model conditioned on LOA. The proposed framework naturally brings advantages such as in-context learning abilities and reusable self-supervised pretrained AudioMAE and latent diffusion models. Experiments on the major benchmarks of text-to-audio, text-to-music, and text-to-speech demonstrate state-of-the-art or competitive performance against previous approaches. Our code, pretrained model, and demo are available at [this https URL](https://audioldm.github.io/audioldm2).*
This pipeline was contributed by [sanchit-gandhi](https://huggingface.co/sanchit-gandhi). The original codebase can be found at [haoheliu/audioldm2](https://github.com/haoheliu/audioldm2).
This pipeline was contributed by [sanchit-gandhi](https://huggingface.co/sanchit-gandhi) and [Nguyễn Công Tú Anh](https://github.com/tuanh123789). The original codebase can be
found at [haoheliu/audioldm2](https://github.com/haoheliu/audioldm2).
## Tips
@@ -36,6 +37,8 @@ See table below for details on the three checkpoints:
| [audioldm2](https://huggingface.co/cvssp/audioldm2) | Text-to-audio | 350M | 1.1B | 1150k |
| [audioldm2-large](https://huggingface.co/cvssp/audioldm2-large) | Text-to-audio | 750M | 1.5B | 1150k |
| [audioldm2-music](https://huggingface.co/cvssp/audioldm2-music) | Text-to-music | 350M | 1.1B | 665k |
| [audioldm2-gigaspeech](https://huggingface.co/anhnct/audioldm2_gigaspeech) | Text-to-speech | 350M | 1.1B |10k |
| [audioldm2-ljspeech](https://huggingface.co/anhnct/audioldm2_ljspeech) | Text-to-speech | 350M | 1.1B | |
### Constructing a prompt
@@ -53,7 +56,7 @@ See table below for details on the three checkpoints:
* The quality of the generated waveforms can vary significantly based on the seed. Try generating with different seeds until you find a satisfactory generation.
* Multiple waveforms can be generated in one go: set `num_waveforms_per_prompt` to a value greater than 1. Automatic scoring will be performed between the generated waveforms and prompt text, and the audios ranked from best to worst accordingly.
The following example demonstrates how to construct good music generation using the aforementioned tips: [example](https://huggingface.co/docs/diffusers/main/en/api/pipelines/audioldm2#diffusers.AudioLDM2Pipeline.__call__.example).
The following example demonstrates how to construct good music and speech generation using the aforementioned tips: [example](https://huggingface.co/docs/diffusers/main/en/api/pipelines/audioldm2#diffusers.AudioLDM2Pipeline.__call__.example).
<Tip>

View File

@@ -1,3 +1,15 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# ControlNet-XS
ControlNet-XS was introduced in [ControlNet-XS](https://vislearn.github.io/ControlNet-XS/) by Denis Zavadski and Carsten Rother. It is based on the observation that the control model in the [original ControlNet](https://huggingface.co/papers/2302.05543) can be made much smaller and still produce good results.
@@ -12,5 +24,16 @@ Here's the overview from the [project page](https://vislearn.github.io/ControlNe
This model was contributed by [UmerHA](https://twitter.com/UmerHAdil). ❤️
<Tip>
> 🧠 Make sure to check out the Schedulers [guide](https://huggingface.co/docs/diffusers/main/en/using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
## StableDiffusionControlNetXSPipeline
[[autodoc]] StableDiffusionControlNetXSPipeline
- all
- __call__
## StableDiffusionPipelineOutput
[[autodoc]] pipelines.stable_diffusion.StableDiffusionPipelineOutput

View File

@@ -1,3 +1,15 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# ControlNet-XS with Stable Diffusion XL
ControlNet-XS was introduced in [ControlNet-XS](https://vislearn.github.io/ControlNet-XS/) by Denis Zavadski and Carsten Rother. It is based on the observation that the control model in the [original ControlNet](https://huggingface.co/papers/2302.05543) can be made much smaller and still produce good results.
@@ -12,4 +24,22 @@ Here's the overview from the [project page](https://vislearn.github.io/ControlNe
This model was contributed by [UmerHA](https://twitter.com/UmerHAdil). ❤️
> 🧠 Make sure to check out the Schedulers [guide](https://huggingface.co/docs/diffusers/main/en/using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
<Tip warning={true}>
🧪 Many of the SDXL ControlNet checkpoints are experimental, and there is a lot of room for improvement. Feel free to open an [Issue](https://github.com/huggingface/diffusers/issues/new/choose) and leave us feedback on how we can improve!
</Tip>
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
## StableDiffusionXLControlNetXSPipeline
[[autodoc]] StableDiffusionXLControlNetXSPipeline
- all
- __call__
## StableDiffusionPipelineOutput
[[autodoc]] pipelines.stable_diffusion.StableDiffusionPipelineOutput

View File

@@ -0,0 +1,54 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# LEDITS++
LEDITS++ was proposed in [LEDITS++: Limitless Image Editing using Text-to-Image Models](https://huggingface.co/papers/2311.16711) by Manuel Brack, Felix Friedrich, Katharina Kornmeier, Linoy Tsaban, Patrick Schramowski, Kristian Kersting, Apolinário Passos.
The abstract from the paper is:
*Text-to-image diffusion models have recently received increasing interest for their astonishing ability to produce high-fidelity images from solely text inputs. Subsequent research efforts aim to exploit and apply their capabilities to real image editing. However, existing image-to-image methods are often inefficient, imprecise, and of limited versatility. They either require time-consuming fine-tuning, deviate unnecessarily strongly from the input image, and/or lack support for multiple, simultaneous edits. To address these issues, we introduce LEDITS++, an efficient yet versatile and precise textual image manipulation technique. LEDITS++'s novel inversion approach requires no tuning nor optimization and produces high-fidelity results with a few diffusion steps. Second, our methodology supports multiple simultaneous edits and is architecture-agnostic. Third, we use a novel implicit masking technique that limits changes to relevant image regions. We propose the novel TEdBench++ benchmark as part of our exhaustive evaluation. Our results demonstrate the capabilities of LEDITS++ and its improvements over previous methods. The project page is available at https://leditsplusplus-project.static.hf.space .*
<Tip>
You can find additional information about LEDITS++ on the [project page](https://leditsplusplus-project.static.hf.space/index.html) and try it out in a [demo](https://huggingface.co/spaces/editing-images/leditsplusplus).
</Tip>
<Tip warning={true}>
Due to some backward compatability issues with the current diffusers implementation of [`~schedulers.DPMSolverMultistepScheduler`] this implementation of LEdits++ can no longer guarantee perfect inversion.
This issue is unlikely to have any noticeable effects on applied use-cases. However, we provide an alternative implementation that guarantees perfect inversion in a dedicated [GitHub repo](https://github.com/ml-research/ledits_pp).
</Tip>
We provide two distinct pipelines based on different pre-trained models.
## LEditsPPPipelineStableDiffusion
[[autodoc]] pipelines.ledits_pp.LEditsPPPipelineStableDiffusion
- all
- __call__
- invert
## LEditsPPPipelineStableDiffusionXL
[[autodoc]] pipelines.ledits_pp.LEditsPPPipelineStableDiffusionXL
- all
- __call__
- invert
## LEditsPPDiffusionPipelineOutput
[[autodoc]] pipelines.ledits_pp.pipeline_output.LEditsPPDiffusionPipelineOutput
- all
## LEditsPPInversionPipelineOutput
[[autodoc]] pipelines.ledits_pp.pipeline_output.LEditsPPInversionPipelineOutput
- all

View File

@@ -57,6 +57,7 @@ The table below lists all the pipelines currently available in 🤗 Diffusers an
| [Latent Consistency Models](latent_consistency_models) | text2image |
| [Latent Diffusion](latent_diffusion) | text2image, super-resolution |
| [LDM3D](stable_diffusion/ldm3d_diffusion) | text2image, text-to-3D, text-to-pano, upscaling |
| [LEDITS++](ledits_pp) | image editing |
| [MultiDiffusion](panorama) | text2image |
| [MusicLDM](musicldm) | text2audio |
| [Paint by Example](paint_by_example) | inpainting |

View File

@@ -30,6 +30,6 @@ Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers)
- all
- __call__
## StableDiffusionSafePipelineOutput
## SemanticStableDiffusionPipelineOutput
[[autodoc]] pipelines.semantic_stable_diffusion.pipeline_output.SemanticStableDiffusionPipelineOutput
- all

View File

@@ -0,0 +1,229 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Stable Cascade
This model is built upon the [Würstchen](https://openreview.net/forum?id=gU58d5QeGv) architecture and its main
difference to other models like Stable Diffusion is that it is working at a much smaller latent space. Why is this
important? The smaller the latent space, the **faster** you can run inference and the **cheaper** the training becomes.
How small is the latent space? Stable Diffusion uses a compression factor of 8, resulting in a 1024x1024 image being
encoded to 128x128. Stable Cascade achieves a compression factor of 42, meaning that it is possible to encode a
1024x1024 image to 24x24, while maintaining crisp reconstructions. The text-conditional model is then trained in the
highly compressed latent space. Previous versions of this architecture, achieved a 16x cost reduction over Stable
Diffusion 1.5.
Therefore, this kind of model is well suited for usages where efficiency is important. Furthermore, all known extensions
like finetuning, LoRA, ControlNet, IP-Adapter, LCM etc. are possible with this method as well.
The original codebase can be found at [Stability-AI/StableCascade](https://github.com/Stability-AI/StableCascade).
## Model Overview
Stable Cascade consists of three models: Stage A, Stage B and Stage C, representing a cascade to generate images,
hence the name "Stable Cascade".
Stage A & B are used to compress images, similar to what the job of the VAE is in Stable Diffusion.
However, with this setup, a much higher compression of images can be achieved. While the Stable Diffusion models use a
spatial compression factor of 8, encoding an image with resolution of 1024 x 1024 to 128 x 128, Stable Cascade achieves
a compression factor of 42. This encodes a 1024 x 1024 image to 24 x 24, while being able to accurately decode the
image. This comes with the great benefit of cheaper training and inference. Furthermore, Stage C is responsible
for generating the small 24 x 24 latents given a text prompt.
The Stage C model operates on the small 24 x 24 latents and denoises the latents conditioned on text prompts. The model is also the largest component in the Cascade pipeline and is meant to be used with the `StableCascadePriorPipeline`
The Stage B and Stage A models are used with the `StableCascadeDecoderPipeline` and are responsible for generating the final image given the small 24 x 24 latents.
<Tip warning={true}>
There are some restrictions on data types that can be used with the Stable Cascade models. The official checkpoints for the `StableCascadePriorPipeline` do not support the `torch.float16` data type. Please use `torch.bfloat16` instead.
In order to use the `torch.bfloat16` data type with the `StableCascadeDecoderPipeline` you need to have PyTorch 2.2.0 or higher installed. This also means that using the `StableCascadeCombinedPipeline` with `torch.bfloat16` requires PyTorch 2.2.0 or higher, since it calls the `StableCascadeDecoderPipeline` internally.
If it is not possible to install PyTorch 2.2.0 or higher in your environment, the `StableCascadeDecoderPipeline` can be used on its own with the `torch.float16` data type. You can download the full precision or `bf16` variant weights for the pipeline and cast the weights to `torch.float16`.
</Tip>
## Usage example
```python
import torch
from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline
prompt = "an image of a shiba inu, donning a spacesuit and helmet"
negative_prompt = ""
prior = StableCascadePriorPipeline.from_pretrained("stabilityai/stable-cascade-prior", variant="bf16", torch_dtype=torch.bfloat16)
decoder = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade", variant="bf16", torch_dtype=torch.float16)
prior.enable_model_cpu_offload()
prior_output = prior(
prompt=prompt,
height=1024,
width=1024,
negative_prompt=negative_prompt,
guidance_scale=4.0,
num_images_per_prompt=1,
num_inference_steps=20
)
decoder.enable_model_cpu_offload()
decoder_output = decoder(
image_embeddings=prior_output.image_embeddings.to(torch.float16),
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=0.0,
output_type="pil",
num_inference_steps=10
).images[0]
decoder_output.save("cascade.png")
```
## Using the Lite Versions of the Stage B and Stage C models
```python
import torch
from diffusers import (
StableCascadeDecoderPipeline,
StableCascadePriorPipeline,
StableCascadeUNet,
)
prompt = "an image of a shiba inu, donning a spacesuit and helmet"
negative_prompt = ""
prior_unet = StableCascadeUNet.from_pretrained("stabilityai/stable-cascade-prior", subfolder="prior_lite")
decoder_unet = StableCascadeUNet.from_pretrained("stabilityai/stable-cascade", subfolder="decoder_lite")
prior = StableCascadePriorPipeline.from_pretrained("stabilityai/stable-cascade-prior", prior=prior_unet)
decoder = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade", decoder=decoder_unet)
prior.enable_model_cpu_offload()
prior_output = prior(
prompt=prompt,
height=1024,
width=1024,
negative_prompt=negative_prompt,
guidance_scale=4.0,
num_images_per_prompt=1,
num_inference_steps=20
)
decoder.enable_model_cpu_offload()
decoder_output = decoder(
image_embeddings=prior_output.image_embeddings,
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=0.0,
output_type="pil",
num_inference_steps=10
).images[0]
decoder_output.save("cascade.png")
```
## Loading original checkpoints with `from_single_file`
Loading the original format checkpoints is supported via `from_single_file` method in the StableCascadeUNet.
```python
import torch
from diffusers import (
StableCascadeDecoderPipeline,
StableCascadePriorPipeline,
StableCascadeUNet,
)
prompt = "an image of a shiba inu, donning a spacesuit and helmet"
negative_prompt = ""
prior_unet = StableCascadeUNet.from_single_file(
"https://huggingface.co/stabilityai/stable-cascade/resolve/main/stage_c_bf16.safetensors",
torch_dtype=torch.bfloat16
)
decoder_unet = StableCascadeUNet.from_single_file(
"https://huggingface.co/stabilityai/stable-cascade/blob/main/stage_b_bf16.safetensors",
torch_dtype=torch.bfloat16
)
prior = StableCascadePriorPipeline.from_pretrained("stabilityai/stable-cascade-prior", prior=prior_unet, torch_dtype=torch.bfloat16)
decoder = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade", decoder=decoder_unet, torch_dtype=torch.bfloat16)
prior.enable_model_cpu_offload()
prior_output = prior(
prompt=prompt,
height=1024,
width=1024,
negative_prompt=negative_prompt,
guidance_scale=4.0,
num_images_per_prompt=1,
num_inference_steps=20
)
decoder.enable_model_cpu_offload()
decoder_output = decoder(
image_embeddings=prior_output.image_embeddings,
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=0.0,
output_type="pil",
num_inference_steps=10
).images[0]
decoder_output.save("cascade-single-file.png")
```
## Uses
### Direct Use
The model is intended for research purposes for now. Possible research areas and tasks include
- Research on generative models.
- Safe deployment of models which have the potential to generate harmful content.
- Probing and understanding the limitations and biases of generative models.
- Generation of artworks and use in design and other artistic processes.
- Applications in educational or creative tools.
Excluded uses are described below.
### Out-of-Scope Use
The model was not trained to be factual or true representations of people or events,
and therefore using the model to generate such content is out-of-scope for the abilities of this model.
The model should not be used in any way that violates Stability AI's [Acceptable Use Policy](https://stability.ai/use-policy).
## Limitations and Bias
### Limitations
- Faces and people in general may not be generated properly.
- The autoencoding part of the model is lossy.
## StableCascadeCombinedPipeline
[[autodoc]] StableCascadeCombinedPipeline
- all
- __call__
## StableCascadePriorPipeline
[[autodoc]] StableCascadePriorPipeline
- all
- __call__
## StableCascadePriorPipelineOutput
[[autodoc]] pipelines.stable_cascade.pipeline_stable_cascade_prior.StableCascadePriorPipelineOutput
## StableCascadeDecoderPipeline
[[autodoc]] StableCascadeDecoderPipeline
- all
- __call__

View File

@@ -10,9 +10,7 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# Text-to-Image Generation with Adapter Conditioning
## Overview
# T2I-Adapter
[T2I-Adapter: Learning Adapters to Dig out More Controllable Ability for Text-to-Image Diffusion Models](https://arxiv.org/abs/2302.08453) by Chong Mou, Xintao Wang, Liangbin Xie, Jian Zhang, Zhongang Qi, Ying Shan, Xiaohu Qie.
@@ -24,236 +22,26 @@ The abstract of the paper is the following:
This model was contributed by the community contributor [HimariO](https://github.com/HimariO) ❤️ .
## Available Pipelines:
| Pipeline | Tasks | Demo
|---|---|:---:|
| [StableDiffusionAdapterPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py) | *Text-to-Image Generation with T2I-Adapter Conditioning* | -
| [StableDiffusionXLAdapterPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py) | *Text-to-Image Generation with T2I-Adapter Conditioning on StableDiffusion-XL* | -
## Usage example with the base model of StableDiffusion-1.4/1.5
In the following we give a simple example of how to use a *T2I-Adapter* checkpoint with Diffusers for inference based on StableDiffusion-1.4/1.5.
All adapters use the same pipeline.
1. Images are first converted into the appropriate *control image* format.
2. The *control image* and *prompt* are passed to the [`StableDiffusionAdapterPipeline`].
Let's have a look at a simple example using the [Color Adapter](https://huggingface.co/TencentARC/t2iadapter_color_sd14v1).
```python
from diffusers.utils import load_image, make_image_grid
image = load_image("https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/color_ref.png")
```
![img](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/color_ref.png)
Then we can create our color palette by simply resizing it to 8 by 8 pixels and then scaling it back to original size.
```python
from PIL import Image
color_palette = image.resize((8, 8))
color_palette = color_palette.resize((512, 512), resample=Image.Resampling.NEAREST)
```
Let's take a look at the processed image.
![img](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/color_palette.png)
Next, create the adapter pipeline
```py
import torch
from diffusers import StableDiffusionAdapterPipeline, T2IAdapter
adapter = T2IAdapter.from_pretrained("TencentARC/t2iadapter_color_sd14v1", torch_dtype=torch.float16)
pipe = StableDiffusionAdapterPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
adapter=adapter,
torch_dtype=torch.float16,
)
pipe.to("cuda")
```
Finally, pass the prompt and control image to the pipeline
```py
# fix the random seed, so you will get the same result as the example
generator = torch.Generator("cuda").manual_seed(7)
out_image = pipe(
"At night, glowing cubes in front of the beach",
image=color_palette,
generator=generator,
).images[0]
make_image_grid([image, color_palette, out_image], rows=1, cols=3)
```
![img](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/color_output.png)
## Usage example with the base model of StableDiffusion-XL
In the following we give a simple example of how to use a *T2I-Adapter* checkpoint with Diffusers for inference based on StableDiffusion-XL.
All adapters use the same pipeline.
1. Images are first downloaded into the appropriate *control image* format.
2. The *control image* and *prompt* are passed to the [`StableDiffusionXLAdapterPipeline`].
Let's have a look at a simple example using the [Sketch Adapter](https://huggingface.co/Adapter/t2iadapter/tree/main/sketch_sdxl_1.0).
```python
from diffusers.utils import load_image, make_image_grid
sketch_image = load_image("https://huggingface.co/Adapter/t2iadapter/resolve/main/sketch.png").convert("L")
```
![img](https://huggingface.co/Adapter/t2iadapter/resolve/main/sketch.png)
Then, create the adapter pipeline
```py
import torch
from diffusers import (
T2IAdapter,
StableDiffusionXLAdapterPipeline,
DDPMScheduler
)
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
adapter = T2IAdapter.from_pretrained("Adapter/t2iadapter", subfolder="sketch_sdxl_1.0", torch_dtype=torch.float16, adapter_type="full_adapter_xl")
scheduler = DDPMScheduler.from_pretrained(model_id, subfolder="scheduler")
pipe = StableDiffusionXLAdapterPipeline.from_pretrained(
model_id, adapter=adapter, safety_checker=None, torch_dtype=torch.float16, variant="fp16", scheduler=scheduler
)
pipe.to("cuda")
```
Finally, pass the prompt and control image to the pipeline
```py
# fix the random seed, so you will get the same result as the example
generator = torch.Generator().manual_seed(42)
sketch_image_out = pipe(
prompt="a photo of a dog in real world, high quality",
negative_prompt="extra digit, fewer digits, cropped, worst quality, low quality",
image=sketch_image,
generator=generator,
guidance_scale=7.5
).images[0]
make_image_grid([sketch_image, sketch_image_out], rows=1, cols=2)
```
![img](https://huggingface.co/Adapter/t2iadapter/resolve/main/sketch_output.png)
## Available checkpoints
Non-diffusers checkpoints can be found under [TencentARC/T2I-Adapter](https://huggingface.co/TencentARC/T2I-Adapter/tree/main/models).
### T2I-Adapter with Stable Diffusion 1.4
| Model Name | Control Image Overview| Control Image Example | Generated Image Example |
|---|---|---|---|
|[TencentARC/t2iadapter_color_sd14v1](https://huggingface.co/TencentARC/t2iadapter_color_sd14v1)<br/> *Trained with spatial color palette* | An image with 8x8 color palette.|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/color_sample_input.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/color_sample_input.png"/></a>|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/color_sample_output.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/color_sample_output.png"/></a>|
|[TencentARC/t2iadapter_canny_sd14v1](https://huggingface.co/TencentARC/t2iadapter_canny_sd14v1)<br/> *Trained with canny edge detection* | A monochrome image with white edges on a black background.|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/canny_sample_input.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/canny_sample_input.png"/></a>|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/canny_sample_output.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/canny_sample_output.png"/></a>|
|[TencentARC/t2iadapter_sketch_sd14v1](https://huggingface.co/TencentARC/t2iadapter_sketch_sd14v1)<br/> *Trained with [PidiNet](https://github.com/zhuoinoulu/pidinet) edge detection* | A hand-drawn monochrome image with white outlines on a black background.|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/sketch_sample_input.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/sketch_sample_input.png"/></a>|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/sketch_sample_output.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/sketch_sample_output.png"/></a>|
|[TencentARC/t2iadapter_depth_sd14v1](https://huggingface.co/TencentARC/t2iadapter_depth_sd14v1)<br/> *Trained with Midas depth estimation* | A grayscale image with black representing deep areas and white representing shallow areas.|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/depth_sample_input.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/depth_sample_input.png"/></a>|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/depth_sample_output.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/depth_sample_output.png"/></a>|
|[TencentARC/t2iadapter_openpose_sd14v1](https://huggingface.co/TencentARC/t2iadapter_openpose_sd14v1)<br/> *Trained with OpenPose bone image* | A [OpenPose bone](https://github.com/CMU-Perceptual-Computing-Lab/openpose) image.|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/openpose_sample_input.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/openpose_sample_input.png"/></a>|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/openpose_sample_output.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/openpose_sample_output.png"/></a>|
|[TencentARC/t2iadapter_keypose_sd14v1](https://huggingface.co/TencentARC/t2iadapter_keypose_sd14v1)<br/> *Trained with mmpose skeleton image* | A [mmpose skeleton](https://github.com/open-mmlab/mmpose) image.|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/keypose_sample_input.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/keypose_sample_input.png"/></a>|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/keypose_sample_output.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/keypose_sample_output.png"/></a>|
|[TencentARC/t2iadapter_seg_sd14v1](https://huggingface.co/TencentARC/t2iadapter_seg_sd14v1)<br/>*Trained with semantic segmentation* | An [custom](https://github.com/TencentARC/T2I-Adapter/discussions/25) segmentation protocol image.|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/seg_sample_input.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/seg_sample_input.png"/></a>|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/seg_sample_output.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/seg_sample_output.png"/></a> |
|[TencentARC/t2iadapter_canny_sd15v2](https://huggingface.co/TencentARC/t2iadapter_canny_sd15v2)||
|[TencentARC/t2iadapter_depth_sd15v2](https://huggingface.co/TencentARC/t2iadapter_depth_sd15v2)||
|[TencentARC/t2iadapter_sketch_sd15v2](https://huggingface.co/TencentARC/t2iadapter_sketch_sd15v2)||
|[TencentARC/t2iadapter_zoedepth_sd15v1](https://huggingface.co/TencentARC/t2iadapter_zoedepth_sd15v1)||
|[Adapter/t2iadapter, subfolder='sketch_sdxl_1.0'](https://huggingface.co/Adapter/t2iadapter/tree/main/sketch_sdxl_1.0)||
|[Adapter/t2iadapter, subfolder='canny_sdxl_1.0'](https://huggingface.co/Adapter/t2iadapter/tree/main/canny_sdxl_1.0)||
|[Adapter/t2iadapter, subfolder='openpose_sdxl_1.0'](https://huggingface.co/Adapter/t2iadapter/tree/main/openpose_sdxl_1.0)||
## Combining multiple adapters
[`MultiAdapter`] can be used for applying multiple conditionings at once.
Here we use the keypose adapter for the character posture and the depth adapter for creating the scene.
```py
from diffusers.utils import load_image, make_image_grid
cond_keypose = load_image(
"https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/keypose_sample_input.png"
)
cond_depth = load_image(
"https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/depth_sample_input.png"
)
cond = [cond_keypose, cond_depth]
prompt = ["A man walking in an office room with a nice view"]
```
The two control images look as such:
![img](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/keypose_sample_input.png)
![img](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/depth_sample_input.png)
`MultiAdapter` combines keypose and depth adapters.
`adapter_conditioning_scale` balances the relative influence of the different adapters.
```py
import torch
from diffusers import StableDiffusionAdapterPipeline, MultiAdapter, T2IAdapter
adapters = MultiAdapter(
[
T2IAdapter.from_pretrained("TencentARC/t2iadapter_keypose_sd14v1"),
T2IAdapter.from_pretrained("TencentARC/t2iadapter_depth_sd14v1"),
]
)
adapters = adapters.to(torch.float16)
pipe = StableDiffusionAdapterPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
torch_dtype=torch.float16,
adapter=adapters,
).to("cuda")
image = pipe(prompt, cond, adapter_conditioning_scale=[0.8, 0.8]).images[0]
make_image_grid([cond_keypose, cond_depth, image], rows=1, cols=3)
```
![img](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/keypose_depth_sample_output.png)
## T2I-Adapter vs ControlNet
T2I-Adapter is similar to [ControlNet](https://huggingface.co/docs/diffusers/main/en/api/pipelines/controlnet).
T2I-Adapter uses a smaller auxiliary network which is only run once for the entire diffusion process.
However, T2I-Adapter performs slightly worse than ControlNet.
## StableDiffusionAdapterPipeline
[[autodoc]] StableDiffusionAdapterPipeline
- all
- __call__
- enable_attention_slicing
- disable_attention_slicing
- enable_vae_slicing
- disable_vae_slicing
- enable_xformers_memory_efficient_attention
- disable_xformers_memory_efficient_attention
- all
- __call__
- enable_attention_slicing
- disable_attention_slicing
- enable_vae_slicing
- disable_vae_slicing
- enable_xformers_memory_efficient_attention
- disable_xformers_memory_efficient_attention
## StableDiffusionXLAdapterPipeline
[[autodoc]] StableDiffusionXLAdapterPipeline
- all
- __call__
- enable_attention_slicing
- disable_attention_slicing
- enable_vae_slicing
- disable_vae_slicing
- enable_xformers_memory_efficient_attention
- disable_xformers_memory_efficient_attention
- all
- __call__
- enable_attention_slicing
- disable_attention_slicing
- enable_vae_slicing
- disable_vae_slicing
- enable_xformers_memory_efficient_attention
- disable_xformers_memory_efficient_attention

View File

@@ -172,3 +172,41 @@ inpaint = StableDiffusionInpaintPipeline(**text2img.components)
# now you can use text2img(...), img2img(...), inpaint(...) just like the call methods of each respective pipeline
```
### Create web demos using `gradio`
The Stable Diffusion pipelines are automatically supported in [Gradio](https://github.com/gradio-app/gradio/), a library that makes creating beautiful and user-friendly machine learning apps on the web a breeze. First, make sure you have Gradio installed:
```
pip install -U gradio
```
Then, create a web demo around any Stable Diffusion-based pipeline. For example, you can create an image generation pipeline in a single line of code with Gradio's [`Interface.from_pipeline`](https://www.gradio.app/docs/interface#interface-from-pipeline) function:
```py
from diffusers import StableDiffusionPipeline
import gradio as gr
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
gr.Interface.from_pipeline(pipe).launch()
```
which opens an intuitive drag-and-drop interface in your browser:
![](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/gradio-panda.png)
Similarly, you could create a demo for an image-to-image pipeline with:
```py
from diffusers import StableDiffusionImg2ImgPipeline
import gradio as gr
pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
gr.Interface.from_pipeline(pipe).launch()
```
By default, the web demo runs on a local server. If you'd like to share it with others, you can generate a temporary public
link by setting `share=True` in `launch()`. Or, you can host your demo on [Hugging Face Spaces](https://huggingface.co/spaces)https://huggingface.co/spaces for a permanent link.

View File

@@ -21,7 +21,7 @@ The abstract from the paper is:
## Tips
- SDXL Turbo uses the exact same architecture as [SDXL](./stable_diffusion_xl), which means it also has the same API. Please refer to the [SDXL](./stable_diffusion_xl) API reference for more details.
- SDXL Turbo should disable guidance scale by setting `guidance_scale=0.0`
- SDXL Turbo should disable guidance scale by setting `guidance_scale=0.0`.
- SDXL Turbo should use `timestep_spacing='trailing'` for the scheduler and use between 1 and 4 steps.
- SDXL Turbo has been trained to generate images of size 512x512.
- SDXL Turbo is open-access, but not open-source meaning that one might have to buy a model license in order to use it for commercial applications. Make sure to read the [official model card](https://huggingface.co/stabilityai/sdxl-turbo) to learn more.

View File

@@ -0,0 +1,43 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Stable Video Diffusion
Stable Video Diffusion was proposed in [Stable Video Diffusion: Scaling Latent Video Diffusion Models to Large Datasets](https://hf.co/papers/2311.15127) by Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, Varun Jampani, Robin Rombach.
The abstract from the paper is:
*We present Stable Video Diffusion - a latent video diffusion model for high-resolution, state-of-the-art text-to-video and image-to-video generation. Recently, latent diffusion models trained for 2D image synthesis have been turned into generative video models by inserting temporal layers and finetuning them on small, high-quality video datasets. However, training methods in the literature vary widely, and the field has yet to agree on a unified strategy for curating video data. In this paper, we identify and evaluate three different stages for successful training of video LDMs: text-to-image pretraining, video pretraining, and high-quality video finetuning. Furthermore, we demonstrate the necessity of a well-curated pretraining dataset for generating high-quality videos and present a systematic curation process to train a strong base model, including captioning and filtering strategies. We then explore the impact of finetuning our base model on high-quality data and train a text-to-video model that is competitive with closed-source video generation. We also show that our base model provides a powerful motion representation for downstream tasks such as image-to-video generation and adaptability to camera motion-specific LoRA modules. Finally, we demonstrate that our model provides a strong multi-view 3D-prior and can serve as a base to finetune a multi-view diffusion model that jointly generates multiple views of objects in a feedforward fashion, outperforming image-based methods at a fraction of their compute budget. We release code and model weights at this https URL.*
<Tip>
To learn how to use Stable Video Diffusion, take a look at the [Stable Video Diffusion](../../../using-diffusers/svd) guide.
<br>
Check out the [Stability AI](https://huggingface.co/stabilityai) Hub organization for the [base](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid) and [extended frame](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt) checkpoints!
</Tip>
## Tips
Video generation is memory-intensive and one way to reduce your memory usage is to set `enable_forward_chunking` on the pipeline's UNet so you don't run the entire feedforward layer at once. Breaking it up into chunks in a loop is more efficient.
Check out the [Text or image-to-video](text-img2vid) guide for more details about how certain parameters can affect video generation and how to optimize inference by reducing memory usage.
## StableVideoDiffusionPipeline
[[autodoc]] StableVideoDiffusionPipeline
## StableVideoDiffusionPipelineOutput
[[autodoc]] pipelines.stable_video_diffusion.StableVideoDiffusionPipelineOutput

View File

@@ -167,6 +167,12 @@ Here are some sample outputs:
</tr>
</table>
## Tips
Video generation is memory-intensive and one way to reduce your memory usage is to set `enable_forward_chunking` on the pipeline's UNet so you don't run the entire feedforward layer at once. Breaking it up into chunks in a loop is more efficient.
Check out the [Text or image-to-video](text-img2vid) guide for more details about how certain parameters can affect video generation and how to optimize inference by reducing memory usage.
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.

View File

@@ -1,9 +1,21 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# ConsistencyDecoderScheduler
This scheduler is a part of the [`ConsistencyDecoderPipeline`] and was introduced in [DALL-E 3](https://openai.com/dall-e-3).
This scheduler is a part of the [`ConsistencyDecoderPipeline`] and was introduced in [DALL-E 3](https://openai.com/dall-e-3).
The original codebase can be found at [openai/consistency_models](https://github.com/openai/consistency_models).
## ConsistencyDecoderScheduler
[[autodoc]] schedulers.scheduling_consistency_decoder.ConsistencyDecoderScheduler
[[autodoc]] schedulers.scheduling_consistency_decoder.ConsistencyDecoderScheduler

View File

@@ -0,0 +1,22 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# EDMEulerScheduler
The Karras formulation of the Euler scheduler (Algorithm 2) from the [Elucidating the Design Space of Diffusion-Based Generative Models](https://huggingface.co/papers/2206.00364) paper by Karras et al. This is a fast scheduler which can often generate good outputs in 20-30 steps. The scheduler is based on the original [k-diffusion](https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L51) implementation by [Katherine Crowson](https://github.com/crowsonkb/).
## EDMEulerScheduler
[[autodoc]] EDMEulerScheduler
## EDMEulerSchedulerOutput
[[autodoc]] schedulers.scheduling_edm_euler.EDMEulerSchedulerOutput

View File

@@ -0,0 +1,24 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# EDMDPMSolverMultistepScheduler
`EDMDPMSolverMultistepScheduler` is a [Karras formulation](https://huggingface.co/papers/2206.00364) of `DPMSolverMultistep`, a multistep scheduler from [DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps](https://huggingface.co/papers/2206.00927) and [DPM-Solver++: Fast Solver for Guided Sampling of Diffusion Probabilistic Models](https://huggingface.co/papers/2211.01095) by Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu.
DPMSolver (and the improved version DPMSolver++) is a fast dedicated high-order solver for diffusion ODEs with convergence order guarantee. Empirically, DPMSolver sampling with only 20 steps can generate high-quality
samples, and it can generate quite good samples even in 10 steps.
## EDMDPMSolverMultistepScheduler
[[autodoc]] EDMDPMSolverMultistepScheduler
## SchedulerOutput
[[autodoc]] schedulers.scheduling_utils.SchedulerOutput

View File

@@ -0,0 +1,29 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# TCDScheduler
[Trajectory Consistency Distillation](https://huggingface.co/papers/2402.19159) by Jianbin Zheng, Minghui Hu, Zhongyi Fan, Chaoyue Wang, Changxing Ding, Dacheng Tao and Tat-Jen Cham introduced a Strategic Stochastic Sampling (Algorithm 4) that is capable of generating good samples in a small number of steps. Distinguishing it as an advanced iteration of the multistep scheduler (Algorithm 1) in the [Consistency Models](https://huggingface.co/papers/2303.01469), Strategic Stochastic Sampling specifically tailored for the trajectory consistency function.
The abstract from the paper is:
*Latent Consistency Model (LCM) extends the Consistency Model to the latent space and leverages the guided consistency distillation technique to achieve impressive performance in accelerating text-to-image synthesis. However, we observed that LCM struggles to generate images with both clarity and detailed intricacy. To address this limitation, we initially delve into and elucidate the underlying causes. Our investigation identifies that the primary issue stems from errors in three distinct areas. Consequently, we introduce Trajectory Consistency Distillation (TCD), which encompasses trajectory consistency function and strategic stochastic sampling. The trajectory consistency function diminishes the distillation errors by broadening the scope of the self-consistency boundary condition and endowing the TCD with the ability to accurately trace the entire trajectory of the Probability Flow ODE. Additionally, strategic stochastic sampling is specifically designed to circumvent the accumulated errors inherent in multi-step consistency sampling, which is meticulously tailored to complement the TCD model. Experiments demonstrate that TCD not only significantly enhances image quality at low NFEs but also yields more detailed results compared to the teacher model at high NFEs.*
The original codebase can be found at [jabir-zheng/TCD](https://github.com/jabir-zheng/TCD).
## TCDScheduler
[[autodoc]] TCDScheduler
## TCDSchedulerOutput
[[autodoc]] schedulers.scheduling_tcd.TCDSchedulerOutput

View File

@@ -66,3 +66,9 @@ image = pipe(prompt).images[0]
Don't use [`torch.autocast`](https://pytorch.org/docs/stable/amp.html#torch.autocast) in any of the pipelines as it can lead to black images and is always slower than pure float16 precision.
</Tip>
## Distilled model
You could also use a distilled Stable Diffusion model and autoencoder to speed up inference. During distillation, many of the UNet's residual and attention blocks are shed to reduce the model size. The distilled model is faster and uses less memory while generating images of comparable quality to the full Stable Diffusion model.
Learn more about in the [Distilled Stable Diffusion inference](../using-diffusers/distilled_sd) guide!

View File

@@ -0,0 +1,179 @@
# T-GATE
[T-GATE](https://github.com/HaozheLiu-ST/T-GATE/tree/main) accelerates inference for [Stable Diffusion](../api/pipelines/stable_diffusion/overview), [PixArt](../api/pipelines/pixart), and [Latency Consistency Model](../api/pipelines/latent_consistency_models.md) pipelines by skipping the cross-attention calculation once it converges. This method doesn't require any additional training and it can speed up inference from 10-50%. T-GATE is also compatible with other optimization methods like [DeepCache](./deepcache).
Before you begin, make sure you install T-GATE.
```bash
pip install tgate
pip install -U pytorch diffusers transformers accelerate DeepCache
```
To use T-GATE with a pipeline, you need to use its corresponding loader.
| Pipeline | T-GATE Loader |
|---|---|
| PixArt | TgatePixArtLoader |
| Stable Diffusion XL | TgateSDXLLoader |
| Stable Diffusion XL + DeepCache | TgateSDXLDeepCacheLoader |
| Stable Diffusion | TgateSDLoader |
| Stable Diffusion + DeepCache | TgateSDDeepCacheLoader |
Next, create a `TgateLoader` with a pipeline, the gate step (the time step to stop calculating the cross attention), and the number of inference steps. Then call the `tgate` method on the pipeline with a prompt, gate step, and the number of inference steps.
Let's see how to enable this for several different pipelines.
<hfoptions id="pipelines">
<hfoption id="PixArt">
Accelerate `PixArtAlphaPipeline` with T-GATE:
```py
import torch
from diffusers import PixArtAlphaPipeline
from tgate import TgatePixArtLoader
pipe = PixArtAlphaPipeline.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", torch_dtype=torch.float16)
pipe = TgatePixArtLoader(
pipe,
gate_step=8,
num_inference_steps=25,
).to("cuda")
image = pipe.tgate(
"An alpaca made of colorful building blocks, cyberpunk.",
gate_step=gate_step,
num_inference_steps=inference_step,
).images[0]
```
</hfoption>
<hfoption id="Stable Diffusion XL">
Accelerate `StableDiffusionXLPipeline` with T-GATE:
```py
import torch
from diffusers import StableDiffusionXLPipeline
from diffusers import DPMSolverMultistepScheduler
pipe = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16,
variant="fp16",
use_safetensors=True,
)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
from tgate import TgateSDXLLoader
gate_step = 10
inference_step = 25
pipe = TgateSDXLLoader(
pipe,
gate_step=gate_step,
num_inference_steps=inference_step,
).to("cuda")
image = pipe.tgate(
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k.",
gate_step=gate_step,
num_inference_steps=inference_step
).images[0]
```
</hfoption>
<hfoption id="StableDiffusionXL with DeepCache">
Accelerate `StableDiffusionXLPipeline` with [DeepCache](https://github.com/horseee/DeepCache) and T-GATE:
```py
import torch
from diffusers import StableDiffusionXLPipeline
from diffusers import DPMSolverMultistepScheduler
pipe = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16,
variant="fp16",
use_safetensors=True,
)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
from tgate import TgateSDXLDeepCacheLoader
gate_step = 10
inference_step = 25
pipe = TgateSDXLDeepCacheLoader(
pipe,
cache_interval=3,
cache_branch_id=0,
).to("cuda")
image = pipe.tgate(
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k.",
gate_step=gate_step,
num_inference_steps=inference_step
).images[0]
```
</hfoption>
<hfoption id="Latent Consistency Model">
Accelerate `latent-consistency/lcm-sdxl` with T-GATE:
```py
import torch
from diffusers import StableDiffusionXLPipeline
from diffusers import UNet2DConditionModel, LCMScheduler
from diffusers import DPMSolverMultistepScheduler
unet = UNet2DConditionModel.from_pretrained(
"latent-consistency/lcm-sdxl",
torch_dtype=torch.float16,
variant="fp16",
)
pipe = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
unet=unet,
torch_dtype=torch.float16,
variant="fp16",
)
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
from tgate import TgateSDXLLoader
gate_step = 1
inference_step = 4
pipe = TgateSDXLLoader(
pipe,
gate_step=gate_step,
num_inference_steps=inference_step,
lcm=True
).to("cuda")
image = pipe.tgate(
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k.",
gate_step=gate_step,
num_inference_steps=inference_step
).images[0]
```
</hfoption>
</hfoptions>
T-GATE also supports [`StableDiffusionPipeline`] and [PixArt-alpha/PixArt-LCM-XL-2-1024-MS](https://hf.co/PixArt-alpha/PixArt-LCM-XL-2-1024-MS).
## Benchmarks
| Model | MACs | Param | Latency | Zero-shot 10K-FID on MS-COCO |
|-----------------------|----------|-----------|---------|---------------------------|
| SD-1.5 | 16.938T | 859.520M | 7.032s | 23.927 |
| SD-1.5 w/ T-GATE | 9.875T | 815.557M | 4.313s | 20.789 |
| SD-2.1 | 38.041T | 865.785M | 16.121s | 22.609 |
| SD-2.1 w/ T-GATE | 22.208T | 815.433 M | 9.878s | 19.940 |
| SD-XL | 149.438T | 2.570B | 53.187s | 24.628 |
| SD-XL w/ T-GATE | 84.438T | 2.024B | 27.932s | 22.738 |
| Pixart-Alpha | 107.031T | 611.350M | 61.502s | 38.669 |
| Pixart-Alpha w/ T-GATE | 65.318T | 462.585M | 37.867s | 35.825 |
| DeepCache (SD-XL) | 57.888T | - | 19.931s | 23.755 |
| DeepCache w/ T-GATE | 43.868T | - | 14.666s | 23.999 |
| LCM (SD-XL) | 11.955T | 2.570B | 3.805s | 25.044 |
| LCM w/ T-GATE | 11.171T | 2.024B | 3.533s | 25.028 |
| LCM (Pixart-Alpha) | 8.563T | 611.350M | 4.733s | 36.086 |
| LCM w/ T-GATE | 7.623T | 462.585M | 4.543s | 37.048 |
The latency is tested on an NVIDIA 1080TI, MACs and Params are calculated with [calflops](https://github.com/MrYxJ/calculate-flops.pytorch), and the FID is calculated with [PytorchFID](https://github.com/mseitzer/pytorch-fid).

View File

@@ -75,6 +75,9 @@ Compilation requires some time to complete, so it is best suited for situations
For more information and different options about `torch.compile`, refer to the [`torch_compile`](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html) tutorial.
> [!TIP]
> Learn more about other ways PyTorch 2.0 can help optimize your model in the [Accelerate inference of text-to-image diffusion models](../tutorials/fast_diffusion) tutorial.
## Benchmark
We conducted a comprehensive benchmark with PyTorch 2.0's efficient attention implementation and `torch.compile` across different GPUs and batch sizes for five of our most used pipelines. The code is benchmarked on 🤗 Diffusers v0.17.0.dev0 to optimize `torch.compile` usage (see [here](https://github.com/huggingface/diffusers/pull/3313) for more details).

View File

@@ -88,7 +88,7 @@ accelerate config default
Or if your environment doesn't support an interactive shell, like a notebook, you can use:
```bash
```py
from accelerate.utils import write_basic_config
write_basic_config()

View File

@@ -54,7 +54,7 @@ accelerate config default
Or if your environment doesn't support an interactive shell, like a notebook, you can use:
```bash
```py
from accelerate.utils import write_basic_config
write_basic_config()
@@ -84,7 +84,7 @@ Many of the basic parameters are described in the [DreamBooth](dreambooth#script
- `--freeze_model`: freezes the key and value parameters in the cross-attention layer; the default is `crossattn_kv`, but you can set it to `crossattn` to train all the parameters in the cross-attention layer
- `--concepts_list`: to learn multiple concepts, provide a path to a JSON file containing the concepts
- `--modifier_token`: a special word used to represent the learned concept
- `--initializer_token`:
- `--initializer_token`: a special word used to initialize the embeddings of the `modifier_token`
### Prior preservation loss

View File

@@ -52,6 +52,76 @@ To learn more, take a look at the [Distributed Inference with 🤗 Accelerate](h
</Tip>
### Device placement
> [!WARNING]
> This feature is experimental and its APIs might change in the future.
With Accelerate, you can use the `device_map` to determine how to distribute the models of a pipeline across multiple devices. This is useful in situations where you have more than one GPU.
For example, if you have two 8GB GPUs, then using [`~DiffusionPipeline.enable_model_cpu_offload`] may not work so well because:
* it only works on a single GPU
* a single model might not fit on a single GPU ([`~DiffusionPipeline.enable_sequential_cpu_offload`] might work but it will be extremely slow and it is also limited to a single GPU)
To make use of both GPUs, you can use the "balanced" device placement strategy which splits the models across all available GPUs.
> [!WARNING]
> Only the "balanced" strategy is supported at the moment, and we plan to support additional mapping strategies in the future.
```diff
from diffusers import DiffusionPipeline
import torch
pipeline = DiffusionPipeline.from_pretrained(
- "runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True,
+ "runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True, device_map="balanced"
)
image = pipeline("a dog").images[0]
image
```
You can also pass a dictionary to enforce the maximum GPU memory that can be used on each device:
```diff
from diffusers import DiffusionPipeline
import torch
max_memory = {0:"1GB", 1:"1GB"}
pipeline = DiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16,
use_safetensors=True,
device_map="balanced",
+ max_memory=max_memory
)
image = pipeline("a dog").images[0]
image
```
If a device is not present in `max_memory`, then it will be completely ignored and will not participate in the device placement.
By default, Diffusers uses the maximum memory of all devices. If the models don't fit on the GPUs, they are offloaded to the CPU. If the CPU doesn't have enough memory, then you might see an error. In that case, you could defer to using [`~DiffusionPipeline.enable_sequential_cpu_offload`] and [`~DiffusionPipeline.enable_model_cpu_offload`].
Call [`~DiffusionPipeline.reset_device_map`] to reset the `device_map` of a pipeline. This is also necessary if you want to use methods like `to()`, [`~DiffusionPipeline.enable_sequential_cpu_offload`], and [`~DiffusionPipeline.enable_model_cpu_offload`] on a pipeline that was device-mapped.
```py
pipeline.reset_device_map()
```
Once a pipeline has been device-mapped, you can also access its device map via `hf_device_map`:
```py
print(pipeline.hf_device_map)
```
An example device map would look like so:
```bash
{'unet': 1, 'vae': 1, 'safety_checker': 0, 'text_encoder': 0}
```
## PyTorch Distributed
PyTorch supports [`DistributedDataParallel`](https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html) which enables data parallelism.

View File

@@ -67,7 +67,7 @@ accelerate config default
Or if your environment doesn't support an interactive shell, like a notebook, you can use:
```bash
```py
from accelerate.utils import write_basic_config
write_basic_config()
@@ -180,7 +180,7 @@ elif args.pretrained_model_name_or_path:
revision=args.revision,
use_fast=False,
)
# Load scheduler and models
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
text_encoder = text_encoder_cls.from_pretrained(

View File

@@ -51,7 +51,7 @@ accelerate config default
Or if your environment doesn't support an interactive shell, like a notebook, you can use:
```bash
```py
from accelerate.utils import write_basic_config
write_basic_config()
@@ -89,7 +89,7 @@ The dataset preprocessing code and training loop are found in the [`main()`](htt
As with the script parameters, a walkthrough of the training script is provided in the [Text-to-image](text2image#training-script) training guide. Instead, this guide takes a look at the InstructPix2Pix relevant parts of the script.
The script begins by modifing the [number of input channels](https://github.com/huggingface/diffusers/blob/64603389da01082055a901f2883c4810d1144edb/examples/instruct_pix2pix/train_instruct_pix2pix.py#L445) in the first convolutional layer of the UNet to account for InstructPix2Pix's additional conditioning image:
The script begins by modifying the [number of input channels](https://github.com/huggingface/diffusers/blob/64603389da01082055a901f2883c4810d1144edb/examples/instruct_pix2pix/train_instruct_pix2pix.py#L445) in the first convolutional layer of the UNet to account for InstructPix2Pix's additional conditioning image:
```py
in_channels = 8

View File

@@ -59,7 +59,7 @@ accelerate config default
Or if your environment doesn't support an interactive shell, like a notebook, you can use:
```bash
```py
from accelerate.utils import write_basic_config
write_basic_config()
@@ -235,7 +235,7 @@ accelerate launch --mixed_precision="fp16" train_text_to_image_prior.py \
--validation_prompts="A robot pokemon, 4k photo" \
--report_to="wandb" \
--push_to_hub \
--output_dir="kandi2-prior-pokemon-model"
--output_dir="kandi2-prior-pokemon-model"
```
</hfoption>
@@ -259,7 +259,7 @@ accelerate launch --mixed_precision="fp16" train_text_to_image_decoder.py \
--validation_prompts="A robot pokemon, 4k photo" \
--report_to="wandb" \
--push_to_hub \
--output_dir="kandi2-decoder-pokemon-model"
--output_dir="kandi2-decoder-pokemon-model"
```
</hfoption>

View File

@@ -53,7 +53,7 @@ accelerate config default
Or if your environment doesn't support an interactive shell, like a notebook, you can use:
```bash
```py
from accelerate.utils import write_basic_config
write_basic_config()
@@ -252,4 +252,4 @@ The SDXL training script is discussed in more detail in the [SDXL training](sdxl
Congratulations on distilling a LCM model! To learn more about LCM, the following may be helpful:
- Learn how to use [LCMs for inference](../using-diffusers/lcm) for text-to-image, image-to-image, and with LoRA checkpoints.
- Read the [SDXL in 4 steps with Latent Consistency LoRAs](https://huggingface.co/blog/lcm_lora) blog post to learn more about SDXL LCM-LoRA's for super fast inference, quality comparisons, benchmarks, and more.
- Read the [SDXL in 4 steps with Latent Consistency LoRAs](https://huggingface.co/blog/lcm_lora) blog post to learn more about SDXL LCM-LoRA's for super fast inference, quality comparisons, benchmarks, and more.

View File

@@ -77,7 +77,7 @@ accelerate config default
Or if your environment doesn't support an interactive shell, like a notebook, you can use:
```bash
```py
from accelerate.utils import write_basic_config
write_basic_config()
@@ -113,36 +113,50 @@ The dataset preprocessing code and training loop are found in the [`main()`](htt
As with the script parameters, a walkthrough of the training script is provided in the [Text-to-image](text2image#training-script) training guide. Instead, this guide takes a look at the LoRA relevant parts of the script.
The script begins by adding the [new LoRA weights](https://github.com/huggingface/diffusers/blob/dd9a5caf61f04d11c0fa9f3947b69ab0010c9a0f/examples/text_to_image/train_text_to_image_lora.py#L447) to the attention layers. This involves correctly configuring the weight size for each block in the UNet. You'll see the `rank` parameter is used to create the [`~models.attention_processor.LoRAAttnProcessor`]:
<hfoptions id="lora">
<hfoption id="UNet">
Diffusers uses [`~peft.LoraConfig`] from the [PEFT](https://hf.co/docs/peft) library to set up the parameters of the LoRA adapter such as the rank, alpha, and which modules to insert the LoRA weights into. The adapter is added to the UNet, and only the LoRA layers are filtered for optimization in `lora_layers`.
```py
lora_attn_procs = {}
for name in unet.attn_processors.keys():
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
if name.startswith("mid_block"):
hidden_size = unet.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = unet.config.block_out_channels[block_id]
unet_lora_config = LoraConfig(
r=args.rank,
lora_alpha=args.rank,
init_lora_weights="gaussian",
target_modules=["to_k", "to_q", "to_v", "to_out.0"],
)
lora_attn_procs[name] = LoRAAttnProcessor(
hidden_size=hidden_size,
cross_attention_dim=cross_attention_dim,
rank=args.rank,
)
unet.set_attn_processor(lora_attn_procs)
lora_layers = AttnProcsLayers(unet.attn_processors)
unet.add_adapter(unet_lora_config)
lora_layers = filter(lambda p: p.requires_grad, unet.parameters())
```
The [optimizer](https://github.com/huggingface/diffusers/blob/dd9a5caf61f04d11c0fa9f3947b69ab0010c9a0f/examples/text_to_image/train_text_to_image_lora.py#L519) is initialized with the `lora_layers` because these are the only weights that'll be optimized:
</hfoption>
<hfoption id="text encoder">
Diffusers also supports finetuning the text encoder with LoRA from the [PEFT](https://hf.co/docs/peft) library when necessary such as finetuning Stable Diffusion XL (SDXL). The [`~peft.LoraConfig`] is used to configure the parameters of the LoRA adapter which are then added to the text encoder, and only the LoRA layers are filtered for training.
```py
text_lora_config = LoraConfig(
r=args.rank,
lora_alpha=args.rank,
init_lora_weights="gaussian",
target_modules=["q_proj", "k_proj", "v_proj", "out_proj"],
)
text_encoder_one.add_adapter(text_lora_config)
text_encoder_two.add_adapter(text_lora_config)
text_lora_parameters_one = list(filter(lambda p: p.requires_grad, text_encoder_one.parameters()))
text_lora_parameters_two = list(filter(lambda p: p.requires_grad, text_encoder_two.parameters()))
```
</hfoption>
</hfoptions>
The [optimizer](https://github.com/huggingface/diffusers/blob/e4b8f173b97731686e290b2eb98e7f5df2b1b322/examples/text_to_image/train_text_to_image_lora.py#L529) is initialized with the `lora_layers` because these are the only weights that'll be optimized:
```py
optimizer = optimizer_cls(
lora_layers.parameters(),
lora_layers,
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
@@ -156,7 +170,7 @@ Aside from setting up the LoRA layers, the training script is more or less the s
Once you've made all your changes or you're okay with the default configuration, you're ready to launch the training script! 🚀
Let's train on the [Pokémon BLIP captions](https://huggingface.co/datasets/lambdalabs/pokemon-blip-captions) dataset to generate our yown Pokémon. Set the environment variables `MODEL_NAME` and `DATASET_NAME` to the model and dataset respectively. You should also specify where to save the model in `OUTPUT_DIR`, and the name of the model to save to on the Hub with `HUB_MODEL_ID`. The script creates and saves the following files to your repository:
Let's train on the [Pokémon BLIP captions](https://huggingface.co/datasets/lambdalabs/pokemon-blip-captions) dataset to generate our own Pokémon. Set the environment variables `MODEL_NAME` and `DATASET_NAME` to the model and dataset respectively. You should also specify where to save the model in `OUTPUT_DIR`, and the name of the model to save to on the Hub with `HUB_MODEL_ID`. The script creates and saves the following files to your repository:
- saved model checkpoints
- `pytorch_lora_weights.safetensors` (the trained LoRA weights)

View File

@@ -59,7 +59,7 @@ accelerate config default
Or if your environment doesn't support an interactive shell, like a notebook, you can use:
```bash
```py
from accelerate.utils import write_basic_config
write_basic_config()

View File

@@ -53,7 +53,7 @@ accelerate config default
Or if your environment doesn't support an interactive shell, like a notebook, you can use:
```bash
```py
from accelerate.utils import write_basic_config
write_basic_config()

View File

@@ -69,7 +69,7 @@ accelerate config default
Or if your environment doesn't support an interactive shell, like a notebook, you can use:
```bash
```py
from accelerate.utils import write_basic_config
write_basic_config()

View File

@@ -67,7 +67,7 @@ accelerate config default
Or if your environment doesn't support an interactive shell, like a notebook, you can use:
```bash
```py
from accelerate.utils import write_basic_config
write_basic_config()

View File

@@ -51,7 +51,7 @@ accelerate config default
Or if your environment doesn't support an interactive shell like a notebook, you can use:
```bash
```py
from accelerate.utils import write_basic_config
write_basic_config()

View File

@@ -53,7 +53,7 @@ accelerate config default
Or if your environment doesn't support an interactive shell, like a notebook, you can use:
```bash
```py
from accelerate.utils import write_basic_config
write_basic_config()
@@ -173,7 +173,7 @@ pipeline = AutoPipelineForText2Image.from_pretrained("path/to/saved/model", torc
caption = "A cute bird pokemon holding a shield"
images = pipeline(
caption,
caption,
width=1024,
height=1536,
prior_timesteps=DEFAULT_STAGE_C_TIMESTEPS,

View File

@@ -14,19 +14,17 @@ specific language governing permissions and limitations under the License.
# Load LoRAs for inference
There are many adapters (with LoRAs being the most common type) trained in different styles to achieve different effects. You can even combine multiple adapters to create new and unique images. With the 🤗 [PEFT](https://huggingface.co/docs/peft/index) integration in 🤗 Diffusers, it is really easy to load and manage adapters for inference. In this guide, you'll learn how to use different adapters with [Stable Diffusion XL (SDXL)](../api/pipelines/stable_diffusion/stable_diffusion_xl) for inference.
There are many adapter types (with [LoRAs](https://huggingface.co/docs/peft/conceptual_guides/adapter#low-rank-adaptation-lora) being the most popular) trained in different styles to achieve different effects. You can even combine multiple adapters to create new and unique images.
Throughout this guide, you'll use LoRA as the main adapter technique, so we'll use the terms LoRA and adapter interchangeably. You should have some familiarity with LoRA, and if you don't, we welcome you to check out the [LoRA guide](https://huggingface.co/docs/peft/conceptual_guides/lora).
In this tutorial, you'll learn how to easily load and manage adapters for inference with the 🤗 [PEFT](https://huggingface.co/docs/peft/index) integration in 🤗 Diffusers. You'll use LoRA as the main adapter technique, so you'll see the terms LoRA and adapter used interchangeably.
Let's first install all the required libraries.
```bash
!pip install -q transformers accelerate
!pip install peft
!pip install diffusers
!pip install -q transformers accelerate peft diffusers
```
Now, let's load a pipeline with a SDXL checkpoint:
Now, load a pipeline with a [Stable Diffusion XL (SDXL)](../api/pipelines/stable_diffusion/stable_diffusion_xl) checkpoint:
```python
from diffusers import DiffusionPipeline
@@ -36,21 +34,18 @@ pipe_id = "stabilityai/stable-diffusion-xl-base-1.0"
pipe = DiffusionPipeline.from_pretrained(pipe_id, torch_dtype=torch.float16).to("cuda")
```
Next, load a LoRA checkpoint with the [`~diffusers.loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] method.
With the 🤗 PEFT integration, you can assign a specific `adapter_name` to the checkpoint, which let's you easily switch between different LoRA checkpoints. Let's call this adapter `"toy"`.
Next, load a [CiroN2022/toy-face](https://huggingface.co/CiroN2022/toy-face) adapter with the [`~diffusers.loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] method. With the 🤗 PEFT integration, you can assign a specific `adapter_name` to the checkpoint, which let's you easily switch between different LoRA checkpoints. Let's call this adapter `"toy"`.
```python
pipe.load_lora_weights("CiroN2022/toy-face", weight_name="toy_face_sdxl.safetensors", adapter_name="toy")
```
And then perform inference:
Make sure to include the token `toy_face` in the prompt and then you can perform inference:
```python
prompt = "toy_face of a hacker with a hoodie"
lora_scale= 0.9
lora_scale = 0.9
image = pipe(
prompt, num_inference_steps=30, cross_attention_kwargs={"scale": lora_scale}, generator=torch.manual_seed(0)
).images[0]
@@ -59,17 +54,16 @@ image
![toy-face](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/peft_integration/diffusers_peft_lora_inference_8_1.png)
With the `adapter_name` parameter, it is really easy to use another adapter for inference! Load the [nerijs/pixel-art-xl](https://huggingface.co/nerijs/pixel-art-xl) adapter that has been fine-tuned to generate pixel art images and call it `"pixel"`.
With the `adapter_name` parameter, it is really easy to use another adapter for inference! Load the [nerijs/pixel-art-xl](https://huggingface.co/nerijs/pixel-art-xl) adapter that has been fine-tuned to generate pixel art images, and let's call it `"pixel"`.
The pipeline automatically sets the first loaded adapter (`"toy"`) as the active adapter. But you can activate the `"pixel"` adapter with the [`~diffusers.loaders.UNet2DConditionLoadersMixin.set_adapters`] method as shown below:
The pipeline automatically sets the first loaded adapter (`"toy"`) as the active adapter, but you can activate the `"pixel"` adapter with the [`~diffusers.loaders.UNet2DConditionLoadersMixin.set_adapters`] method:
```python
pipe.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
pipe.set_adapters("pixel")
```
Let's now generate an image with the second adapter and check the result:
Make sure you include the token `pixel art` in your prompt to generate a pixel art image:
```python
prompt = "a hacker with a hoodie, pixel art"
@@ -81,29 +75,25 @@ image
![pixel-art](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/peft_integration/diffusers_peft_lora_inference_12_1.png)
## Combine multiple adapters
## Merge adapters
You can also perform multi-adapter inference where you combine different adapter checkpoints for inference.
You can also merge different adapter checkpoints for inference to blend their styles together.
Once again, use the [`~diffusers.loaders.UNet2DConditionLoadersMixin.set_adapters`] method to activate two LoRA checkpoints and specify the weight for how the checkpoints should be combined.
Once again, use the [`~diffusers.loaders.UNet2DConditionLoadersMixin.set_adapters`] method to activate the `pixel` and `toy` adapters and specify the weights for how they should be merged.
```python
pipe.set_adapters(["pixel", "toy"], adapter_weights=[0.5, 1.0])
```
Now that we have set these two adapters, let's generate an image from the combined adapters!
<Tip>
LoRA checkpoints in the diffusion community are almost always obtained with [DreamBooth](https://huggingface.co/docs/diffusers/main/en/training/dreambooth). DreamBooth training often relies on "trigger" words in the input text prompts in order for the generation results to look as expected. When you combine multiple LoRA checkpoints, it's important to ensure the trigger words for the corresponding LoRA checkpoints are present in the input text prompts.
</Tip>
The trigger words for [CiroN2022/toy-face](https://hf.co/CiroN2022/toy-face) and [nerijs/pixel-art-xl](https://hf.co/nerijs/pixel-art-xl) are found in their repositories.
Remember to use the trigger words for [CiroN2022/toy-face](https://hf.co/CiroN2022/toy-face) and [nerijs/pixel-art-xl](https://hf.co/nerijs/pixel-art-xl) (these are found in their repositories) in the prompt to generate an image.
```python
# Notice how the prompt is constructed.
prompt = "toy_face of a hacker with a hoodie, pixel art"
image = pipe(
prompt, num_inference_steps=30, cross_attention_kwargs={"scale": 1.0}, generator=torch.manual_seed(0)
@@ -113,43 +103,95 @@ image
![toy-face-pixel-art](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/peft_integration/diffusers_peft_lora_inference_16_1.png)
Impressive! As you can see, the model was able to generate an image that mixes the characteristics of both adapters.
Impressive! As you can see, the model generated an image that mixed the characteristics of both adapters.
If you want to go back to using only one adapter, use the [`~diffusers.loaders.UNet2DConditionLoadersMixin.set_adapters`] method to activate the `"toy"` adapter:
> [!TIP]
> Through its PEFT integration, Diffusers also offers more efficient merging methods which you can learn about in the [Merge LoRAs](../using-diffusers/merge_loras) guide!
To return to only using one adapter, use the [`~diffusers.loaders.UNet2DConditionLoadersMixin.set_adapters`] method to activate the `"toy"` adapter:
```python
# First, set the adapter.
pipe.set_adapters("toy")
# Then, run inference.
prompt = "toy_face of a hacker with a hoodie"
lora_scale= 0.9
lora_scale = 0.9
image = pipe(
prompt, num_inference_steps=30, cross_attention_kwargs={"scale": lora_scale}, generator=torch.manual_seed(0)
).images[0]
image
```
![toy-face-again](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/peft_integration/diffusers_peft_lora_inference_18_1.png)
If you want to switch to only the base model, disable all LoRAs with the [`~diffusers.loaders.UNet2DConditionLoadersMixin.disable_lora`] method.
Or to disable all adapters entirely, use the [`~diffusers.loaders.UNet2DConditionLoadersMixin.disable_lora`] method to return the base model.
```python
pipe.disable_lora()
prompt = "toy_face of a hacker with a hoodie"
lora_scale= 0.9
image = pipe(prompt, num_inference_steps=30, generator=torch.manual_seed(0)).images[0]
image
```
![no-lora](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/peft_integration/diffusers_peft_lora_inference_20_1.png)
## Monitoring active adapters
### Customize adapters strength
For even more customization, you can control how strongly the adapter affects each part of the pipeline. For this, pass a dictionary with the control strengths (called "scales") to [`~diffusers.loaders.UNet2DConditionLoadersMixin.set_adapters`].
You have attached multiple adapters in this tutorial, and if you're feeling a bit lost on what adapters have been attached to the pipeline's components, you can easily check the list of active adapters using the [`~diffusers.loaders.LoraLoaderMixin.get_active_adapters`] method:
For example, here's how you can turn on the adapter for the `down` parts, but turn it off for the `mid` and `up` parts:
```python
pipe.enable_lora() # enable lora again, after we disabled it above
prompt = "toy_face of a hacker with a hoodie, pixel art"
adapter_weight_scales = { "unet": { "down": 1, "mid": 0, "up": 0} }
pipe.set_adapters("pixel", adapter_weight_scales)
image = pipe(prompt, num_inference_steps=30, generator=torch.manual_seed(0)).images[0]
image
```
![block-lora-text-and-down](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/peft_integration/diffusers_peft_lora_inference_block_down.png)
Let's see how turning off the `down` part and turning on the `mid` and `up` part respectively changes the image.
```python
adapter_weight_scales = { "unet": { "down": 0, "mid": 1, "up": 0} }
pipe.set_adapters("pixel", adapter_weight_scales)
image = pipe(prompt, num_inference_steps=30, generator=torch.manual_seed(0)).images[0]
image
```
![block-lora-text-and-mid](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/peft_integration/diffusers_peft_lora_inference_block_mid.png)
```python
adapter_weight_scales = { "unet": { "down": 0, "mid": 0, "up": 1} }
pipe.set_adapters("pixel", adapter_weight_scales)
image = pipe(prompt, num_inference_steps=30, generator=torch.manual_seed(0)).images[0]
image
```
![block-lora-text-and-up](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/peft_integration/diffusers_peft_lora_inference_block_up.png)
Looks cool!
This is a really powerful feature. You can use it to control the adapter strengths down to per-transformer level. And you can even use it for multiple adapters.
```python
adapter_weight_scales_toy = 0.5
adapter_weight_scales_pixel = {
"unet": {
"down": 0.9, # all transformers in the down-part will use scale 0.9
# "mid" # because, in this example, "mid" is not given, all transformers in the mid part will use the default scale 1.0
"up": {
"block_0": 0.6, # all 3 transformers in the 0th block in the up-part will use scale 0.6
"block_1": [0.4, 0.8, 1.0], # the 3 transformers in the 1st block in the up-part will use scales 0.4, 0.8 and 1.0 respectively
}
}
}
pipe.set_adapters(["toy", "pixel"], [adapter_weight_scales_toy, adapter_weight_scales_pixel])
image = pipe(prompt, num_inference_steps=30, generator=torch.manual_seed(0)).images[0]
image
```
![block-lora-mixed](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/peft_integration/diffusers_peft_lora_inference_block_mixed.png)
## Manage active adapters
You have attached multiple adapters in this tutorial, and if you're feeling a bit lost on what adapters have been attached to the pipeline's components, use the [`~diffusers.loaders.LoraLoaderMixin.get_active_adapters`] method to check the list of active adapters:
```py
active_adapters = pipe.get_active_adapters()
@@ -164,74 +206,3 @@ list_adapters_component_wise = pipe.get_list_adapters()
list_adapters_component_wise
{"text_encoder": ["toy", "pixel"], "unet": ["toy", "pixel"], "text_encoder_2": ["toy", "pixel"]}
```
## Compatibility with `torch.compile`
If you want to compile your model with `torch.compile` make sure to first fuse the LoRA weights into the base model and unload them.
```py
pipe.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
pipe.load_lora_weights("CiroN2022/toy-face", weight_name="toy_face_sdxl.safetensors", adapter_name="toy")
pipe.set_adapters(["pixel", "toy"], adapter_weights=[0.5, 1.0])
# Fuses the LoRAs into the Unet
pipe.fuse_lora()
pipe.unload_lora_weights()
pipe = torch.compile(pipe)
prompt = "toy_face of a hacker with a hoodie, pixel art"
image = pipe(prompt, num_inference_steps=30, generator=torch.manual_seed(0)).images[0]
```
## Fusing adapters into the model
You can use PEFT to easily fuse/unfuse multiple adapters directly into the model weights (both UNet and text encoder) using the [`~diffusers.loaders.LoraLoaderMixin.fuse_lora`] method, which can lead to a speed-up in inference and lower VRAM usage.
```py
pipe.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
pipe.load_lora_weights("CiroN2022/toy-face", weight_name="toy_face_sdxl.safetensors", adapter_name="toy")
pipe.set_adapters(["pixel", "toy"], adapter_weights=[0.5, 1.0])
# Fuses the LoRAs into the Unet
pipe.fuse_lora()
prompt = "toy_face of a hacker with a hoodie, pixel art"
image = pipe(prompt, num_inference_steps=30, generator=torch.manual_seed(0)).images[0]
# Gets the Unet back to the original state
pipe.unfuse_lora()
```
You can also fuse some adapters using `adapter_names` for faster generation:
```py
pipe.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
pipe.load_lora_weights("CiroN2022/toy-face", weight_name="toy_face_sdxl.safetensors", adapter_name="toy")
pipe.set_adapters(["pixel"], adapter_weights=[0.5, 1.0])
# Fuses the LoRAs into the Unet
pipe.fuse_lora(adapter_names=["pixel"])
prompt = "a hacker with a hoodie, pixel art"
image = pipe(prompt, num_inference_steps=30, generator=torch.manual_seed(0)).images[0]
# Gets the Unet back to the original state
pipe.unfuse_lora()
# Fuse all adapters
pipe.fuse_lora(adapter_names=["pixel", "toy"])
prompt = "toy_face of a hacker with a hoodie, pixel art"
image = pipe(prompt, num_inference_steps=30, generator=torch.manual_seed(0)).images[0]
```
## Saving a pipeline after fusing the adapters
To properly save a pipeline after it's been loaded with the adapters, it should be serialized like so:
```python
pipe.fuse_lora(lora_scale=1.0)
pipe.unload_lora_weights()
pipe.save_pretrained("path-to-pipeline")
```

View File

@@ -12,13 +12,18 @@ specific language governing permissions and limitations under the License.
# Pipeline callbacks
The denoising loop of a pipeline can be modified with custom defined functions using the `callback_on_step_end` parameter. This can be really useful for *dynamically* adjusting certain pipeline attributes, or modifying tensor variables. The flexibility of callbacks opens up some interesting use-cases such as changing the prompt embeddings at each timestep, assigning different weights to the prompt embeddings, and editing the guidance scale.
The denoising loop of a pipeline can be modified with custom defined functions using the `callback_on_step_end` parameter. The callback function is executed at the end of each step, and modifies the pipeline attributes and variables for the next step. This is really useful for *dynamically* adjusting certain pipeline attributes or modifying tensor variables. This versatility allows for interesting use-cases such as changing the prompt embeddings at each timestep, assigning different weights to the prompt embeddings, and editing the guidance scale. With callbacks, you can implement new features without modifying the underlying code!
This guide will show you how to use the `callback_on_step_end` parameter to disable classifier-free guidance (CFG) after 40% of the inference steps to save compute with minimal cost to performance.
> [!TIP]
> 🤗 Diffusers currently only supports `callback_on_step_end`, but feel free to open a [feature request](https://github.com/huggingface/diffusers/issues/new/choose) if you have a cool use-case and require a callback function with a different execution point!
The callback function should have the following arguments:
This guide will demonstrate how callbacks work by a few features you can implement with them.
* `pipe` (or the pipeline instance) provides access to useful properties such as `num_timesteps` and `guidance_scale`. You can modify these properties by updating the underlying attributes. For this example, you'll disable CFG by setting `pipe._guidance_scale=0.0`.
## Dynamic classifier-free guidance
Dynamic classifier-free guidance (CFG) is a feature that allows you to disable CFG after a certain number of inference steps which can help you save compute with minimal cost to performance. The callback function for this should have the following arguments:
* `pipeline` (or the pipeline instance) provides access to important properties such as `num_timesteps` and `guidance_scale`. You can modify these properties by updating the underlying attributes. For this example, you'll disable CFG by setting `pipeline._guidance_scale=0.0`.
* `step_index` and `timestep` tell you where you are in the denoising loop. Use `step_index` to turn off CFG after reaching 40% of `num_timesteps`.
* `callback_kwargs` is a dict that contains tensor variables you can modify during the denoising loop. It only includes variables specified in the `callback_on_step_end_tensor_inputs` argument, which is passed to the pipeline's `__call__` method. Different pipelines may use different sets of variables, so please check a pipeline's `_callback_tensor_inputs` attribute for the list of variables you can modify. Some common variables include `latents` and `prompt_embeds`. For this function, change the batch size of `prompt_embeds` after setting `guidance_scale=0.0` in order for it to work properly.
@@ -27,13 +32,13 @@ Your callback function should look something like this:
```python
def callback_dynamic_cfg(pipe, step_index, timestep, callback_kwargs):
# adjust the batch_size of prompt_embeds according to guidance_scale
if step_index == int(pipe.num_timesteps * 0.4):
if step_index == int(pipeline.num_timesteps * 0.4):
prompt_embeds = callback_kwargs["prompt_embeds"]
prompt_embeds = prompt_embeds.chunk(2)[-1]
# update guidance_scale and prompt_embeds
pipe._guidance_scale = 0.0
callback_kwargs["prompt_embeds"] = prompt_embeds
# update guidance_scale and prompt_embeds
pipeline._guidance_scale = 0.0
callback_kwargs["prompt_embeds"] = prompt_embeds
return callback_kwargs
```
@@ -43,58 +48,134 @@ Now, you can pass the callback function to the `callback_on_step_end` parameter
import torch
from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
pipe = pipe.to("cuda")
pipeline = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
pipeline = pipeline.to("cuda")
prompt = "a photo of an astronaut riding a horse on mars"
generator = torch.Generator(device="cuda").manual_seed(1)
out = pipe(prompt, generator=generator, callback_on_step_end=callback_dynamic_cfg, callback_on_step_end_tensor_inputs=['prompt_embeds'])
out = pipeline(
prompt,
generator=generator,
callback_on_step_end=callback_dynamic_cfg,
callback_on_step_end_tensor_inputs=['prompt_embeds']
)
out.images[0].save("out_custom_cfg.png")
```
The callback function is executed at the end of each denoising step, and modifies the pipeline attributes and tensor variables for the next denoising step.
With callbacks, you can implement features such as dynamic CFG without having to modify the underlying code at all!
<Tip>
🤗 Diffusers currently only supports `callback_on_step_end`, but feel free to open a [feature request](https://github.com/huggingface/diffusers/issues/new/choose) if you have a cool use-case and require a callback function with a different execution point!
</Tip>
## Interrupt the diffusion process
Interrupting the diffusion process is particularly useful when building UIs that work with Diffusers because it allows users to stop the generation process if they're unhappy with the intermediate results. You can incorporate this into your pipeline with a callback.
> [!TIP]
> The interruption callback is supported for text-to-image, image-to-image, and inpainting for the [StableDiffusionPipeline](../api/pipelines/stable_diffusion/overview) and [StableDiffusionXLPipeline](../api/pipelines/stable_diffusion/stable_diffusion_xl).
<Tip>
Stopping the diffusion process early is useful when building UIs that work with Diffusers because it allows users to stop the generation process if they're unhappy with the intermediate results. You can incorporate this into your pipeline with a callback.
The interruption callback is supported for text-to-image, image-to-image, and inpainting for the [StableDiffusionPipeline](../api/pipelines/stable_diffusion/overview) and [StableDiffusionXLPipeline](../api/pipelines/stable_diffusion/stable_diffusion_xl).
</Tip>
This callback function should take the following arguments: `pipe`, `i`, `t`, and `callback_kwargs` (this must be returned). Set the pipeline's `_interrupt` attribute to `True` to stop the diffusion process after a certain number of steps. You are also free to implement your own custom stopping logic inside the callback.
This callback function should take the following arguments: `pipeline`, `i`, `t`, and `callback_kwargs` (this must be returned). Set the pipeline's `_interrupt` attribute to `True` to stop the diffusion process after a certain number of steps. You are also free to implement your own custom stopping logic inside the callback.
In this example, the diffusion process is stopped after 10 steps even though `num_inference_steps` is set to 50.
```python
from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
pipe.enable_model_cpu_offload()
pipeline = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
pipeline.enable_model_cpu_offload()
num_inference_steps = 50
def interrupt_callback(pipe, i, t, callback_kwargs):
def interrupt_callback(pipeline, i, t, callback_kwargs):
stop_idx = 10
if i == stop_idx:
pipe._interrupt = True
pipeline._interrupt = True
return callback_kwargs
pipe(
pipeline(
"A photo of a cat",
num_inference_steps=num_inference_steps,
callback_on_step_end=interrupt_callback,
)
```
## Display image after each generation step
> [!TIP]
> This tip was contributed by [asomoza](https://github.com/asomoza).
Display an image after each generation step by accessing and converting the latents after each step into an image. The latent space is compressed to 128x128, so the images are also 128x128 which is useful for a quick preview.
1. Use the function below to convert the SDXL latents (4 channels) to RGB tensors (3 channels) as explained in the [Explaining the SDXL latent space](https://huggingface.co/blog/TimothyAlexisVass/explaining-the-sdxl-latent-space) blog post.
```py
def latents_to_rgb(latents):
weights = (
(60, -60, 25, -70),
(60, -5, 15, -50),
(60, 10, -5, -35)
)
weights_tensor = torch.t(torch.tensor(weights, dtype=latents.dtype).to(latents.device))
biases_tensor = torch.tensor((150, 140, 130), dtype=latents.dtype).to(latents.device)
rgb_tensor = torch.einsum("...lxy,lr -> ...rxy", latents, weights_tensor) + biases_tensor.unsqueeze(-1).unsqueeze(-1)
image_array = rgb_tensor.clamp(0, 255)[0].byte().cpu().numpy()
image_array = image_array.transpose(1, 2, 0)
return Image.fromarray(image_array)
```
2. Create a function to decode and save the latents into an image.
```py
def decode_tensors(pipe, step, timestep, callback_kwargs):
latents = callback_kwargs["latents"]
image = latents_to_rgb(latents)
image.save(f"{step}.png")
return callback_kwargs
```
3. Pass the `decode_tensors` function to the `callback_on_step_end` parameter to decode the tensors after each step. You also need to specify what you want to modify in the `callback_on_step_end_tensor_inputs` parameter, which in this case are the latents.
```py
from diffusers import AutoPipelineForText2Image
import torch
from PIL import Image
pipeline = AutoPipelineForText2Image.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16,
variant="fp16",
use_safetensors=True
).to("cuda")
image = pipeline(
prompt="A croissant shaped like a cute bear.",
negative_prompt="Deformed, ugly, bad anatomy",
callback_on_step_end=decode_tensors,
callback_on_step_end_tensor_inputs=["latents"],
).images[0]
```
<div class="flex gap-4 justify-center">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/tips_step_0.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">step 0</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/tips_step_19.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">step 19
</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/tips_step_29.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">step 29</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/tips_step_39.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">step 39</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/tips_step_49.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">step 49</figcaption>
</div>
</div>

View File

@@ -429,6 +429,27 @@ image = pipe(
make_image_grid([original_image, canny_image, image], rows=1, cols=3)
```
<Tip>
You can use a refiner model with `StableDiffusionXLControlNetPipeline` to improve image quality, just like you can with a regular `StableDiffusionXLPipeline`.
See the [Refine image quality](./sdxl#refine-image-quality) section to learn how to use the refiner model.
Make sure to use `StableDiffusionXLControlNetPipeline` and pass `image` and `controlnet_conditioning_scale`.
```py
base = StableDiffusionXLControlNetPipeline(...)
image = base(
prompt=prompt,
controlnet_conditioning_scale=0.5,
image=canny_image,
num_inference_steps=40,
denoising_end=0.8,
output_type="latent",
).images
# rest exactly as with StableDiffusionXLPipeline
```
</Tip>
## MultiControlNet
<Tip>

View File

@@ -239,5 +239,7 @@ pipeline.to("cuda")
prompt = "柴犬、カラフルアート"
image = pipeline(prompt=prompt).images[0]
```
```
> [!TIP]
> When using `trust_remote_code=True`, it is also strongly encouraged to pass a commit hash as a `revision` to make sure the author of the models did not update the code with some malicious new lines (unless you fully trust the authors of the models).

View File

@@ -128,7 +128,7 @@ seed = 2023
# The values come from
# https://github.com/lyn-rgb/FreeU_Diffusers#video-pipelines
pipe.enable_freeu(b1=1.2, b2=1.4, s1=0.9, s2=0.2)
video_frames = pipe(prompt, height=320, width=576, num_frames=30, generator=torch.manual_seed(seed)).frames
video_frames = pipe(prompt, height=320, width=576, num_frames=30, generator=torch.manual_seed(seed)).frames[0]
export_to_video(video_frames, "astronaut_rides_horse.mp4")
```

View File

@@ -0,0 +1,438 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
[[open-in-colab]]
# Trajectory Consistency Distillation-LoRA
Trajectory Consistency Distillation (TCD) enables a model to generate higher quality and more detailed images with fewer steps. Moreover, owing to the effective error mitigation during the distillation process, TCD demonstrates superior performance even under conditions of large inference steps.
The major advantages of TCD are:
- Better than Teacher: TCD demonstrates superior generative quality at both small and large inference steps and exceeds the performance of [DPM-Solver++(2S)](../../api/schedulers/multistep_dpm_solver) with Stable Diffusion XL (SDXL). There is no additional discriminator or LPIPS supervision included during TCD training.
- Flexible Inference Steps: The inference steps for TCD sampling can be freely adjusted without adversely affecting the image quality.
- Freely change detail level: During inference, the level of detail in the image can be adjusted with a single hyperparameter, *gamma*.
> [!TIP]
> For more technical details of TCD, please refer to the [paper](https://arxiv.org/abs/2402.19159) or official [project page](https://mhh0318.github.io/tcd/)).
For large models like SDXL, TCD is trained with [LoRA](https://huggingface.co/docs/peft/conceptual_guides/adapter#low-rank-adaptation-lora) to reduce memory usage. This is also useful because you can reuse LoRAs between different finetuned models, as long as they share the same base model, without further training.
This guide will show you how to perform inference with TCD-LoRAs for a variety of tasks like text-to-image and inpainting, as well as how you can easily combine TCD-LoRAs with other adapters. Choose one of the supported base model and it's corresponding TCD-LoRA checkpoint from the table below to get started.
| Base model | TCD-LoRA checkpoint |
|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| [stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) | [TCD-SD15](https://huggingface.co/h1t/TCD-SD15-LoRA) |
| [stable-diffusion-2-1-base](https://huggingface.co/stabilityai/stable-diffusion-2-1-base) | [TCD-SD21-base](https://huggingface.co/h1t/TCD-SD21-base-LoRA) |
| [stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) | [TCD-SDXL](https://huggingface.co/h1t/TCD-SDXL-LoRA) |
Make sure you have [PEFT](https://github.com/huggingface/peft) installed for better LoRA support.
```bash
pip install -U peft
```
## General tasks
In this guide, let's use the [`StableDiffusionXLPipeline`] and the [`TCDScheduler`]. Use the [`~StableDiffusionPipeline.load_lora_weights`] method to load the SDXL-compatible TCD-LoRA weights.
A few tips to keep in mind for TCD-LoRA inference are to:
- Keep the `num_inference_steps` between 4 and 50
- Set `eta` (used to control stochasticity at each step) between 0 and 1. You should use a higher `eta` when increasing the number of inference steps, but the downside is that a larger `eta` in [`TCDScheduler`] leads to blurrier images. A value of 0.3 is recommended to produce good results.
<hfoptions id="tasks">
<hfoption id="text-to-image">
```python
import torch
from diffusers import StableDiffusionXLPipeline, TCDScheduler
device = "cuda"
base_model_id = "stabilityai/stable-diffusion-xl-base-1.0"
tcd_lora_id = "h1t/TCD-SDXL-LoRA"
pipe = StableDiffusionXLPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16, variant="fp16").to(device)
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
pipe.load_lora_weights(tcd_lora_id)
pipe.fuse_lora()
prompt = "Painting of the orange cat Otto von Garfield, Count of Bismarck-Schönhausen, Duke of Lauenburg, Minister-President of Prussia. Depicted wearing a Prussian Pickelhaube and eating his favorite meal - lasagna."
image = pipe(
prompt=prompt,
num_inference_steps=4,
guidance_scale=0,
eta=0.3,
generator=torch.Generator(device=device).manual_seed(0),
).images[0]
```
![](https://github.com/jabir-zheng/TCD/raw/main/assets/demo_image.png)
</hfoption>
<hfoption id="inpainting">
```python
import torch
from diffusers import AutoPipelineForInpainting, TCDScheduler
from diffusers.utils import load_image, make_image_grid
device = "cuda"
base_model_id = "diffusers/stable-diffusion-xl-1.0-inpainting-0.1"
tcd_lora_id = "h1t/TCD-SDXL-LoRA"
pipe = AutoPipelineForInpainting.from_pretrained(base_model_id, torch_dtype=torch.float16, variant="fp16").to(device)
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
pipe.load_lora_weights(tcd_lora_id)
pipe.fuse_lora()
img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
init_image = load_image(img_url).resize((1024, 1024))
mask_image = load_image(mask_url).resize((1024, 1024))
prompt = "a tiger sitting on a park bench"
image = pipe(
prompt=prompt,
image=init_image,
mask_image=mask_image,
num_inference_steps=8,
guidance_scale=0,
eta=0.3,
strength=0.99, # make sure to use `strength` below 1.0
generator=torch.Generator(device=device).manual_seed(0),
).images[0]
grid_image = make_image_grid([init_image, mask_image, image], rows=1, cols=3)
```
![](https://github.com/jabir-zheng/TCD/raw/main/assets/inpainting_tcd.png)
</hfoption>
</hfoptions>
## Community models
TCD-LoRA also works with many community finetuned models and plugins. For example, load the [animagine-xl-3.0](https://huggingface.co/cagliostrolab/animagine-xl-3.0) checkpoint which is a community finetuned version of SDXL for generating anime images.
```python
import torch
from diffusers import StableDiffusionXLPipeline, TCDScheduler
device = "cuda"
base_model_id = "cagliostrolab/animagine-xl-3.0"
tcd_lora_id = "h1t/TCD-SDXL-LoRA"
pipe = StableDiffusionXLPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16, variant="fp16").to(device)
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
pipe.load_lora_weights(tcd_lora_id)
pipe.fuse_lora()
prompt = "A man, clad in a meticulously tailored military uniform, stands with unwavering resolve. The uniform boasts intricate details, and his eyes gleam with determination. Strands of vibrant, windswept hair peek out from beneath the brim of his cap."
image = pipe(
prompt=prompt,
num_inference_steps=8,
guidance_scale=0,
eta=0.3,
generator=torch.Generator(device=device).manual_seed(0),
).images[0]
```
![](https://github.com/jabir-zheng/TCD/raw/main/assets/animagine_xl.png)
TCD-LoRA also supports other LoRAs trained on different styles. For example, let's load the [TheLastBen/Papercut_SDXL](https://huggingface.co/TheLastBen/Papercut_SDXL) LoRA and fuse it with the TCD-LoRA with the [`~loaders.UNet2DConditionLoadersMixin.set_adapters`] method.
> [!TIP]
> Check out the [Merge LoRAs](merge_loras) guide to learn more about efficient merging methods.
```python
import torch
from diffusers import StableDiffusionXLPipeline
from scheduling_tcd import TCDScheduler
device = "cuda"
base_model_id = "stabilityai/stable-diffusion-xl-base-1.0"
tcd_lora_id = "h1t/TCD-SDXL-LoRA"
styled_lora_id = "TheLastBen/Papercut_SDXL"
pipe = StableDiffusionXLPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16, variant="fp16").to(device)
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
pipe.load_lora_weights(tcd_lora_id, adapter_name="tcd")
pipe.load_lora_weights(styled_lora_id, adapter_name="style")
pipe.set_adapters(["tcd", "style"], adapter_weights=[1.0, 1.0])
prompt = "papercut of a winter mountain, snow"
image = pipe(
prompt=prompt,
num_inference_steps=4,
guidance_scale=0,
eta=0.3,
generator=torch.Generator(device=device).manual_seed(0),
).images[0]
```
![](https://github.com/jabir-zheng/TCD/raw/main/assets/styled_lora.png)
## Adapters
TCD-LoRA is very versatile, and it can be combined with other adapter types like ControlNets, IP-Adapter, and AnimateDiff.
<hfoptions id="adapters">
<hfoption id="ControlNet">
### Depth ControlNet
```python
import torch
import numpy as np
from PIL import Image
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline
from diffusers.utils import load_image, make_image_grid
from scheduling_tcd import TCDScheduler
device = "cuda"
depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to(device)
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-hybrid-midas")
def get_depth_map(image):
image = feature_extractor(images=image, return_tensors="pt").pixel_values.to(device)
with torch.no_grad(), torch.autocast(device):
depth_map = depth_estimator(image).predicted_depth
depth_map = torch.nn.functional.interpolate(
depth_map.unsqueeze(1),
size=(1024, 1024),
mode="bicubic",
align_corners=False,
)
depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
depth_map = (depth_map - depth_min) / (depth_max - depth_min)
image = torch.cat([depth_map] * 3, dim=1)
image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))
return image
base_model_id = "stabilityai/stable-diffusion-xl-base-1.0"
controlnet_id = "diffusers/controlnet-depth-sdxl-1.0"
tcd_lora_id = "h1t/TCD-SDXL-LoRA"
controlnet = ControlNetModel.from_pretrained(
controlnet_id,
torch_dtype=torch.float16,
variant="fp16",
).to(device)
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
base_model_id,
controlnet=controlnet,
torch_dtype=torch.float16,
variant="fp16",
).to(device)
pipe.enable_model_cpu_offload()
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
pipe.load_lora_weights(tcd_lora_id)
pipe.fuse_lora()
prompt = "stormtrooper lecture, photorealistic"
image = load_image("https://huggingface.co/lllyasviel/sd-controlnet-depth/resolve/main/images/stormtrooper.png")
depth_image = get_depth_map(image)
controlnet_conditioning_scale = 0.5 # recommended for good generalization
image = pipe(
prompt,
image=depth_image,
num_inference_steps=4,
guidance_scale=0,
eta=0.3,
controlnet_conditioning_scale=controlnet_conditioning_scale,
generator=torch.Generator(device=device).manual_seed(0),
).images[0]
grid_image = make_image_grid([depth_image, image], rows=1, cols=2)
```
![](https://github.com/jabir-zheng/TCD/raw/main/assets/controlnet_depth_tcd.png)
### Canny ControlNet
```python
import torch
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline
from diffusers.utils import load_image, make_image_grid
from scheduling_tcd import TCDScheduler
device = "cuda"
base_model_id = "stabilityai/stable-diffusion-xl-base-1.0"
controlnet_id = "diffusers/controlnet-canny-sdxl-1.0"
tcd_lora_id = "h1t/TCD-SDXL-LoRA"
controlnet = ControlNetModel.from_pretrained(
controlnet_id,
torch_dtype=torch.float16,
variant="fp16",
).to(device)
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
base_model_id,
controlnet=controlnet,
torch_dtype=torch.float16,
variant="fp16",
).to(device)
pipe.enable_model_cpu_offload()
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
pipe.load_lora_weights(tcd_lora_id)
pipe.fuse_lora()
prompt = "ultrarealistic shot of a furry blue bird"
canny_image = load_image("https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png")
controlnet_conditioning_scale = 0.5 # recommended for good generalization
image = pipe(
prompt,
image=canny_image,
num_inference_steps=4,
guidance_scale=0,
eta=0.3,
controlnet_conditioning_scale=controlnet_conditioning_scale,
generator=torch.Generator(device=device).manual_seed(0),
).images[0]
grid_image = make_image_grid([canny_image, image], rows=1, cols=2)
```
![](https://github.com/jabir-zheng/TCD/raw/main/assets/controlnet_canny_tcd.png)
<Tip>
The inference parameters in this example might not work for all examples, so we recommend you to try different values for `num_inference_steps`, `guidance_scale`, `controlnet_conditioning_scale` and `cross_attention_kwargs` parameters and choose the best one.
</Tip>
</hfoption>
<hfoption id="IP-Adapter">
This example shows how to use the TCD-LoRA with the [IP-Adapter](https://github.com/tencent-ailab/IP-Adapter/tree/main) and SDXL.
```python
import torch
from diffusers import StableDiffusionXLPipeline
from diffusers.utils import load_image, make_image_grid
from ip_adapter import IPAdapterXL
from scheduling_tcd import TCDScheduler
device = "cuda"
base_model_path = "stabilityai/stable-diffusion-xl-base-1.0"
image_encoder_path = "sdxl_models/image_encoder"
ip_ckpt = "sdxl_models/ip-adapter_sdxl.bin"
tcd_lora_id = "h1t/TCD-SDXL-LoRA"
pipe = StableDiffusionXLPipeline.from_pretrained(
base_model_path,
torch_dtype=torch.float16,
variant="fp16"
)
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
pipe.load_lora_weights(tcd_lora_id)
pipe.fuse_lora()
ip_model = IPAdapterXL(pipe, image_encoder_path, ip_ckpt, device)
ref_image = load_image("https://raw.githubusercontent.com/tencent-ailab/IP-Adapter/main/assets/images/woman.png").resize((512, 512))
prompt = "best quality, high quality, wearing sunglasses"
image = ip_model.generate(
pil_image=ref_image,
prompt=prompt,
scale=0.5,
num_samples=1,
num_inference_steps=4,
guidance_scale=0,
eta=0.3,
seed=0,
)[0]
grid_image = make_image_grid([ref_image, image], rows=1, cols=2)
```
![](https://github.com/jabir-zheng/TCD/raw/main/assets/ip_adapter.png)
</hfoption>
<hfoption id="AnimateDiff">
[`AnimateDiff`] allows animating images using Stable Diffusion models. TCD-LoRA can substantially accelerate the process without degrading image quality. The quality of animation with TCD-LoRA and AnimateDiff has a more lucid outcome.
```python
import torch
from diffusers import MotionAdapter, AnimateDiffPipeline, DDIMScheduler
from scheduling_tcd import TCDScheduler
from diffusers.utils import export_to_gif
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5")
pipe = AnimateDiffPipeline.from_pretrained(
"frankjoshua/toonyou_beta6",
motion_adapter=adapter,
).to("cuda")
# set TCDScheduler
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
# load TCD LoRA
pipe.load_lora_weights("h1t/TCD-SD15-LoRA", adapter_name="tcd")
pipe.load_lora_weights("guoyww/animatediff-motion-lora-zoom-in", weight_name="diffusion_pytorch_model.safetensors", adapter_name="motion-lora")
pipe.set_adapters(["tcd", "motion-lora"], adapter_weights=[1.0, 1.2])
prompt = "best quality, masterpiece, 1girl, looking at viewer, blurry background, upper body, contemporary, dress"
generator = torch.manual_seed(0)
frames = pipe(
prompt=prompt,
num_inference_steps=5,
guidance_scale=0,
cross_attention_kwargs={"scale": 1},
num_frames=24,
eta=0.3,
generator=generator
).frames[0]
export_to_gif(frames, "animation.gif")
```
![](https://github.com/jabir-zheng/TCD/raw/main/assets/animation_example.gif)
</hfoption>
</hfoptions>

View File

@@ -25,6 +25,9 @@ Let's take a look at how to use IP-Adapter's image prompting capabilities with t
In all the following examples, you'll see the [`~loaders.IPAdapterMixin.set_ip_adapter_scale`] method. This method controls the amount of text or image conditioning to apply to the model. A value of `1.0` means the model is only conditioned on the image prompt. Lowering this value encourages the model to produce more diverse images, but they may not be as aligned with the image prompt. Typically, a value of `0.5` achieves a good balance between the two prompt types and produces good results.
> [!TIP]
> In the examples below, try adding `low_cpu_mem_usage=True` to the [`~loaders.IPAdapterMixin.load_ip_adapter`] method to speed up the loading time.
<hfoptions id="tasks">
<hfoption id="Text-to-image">
@@ -48,10 +51,10 @@ Create a text prompt and load an image prompt before passing them to the pipelin
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_diner.png")
generator = torch.Generator(device="cpu").manual_seed(0)
images = pipeline(
prompt="a polar bear sitting in a chair drinking a milkshake",
prompt="a polar bear sitting in a chair drinking a milkshake",
ip_adapter_image=image,
negative_prompt="deformed, ugly, wrong proportion, low res, bad anatomy, worst quality, low quality",
num_inference_steps=100,
num_inference_steps=100,
generator=generator,
).images
images[0]
@@ -231,8 +234,127 @@ export_to_gif(frames, "gummy_bear.gif")
</hfoption>
</hfoptions>
## Configure parameters
There are a couple of IP-Adapter parameters that are useful to know about and can help you with your image generation tasks. These parameters can make your workflow more efficient or give you more control over image generation.
### Image embeddings
IP-Adapter enabled pipelines provide the `ip_adapter_image_embeds` parameter to accept precomputed image embeddings. This is particularly useful in scenarios where you need to run the IP-Adapter pipeline multiple times because you have more than one image. For example, [multi IP-Adapter](#multi-ip-adapter) is a specific use case where you provide multiple styling images to generate a specific image in a specific style. Loading and encoding multiple images each time you use the pipeline would be inefficient. Instead, you can precompute and save the image embeddings to disk (which can save a lot of space if you're using high-quality images) and load them when you need them.
> [!TIP]
> While calling `load_ip_adapter()`, pass `low_cpu_mem_usage=True` to speed up the loading time.
> This parameter also gives you the flexibility to load embeddings from other sources. For example, ComfyUI image embeddings for IP-Adapters are compatible with Diffusers and should work ouf-of-the-box!
Call the [`~StableDiffusionPipeline.prepare_ip_adapter_image_embeds`] method to encode and generate the image embeddings. Then you can save them to disk with `torch.save`.
> [!TIP]
> If you're using IP-Adapter with `ip_adapter_image_embedding` instead of `ip_adapter_image`', you can set `load_ip_adapter(image_encoder_folder=None,...)` because you don't need to load an encoder to generate the image embeddings.
```py
image_embeds = pipeline.prepare_ip_adapter_image_embeds(
ip_adapter_image=image,
ip_adapter_image_embeds=None,
device="cuda",
num_images_per_prompt=1,
do_classifier_free_guidance=True,
)
torch.save(image_embeds, "image_embeds.ipadpt")
```
Now load the image embeddings by passing them to the `ip_adapter_image_embeds` parameter.
```py
image_embeds = torch.load("image_embeds.ipadpt")
images = pipeline(
prompt="a polar bear sitting in a chair drinking a milkshake",
ip_adapter_image_embeds=image_embeds,
negative_prompt="deformed, ugly, wrong proportion, low res, bad anatomy, worst quality, low quality",
num_inference_steps=100,
generator=generator,
).images
```
### IP-Adapter masking
Binary masks specify which portion of the output image should be assigned to an IP-Adapter. This is useful for composing more than one IP-Adapter image. For each input IP-Adapter image, you must provide a binary mask an an IP-Adapter.
To start, preprocess the input IP-Adapter images with the [`~image_processor.IPAdapterMaskProcessor.preprocess()`] to generate their masks. For optimal results, provide the output height and width to [`~image_processor.IPAdapterMaskProcessor.preprocess()`]. This ensures masks with different aspect ratios are appropriately stretched. If the input masks already match the aspect ratio of the generated image, you don't have to set the `height` and `width`.
```py
from diffusers.image_processor import IPAdapterMaskProcessor
mask1 = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_mask_mask1.png")
mask2 = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_mask_mask2.png")
output_height = 1024
output_width = 1024
processor = IPAdapterMaskProcessor()
masks = processor.preprocess([mask1, mask2], height=output_height, width=output_width)
```
<div class="flex flex-row gap-4">
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/ip_mask_mask1.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">mask one</figcaption>
</div>
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/ip_mask_mask2.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">mask two</figcaption>
</div>
</div>
When there is more than one input IP-Adapter image, load them as a list to ensure each image is assigned to a different IP-Adapter. Each of the input IP-Adapter images here correspond to the masks generated above.
```py
face_image1 = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_mask_girl1.png")
face_image2 = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_mask_girl2.png")
ip_images = [[face_image1], [face_image2]]
```
<div class="flex flex-row gap-4">
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/ip_mask_girl1.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">IP-Adapter image one</figcaption>
</div>
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/ip_mask_girl2.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">IP-Adapter image two</figcaption>
</div>
</div>
Now pass the preprocessed masks to `cross_attention_kwargs` in the pipeline call.
```py
pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name=["ip-adapter-plus-face_sdxl_vit-h.safetensors"] * 2)
pipeline.set_ip_adapter_scale([0.7] * 2)
generator = torch.Generator(device="cpu").manual_seed(0)
num_images = 1
image = pipeline(
prompt="2 girls",
ip_adapter_image=ip_images,
negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality",
num_inference_steps=20,
num_images_per_prompt=num_images,
generator=generator,
cross_attention_kwargs={"ip_adapter_masks": masks}
).images[0]
image
```
<div class="flex flex-row gap-4">
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_attention_mask_result_seed_0.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">IP-Adapter masking applied</figcaption>
</div>
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_no_attention_mask_result_seed_0.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">no IP-Adapter masking applied</figcaption>
</div>
</div>
## Specific use cases
@@ -245,7 +367,8 @@ Generating accurate faces is challenging because they are complex and nuanced. D
* [ip-adapter-full-face_sd15.safetensors](https://huggingface.co/h94/IP-Adapter/blob/main/models/ip-adapter-full-face_sd15.safetensors) is conditioned with images of cropped faces and removed backgrounds
* [ip-adapter-plus-face_sd15.safetensors](https://huggingface.co/h94/IP-Adapter/blob/main/models/ip-adapter-plus-face_sd15.safetensors) uses patch embeddings and is conditioned with images of cropped faces
> [TIP]
> [!TIP]
>
> [IP-Adapter-FaceID](https://huggingface.co/h94/IP-Adapter-FaceID) is a face-specific IP-Adapter trained with face ID embeddings instead of CLIP image embeddings, allowing you to generate more consistent faces in different contexts and styles. Try out this popular [community pipeline](https://github.com/huggingface/diffusers/tree/main/examples/community#ip-adapter-face-id) and see how it compares to the other face IP-Adapters.
For face models, use the [h94/IP-Adapter](https://huggingface.co/h94/IP-Adapter) checkpoint. It is also recommended to use [`DDIMScheduler`] or [`EulerDiscreteScheduler`] for face models.
@@ -270,7 +393,7 @@ generator = torch.Generator(device="cpu").manual_seed(26)
image = pipeline(
prompt="A photo of Einstein as a chef, wearing an apron, cooking in a French restaurant",
ip_adapter_image=image,
negative_prompt="lowres, bad anatomy, worst quality, low quality",
negative_prompt="lowres, bad anatomy, worst quality, low quality",
num_inference_steps=100,
generator=generator,
).images[0]
@@ -304,7 +427,7 @@ from transformers import CLIPVisionModelWithProjection
from diffusers.utils import load_image
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
"h94/IP-Adapter",
"h94/IP-Adapter",
subfolder="models/image_encoder",
torch_dtype=torch.float16,
)
@@ -323,8 +446,8 @@ pipeline = AutoPipelineForText2Image.from_pretrained(
)
pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)
pipeline.load_ip_adapter(
"h94/IP-Adapter",
subfolder="sdxl_models",
"h94/IP-Adapter",
subfolder="sdxl_models",
weight_name=["ip-adapter-plus_sdxl_vit-h.safetensors", "ip-adapter-plus-face_sdxl_vit-h.safetensors"]
)
pipeline.set_ip_adapter_scale([0.7, 0.3])
@@ -336,7 +459,7 @@ Load an image prompt and a folder containing images of a certain style you want
```py
face_image = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/women_input.png")
style_folder = "https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/style_ziggy"
style_images = [load_image(f"{style_folder}/img{i}.png") for i in range(10)]
style_images = [load_image(f"{style_folder}/img{i}.png") for i in range(10)]
```
<div class="flex flex-row gap-4">
@@ -358,10 +481,11 @@ generator = torch.Generator(device="cpu").manual_seed(0)
image = pipeline(
prompt="wonderwoman",
ip_adapter_image=[style_images, face_image],
negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality",
negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality",
num_inference_steps=50, num_images_per_prompt=1,
generator=generator,
).images[0]
image
```
<div class="flex justify-center">
@@ -379,14 +503,14 @@ from diffusers import DiffusionPipeline, LCMScheduler
import torch
from diffusers.utils import load_image
model_id = "sd-dreambooth-library/herge-style"
model_id = "sd-dreambooth-library/herge-style"
lcm_lora_id = "latent-consistency/lcm-lora-sdv1-5"
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin")
pipeline.load_lora_weights(lcm_lora_id)
pipeline.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
pipeline.scheduler = LCMScheduler.from_config(pipeline.scheduler.config)
pipeline.enable_model_cpu_offload()
```
@@ -455,13 +579,13 @@ Pass the depth map and IP-Adapter image to the pipeline to generate an image.
```py
generator = torch.Generator(device="cpu").manual_seed(33)
image = pipeline(
prompt="best quality, high quality",
prompt="best quality, high quality",
image=depth_map,
ip_adapter_image=ip_adapter_image,
negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality",
negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality",
num_inference_steps=50,
generator=generator,
).image[0]
).images[0]
image
```

View File

@@ -60,6 +60,23 @@ repo_id = "runwayml/stable-diffusion-v1-5"
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(repo_id)
```
You can use the Space below to gauge the memory requirements of a pipeline you want to load beforehand without downloading the pipeline checkpoints:
<div class="block dark:hidden">
<iframe
src="https://diffusers-compute-pipeline-size.hf.space?__theme=light"
width="850"
height="1600"
></iframe>
</div>
<div class="hidden dark:block">
<iframe
src="https://diffusers-compute-pipeline-size.hf.space?__theme=dark"
width="850"
height="1600"
></iframe>
</div>
### Local pipeline
To load a diffusion pipeline locally, use [`git-lfs`](https://git-lfs.github.com/) to manually download the checkpoint (in this case, [`runwayml/stable-diffusion-v1-5`](https://huggingface.co/runwayml/stable-diffusion-v1-5)) to your local disk. This creates a local folder, `./stable-diffusion-v1-5`, on your disk:
@@ -162,6 +179,210 @@ stable_diffusion_img2img = StableDiffusionImg2ImgPipeline(
)
```
### Switch loaded pippelines
There are many diffuser pipelines that use the same pre-trained model as [`StableDiffusionPipeline`] and [`StableDiffusionXLPipeline`], but they implement specific features to help you achieve better generation results. This guide will show you how to use the `from_pipe` API to create multiple pipelines without increasing memory usage. By using this approach, you can easily switch between pipelines to use different features.
Let's take an example where we first create a [`StableDiffusionPipeline`] and then reuse the already loaded model components to create a [`StableDiffusionSAGPipeline`] to enhance generation quality.
we will generate an image of a bear eating pizza using Stable Diffusion with the IP-Adapter
```python
from diffusers import DiffusionPipeline, StableDiffusionSAGPipeline
import torch
import gc
from diffusers.utils import load_image
from accelerate.utils import compute_module_sizes
base_repo = "SG161222/Realistic_Vision_V6.0_B1_noVAE"
num_inference_steps = 50
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/load_neg_embed.png")
prompt="bear eats pizza"
negative_prompt = "wrong white balance, dark, sketches,worst quality,low quality"
pipe_sd = DiffusionPipeline.from_pretrained(base_repo, torch_dtype=torch.float16)
pipe_sd.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin")
pipe_sd.set_ip_adapter_scale(0.6)
pipe_sd.to("cuda")
generator = torch.Generator(device="cpu").manual_seed(33)
out_sd = pipe_sd(
prompt=prompt,
negative_prompt=negative_prompt,
ip_adapter_image=image,
num_inference_steps=num_inference_steps,
generator=generator,
).images[0]
```
lets take a look at the image and also print out the memory used
<div class="flex justify-center">
<img class="rounded-xl" src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/from_pipe_out_sd_0.png"/>
</div>
```python
def bytes_to_giga_bytes(bytes):
return bytes / 1024 / 1024 / 1024
print(
f"Max memory allocated: {bytes_to_giga_bytes(torch.cuda.max_memory_allocated())} GB"
)
```
```bash
Max memory allocated: 4.406213283538818 GB
```
Now, we can use `from_pipe` to switch to the SAG pipeline.
```python
pipe_sag = StableDiffusionSAGPipeline.from_pipe(
pipe_sd,
)
```
It already has IP-Adapter loaded so that you can pass the same bear image as `ip_adapter_image`
```python
generator = torch.Generator(device="cpu").manual_seed(33)
out_sag = pipe_sag(
prompt = prompt,
negative_prompt=negative_prompt,
ip_adapter_image=image,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=1.0,
sag_scale=0.75).images[0]
```
You can see a pretty nice improvement in the output
<div class="flex justify-center">
<img class="rounded-xl" src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/from_pipe_out_sag_1.png"/>
</div>
Now we have both `stableDiffusionPipeline` and `StableDiffusionSAGPipeline` co-existing with the same loaded model components; You can use them interchangeably without additional memory.
```
print(
f"Max memory allocated: {bytes_to_giga_bytes(torch.cuda.max_memory_allocated())} GB"
)
```
```bash
Max memory allocated: 4.406213283538818 GB
```
Let's unload the IP adapter from the SAG pipeline. It's important to note that methods like `load_ip_adapter` and `unload_ip_adapter` modify the state of the model components. Therefore, when you use these methods on one pipeline, it will affect all other pipelines that share the same model components.
```bash
pipe_sag.unload_ip_adapter()
```
If you try to use the Stable Diffusion pipeline with IP adapter again, it will fail
```bash
generator = torch.Generator(device="cpu").manual_seed(33)
out_sd = pipe_sd(
prompt=prompt,
negative_prompt=negative_prompt,
ip_adapter_image=image,
num_inference_steps=num_inference_steps,
generator=generator,
).images[0]
```
```bash
AttributeError: 'NoneType' object has no attribute 'image_projection_layers'
```
Please note that the pipeline methods may not function properly on a new pipeline created using the `from_pipe` method. For instance, the `enable_model_cpu_offload` method installs hooks to the model components based on a unique offloading sequence for each pipeline. Therefore, if the models are executed in a different order in the new pipeline, the CPU offloading may not work correctly.
To ensure proper functionality, we recommend re-applying the pipeline methods on the new pipeline created using the `from_pipe` method.
You can also add or subtract model components when you create new pipelines. Let's now create a AnimateDiff pipeline with an additional `MotionAdapter` module
```bash
from diffusers import AnimateDiffPipeline, MotionAdapter, DDIMScheduler
from diffusers.utils import export_to_gif
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2", torch_dtype=torch.float16)
pipe_animate = AnimateDiffPipeline.from_pipe(pipe_sd, motion_adapter=adapter)
pipe_animate.scheduler = DDIMScheduler.from_config(pipe_animate.scheduler.config, beta_schedule="linear")
# load ip_adapter again and load lora weights
pipe_animate.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin")
pipe_animate.load_lora_weights("guoyww/animatediff-motion-lora-zoom-out", adapter_name="zoom-out")
pipe_animate.to("cuda")
generator = torch.Generator(device="cpu").manual_seed(33)
pipe_animate.set_adapters("zoom-out", adapter_weights=0.75)
out = pipe_animate(
prompt= prompt,
num_frames=16,
num_inference_steps=num_inference_steps,
ip_adapter_image = image,
generator=generator,
).frames[0]
export_to_gif(out, "out_animate.gif")
```
<div class="flex justify-center">
<img class="rounded-xl" src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/from_pipe_out_animate_3.gif"/>
</div>
When creating multiple pipelines using the `from_pipe` method, it is important to note that the memory requirement will be determined by the pipeline with the highest memory usage. This means that regardless of the number of pipelines you create, the total memory requirement will always be the same as the highest memory requirement among the pipelines.
For example, we have created three pipelines - `stableDiffusionPipeline`, `StableDiffusionSAGPipeline`, and `AnimateDiffPipeline` - and the `AnimateDiffPipeline` has the highest memory requirement, then the total memory usage will be based on the memory requirement of the `AnimateDiffPipeline`.
Therefore, creating additional pipelines will not add up to the total memory requirement. Each pipeline can be used interchangeably without any additional memory overhead.
Did you know that you can use `from_pipe` with a community pipeline? Let me show you an example of using long negative prompt and prompt weighting!
```bash
pipe_lpw = DiffusionPipeline.from_pipe(
pipe_sd,
custom_pipeline="lpw_stable_diffusion",
).to("cuda")
prompt = "best_quality (1girl:1.3) bow bride brown_hair closed_mouth frilled_bow frilled_hair_tubes frills (full_body:1.3) fox_ear hair_bow hair_tubes happy hood japanese_clothes kimono long_sleeves red_bow smile solo tabi uchikake white_kimono wide_sleeves cherry_blossoms"
neg_prompt = "lowres, bad_anatomy, error_body, error_hair, error_arm, error_hands, bad_hands, error_fingers, bad_fingers, missing_fingers, error_legs, bad_legs, multiple_legs, missing_legs, error_lighting, error_shadow, error_reflection, text, error, extra_digit, fewer_digits, cropped, worst_quality, low_quality, normal_quality, jpeg_artifacts, signature, watermark, username, blurry"
generator = torch.Generator(device="cpu").manual_seed(33)
out_lpw = pipe_lpw.text2img(
prompt,
negative_prompt=neg_prompt,
width=512,height=512,
max_embeddings_multiples=3,
num_inference_steps=num_inference_steps,
generator=generator,
).images[0]
```
<div class="flex justify-center">
<img class="rounded-xl" src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/from_pipe_out_lpw_4.png"/>
</div>
lets run StableDiffusionPipeline with the same inputs to compare: the result from the long prompt weighting pipeline is more aligned with the text prompt.
```
generator = torch.Generator(device="cpu").manual_seed(33)
out_sd = pipe_sd(
prompt=prompt,
negative_prompt=negative_prompt,
generator=generator,
num_inference_steps=num_inference_steps,
).images[0]
out_sd
```
<div class="flex justify-center">
<img class="rounded-xl" src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/from_pipe_out_sd_5.png"/>
</div>
You can easily switch between different pipelines using the `from_pipe` method, similar to turning on and off a feature on your pipeline. To switch between tasks, you can use the `from_pipe` method with `AutoPipeline`, which automatically identifies the pipeline class based on the task. You can find more information about this feature at the [AutoPipe Guide](https://huggingface.co/docs/diffusers/tutorials/autopipeline).
## Checkpoint variants
A checkpoint variant is usually a checkpoint whose weights are:

View File

@@ -103,7 +103,7 @@ image
<Tip>
LoRA is a very general training technique that can be used with other training methods. For example, it is common to train a model with DreamBooth and LoRA.
LoRA is a very general training technique that can be used with other training methods. For example, it is common to train a model with DreamBooth and LoRA. It is also increasingly common to load and merge multiple LoRAs to create new and unique images. You can learn more about it in the in-depth [Merge LoRAs](merge_loras) guide since merging is outside the scope of this loading guide.
</Tip>
@@ -153,113 +153,51 @@ image
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/load_attn_proc.png" />
</div>
<Tip>
For both [`~loaders.LoraLoaderMixin.load_lora_weights`] and [`~loaders.UNet2DConditionLoadersMixin.load_attn_procs`], you can pass the `cross_attention_kwargs={"scale": 0.5}` parameter to adjust how much of the LoRA weights to use. A value of `0` is the same as only using the base model weights, and a value of `1` is equivalent to using the fully finetuned LoRA.
</Tip>
To unload the LoRA weights, use the [`~loaders.LoraLoaderMixin.unload_lora_weights`] method to discard the LoRA weights and restore the model to its original weights:
```py
pipeline.unload_lora_weights()
```
### Load multiple LoRAs
### Adjust LoRA weight scale
It can be fun to use multiple LoRAs together to create something entirely new and unique. The [`~loaders.LoraLoaderMixin.fuse_lora`] method allows you to fuse the LoRA weights with the original weights of the underlying model.
For both [`~loaders.LoraLoaderMixin.load_lora_weights`] and [`~loaders.UNet2DConditionLoadersMixin.load_attn_procs`], you can pass the `cross_attention_kwargs={"scale": 0.5}` parameter to adjust how much of the LoRA weights to use. A value of `0` is the same as only using the base model weights, and a value of `1` is equivalent to using the fully finetuned LoRA.
<Tip>
Fusing the weights can lead to a speedup in inference latency because you don't need to separately load the base model and LoRA! You can save your fused pipeline with [`~DiffusionPipeline.save_pretrained`] to avoid loading and fusing the weights every time you want to use the model.
</Tip>
Load an initial model:
```py
from diffusers import StableDiffusionXLPipeline, AutoencoderKL
import torch
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipeline = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
vae=vae,
torch_dtype=torch.float16,
).to("cuda")
For more granular control on the amount of LoRA weights used per layer, you can use [`~loaders.LoraLoaderMixin.set_adapters`] and pass a dictionary specifying by how much to scale the weights in each layer by.
```python
pipe = ... # create pipeline
pipe.load_lora_weights(..., adapter_name="my_adapter")
scales = {
"text_encoder": 0.5,
"text_encoder_2": 0.5, # only usable if pipe has a 2nd text encoder
"unet": {
"down": 0.9, # all transformers in the down-part will use scale 0.9
# "mid" # in this example "mid" is not given, therefore all transformers in the mid part will use the default scale 1.0
"up": {
"block_0": 0.6, # all 3 transformers in the 0th block in the up-part will use scale 0.6
"block_1": [0.4, 0.8, 1.0], # the 3 transformers in the 1st block in the up-part will use scales 0.4, 0.8 and 1.0 respectively
}
}
}
pipe.set_adapters("my_adapter", scales)
```
Next, load the LoRA checkpoint and fuse it with the original weights. The `lora_scale` parameter controls how much to scale the output by with the LoRA weights. It is important to make the `lora_scale` adjustments in the [`~loaders.LoraLoaderMixin.fuse_lora`] method because it won't work if you try to pass `scale` to the `cross_attention_kwargs` in the pipeline.
If you need to reset the original model weights for any reason (use a different `lora_scale`), you should use the [`~loaders.LoraLoaderMixin.unfuse_lora`] method.
```py
pipeline.load_lora_weights("ostris/ikea-instructions-lora-sdxl")
pipeline.fuse_lora(lora_scale=0.7)
# to unfuse the LoRA weights
pipeline.unfuse_lora()
```
Then fuse this pipeline with the next set of LoRA weights:
```py
pipeline.load_lora_weights("ostris/super-cereal-sdxl-lora")
pipeline.fuse_lora(lora_scale=0.7)
```
This also works with multiple adapters - see [this guide](https://huggingface.co/docs/diffusers/tutorials/using_peft_for_inference#customize-adapters-strength) for how to do it.
<Tip warning={true}>
You can't unfuse multiple LoRA checkpoints, so if you need to reset the model to its original weights, you'll need to reload it.
Currently, [`~loaders.LoraLoaderMixin.set_adapters`] only supports scaling attention weights. If a LoRA has other parts (e.g., resnets or down-/upsamplers), they will keep a scale of 1.0.
</Tip>
Now you can generate an image that uses the weights from both LoRAs:
```py
prompt = "A cute brown bear eating a slice of pizza, stunning color scheme, masterpiece, illustration"
image = pipeline(prompt).images[0]
image
```
### 🤗 PEFT
<Tip>
Read the [Inference with 🤗 PEFT](../tutorials/using_peft_for_inference) tutorial to learn more about its integration with 🤗 Diffusers and how you can easily work with and juggle multiple adapters. You'll need to install 🤗 Diffusers and PEFT from source to run the example in this section.
</Tip>
Another way you can load and use multiple LoRAs is to specify the `adapter_name` parameter in [`~loaders.LoraLoaderMixin.load_lora_weights`]. This method takes advantage of the 🤗 PEFT integration. For example, load and name both LoRA weights:
```py
from diffusers import DiffusionPipeline
import torch
pipeline = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16).to("cuda")
pipeline.load_lora_weights("ostris/ikea-instructions-lora-sdxl", weight_name="ikea_instructions_xl_v1_5.safetensors", adapter_name="ikea")
pipeline.load_lora_weights("ostris/super-cereal-sdxl-lora", weight_name="cereal_box_sdxl_v1.safetensors", adapter_name="cereal")
```
Now use the [`~loaders.UNet2DConditionLoadersMixin.set_adapters`] to activate both LoRAs, and you can configure how much weight each LoRA should have on the output:
```py
pipeline.set_adapters(["ikea", "cereal"], adapter_weights=[0.7, 0.5])
```
Then, generate an image:
```py
prompt = "A cute brown bear eating a slice of pizza, stunning color scheme, masterpiece, illustration"
image = pipeline(prompt, num_inference_steps=30, cross_attention_kwargs={"scale": 1.0}).images[0]
image
```
### Kohya and TheLastBen
Other popular LoRA trainers from the community include those by [Kohya](https://github.com/kohya-ss/sd-scripts/) and [TheLastBen](https://github.com/TheLastBen/fast-stable-diffusion). These trainers create different LoRA checkpoints than those trained by 🤗 Diffusers, but they can still be loaded in the same way.
Let's download the [Blueprintify SD XL 1.0](https://civitai.com/models/150986/blueprintify-sd-xl-10) checkpoint from [Civitai](https://civitai.com/):
<hfoptions id="other-trainers">
<hfoption id="Kohya">
To load a Kohya LoRA, let's download the [Blueprintify SD XL 1.0](https://civitai.com/models/150986/blueprintify-sd-xl-10) checkpoint from [Civitai](https://civitai.com/) as an example:
```sh
!wget https://civitai.com/api/download/models/168776 -O blueprintify-sd-xl-10.safetensors
@@ -293,6 +231,9 @@ Some limitations of using Kohya LoRAs with 🤗 Diffusers include:
</Tip>
</hfoption>
<hfoption id="TheLastBen">
Loading a checkpoint from TheLastBen is very similar. For example, to load the [TheLastBen/William_Eggleston_Style_SDXL](https://huggingface.co/TheLastBen/William_Eggleston_Style_SDXL) checkpoint:
```py
@@ -308,6 +249,9 @@ image = pipeline(prompt=prompt).images[0]
image
```
</hfoption>
</hfoptions>
## IP-Adapter
[IP-Adapter](https://ip-adapter.github.io/) is a lightweight adapter that enables image prompting for any diffusion model. This adapter works by decoupling the cross-attention layers of the image and text features. All the other model components are frozen and only the embedded image features in the UNet are trained. As a result, IP-Adapter files are typically only ~100MBs.
@@ -340,9 +284,9 @@ Once loaded, you can use the pipeline with an image and text prompt to guide the
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/load_neg_embed.png")
generator = torch.Generator(device="cpu").manual_seed(33)
images = pipeline(
    prompt='best quality, high quality, wearing sunglasses',
    prompt='best quality, high quality, wearing sunglasses',
    ip_adapter_image=image,
    negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality",
    negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality",
    num_inference_steps=50,
    generator=generator,
).images[0]
@@ -355,11 +299,13 @@ images
### IP-Adapter Plus
IP-Adapter relies on an image encoder to generate image features. If the IP-Adapter repository contains a `image_encoder` subfolder, the image encoder is automatically loaded and registed to the pipeline. Otherwise, you'll need to explicitly load the image encoder with a [`~transformers.CLIPVisionModelWithProjection`] model and pass it to the pipeline.
IP-Adapter relies on an image encoder to generate image features. If the IP-Adapter repository contains an `image_encoder` subfolder, the image encoder is automatically loaded and registered to the pipeline. Otherwise, you'll need to explicitly load the image encoder with a [`~transformers.CLIPVisionModelWithProjection`] model and pass it to the pipeline.
This is the case for *IP-Adapter Plus* checkpoints which use the ViT-H image encoder.
```py
from transformers import CLIPVisionModelWithProjection
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
"h94/IP-Adapter",
subfolder="models/image_encoder",

View File

@@ -0,0 +1,266 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Merge LoRAs
It can be fun and creative to use multiple [LoRAs]((https://huggingface.co/docs/peft/conceptual_guides/adapter#low-rank-adaptation-lora)) together to generate something entirely new and unique. This works by merging multiple LoRA weights together to produce images that are a blend of different styles. Diffusers provides a few methods to merge LoRAs depending on *how* you want to merge their weights, which can affect image quality.
This guide will show you how to merge LoRAs using the [`~loaders.UNet2DConditionLoadersMixin.set_adapters`] and [`~peft.LoraModel.add_weighted_adapter`] methods. To improve inference speed and reduce memory-usage of merged LoRAs, you'll also see how to use the [`~loaders.LoraLoaderMixin.fuse_lora`] method to fuse the LoRA weights with the original weights of the underlying model.
For this guide, load a Stable Diffusion XL (SDXL) checkpoint and the [KappaNeuro/studio-ghibli-style]() and [Norod78/sdxl-chalkboarddrawing-lora]() LoRAs with the [`~loaders.LoraLoaderMixin.load_lora_weights`] method. You'll need to assign each LoRA an `adapter_name` to combine them later.
```py
from diffusers import DiffusionPipeline
import torch
pipeline = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16).to("cuda")
pipeline.load_lora_weights("ostris/ikea-instructions-lora-sdxl", weight_name="ikea_instructions_xl_v1_5.safetensors", adapter_name="ikea")
pipeline.load_lora_weights("lordjia/by-feng-zikai", weight_name="fengzikai_v1.0_XL.safetensors", adapter_name="feng")
```
## set_adapters
The [`~loaders.UNet2DConditionLoadersMixin.set_adapters`] method merges LoRA adapters by concatenating their weighted matrices. Use the adapter name to specify which LoRAs to merge, and the `adapter_weights` parameter to control the scaling for each LoRA. For example, if `adapter_weights=[0.5, 0.5]`, then the merged LoRA output is an average of both LoRAs. Try adjusting the adapter weights to see how it affects the generated image!
```py
pipeline.set_adapters(["ikea", "feng"], adapter_weights=[0.7, 0.8])
generator = torch.manual_seed(0)
prompt = "A bowl of ramen shaped like a cute kawaii bear, by Feng Zikai"
image = pipeline(prompt, generator=generator, cross_attention_kwargs={"scale": 1.0}).images[0]
image
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/lora_merge_set_adapters.png"/>
</div>
## add_weighted_adapter
> [!WARNING]
> This is an experimental method that adds PEFTs [`~peft.LoraModel.add_weighted_adapter`] method to Diffusers to enable more efficient merging methods. Check out this [issue](https://github.com/huggingface/diffusers/issues/6892) if you're interested in learning more about the motivation and design behind this integration.
The [`~peft.LoraModel.add_weighted_adapter`] method provides access to more efficient merging method such as [TIES and DARE](https://huggingface.co/docs/peft/developer_guides/model_merging). To use these merging methods, make sure you have the latest stable version of Diffusers and PEFT installed.
```bash
pip install -U diffusers peft
```
There are three steps to merge LoRAs with the [`~peft.LoraModel.add_weighted_adapter`] method:
1. Create a [`~peft.PeftModel`] from the underlying model and LoRA checkpoint.
2. Load a base UNet model and the LoRA adapters.
3. Merge the adapters using the [`~peft.LoraModel.add_weighted_adapter`] method and the merging method of your choice.
Let's dive deeper into what these steps entail.
1. Load a UNet that corresponds to the UNet in the LoRA checkpoint. In this case, both LoRAs use the SDXL UNet as their base model.
```python
from diffusers import UNet2DConditionModel
import torch
unet = UNet2DConditionModel.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16,
use_safetensors=True,
variant="fp16",
subfolder="unet",
).to("cuda")
```
Load the SDXL pipeline and the LoRA checkpoints, starting with the [ostris/ikea-instructions-lora-sdxl](https://huggingface.co/ostris/ikea-instructions-lora-sdxl) LoRA.
```python
from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
variant="fp16",
torch_dtype=torch.float16,
unet=unet
).to("cuda")
pipeline.load_lora_weights("ostris/ikea-instructions-lora-sdxl", weight_name="ikea_instructions_xl_v1_5.safetensors", adapter_name="ikea")
```
Now you'll create a [`~peft.PeftModel`] from the loaded LoRA checkpoint by combining the SDXL UNet and the LoRA UNet from the pipeline.
```python
from peft import get_peft_model, LoraConfig
import copy
sdxl_unet = copy.deepcopy(unet)
ikea_peft_model = get_peft_model(
sdxl_unet,
pipeline.unet.peft_config["ikea"],
adapter_name="ikea"
)
original_state_dict = {f"base_model.model.{k}": v for k, v in pipeline.unet.state_dict().items()}
ikea_peft_model.load_state_dict(original_state_dict, strict=True)
```
> [!TIP]
> You can optionally push the ikea_peft_model to the Hub by calling `ikea_peft_model.push_to_hub("ikea_peft_model", token=TOKEN)`.
Repeat this process to create a [`~peft.PeftModel`] from the [lordjia/by-feng-zikai](https://huggingface.co/lordjia/by-feng-zikai) LoRA.
```python
pipeline.delete_adapters("ikea")
sdxl_unet.delete_adapters("ikea")
pipeline.load_lora_weights("lordjia/by-feng-zikai", weight_name="fengzikai_v1.0_XL.safetensors", adapter_name="feng")
pipeline.set_adapters(adapter_names="feng")
feng_peft_model = get_peft_model(
sdxl_unet,
pipeline.unet.peft_config["feng"],
adapter_name="feng"
)
original_state_dict = {f"base_model.model.{k}": v for k, v in pipe.unet.state_dict().items()}
feng_peft_model.load_state_dict(original_state_dict, strict=True)
```
2. Load a base UNet model and then load the adapters onto it.
```python
from peft import PeftModel
base_unet = UNet2DConditionModel.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16,
use_safetensors=True,
variant="fp16",
subfolder="unet",
).to("cuda")
model = PeftModel.from_pretrained(base_unet, "stevhliu/ikea_peft_model", use_safetensors=True, subfolder="ikea", adapter_name="ikea")
model.load_adapter("stevhliu/feng_peft_model", use_safetensors=True, subfolder="feng", adapter_name="feng")
```
3. Merge the adapters using the [`~peft.LoraModel.add_weighted_adapter`] method and the merging method of your choice (learn more about other merging methods in this [blog post](https://huggingface.co/blog/peft_merging)). For this example, let's use the `"dare_linear"` method to merge the LoRAs.
> [!WARNING]
> Keep in mind the LoRAs need to have the same rank to be merged!
```python
model.add_weighted_adapter(
adapters=["ikea", "feng"],
weights=[1.0, 1.0],
combination_type="dare_linear",
adapter_name="ikea-feng"
)
model.set_adapters("ikea-feng")
```
Now you can generate an image with the merged LoRA.
```python
model = model.to(dtype=torch.float16, device="cuda")
pipeline = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", unet=model, variant="fp16", torch_dtype=torch.float16,
).to("cuda")
image = pipeline("A bowl of ramen shaped like a cute kawaii bear, by Feng Zikai", generator=torch.manual_seed(0)).images[0]
image
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ikea-feng-dare-linear.png"/>
</div>
## fuse_lora
Both the [`~loaders.UNet2DConditionLoadersMixin.set_adapters`] and [`~peft.LoraModel.add_weighted_adapter`] methods require loading the base model and the LoRA adapters separately which incurs some overhead. The [`~loaders.LoraLoaderMixin.fuse_lora`] method allows you to fuse the LoRA weights directly with the original weights of the underlying model. This way, you're only loading the model once which can increase inference and lower memory-usage.
You can use PEFT to easily fuse/unfuse multiple adapters directly into the model weights (both UNet and text encoder) using the [`~loaders.LoraLoaderMixin.fuse_lora`] method, which can lead to a speed-up in inference and lower VRAM usage.
For example, if you have a base model and adapters loaded and set as active with the following adapter weights:
```py
from diffusers import DiffusionPipeline
import torch
pipeline = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16).to("cuda")
pipeline.load_lora_weights("ostris/ikea-instructions-lora-sdxl", weight_name="ikea_instructions_xl_v1_5.safetensors", adapter_name="ikea")
pipeline.load_lora_weights("lordjia/by-feng-zikai", weight_name="fengzikai_v1.0_XL.safetensors", adapter_name="feng")
pipeline.set_adapters(["ikea", "feng"], adapter_weights=[0.7, 0.8])
```
Fuse these LoRAs into the UNet with the [`~loaders.LoraLoaderMixin.fuse_lora`] method. The `lora_scale` parameter controls how much to scale the output by with the LoRA weights. It is important to make the `lora_scale` adjustments in the [`~loaders.LoraLoaderMixin.fuse_lora`] method because it wont work if you try to pass `scale` to the `cross_attention_kwargs` in the pipeline.
```py
pipeline.fuse_lora(adapter_names=["ikea", "feng"], lora_scale=1.0)
```
Then you should use [`~loaders.LoraLoaderMixin.unload_lora_weights`] to unload the LoRA weights since they've already been fused with the underlying base model. Finally, call [`~DiffusionPipeline.save_pretrained`] to save the fused pipeline locally or you could call [`~DiffusionPipeline.push_to_hub`] to push the fused pipeline to the Hub.
```py
pipeline.unload_lora_weights()
# save locally
pipeline.save_pretrained("path/to/fused-pipeline")
# save to the Hub
pipeline.push_to_hub("fused-ikea-feng")
```
Now you can quickly load the fused pipeline and use it for inference without needing to separately load the LoRA adapters.
```py
pipeline = DiffusionPipeline.from_pretrained(
"username/fused-ikea-feng", torch_dtype=torch.float16,
).to("cuda")
image = pipeline("A bowl of ramen shaped like a cute kawaii bear, by Feng Zikai", generator=torch.manual_seed(0)).images[0]
image
```
You can call [`~loaders.LoraLoaderMixin.unfuse_lora`] to restore the original model's weights (for example, if you want to use a different `lora_scale` value). However, this only works if you've only fused one LoRA adapter to the original model. If you've fused multiple LoRAs, you'll need to reload the model.
```py
pipeline.unfuse_lora()
```
### torch.compile
[torch.compile](../optimization/torch2.0#torchcompile) can speed up your pipeline even more, but the LoRA weights must be fused first and then unloaded. Typically, the UNet is compiled because it is such a computationally intensive component of the pipeline.
```py
from diffusers import DiffusionPipeline
import torch
# load base model and LoRAs
pipeline = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16).to("cuda")
pipeline.load_lora_weights("ostris/ikea-instructions-lora-sdxl", weight_name="ikea_instructions_xl_v1_5.safetensors", adapter_name="ikea")
pipeline.load_lora_weights("lordjia/by-feng-zikai", weight_name="fengzikai_v1.0_XL.safetensors", adapter_name="feng")
# activate both LoRAs and set adapter weights
pipeline.set_adapters(["ikea", "feng"], adapter_weights=[0.7, 0.8])
# fuse LoRAs and unload weights
pipeline.fuse_lora(adapter_names=["ikea", "feng"], lora_scale=1.0)
pipeline.unload_lora_weights()
# torch.compile
pipeline.unet.to(memory_format=torch.channels_last)
pipeline.unet = torch.compile(pipeline.unet, mode="reduce-overhead", fullgraph=True)
image = pipeline("A bowl of ramen shaped like a cute kawaii bear, by Feng Zikai", generator=torch.manual_seed(0)).images[0]
```
Learn more about torch.compile in the [Accelerate inference of text-to-image diffusion models](../tutorials/fast_diffusion#torchcompile) guide.
## Next steps
For more conceptual details about how each merging method works, take a look at the [🤗 PEFT welcomes new merging methods](https://huggingface.co/blog/peft_merging#concatenation-cat) blog post!

View File

@@ -63,11 +63,12 @@ from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipelin
import torch
pipeline = StableDiffusionXLPipeline.from_single_file(
"https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/sd_xl_base_1.0.safetensors", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
"https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/sd_xl_base_1.0.safetensors",
torch_dtype=torch.float16
).to("cuda")
refiner = StableDiffusionXLImg2ImgPipeline.from_single_file(
"https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0/blob/main/sd_xl_refiner_1.0.safetensors", torch_dtype=torch.float16, use_safetensors=True, variant="fp16"
"https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0/blob/main/sd_xl_refiner_1.0.safetensors", torch_dtype=torch.float16
).to("cuda")
```

View File

@@ -31,29 +31,31 @@ Before you begin, make sure you have the following libraries installed:
Model weights may be stored in separate subfolders on the Hub or locally, in which case, you should use the [`~StableDiffusionXLPipeline.from_pretrained`] method:
```py
from diffusers import AutoPipelineForText2Image, AutoPipelineForImage2Image
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16")
pipeline = pipeline.to("cuda")
```
You can also use the [`~StableDiffusionXLPipeline.from_single_file`] method to load a model checkpoint stored in a single file format (`.ckpt` or `.safetensors`) from the Hub or locally:
You can also use the [`~StableDiffusionXLPipeline.from_single_file`] method to load a model checkpoint stored in a single file format (`.ckpt` or `.safetensors`) from the Hub or locally. For this loading method, you need to set `timestep_spacing="trailing"` (feel free to experiment with the other scheduler config values to get better results):
```py
from diffusers import StableDiffusionXLPipeline
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
import torch
pipeline = StableDiffusionXLPipeline.from_single_file(
"https://huggingface.co/stabilityai/sdxl-turbo/blob/main/sd_xl_turbo_1.0_fp16.safetensors", torch_dtype=torch.float16)
"https://huggingface.co/stabilityai/sdxl-turbo/blob/main/sd_xl_turbo_1.0_fp16.safetensors",
torch_dtype=torch.float16, variant="fp16")
pipeline = pipeline.to("cuda")
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(pipeline.scheduler.config, timestep_spacing="trailing")
```
## Text-to-image
For text-to-image, pass a text prompt. By default, SDXL Turbo generates a 512x512 image, and that resolution gives the best results. You can try setting the `height` and `width` parameters to 768x768 or 1024x1024, but you should expect quality degradations when doing so.
Make sure to set `guidance_scale` to 0.0 to disable, as the model was trained without it. A single inference step is enough to generate high quality images.
Make sure to set `guidance_scale` to 0.0 to disable, as the model was trained without it. A single inference step is enough to generate high quality images.
Increasing the number of steps to 2, 3 or 4 should improve image quality.
```py
@@ -75,7 +77,7 @@ image
## Image-to-image
For image-to-image generation, make sure that `num_inference_steps * strength` is larger or equal to 1.
For image-to-image generation, make sure that `num_inference_steps * strength` is larger or equal to 1.
The image-to-image pipeline will run for `int(num_inference_steps * strength)` steps, e.g. `0.5 * 2.0 = 1` step in
our example below.
@@ -84,14 +86,14 @@ from diffusers import AutoPipelineForImage2Image
from diffusers.utils import load_image, make_image_grid
# use from_pipe to avoid consuming additional memory when loading a checkpoint
pipeline = AutoPipelineForImage2Image.from_pipe(pipeline_text2image).to("cuda")
pipeline_image2image = AutoPipelineForImage2Image.from_pipe(pipeline_text2image).to("cuda")
init_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cat.png")
init_image = init_image.resize((512, 512))
prompt = "cat wizard, gandalf, lord of the rings, detailed, fantasy, cute, adorable, Pixar, Disney, 8k"
image = pipeline(prompt, image=init_image, strength=0.5, guidance_scale=0.0, num_inference_steps=2).images[0]
image = pipeline_image2image(prompt, image=init_image, strength=0.5, guidance_scale=0.0, num_inference_steps=2).images[0]
make_image_grid([init_image, image], rows=1, cols=2)
```
@@ -101,7 +103,7 @@ make_image_grid([init_image, image], rows=1, cols=2)
## Speed-up SDXL Turbo even more
- Compile the UNet if you are using PyTorch version 2 or better. The first inference run will be very slow, but subsequent ones will be much faster.
- Compile the UNet if you are using PyTorch version 2.0 or higher. The first inference run will be very slow, but subsequent ones will be much faster.
```py
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)

View File

@@ -217,3 +217,9 @@ Check your image dimensions to see if they're correct:
images.shape
# (8, 1, 512, 512, 3)
```
## Resources
To learn more about how JAX works with Stable Diffusion, you may be interested in reading:
* [Accelerating Stable Diffusion XL Inference with JAX on Cloud TPU v5e](https://hf.co/blog/sdxl_jax)

View File

@@ -21,7 +21,7 @@ This guide will show you how to use SVD to generate short videos from images.
Before you begin, make sure you have the following libraries installed:
```py
!pip install -q -U diffusers transformers accelerate
!pip install -q -U diffusers transformers accelerate
```
The are two variants of this model, [SVD](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid) and [SVD-XT](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt). The SVD checkpoint is trained to generate 14 frames and the SVD-XT checkpoint is further finetuned to generate 25 frames.
@@ -86,7 +86,7 @@ Video generation is very memory intensive because you're essentially generating
+ frames = pipe(image, decode_chunk_size=2, generator=generator, num_frames=25).frames[0]
```
Using all these tricks togethere should lower the memory requirement to less than 8GB VRAM.
Using all these tricks together should lower the memory requirement to less than 8GB VRAM.
## Micro-conditioning

View File

@@ -0,0 +1,219 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# T2I-Adapter
[T2I-Adapter](https://hf.co/papers/2302.08453) is a lightweight adapter for controlling and providing more accurate
structure guidance for text-to-image models. It works by learning an alignment between the internal knowledge of the
text-to-image model and an external control signal, such as edge detection or depth estimation.
The T2I-Adapter design is simple, the condition is passed to four feature extraction blocks and three downsample
blocks. This makes it fast and easy to train different adapters for different conditions which can be plugged into the
text-to-image model. T2I-Adapter is similar to [ControlNet](controlnet) except it is smaller (~77M parameters) and
faster because it only runs once during the diffusion process. The downside is that performance may be slightly worse
than ControlNet.
This guide will show you how to use T2I-Adapter with different Stable Diffusion models and how you can compose multiple
T2I-Adapters to impose more than one condition.
> [!TIP]
> There are several T2I-Adapters available for different conditions, such as color palette, depth, sketch, pose, and
> segmentation. Check out the [TencentARC](https://hf.co/TencentARC) repository to try them out!
Before you begin, make sure you have the following libraries installed.
```py
# uncomment to install the necessary libraries in Colab
#!pip install -q diffusers accelerate controlnet-aux==0.0.7
```
## Text-to-image
Text-to-image models rely on a prompt to generate an image, but sometimes, text alone may not be enough to provide more
accurate structural guidance. T2I-Adapter allows you to provide an additional control image to guide the generation
process. For example, you can provide a canny image (a white outline of an image on a black background) to guide the
model to generate an image with a similar structure.
<hfoptions id="stablediffusion">
<hfoption id="Stable Diffusion 1.5">
Create a canny image with the [opencv-library](https://github.com/opencv/opencv-python).
```py
import cv2
import numpy as np
from PIL import Image
from diffusers.utils import load_image
image = load_image("https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png")
image = np.array(image)
low_threshold = 100
high_threshold = 200
image = cv2.Canny(image, low_threshold, high_threshold)
image = Image.fromarray(image)
```
Now load a T2I-Adapter conditioned on [canny images](https://hf.co/TencentARC/t2iadapter_canny_sd15v2) and pass it to
the [`StableDiffusionAdapterPipeline`].
```py
import torch
from diffusers import StableDiffusionAdapterPipeline, T2IAdapter
adapter = T2IAdapter.from_pretrained("TencentARC/t2iadapter_canny_sd15v2", torch_dtype=torch.float16)
pipeline = StableDiffusionAdapterPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
adapter=adapter,
torch_dtype=torch.float16,
)
pipeline.to("cuda")
```
Finally, pass your prompt and control image to the pipeline.
```py
generator = torch.Generator("cuda").manual_seed(0)
image = pipeline(
prompt="cinematic photo of a plush and soft midcentury style rug on a wooden floor, 35mm photograph, film, professional, 4k, highly detailed",
image=image,
generator=generator,
).images[0]
image
```
<div class="flex justify-center">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/t2i-sd1.5.png"/>
</div>
</hfoption>
<hfoption id="Stable Diffusion XL">
Create a canny image with the [controlnet-aux](https://github.com/huggingface/controlnet_aux) library.
```py
from controlnet_aux.canny import CannyDetector
from diffusers.utils import load_image
canny_detector = CannyDetector()
image = load_image("https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png")
image = canny_detector(image, detect_resolution=384, image_resolution=1024)
```
Now load a T2I-Adapter conditioned on [canny images](https://hf.co/TencentARC/t2i-adapter-canny-sdxl-1.0) and pass it
to the [`StableDiffusionXLAdapterPipeline`].
```py
import torch
from diffusers import StableDiffusionXLAdapterPipeline, T2IAdapter, EulerAncestralDiscreteScheduler, AutoencoderKL
scheduler = EulerAncestralDiscreteScheduler.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="scheduler")
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
adapter = T2IAdapter.from_pretrained("TencentARC/t2i-adapter-canny-sdxl-1.0", torch_dtype=torch.float16)
pipeline = StableDiffusionXLAdapterPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
adapter=adapter,
vae=vae,
scheduler=scheduler,
torch_dtype=torch.float16,
variant="fp16",
)
pipeline.to("cuda")
```
Finally, pass your prompt and control image to the pipeline.
```py
generator = torch.Generator("cuda").manual_seed(0)
image = pipeline(
prompt="cinematic photo of a plush and soft midcentury style rug on a wooden floor, 35mm photograph, film, professional, 4k, highly detailed",
image=image,
generator=generator,
).images[0]
image
```
<div class="flex justify-center">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/t2i-sdxl.png"/>
</div>
</hfoption>
</hfoptions>
## MultiAdapter
T2I-Adapters are also composable, allowing you to use more than one adapter to impose multiple control conditions on an
image. For example, you can use a pose map to provide structural control and a depth map for depth control. This is
enabled by the [`MultiAdapter`] class.
Let's condition a text-to-image model with a pose and depth adapter. Create and place your depth and pose image and in a list.
```py
from diffusers.utils import load_image
pose_image = load_image(
"https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/keypose_sample_input.png"
)
depth_image = load_image(
"https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/depth_sample_input.png"
)
cond = [pose_image, depth_image]
prompt = ["Santa Claus walking into an office room with a beautiful city view"]
```
<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/depth_sample_input.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">depth image</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/keypose_sample_input.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">pose image</figcaption>
</div>
</div>
Load the corresponding pose and depth adapters as a list in the [`MultiAdapter`] class.
```py
import torch
from diffusers import StableDiffusionAdapterPipeline, MultiAdapter, T2IAdapter
adapters = MultiAdapter(
[
T2IAdapter.from_pretrained("TencentARC/t2iadapter_keypose_sd14v1"),
T2IAdapter.from_pretrained("TencentARC/t2iadapter_depth_sd14v1"),
]
)
adapters = adapters.to(torch.float16)
```
Finally, load a [`StableDiffusionAdapterPipeline`] with the adapters, and pass your prompt and conditioned images to
it. Use the [`adapter_conditioning_scale`] to adjust the weight of each adapter on the image.
```py
pipeline = StableDiffusionAdapterPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
torch_dtype=torch.float16,
adapter=adapters,
).to("cuda")
image = pipeline(prompt, cond, adapter_conditioning_scale=[0.7, 0.7]).images[0]
image
```
<div class="flex justify-center">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/t2i-multi.png"/>
</div>

View File

@@ -0,0 +1,497 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Text or image-to-video
Driven by the success of text-to-image diffusion models, generative video models are able to generate short clips of video from a text prompt or an initial image. These models extend a pretrained diffusion model to generate videos by adding some type of temporal and/or spatial convolution layer to the architecture. A mixed dataset of images and videos are used to train the model which learns to output a series of video frames based on the text or image conditioning.
This guide will show you how to generate videos, how to configure video model parameters, and how to control video generation.
## Popular models
> [!TIP]
> Discover other cool and trending video generation models on the Hub [here](https://huggingface.co/models?pipeline_tag=text-to-video&sort=trending)!
[Stable Video Diffusions (SVD)](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid), [I2VGen-XL](https://huggingface.co/ali-vilab/i2vgen-xl/), [AnimateDiff](https://huggingface.co/guoyww/animatediff), and [ModelScopeT2V](https://huggingface.co/ali-vilab/text-to-video-ms-1.7b) are popular models used for video diffusion. Each model is distinct. For example, AnimateDiff inserts a motion modeling module into a frozen text-to-image model to generate personalized animated images, whereas SVD is entirely pretrained from scratch with a three-stage training process to generate short high-quality videos.
### Stable Video Diffusion
[SVD](../api/pipelines/svd) is based on the Stable Diffusion 2.1 model and it is trained on images, then low-resolution videos, and finally a smaller dataset of high-resolution videos. This model generates a short 2-4 second video from an initial image. You can learn more details about model, like micro-conditioning, in the [Stable Video Diffusion](../using-diffusers/svd) guide.
Begin by loading the [`StableVideoDiffusionPipeline`] and passing an initial image to generate a video from.
```py
import torch
from diffusers import StableVideoDiffusionPipeline
from diffusers.utils import load_image, export_to_video
pipeline = StableVideoDiffusionPipeline.from_pretrained(
"stabilityai/stable-video-diffusion-img2vid-xt", torch_dtype=torch.float16, variant="fp16"
)
pipeline.enable_model_cpu_offload()
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/svd/rocket.png")
image = image.resize((1024, 576))
generator = torch.manual_seed(42)
frames = pipeline(image, decode_chunk_size=8, generator=generator).frames[0]
export_to_video(frames, "generated.mp4", fps=7)
```
<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/svd/rocket.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">initial image</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/svd/output_rocket.gif"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">generated video</figcaption>
</div>
</div>
### I2VGen-XL
[I2VGen-XL](../api/pipelines/i2vgenxl) is a diffusion model that can generate higher resolution videos than SVD and it is also capable of accepting text prompts in addition to images. The model is trained with two hierarchical encoders (detail and global encoder) to better capture low and high-level details in images. These learned details are used to train a video diffusion model which refines the video resolution and details in the generated video.
You can use I2VGen-XL by loading the [`I2VGenXLPipeline`], and passing a text and image prompt to generate a video.
```py
import torch
from diffusers import I2VGenXLPipeline
from diffusers.utils import export_to_gif, load_image
pipeline = I2VGenXLPipeline.from_pretrained("ali-vilab/i2vgen-xl", torch_dtype=torch.float16, variant="fp16")
pipeline.enable_model_cpu_offload()
image_url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/i2vgen_xl_images/img_0009.png"
image = load_image(image_url).convert("RGB")
prompt = "Papers were floating in the air on a table in the library"
negative_prompt = "Distorted, discontinuous, Ugly, blurry, low resolution, motionless, static, disfigured, disconnected limbs, Ugly faces, incomplete arms"
generator = torch.manual_seed(8888)
frames = pipeline(
prompt=prompt,
image=image,
num_inference_steps=50,
negative_prompt=negative_prompt,
guidance_scale=9.0,
generator=generator
).frames[0]
export_to_gif(frames, "i2v.gif")
```
<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/i2vgen_xl_images/img_0009.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">initial image</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/i2vgen-xl-example.gif"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">generated video</figcaption>
</div>
</div>
### AnimateDiff
[AnimateDiff](../api/pipelines/animatediff) is an adapter model that inserts a motion module into a pretrained diffusion model to animate an image. The adapter is trained on video clips to learn motion which is used to condition the generation process to create a video. It is faster and easier to only train the adapter and it can be loaded into most diffusion models, effectively turning them into "video models".
Start by loading a [`MotionAdapter`].
```py
import torch
from diffusers import AnimateDiffPipeline, DDIMScheduler, MotionAdapter
from diffusers.utils import export_to_gif
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2", torch_dtype=torch.float16)
```
Then load a finetuned Stable Diffusion model with the [`AnimateDiffPipeline`].
```py
pipeline = AnimateDiffPipeline.from_pretrained("emilianJR/epiCRealism", motion_adapter=adapter, torch_dtype=torch.float16)
scheduler = DDIMScheduler.from_pretrained(
"emilianJR/epiCRealism",
subfolder="scheduler",
clip_sample=False,
timestep_spacing="linspace",
beta_schedule="linear",
steps_offset=1,
)
pipeline.scheduler = scheduler
pipeline.enable_vae_slicing()
pipeline.enable_model_cpu_offload()
```
Create a prompt and generate the video.
```py
output = pipeline(
prompt="A space rocket with trails of smoke behind it launching into space from the desert, 4k, high resolution",
negative_prompt="bad quality, worse quality, low resolution",
num_frames=16,
guidance_scale=7.5,
num_inference_steps=50,
generator=torch.Generator("cpu").manual_seed(49),
)
frames = output.frames[0]
export_to_gif(frames, "animation.gif")
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff.gif"/>
</div>
### ModelscopeT2V
[ModelscopeT2V](../api/pipelines/text_to_video) adds spatial and temporal convolutions and attention to a UNet, and it is trained on image-text and video-text datasets to enhance what it learns during training. The model takes a prompt, encodes it and creates text embeddings which are denoised by the UNet, and then decoded by a VQGAN into a video.
<Tip>
ModelScopeT2V generates watermarked videos due to the datasets it was trained on. To use a watermark-free model, try the [cerspense/zeroscope_v2_76w](https://huggingface.co/cerspense/zeroscope_v2_576w) model with the [`TextToVideoSDPipeline`] first, and then upscale it's output with the [cerspense/zeroscope_v2_XL](https://huggingface.co/cerspense/zeroscope_v2_XL) checkpoint using the [`VideoToVideoSDPipeline`].
</Tip>
Load a ModelScopeT2V checkpoint into the [`DiffusionPipeline`] along with a prompt to generate a video.
```py
import torch
from diffusers import DiffusionPipeline
from diffusers.utils import export_to_video
pipeline = DiffusionPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16")
pipeline.enable_model_cpu_offload()
pipeline.enable_vae_slicing()
prompt = "Confident teddy bear surfer rides the wave in the tropics"
video_frames = pipeline(prompt).frames[0]
export_to_video(video_frames, "modelscopet2v.mp4", fps=10)
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/modelscopet2v.gif" />
</div>
## Configure model parameters
There are a few important parameters you can configure in the pipeline that'll affect the video generation process and quality. Let's take a closer look at what these parameters do and how changing them affects the output.
### Number of frames
The `num_frames` parameter determines how many video frames are generated per second. A frame is an image that is played in a sequence of other frames to create motion or a video. This affects video length because the pipeline generates a certain number of frames per second (check a pipeline's API reference for the default value). To increase the video duration, you'll need to increase the `num_frames` parameter.
```py
import torch
from diffusers import StableVideoDiffusionPipeline
from diffusers.utils import load_image, export_to_video
pipeline = StableVideoDiffusionPipeline.from_pretrained(
"stabilityai/stable-video-diffusion-img2vid", torch_dtype=torch.float16, variant="fp16"
)
pipeline.enable_model_cpu_offload()
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/svd/rocket.png")
image = image.resize((1024, 576))
generator = torch.manual_seed(42)
frames = pipeline(image, decode_chunk_size=8, generator=generator, num_frames=25).frames[0]
export_to_video(frames, "generated.mp4", fps=7)
```
<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/num_frames_14.gif"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">num_frames=14</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/num_frames_25.gif"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">num_frames=25</figcaption>
</div>
</div>
### Guidance scale
The `guidance_scale` parameter controls how closely aligned the generated video and text prompt or initial image is. A higher `guidance_scale` value means your generated video is more aligned with the text prompt or initial image, while a lower `guidance_scale` value means your generated video is less aligned which could give the model more "creativity" to interpret the conditioning input.
<Tip>
SVD uses the `min_guidance_scale` and `max_guidance_scale` parameters for applying guidance to the first and last frames respectively.
</Tip>
```py
import torch
from diffusers import I2VGenXLPipeline
from diffusers.utils import export_to_gif, load_image
pipeline = I2VGenXLPipeline.from_pretrained("ali-vilab/i2vgen-xl", torch_dtype=torch.float16, variant="fp16")
pipeline.enable_model_cpu_offload()
image_url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/i2vgen_xl_images/img_0009.png"
image = load_image(image_url).convert("RGB")
prompt = "Papers were floating in the air on a table in the library"
negative_prompt = "Distorted, discontinuous, Ugly, blurry, low resolution, motionless, static, disfigured, disconnected limbs, Ugly faces, incomplete arms"
generator = torch.manual_seed(0)
frames = pipeline(
prompt=prompt,
image=image,
num_inference_steps=50,
negative_prompt=negative_prompt,
guidance_scale=1.0,
generator=generator
).frames[0]
export_to_gif(frames, "i2v.gif")
```
<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/i2vgen-xl-example.gif"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">guidance_scale=9.0</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/guidance_scale_1.0.gif"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">guidance_scale=1.0</figcaption>
</div>
</div>
### Negative prompt
A negative prompt deters the model from generating things you dont want it to. This parameter is commonly used to improve overall generation quality by removing poor or bad features such as “low resolution” or “bad details”.
```py
import torch
from diffusers import AnimateDiffPipeline, DDIMScheduler, MotionAdapter
from diffusers.utils import export_to_gif
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2", torch_dtype=torch.float16)
pipeline = AnimateDiffPipeline.from_pretrained("emilianJR/epiCRealism", motion_adapter=adapter, torch_dtype=torch.float16)
scheduler = DDIMScheduler.from_pretrained(
"emilianJR/epiCRealism",
subfolder="scheduler",
clip_sample=False,
timestep_spacing="linspace",
beta_schedule="linear",
steps_offset=1,
)
pipeline.scheduler = scheduler
pipeline.enable_vae_slicing()
pipeline.enable_model_cpu_offload()
output = pipeline(
prompt="360 camera shot of a sushi roll in a restaurant",
negative_prompt="Distorted, discontinuous, ugly, blurry, low resolution, motionless, static",
num_frames=16,
guidance_scale=7.5,
num_inference_steps=50,
generator=torch.Generator("cpu").manual_seed(0),
)
frames = output.frames[0]
export_to_gif(frames, "animation.gif")
```
<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff_no_neg.gif"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">no negative prompt</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff_neg.gif"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">negative prompt applied</figcaption>
</div>
</div>
### Model-specific parameters
There are some pipeline parameters that are unique to each model such as adjusting the motion in a video or adding noise to the initial image.
<hfoptions id="special-parameters">
<hfoption id="Stable Video Diffusion">
Stable Video Diffusion provides additional micro-conditioning for the frame rate with the `fps` parameter and for motion with the `motion_bucket_id` parameter. Together, these parameters allow for adjusting the amount of motion in the generated video.
There is also a `noise_aug_strength` parameter that increases the amount of noise added to the initial image. Varying this parameter affects how similar the generated video and initial image are. A higher `noise_aug_strength` also increases the amount of motion. To learn more, read the [Micro-conditioning](../using-diffusers/svd#micro-conditioning) guide.
</hfoption>
<hfoption id="Text2Video-Zero">
Text2Video-Zero computes the amount of motion to apply to each frame from randomly sampled latents. You can use the `motion_field_strength_x` and `motion_field_strength_y` parameters to control the amount of motion to apply to the x and y-axes of the video. The parameters `t0` and `t1` are the timesteps to apply motion to the latents.
</hfoption>
</hfoptions>
## Control video generation
Video generation can be controlled similar to how text-to-image, image-to-image, and inpainting can be controlled with a [`ControlNetModel`]. The only difference is you need to use the [`~pipelines.text_to_video_synthesis.pipeline_text_to_video_zero.CrossFrameAttnProcessor`] so each frame attends to the first frame.
### Text2Video-Zero
Text2Video-Zero video generation can be conditioned on pose and edge images for even greater control over a subject's motion in the generated video or to preserve the identity of a subject/object in the video. You can also use Text2Video-Zero with [InstructPix2Pix](../api/pipelines/pix2pix) for editing videos with text.
<hfoptions id="t2v-zero">
<hfoption id="pose control">
Start by downloading a video and extracting the pose images from it.
```py
from huggingface_hub import hf_hub_download
from PIL import Image
import imageio
filename = "__assets__/poses_skeleton_gifs/dance1_corr.mp4"
repo_id = "PAIR/Text2Video-Zero"
video_path = hf_hub_download(repo_type="space", repo_id=repo_id, filename=filename)
reader = imageio.get_reader(video_path, "ffmpeg")
frame_count = 8
pose_images = [Image.fromarray(reader.get_data(i)) for i in range(frame_count)]
```
Load a [`ControlNetModel`] for pose estimation and a checkpoint into the [`StableDiffusionControlNetPipeline`]. Then you'll use the [`~pipelines.text_to_video_synthesis.pipeline_text_to_video_zero.CrossFrameAttnProcessor`] for the UNet and ControlNet.
```py
import torch
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
from diffusers.pipelines.text_to_video_synthesis.pipeline_text_to_video_zero import CrossFrameAttnProcessor
model_id = "runwayml/stable-diffusion-v1-5"
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose", torch_dtype=torch.float16)
pipeline = StableDiffusionControlNetPipeline.from_pretrained(
model_id, controlnet=controlnet, torch_dtype=torch.float16
).to("cuda")
pipeline.unet.set_attn_processor(CrossFrameAttnProcessor(batch_size=2))
pipeline.controlnet.set_attn_processor(CrossFrameAttnProcessor(batch_size=2))
```
Fix the latents for all the frames, and then pass your prompt and extracted pose images to the model to generate a video.
```py
latents = torch.randn((1, 4, 64, 64), device="cuda", dtype=torch.float16).repeat(len(pose_images), 1, 1, 1)
prompt = "Darth Vader dancing in a desert"
result = pipeline(prompt=[prompt] * len(pose_images), image=pose_images, latents=latents).images
imageio.mimsave("video.mp4", result, fps=4)
```
</hfoption>
<hfoption id="edge control">
Download a video and extract the edges from it.
```py
from huggingface_hub import hf_hub_download
from PIL import Image
import imageio
filename = "__assets__/poses_skeleton_gifs/dance1_corr.mp4"
repo_id = "PAIR/Text2Video-Zero"
video_path = hf_hub_download(repo_type="space", repo_id=repo_id, filename=filename)
reader = imageio.get_reader(video_path, "ffmpeg")
frame_count = 8
pose_images = [Image.fromarray(reader.get_data(i)) for i in range(frame_count)]
```
Load a [`ControlNetModel`] for canny edge and a checkpoint into the [`StableDiffusionControlNetPipeline`]. Then you'll use the [`~pipelines.text_to_video_synthesis.pipeline_text_to_video_zero.CrossFrameAttnProcessor`] for the UNet and ControlNet.
```py
import torch
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
from diffusers.pipelines.text_to_video_synthesis.pipeline_text_to_video_zero import CrossFrameAttnProcessor
model_id = "runwayml/stable-diffusion-v1-5"
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
pipeline = StableDiffusionControlNetPipeline.from_pretrained(
model_id, controlnet=controlnet, torch_dtype=torch.float16
).to("cuda")
pipeline.unet.set_attn_processor(CrossFrameAttnProcessor(batch_size=2))
pipeline.controlnet.set_attn_processor(CrossFrameAttnProcessor(batch_size=2))
```
Fix the latents for all the frames, and then pass your prompt and extracted edge images to the model to generate a video.
```py
latents = torch.randn((1, 4, 64, 64), device="cuda", dtype=torch.float16).repeat(len(pose_images), 1, 1, 1)
prompt = "Darth Vader dancing in a desert"
result = pipeline(prompt=[prompt] * len(pose_images), image=pose_images, latents=latents).images
imageio.mimsave("video.mp4", result, fps=4)
```
</hfoption>
<hfoption id="InstructPix2Pix">
InstructPix2Pix allows you to use text to describe the changes you want to make to the video. Start by downloading and reading a video.
```py
from huggingface_hub import hf_hub_download
from PIL import Image
import imageio
filename = "__assets__/pix2pix video/camel.mp4"
repo_id = "PAIR/Text2Video-Zero"
video_path = hf_hub_download(repo_type="space", repo_id=repo_id, filename=filename)
reader = imageio.get_reader(video_path, "ffmpeg")
frame_count = 8
video = [Image.fromarray(reader.get_data(i)) for i in range(frame_count)]
```
Load the [`StableDiffusionInstructPix2PixPipeline`] and set the [`~pipelines.text_to_video_synthesis.pipeline_text_to_video_zero.CrossFrameAttnProcessor`] for the UNet.
```py
import torch
from diffusers import StableDiffusionInstructPix2PixPipeline
from diffusers.pipelines.text_to_video_synthesis.pipeline_text_to_video_zero import CrossFrameAttnProcessor
pipeline = StableDiffusionInstructPix2PixPipeline.from_pretrained("timbrooks/instruct-pix2pix", torch_dtype=torch.float16).to("cuda")
pipeline.unet.set_attn_processor(CrossFrameAttnProcessor(batch_size=3))
```
Pass a prompt describing the change you want to apply to the video.
```py
prompt = "make it Van Gogh Starry Night style"
result = pipeline(prompt=[prompt] * len(video), image=video).images
imageio.mimsave("edited_video.mp4", result, fps=4)
```
</hfoption>
</hfoptions>
## Optimize
Video generation requires a lot of memory because you're generating many video frames at once. You can reduce your memory requirements at the expense of some inference speed. Try:
1. offloading pipeline components that are no longer needed to the CPU
2. feed-forward chunking runs the feed-forward layer in a loop instead of all at once
3. break up the number of frames the VAE has to decode into chunks instead of decoding them all at once
```diff
- pipeline.enable_model_cpu_offload()
- frames = pipeline(image, decode_chunk_size=8, generator=generator).frames[0]
+ pipeline.enable_model_cpu_offload()
+ pipeline.unet.enable_forward_chunking()
+ frames = pipeline(image, decode_chunk_size=2, generator=generator, num_frames=25).frames[0]
```
If memory is not an issue and you want to optimize for speed, try wrapping the UNet with [`torch.compile`](../optimization/torch2.0#torchcompile).
```diff
- pipeline.enable_model_cpu_offload()
+ pipeline.to("cuda")
+ pipeline.unet = torch.compile(pipeline.unet, mode="reduce-overhead", fullgraph=True)
```

View File

@@ -10,10 +10,209 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# Prompt weighting
# Prompt techniques
[[open-in-colab]]
Prompts are important because they describe what you want a diffusion model to generate. The best prompts are detailed, specific, and well-structured to help the model realize your vision. But crafting a great prompt takes time and effort and sometimes it may not be enough because language and words can be imprecise. This is where you need to boost your prompt with other techniques, such as prompt enhancing and prompt weighting, to get the results you want.
This guide will show you how you can use these prompt techniques to generate high-quality images with lower effort and adjust the weight of certain keywords in a prompt.
## Prompt engineering
> [!TIP]
> This is not an exhaustive guide on prompt engineering, but it will help you understand the necessary parts of a good prompt. We encourage you to continue experimenting with different prompts and combine them in new ways to see what works best. As you write more prompts, you'll develop an intuition for what works and what doesn't!
New diffusion models do a pretty good job of generating high-quality images from a basic prompt, but it is still important to create a well-written prompt to get the best results. Here are a few tips for writing a good prompt:
1. What is the image *medium*? Is it a photo, a painting, a 3D illustration, or something else?
2. What is the image *subject*? Is it a person, animal, object, or scene?
3. What *details* would you like to see in the image? This is where you can get really creative and have a lot of fun experimenting with different words to bring your image to life. For example, what is the lighting like? What is the vibe and aesthetic? What kind of art or illustration style are you looking for? The more specific and precise words you use, the better the model will understand what you want to generate.
<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/plain-prompt.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">"A photo of a banana-shaped couch in a living room"</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/detail-prompt.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">"A vibrant yellow banana-shaped couch sits in a cozy living room, its curve cradling a pile of colorful cushions. on the wooden floor, a patterned rug adds a touch of eclectic charm, and a potted plant sits in the corner, reaching towards the sunlight filtering through the windows"</figcaption>
</div>
</div>
## Prompt enhancing with GPT2
Prompt enhancing is a technique for quickly improving prompt quality without spending too much effort constructing one. It uses a model like GPT2 pretrained on Stable Diffusion text prompts to automatically enrich a prompt with additional important keywords to generate high-quality images.
The technique works by curating a list of specific keywords and forcing the model to generate those words to enhance the original prompt. This way, your prompt can be "a cat" and GPT2 can enhance the prompt to "cinematic film still of a cat basking in the sun on a roof in Turkey, highly detailed, high budget hollywood movie, cinemascope, moody, epic, gorgeous, film grain quality sharp focus beautiful detailed intricate stunning amazing epic".
> [!TIP]
> You should also use a [*offset noise*](https://www.crosslabs.org//blog/diffusion-with-offset-noise) LoRA to improve the contrast in bright and dark images and create better lighting overall. This [LoRA](https://hf.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/sd_xl_offset_example-lora_1.0.safetensors) is available from [stabilityai/stable-diffusion-xl-base-1.0](https://hf.co/stabilityai/stable-diffusion-xl-base-1.0).
Start by defining certain styles and a list of words (you can check out a more comprehensive list of [words](https://hf.co/LykosAI/GPT-Prompt-Expansion-Fooocus-v2/blob/main/positive.txt) and [styles](https://github.com/lllyasviel/Fooocus/tree/main/sdxl_styles) used by Fooocus) to enhance a prompt with.
```py
import torch
from transformers import GenerationConfig, GPT2LMHeadModel, GPT2Tokenizer, LogitsProcessor, LogitsProcessorList
from diffusers import StableDiffusionXLPipeline
styles = {
"cinematic": "cinematic film still of {prompt}, highly detailed, high budget hollywood movie, cinemascope, moody, epic, gorgeous, film grain",
"anime": "anime artwork of {prompt}, anime style, key visual, vibrant, studio anime, highly detailed",
"photographic": "cinematic photo of {prompt}, 35mm photograph, film, professional, 4k, highly detailed",
"comic": "comic of {prompt}, graphic illustration, comic art, graphic novel art, vibrant, highly detailed",
"lineart": "line art drawing {prompt}, professional, sleek, modern, minimalist, graphic, line art, vector graphics",
"pixelart": " pixel-art {prompt}, low-res, blocky, pixel art style, 8-bit graphics",
}
words = [
"aesthetic", "astonishing", "beautiful", "breathtaking", "composition", "contrasted", "epic", "moody", "enhanced",
"exceptional", "fascinating", "flawless", "glamorous", "glorious", "illumination", "impressive", "improved",
"inspirational", "magnificent", "majestic", "hyperrealistic", "smooth", "sharp", "focus", "stunning", "detailed",
"intricate", "dramatic", "high", "quality", "perfect", "light", "ultra", "highly", "radiant", "satisfying",
"soothing", "sophisticated", "stylish", "sublime", "terrific", "touching", "timeless", "wonderful", "unbelievable",
"elegant", "awesome", "amazing", "dynamic", "trendy",
]
```
You may have noticed in the `words` list, there are certain words that can be paired together to create something more meaningful. For example, the words "high" and "quality" can be combined to create "high quality". Let's pair these words together and remove the words that can't be paired.
```py
word_pairs = ["highly detailed", "high quality", "enhanced quality", "perfect composition", "dynamic light"]
def find_and_order_pairs(s, pairs):
words = s.split()
found_pairs = []
for pair in pairs:
pair_words = pair.split()
if pair_words[0] in words and pair_words[1] in words:
found_pairs.append(pair)
words.remove(pair_words[0])
words.remove(pair_words[1])
for word in words[:]:
for pair in pairs:
if word in pair.split():
words.remove(word)
break
ordered_pairs = ", ".join(found_pairs)
remaining_s = ", ".join(words)
return ordered_pairs, remaining_s
```
Next, implement a custom [`~transformers.LogitsProcessor`] class that assigns tokens in the `words` list a value of 0 and assigns tokens not in the `words` list a negative value so they aren't picked during generation. This way, generation is biased towards words in the `words` list. After a word from the list is used, it is also assigned a negative value so it isn't picked again.
```py
class CustomLogitsProcessor(LogitsProcessor):
def __init__(self, bias):
super().__init__()
self.bias = bias
def __call__(self, input_ids, scores):
if len(input_ids.shape) == 2:
last_token_id = input_ids[0, -1]
self.bias[last_token_id] = -1e10
return scores + self.bias
word_ids = [tokenizer.encode(word, add_prefix_space=True)[0] for word in words]
bias = torch.full((tokenizer.vocab_size,), -float("Inf")).to("cuda")
bias[word_ids] = 0
processor = CustomLogitsProcessor(bias)
processor_list = LogitsProcessorList([processor])
```
Combine the prompt and the `cinematic` style prompt defined in the `styles` dictionary earlier.
```py
prompt = "a cat basking in the sun on a roof in Turkey"
style = "cinematic"
prompt = styles[style].format(prompt=prompt)
prompt
"cinematic film still of a cat basking in the sun on a roof in Turkey, highly detailed, high budget hollywood movie, cinemascope, moody, epic, gorgeous, film grain"
```
Load a GPT2 tokenizer and model from the [Gustavosta/MagicPrompt-Stable-Diffusion](https://huggingface.co/Gustavosta/MagicPrompt-Stable-Diffusion) checkpoint (this specific checkpoint is trained to generate prompts) to enhance the prompt.
```py
tokenizer = GPT2Tokenizer.from_pretrained("Gustavosta/MagicPrompt-Stable-Diffusion")
model = GPT2LMHeadModel.from_pretrained("Gustavosta/MagicPrompt-Stable-Diffusion", torch_dtype=torch.float16).to(
"cuda"
)
model.eval()
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
token_count = inputs["input_ids"].shape[1]
max_new_tokens = 50 - token_count
generation_config = GenerationConfig(
penalty_alpha=0.7,
top_k=50,
eos_token_id=model.config.eos_token_id,
pad_token_id=model.config.eos_token_id,
pad_token=model.config.pad_token_id,
do_sample=True,
)
with torch.no_grad():
generated_ids = model.generate(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
max_new_tokens=max_new_tokens,
generation_config=generation_config,
logits_processor=proccesor_list,
)
```
Then you can combine the input prompt and the generated prompt. Feel free to take a look at what the generated prompt (`generated_part`) is, the word pairs that were found (`pairs`), and the remaining words (`words`). This is all packed together in the `enhanced_prompt`.
```py
output_tokens = [tokenizer.decode(generated_id, skip_special_tokens=True) for generated_id in generated_ids]
input_part, generated_part = output_tokens[0][: len(prompt)], output_tokens[0][len(prompt) :]
pairs, words = find_and_order_pairs(generated_part, word_pairs)
formatted_generated_part = pairs + ", " + words
enhanced_prompt = input_part + ", " + formatted_generated_part
enhanced_prompt
["cinematic film still of a cat basking in the sun on a roof in Turkey, highly detailed, high budget hollywood movie, cinemascope, moody, epic, gorgeous, film grain quality sharp focus beautiful detailed intricate stunning amazing epic"]
```
Finally, load a pipeline and the offset noise LoRA with a *low weight* to generate an image with the enhanced prompt.
```py
pipeline = StableDiffusionXLPipeline.from_pretrained(
"RunDiffusion/Juggernaut-XL-v9", torch_dtype=torch.float16, variant="fp16"
).to("cuda")
pipeline.load_lora_weights(
"stabilityai/stable-diffusion-xl-base-1.0",
weight_name="sd_xl_offset_example-lora_1.0.safetensors",
adapter_name="offset",
)
pipeline.set_adapters(["offset"], adapter_weights=[0.2])
image = pipeline(
enhanced_prompt,
width=1152,
height=896,
guidance_scale=7.5,
num_inference_steps=25,
).images[0]
image
```
<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/non-enhanced-prompt.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">"a cat basking in the sun on a roof in Turkey"</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/enhanced-prompt.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">"cinematic film still of a cat basking in the sun on a roof in Turkey, highly detailed, high budget hollywood movie, cinemascope, moody, epic, gorgeous, film grain"</figcaption>
</div>
</div>
## Prompt weighting
Prompt weighting provides a way to emphasize or de-emphasize certain parts of a prompt, allowing for more control over the generated image. A prompt can include several concepts, which gets turned into contextualized text embeddings. The embeddings are used by the model to condition its cross-attention layers to generate an image (read the Stable Diffusion [blog post](https://huggingface.co/blog/stable_diffusion) to learn more about how it works).
Prompt weighting works by increasing or decreasing the scale of the text embedding vector that corresponds to its concept in the prompt because you may not necessarily want the model to focus on all concepts equally. The easiest way to prepare the prompt-weighted embeddings is to use [Compel](https://github.com/damian0815/compel), a text prompt-weighting and blending library. Once you have the prompt-weighted embeddings, you can pass them to any pipeline that has a [`prompt_embeds`](https://huggingface.co/docs/diffusers/en/api/pipelines/stable_diffusion/text2img#diffusers.StableDiffusionPipeline.__call__.prompt_embeds) (and optionally [`negative_prompt_embeds`](https://huggingface.co/docs/diffusers/en/api/pipelines/stable_diffusion/text2img#diffusers.StableDiffusionPipeline.__call__.negative_prompt_embeds)) parameter, such as [`StableDiffusionPipeline`], [`StableDiffusionControlNetPipeline`], and [`StableDiffusionXLPipeline`].
@@ -55,7 +254,7 @@ image
<img class="rounded-xl" src="https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/compel/forest_0.png"/>
</div>
## Weighting
### Weighting
You'll notice there is no "ball" in the image! Let's use compel to upweight the concept of "ball" in the prompt. Create a [`Compel`](https://github.com/damian0815/compel/blob/main/doc/compel.md#compel-objects) object, and pass it a tokenizer and text encoder:
@@ -123,7 +322,7 @@ image
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/compel-pos-neg.png"/>
</div>
## Blending
### Blending
You can also create a weighted *blend* of prompts by adding `.blend()` to a list of prompts and passing it some weights. Your blend may not always produce the result you expect because it breaks some assumptions about how the text encoder functions, so just have fun and experiment with it!
@@ -139,7 +338,7 @@ image
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/compel-blend.png"/>
</div>
## Conjunction
### Conjunction
A conjunction diffuses each prompt independently and concatenates their results by their weighted sum. Add `.and()` to the end of a list of prompts to create a conjunction:
@@ -155,7 +354,7 @@ image
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/compel-conj.png"/>
</div>
## Textual inversion
### Textual inversion
[Textual inversion](../training/text_inversion) is a technique for learning a specific concept from some images which you can use to generate new images conditioned on that concept.
@@ -195,7 +394,7 @@ image
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/compel-text-inversion.png"/>
</div>
## DreamBooth
### DreamBooth
[DreamBooth](../training/dreambooth) is a technique for generating contextualized images of a subject given just a few images of the subject to train on. It is similar to textual inversion, but DreamBooth trains the full model whereas textual inversion only fine-tunes the text embeddings. This means you should use [`~DiffusionPipeline.from_pretrained`] to load the DreamBooth model (feel free to browse the [Stable Diffusion Dreambooth Concepts Library](https://huggingface.co/sd-dreambooth-library) for 100+ trained models):
@@ -221,7 +420,7 @@ image
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/compel-dreambooth.png"/>
</div>
## Stable Diffusion XL
### Stable Diffusion XL
Stable Diffusion XL (SDXL) has two tokenizers and text encoders so it's usage is a bit different. To address this, you should pass both tokenizers and encoders to the `Compel` class:

View File

@@ -273,7 +273,6 @@ Lastly, convert the image to a `PIL.Image` to see your generated image!
```py
>>> image = (image / 2 + 0.5).clamp(0, 1).squeeze()
>>> image = (image.permute(1, 2, 0) * 255).to(torch.uint8).cpu().numpy()
>>> images = (image * 255).round().astype("uint8")
>>> image = Image.fromarray(image)
>>> image
```

View File

@@ -313,12 +313,12 @@ from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipelin
import torch
pipe = StableDiffusionXLPipeline.from_single_file(
"./sd_xl_base_1.0.safetensors", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
"./sd_xl_base_1.0.safetensors", torch_dtype=torch.float16
)
pipe.to("cuda")
refiner = StableDiffusionXLImg2ImgPipeline.from_single_file(
"./sd_xl_refiner_1.0.safetensors", torch_dtype=torch.float16, use_safetensors=True, variant="fp16"
"./sd_xl_refiner_1.0.safetensors", torch_dtype=torch.float16
)
refiner.to("cuda")
```

View File

@@ -12,7 +12,7 @@ specific language governing permissions and limitations under the License.
# 메모리와 속도
메모리 또는 속도에 대해 🤗 Diffusers *추론*을 최적화하기 위한 몇 가지 기술과 아이디어를 제시합니다.
메모리 또는 속도에 대해 🤗 Diffusers *추론*을 최적화하기 위한 몇 가지 기술과 아이디어를 제시합니다.
일반적으로, memory-efficient attention을 위해 [xFormers](https://github.com/facebookresearch/xformers) 사용을 추천하기 때문에, 추천하는 [설치 방법](xformers)을 보고 설치해 보세요.
다음 설정이 성능과 메모리에 미치는 영향에 대해 설명합니다.
@@ -27,7 +27,7 @@ specific language governing permissions and limitations under the License.
| memory-efficient attention | 2.63s | x3.61 |
<em>
NVIDIA TITAN RTX에서 50 DDIM 스텝의 "a photo of an astronaut riding a horse on mars" 프롬프트로 512x512 크기의 단일 이미지를 생성하였습니다.
NVIDIA TITAN RTX에서 50 DDIM 스텝의 "a photo of an astronaut riding a horse on mars" 프롬프트로 512x512 크기의 단일 이미지를 생성하였습니다.
</em>
## cuDNN auto-tuner 활성화하기
@@ -44,11 +44,11 @@ torch.backends.cudnn.benchmark = True
### fp32 대신 tf32 사용하기 (Ampere 및 이후 CUDA 장치들에서)
Ampere 및 이후 CUDA 장치에서 행렬곱 및 컨볼루션은 TensorFloat32(TF32) 모드를 사용하여 더 빠르지만 약간 덜 정확할 수 있습니다.
기본적으로 PyTorch는 컨볼루션에 대해 TF32 모드를 활성화하지만 행렬 곱셈은 활성화하지 않습니다.
네트워크에 완전한 float32 정밀도가 필요한 경우가 아니면 행렬 곱셈에 대해서도 이 설정을 활성화하는 것이 좋습니다.
이는 일반적으로 무시할 수 있는 수치의 정확도 손실이 있지만, 계산 속도를 크게 높일 수 있습니다.
그것에 대해 [여기](https://huggingface.co/docs/transformers/v4.18.0/en/performance#tf32)서 더 읽을 수 있습니다.
Ampere 및 이후 CUDA 장치에서 행렬곱 및 컨볼루션은 TensorFloat32(TF32) 모드를 사용하여 더 빠르지만 약간 덜 정확할 수 있습니다.
기본적으로 PyTorch는 컨볼루션에 대해 TF32 모드를 활성화하지만 행렬 곱셈은 활성화하지 않습니다.
네트워크에 완전한 float32 정밀도가 필요한 경우가 아니면 행렬 곱셈에 대해서도 이 설정을 활성화하는 것이 좋습니다.
이는 일반적으로 무시할 수 있는 수치의 정확도 손실이 있지만, 계산 속도를 크게 높일 수 있습니다.
그것에 대해 [여기](https://huggingface.co/docs/transformers/v4.18.0/en/performance#tf32)서 더 읽을 수 있습니다.
추론하기 전에 다음을 추가하기만 하면 됩니다:
```python
@@ -59,13 +59,13 @@ torch.backends.cuda.matmul.allow_tf32 = True
## 반정밀도 가중치
더 많은 GPU 메모리를 절약하고 더 빠른 속도를 얻기 위해 모델 가중치를 반정밀도(half precision)로 직접 불러오고 실행할 수 있습니다.
더 많은 GPU 메모리를 절약하고 더 빠른 속도를 얻기 위해 모델 가중치를 반정밀도(half precision)로 직접 불러오고 실행할 수 있습니다.
여기에는 `fp16`이라는 브랜치에 저장된 float16 버전의 가중치를 불러오고, 그 때 `float16` 유형을 사용하도록 PyTorch에 지시하는 작업이 포함됩니다.
```Python
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16,
)
pipe = pipe.to("cuda")
@@ -75,7 +75,7 @@ image = pipe(prompt).images[0]
```
<Tip warning={true}>
어떤 파이프라인에서도 [`torch.autocast`](https://pytorch.org/docs/stable/amp.html#torch.autocast) 를 사용하는 것은 검은색 이미지를 생성할 수 있고, 순수한 float16 정밀도를 사용하는 것보다 항상 느리기 때문에 사용하지 않는 것이 좋습니다.
어떤 파이프라인에서도 [`torch.autocast`](https://pytorch.org/docs/stable/amp.html#torch.autocast) 를 사용하는 것은 검은색 이미지를 생성할 수 있고, 순수한 float16 정밀도를 사용하는 것보다 항상 느리기 때문에 사용하지 않는 것이 좋습니다.
</Tip>
## 추가 메모리 절약을 위한 슬라이스 어텐션
@@ -95,7 +95,7 @@ from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16,
)
pipe = pipe.to("cuda")
@@ -122,7 +122,7 @@ from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16,
)
pipe = pipe.to("cuda")
@@ -148,7 +148,7 @@ from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16,
)
@@ -165,7 +165,7 @@ image = pipe(prompt).images[0]
또 다른 최적화 방법인 <a href="#model_offloading">모델 오프로딩</a>을 사용하는 것을 고려하십시오. 이는 훨씬 빠르지만 메모리 절약이 크지는 않습니다.
</Tip>
또한 ttention slicing과 연결해서 최소 메모리(< 2GB)로도 동작할 수 있습니다.
또한 ttention slicing과 연결해서 최소 메모리(< 2GB)로도 동작할 수 있습니다.
```Python
@@ -174,7 +174,7 @@ from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16,
)
@@ -204,7 +204,7 @@ import torch
from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16,
)
@@ -355,7 +355,7 @@ unet_traced = torch.jit.load("unet_traced.pt")
class TracedUNet(torch.nn.Module):
def __init__(self):
super().__init__()
self.in_channels = pipe.unet.in_channels
self.in_channels = pipe.unet.config.in_channels
self.device = pipe.unet.device
def forward(self, latent_model_input, t, encoder_hidden_states):
@@ -387,7 +387,7 @@ with torch.inference_mode():
| A100-SXM4-40GB | 18.6it/s | 29.it/s |
| A100-SXM-80GB | 18.7it/s | 29.5it/s |
이를 활용하려면 다음을 만족해야 합니다:
이를 활용하려면 다음을 만족해야 합니다:
- PyTorch > 1.12
- Cuda 사용 가능
- [xformers 라이브러리를 설치함](xformers)

View File

@@ -14,7 +14,7 @@ specific language governing permissions and limitations under the License.
[[open-in-colab]]
🧨 Diffusers는 사용자 친화적이며 유연한 도구 상자로, 사용사례에 맞게 diffusion 시스템을 구축 할 수 있도록 설계되었습니다. 이 도구 상자의 핵심은 모델과 스케줄러입니다. [`DiffusionPipeline`]은 편의를 위해 이러한 구성 요소를 번들로 제공하지만, 파이프라인을 분리하고 모델과 스케줄러를 개별적으로 사용해 새로운 diffusion 시스템을 만들 수도 있습니다.
🧨 Diffusers는 사용자 친화적이며 유연한 도구 상자로, 사용사례에 맞게 diffusion 시스템을 구축 할 수 있도록 설계되었습니다. 이 도구 상자의 핵심은 모델과 스케줄러입니다. [`DiffusionPipeline`]은 편의를 위해 이러한 구성 요소를 번들로 제공하지만, 파이프라인을 분리하고 모델과 스케줄러를 개별적으로 사용해 새로운 diffusion 시스템을 만들 수도 있습니다.
이 튜토리얼에서는 기본 파이프라인부터 시작해 Stable Diffusion 파이프라인까지 진행하며 모델과 스케줄러를 사용해 추론을 위한 diffusion 시스템을 조립하는 방법을 배웁니다.
@@ -36,7 +36,7 @@ specific language governing permissions and limitations under the License.
정말 쉽습니다. 그런데 파이프라인은 어떻게 이렇게 할 수 있었을까요? 파이프라인을 세분화하여 내부에서 어떤 일이 일어나고 있는지 살펴보겠습니다.
위 예시에서 파이프라인에는 [`UNet2DModel`] 모델과 [`DDPMScheduler`]가 포함되어 있습니다. 파이프라인은 원하는 출력 크기의 랜덤 노이즈를 받아 모델을 여러번 통과시켜 이미지의 노이즈를 제거합니다. 각 timestep에서 모델은 *noise residual*을 예측하고 스케줄러는 이를 사용하여 노이즈가 적은 이미지를 예측합니다. 파이프라인은 지정된 추론 스텝수에 도달할 때까지 이 과정을 반복합니다.
위 예시에서 파이프라인에는 [`UNet2DModel`] 모델과 [`DDPMScheduler`]가 포함되어 있습니다. 파이프라인은 원하는 출력 크기의 랜덤 노이즈를 받아 모델을 여러번 통과시켜 이미지의 노이즈를 제거합니다. 각 timestep에서 모델은 *noise residual*을 예측하고 스케줄러는 이를 사용하여 노이즈가 적은 이미지를 예측합니다. 파이프라인은 지정된 추론 스텝수에 도달할 때까지 이 과정을 반복합니다.
모델과 스케줄러를 별도로 사용하여 파이프라인을 다시 생성하기 위해 자체적인 노이즈 제거 프로세스를 작성해 보겠습니다.
@@ -210,7 +210,7 @@ Stable Diffusion 은 text-to-image *latent diffusion* 모델입니다. latent di
```py
>>> latents = torch.randn(
... (batch_size, unet.in_channels, height // 8, width // 8),
... (batch_size, unet.config.in_channels, height // 8, width // 8),
... generator=generator,
... device=torch_device,
... )

View File

@@ -42,7 +42,7 @@ Training examples show how to pretrain or fine-tune diffusion models for a varie
| [**Dreambooth**](./dreambooth) | ✅ | - | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb)
| [**ControlNet**](./controlnet) | ✅ | ✅ | -
| [**InstructPix2Pix**](./instruct_pix2pix) | ✅ | ✅ | -
| [**Reinforcement Learning for Control**](https://github.com/huggingface/diffusers/blob/main/examples/reinforcement_learning/run_diffusers_locomotion.py) | - | - | coming soon.
| [**Reinforcement Learning for Control**](./reinforcement_learning) | - | - | coming soon.
## Community

View File

@@ -80,8 +80,7 @@ To do so, just specify `--train_text_encoder_ti` while launching training (for r
Please keep the following points in mind:
* SDXL has two text encoders. So, we fine-tune both using LoRA.
* When not fine-tuning the text encoders, we ALWAYS precompute the text embeddings to save memoםהקרry.
* When not fine-tuning the text encoders, we ALWAYS precompute the text embeddings to save memory.
### 3D icon example
@@ -234,11 +233,81 @@ In ComfyUI we will load a LoRA and a textual embedding at the same time.
SDXL's VAE is known to suffer from numerical instability issues. This is why we also expose a CLI argument namely `--pretrained_vae_model_name_or_path` that lets you specify the location of a better VAE (such as [this one](https://huggingface.co/madebyollin/sdxl-vae-fp16-fix)).
### DoRA training
The advanced script now supports DoRA training too!
> Proposed in [DoRA: Weight-Decomposed Low-Rank Adaptation](https://arxiv.org/abs/2402.09353),
**DoRA** is very similar to LoRA, except it decomposes the pre-trained weight into two components, **magnitude** and **direction** and employs LoRA for _directional_ updates to efficiently minimize the number of trainable parameters.
The authors found that by using DoRA, both the learning capacity and training stability of LoRA are enhanced without any additional overhead during inference.
> [!NOTE]
> 💡DoRA training is still _experimental_
> and is likely to require different hyperparameter values to perform best compared to a LoRA.
> Specifically, we've noticed 2 differences to take into account your training:
> 1. **LoRA seem to converge faster than DoRA** (so a set of parameters that may lead to overfitting when training a LoRA may be working well for a DoRA)
> 2. **DoRA quality superior to LoRA especially in lower ranks** the difference in quality of DoRA of rank 8 and LoRA of rank 8 appears to be more significant than when training ranks of 32 or 64 for example.
> This is also aligned with some of the quantitative analysis shown in the paper.
**Usage**
1. To use DoRA you need to install `peft` from main:
```bash
pip install git+https://github.com/huggingface/peft.git
```
2. Enable DoRA training by adding this flag
```bash
--use_dora
```
**Inference**
The inference is the same as if you train a regular LoRA 🤗
## Conducting EDM-style training
It's now possible to perform EDM-style training as proposed in [Elucidating the Design Space of Diffusion-Based Generative Models](https://arxiv.org/abs/2206.00364).
simply set:
```diff
+ --do_edm_style_training \
```
Other SDXL-like models that use the EDM formulation, such as [playgroundai/playground-v2.5-1024px-aesthetic](https://huggingface.co/playgroundai/playground-v2.5-1024px-aesthetic), can also be DreamBooth'd with the script. Below is an example command:
```bash
accelerate launch train_dreambooth_lora_sdxl_advanced.py \
--pretrained_model_name_or_path="playgroundai/playground-v2.5-1024px-aesthetic" \
--dataset_name="linoyts/3d_icon" \
--instance_prompt="3d icon in the style of TOK" \
--validation_prompt="a TOK icon of an astronaut riding a horse, in the style of TOK" \
--output_dir="3d-icon-SDXL-LoRA" \
--do_edm_style_training \
--caption_column="prompt" \
--mixed_precision="bf16" \
--resolution=1024 \
--train_batch_size=3 \
--repeats=1 \
--report_to="wandb"\
--gradient_accumulation_steps=1 \
--gradient_checkpointing \
--learning_rate=1.0 \
--text_encoder_lr=1.0 \
--optimizer="prodigy"\
--train_text_encoder_ti\
--train_text_encoder_ti_frac=0.5\
--lr_scheduler="constant" \
--lr_warmup_steps=0 \
--rank=8 \
--max_train_steps=1000 \
--checkpointing_steps=2000 \
--seed="0" \
--push_to_hub
```
> [!CAUTION]
> Min-SNR gamma is not supported with the EDM-style training yet. When training with the PlaygroundAI model, it's recommended to not pass any "variant".
### Tips and Tricks
Check out [these recommended practices](https://huggingface.co/blog/sdxl_lora_advanced_script#additional-good-practices)
## Running on Colab Notebook
Check out [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/SDXL_DreamBooth_LoRA_advanced_example.ipynb).
Check out [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/SDXL_Dreambooth_LoRA_advanced_example.ipynb).
to train using the advanced features (including pivotal tuning), and [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/SDXL_DreamBooth_LoRA_.ipynb) to train on a free colab, using some of the advanced features (excluding pivotal tuning)

View File

@@ -23,6 +23,7 @@ import os
import re
import shutil
import warnings
from contextlib import nullcontext
from pathlib import Path
from typing import List, Optional
@@ -70,13 +71,14 @@ from diffusers.utils.import_utils import is_xformers_available
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.27.0.dev0")
check_min_version("0.28.0.dev0")
logger = get_logger(__name__)
def save_model_card(
repo_id: str,
use_dora: bool,
images=None,
base_model=str,
train_text_encoder=False,
@@ -88,6 +90,7 @@ def save_model_card(
vae_path=None,
):
img_str = "widget:\n"
lora = "lora" if not use_dora else "dora"
for i, image in enumerate(images):
image.save(os.path.join(repo_folder, f"image_{i}.png"))
img_str += f"""
@@ -139,9 +142,10 @@ to trigger concept `{key}` → use `{tokens}` in your prompt \n
tags:
- stable-diffusion
- stable-diffusion-diffusers
- diffusers-training
- text-to-image
- diffusers
- lora
- {lora}
- template:sd-lora
{img_str}
base_model: {base_model}
@@ -651,6 +655,15 @@ def parse_args(input_args=None):
default=4,
help=("The dimension of the LoRA update matrices."),
)
parser.add_argument(
"--use_dora",
action="store_true",
default=False,
help=(
"Wether to train a DoRA as proposed in- DoRA: Weight-Decomposed Low-Rank Adaptation https://arxiv.org/abs/2402.09353. "
"Note: to use DoRA you need to install peft from main, `pip install git+https://github.com/huggingface/peft.git`"
),
)
parser.add_argument(
"--cache_latents",
action="store_true",
@@ -1202,7 +1215,7 @@ def main(args):
xformers_version = version.parse(xformers.__version__)
if xformers_version == version.parse("0.0.16"):
logger.warn(
logger.warning(
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, "
"please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
)
@@ -1219,6 +1232,7 @@ def main(args):
unet_lora_config = LoraConfig(
r=args.rank,
lora_alpha=args.rank,
use_dora=args.use_dora,
init_lora_weights="gaussian",
target_modules=["to_k", "to_q", "to_v", "to_out.0"],
)
@@ -1230,6 +1244,7 @@ def main(args):
text_lora_config = LoraConfig(
r=args.rank,
lora_alpha=args.rank,
use_dora=args.use_dora,
init_lora_weights="gaussian",
target_modules=["q_proj", "k_proj", "v_proj", "out_proj"],
)
@@ -1351,14 +1366,14 @@ def main(args):
# Optimizer creation
if not (args.optimizer.lower() == "prodigy" or args.optimizer.lower() == "adamw"):
logger.warn(
logger.warning(
f"Unsupported choice of optimizer: {args.optimizer}.Supported optimizers include [adamW, prodigy]."
"Defaulting to adamW"
)
args.optimizer = "adamw"
if args.use_8bit_adam and not args.optimizer.lower() == "adamw":
logger.warn(
logger.warning(
f"use_8bit_adam is ignored when optimizer is not set to 'AdamW'. Optimizer was "
f"set to {args.optimizer.lower()}"
)
@@ -1392,11 +1407,11 @@ def main(args):
optimizer_class = prodigyopt.Prodigy
if args.learning_rate <= 0.1:
logger.warn(
logger.warning(
"Learning rate is too low. When using prodigy, it's generally better to set learning rate around 1.0"
)
if args.train_text_encoder and args.text_encoder_lr:
logger.warn(
logger.warning(
f"Learning rates were provided both for the unet and the text encoder- e.g. text_encoder_lr:"
f" {args.text_encoder_lr} and learning_rate: {args.learning_rate}. "
f"When using prodigy only learning_rate is used as the initial learning rate."
@@ -1830,7 +1845,12 @@ def main(args):
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None
pipeline_args = {"prompt": args.validation_prompt}
with torch.cuda.amp.autocast():
if torch.backends.mps.is_available():
autocast_ctx = nullcontext()
else:
autocast_ctx = torch.autocast(accelerator.device.type)
with autocast_ctx:
images = [
pipeline(**pipeline_args, generator=generator).images[0]
for _ in range(args.num_validation_images)
@@ -1955,6 +1975,7 @@ def main(args):
save_model_card(
model_id if not args.push_to_hub else repo_id,
use_dora=args.use_dora,
images=images,
base_model=args.pretrained_model_name_or_path,
train_text_encoder=args.train_text_encoder,

View File

@@ -17,6 +17,7 @@ import argparse
import gc
import hashlib
import itertools
import json
import logging
import math
import os
@@ -24,6 +25,7 @@ import random
import re
import shutil
import warnings
from contextlib import nullcontext
from pathlib import Path
from typing import List, Optional
@@ -37,7 +39,7 @@ import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed
from huggingface_hub import create_repo, upload_folder
from huggingface_hub import create_repo, hf_hub_download, upload_folder
from packaging import version
from peft import LoraConfig, set_peft_model_state_dict
from peft.utils import get_peft_model_state_dict
@@ -55,6 +57,8 @@ from diffusers import (
AutoencoderKL,
DDPMScheduler,
DPMSolverMultistepScheduler,
EDMEulerScheduler,
EulerDiscreteScheduler,
StableDiffusionXLPipeline,
UNet2DConditionModel,
)
@@ -74,13 +78,28 @@ from diffusers.utils.torch_utils import is_compiled_module
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.27.0.dev0")
check_min_version("0.28.0.dev0")
logger = get_logger(__name__)
def determine_scheduler_type(pretrained_model_name_or_path, revision):
model_index_filename = "model_index.json"
if os.path.isdir(pretrained_model_name_or_path):
model_index = os.path.join(pretrained_model_name_or_path, model_index_filename)
else:
model_index = hf_hub_download(
repo_id=pretrained_model_name_or_path, filename=model_index_filename, revision=revision
)
with open(model_index, "r") as f:
scheduler_type = json.load(f)["scheduler"][1]
return scheduler_type
def save_model_card(
repo_id: str,
use_dora: bool,
images=None,
base_model=str,
train_text_encoder=False,
@@ -92,6 +111,7 @@ def save_model_card(
vae_path=None,
):
img_str = "widget:\n"
lora = "lora" if not use_dora else "dora"
for i, image in enumerate(images):
image.save(os.path.join(repo_folder, f"image_{i}.png"))
img_str += f"""
@@ -144,9 +164,10 @@ to trigger concept `{key}` → use `{tokens}` in your prompt \n
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- diffusers-training
- text-to-image
- diffusers
- lora
- {lora}
- template:sd-lora
{img_str}
base_model: {base_model}
@@ -367,6 +388,11 @@ def parse_args(input_args=None):
" `args.validation_prompt` multiple times: `args.num_validation_images`."
),
)
parser.add_argument(
"--do_edm_style_training",
action="store_true",
help="Flag to conduct training using the EDM formulation as introduced in https://arxiv.org/abs/2206.00364.",
)
parser.add_argument(
"--with_prior_preservation",
default=False,
@@ -661,6 +687,15 @@ def parse_args(input_args=None):
default=4,
help=("The dimension of the LoRA update matrices."),
)
parser.add_argument(
"--use_dora",
action="store_true",
default=False,
help=(
"Wether to train a DoRA as proposed in- DoRA: Weight-Decomposed Low-Rank Adaptation https://arxiv.org/abs/2402.09353. "
"Note: to use DoRA you need to install peft from main, `pip install git+https://github.com/huggingface/peft.git`"
),
)
parser.add_argument(
"--cache_latents",
action="store_true",
@@ -1105,6 +1140,8 @@ def main(args):
"You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token."
" Please use `huggingface-cli login` to authenticate with the Hub."
)
if args.do_edm_style_training and args.snr_gamma is not None:
raise ValueError("Min-SNR formulation is not supported when conducting EDM-style training.")
logging_dir = Path(args.output_dir, args.logging_dir)
@@ -1222,7 +1259,19 @@ def main(args):
)
# Load scheduler and models
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
scheduler_type = determine_scheduler_type(args.pretrained_model_name_or_path, args.revision)
if "EDM" in scheduler_type:
args.do_edm_style_training = True
noise_scheduler = EDMEulerScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
logger.info("Performing EDM-style training!")
elif args.do_edm_style_training:
noise_scheduler = EulerDiscreteScheduler.from_pretrained(
args.pretrained_model_name_or_path, subfolder="scheduler"
)
logger.info("Performing EDM-style training!")
else:
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
text_encoder_one = text_encoder_cls_one.from_pretrained(
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant
)
@@ -1240,7 +1289,12 @@ def main(args):
revision=args.revision,
variant=args.variant,
)
vae_scaling_factor = vae.config.scaling_factor
latents_mean = latents_std = None
if hasattr(vae.config, "latents_mean") and vae.config.latents_mean is not None:
latents_mean = torch.tensor(vae.config.latents_mean).view(1, 4, 1, 1)
if hasattr(vae.config, "latents_std") and vae.config.latents_std is not None:
latents_std = torch.tensor(vae.config.latents_std).view(1, 4, 1, 1)
unet = UNet2DConditionModel.from_pretrained(
args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, variant=args.variant
)
@@ -1305,7 +1359,7 @@ def main(args):
xformers_version = version.parse(xformers.__version__)
if xformers_version == version.parse("0.0.16"):
logger.warn(
logger.warning(
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, "
"please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
)
@@ -1323,6 +1377,7 @@ def main(args):
unet_lora_config = LoraConfig(
r=args.rank,
lora_alpha=args.rank,
use_dora=args.use_dora,
init_lora_weights="gaussian",
target_modules=["to_k", "to_q", "to_v", "to_out.0"],
)
@@ -1334,6 +1389,7 @@ def main(args):
text_lora_config = LoraConfig(
r=args.rank,
lora_alpha=args.rank,
use_dora=args.use_dora,
init_lora_weights="gaussian",
target_modules=["q_proj", "k_proj", "v_proj", "out_proj"],
)
@@ -1508,14 +1564,14 @@ def main(args):
# Optimizer creation
if not (args.optimizer.lower() == "prodigy" or args.optimizer.lower() == "adamw"):
logger.warn(
logger.warning(
f"Unsupported choice of optimizer: {args.optimizer}.Supported optimizers include [adamW, prodigy]."
"Defaulting to adamW"
)
args.optimizer = "adamw"
if args.use_8bit_adam and not args.optimizer.lower() == "adamw":
logger.warn(
logger.warning(
f"use_8bit_adam is ignored when optimizer is not set to 'AdamW'. Optimizer was "
f"set to {args.optimizer.lower()}"
)
@@ -1549,11 +1605,11 @@ def main(args):
optimizer_class = prodigyopt.Prodigy
if args.learning_rate <= 0.1:
logger.warn(
logger.warning(
"Learning rate is too low. When using prodigy, it's generally better to set learning rate around 1.0"
)
if args.train_text_encoder and args.text_encoder_lr:
logger.warn(
logger.warning(
f"Learning rates were provided both for the unet and the text encoder- e.g. text_encoder_lr:"
f" {args.text_encoder_lr} and learning_rate: {args.learning_rate}. "
f"When using prodigy only learning_rate is used as the initial learning rate."
@@ -1776,6 +1832,19 @@ def main(args):
disable=not accelerator.is_local_main_process,
)
def get_sigmas(timesteps, n_dim=4, dtype=torch.float32):
# TODO: revisit other sampling algorithms
sigmas = noise_scheduler.sigmas.to(device=accelerator.device, dtype=dtype)
schedule_timesteps = noise_scheduler.timesteps.to(accelerator.device)
timesteps = timesteps.to(accelerator.device)
step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
sigma = sigmas[step_indices].flatten()
while len(sigma.shape) < n_dim:
sigma = sigma.unsqueeze(-1)
return sigma
if args.train_text_encoder:
num_train_epochs_text_encoder = int(args.train_text_encoder_frac * args.num_train_epochs)
elif args.train_text_encoder_ti: # args.train_text_encoder_ti
@@ -1827,9 +1896,15 @@ def main(args):
pixel_values = batch["pixel_values"].to(dtype=vae.dtype)
model_input = vae.encode(pixel_values).latent_dist.sample()
model_input = model_input * vae_scaling_factor
if args.pretrained_vae_model_name_or_path is None:
model_input = model_input.to(weight_dtype)
if latents_mean is None and latents_std is None:
model_input = model_input * vae.config.scaling_factor
if args.pretrained_vae_model_name_or_path is None:
model_input = model_input.to(weight_dtype)
else:
latents_mean = latents_mean.to(device=model_input.device, dtype=model_input.dtype)
latents_std = latents_std.to(device=model_input.device, dtype=model_input.dtype)
model_input = (model_input - latents_mean) * vae.config.scaling_factor / latents_std
model_input = model_input.to(dtype=weight_dtype)
# Sample noise that we'll add to the latents
noise = torch.randn_like(model_input)
@@ -1840,15 +1915,32 @@ def main(args):
)
bsz = model_input.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(
0, noise_scheduler.config.num_train_timesteps, (bsz,), device=model_input.device
)
timesteps = timesteps.long()
if not args.do_edm_style_training:
timesteps = torch.randint(
0, noise_scheduler.config.num_train_timesteps, (bsz,), device=model_input.device
)
timesteps = timesteps.long()
else:
# in EDM formulation, the model is conditioned on the pre-conditioned noise levels
# instead of discrete timesteps, so here we sample indices to get the noise levels
# from `scheduler.timesteps`
indices = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,))
timesteps = noise_scheduler.timesteps[indices].to(device=model_input.device)
# Add noise to the model input according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_model_input = noise_scheduler.add_noise(model_input, noise, timesteps)
# For EDM-style training, we first obtain the sigmas based on the continuous timesteps.
# We then precondition the final model inputs based on these sigmas instead of the timesteps.
# Follow: Section 5 of https://arxiv.org/abs/2206.00364.
if args.do_edm_style_training:
sigmas = get_sigmas(timesteps, len(noisy_model_input.shape), noisy_model_input.dtype)
if "EDM" in scheduler_type:
inp_noisy_latents = noise_scheduler.precondition_inputs(noisy_model_input, sigmas)
else:
inp_noisy_latents = noisy_model_input / ((sigmas**2 + 1) ** 0.5)
# time ids
add_time_ids = torch.cat(
@@ -1874,7 +1966,7 @@ def main(args):
}
prompt_embeds_input = prompt_embeds.repeat(elems_to_repeat_text_embeds, 1, 1)
model_pred = unet(
noisy_model_input,
inp_noisy_latents if args.do_edm_style_training else noisy_model_input,
timesteps,
prompt_embeds_input,
added_cond_kwargs=unet_added_conditions,
@@ -1892,14 +1984,42 @@ def main(args):
)
prompt_embeds_input = prompt_embeds.repeat(elems_to_repeat_text_embeds, 1, 1)
model_pred = unet(
noisy_model_input, timesteps, prompt_embeds_input, added_cond_kwargs=unet_added_conditions
inp_noisy_latents if args.do_edm_style_training else noisy_model_input,
timesteps,
prompt_embeds_input,
added_cond_kwargs=unet_added_conditions,
).sample
weighting = None
if args.do_edm_style_training:
# Similar to the input preconditioning, the model predictions are also preconditioned
# on noised model inputs (before preconditioning) and the sigmas.
# Follow: Section 5 of https://arxiv.org/abs/2206.00364.
if "EDM" in scheduler_type:
model_pred = noise_scheduler.precondition_outputs(noisy_model_input, model_pred, sigmas)
else:
if noise_scheduler.config.prediction_type == "epsilon":
model_pred = model_pred * (-sigmas) + noisy_model_input
elif noise_scheduler.config.prediction_type == "v_prediction":
model_pred = model_pred * (-sigmas / (sigmas**2 + 1) ** 0.5) + (
noisy_model_input / (sigmas**2 + 1)
)
# We are not doing weighting here because it tends result in numerical problems.
# See: https://github.com/huggingface/diffusers/pull/7126#issuecomment-1968523051
# There might be other alternatives for weighting as well:
# https://github.com/huggingface/diffusers/pull/7126#discussion_r1505404686
if "EDM" not in scheduler_type:
weighting = (sigmas**-2.0).float()
# Get the target for loss depending on the prediction type
if noise_scheduler.config.prediction_type == "epsilon":
target = noise
target = model_input if args.do_edm_style_training else noise
elif noise_scheduler.config.prediction_type == "v_prediction":
target = noise_scheduler.get_velocity(model_input, noise, timesteps)
target = (
model_input
if args.do_edm_style_training
else noise_scheduler.get_velocity(model_input, noise, timesteps)
)
else:
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
@@ -1909,10 +2029,28 @@ def main(args):
target, target_prior = torch.chunk(target, 2, dim=0)
# Compute prior loss
prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean")
if weighting is not None:
prior_loss = torch.mean(
(weighting.float() * (model_pred_prior.float() - target_prior.float()) ** 2).reshape(
target_prior.shape[0], -1
),
1,
)
prior_loss = prior_loss.mean()
else:
prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean")
if args.snr_gamma is None:
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
if weighting is not None:
loss = torch.mean(
(weighting.float() * (model_pred.float() - target.float()) ** 2).reshape(
target.shape[0], -1
),
1,
)
loss = loss.mean()
else:
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
else:
# Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556.
# Since we predict the noise instead of x_0, the original formulation is slightly changed.
@@ -2035,17 +2173,18 @@ def main(args):
# We train on the simplified learning objective. If we were previously predicting a variance, we need the scheduler to ignore it
scheduler_args = {}
if "variance_type" in pipeline.scheduler.config:
variance_type = pipeline.scheduler.config.variance_type
if not args.do_edm_style_training:
if "variance_type" in pipeline.scheduler.config:
variance_type = pipeline.scheduler.config.variance_type
if variance_type in ["learned", "learned_range"]:
variance_type = "fixed_small"
if variance_type in ["learned", "learned_range"]:
variance_type = "fixed_small"
scheduler_args["variance_type"] = variance_type
scheduler_args["variance_type"] = variance_type
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(
pipeline.scheduler.config, **scheduler_args
)
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(
pipeline.scheduler.config, **scheduler_args
)
pipeline = pipeline.to(accelerator.device)
pipeline.set_progress_bar_config(disable=True)
@@ -2053,8 +2192,12 @@ def main(args):
# run inference
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None
pipeline_args = {"prompt": args.validation_prompt}
if torch.backends.mps.is_available() or "playground" in args.pretrained_model_name_or_path:
autocast_ctx = nullcontext()
else:
autocast_ctx = torch.autocast(accelerator.device.type)
with torch.cuda.amp.autocast():
with autocast_ctx:
images = [
pipeline(**pipeline_args, generator=generator).images[0]
for _ in range(args.num_validation_images)
@@ -2130,15 +2273,18 @@ def main(args):
# We train on the simplified learning objective. If we were previously predicting a variance, we need the scheduler to ignore it
scheduler_args = {}
if "variance_type" in pipeline.scheduler.config:
variance_type = pipeline.scheduler.config.variance_type
if not args.do_edm_style_training:
if "variance_type" in pipeline.scheduler.config:
variance_type = pipeline.scheduler.config.variance_type
if variance_type in ["learned", "learned_range"]:
variance_type = "fixed_small"
if variance_type in ["learned", "learned_range"]:
variance_type = "fixed_small"
scheduler_args["variance_type"] = variance_type
scheduler_args["variance_type"] = variance_type
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config, **scheduler_args)
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(
pipeline.scheduler.config, **scheduler_args
)
# load attention processors
pipeline.load_lora_weights(args.output_dir)
@@ -2192,6 +2338,7 @@ def main(args):
save_model_card(
model_id if not args.push_to_hub else repo_id,
use_dora=args.use_dora,
images=images,
base_model=args.pretrained_model_name_or_path,
train_text_encoder=args.train_text_encoder,

View File

@@ -430,6 +430,9 @@ def main(args):
log_with=args.report_to,
project_config=accelerator_project_config,
)
# Disable AMP for MPS.
if torch.backends.mps.is_available():
accelerator.native_amp = False
if accelerator.is_main_process:
os.makedirs(args.output_dir, exist_ok=True)

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,232 @@
# Community Scripts
**Community scripts** consist of inference examples using Diffusers pipelines that have been added by the community.
Please have a look at the following table to get an overview of all community examples. Click on the **Code Example** to get a copy-and-paste code example that you can try out.
If a community script doesn't work as expected, please open an issue and ping the author on it.
| Example | Description | Code Example | Colab | Author |
|:--------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------:|
| Using IP-Adapter with negative noise | Using negative noise with IP-adapter to better control the generation (see the [original post](https://github.com/huggingface/diffusers/discussions/7167) on the forum for more details) | [IP-Adapter Negative Noise](#ip-adapter-negative-noise) | | [Álvaro Somoza](https://github.com/asomoza)|
| asymmetric tiling |configure seamless image tiling independently for the X and Y axes | [Asymmetric Tiling](#asymmetric-tiling ) | | [alexisrolland](https://github.com/alexisrolland)|
## Example usages
### IP Adapter Negative Noise
Diffusers pipelines are fully integrated with IP-Adapter, which allows you to prompt the diffusion model with an image. However, it does not support negative image prompts (there is no `negative_ip_adapter_image` argument) the same way it supports negative text prompts. When you pass an `ip_adapter_image,` it will create a zero-filled tensor as a negative image. This script shows you how to create a negative noise from `ip_adapter_image` and use it to significantly improve the generation quality while preserving the composition of images.
[cubiq](https://github.com/cubiq) initially developed this feature in his [repository](https://github.com/cubiq/ComfyUI_IPAdapter_plus). The community script was contributed by [asomoza](https://github.com/Somoza). You can find more details about this experimentation [this discussion](https://github.com/huggingface/diffusers/discussions/7167)
IP-Adapter without negative noise
|source|result|
|---|---|
|![20240229150812](https://github.com/huggingface/diffusers/assets/5442875/901d8bd8-7a59-4fe7-bda1-a0e0d6c7dffd)|![20240229163923_normal](https://github.com/huggingface/diffusers/assets/5442875/3432e25a-ece6-45f4-a3f4-fca354f40b5b)|
IP-Adapter with negative noise
|source|result|
|---|---|
|![20240229150812](https://github.com/huggingface/diffusers/assets/5442875/901d8bd8-7a59-4fe7-bda1-a0e0d6c7dffd)|![20240229163923](https://github.com/huggingface/diffusers/assets/5442875/736fd15a-36ba-40c0-a7d8-6ec1ac26f788)|
```python
import torch
from diffusers import AutoencoderKL, DPMSolverMultistepScheduler, StableDiffusionXLPipeline
from diffusers.models import ImageProjection
from diffusers.utils import load_image
def encode_image(
image_encoder,
feature_extractor,
image,
device,
num_images_per_prompt,
output_hidden_states=None,
negative_image=None,
):
dtype = next(image_encoder.parameters()).dtype
if not isinstance(image, torch.Tensor):
image = feature_extractor(image, return_tensors="pt").pixel_values
image = image.to(device=device, dtype=dtype)
if output_hidden_states:
image_enc_hidden_states = image_encoder(image, output_hidden_states=True).hidden_states[-2]
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
if negative_image is None:
uncond_image_enc_hidden_states = image_encoder(
torch.zeros_like(image), output_hidden_states=True
).hidden_states[-2]
else:
if not isinstance(negative_image, torch.Tensor):
negative_image = feature_extractor(negative_image, return_tensors="pt").pixel_values
negative_image = negative_image.to(device=device, dtype=dtype)
uncond_image_enc_hidden_states = image_encoder(negative_image, output_hidden_states=True).hidden_states[-2]
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
return image_enc_hidden_states, uncond_image_enc_hidden_states
else:
image_embeds = image_encoder(image).image_embeds
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
uncond_image_embeds = torch.zeros_like(image_embeds)
return image_embeds, uncond_image_embeds
@torch.no_grad()
def prepare_ip_adapter_image_embeds(
unet,
image_encoder,
feature_extractor,
ip_adapter_image,
do_classifier_free_guidance,
device,
num_images_per_prompt,
ip_adapter_negative_image=None,
):
if not isinstance(ip_adapter_image, list):
ip_adapter_image = [ip_adapter_image]
if len(ip_adapter_image) != len(unet.encoder_hid_proj.image_projection_layers):
raise ValueError(
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
)
image_embeds = []
for single_ip_adapter_image, image_proj_layer in zip(
ip_adapter_image, unet.encoder_hid_proj.image_projection_layers
):
output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
single_image_embeds, single_negative_image_embeds = encode_image(
image_encoder,
feature_extractor,
single_ip_adapter_image,
device,
1,
output_hidden_state,
negative_image=ip_adapter_negative_image,
)
single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
single_negative_image_embeds = torch.stack([single_negative_image_embeds] * num_images_per_prompt, dim=0)
if do_classifier_free_guidance:
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
single_image_embeds = single_image_embeds.to(device)
image_embeds.append(single_image_embeds)
return image_embeds
vae = AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix",
torch_dtype=torch.float16,
).to("cuda")
pipeline = StableDiffusionXLPipeline.from_pretrained(
"RunDiffusion/Juggernaut-XL-v9",
torch_dtype=torch.float16,
vae=vae,
variant="fp16",
).to("cuda")
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
pipeline.scheduler.config.use_karras_sigmas = True
pipeline.load_ip_adapter(
"h94/IP-Adapter",
subfolder="sdxl_models",
weight_name="ip-adapter-plus_sdxl_vit-h.safetensors",
image_encoder_folder="models/image_encoder",
)
pipeline.set_ip_adapter_scale(0.7)
ip_image = load_image("source.png")
negative_ip_image = load_image("noise.png")
image_embeds = prepare_ip_adapter_image_embeds(
unet=pipeline.unet,
image_encoder=pipeline.image_encoder,
feature_extractor=pipeline.feature_extractor,
ip_adapter_image=[[ip_image]],
do_classifier_free_guidance=True,
device="cuda",
num_images_per_prompt=1,
ip_adapter_negative_image=negative_ip_image,
)
prompt = "cinematic photo of a cyborg in the city, 4k, high quality, intricate, highly detailed"
negative_prompt = "blurry, smooth, plastic"
image = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
ip_adapter_image_embeds=image_embeds,
guidance_scale=6.0,
num_inference_steps=25,
generator=torch.Generator(device="cpu").manual_seed(1556265306),
).images[0]
image.save("result.png")
```
### Asymmetric Tiling
Stable Diffusion is not trained to generate seamless textures. However, you can use this simple script to add tiling to your generation. This script is contributed by [alexisrolland](https://github.com/alexisrolland). See more details in the [this issue](https://github.com/huggingface/diffusers/issues/556)
|Generated|Tiled|
|---|---|
|![20240313003235_573631814](https://github.com/huggingface/diffusers/assets/5442875/eca174fb-06a4-464e-a3a7-00dbb024543e)|![wall](https://github.com/huggingface/diffusers/assets/5442875/b4aa774b-2a6a-4316-a8eb-8f30b5f4d024)|
```py
import torch
from typing import Optional
from diffusers import StableDiffusionPipeline
from diffusers.models.lora import LoRACompatibleConv
def seamless_tiling(pipeline, x_axis, y_axis):
def asymmetric_conv2d_convforward(self, input: torch.Tensor, weight: torch.Tensor, bias: Optional[torch.Tensor] = None):
self.paddingX = (self._reversed_padding_repeated_twice[0], self._reversed_padding_repeated_twice[1], 0, 0)
self.paddingY = (0, 0, self._reversed_padding_repeated_twice[2], self._reversed_padding_repeated_twice[3])
working = torch.nn.functional.pad(input, self.paddingX, mode=x_mode)
working = torch.nn.functional.pad(working, self.paddingY, mode=y_mode)
return torch.nn.functional.conv2d(working, weight, bias, self.stride, torch.nn.modules.utils._pair(0), self.dilation, self.groups)
x_mode = 'circular' if x_axis else 'constant'
y_mode = 'circular' if y_axis else 'constant'
targets = [pipeline.vae, pipeline.text_encoder, pipeline.unet]
convolution_layers = []
for target in targets:
for module in target.modules():
if isinstance(module, torch.nn.Conv2d):
convolution_layers.append(module)
for layer in convolution_layers:
if isinstance(layer, LoRACompatibleConv) and layer.lora_layer is None:
layer.lora_layer = lambda * x: 0
layer._conv_forward = asymmetric_conv2d_convforward.__get__(layer, torch.nn.Conv2d)
return pipeline
pipeline = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True)
pipeline.enable_model_cpu_offload()
prompt = ["texture of a red brick wall"]
seed = 123456
generator = torch.Generator(device='cuda').manual_seed(seed)
pipeline = seamless_tiling(pipeline=pipeline, x_axis=True, y_axis=True)
image = pipeline(
prompt=prompt,
width=512,
height=512,
num_inference_steps=20,
guidance_scale=7,
num_images_per_prompt=1,
generator=generator
).images[0]
seamless_tiling(pipeline=pipeline, x_axis=False, y_axis=False)
torch.cuda.empty_cache()
image.save('image.png')
```

Some files were not shown because too many files have changed in this diff Show More