mirror of
https://github.com/huggingface/diffusers.git
synced 2025-12-06 12:34:13 +08:00
[LoRA test suite] refactor the test suite and cleanse it (#7316)
* cleanse and refactor lora testing suite. * more cleanup. * make check_if_lora_correctly_set a utility function * fix: typo * retrigger ci * style
This commit is contained in:
2
.github/workflows/pr_test_peft_backend.yml
vendored
2
.github/workflows/pr_test_peft_backend.yml
vendored
@@ -105,4 +105,4 @@ jobs:
|
||||
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
|
||||
-s -v \
|
||||
--make-reports=tests_${{ matrix.config.report }} \
|
||||
tests/lora/test_lora_layers_peft.py
|
||||
tests/lora/
|
||||
|
||||
@@ -1,7 +1,8 @@
|
||||
"""
|
||||
modeled after the textual_inversion.py / train_dreambooth.py and the work
|
||||
of justinpinkney here: https://github.com/justinpinkney/stable-diffusion/blob/main/notebooks/imagic.ipynb
|
||||
modeled after the textual_inversion.py / train_dreambooth.py and the work
|
||||
of justinpinkney here: https://github.com/justinpinkney/stable-diffusion/blob/main/notebooks/imagic.ipynb
|
||||
"""
|
||||
|
||||
import inspect
|
||||
import warnings
|
||||
from typing import List, Optional, Union
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
"""
|
||||
modified based on diffusion library from Huggingface: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py
|
||||
modified based on diffusion library from Huggingface: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py
|
||||
"""
|
||||
|
||||
import inspect
|
||||
from typing import Callable, List, Optional, Union
|
||||
|
||||
|
||||
@@ -35,7 +35,6 @@ def slerp(val, low, high):
|
||||
|
||||
|
||||
class UnCLIPTextInterpolationPipeline(DiffusionPipeline):
|
||||
|
||||
"""
|
||||
Pipeline for prompt-to-prompt interpolation on CLIP text embeddings and using the UnCLIP / Dall-E to decode them to images.
|
||||
|
||||
|
||||
@@ -23,6 +23,7 @@ TODO:
|
||||
6. Integrate to training x
|
||||
7. Test
|
||||
"""
|
||||
|
||||
import copy
|
||||
import random
|
||||
|
||||
|
||||
@@ -12,7 +12,7 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" Conversion script for stable diffusion checkpoints which _only_ contain a controlnet. """
|
||||
"""Conversion script for stable diffusion checkpoints which _only_ contain a controlnet."""
|
||||
|
||||
import argparse
|
||||
import re
|
||||
|
||||
@@ -12,7 +12,7 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" Conversion script for the LDM checkpoints. """
|
||||
"""Conversion script for the LDM checkpoints."""
|
||||
|
||||
import argparse
|
||||
import json
|
||||
|
||||
@@ -12,7 +12,7 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" Conversion script for the LDM checkpoints. """
|
||||
"""Conversion script for the LDM checkpoints."""
|
||||
|
||||
import argparse
|
||||
|
||||
|
||||
@@ -12,7 +12,7 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" Conversion script for the LDM checkpoints. """
|
||||
"""Conversion script for the LDM checkpoints."""
|
||||
|
||||
import argparse
|
||||
import json
|
||||
|
||||
@@ -13,7 +13,7 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
""" Conversion script for the LoRA's safetensors checkpoints. """
|
||||
"""Conversion script for the LoRA's safetensors checkpoints."""
|
||||
|
||||
import argparse
|
||||
|
||||
|
||||
@@ -12,7 +12,7 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" Conversion script for the LDM checkpoints. """
|
||||
"""Conversion script for the LDM checkpoints."""
|
||||
|
||||
import argparse
|
||||
|
||||
|
||||
@@ -12,7 +12,7 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" Conversion script for the NCSNPP checkpoints. """
|
||||
"""Conversion script for the NCSNPP checkpoints."""
|
||||
|
||||
import argparse
|
||||
import json
|
||||
|
||||
@@ -12,7 +12,7 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" Conversion script for the AudioLDM2 checkpoints."""
|
||||
"""Conversion script for the AudioLDM2 checkpoints."""
|
||||
|
||||
import argparse
|
||||
import re
|
||||
|
||||
@@ -12,7 +12,7 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" Conversion script for the AudioLDM checkpoints."""
|
||||
"""Conversion script for the AudioLDM checkpoints."""
|
||||
|
||||
import argparse
|
||||
import re
|
||||
|
||||
@@ -12,7 +12,7 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" Conversion script for stable diffusion checkpoints which _only_ contain a controlnet. """
|
||||
"""Conversion script for stable diffusion checkpoints which _only_ contain a controlnet."""
|
||||
|
||||
import argparse
|
||||
|
||||
|
||||
@@ -12,7 +12,7 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" Conversion script for the MusicLDM checkpoints."""
|
||||
"""Conversion script for the MusicLDM checkpoints."""
|
||||
|
||||
import argparse
|
||||
import re
|
||||
|
||||
@@ -12,7 +12,7 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" Conversion script for the LDM checkpoints. """
|
||||
"""Conversion script for the LDM checkpoints."""
|
||||
|
||||
import argparse
|
||||
import importlib
|
||||
|
||||
@@ -12,7 +12,7 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" Conversion script for the Versatile Stable Diffusion checkpoints. """
|
||||
"""Conversion script for the Versatile Stable Diffusion checkpoints."""
|
||||
|
||||
import argparse
|
||||
from argparse import Namespace
|
||||
|
||||
@@ -11,6 +11,7 @@ $ python convert_zero123_to_diffusers.py \
|
||||
--original_config_file /path/zero123/configs/sd-objaverse-finetune-c_concat-256.yaml
|
||||
```
|
||||
"""
|
||||
|
||||
import argparse
|
||||
|
||||
import torch
|
||||
|
||||
@@ -13,7 +13,8 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" ConfigMixin base class and utilities."""
|
||||
"""ConfigMixin base class and utilities."""
|
||||
|
||||
import dataclasses
|
||||
import functools
|
||||
import importlib
|
||||
|
||||
@@ -12,7 +12,7 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" Conversion script for the Stable Diffusion checkpoints."""
|
||||
"""Conversion script for the Stable Diffusion checkpoints."""
|
||||
|
||||
import os
|
||||
import re
|
||||
|
||||
@@ -12,7 +12,8 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" PyTorch - Flax general utilities."""
|
||||
"""PyTorch - Flax general utilities."""
|
||||
|
||||
import re
|
||||
|
||||
import jax.numpy as jnp
|
||||
|
||||
@@ -12,7 +12,7 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" PyTorch - Flax general utilities."""
|
||||
"""PyTorch - Flax general utilities."""
|
||||
|
||||
from pickle import UnpicklingError
|
||||
|
||||
|
||||
@@ -12,7 +12,7 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" Conversion script for the Stable Diffusion checkpoints."""
|
||||
"""Conversion script for the Stable Diffusion checkpoints."""
|
||||
|
||||
import re
|
||||
from contextlib import nullcontext
|
||||
|
||||
@@ -14,6 +14,7 @@
|
||||
"""
|
||||
Doc utilities: Utilities related to documentation
|
||||
"""
|
||||
|
||||
import re
|
||||
|
||||
|
||||
|
||||
@@ -12,7 +12,7 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" Logging utilities."""
|
||||
"""Logging utilities."""
|
||||
|
||||
import logging
|
||||
import os
|
||||
|
||||
@@ -14,6 +14,7 @@
|
||||
"""
|
||||
PEFT utilities: Utilities related to peft library
|
||||
"""
|
||||
|
||||
import collections
|
||||
import importlib
|
||||
from typing import Optional
|
||||
|
||||
@@ -14,6 +14,7 @@
|
||||
"""
|
||||
State dict utilities: utility methods for converting state dicts easily
|
||||
"""
|
||||
|
||||
import enum
|
||||
|
||||
from .logging import get_logger
|
||||
|
||||
@@ -14,6 +14,7 @@
|
||||
"""
|
||||
PyTorch utilities: Utilities related to PyTorch
|
||||
"""
|
||||
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
from . import logging
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
605
tests/lora/test_lora_layers_sd.py
Normal file
605
tests/lora/test_lora_layers_sd.py
Normal file
@@ -0,0 +1,605 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2024 HuggingFace Inc.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import gc
|
||||
import sys
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from huggingface_hub import hf_hub_download
|
||||
from huggingface_hub.repocard import RepoCard
|
||||
from safetensors.torch import load_file
|
||||
|
||||
from diffusers import (
|
||||
AutoPipelineForImage2Image,
|
||||
AutoPipelineForText2Image,
|
||||
DDIMScheduler,
|
||||
DiffusionPipeline,
|
||||
LCMScheduler,
|
||||
StableDiffusionPipeline,
|
||||
)
|
||||
from diffusers.utils.import_utils import is_accelerate_available
|
||||
from diffusers.utils.testing_utils import (
|
||||
load_image,
|
||||
numpy_cosine_similarity_distance,
|
||||
require_peft_backend,
|
||||
require_torch_gpu,
|
||||
slow,
|
||||
torch_device,
|
||||
)
|
||||
|
||||
|
||||
sys.path.append(".")
|
||||
|
||||
from utils import PeftLoraLoaderMixinTests, check_if_lora_correctly_set # noqa: E402
|
||||
|
||||
|
||||
if is_accelerate_available():
|
||||
from accelerate.utils import release_memory
|
||||
|
||||
|
||||
class StableDiffusionLoRATests(PeftLoraLoaderMixinTests, unittest.TestCase):
|
||||
pipeline_class = StableDiffusionPipeline
|
||||
scheduler_cls = DDIMScheduler
|
||||
scheduler_kwargs = {
|
||||
"beta_start": 0.00085,
|
||||
"beta_end": 0.012,
|
||||
"beta_schedule": "scaled_linear",
|
||||
"clip_sample": False,
|
||||
"set_alpha_to_one": False,
|
||||
"steps_offset": 1,
|
||||
}
|
||||
unet_kwargs = {
|
||||
"block_out_channels": (32, 64),
|
||||
"layers_per_block": 2,
|
||||
"sample_size": 32,
|
||||
"in_channels": 4,
|
||||
"out_channels": 4,
|
||||
"down_block_types": ("DownBlock2D", "CrossAttnDownBlock2D"),
|
||||
"up_block_types": ("CrossAttnUpBlock2D", "UpBlock2D"),
|
||||
"cross_attention_dim": 32,
|
||||
}
|
||||
vae_kwargs = {
|
||||
"block_out_channels": [32, 64],
|
||||
"in_channels": 3,
|
||||
"out_channels": 3,
|
||||
"down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
|
||||
"up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
|
||||
"latent_channels": 4,
|
||||
}
|
||||
|
||||
def tearDown(self):
|
||||
super().tearDown()
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
# Keeping this test here makes sense because it doesn't look any integration
|
||||
# (value assertions on logits).
|
||||
@slow
|
||||
@require_torch_gpu
|
||||
def test_integration_move_lora_cpu(self):
|
||||
path = "runwayml/stable-diffusion-v1-5"
|
||||
lora_id = "takuma104/lora-test-text-encoder-lora-target"
|
||||
|
||||
pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16)
|
||||
pipe.load_lora_weights(lora_id, adapter_name="adapter-1")
|
||||
pipe.load_lora_weights(lora_id, adapter_name="adapter-2")
|
||||
pipe = pipe.to(torch_device)
|
||||
|
||||
self.assertTrue(
|
||||
check_if_lora_correctly_set(pipe.text_encoder),
|
||||
"Lora not correctly set in text encoder",
|
||||
)
|
||||
|
||||
self.assertTrue(
|
||||
check_if_lora_correctly_set(pipe.unet),
|
||||
"Lora not correctly set in text encoder",
|
||||
)
|
||||
|
||||
# We will offload the first adapter in CPU and check if the offloading
|
||||
# has been performed correctly
|
||||
pipe.set_lora_device(["adapter-1"], "cpu")
|
||||
|
||||
for name, module in pipe.unet.named_modules():
|
||||
if "adapter-1" in name and not isinstance(module, (nn.Dropout, nn.Identity)):
|
||||
self.assertTrue(module.weight.device == torch.device("cpu"))
|
||||
elif "adapter-2" in name and not isinstance(module, (nn.Dropout, nn.Identity)):
|
||||
self.assertTrue(module.weight.device != torch.device("cpu"))
|
||||
|
||||
for name, module in pipe.text_encoder.named_modules():
|
||||
if "adapter-1" in name and not isinstance(module, (nn.Dropout, nn.Identity)):
|
||||
self.assertTrue(module.weight.device == torch.device("cpu"))
|
||||
elif "adapter-2" in name and not isinstance(module, (nn.Dropout, nn.Identity)):
|
||||
self.assertTrue(module.weight.device != torch.device("cpu"))
|
||||
|
||||
pipe.set_lora_device(["adapter-1"], 0)
|
||||
|
||||
for n, m in pipe.unet.named_modules():
|
||||
if "adapter-1" in n and not isinstance(m, (nn.Dropout, nn.Identity)):
|
||||
self.assertTrue(m.weight.device != torch.device("cpu"))
|
||||
|
||||
for n, m in pipe.text_encoder.named_modules():
|
||||
if "adapter-1" in n and not isinstance(m, (nn.Dropout, nn.Identity)):
|
||||
self.assertTrue(m.weight.device != torch.device("cpu"))
|
||||
|
||||
pipe.set_lora_device(["adapter-1", "adapter-2"], torch_device)
|
||||
|
||||
for n, m in pipe.unet.named_modules():
|
||||
if ("adapter-1" in n or "adapter-2" in n) and not isinstance(m, (nn.Dropout, nn.Identity)):
|
||||
self.assertTrue(m.weight.device != torch.device("cpu"))
|
||||
|
||||
for n, m in pipe.text_encoder.named_modules():
|
||||
if ("adapter-1" in n or "adapter-2" in n) and not isinstance(m, (nn.Dropout, nn.Identity)):
|
||||
self.assertTrue(m.weight.device != torch.device("cpu"))
|
||||
|
||||
|
||||
@slow
|
||||
@require_torch_gpu
|
||||
@require_peft_backend
|
||||
class LoraIntegrationTests(unittest.TestCase):
|
||||
def tearDown(self):
|
||||
super().tearDown()
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
def test_integration_logits_with_scale(self):
|
||||
path = "runwayml/stable-diffusion-v1-5"
|
||||
lora_id = "takuma104/lora-test-text-encoder-lora-target"
|
||||
|
||||
pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float32)
|
||||
pipe.load_lora_weights(lora_id)
|
||||
pipe = pipe.to(torch_device)
|
||||
|
||||
self.assertTrue(
|
||||
check_if_lora_correctly_set(pipe.text_encoder),
|
||||
"Lora not correctly set in text encoder",
|
||||
)
|
||||
|
||||
prompt = "a red sks dog"
|
||||
|
||||
images = pipe(
|
||||
prompt=prompt,
|
||||
num_inference_steps=15,
|
||||
cross_attention_kwargs={"scale": 0.5},
|
||||
generator=torch.manual_seed(0),
|
||||
output_type="np",
|
||||
).images
|
||||
|
||||
expected_slice_scale = np.array([0.307, 0.283, 0.310, 0.310, 0.300, 0.314, 0.336, 0.314, 0.321])
|
||||
predicted_slice = images[0, -3:, -3:, -1].flatten()
|
||||
|
||||
max_diff = numpy_cosine_similarity_distance(expected_slice_scale, predicted_slice)
|
||||
assert max_diff < 1e-3
|
||||
|
||||
pipe.unload_lora_weights()
|
||||
release_memory(pipe)
|
||||
|
||||
def test_integration_logits_no_scale(self):
|
||||
path = "runwayml/stable-diffusion-v1-5"
|
||||
lora_id = "takuma104/lora-test-text-encoder-lora-target"
|
||||
|
||||
pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float32)
|
||||
pipe.load_lora_weights(lora_id)
|
||||
pipe = pipe.to(torch_device)
|
||||
|
||||
self.assertTrue(
|
||||
check_if_lora_correctly_set(pipe.text_encoder),
|
||||
"Lora not correctly set in text encoder",
|
||||
)
|
||||
|
||||
prompt = "a red sks dog"
|
||||
|
||||
images = pipe(prompt=prompt, num_inference_steps=30, generator=torch.manual_seed(0), output_type="np").images
|
||||
|
||||
expected_slice_scale = np.array([0.074, 0.064, 0.073, 0.0842, 0.069, 0.0641, 0.0794, 0.076, 0.084])
|
||||
predicted_slice = images[0, -3:, -3:, -1].flatten()
|
||||
|
||||
max_diff = numpy_cosine_similarity_distance(expected_slice_scale, predicted_slice)
|
||||
|
||||
assert max_diff < 1e-3
|
||||
|
||||
pipe.unload_lora_weights()
|
||||
release_memory(pipe)
|
||||
|
||||
def test_dreambooth_old_format(self):
|
||||
generator = torch.Generator("cpu").manual_seed(0)
|
||||
|
||||
lora_model_id = "hf-internal-testing/lora_dreambooth_dog_example"
|
||||
card = RepoCard.load(lora_model_id)
|
||||
base_model_id = card.data.to_dict()["base_model"]
|
||||
|
||||
pipe = StableDiffusionPipeline.from_pretrained(base_model_id, safety_checker=None)
|
||||
pipe = pipe.to(torch_device)
|
||||
pipe.load_lora_weights(lora_model_id)
|
||||
|
||||
images = pipe(
|
||||
"A photo of a sks dog floating in the river", output_type="np", generator=generator, num_inference_steps=2
|
||||
).images
|
||||
|
||||
images = images[0, -3:, -3:, -1].flatten()
|
||||
expected = np.array([0.7207, 0.6787, 0.6010, 0.7478, 0.6838, 0.6064, 0.6984, 0.6443, 0.5785])
|
||||
|
||||
max_diff = numpy_cosine_similarity_distance(expected, images)
|
||||
assert max_diff < 1e-4
|
||||
|
||||
pipe.unload_lora_weights()
|
||||
release_memory(pipe)
|
||||
|
||||
def test_dreambooth_text_encoder_new_format(self):
|
||||
generator = torch.Generator().manual_seed(0)
|
||||
|
||||
lora_model_id = "hf-internal-testing/lora-trained"
|
||||
card = RepoCard.load(lora_model_id)
|
||||
base_model_id = card.data.to_dict()["base_model"]
|
||||
|
||||
pipe = StableDiffusionPipeline.from_pretrained(base_model_id, safety_checker=None)
|
||||
pipe = pipe.to(torch_device)
|
||||
pipe.load_lora_weights(lora_model_id)
|
||||
|
||||
images = pipe("A photo of a sks dog", output_type="np", generator=generator, num_inference_steps=2).images
|
||||
|
||||
images = images[0, -3:, -3:, -1].flatten()
|
||||
|
||||
expected = np.array([0.6628, 0.6138, 0.5390, 0.6625, 0.6130, 0.5463, 0.6166, 0.5788, 0.5359])
|
||||
|
||||
max_diff = numpy_cosine_similarity_distance(expected, images)
|
||||
assert max_diff < 1e-4
|
||||
|
||||
pipe.unload_lora_weights()
|
||||
release_memory(pipe)
|
||||
|
||||
def test_a1111(self):
|
||||
generator = torch.Generator().manual_seed(0)
|
||||
|
||||
pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/Counterfeit-V2.5", safety_checker=None).to(
|
||||
torch_device
|
||||
)
|
||||
lora_model_id = "hf-internal-testing/civitai-light-shadow-lora"
|
||||
lora_filename = "light_and_shadow.safetensors"
|
||||
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
|
||||
|
||||
images = pipe(
|
||||
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
|
||||
).images
|
||||
|
||||
images = images[0, -3:, -3:, -1].flatten()
|
||||
expected = np.array([0.3636, 0.3708, 0.3694, 0.3679, 0.3829, 0.3677, 0.3692, 0.3688, 0.3292])
|
||||
|
||||
max_diff = numpy_cosine_similarity_distance(expected, images)
|
||||
assert max_diff < 1e-3
|
||||
|
||||
pipe.unload_lora_weights()
|
||||
release_memory(pipe)
|
||||
|
||||
def test_lycoris(self):
|
||||
generator = torch.Generator().manual_seed(0)
|
||||
|
||||
pipe = StableDiffusionPipeline.from_pretrained(
|
||||
"hf-internal-testing/Amixx", safety_checker=None, use_safetensors=True, variant="fp16"
|
||||
).to(torch_device)
|
||||
lora_model_id = "hf-internal-testing/edgLycorisMugler-light"
|
||||
lora_filename = "edgLycorisMugler-light.safetensors"
|
||||
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
|
||||
|
||||
images = pipe(
|
||||
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
|
||||
).images
|
||||
|
||||
images = images[0, -3:, -3:, -1].flatten()
|
||||
expected = np.array([0.6463, 0.658, 0.599, 0.6542, 0.6512, 0.6213, 0.658, 0.6485, 0.6017])
|
||||
|
||||
max_diff = numpy_cosine_similarity_distance(expected, images)
|
||||
assert max_diff < 1e-3
|
||||
|
||||
pipe.unload_lora_weights()
|
||||
release_memory(pipe)
|
||||
|
||||
def test_a1111_with_model_cpu_offload(self):
|
||||
generator = torch.Generator().manual_seed(0)
|
||||
|
||||
pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/Counterfeit-V2.5", safety_checker=None)
|
||||
pipe.enable_model_cpu_offload()
|
||||
lora_model_id = "hf-internal-testing/civitai-light-shadow-lora"
|
||||
lora_filename = "light_and_shadow.safetensors"
|
||||
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
|
||||
|
||||
images = pipe(
|
||||
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
|
||||
).images
|
||||
|
||||
images = images[0, -3:, -3:, -1].flatten()
|
||||
expected = np.array([0.3636, 0.3708, 0.3694, 0.3679, 0.3829, 0.3677, 0.3692, 0.3688, 0.3292])
|
||||
|
||||
max_diff = numpy_cosine_similarity_distance(expected, images)
|
||||
assert max_diff < 1e-3
|
||||
|
||||
pipe.unload_lora_weights()
|
||||
release_memory(pipe)
|
||||
|
||||
def test_a1111_with_sequential_cpu_offload(self):
|
||||
generator = torch.Generator().manual_seed(0)
|
||||
|
||||
pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/Counterfeit-V2.5", safety_checker=None)
|
||||
pipe.enable_sequential_cpu_offload()
|
||||
lora_model_id = "hf-internal-testing/civitai-light-shadow-lora"
|
||||
lora_filename = "light_and_shadow.safetensors"
|
||||
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
|
||||
|
||||
images = pipe(
|
||||
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
|
||||
).images
|
||||
|
||||
images = images[0, -3:, -3:, -1].flatten()
|
||||
expected = np.array([0.3636, 0.3708, 0.3694, 0.3679, 0.3829, 0.3677, 0.3692, 0.3688, 0.3292])
|
||||
|
||||
max_diff = numpy_cosine_similarity_distance(expected, images)
|
||||
assert max_diff < 1e-3
|
||||
|
||||
pipe.unload_lora_weights()
|
||||
release_memory(pipe)
|
||||
|
||||
def test_kohya_sd_v15_with_higher_dimensions(self):
|
||||
generator = torch.Generator().manual_seed(0)
|
||||
|
||||
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None).to(
|
||||
torch_device
|
||||
)
|
||||
lora_model_id = "hf-internal-testing/urushisato-lora"
|
||||
lora_filename = "urushisato_v15.safetensors"
|
||||
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
|
||||
|
||||
images = pipe(
|
||||
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
|
||||
).images
|
||||
|
||||
images = images[0, -3:, -3:, -1].flatten()
|
||||
expected = np.array([0.7165, 0.6616, 0.5833, 0.7504, 0.6718, 0.587, 0.6871, 0.6361, 0.5694])
|
||||
|
||||
max_diff = numpy_cosine_similarity_distance(expected, images)
|
||||
assert max_diff < 1e-3
|
||||
|
||||
pipe.unload_lora_weights()
|
||||
release_memory(pipe)
|
||||
|
||||
def test_vanilla_funetuning(self):
|
||||
generator = torch.Generator().manual_seed(0)
|
||||
|
||||
lora_model_id = "hf-internal-testing/sd-model-finetuned-lora-t4"
|
||||
card = RepoCard.load(lora_model_id)
|
||||
base_model_id = card.data.to_dict()["base_model"]
|
||||
|
||||
pipe = StableDiffusionPipeline.from_pretrained(base_model_id, safety_checker=None)
|
||||
pipe = pipe.to(torch_device)
|
||||
pipe.load_lora_weights(lora_model_id)
|
||||
|
||||
images = pipe("A pokemon with blue eyes.", output_type="np", generator=generator, num_inference_steps=2).images
|
||||
|
||||
images = images[0, -3:, -3:, -1].flatten()
|
||||
|
||||
expected = np.array([0.7406, 0.699, 0.5963, 0.7493, 0.7045, 0.6096, 0.6886, 0.6388, 0.583])
|
||||
|
||||
max_diff = numpy_cosine_similarity_distance(expected, images)
|
||||
assert max_diff < 1e-4
|
||||
|
||||
pipe.unload_lora_weights()
|
||||
release_memory(pipe)
|
||||
|
||||
def test_unload_kohya_lora(self):
|
||||
generator = torch.manual_seed(0)
|
||||
prompt = "masterpiece, best quality, mountain"
|
||||
num_inference_steps = 2
|
||||
|
||||
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None).to(
|
||||
torch_device
|
||||
)
|
||||
initial_images = pipe(
|
||||
prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
|
||||
).images
|
||||
initial_images = initial_images[0, -3:, -3:, -1].flatten()
|
||||
|
||||
lora_model_id = "hf-internal-testing/civitai-colored-icons-lora"
|
||||
lora_filename = "Colored_Icons_by_vizsumit.safetensors"
|
||||
|
||||
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
|
||||
generator = torch.manual_seed(0)
|
||||
lora_images = pipe(
|
||||
prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
|
||||
).images
|
||||
lora_images = lora_images[0, -3:, -3:, -1].flatten()
|
||||
|
||||
pipe.unload_lora_weights()
|
||||
generator = torch.manual_seed(0)
|
||||
unloaded_lora_images = pipe(
|
||||
prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
|
||||
).images
|
||||
unloaded_lora_images = unloaded_lora_images[0, -3:, -3:, -1].flatten()
|
||||
|
||||
self.assertFalse(np.allclose(initial_images, lora_images))
|
||||
self.assertTrue(np.allclose(initial_images, unloaded_lora_images, atol=1e-3))
|
||||
|
||||
release_memory(pipe)
|
||||
|
||||
def test_load_unload_load_kohya_lora(self):
|
||||
# This test ensures that a Kohya-style LoRA can be safely unloaded and then loaded
|
||||
# without introducing any side-effects. Even though the test uses a Kohya-style
|
||||
# LoRA, the underlying adapter handling mechanism is format-agnostic.
|
||||
generator = torch.manual_seed(0)
|
||||
prompt = "masterpiece, best quality, mountain"
|
||||
num_inference_steps = 2
|
||||
|
||||
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None).to(
|
||||
torch_device
|
||||
)
|
||||
initial_images = pipe(
|
||||
prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
|
||||
).images
|
||||
initial_images = initial_images[0, -3:, -3:, -1].flatten()
|
||||
|
||||
lora_model_id = "hf-internal-testing/civitai-colored-icons-lora"
|
||||
lora_filename = "Colored_Icons_by_vizsumit.safetensors"
|
||||
|
||||
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
|
||||
generator = torch.manual_seed(0)
|
||||
lora_images = pipe(
|
||||
prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
|
||||
).images
|
||||
lora_images = lora_images[0, -3:, -3:, -1].flatten()
|
||||
|
||||
pipe.unload_lora_weights()
|
||||
generator = torch.manual_seed(0)
|
||||
unloaded_lora_images = pipe(
|
||||
prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
|
||||
).images
|
||||
unloaded_lora_images = unloaded_lora_images[0, -3:, -3:, -1].flatten()
|
||||
|
||||
self.assertFalse(np.allclose(initial_images, lora_images))
|
||||
self.assertTrue(np.allclose(initial_images, unloaded_lora_images, atol=1e-3))
|
||||
|
||||
# make sure we can load a LoRA again after unloading and they don't have
|
||||
# any undesired effects.
|
||||
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
|
||||
generator = torch.manual_seed(0)
|
||||
lora_images_again = pipe(
|
||||
prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
|
||||
).images
|
||||
lora_images_again = lora_images_again[0, -3:, -3:, -1].flatten()
|
||||
|
||||
self.assertTrue(np.allclose(lora_images, lora_images_again, atol=1e-3))
|
||||
release_memory(pipe)
|
||||
|
||||
def test_not_empty_state_dict(self):
|
||||
# Makes sure https://github.com/huggingface/diffusers/issues/7054 does not happen again
|
||||
pipe = AutoPipelineForText2Image.from_pretrained(
|
||||
"runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16
|
||||
).to(torch_device)
|
||||
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
||||
|
||||
cached_file = hf_hub_download("hf-internal-testing/lcm-lora-test-sd-v1-5", "test_lora.safetensors")
|
||||
lcm_lora = load_file(cached_file)
|
||||
|
||||
pipe.load_lora_weights(lcm_lora, adapter_name="lcm")
|
||||
self.assertTrue(lcm_lora != {})
|
||||
release_memory(pipe)
|
||||
|
||||
def test_load_unload_load_state_dict(self):
|
||||
# Makes sure https://github.com/huggingface/diffusers/issues/7054 does not happen again
|
||||
pipe = AutoPipelineForText2Image.from_pretrained(
|
||||
"runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16
|
||||
).to(torch_device)
|
||||
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
||||
|
||||
cached_file = hf_hub_download("hf-internal-testing/lcm-lora-test-sd-v1-5", "test_lora.safetensors")
|
||||
lcm_lora = load_file(cached_file)
|
||||
previous_state_dict = lcm_lora.copy()
|
||||
|
||||
pipe.load_lora_weights(lcm_lora, adapter_name="lcm")
|
||||
self.assertDictEqual(lcm_lora, previous_state_dict)
|
||||
|
||||
pipe.unload_lora_weights()
|
||||
pipe.load_lora_weights(lcm_lora, adapter_name="lcm")
|
||||
self.assertDictEqual(lcm_lora, previous_state_dict)
|
||||
|
||||
release_memory(pipe)
|
||||
|
||||
def test_sdv1_5_lcm_lora(self):
|
||||
pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
|
||||
pipe.to(torch_device)
|
||||
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
||||
|
||||
generator = torch.Generator("cpu").manual_seed(0)
|
||||
|
||||
lora_model_id = "latent-consistency/lcm-lora-sdv1-5"
|
||||
pipe.load_lora_weights(lora_model_id)
|
||||
|
||||
image = pipe(
|
||||
"masterpiece, best quality, mountain", generator=generator, num_inference_steps=4, guidance_scale=0.5
|
||||
).images[0]
|
||||
|
||||
expected_image = load_image(
|
||||
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/lcm_lora/sdv15_lcm_lora.png"
|
||||
)
|
||||
|
||||
image_np = pipe.image_processor.pil_to_numpy(image)
|
||||
expected_image_np = pipe.image_processor.pil_to_numpy(expected_image)
|
||||
|
||||
max_diff = numpy_cosine_similarity_distance(image_np.flatten(), expected_image_np.flatten())
|
||||
assert max_diff < 1e-4
|
||||
|
||||
pipe.unload_lora_weights()
|
||||
|
||||
release_memory(pipe)
|
||||
|
||||
def test_sdv1_5_lcm_lora_img2img(self):
|
||||
pipe = AutoPipelineForImage2Image.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
|
||||
pipe.to(torch_device)
|
||||
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
||||
|
||||
init_image = load_image(
|
||||
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape.png"
|
||||
)
|
||||
|
||||
generator = torch.Generator("cpu").manual_seed(0)
|
||||
|
||||
lora_model_id = "latent-consistency/lcm-lora-sdv1-5"
|
||||
pipe.load_lora_weights(lora_model_id)
|
||||
|
||||
image = pipe(
|
||||
"snowy mountain",
|
||||
generator=generator,
|
||||
image=init_image,
|
||||
strength=0.5,
|
||||
num_inference_steps=4,
|
||||
guidance_scale=0.5,
|
||||
).images[0]
|
||||
|
||||
expected_image = load_image(
|
||||
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/lcm_lora/sdv15_lcm_lora_img2img.png"
|
||||
)
|
||||
|
||||
image_np = pipe.image_processor.pil_to_numpy(image)
|
||||
expected_image_np = pipe.image_processor.pil_to_numpy(expected_image)
|
||||
|
||||
max_diff = numpy_cosine_similarity_distance(image_np.flatten(), expected_image_np.flatten())
|
||||
assert max_diff < 1e-4
|
||||
|
||||
pipe.unload_lora_weights()
|
||||
|
||||
release_memory(pipe)
|
||||
|
||||
def test_sd_load_civitai_empty_network_alpha(self):
|
||||
"""
|
||||
This test simply checks that loading a LoRA with an empty network alpha works fine
|
||||
See: https://github.com/huggingface/diffusers/issues/5606
|
||||
"""
|
||||
pipeline = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5").to(torch_device)
|
||||
pipeline.enable_sequential_cpu_offload()
|
||||
civitai_path = hf_hub_download("ybelkada/test-ahi-civitai", "ahi_lora_weights.safetensors")
|
||||
pipeline.load_lora_weights(civitai_path, adapter_name="ahri")
|
||||
|
||||
images = pipeline(
|
||||
"ahri, masterpiece, league of legends",
|
||||
output_type="np",
|
||||
generator=torch.manual_seed(156),
|
||||
num_inference_steps=5,
|
||||
).images
|
||||
images = images[0, -3:, -3:, -1].flatten()
|
||||
expected = np.array([0.0, 0.0, 0.0, 0.002557, 0.020954, 0.001792, 0.006581, 0.00591, 0.002995])
|
||||
|
||||
max_diff = numpy_cosine_similarity_distance(expected, images)
|
||||
assert max_diff < 1e-3
|
||||
|
||||
pipeline.unload_lora_weights()
|
||||
release_memory(pipeline)
|
||||
632
tests/lora/test_lora_layers_sdxl.py
Normal file
632
tests/lora/test_lora_layers_sdxl.py
Normal file
@@ -0,0 +1,632 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2024 HuggingFace Inc.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import copy
|
||||
import gc
|
||||
import importlib
|
||||
import sys
|
||||
import time
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from packaging import version
|
||||
|
||||
from diffusers import (
|
||||
ControlNetModel,
|
||||
EulerDiscreteScheduler,
|
||||
LCMScheduler,
|
||||
StableDiffusionXLAdapterPipeline,
|
||||
StableDiffusionXLControlNetPipeline,
|
||||
StableDiffusionXLPipeline,
|
||||
T2IAdapter,
|
||||
)
|
||||
from diffusers.utils.import_utils import is_accelerate_available
|
||||
from diffusers.utils.testing_utils import (
|
||||
load_image,
|
||||
nightly,
|
||||
numpy_cosine_similarity_distance,
|
||||
require_peft_backend,
|
||||
require_torch_gpu,
|
||||
slow,
|
||||
torch_device,
|
||||
)
|
||||
|
||||
|
||||
sys.path.append(".")
|
||||
|
||||
from utils import PeftLoraLoaderMixinTests, check_if_lora_correctly_set, state_dicts_almost_equal # noqa: E402
|
||||
|
||||
|
||||
if is_accelerate_available():
|
||||
from accelerate.utils import release_memory
|
||||
|
||||
|
||||
class StableDiffusionXLLoRATests(PeftLoraLoaderMixinTests, unittest.TestCase):
|
||||
has_two_text_encoders = True
|
||||
pipeline_class = StableDiffusionXLPipeline
|
||||
scheduler_cls = EulerDiscreteScheduler
|
||||
scheduler_kwargs = {
|
||||
"beta_start": 0.00085,
|
||||
"beta_end": 0.012,
|
||||
"beta_schedule": "scaled_linear",
|
||||
"timestep_spacing": "leading",
|
||||
"steps_offset": 1,
|
||||
}
|
||||
unet_kwargs = {
|
||||
"block_out_channels": (32, 64),
|
||||
"layers_per_block": 2,
|
||||
"sample_size": 32,
|
||||
"in_channels": 4,
|
||||
"out_channels": 4,
|
||||
"down_block_types": ("DownBlock2D", "CrossAttnDownBlock2D"),
|
||||
"up_block_types": ("CrossAttnUpBlock2D", "UpBlock2D"),
|
||||
"attention_head_dim": (2, 4),
|
||||
"use_linear_projection": True,
|
||||
"addition_embed_type": "text_time",
|
||||
"addition_time_embed_dim": 8,
|
||||
"transformer_layers_per_block": (1, 2),
|
||||
"projection_class_embeddings_input_dim": 80, # 6 * 8 + 32
|
||||
"cross_attention_dim": 64,
|
||||
}
|
||||
vae_kwargs = {
|
||||
"block_out_channels": [32, 64],
|
||||
"in_channels": 3,
|
||||
"out_channels": 3,
|
||||
"down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
|
||||
"up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
|
||||
"latent_channels": 4,
|
||||
"sample_size": 128,
|
||||
}
|
||||
|
||||
def tearDown(self):
|
||||
super().tearDown()
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
|
||||
@slow
|
||||
@require_torch_gpu
|
||||
@require_peft_backend
|
||||
class LoraSDXLIntegrationTests(unittest.TestCase):
|
||||
def tearDown(self):
|
||||
super().tearDown()
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
def test_sdxl_0_9_lora_one(self):
|
||||
generator = torch.Generator().manual_seed(0)
|
||||
|
||||
pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-0.9")
|
||||
lora_model_id = "hf-internal-testing/sdxl-0.9-daiton-lora"
|
||||
lora_filename = "daiton-xl-lora-test.safetensors"
|
||||
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
|
||||
pipe.enable_model_cpu_offload()
|
||||
|
||||
images = pipe(
|
||||
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
|
||||
).images
|
||||
|
||||
images = images[0, -3:, -3:, -1].flatten()
|
||||
expected = np.array([0.3838, 0.3482, 0.3588, 0.3162, 0.319, 0.3369, 0.338, 0.3366, 0.3213])
|
||||
|
||||
max_diff = numpy_cosine_similarity_distance(expected, images)
|
||||
assert max_diff < 1e-3
|
||||
pipe.unload_lora_weights()
|
||||
release_memory(pipe)
|
||||
|
||||
def test_sdxl_0_9_lora_two(self):
|
||||
generator = torch.Generator().manual_seed(0)
|
||||
|
||||
pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-0.9")
|
||||
lora_model_id = "hf-internal-testing/sdxl-0.9-costumes-lora"
|
||||
lora_filename = "saijo.safetensors"
|
||||
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
|
||||
pipe.enable_model_cpu_offload()
|
||||
|
||||
images = pipe(
|
||||
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
|
||||
).images
|
||||
|
||||
images = images[0, -3:, -3:, -1].flatten()
|
||||
expected = np.array([0.3137, 0.3269, 0.3355, 0.255, 0.2577, 0.2563, 0.2679, 0.2758, 0.2626])
|
||||
|
||||
max_diff = numpy_cosine_similarity_distance(expected, images)
|
||||
assert max_diff < 1e-3
|
||||
|
||||
pipe.unload_lora_weights()
|
||||
release_memory(pipe)
|
||||
|
||||
def test_sdxl_0_9_lora_three(self):
|
||||
generator = torch.Generator().manual_seed(0)
|
||||
|
||||
pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-0.9")
|
||||
lora_model_id = "hf-internal-testing/sdxl-0.9-kamepan-lora"
|
||||
lora_filename = "kame_sdxl_v2-000020-16rank.safetensors"
|
||||
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
|
||||
pipe.enable_model_cpu_offload()
|
||||
|
||||
images = pipe(
|
||||
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
|
||||
).images
|
||||
|
||||
images = images[0, -3:, -3:, -1].flatten()
|
||||
expected = np.array([0.4015, 0.3761, 0.3616, 0.3745, 0.3462, 0.3337, 0.3564, 0.3649, 0.3468])
|
||||
|
||||
max_diff = numpy_cosine_similarity_distance(expected, images)
|
||||
assert max_diff < 5e-3
|
||||
|
||||
pipe.unload_lora_weights()
|
||||
release_memory(pipe)
|
||||
|
||||
def test_sdxl_1_0_lora(self):
|
||||
generator = torch.Generator("cpu").manual_seed(0)
|
||||
|
||||
pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
|
||||
pipe.enable_model_cpu_offload()
|
||||
lora_model_id = "hf-internal-testing/sdxl-1.0-lora"
|
||||
lora_filename = "sd_xl_offset_example-lora_1.0.safetensors"
|
||||
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
|
||||
|
||||
images = pipe(
|
||||
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
|
||||
).images
|
||||
|
||||
images = images[0, -3:, -3:, -1].flatten()
|
||||
expected = np.array([0.4468, 0.4087, 0.4134, 0.366, 0.3202, 0.3505, 0.3786, 0.387, 0.3535])
|
||||
|
||||
max_diff = numpy_cosine_similarity_distance(expected, images)
|
||||
assert max_diff < 1e-4
|
||||
|
||||
pipe.unload_lora_weights()
|
||||
release_memory(pipe)
|
||||
|
||||
def test_sdxl_lcm_lora(self):
|
||||
pipe = StableDiffusionXLPipeline.from_pretrained(
|
||||
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
|
||||
)
|
||||
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
||||
pipe.enable_model_cpu_offload()
|
||||
|
||||
generator = torch.Generator("cpu").manual_seed(0)
|
||||
|
||||
lora_model_id = "latent-consistency/lcm-lora-sdxl"
|
||||
|
||||
pipe.load_lora_weights(lora_model_id)
|
||||
|
||||
image = pipe(
|
||||
"masterpiece, best quality, mountain", generator=generator, num_inference_steps=4, guidance_scale=0.5
|
||||
).images[0]
|
||||
|
||||
expected_image = load_image(
|
||||
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/lcm_lora/sdxl_lcm_lora.png"
|
||||
)
|
||||
|
||||
image_np = pipe.image_processor.pil_to_numpy(image)
|
||||
expected_image_np = pipe.image_processor.pil_to_numpy(expected_image)
|
||||
|
||||
max_diff = numpy_cosine_similarity_distance(image_np.flatten(), expected_image_np.flatten())
|
||||
assert max_diff < 1e-4
|
||||
|
||||
pipe.unload_lora_weights()
|
||||
release_memory(pipe)
|
||||
|
||||
def test_sdxl_1_0_lora_fusion(self):
|
||||
generator = torch.Generator().manual_seed(0)
|
||||
|
||||
pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
|
||||
lora_model_id = "hf-internal-testing/sdxl-1.0-lora"
|
||||
lora_filename = "sd_xl_offset_example-lora_1.0.safetensors"
|
||||
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
|
||||
|
||||
pipe.fuse_lora()
|
||||
# We need to unload the lora weights since in the previous API `fuse_lora` led to lora weights being
|
||||
# silently deleted - otherwise this will CPU OOM
|
||||
pipe.unload_lora_weights()
|
||||
|
||||
pipe.enable_model_cpu_offload()
|
||||
|
||||
images = pipe(
|
||||
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
|
||||
).images
|
||||
|
||||
images = images[0, -3:, -3:, -1].flatten()
|
||||
# This way we also test equivalence between LoRA fusion and the non-fusion behaviour.
|
||||
expected = np.array([0.4468, 0.4087, 0.4134, 0.366, 0.3202, 0.3505, 0.3786, 0.387, 0.3535])
|
||||
|
||||
max_diff = numpy_cosine_similarity_distance(expected, images)
|
||||
assert max_diff < 1e-4
|
||||
|
||||
release_memory(pipe)
|
||||
|
||||
def test_sdxl_1_0_lora_unfusion(self):
|
||||
generator = torch.Generator("cpu").manual_seed(0)
|
||||
|
||||
pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
|
||||
lora_model_id = "hf-internal-testing/sdxl-1.0-lora"
|
||||
lora_filename = "sd_xl_offset_example-lora_1.0.safetensors"
|
||||
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
|
||||
pipe.fuse_lora()
|
||||
|
||||
pipe.enable_model_cpu_offload()
|
||||
|
||||
images = pipe(
|
||||
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=3
|
||||
).images
|
||||
images_with_fusion = images.flatten()
|
||||
|
||||
pipe.unfuse_lora()
|
||||
generator = torch.Generator("cpu").manual_seed(0)
|
||||
images = pipe(
|
||||
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=3
|
||||
).images
|
||||
images_without_fusion = images.flatten()
|
||||
|
||||
max_diff = numpy_cosine_similarity_distance(images_with_fusion, images_without_fusion)
|
||||
assert max_diff < 1e-4
|
||||
|
||||
release_memory(pipe)
|
||||
|
||||
def test_sdxl_1_0_lora_unfusion_effectivity(self):
|
||||
pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
|
||||
pipe.enable_model_cpu_offload()
|
||||
|
||||
generator = torch.Generator().manual_seed(0)
|
||||
images = pipe(
|
||||
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
|
||||
).images
|
||||
original_image_slice = images[0, -3:, -3:, -1].flatten()
|
||||
|
||||
lora_model_id = "hf-internal-testing/sdxl-1.0-lora"
|
||||
lora_filename = "sd_xl_offset_example-lora_1.0.safetensors"
|
||||
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
|
||||
pipe.fuse_lora()
|
||||
|
||||
generator = torch.Generator().manual_seed(0)
|
||||
_ = pipe(
|
||||
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
|
||||
).images
|
||||
|
||||
pipe.unfuse_lora()
|
||||
|
||||
# We need to unload the lora weights - in the old API unfuse led to unloading the adapter weights
|
||||
pipe.unload_lora_weights()
|
||||
|
||||
generator = torch.Generator().manual_seed(0)
|
||||
images = pipe(
|
||||
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
|
||||
).images
|
||||
images_without_fusion_slice = images[0, -3:, -3:, -1].flatten()
|
||||
|
||||
max_diff = numpy_cosine_similarity_distance(images_without_fusion_slice, original_image_slice)
|
||||
assert max_diff < 1e-3
|
||||
|
||||
release_memory(pipe)
|
||||
|
||||
def test_sdxl_1_0_lora_fusion_efficiency(self):
|
||||
generator = torch.Generator().manual_seed(0)
|
||||
lora_model_id = "hf-internal-testing/sdxl-1.0-lora"
|
||||
lora_filename = "sd_xl_offset_example-lora_1.0.safetensors"
|
||||
|
||||
pipe = StableDiffusionXLPipeline.from_pretrained(
|
||||
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
|
||||
)
|
||||
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename, torch_dtype=torch.float16)
|
||||
pipe.enable_model_cpu_offload()
|
||||
|
||||
start_time = time.time()
|
||||
for _ in range(3):
|
||||
pipe(
|
||||
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
|
||||
).images
|
||||
end_time = time.time()
|
||||
elapsed_time_non_fusion = end_time - start_time
|
||||
|
||||
del pipe
|
||||
|
||||
pipe = StableDiffusionXLPipeline.from_pretrained(
|
||||
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
|
||||
)
|
||||
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename, torch_dtype=torch.float16)
|
||||
pipe.fuse_lora()
|
||||
|
||||
# We need to unload the lora weights since in the previous API `fuse_lora` led to lora weights being
|
||||
# silently deleted - otherwise this will CPU OOM
|
||||
pipe.unload_lora_weights()
|
||||
pipe.enable_model_cpu_offload()
|
||||
|
||||
generator = torch.Generator().manual_seed(0)
|
||||
start_time = time.time()
|
||||
for _ in range(3):
|
||||
pipe(
|
||||
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
|
||||
).images
|
||||
end_time = time.time()
|
||||
elapsed_time_fusion = end_time - start_time
|
||||
|
||||
self.assertTrue(elapsed_time_fusion < elapsed_time_non_fusion)
|
||||
|
||||
release_memory(pipe)
|
||||
|
||||
def test_sdxl_1_0_last_ben(self):
|
||||
generator = torch.Generator().manual_seed(0)
|
||||
|
||||
pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
|
||||
pipe.enable_model_cpu_offload()
|
||||
lora_model_id = "TheLastBen/Papercut_SDXL"
|
||||
lora_filename = "papercut.safetensors"
|
||||
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
|
||||
|
||||
images = pipe("papercut.safetensors", output_type="np", generator=generator, num_inference_steps=2).images
|
||||
|
||||
images = images[0, -3:, -3:, -1].flatten()
|
||||
expected = np.array([0.5244, 0.4347, 0.4312, 0.4246, 0.4398, 0.4409, 0.4884, 0.4938, 0.4094])
|
||||
|
||||
max_diff = numpy_cosine_similarity_distance(expected, images)
|
||||
assert max_diff < 1e-3
|
||||
|
||||
pipe.unload_lora_weights()
|
||||
release_memory(pipe)
|
||||
|
||||
def test_sdxl_1_0_fuse_unfuse_all(self):
|
||||
pipe = StableDiffusionXLPipeline.from_pretrained(
|
||||
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
|
||||
)
|
||||
text_encoder_1_sd = copy.deepcopy(pipe.text_encoder.state_dict())
|
||||
text_encoder_2_sd = copy.deepcopy(pipe.text_encoder_2.state_dict())
|
||||
unet_sd = copy.deepcopy(pipe.unet.state_dict())
|
||||
|
||||
pipe.load_lora_weights(
|
||||
"davizca87/sun-flower", weight_name="snfw3rXL-000004.safetensors", torch_dtype=torch.float16
|
||||
)
|
||||
|
||||
fused_te_state_dict = pipe.text_encoder.state_dict()
|
||||
fused_te_2_state_dict = pipe.text_encoder_2.state_dict()
|
||||
unet_state_dict = pipe.unet.state_dict()
|
||||
|
||||
peft_ge_070 = version.parse(importlib.metadata.version("peft")) >= version.parse("0.7.0")
|
||||
|
||||
def remap_key(key, sd):
|
||||
# some keys have moved around for PEFT >= 0.7.0, but they should still be loaded correctly
|
||||
if (key in sd) or (not peft_ge_070):
|
||||
return key
|
||||
|
||||
# instead of linear.weight, we now have linear.base_layer.weight, etc.
|
||||
if key.endswith(".weight"):
|
||||
key = key[:-7] + ".base_layer.weight"
|
||||
elif key.endswith(".bias"):
|
||||
key = key[:-5] + ".base_layer.bias"
|
||||
return key
|
||||
|
||||
for key, value in text_encoder_1_sd.items():
|
||||
key = remap_key(key, fused_te_state_dict)
|
||||
self.assertTrue(torch.allclose(fused_te_state_dict[key], value))
|
||||
|
||||
for key, value in text_encoder_2_sd.items():
|
||||
key = remap_key(key, fused_te_2_state_dict)
|
||||
self.assertTrue(torch.allclose(fused_te_2_state_dict[key], value))
|
||||
|
||||
for key, value in unet_state_dict.items():
|
||||
self.assertTrue(torch.allclose(unet_state_dict[key], value))
|
||||
|
||||
pipe.fuse_lora()
|
||||
pipe.unload_lora_weights()
|
||||
|
||||
assert not state_dicts_almost_equal(text_encoder_1_sd, pipe.text_encoder.state_dict())
|
||||
assert not state_dicts_almost_equal(text_encoder_2_sd, pipe.text_encoder_2.state_dict())
|
||||
assert not state_dicts_almost_equal(unet_sd, pipe.unet.state_dict())
|
||||
|
||||
release_memory(pipe)
|
||||
del unet_sd, text_encoder_1_sd, text_encoder_2_sd
|
||||
|
||||
def test_sdxl_1_0_lora_with_sequential_cpu_offloading(self):
|
||||
generator = torch.Generator().manual_seed(0)
|
||||
|
||||
pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
|
||||
pipe.enable_sequential_cpu_offload()
|
||||
lora_model_id = "hf-internal-testing/sdxl-1.0-lora"
|
||||
lora_filename = "sd_xl_offset_example-lora_1.0.safetensors"
|
||||
|
||||
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
|
||||
|
||||
images = pipe(
|
||||
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
|
||||
).images
|
||||
|
||||
images = images[0, -3:, -3:, -1].flatten()
|
||||
expected = np.array([0.4468, 0.4087, 0.4134, 0.366, 0.3202, 0.3505, 0.3786, 0.387, 0.3535])
|
||||
|
||||
max_diff = numpy_cosine_similarity_distance(expected, images)
|
||||
assert max_diff < 1e-3
|
||||
|
||||
pipe.unload_lora_weights()
|
||||
release_memory(pipe)
|
||||
|
||||
def test_controlnet_canny_lora(self):
|
||||
controlnet = ControlNetModel.from_pretrained("diffusers/controlnet-canny-sdxl-1.0")
|
||||
|
||||
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
||||
"stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet
|
||||
)
|
||||
pipe.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors")
|
||||
pipe.enable_sequential_cpu_offload()
|
||||
|
||||
generator = torch.Generator(device="cpu").manual_seed(0)
|
||||
prompt = "corgi"
|
||||
image = load_image(
|
||||
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
|
||||
)
|
||||
|
||||
images = pipe(prompt, image=image, generator=generator, output_type="np", num_inference_steps=3).images
|
||||
|
||||
assert images[0].shape == (768, 512, 3)
|
||||
|
||||
original_image = images[0, -3:, -3:, -1].flatten()
|
||||
expected_image = np.array([0.4574, 0.4461, 0.4435, 0.4462, 0.4396, 0.439, 0.4474, 0.4486, 0.4333])
|
||||
|
||||
max_diff = numpy_cosine_similarity_distance(expected_image, original_image)
|
||||
assert max_diff < 1e-4
|
||||
|
||||
pipe.unload_lora_weights()
|
||||
release_memory(pipe)
|
||||
|
||||
def test_sdxl_t2i_adapter_canny_lora(self):
|
||||
adapter = T2IAdapter.from_pretrained("TencentARC/t2i-adapter-lineart-sdxl-1.0", torch_dtype=torch.float16).to(
|
||||
"cpu"
|
||||
)
|
||||
pipe = StableDiffusionXLAdapterPipeline.from_pretrained(
|
||||
"stabilityai/stable-diffusion-xl-base-1.0",
|
||||
adapter=adapter,
|
||||
torch_dtype=torch.float16,
|
||||
variant="fp16",
|
||||
)
|
||||
pipe.load_lora_weights("CiroN2022/toy-face", weight_name="toy_face_sdxl.safetensors")
|
||||
pipe.enable_model_cpu_offload()
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
generator = torch.Generator(device="cpu").manual_seed(0)
|
||||
prompt = "toy"
|
||||
image = load_image(
|
||||
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/toy_canny.png"
|
||||
)
|
||||
|
||||
images = pipe(prompt, image=image, generator=generator, output_type="np", num_inference_steps=3).images
|
||||
|
||||
assert images[0].shape == (768, 512, 3)
|
||||
|
||||
image_slice = images[0, -3:, -3:, -1].flatten()
|
||||
expected_slice = np.array([0.4284, 0.4337, 0.4319, 0.4255, 0.4329, 0.4280, 0.4338, 0.4420, 0.4226])
|
||||
assert numpy_cosine_similarity_distance(image_slice, expected_slice) < 1e-4
|
||||
|
||||
@nightly
|
||||
def test_sequential_fuse_unfuse(self):
|
||||
pipe = StableDiffusionXLPipeline.from_pretrained(
|
||||
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
|
||||
)
|
||||
|
||||
# 1. round
|
||||
pipe.load_lora_weights("Pclanglais/TintinIA", torch_dtype=torch.float16)
|
||||
pipe.to(torch_device)
|
||||
pipe.fuse_lora()
|
||||
|
||||
generator = torch.Generator().manual_seed(0)
|
||||
images = pipe(
|
||||
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
|
||||
).images
|
||||
image_slice = images[0, -3:, -3:, -1].flatten()
|
||||
|
||||
pipe.unfuse_lora()
|
||||
|
||||
# 2. round
|
||||
pipe.load_lora_weights("ProomptEngineer/pe-balloon-diffusion-style", torch_dtype=torch.float16)
|
||||
pipe.fuse_lora()
|
||||
pipe.unfuse_lora()
|
||||
|
||||
# 3. round
|
||||
pipe.load_lora_weights("ostris/crayon_style_lora_sdxl", torch_dtype=torch.float16)
|
||||
pipe.fuse_lora()
|
||||
pipe.unfuse_lora()
|
||||
|
||||
# 4. back to 1st round
|
||||
pipe.load_lora_weights("Pclanglais/TintinIA", torch_dtype=torch.float16)
|
||||
pipe.fuse_lora()
|
||||
|
||||
generator = torch.Generator().manual_seed(0)
|
||||
images_2 = pipe(
|
||||
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
|
||||
).images
|
||||
image_slice_2 = images_2[0, -3:, -3:, -1].flatten()
|
||||
|
||||
max_diff = numpy_cosine_similarity_distance(image_slice, image_slice_2)
|
||||
assert max_diff < 1e-3
|
||||
pipe.unload_lora_weights()
|
||||
release_memory(pipe)
|
||||
|
||||
@nightly
|
||||
def test_integration_logits_multi_adapter(self):
|
||||
path = "stabilityai/stable-diffusion-xl-base-1.0"
|
||||
lora_id = "CiroN2022/toy-face"
|
||||
|
||||
pipe = StableDiffusionXLPipeline.from_pretrained(path, torch_dtype=torch.float16)
|
||||
pipe.load_lora_weights(lora_id, weight_name="toy_face_sdxl.safetensors", adapter_name="toy")
|
||||
pipe = pipe.to(torch_device)
|
||||
|
||||
self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet")
|
||||
|
||||
prompt = "toy_face of a hacker with a hoodie"
|
||||
|
||||
lora_scale = 0.9
|
||||
|
||||
images = pipe(
|
||||
prompt=prompt,
|
||||
num_inference_steps=30,
|
||||
generator=torch.manual_seed(0),
|
||||
cross_attention_kwargs={"scale": lora_scale},
|
||||
output_type="np",
|
||||
).images
|
||||
expected_slice_scale = np.array([0.538, 0.539, 0.540, 0.540, 0.542, 0.539, 0.538, 0.541, 0.539])
|
||||
|
||||
predicted_slice = images[0, -3:, -3:, -1].flatten()
|
||||
max_diff = numpy_cosine_similarity_distance(expected_slice_scale, predicted_slice)
|
||||
assert max_diff < 1e-3
|
||||
|
||||
pipe.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
|
||||
pipe.set_adapters("pixel")
|
||||
|
||||
prompt = "pixel art, a hacker with a hoodie, simple, flat colors"
|
||||
images = pipe(
|
||||
prompt,
|
||||
num_inference_steps=30,
|
||||
guidance_scale=7.5,
|
||||
cross_attention_kwargs={"scale": lora_scale},
|
||||
generator=torch.manual_seed(0),
|
||||
output_type="np",
|
||||
).images
|
||||
|
||||
predicted_slice = images[0, -3:, -3:, -1].flatten()
|
||||
expected_slice_scale = np.array(
|
||||
[0.61973065, 0.62018543, 0.62181497, 0.61933696, 0.6208608, 0.620576, 0.6200281, 0.62258327, 0.6259889]
|
||||
)
|
||||
max_diff = numpy_cosine_similarity_distance(expected_slice_scale, predicted_slice)
|
||||
assert max_diff < 1e-3
|
||||
|
||||
# multi-adapter inference
|
||||
pipe.set_adapters(["pixel", "toy"], adapter_weights=[0.5, 1.0])
|
||||
images = pipe(
|
||||
prompt,
|
||||
num_inference_steps=30,
|
||||
guidance_scale=7.5,
|
||||
cross_attention_kwargs={"scale": 1.0},
|
||||
generator=torch.manual_seed(0),
|
||||
output_type="np",
|
||||
).images
|
||||
predicted_slice = images[0, -3:, -3:, -1].flatten()
|
||||
expected_slice_scale = np.array([0.5888, 0.5897, 0.5946, 0.5888, 0.5935, 0.5946, 0.5857, 0.5891, 0.5909])
|
||||
max_diff = numpy_cosine_similarity_distance(expected_slice_scale, predicted_slice)
|
||||
assert max_diff < 1e-3
|
||||
|
||||
# Lora disabled
|
||||
pipe.disable_lora()
|
||||
images = pipe(
|
||||
prompt,
|
||||
num_inference_steps=30,
|
||||
guidance_scale=7.5,
|
||||
cross_attention_kwargs={"scale": lora_scale},
|
||||
generator=torch.manual_seed(0),
|
||||
output_type="np",
|
||||
).images
|
||||
predicted_slice = images[0, -3:, -3:, -1].flatten()
|
||||
expected_slice_scale = np.array([0.5456, 0.5466, 0.5487, 0.5458, 0.5469, 0.5454, 0.5446, 0.5479, 0.5487])
|
||||
max_diff = numpy_cosine_similarity_distance(expected_slice_scale, predicted_slice)
|
||||
assert max_diff < 1e-3
|
||||
1127
tests/lora/utils.py
Normal file
1127
tests/lora/utils.py
Normal file
File diff suppressed because it is too large
Load Diff
@@ -34,6 +34,7 @@ For a check only (as used in `make quality`) run:
|
||||
python utils/custom_init_isort.py --check_only
|
||||
```
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import os
|
||||
import re
|
||||
|
||||
@@ -15,6 +15,7 @@
|
||||
Script to close stale issue. Taken in part from the AllenNLP repository.
|
||||
https://github.com/allenai/allennlp.
|
||||
"""
|
||||
|
||||
import os
|
||||
from datetime import datetime as dt
|
||||
from datetime import timezone
|
||||
|
||||
Reference in New Issue
Block a user