mirror of
https://github.com/huggingface/diffusers.git
synced 2025-12-06 20:44:33 +08:00
Compare commits
7 Commits
disable-mm
...
pinned-con
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
211ddd7f9e | ||
|
|
dd2135769e | ||
|
|
60bcc74f28 | ||
|
|
60f468a926 | ||
|
|
aceff93e28 | ||
|
|
d0d81fbdeb | ||
|
|
e793adc465 |
@@ -22,18 +22,357 @@
|
||||
|
||||
<!-- TODO(aryan): update abstract once paper is out -->
|
||||
|
||||
## Generating Videos with Wan 2.1
|
||||
|
||||
We will first need to install some addtional dependencies.
|
||||
|
||||
```shell
|
||||
pip install -u ftfy imageio-ffmpeg imageio
|
||||
```
|
||||
|
||||
### Text to Video Generation
|
||||
|
||||
The following example requires 11GB VRAM to run and uses the smaller `Wan-AI/Wan2.1-T2V-1.3B-Diffusers` model. You can switch it out
|
||||
for the larger `Wan2.1-I2V-14B-720P-Diffusers` or `Wan-AI/Wan2.1-I2V-14B-480P-Diffusers` if you have at least 35GB VRAM available.
|
||||
|
||||
```python
|
||||
from diffusers import WanPipeline
|
||||
from diffusers.utils import export_to_video
|
||||
|
||||
# Available models: Wan-AI/Wan2.1-I2V-14B-720P-Diffusers or Wan-AI/Wan2.1-I2V-14B-480P-Diffusers
|
||||
model_id = "Wan-AI/Wan2.1-T2V-1.3B-Diffusers"
|
||||
|
||||
pipe = WanPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16)
|
||||
pipe.enable_model_cpu_offload()
|
||||
|
||||
prompt = "A cat and a dog baking a cake together in a kitchen. The cat is carefully measuring flour, while the dog is stirring the batter with a wooden spoon. The kitchen is cozy, with sunlight streaming through the window."
|
||||
negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards"
|
||||
num_frames = 33
|
||||
|
||||
frames = pipe(prompt=prompt, negative_prompt=negative_prompt, num_frames=num_frames).frames[0]
|
||||
export_to_video(frames, "wan-t2v.mp4", fps=16)
|
||||
```
|
||||
|
||||
<Tip>
|
||||
|
||||
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
|
||||
|
||||
You can improve the quality of the generated video by running the decoding step in full precision.
|
||||
</Tip>
|
||||
|
||||
Recommendations for inference:
|
||||
- VAE in `torch.float32` for better decoding quality.
|
||||
- `num_frames` should be of the form `4 * k + 1`, for example `49` or `81`.
|
||||
- For smaller resolution videos, try lower values of `shift` (between `2.0` to `5.0`) in the [Scheduler](https://huggingface.co/docs/diffusers/main/en/api/schedulers/flow_match_euler_discrete#diffusers.FlowMatchEulerDiscreteScheduler.shift). For larger resolution videos, try higher values (between `7.0` and `12.0`). The default value is `3.0` for Wan.
|
||||
```python
|
||||
from diffusers import WanPipeline, AutoencoderKLWan
|
||||
from diffusers.utils import export_to_video
|
||||
|
||||
### Using a custom scheduler
|
||||
model_id = "Wan-AI/Wan2.1-T2V-1.3B-Diffusers"
|
||||
|
||||
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
|
||||
pipe = WanPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16)
|
||||
|
||||
# replace this with pipe.to("cuda") if you have sufficient VRAM
|
||||
pipe.enable_model_cpu_offload()
|
||||
|
||||
prompt = "A cat and a dog baking a cake together in a kitchen. The cat is carefully measuring flour, while the dog is stirring the batter with a wooden spoon. The kitchen is cozy, with sunlight streaming through the window."
|
||||
negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards"
|
||||
num_frames = 33
|
||||
|
||||
frames = pipe(prompt=prompt, num_frames=num_frames).frames[0]
|
||||
export_to_video(frames, "wan-t2v.mp4", fps=16)
|
||||
```
|
||||
|
||||
### Image to Video Generation
|
||||
|
||||
The Image to Video pipeline requires loading the `AutoencoderKLWan` and the `CLIPVisionModel` components in full precision. The following example will need at least
|
||||
35GB of VRAM to run.
|
||||
|
||||
```python
|
||||
import torch
|
||||
import numpy as np
|
||||
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline
|
||||
from diffusers.utils import export_to_video, load_image
|
||||
from transformers import CLIPVisionModel
|
||||
|
||||
# Available models: Wan-AI/Wan2.1-I2V-14B-480P-Diffusers, Wan-AI/Wan2.1-I2V-14B-720P-Diffusers
|
||||
model_id = "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers"
|
||||
image_encoder = CLIPVisionModel.from_pretrained(
|
||||
model_id, subfolder="image_encoder", torch_dtype=torch.float32
|
||||
)
|
||||
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
|
||||
pipe = WanImageToVideoPipeline.from_pretrained(
|
||||
model_id, vae=vae, image_encoder=image_encoder, torch_dtype=torch.bfloat16
|
||||
)
|
||||
|
||||
# replace this with pipe.to("cuda") if you have sufficient VRAM
|
||||
pipe.enable_model_cpu_offload()
|
||||
|
||||
image = load_image(
|
||||
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg"
|
||||
)
|
||||
|
||||
max_area = 480 * 832
|
||||
aspect_ratio = image.height / image.width
|
||||
mod_value = pipe.vae_scale_factor_spatial * pipe.transformer.config.patch_size[1]
|
||||
height = round(np.sqrt(max_area * aspect_ratio)) // mod_value * mod_value
|
||||
width = round(np.sqrt(max_area / aspect_ratio)) // mod_value * mod_value
|
||||
image = image.resize((width, height))
|
||||
|
||||
prompt = (
|
||||
"An astronaut hatching from an egg, on the surface of the moon, the darkness and depth of space realised in "
|
||||
"the background. High quality, ultrarealistic detail and breath-taking movie-like camera shot."
|
||||
)
|
||||
negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards"
|
||||
|
||||
num_frames = 33
|
||||
|
||||
output = pipe(
|
||||
image=image,
|
||||
prompt=prompt,
|
||||
negative_prompt=negative_prompt,
|
||||
height=height,
|
||||
width=width,
|
||||
num_frames=num_frames,
|
||||
guidance_scale=5.0,
|
||||
).frames[0]
|
||||
export_to_video(output, "wan-i2v.mp4", fps=16)
|
||||
```
|
||||
|
||||
## Memory Optimizations for Wan 2.1
|
||||
|
||||
Base inference with the large 14B Wan 2.1 models can take up to 35GB of VRAM when generating videos at 720p resolution. We'll outline a few memory optimizations we can apply to reduce the VRAM required to run the model.
|
||||
|
||||
We'll use `Wan-AI/Wan2.1-I2V-14B-720P-Diffusers` model in these examples to demonstrate the memory savings, but the techniques are applicable to all model checkpoints.
|
||||
|
||||
### Group Offloading the Transformer and UMT5 Text Encoder
|
||||
|
||||
Find more information about group offloading [here](../optimization/memory.md)
|
||||
|
||||
#### Block Level Group Offloading
|
||||
|
||||
We can reduce our VRAM requirements by applying group offloading to the larger model components of the pipeline; the `WanTransformer3DModel` and `UMT5EncoderModel`. Group offloading will break up the individual modules of a model and offload/onload them onto your GPU as needed during inference. In this example, we'll apply `block_level` offloading, which will group the modules in a model into blocks of size `num_blocks_per_group` and offload/onload them to GPU. Moving to between CPU and GPU does add latency to the inference process. You can trade off between latency and memory savings by increasing or decreasing the `num_blocks_per_group`.
|
||||
|
||||
The following example will now only require 14GB of VRAM to run, but will take approximately 30 minutes to generate a video.
|
||||
|
||||
```python
|
||||
import torch
|
||||
import numpy as np
|
||||
from diffusers import AutoencoderKLWan, WanTransformer3DModel, WanImageToVideoPipeline
|
||||
from diffusers.hooks.group_offloading import apply_group_offloading
|
||||
from diffusers.utils import export_to_video, load_image
|
||||
from transformers import UMT5EncoderModel, CLIPVisionModel
|
||||
|
||||
# Available models: Wan-AI/Wan2.1-I2V-14B-480P-Diffusers, Wan-AI/Wan2.1-I2V-14B-720P-Diffusers
|
||||
model_id = "Wan-AI/Wan2.1-I2V-14B-720P-Diffusers"
|
||||
image_encoder = CLIPVisionModel.from_pretrained(
|
||||
model_id, subfolder="image_encoder", torch_dtype=torch.float32
|
||||
)
|
||||
|
||||
text_encoder = UMT5EncoderModel.from_pretrained(model_id, subfolder="text_encoder", torch_dtype=torch.bfloat16)
|
||||
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
|
||||
transformer = WanTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.bfloat16)
|
||||
|
||||
onload_device = torch.device("cuda")
|
||||
offload_device = torch.device("cpu")
|
||||
|
||||
apply_group_offloading(text_encoder,
|
||||
onload_device=onload_device,
|
||||
offload_device=offload_device,
|
||||
offload_type="block_level",
|
||||
num_blocks_per_group=4
|
||||
)
|
||||
|
||||
transformer.enable_group_offload(
|
||||
onload_device=onload_device,
|
||||
offload_device=offload_device,
|
||||
offload_type="block_level",
|
||||
num_blocks_per_group=4,
|
||||
)
|
||||
pipe = WanImageToVideoPipeline.from_pretrained(
|
||||
model_id,
|
||||
vae=vae,
|
||||
transformer=transformer,
|
||||
text_encoder=text_encoder,
|
||||
image_encoder=image_encoder,
|
||||
torch_dtype=torch.bfloat16
|
||||
)
|
||||
# Since we've offloaded the larger models alrady, we can move the rest of the model components to GPU
|
||||
pipe.to("cuda")
|
||||
|
||||
image = load_image(
|
||||
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg"
|
||||
)
|
||||
|
||||
max_area = 720 * 832
|
||||
aspect_ratio = image.height / image.width
|
||||
mod_value = pipe.vae_scale_factor_spatial * pipe.transformer.config.patch_size[1]
|
||||
height = round(np.sqrt(max_area * aspect_ratio)) // mod_value * mod_value
|
||||
width = round(np.sqrt(max_area / aspect_ratio)) // mod_value * mod_value
|
||||
image = image.resize((width, height))
|
||||
|
||||
prompt = (
|
||||
"An astronaut hatching from an egg, on the surface of the moon, the darkness and depth of space realised in "
|
||||
"the background. High quality, ultrarealistic detail and breath-taking movie-like camera shot."
|
||||
)
|
||||
negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards"
|
||||
|
||||
num_frames = 33
|
||||
|
||||
output = pipe(
|
||||
image=image,
|
||||
prompt=prompt,
|
||||
negative_prompt=negative_prompt,
|
||||
height=height,
|
||||
width=width,
|
||||
num_frames=num_frames,
|
||||
guidance_scale=5.0,
|
||||
).frames[0]
|
||||
|
||||
export_to_video(output, "wan-i2v.mp4", fps=16)
|
||||
```
|
||||
|
||||
#### Block Level Group Offloading with CUDA Streams
|
||||
|
||||
We can speed up group offloading inference, by enabling the use of [CUDA streams](https://pytorch.org/docs/stable/generated/torch.cuda.Stream.html). However, using CUDA streams requires moving the model parameters into pinned memory. This allocation is handled by Pytorch under the hood, and can result in a significant spike in CPU RAM usage. Please consider this option if your CPU RAM is atleast 2X the size of the model you are group offloading.
|
||||
|
||||
In the following example we will use CUDA streams when group offloading the `WanTransformer3DModel`. When testing on an A100, this example will require 14GB of VRAM, 52GB of CPU RAM, but will generate a video in approximately 9 minutes.
|
||||
|
||||
```python
|
||||
import torch
|
||||
import numpy as np
|
||||
from diffusers import AutoencoderKLWan, WanTransformer3DModel, WanImageToVideoPipeline
|
||||
from diffusers.hooks.group_offloading import apply_group_offloading
|
||||
from diffusers.utils import export_to_video, load_image
|
||||
from transformers import UMT5EncoderModel, CLIPVisionModel
|
||||
|
||||
# Available models: Wan-AI/Wan2.1-I2V-14B-480P-Diffusers, Wan-AI/Wan2.1-I2V-14B-720P-Diffusers
|
||||
model_id = "Wan-AI/Wan2.1-I2V-14B-720P-Diffusers"
|
||||
image_encoder = CLIPVisionModel.from_pretrained(
|
||||
model_id, subfolder="image_encoder", torch_dtype=torch.float32
|
||||
)
|
||||
|
||||
text_encoder = UMT5EncoderModel.from_pretrained(model_id, subfolder="text_encoder", torch_dtype=torch.bfloat16)
|
||||
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
|
||||
transformer = WanTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.bfloat16)
|
||||
|
||||
onload_device = torch.device("cuda")
|
||||
offload_device = torch.device("cpu")
|
||||
|
||||
apply_group_offloading(text_encoder,
|
||||
onload_device=onload_device,
|
||||
offload_device=offload_device,
|
||||
offload_type="block_level",
|
||||
num_blocks_per_group=4
|
||||
)
|
||||
|
||||
transformer.enable_group_offload(
|
||||
onload_device=onload_device,
|
||||
offload_device=offload_device,
|
||||
offload_type="leaf_level",
|
||||
use_stream=True
|
||||
)
|
||||
pipe = WanImageToVideoPipeline.from_pretrained(
|
||||
model_id,
|
||||
vae=vae,
|
||||
transformer=transformer,
|
||||
text_encoder=text_encoder,
|
||||
image_encoder=image_encoder,
|
||||
torch_dtype=torch.bfloat16
|
||||
)
|
||||
# Since we've offloaded the larger models alrady, we can move the rest of the model components to GPU
|
||||
pipe.to("cuda")
|
||||
|
||||
image = load_image(
|
||||
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg"
|
||||
)
|
||||
|
||||
max_area = 720 * 832
|
||||
aspect_ratio = image.height / image.width
|
||||
mod_value = pipe.vae_scale_factor_spatial * pipe.transformer.config.patch_size[1]
|
||||
height = round(np.sqrt(max_area * aspect_ratio)) // mod_value * mod_value
|
||||
width = round(np.sqrt(max_area / aspect_ratio)) // mod_value * mod_value
|
||||
image = image.resize((width, height))
|
||||
|
||||
prompt = (
|
||||
"An astronaut hatching from an egg, on the surface of the moon, the darkness and depth of space realised in "
|
||||
"the background. High quality, ultrarealistic detail and breath-taking movie-like camera shot."
|
||||
)
|
||||
negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards"
|
||||
|
||||
num_frames = 33
|
||||
|
||||
output = pipe(
|
||||
image=image,
|
||||
prompt=prompt,
|
||||
negative_prompt=negative_prompt,
|
||||
height=height,
|
||||
width=width,
|
||||
num_frames=num_frames,
|
||||
guidance_scale=5.0,
|
||||
).frames[0]
|
||||
|
||||
export_to_video(output, "wan-i2v.mp4", fps=16)
|
||||
```
|
||||
|
||||
### Applying Layerwise Casting to the Transformer
|
||||
|
||||
Find more information about layerwise casting [here](../optimization/memory.md)
|
||||
|
||||
In this example, we will model offloading with layerwise casting. Layerwise casting will downcast each layer's weights to `torch.float8_e4m3fn`, temporarily upcast to `torch.bfloat16` during the forward pass of the layer, then revert to `torch.float8_e4m3fn` afterward. This approach reduces memory requirements by approximately 50% while introducing a minor quality reduction in the generated video due to the precision trade-off.
|
||||
|
||||
This example will require 20GB of VRAM.
|
||||
|
||||
```python
|
||||
import torch
|
||||
import numpy as np
|
||||
from diffusers import AutoencoderKLWan, WanTransformer3DModel, WanImageToVideoPipeline
|
||||
from diffusers.hooks.group_offloading import apply_group_offloading
|
||||
from diffusers.utils import export_to_video, load_image
|
||||
from transformers import UMT5EncoderModel, CLIPVisionMode
|
||||
|
||||
model_id = "Wan-AI/Wan2.1-I2V-14B-720P-Diffusers"
|
||||
image_encoder = CLIPVisionModel.from_pretrained(
|
||||
model_id, subfolder="image_encoder", torch_dtype=torch.float32
|
||||
)
|
||||
text_encoder = UMT5EncoderModel.from_pretrained(model_id, subfolder="text_encoder", torch_dtype=torch.bfloat16)
|
||||
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
|
||||
|
||||
transformer = WanTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.bfloat16)
|
||||
transformer.enable_layerwise_casting(storage_dtype=torch.float8_e4m3fn, compute_dtype=torch.bfloat16)
|
||||
|
||||
pipe = WanImageToVideoPipeline.from_pretrained(
|
||||
model_id,
|
||||
vae=vae,
|
||||
transformer=transformer,
|
||||
text_encoder=text_encoder,
|
||||
image_encoder=image_encoder,
|
||||
torch_dtype=torch.bfloat16
|
||||
)
|
||||
pipe.enable_model_cpu_offload()
|
||||
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg")
|
||||
|
||||
max_area = 720 * 832
|
||||
aspect_ratio = image.height / image.width
|
||||
mod_value = pipe.vae_scale_factor_spatial * pipe.transformer.config.patch_size[1]
|
||||
height = round(np.sqrt(max_area * aspect_ratio)) // mod_value * mod_value
|
||||
width = round(np.sqrt(max_area / aspect_ratio)) // mod_value * mod_value
|
||||
image = image.resize((width, height))
|
||||
prompt = (
|
||||
"An astronaut hatching from an egg, on the surface of the moon, the darkness and depth of space realised in "
|
||||
"the background. High quality, ultrarealistic detail and breath-taking movie-like camera shot."
|
||||
)
|
||||
negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards
|
||||
num_frames = 33
|
||||
|
||||
output = pipe(
|
||||
image=image,
|
||||
prompt=prompt,
|
||||
negative_prompt=negative_prompt,
|
||||
height=height,
|
||||
width=width,
|
||||
num_frames=num_frames,
|
||||
num_inference_steps=50,
|
||||
guidance_scale=5.0,
|
||||
).frames[0]
|
||||
export_to_video(output, "wan-i2v.mp4", fps=16)
|
||||
```
|
||||
|
||||
### Using a Custom Scheduler
|
||||
|
||||
Wan can be used with many different schedulers, each with their own benefits regarding speed and generation quality. By default, Wan uses the `UniPCMultistepScheduler(prediction_type="flow_prediction", use_flow_sigmas=True, flow_shift=3.0)` scheduler. You can use a different scheduler as follows:
|
||||
|
||||
@@ -49,11 +388,10 @@ pipe = WanPipeline.from_pretrained("Wan-AI/Wan2.1-T2V-1.3B-Diffusers", scheduler
|
||||
pipe.scheduler = <CUSTOM_SCHEDULER_HERE>
|
||||
```
|
||||
|
||||
### Using single file loading with Wan
|
||||
|
||||
The `WanTransformer3DModel` and `AutoencoderKLWan` models support loading checkpoints in their original format via the `from_single_file` loading
|
||||
method.
|
||||
## Using Single File Loading with Wan 2.1
|
||||
|
||||
The `WanTransformer3DModel` and `AutoencoderKLWan` models support loading checkpoints in their original format via the `from_single_file` loading
|
||||
method.
|
||||
|
||||
```python
|
||||
import torch
|
||||
@@ -65,6 +403,11 @@ transformer = WanTransformer3DModel.from_single_file(ckpt_path, torch_dtype=torc
|
||||
pipe = WanPipeline.from_pretrained("Wan-AI/Wan2.1-T2V-1.3B-Diffusers", transformer=transformer)
|
||||
```
|
||||
|
||||
## Recommendations for Inference:
|
||||
- Keep `AutencoderKLWan` in `torch.float32` for better decoding quality.
|
||||
- `num_frames` should be of the form `4 * k + 1`, for example `49` or `81`.
|
||||
- For smaller resolution videos, try lower values of `shift` (between `2.0` to `5.0`) in the [Scheduler](https://huggingface.co/docs/diffusers/main/en/api/schedulers/flow_match_euler_discrete#diffusers.FlowMatchEulerDiscreteScheduler.shift). For larger resolution videos, try higher values (between `7.0` and `12.0`). The default value is `3.0` for Wan.
|
||||
|
||||
## WanPipeline
|
||||
|
||||
[[autodoc]] WanPipeline
|
||||
|
||||
@@ -12,7 +12,7 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from contextlib import nullcontext
|
||||
from contextlib import contextmanager, nullcontext
|
||||
from typing import Dict, List, Optional, Set, Tuple
|
||||
|
||||
import torch
|
||||
@@ -56,7 +56,7 @@ class ModuleGroup:
|
||||
buffers: Optional[List[torch.Tensor]] = None,
|
||||
non_blocking: bool = False,
|
||||
stream: Optional[torch.cuda.Stream] = None,
|
||||
cpu_param_dict: Optional[Dict[torch.nn.Parameter, torch.Tensor]] = None,
|
||||
low_cpu_mem_usage=False,
|
||||
onload_self: bool = True,
|
||||
) -> None:
|
||||
self.modules = modules
|
||||
@@ -64,15 +64,42 @@ class ModuleGroup:
|
||||
self.onload_device = onload_device
|
||||
self.offload_leader = offload_leader
|
||||
self.onload_leader = onload_leader
|
||||
self.parameters = parameters
|
||||
self.buffers = buffers
|
||||
self.parameters = parameters or []
|
||||
self.buffers = buffers or []
|
||||
self.non_blocking = non_blocking or stream is not None
|
||||
self.stream = stream
|
||||
self.cpu_param_dict = cpu_param_dict
|
||||
self.onload_self = onload_self
|
||||
self.low_cpu_mem_usage = low_cpu_mem_usage
|
||||
|
||||
if self.stream is not None and self.cpu_param_dict is None:
|
||||
raise ValueError("cpu_param_dict must be provided when using stream for data transfer.")
|
||||
self.cpu_param_dict = {}
|
||||
for module in self.modules:
|
||||
for param in module.parameters():
|
||||
self.cpu_param_dict[param] = (
|
||||
param.data.cpu() if self.low_cpu_mem_usage else param.data.cpu().pin_memory()
|
||||
)
|
||||
|
||||
for param in self.parameters:
|
||||
self.cpu_param_dict[param] = param.data.cpu() if self.low_cpu_mem_usage else param.data.cpu().pin_memory()
|
||||
|
||||
for buffer in self.buffers:
|
||||
self.cpu_param_dict[buffer] = (
|
||||
buffer.data.cpu() if self.low_cpu_mem_usage else buffer.data.cpu().pin_memory()
|
||||
)
|
||||
|
||||
@contextmanager
|
||||
def _pinned_memory_tensors(self):
|
||||
pinned_dict = {}
|
||||
try:
|
||||
for param, tensor in self.cpu_param_dict.items():
|
||||
if not tensor.is_pinned():
|
||||
pinned_dict[param] = tensor.pin_memory()
|
||||
else:
|
||||
pinned_dict[param] = tensor
|
||||
|
||||
yield pinned_dict
|
||||
|
||||
finally:
|
||||
pinned_dict = None
|
||||
|
||||
def onload_(self):
|
||||
r"""Onloads the group of modules to the onload_device."""
|
||||
@@ -82,17 +109,32 @@ class ModuleGroup:
|
||||
self.stream.synchronize()
|
||||
|
||||
with context:
|
||||
for group_module in self.modules:
|
||||
for param in group_module.parameters():
|
||||
param.data = param.data.to(self.onload_device, non_blocking=self.non_blocking)
|
||||
for buffer in group_module.buffers():
|
||||
buffer.data = buffer.data.to(self.onload_device, non_blocking=self.non_blocking)
|
||||
if self.parameters is not None:
|
||||
for param in self.parameters:
|
||||
param.data = param.data.to(self.onload_device, non_blocking=self.non_blocking)
|
||||
if self.buffers is not None:
|
||||
for buffer in self.buffers:
|
||||
buffer.data = buffer.data.to(self.onload_device, non_blocking=self.non_blocking)
|
||||
if self.stream is not None:
|
||||
with self._pinned_memory_tensors() as pinned_memory:
|
||||
for group_module in self.modules:
|
||||
for param in group_module.parameters():
|
||||
param.data = pinned_memory[param].to(self.onload_device, non_blocking=self.non_blocking)
|
||||
|
||||
if self.parameters is not None:
|
||||
for param in self.parameters:
|
||||
param.data = pinned_memory[param].to(self.onload_device, non_blocking=self.non_blocking)
|
||||
|
||||
if self.buffers is not None:
|
||||
for buffer in self.buffers:
|
||||
buffer.data = pinned_memory[buffer].to(self.onload_device, non_blocking=self.non_blocking)
|
||||
|
||||
else:
|
||||
for group_module in self.modules:
|
||||
for param in group_module.parameters():
|
||||
param.data = param.data.to(self.onload_device, non_blocking=self.non_blocking)
|
||||
|
||||
if self.parameters is not None:
|
||||
for param in self.parameters:
|
||||
param.data = param.data.to(self.onload_device, non_blocking=self.non_blocking)
|
||||
|
||||
if self.buffers is not None:
|
||||
for buffer in self.buffers:
|
||||
buffer.data = buffer.data.to(self.onload_device, non_blocking=self.non_blocking)
|
||||
|
||||
def offload_(self):
|
||||
r"""Offloads the group of modules to the offload_device."""
|
||||
@@ -108,12 +150,12 @@ class ModuleGroup:
|
||||
for buffer in self.buffers:
|
||||
buffer.data = self.cpu_param_dict[buffer]
|
||||
else:
|
||||
for group_module in self.modules:
|
||||
group_module.to(self.offload_device, non_blocking=self.non_blocking)
|
||||
if self.parameters is not None:
|
||||
for module in self.modules:
|
||||
module.to(self.offload_device, non_blocking=self.non_blocking)
|
||||
if self.parameters:
|
||||
for param in self.parameters:
|
||||
param.data = param.data.to(self.offload_device, non_blocking=self.non_blocking)
|
||||
if self.buffers is not None:
|
||||
if self.buffers:
|
||||
for buffer in self.buffers:
|
||||
buffer.data = buffer.data.to(self.offload_device, non_blocking=self.non_blocking)
|
||||
|
||||
@@ -284,6 +326,7 @@ def apply_group_offloading(
|
||||
num_blocks_per_group: Optional[int] = None,
|
||||
non_blocking: bool = False,
|
||||
use_stream: bool = False,
|
||||
low_cpu_mem_usage=False,
|
||||
) -> None:
|
||||
r"""
|
||||
Applies group offloading to the internal layers of a torch.nn.Module. To understand what group offloading is, and
|
||||
@@ -365,10 +408,12 @@ def apply_group_offloading(
|
||||
raise ValueError("num_blocks_per_group must be provided when using offload_type='block_level'.")
|
||||
|
||||
_apply_group_offloading_block_level(
|
||||
module, num_blocks_per_group, offload_device, onload_device, non_blocking, stream
|
||||
module, num_blocks_per_group, offload_device, onload_device, non_blocking, stream, low_cpu_mem_usage
|
||||
)
|
||||
elif offload_type == "leaf_level":
|
||||
_apply_group_offloading_leaf_level(module, offload_device, onload_device, non_blocking, stream)
|
||||
_apply_group_offloading_leaf_level(
|
||||
module, offload_device, onload_device, non_blocking, stream, low_cpu_mem_usage
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Unsupported offload_type: {offload_type}")
|
||||
|
||||
@@ -380,6 +425,7 @@ def _apply_group_offloading_block_level(
|
||||
onload_device: torch.device,
|
||||
non_blocking: bool,
|
||||
stream: Optional[torch.cuda.Stream] = None,
|
||||
low_cpu_mem_usage: bool = False,
|
||||
) -> None:
|
||||
r"""
|
||||
This function applies offloading to groups of torch.nn.ModuleList or torch.nn.Sequential blocks. In comparison to
|
||||
@@ -400,11 +446,6 @@ def _apply_group_offloading_block_level(
|
||||
for overlapping computation and data transfer.
|
||||
"""
|
||||
|
||||
# Create a pinned CPU parameter dict for async data transfer if streams are to be used
|
||||
cpu_param_dict = None
|
||||
if stream is not None:
|
||||
cpu_param_dict = _get_pinned_cpu_param_dict(module)
|
||||
|
||||
# Create module groups for ModuleList and Sequential blocks
|
||||
modules_with_group_offloading = set()
|
||||
unmatched_modules = []
|
||||
@@ -425,7 +466,7 @@ def _apply_group_offloading_block_level(
|
||||
onload_leader=current_modules[0],
|
||||
non_blocking=non_blocking,
|
||||
stream=stream,
|
||||
cpu_param_dict=cpu_param_dict,
|
||||
low_cpu_mem_usage=low_cpu_mem_usage,
|
||||
onload_self=stream is None,
|
||||
)
|
||||
matched_module_groups.append(group)
|
||||
@@ -462,7 +503,6 @@ def _apply_group_offloading_block_level(
|
||||
buffers=buffers,
|
||||
non_blocking=False,
|
||||
stream=None,
|
||||
cpu_param_dict=None,
|
||||
onload_self=True,
|
||||
)
|
||||
next_group = matched_module_groups[0] if len(matched_module_groups) > 0 else None
|
||||
@@ -475,6 +515,7 @@ def _apply_group_offloading_leaf_level(
|
||||
onload_device: torch.device,
|
||||
non_blocking: bool,
|
||||
stream: Optional[torch.cuda.Stream] = None,
|
||||
low_cpu_mem_usage: bool = False,
|
||||
) -> None:
|
||||
r"""
|
||||
This function applies offloading to groups of leaf modules in a torch.nn.Module. This method has minimal memory
|
||||
@@ -497,11 +538,6 @@ def _apply_group_offloading_leaf_level(
|
||||
for overlapping computation and data transfer.
|
||||
"""
|
||||
|
||||
# Create a pinned CPU parameter dict for async data transfer if streams are to be used
|
||||
cpu_param_dict = None
|
||||
if stream is not None:
|
||||
cpu_param_dict = _get_pinned_cpu_param_dict(module)
|
||||
|
||||
# Create module groups for leaf modules and apply group offloading hooks
|
||||
modules_with_group_offloading = set()
|
||||
for name, submodule in module.named_modules():
|
||||
@@ -515,7 +551,7 @@ def _apply_group_offloading_leaf_level(
|
||||
onload_leader=submodule,
|
||||
non_blocking=non_blocking,
|
||||
stream=stream,
|
||||
cpu_param_dict=cpu_param_dict,
|
||||
low_cpu_mem_usage=low_cpu_mem_usage,
|
||||
onload_self=True,
|
||||
)
|
||||
_apply_group_offloading_hook(submodule, group, None)
|
||||
@@ -560,7 +596,7 @@ def _apply_group_offloading_leaf_level(
|
||||
buffers=buffers,
|
||||
non_blocking=non_blocking,
|
||||
stream=stream,
|
||||
cpu_param_dict=cpu_param_dict,
|
||||
low_cpu_mem_usage=low_cpu_mem_usage,
|
||||
onload_self=True,
|
||||
)
|
||||
_apply_group_offloading_hook(parent_module, group, None)
|
||||
@@ -579,7 +615,7 @@ def _apply_group_offloading_leaf_level(
|
||||
buffers=None,
|
||||
non_blocking=False,
|
||||
stream=None,
|
||||
cpu_param_dict=None,
|
||||
low_cpu_mem_usage=low_cpu_mem_usage,
|
||||
onload_self=True,
|
||||
)
|
||||
_apply_lazy_group_offloading_hook(module, unmatched_group, None)
|
||||
@@ -616,17 +652,6 @@ def _apply_lazy_group_offloading_hook(
|
||||
registry.register_hook(lazy_prefetch_hook, _LAZY_PREFETCH_GROUP_OFFLOADING)
|
||||
|
||||
|
||||
def _get_pinned_cpu_param_dict(module: torch.nn.Module) -> Dict[torch.nn.Parameter, torch.Tensor]:
|
||||
cpu_param_dict = {}
|
||||
for param in module.parameters():
|
||||
param.data = param.data.cpu().pin_memory()
|
||||
cpu_param_dict[param] = param.data
|
||||
for buffer in module.buffers():
|
||||
buffer.data = buffer.data.cpu().pin_memory()
|
||||
cpu_param_dict[buffer] = buffer.data
|
||||
return cpu_param_dict
|
||||
|
||||
|
||||
def _gather_parameters_with_no_group_offloading_parent(
|
||||
module: torch.nn.Module, modules_with_group_offloading: Set[str]
|
||||
) -> List[torch.nn.Parameter]:
|
||||
|
||||
@@ -546,6 +546,7 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
|
||||
num_blocks_per_group: Optional[int] = None,
|
||||
non_blocking: bool = False,
|
||||
use_stream: bool = False,
|
||||
low_cpu_mem_usage=False,
|
||||
) -> None:
|
||||
r"""
|
||||
Activates group offloading for the current model.
|
||||
@@ -584,7 +585,14 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
|
||||
f"open an issue at https://github.com/huggingface/diffusers/issues."
|
||||
)
|
||||
apply_group_offloading(
|
||||
self, onload_device, offload_device, offload_type, num_blocks_per_group, non_blocking, use_stream
|
||||
self,
|
||||
onload_device,
|
||||
offload_device,
|
||||
offload_type,
|
||||
num_blocks_per_group,
|
||||
non_blocking,
|
||||
use_stream,
|
||||
low_cpu_mem_usage=low_cpu_mem_usage,
|
||||
)
|
||||
|
||||
def save_pretrained(
|
||||
|
||||
Reference in New Issue
Block a user