Compare commits

...

5 Commits

Author SHA1 Message Date
yiyixuxu
7c55ef5000 up 2024-10-25 04:24:51 +02:00
yiyixuxu
0b76fea5dd up 2024-10-25 04:14:23 +02:00
yiyixuxu
e9e92d043d up 2024-10-25 02:02:46 +02:00
yiyixuxu
0a6189eb95 add 2024-10-25 01:02:46 +02:00
yiyixuxu
85a9825449 init 2024-10-24 18:12:44 +02:00

View File

@@ -0,0 +1,700 @@
# Copyright 2024 The Mochi team and The HuggingFace Team.
# All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from ...configuration_utils import ConfigMixin, register_to_config
from ...utils import logging
from ...utils.accelerate_utils import apply_forward_hook
from ..activations import get_activation
from ..modeling_utils import ModelMixin
from .vae import DecoderOutput
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
# YiYi to-do: replace this with nn.Conv3d
class Conv1x1(nn.Linear):
"""*1x1 Conv implemented with a linear layer."""
def __init__(self, in_features: int, out_features: int, *args, **kwargs):
super().__init__(in_features, out_features, *args, **kwargs)
def forward(self, x: torch.Tensor):
"""Forward pass.
Args:
x: Input tensor. Shape: [B, C, *] or [B, *, C].
Returns:
x: Output tensor. Shape: [B, C', *] or [B, *, C'].
"""
x = x.movedim(1, -1)
x = super().forward(x)
x = x.movedim(-1, 1)
return x
class MochiChunkedCausalConv3d(nn.Module):
r"""A 3D causal convolution layer that pads the input tensor to ensure causality in Mochi Model.
It also supports memory-efficient chunked 3D convolutions.
Args:
in_channels (`int`): Number of channels in the input tensor.
out_channels (`int`): Number of output channels produced by the convolution.
kernel_size (`int` or `Tuple[int, int, int]`): Kernel size of the convolutional kernel.
stride (`int` or `Tuple[int, int, int]`, defaults to `1`): Stride of the convolution.
padding_mode (`str`, defaults to `"replicate"`): Padding mode.
"""
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: Union[int, Tuple[int, int, int]],
stride: Union[int, Tuple[int, int, int]],
padding_mode: str = "replicate",
):
super().__init__()
if isinstance(kernel_size, int):
kernel_size = (kernel_size,) * 3
if isinstance(stride, int):
stride = (stride,) * 3
_, height_kernel_size, width_kernel_size = kernel_size
self.padding_mode = padding_mode
height_pad = (height_kernel_size - 1) // 2
width_pad = (width_kernel_size - 1) // 2
self.conv = nn.Conv3d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
dilation=(1, 1, 1),
padding=(0, height_pad, width_pad),
padding_mode=padding_mode,
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
time_kernel_size = self.conv.kernel_size[0]
context_size = time_kernel_size - 1
time_casual_padding = (0, 0, 0, 0, context_size, 0)
hidden_states = F.pad(hidden_states, time_casual_padding, mode=self.padding_mode)
# Memory-efficient chunked operation
memory_count = torch.prod(torch.tensor(hidden_states.shape)).item() * 2 / 1024**3
# YiYI Notes: testing only!! please remove
memory_count = 3
# YiYI Notes: this number 2 should be a config: max_memory_chunk_size (2 is 2GB)
if memory_count > 2:
part_num = int(memory_count / 2) + 1
num_frames = hidden_states.shape[2]
frames_idx = torch.arange(context_size, num_frames)
frames_chunks_idx = torch.chunk(frames_idx, part_num, dim=0)
output_chunks = []
for frames_chunk_idx in frames_chunks_idx:
frames_s = frames_chunk_idx[0] - context_size
frames_e = frames_chunk_idx[-1] + 1
frames_chunk = hidden_states[:, :, frames_s:frames_e, :, :]
output_chunk = self.conv(frames_chunk)
output_chunks.append(output_chunk) # Append each output chunk to the list
# Concatenate all output chunks along the temporal dimension
hidden_states = torch.cat(output_chunks, dim=2)
return hidden_states
else:
return self.conv(hidden_states)
class MochiChunkedGroupNorm3D(nn.Module):
r"""
Applies per-frame group normalization for 5D video inputs. It also supports memory-efficient chunked group
normalization.
Args:
num_channels (int): Number of channels expected in input
num_groups (int, optional): Number of groups to separate the channels into. Default: 32
affine (bool, optional): If True, this module has learnable affine parameters. Default: True
chunk_size (int, optional): Size of each chunk for processing. Default: 8
"""
def __init__(
self,
num_channels: int,
num_groups: int = 32,
affine: bool = True,
chunk_size: int = 8,
):
super().__init__()
self.norm_layer = nn.GroupNorm(num_channels=num_channels, num_groups=num_groups, affine=affine)
self.chunk_size = chunk_size
def forward(self, x: torch.Tensor = None) -> torch.Tensor:
batch_size, channels, num_frames, height, width = x.shape
x = x.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width)
output = torch.cat([self.norm_layer(chunk) for chunk in x.split(self.chunk_size, dim=0)], dim=0)
output = output.view(batch_size, num_frames, channels, height, width).permute(0, 2, 1, 3, 4)
return output
class MochiResnetBlock3D(nn.Module):
r"""
A 3D ResNet block used in the Mochi model.
Args:
in_channels (`int`):
Number of input channels.
out_channels (`int`, *optional*):
Number of output channels. If None, defaults to `in_channels`.
non_linearity (`str`, defaults to `"swish"`):
Activation function to use.
"""
def __init__(
self,
in_channels: int,
out_channels: Optional[int] = None,
act_fn: str = "swish",
):
super().__init__()
out_channels = out_channels or in_channels
self.in_channels = in_channels
self.out_channels = out_channels
self.nonlinearity = get_activation(act_fn)
self.norm1 = MochiChunkedGroupNorm3D(num_channels=in_channels)
self.conv1 = MochiChunkedCausalConv3d(
in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=1
)
self.norm2 = MochiChunkedGroupNorm3D(num_channels=out_channels)
self.conv2 = MochiChunkedCausalConv3d(
in_channels=out_channels, out_channels=out_channels, kernel_size=3, stride=1
)
def forward(
self,
inputs: torch.Tensor,
) -> torch.Tensor:
hidden_states = inputs
hidden_states = self.norm1(hidden_states)
hidden_states = self.nonlinearity(hidden_states)
hidden_states = self.conv1(hidden_states)
hidden_states = self.norm2(hidden_states)
hidden_states = self.nonlinearity(hidden_states)
hidden_states = self.conv2(hidden_states)
hidden_states = hidden_states + inputs
return hidden_states
class MochiUpBlock3D(nn.Module):
r"""
An upsampling block used in the Mochi model.
Args:
in_channels (`int`):
Number of input channels.
out_channels (`int`, *optional*):
Number of output channels. If None, defaults to `in_channels`.
num_layers (`int`, defaults to `1`):
Number of resnet blocks in the block.
temporal_expansion (`int`, defaults to `2`):
Temporal expansion factor.
spatial_expansion (`int`, defaults to `2`):
Spatial expansion factor.
"""
def __init__(
self,
in_channels: int,
out_channels: int,
num_layers: int = 1,
temporal_expansion: int = 2,
spatial_expansion: int = 2,
):
super().__init__()
self.temporal_expansion = temporal_expansion
self.spatial_expansion = spatial_expansion
resnets = []
for i in range(num_layers):
resnets.append(
MochiResnetBlock3D(
in_channels=in_channels,
)
)
self.resnets = nn.ModuleList(resnets)
self.proj = Conv1x1(
in_channels,
out_channels * temporal_expansion * (spatial_expansion**2),
)
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
) -> torch.Tensor:
r"""Forward method of the `MochiUpBlock3D` class."""
for resnet in self.resnets:
if self.training and self.gradient_checkpointing:
def create_custom_forward(module):
def create_forward(*inputs):
return module(*inputs)
return create_forward
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet),
hidden_states,
)
else:
hidden_states = resnet(hidden_states)
hidden_states = self.proj(hidden_states)
# Calculate new shape
B, C, T, H, W = hidden_states.shape
st = self.temporal_expansion
sh = self.spatial_expansion
sw = self.spatial_expansion
new_C = C // (st * sh * sw)
# Reshape and permute
hidden_states = hidden_states.view(B, new_C, st, sh, sw, T, H, W)
hidden_states = hidden_states.permute(0, 1, 5, 2, 6, 3, 7, 4)
hidden_states = hidden_states.contiguous().view(B, new_C, T * st, H * sh, W * sw)
if self.temporal_expansion > 1:
# Drop the first self.temporal_expansion - 1 frames.
hidden_states = hidden_states[:, :, self.temporal_expansion - 1 :]
return hidden_states
class MochiMidBlock3D(nn.Module):
r"""
A middle block used in the Mochi model.
Args:
in_channels (`int`):
Number of input channels.
num_layers (`int`, defaults to `3`):
Number of resnet blocks in the block.
"""
def __init__(
self,
in_channels: int, # 768
num_layers: int = 3,
):
super().__init__()
resnets = []
for _ in range(num_layers):
resnets.append(MochiResnetBlock3D(in_channels=in_channels))
self.resnets = nn.ModuleList(resnets)
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
) -> torch.Tensor:
r"""Forward method of the `MochiMidBlock3D` class."""
for resnet in self.resnets:
if self.training and self.gradient_checkpointing:
def create_custom_forward(module):
def create_forward(*inputs):
return module(*inputs)
return create_forward
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states)
else:
hidden_states = resnet(hidden_states)
return hidden_states
class MochiDecoder3D(nn.Module):
r"""
The `MochiDecoder3D` layer of a variational autoencoder that decodes its latent representation into an output
sample.
Args:
in_channels (`int`, *optional*):
The number of input channels.
out_channels (`int`, *optional*):
The number of output channels.
block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(128, 256, 512, 768)`):
The number of output channels for each block.
layers_per_block (`Tuple[int, ...]`, *optional*, defaults to `(3, 3, 4, 6, 3)`):
The number of resnet blocks for each block.
temporal_expansions (`Tuple[int, ...]`, *optional*, defaults to `(1, 2, 3)`):
The temporal expansion factor for each of the up blocks.
spatial_expansions (`Tuple[int, ...]`, *optional*, defaults to `(2, 2, 2)`):
The spatial expansion factor for each of the up blocks.
non_linearity (`str`, *optional*, defaults to `"swish"`):
The non-linearity to use in the decoder.
"""
def __init__(
self,
in_channels: int, # 12
out_channels: int, # 3
block_out_channels: Tuple[int, ...] = (128, 256, 512, 768),
layers_per_block: Tuple[int, ...] = (3, 3, 4, 6, 3),
temporal_expansions: Tuple[int, ...] = (1, 2, 3),
spatial_expansions: Tuple[int, ...] = (2, 2, 2),
act_fn: str = "swish",
):
super().__init__()
self.nonlinearity = get_activation(act_fn)
self.conv_in = nn.Conv3d(in_channels, block_out_channels[-1], kernel_size=(1, 1, 1))
self.block_in = MochiMidBlock3D(
in_channels=block_out_channels[-1],
num_layers=layers_per_block[-1],
)
self.up_blocks = nn.ModuleList([])
for i in range(len(block_out_channels) - 1):
up_block = MochiUpBlock3D(
in_channels=block_out_channels[-i - 1],
out_channels=block_out_channels[-i - 2],
num_layers=layers_per_block[-i - 2],
temporal_expansion=temporal_expansions[-i - 1],
spatial_expansion=spatial_expansions[-i - 1],
)
self.up_blocks.append(up_block)
self.block_out = MochiMidBlock3D(
in_channels=block_out_channels[0],
num_layers=layers_per_block[0],
)
self.conv_out = Conv1x1(block_out_channels[0], out_channels)
self.gradient_checkpointing = False
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
r"""Forward method of the `MochiDecoder3D` class."""
hidden_states = self.conv_in(hidden_states)
# 1. Mid
if self.training and self.gradient_checkpointing:
def create_custom_forward(module):
def create_forward(*inputs):
return module(*inputs)
return create_forward
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(self.block_in), hidden_states)
for up_block in self.up_blocks:
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(up_block), hidden_states)
else:
hidden_states = self.block_in(hidden_states)
for up_block in self.up_blocks:
hidden_states = up_block(hidden_states)
hidden_states = self.block_out(hidden_states)
hidden_states = self.nonlinearity(hidden_states)
hidden_states = self.conv_out(hidden_states)
return hidden_states
class AutoencoderKLMochi(ModelMixin, ConfigMixin):
r"""
A VAE model with KL loss for encoding images into latents and decoding latent representations into images. Used in
[Mochi 1 preview](https://github.com/genmoai/models).
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
for all models (such as downloading or saving).
Parameters:
in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
out_channels (int, *optional*, defaults to 3): Number of channels in the output.
block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`):
Tuple of block output channels.
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
scaling_factor (`float`, *optional*, defaults to `1.15258426`):
The component-wise standard deviation of the trained latent space computed using the first batch of the
training set. This is used to scale the latent space to have unit variance when training the diffusion
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
"""
_supports_gradient_checkpointing = True
_no_split_modules = ["MochiResnetBlock3D"]
@register_to_config
def __init__(
self,
out_channels: int = 3,
block_out_channels: Tuple[int] = (128, 256, 512, 768),
latent_channels: int = 12,
layers_per_block: Tuple[int, ...] = (3, 3, 4, 6, 3),
act_fn: str = "silu",
temporal_expansions: Tuple[int, ...] = (1, 2, 3),
spatial_expansions: Tuple[int, ...] = (2, 2, 2),
latents_mean: Tuple[float, ...] = (
-0.06730895953510081,
-0.038011381506090416,
-0.07477820912866141,
-0.05565264470995561,
0.012767231469026969,
-0.04703542746246419,
0.043896967884726704,
-0.09346305707025976,
-0.09918314763016893,
-0.008729793427399178,
-0.011931556316503654,
-0.0321993391887285,
),
latents_std: Tuple[float, ...] = (
0.9263795028493863,
0.9248894543193766,
0.9393059390890617,
0.959253732819592,
0.8244560132752793,
0.917259975397747,
0.9294154431013696,
1.3720942357788521,
0.881393668867029,
0.9168315692124348,
0.9185249279345552,
0.9274757570805041,
),
scaling_factor: float = 1.0,
):
super().__init__()
self.decoder = MochiDecoder3D(
in_channels=latent_channels,
out_channels=out_channels,
block_out_channels=block_out_channels,
layers_per_block=layers_per_block,
temporal_expansions=temporal_expansions,
spatial_expansions=spatial_expansions,
act_fn=act_fn,
)
self.use_slicing = False
self.use_tiling = False
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, MochiDecoder3D):
module.gradient_checkpointing = value
def enable_tiling(
self,
tile_sample_min_height: Optional[int] = None,
tile_sample_min_width: Optional[int] = None,
tile_overlap_factor_height: Optional[float] = None,
tile_overlap_factor_width: Optional[float] = None,
) -> None:
r"""
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
processing larger images.
Args:
tile_sample_min_height (`int`, *optional*):
The minimum height required for a sample to be separated into tiles across the height dimension.
tile_sample_min_width (`int`, *optional*):
The minimum width required for a sample to be separated into tiles across the width dimension.
tile_overlap_factor_height (`int`, *optional*):
The minimum amount of overlap between two consecutive vertical tiles. This is to ensure that there are
no tiling artifacts produced across the height dimension. Must be between 0 and 1. Setting a higher
value might cause more tiles to be processed leading to slow down of the decoding process.
tile_overlap_factor_width (`int`, *optional*):
The minimum amount of overlap between two consecutive horizontal tiles. This is to ensure that there
are no tiling artifacts produced across the width dimension. Must be between 0 and 1. Setting a higher
value might cause more tiles to be processed leading to slow down of the decoding process.
"""
self.use_tiling = True
self.tile_sample_min_height = tile_sample_min_height or self.tile_sample_min_height
self.tile_sample_min_width = tile_sample_min_width or self.tile_sample_min_width
self.tile_latent_min_height = int(
self.tile_sample_min_height / (2 ** (len(self.config.block_out_channels) - 1))
)
self.tile_latent_min_width = int(self.tile_sample_min_width / (2 ** (len(self.config.block_out_channels) - 1)))
self.tile_overlap_factor_height = tile_overlap_factor_height or self.tile_overlap_factor_height
self.tile_overlap_factor_width = tile_overlap_factor_width or self.tile_overlap_factor_width
def disable_tiling(self) -> None:
r"""
Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
decoding in one step.
"""
self.use_tiling = False
def enable_slicing(self) -> None:
r"""
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
"""
self.use_slicing = True
def disable_slicing(self) -> None:
r"""
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
decoding in one step.
"""
self.use_slicing = False
@apply_forward_hook
def decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
"""
Decode a batch of images.
Args:
z (`torch.Tensor`): Input batch of latent vectors.
return_dict (`bool`, *optional*, defaults to `True`):
Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
Returns:
[`~models.vae.DecoderOutput`] or `tuple`:
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
returned.
"""
if self.use_slicing and z.shape[0] > 1:
decoded_slices = [self.decoder(z_slice) for z_slice in z.split(1)]
decoded = torch.cat(decoded_slices)
else:
decoded = self.decoder(z)
if not return_dict:
return (decoded,)
return DecoderOutput(sample=decoded)
def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
blend_extent = min(a.shape[3], b.shape[3], blend_extent)
for y in range(blend_extent):
b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * (
y / blend_extent
)
return b
def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
blend_extent = min(a.shape[4], b.shape[4], blend_extent)
for x in range(blend_extent):
b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * (
x / blend_extent
)
return b
def tiled_decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
r"""
Decode a batch of images using a tiled decoder.
Args:
z (`torch.Tensor`): Input batch of latent vectors.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
Returns:
[`~models.vae.DecoderOutput`] or `tuple`:
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
returned.
"""
batch_size, num_channels, num_frames, height, width = z.shape
overlap_height = int(self.tile_latent_min_height * (1 - self.tile_overlap_factor_height))
overlap_width = int(self.tile_latent_min_width * (1 - self.tile_overlap_factor_width))
blend_extent_height = int(self.tile_sample_min_height * self.tile_overlap_factor_height)
blend_extent_width = int(self.tile_sample_min_width * self.tile_overlap_factor_width)
row_limit_height = self.tile_sample_min_height - blend_extent_height
row_limit_width = self.tile_sample_min_width - blend_extent_width
frame_batch_size = self.num_latent_frames_batch_size
# Split z into overlapping tiles and decode them separately.
# The tiles have an overlap to avoid seams between tiles.
rows = []
for i in range(0, height, overlap_height):
row = []
for j in range(0, width, overlap_width):
num_batches = max(num_frames // frame_batch_size, 1)
conv_cache = None
time = []
for k in range(num_batches):
remaining_frames = num_frames % frame_batch_size
start_frame = frame_batch_size * k + (0 if k == 0 else remaining_frames)
end_frame = frame_batch_size * (k + 1) + remaining_frames
tile = z[
:,
:,
start_frame:end_frame,
i : i + self.tile_latent_min_height,
j : j + self.tile_latent_min_width,
]
if self.post_quant_conv is not None:
tile = self.post_quant_conv(tile)
tile, conv_cache = self.decoder(tile, conv_cache=conv_cache)
time.append(tile)
row.append(torch.cat(time, dim=2))
rows.append(row)
result_rows = []
for i, row in enumerate(rows):
result_row = []
for j, tile in enumerate(row):
# blend the above tile and the left tile
# to the current tile and add the current tile to the result row
if i > 0:
tile = self.blend_v(rows[i - 1][j], tile, blend_extent_height)
if j > 0:
tile = self.blend_h(row[j - 1], tile, blend_extent_width)
result_row.append(tile[:, :, :, :row_limit_height, :row_limit_width])
result_rows.append(torch.cat(result_row, dim=4))
dec = torch.cat(result_rows, dim=3)
if not return_dict:
return (dec,)
return DecoderOutput(sample=dec)