Compare commits

..

162 Commits

Author SHA1 Message Date
Dhruv Nair
04131627bc update 2023-11-17 18:16:22 +00:00
Dhruv Nair
bbf3d270ab update 2023-11-17 17:59:34 +00:00
Dhruv Nair
7cd87b627c Merge branch 'main' into peft-pr-test-fix 2023-11-17 17:52:43 +00:00
Will Berman
2a84e8bb5a fix memory consistency decoder test (#5828)
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2023-11-17 09:31:01 -08:00
Lucain
c896b841e4 Set usedforsecurity=False in hashlib methods (FIPS compliance) (#5790)
* Set usedforsecurity=False in hashlib methods (FIPS compliance)

* update version dependency

* bump hfh version

* bump hfh version
2023-11-17 14:56:58 +01:00
Sayak Paul
69412d0a15 [Docs] add: japanese sdxl as a reference (#5844)
add: japanese sdxl as a reference
2023-11-17 18:14:02 +05:30
Patrick von Platen
913986afa5 Improve setup.py and add dependency check (#5826)
* put peft in requirements

* correct peft

* correct installs

* make style

* make style
2023-11-17 12:05:26 +01:00
Dhruv Nair
903e9874a4 install peft and accelerate from pypi 2023-11-17 05:48:56 +00:00
Steven Liu
ff573ae245 [docs] Fix title (#5831)
fix section title
2023-11-17 08:53:11 +05:30
M. Tolga Cangöz
c697f52476 [Docs] Update and make improvements (#5819)
Update and make improvements
2023-11-16 13:47:25 -08:00
Suraj Patil
a042909c83 LCM-LoRA docs (#5782)
* begin doc

* fix examples

* add in toctree

* fix toctree

* improve copy

* improve introductions

* add lcm doc

* fix filename

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* address Sayak's comments

* remove controlnet aux

* open in colab

* move to Specific pipeline examples

* update controlent and adapter examples

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-11-16 16:19:27 +01:00
Suraj Patil
64cbd8e27a Support LCM in ControlNet and Adapter pipelines. (#5822)
* support lcm

* fix tests

* fix tests
2023-11-16 14:59:50 +01:00
Aryan V S
038b42db94 Improve docs and type hints (#5759)
* improvement: docs and type hints

* improvement: docs and type hints

minor refactor

* improvement: docs and type hints

* update with suggestions from review

Co-Authored-By: Dhruv Nair <dhruv.nair@gmail.com>

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2023-11-16 14:00:32 +05:30
M. Tolga Cangöz
ecbe27a07f [Docs] Fix typos and update files at API's Pipelines page 2 (#5748)
* Fix typos, update, add Copyright info, and trim trailing whitespace

* Update docs/source/en/api/pipelines/text_to_video_zero.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* 1 second is not a long video, but 6 seconds is

* Update text_to_video_zero.md

* Update text_to_video_zero.md

* Update text_to_video_zero.md

* Update wuerstchen.md

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-11-15 10:54:55 -08:00
M. Tolga Cangöz
3ad4207d1f [Docs] Fix typos, update, and add visualizations at Using Diffusers' Pipelines for Inference Page (#5649)
* Fix typos, update, add visualizations

* Update sdxl.md

* Update controlnet.md

* Update docs/source/en/using-diffusers/shap-e.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/using-diffusers/shap-e.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update diffedit.md

* Update kandinsky.md

* Update sdxl.md

* Update controlnet.md

* Update docs/source/en/using-diffusers/controlnet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/using-diffusers/controlnet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update controlnet.md

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-11-15 10:30:01 -08:00
MilkClouds
3517fb9430 fix: enabled num_images_per_prompt>1 for lpw_stable_diffusion_xl (community pipeline) (#5807)
* fix: enabled num_images_per_prompt>1 for lpw_stable_diffusion_xl

* style: fixed isort
2023-11-15 07:40:29 -10:00
Dhruv Nair
cdadb023a2 Make Video Tests faster (#5787)
* update test

* update
2023-11-15 10:56:01 +05:30
M. Tolga Cangöz
51fd3dd206 [Docs] Remove .to('cuda') before .enable_model_cpu_offload() (#5795)
Remove .to('cuda') before cpu_offload, trim trailing whitespaces
2023-11-14 17:20:54 -08:00
Pedro Gabriel Gengo Lourenço
98457580c0 Fixed documentation of consistency decoder (#5768)
* Fixed doc for consistency decoder

* Style fix
2023-11-14 15:27:26 -08:00
M. Tolga Cangöz
3b37488fa3 Fix typos, improve, update at main-page files and .github files (#5588)
* Update keywords; remove version cuz it changes constantly?

* Update if necessary

* Fix typos and links

* version_range_max from PyTorch's setup.py; fix typos; 1 checklist is enough?

* Fix a typo

* Fix typos

* There is already a Blank issue link at the bottom of the page; direct to Diffusers' forum

* Add 🌐 Translating a New Language? page

* Update .github/ISSUE_TEMPLATE/translate.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update PHILOSOPHY.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update PHILOSOPHY.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update PHILOSOPHY.md

* Update PHILOSOPHY.md

* Update CONTRIBUTING.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update CONTRIBUTING.md

* Update CONTRIBUTING.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update PHILOSOPHY.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update PHILOSOPHY.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update README.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Add X account link

* Update setup.py

* Update CITATION.cff

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-11-14 11:46:52 -08:00
Kadir Nar
c7260ce253 🔧 Fix import codes in diffusers library (#5792)
* 🔧 Fix import codes in diffusers library

* Refactor imports in community examples
2023-11-14 11:37:59 -08:00
M. Tolga Cangöz
8092017d3f [Docs] Fix typos and update files at API's Pipelines page 1 (#5744)
* Fix typos, update, add Copyright info, and trim trailing whitespace

* Update alt_diffusion.md

* Remove nonoperational demo

* Update docs/source/en/api/pipelines/consistency_models.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/api/pipelines/latent_consistency_models.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-11-14 10:36:20 -08:00
Steven Liu
bae14c8bcb [docs] Update training docs (#5512)
* first draft

* try hfoption syntax

* fix hfoption id

* add text2image

* fix tag

* feedback

* feedbacks

* add textual inversion

* DreamBooth

* lora

* controlnet

* instructpix2pix

* custom diffusion

* t2i

* separate training methods and models

* sdxl

* kandinsky

* wuerstchen

* light edits
2023-11-14 10:29:56 -08:00
Sayak Paul
ded93f798c [Refactor] refactor loaders.py to make it cleaner and leaner. (#5771)
* refactor loaders.py to make it cleaner and leaner.

* refactor loaders init

* inits.

* textual inversion to the init.

* inits.

* remove certain modules from the main init.

* AttnProcsLayers

* fix imports

* avoid circular import.

* fix circular import pt 2.

* address PR comments

* imports

* fix: imports.

* remove from main init for avoiding circular deps.

* remove spurious deps.

* fix-copies.

* fix imports.

* more debug

* more debug

* Apply suggestions from code review

* Apply suggestions from code review

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-11-14 12:54:28 +01:00
Sayak Paul
a5720e9e31 [PixArt-Alpha] Fix PixArt-Alpha pipeline when number of images to generate is more than 1 (#5752)
* does this fix things?

* attention mask use

* attention mask order

* better masking.

* add: tesrt

* remove mask_featur

* test

* debug

* fix: tests

* deprecate mask_feature

* add deprecation test

* add slow test

* add print statements to retrieve the assertion values.

* fix for the 1024 fast tes

* fix tesy

* fix the remaining

* Apply suggestions from code review

* more debug

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-11-14 12:45:35 +01:00
Richard Löwenström
16d500455b Use greater than or equal to in version comparisons for peft (#5785) 2023-11-14 12:17:51 +01:00
Yusuke Suzuki
210a07b13c fix exception around NSFW filter on flax stable diffusion (#5675) 2023-11-14 12:16:52 +01:00
Patrick von Platen
0a0ebc7cb4 [LCM] Better error message (#5788) 2023-11-14 12:08:15 +01:00
Patrick von Platen
81df9c85de Unwrap models everywhere (#5789)
more debug
2023-11-14 12:08:03 +01:00
takuoko
bfe94a3993 [Enhacne] Support maybe_raise_or_warn for peft (#5653)
* Support maybe_raise_or_warn for peft

* fix by comment

* unwrap function
2023-11-14 11:40:35 +01:00
Lukas Kuhn
c9c5436c94 download_from_original_stable_diffusion_ckpt initializes correct default pipeline for SDXL (#5784)
* feat: sdxl will be automatically detected as pipeline_class

* fix: formatting

* fix: formatting with black

* fix: import pipeline wrongly sorted
2023-11-14 11:35:26 +01:00
Sourab Mangrulkar
9c8eca702c add lora delete feature (#5738)
* add lora delete feature

* added tests and changed condition

* deal with corner cases

* more corner cases

* rename to `delete_adapter_layers` for consistency

---------

Co-authored-by: younesbelkada <younesbelkada@gmail.com>
2023-11-14 10:51:13 +01:00
co63oc
069123f66e Update checkpoint_merger.py (#5780) 2023-11-14 10:46:11 +01:00
Sayak Paul
ed759f0aee [PixArt-Alpha] Introduce resolution binning (#5739)
* feat: add resolution binning

Co-authored-by: lawrence-cj <jschen@mail.dlut.edu.cn>

* rename

* debug

* add :test

* remove unused variable

* set resolution_binning to False.

---------

Co-authored-by: lawrence-cj <jschen@mail.dlut.edu.cn>
2023-11-14 08:34:59 +05:30
Long(Tony) Lian
5b231aa38b Fix the pipeline name in the examples for LMD+ pipeline. Add a colab link to pipeline README. (#5775)
* Fix the pipeline name in the examples for LMD+ pipeline

* Add LMD+ colab link

* Apply code formatting

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-11-14 07:43:37 +05:30
M. Tolga Cangöz
a359ff7644 [Docs] Fix typos and update files at API's Main Classes, Models, and Schedulers pages (#5720)
* Fix typos, update, add Copyright info, and trim trailing whitespaces

* Update docs/source/en/api/loaders.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/api/models/autoencoder_tiny.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/api/models/autoencoder_tiny.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-11-13 14:32:59 -08:00
Steven Liu
4b45a1e147 [docs] Use other checkpoints with inpaint (#5590)
* tip about inpaint checkpoints

* expand section

* feedback
2023-11-13 12:39:30 -08:00
Steven Liu
f782ca112a [docs] Callbacks (#5735)
* updates

* feedback
2023-11-13 12:11:07 -08:00
Steven Liu
80e78d2cac [docs] Custom community components (#5732)
* fixes

* feedback
2023-11-13 11:01:52 -08:00
JacobYuan7
4d3b4e00ed Update the reference for text_to_video.md (#5706)
* Update the reference for text_to_video.md

The original reference (VideoFusion) might be misleading. VideoFusion is not open-sourced. I am the co-first author of ModelScopeT2V. I change the referred paper to the right one.

* Update docs/source/en/api/pipelines/text_to_video.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-11-13 19:06:18 +01:00
Thuan H. Nguyen
8fcd52febb Correct code for distributed training of RealFill (#5740)
Correct code for distributed training
2023-11-13 19:01:15 +01:00
Nicolas Hug
0488810f61 Fix realfill example compatibility with latest torchvision version (#5736) 2023-11-13 18:55:17 +01:00
Patrick von Platen
ef7787ea59 make style 2023-11-13 18:54:53 +01:00
Jianqi Pan
1ce4b5f3e3 fix: fix forward function signature of controlnet reference_only pipeline example (#5717)
fix: ignore other args

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-11-13 18:54:21 +01:00
Kashif Rasul
c9f847a70f [Wuerstchen] fix for when USE_PEFT_BACKEND is True (#5704)
* fix for when USE_PEFT_BACKEND is True

* Update modeling_wuerstchen_prior.py

* revert change

* add lora tests
2023-11-13 18:37:55 +01:00
Younes Belkada
8789d0b6c7 fix styling issues on main (#5754)
fix styling issues
2023-11-13 20:05:15 +05:30
Long(Tony) Lian
b1fbef544c Add LLM-grounded Diffusion (LMD+) pipeline (#5634)
* Add LLM-grounded Diffusion (LMD+) pipeline

* Update the formatting

* Applied formatting
2023-11-11 12:51:05 +05:30
YiYi Xu
a3476d5bd6 Controlnet Img2img: pass height and width to image_processor.preprocess (#5665)
pass height and width to image_processor.preprocess

Co-authored-by: yiyixuxu <yixu310@gmail,com>
2023-11-10 06:53:20 -10:00
Sayak Paul
1477865e48 post release v0.23.0 (#5730)
* post release

* fix: variant test

* up

* fix: test
2023-11-10 16:35:44 +05:30
aihao
1f87f83e68 add load_datasete data_dir parameter (#5747) 2023-11-09 23:03:14 -10:00
Sayak Paul
77ba494b29 [ConsistencyDecoder] fix: doc type (#5745)
fix: doc type
2023-11-10 14:05:22 +05:30
Garry Dolley
1328aeb274 [Docs] Clarify that these are two separate examples (#5734)
* [Docs] Running the pipeline twice does not appear to be the intention of these examples

One is with `cross_attention_kwargs` and the other (next line) removes it

* [Docs] Clarify that these are two separate examples

One using `scale` and the other without it
2023-11-09 14:26:14 -08:00
M. Tolga Cangöz
53a8439fd1 [Docs] Fix typos and update files at Optimization Page (#5674)
* Fix typos, update, trim trailing whitespace

* Trim trailing whitespaces

* Update docs/source/en/optimization/memory.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/optimization/memory.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update _toctree.yml

* Update adapt_a_model.md

* Reverse

* Reverse

* Reverse

* Update dreambooth.md

* Update instructpix2pix.md

* Update lora.md

* Update overview.md

* Update t2i_adapters.md

* Update text2image.md

* Update text_inversion.md

* Update create_dataset.md

* Update create_dataset.md

* Update create_dataset.md

* Update create_dataset.md

* Update coreml.md

* Delete docs/source/en/training/create_dataset.md

* Original create_dataset.md

* Update create_dataset.md

* Delete docs/source/en/training/create_dataset.md

* Add original file

* Delete docs/source/en/training/create_dataset.md

* Add original one

* Delete docs/source/en/training/text2image.md

* Delete docs/source/en/training/instructpix2pix.md

* Delete docs/source/en/training/dreambooth.md

* Add original files

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-11-09 13:48:57 -08:00
Suraj Patil
db2d8e76f8 Add LCM Scripts (#5727)
* add lcm scripts

* Co-authored-by: dgu8957@gmail.com
2023-11-09 17:29:12 +01:00
Sayak Paul
bc2ba004c6 [LCM] add: locm docs. (#5723)
* add: locm docs.

* correct path

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* up

* add

---------

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-11-09 17:21:26 +01:00
Patrick von Platen
3d7eaf83d7 LCM Add Tests (#5707)
* lcm add tests

* uP

* Fix all

* uP

* Add

* all

* uP

* uP

* uP

* uP

* uP

* uP

* uP
2023-11-09 15:45:11 +01:00
Patrick von Platen
bf406ea886 Correct consist dec (#5722)
* uP

* Update src/diffusers/models/consistency_decoder_vae.py

* uP

* uP
2023-11-09 13:10:24 +01:00
Will Berman
2fd46405cd consistency decoder (#5694)
* consistency decoder

* rename

* Apply suggestions from code review

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update src/diffusers/pipelines/consistency_models/pipeline_consistency_models.py

* uP

* Apply suggestions from code review

* uP

* uP

* uP

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-11-09 12:21:41 +01:00
Dhruv Nair
43346adc1f Install accelerate from PyPI in PR test runner (#5721)
install acclerate from pypi
2023-11-09 15:38:00 +05:30
takuoko
6110d7c95f [Bugfix] fix error of peft lora when xformers enabled (#5697)
* bugfix peft lor

* Apply suggestions from code review

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-11-08 22:55:36 +01:00
Dhruv Nair
65ef7a0c5c Fix prompt bug in AnimateDiff (#5702)
* fix prompt bug

* add test
2023-11-08 21:49:09 +01:00
apolinário
6e68c71503 Add adapter fusing + PEFT to the docs (#5662)
* Add adapter fusing + PEFT to the docs

* Update docs/source/en/tutorials/using_peft_for_inference.md

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update docs/source/en/tutorials/using_peft_for_inference.md

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update docs/source/en/tutorials/using_peft_for_inference.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/tutorials/using_peft_for_inference.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/tutorials/using_peft_for_inference.md

* Update docs/source/en/tutorials/using_peft_for_inference.md

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-11-08 18:26:53 +01:00
Patrick von Platen
17528afcba Fix styling issues (#5699)
* up

* up

* up

* Empty-Commit

* fix keyword argument call.

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-11-08 17:49:06 +05:30
Sayak Paul
78be400761 [PixArt-Alpha] fix mask feature condition. (#5695)
* fix mask feature condition.

* debug

* remove identical test

* set correct

* Empty-Commit
2023-11-08 17:42:46 +05:30
Patrick von Platen
c803a8f8c0 [LCM] Fix img2img (#5698)
* [LCM] Fix img2img

* make fix-copies

* make fix-copies

* make fix-copies

* up
2023-11-08 11:51:46 +01:00
Philipp Hasper
d384265df7 Fixed is_safetensors_compatible() handling of windows path separators (#5650)
Closes #4665
2023-11-08 11:51:15 +01:00
Kirill
11c125667b Fix the misaligned pipeline usage in dreamshaper docstrings (#5700)
Fix the misaligned pipeline usage
2023-11-08 11:49:03 +01:00
YiYi Xu
69996938cf speed up Shap-E fast test (#5686)
skip rendering

Co-authored-by: yiyixuxu <yixu310@gmail,com>
2023-11-08 11:43:20 +01:00
Chi
9ae90593c0 Replacing the nn.Mish activation function with a get_activation function. (#5651)
* I added a new doc string to the class. This is more flexible to understanding other developers what are doing and where it's using.

* Update src/diffusers/models/unet_2d_blocks.py

This changes suggest by maintener.

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update src/diffusers/models/unet_2d_blocks.py

Add suggested text

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update unet_2d_blocks.py

I changed the Parameter to Args text.

* Update unet_2d_blocks.py

proper indentation set in this file.

* Update unet_2d_blocks.py

a little bit of change in the act_fun argument line.

* I run the black command to reformat style in the code

* Update unet_2d_blocks.py

similar doc-string add to have in the original diffusion repository.

* I removed the dummy variable defined in both the encoder and decoder.

* Now, I run black package to reformat my file

* Remove the redundant line from the adapter.py file.

* Black package using to reformated my file

* Replacing the nn.Mish activation function with a get_activation function allows developers to more easily choose the right activation function for their task. Additionally, removing redundant variables can improve code readability and maintainability.

* I try to fix this: Fast tests for PRs / Fast PyTorch Models & Schedulers CPU tests (pull_request)

* Update src/diffusers/models/resnet.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2023-11-08 07:58:21 +05:30
M. Tolga Cangöz
7942bb8dc2 [Docs] Fix typos, improve, update at Using Diffusers' Task page (#5611)
* Fix typos, improve, update; kandinsky doesn't want fp16 due to deprecation; ogkalu and kohbanye don't have safetensor; add make_image_grid for better visualization

* Update inpaint.md

* Remove erronous Space

* Update docs/source/en/using-diffusers/conditional_image_generation.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update img2img.md

* load_image() already converts to RGB

* Update depth2img.md

* Update img2img.md

* Update inpaint.md

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-11-07 15:42:20 -08:00
dg845
aab6de22c3 Improve LCMScheduler (#5681)
* Refactor LCMScheduler.step such that prev_sample == denoised at the last timestep in the schedule.

* Make timestep scaling when calculating boundary conditions configurable.

* Reparameterize timestep_scaling to be a multiplicative rather than division scaling.

* make style

* fix dtype conversion

* make style

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-11-07 18:48:18 +01:00
Sayak Paul
1dc231d14a [PixArt-Alpha] Support non-square images (#5672)
* debug

* support non-square images

* add: test

* fix: test

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-11-07 18:21:33 +01:00
Sayak Paul
84cd9e8d01 Make sure DDPM and diffusers can be used without Transformers (#5668)
* fix: import bug

* fix

* fix

* fix import utils for lcm

* fix: pixart alpha init

* Fix

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-11-07 17:38:12 +01:00
Sayak Paul
a8523bffa8 [PixArt-Alpha] fix mask_feature so that precomputed embeddings work with a batch size > 1 (#5677)
* fix embeds

* remove todo

* add: test

* better name
2023-11-07 17:12:47 +01:00
Dhruv Nair
97c8199dbb Explicit torch/flax dependency check (#5673)
* explicit torch dependency check

* update

* update

* update
2023-11-07 16:38:20 +01:00
Dhruv Nair
414d7c4991 Fix Basic Transformer Block (#5683)
* fix

* Update src/diffusers/models/attention.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-11-07 16:36:49 +01:00
Dhruv Nair
8ca179a0a9 Update free model hooks (#5680)
update free model hooks
2023-11-07 20:50:57 +05:30
Dhruv Nair
71f56c771a Model tests xformers fixes (#5679)
* fix model xformers test

* update
2023-11-07 20:50:41 +05:30
Dhruv Nair
6a89a6c93a Update custom diffusion attn processor (#5663)
update custom diffusion attn processor
2023-11-07 12:46:38 +05:30
Beinsezii
9bafef34bd Add Pixart to AUTO_TEXT2IMAGE_PIPELINES_MAPPING (#5664) 2023-11-07 07:45:56 +05:30
Sayak Paul
64603389da post release (v0.22.0) (#5658)
post release
2023-11-06 16:23:38 +01:00
Patrick von Platen
f05d75c076 [Custom Pipelines] Make sure that community pipelines can use repo revision (#5659)
fix custom pipelines
2023-11-06 15:11:48 +01:00
Sayak Paul
aec3de8bdb correct pipeline class name (#5652) 2023-11-06 14:08:27 +05:30
Sayak Paul
d61889fc17 [Feat] PixArt-Alpha (#5642)
* init pixart alpha pipeline

* fix: import

* script

* script

* script

* add: vae to the pipeline

* add: vae_scale_factor

* add: checkpoint_path

* clean conversion script a bit.

* size embeddings.

* fix: size embedding

* update scrip

* support for interpolation of position embedding.

* support for conditioning.

* ..

* ..

* ..

* final layer

* final layer

* align if encode_prompt

* support for caption embedding

* refactor

* refactor

* refactor

* start cross attention

* start cross attention

* cross_attention_dim

* cross

* cross

* support for resolution and aspect_ratio

* support for caption projection

* refactor patch embeddings

* batch_size

* up

* commit

* commit

* commit.

* squeeze

* squeeze

* squeeze

* squeeze

* squeeze

* squeeze

* squeeze

* squeeze

* squeeze

* squeeze

* squeeze

* squeeze.

* squeeze.

* fix final block./

* fix final block./

* fix final block./

* clean

* fix: interpolation scale.

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* make --checkpoint_path non-required.

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* remove num_tokens

* timesteps -> timestep

* timesteps -> timestep

* timesteps -> timestep

* timesteps -> timestep

* timesteps -> timestep

* timesteps -> timestep

* debug

* debug

* update conversion script.

* update conversion script.

* update conversion script.

* debug

* debug

* debug

* clean

* debug

* debug

* debug

* debug

* debug

* debug

* debug

* debug

* deug

* debug

* debug

* debug

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* clean

* fix

* fix

* boom

* boom

* some changes

* boom

* save

* up

* remove i

* fix more tests

* DPMSolverMultistepScheduler

* fix

* offloading

* fix conversion script

* fix conversion script

* remove print

* remove support for negative prompt embeds.

* typo.

* remove extra kwargs

* bring conversion script to where it was

* fix

* trying mu luck

* trying my luck again

* again

* again

* again

* clean up

* up

* up

* update example

* support for 512

* remove spacing

* finalize docs.

* test debug

* fix: assertion values.

* debug

* debug

* debug

* fix: repeat

* remove prints.

* Apply suggestions from code review

* Apply suggestions from code review

* Correct more

* Apply suggestions from code review

* Change all

* Clean more

* fix more

* Fix more

* Fix more

* Correct more

* address patrick's comments.

* remove unneeded args

* clean up pipeline.

* sty;e

* make the use of additional conditions better conditioned.

* None better

* dtype

* height and width validation

* add a note about size brackets.

* fix

* spit out slow test outputs.

* fix?

* fix optional test

* fix more

* remove unneeded comment

* debug

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-11-06 08:40:04 +01:00
YiYi Xu
2b23ec82e8 add callbacks to denoising step (#5427)
* draft1

* update

* style

* move to the end of loop

* update

* update callbak_on_step_end_inputs

* Revert "update"

This reverts commit 5f9b153183.

* Revert "update callbak_on_step_end_inputs"

This reverts commit 44889f4dab.

* update

* update test required_optional_params

* remove self.lora_scale

* img2img

* inpaint

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* fix

* apply feedbacks on img2img + inpaint: keep only important pipeline attributes

* depth

* pix2pix

* make _callback_tensor_inputs an class variable so that we can use it for testing

* add a basic tst for callback

* add a read-only tensor input timesteps + fix tests

* add second test for callback cfg

* sdxl

* sdxl img2img

* sdxl inpaint

* kandinsky prior

* kandinsky decoder

* kandinsky img2img + combined

* kandinsky inpaint

* fix copies

* fix

* consistent default inputs

* fix copies

* wuerstchen_prior prior

* test_wuerstchen_decoder + fix test for prior

* wuerstchen_combined pipeline + skip tests

* skip test for kandinsky combined

* lcm

* remove timesteps etc

* add doc string

* copies

* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* make style and improve tests

* up

* up

* fix more

* fix cfg test

* tests for callbacks

* fix for real

* update

* lcm img2img

* add doc

* add doc page to index

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2023-11-05 20:00:41 +01:00
Chi
080081bded Remove the redundant line from the adapter.py file. (#5618)
* I added a new doc string to the class. This is more flexible to understanding other developers what are doing and where it's using.

* Update src/diffusers/models/unet_2d_blocks.py

This changes suggest by maintener.

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update src/diffusers/models/unet_2d_blocks.py

Add suggested text

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update unet_2d_blocks.py

I changed the Parameter to Args text.

* Update unet_2d_blocks.py

proper indentation set in this file.

* Update unet_2d_blocks.py

a little bit of change in the act_fun argument line.

* I run the black command to reformat style in the code

* Update unet_2d_blocks.py

similar doc-string add to have in the original diffusion repository.

* I removed the dummy variable defined in both the encoder and decoder.

* Now, I run black package to reformat my file

* Remove the redundant line from the adapter.py file.

* Black package using to reformated my file

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2023-11-03 22:02:36 -10:00
Sayak Paul
dd9a5caf61 [Core] support for tiny autoencoder in img2img (#5636)
* support for tiny autoencoder in img2img

Co-authored-by: slep0v <37597789+slep0v@users.noreply.github.com>

* copy fix

* line space

* line space

* clean up

* spit out expected value

* spit out expected value

* assertion values.

* assertion values.

---------

Co-authored-by: slep0v <37597789+slep0v@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-11-03 15:31:53 +01:00
M. Tolga Cangöz
a35e72b032 [Docs] Fix typos, improve, update at Using Diffusers' Tecniques page (#5627)
Fix typos, improve, update; better visualization
2023-11-03 13:51:41 +01:00
dg845
beb8f216ed Clean up LCM Pipeline and Test Code. (#5641)
* Clean up LCM pipeline and pipeline test code.

* Add comment for LCM img2img sampling loop.
2023-11-03 13:50:48 +01:00
Ryan Dick
7ad70cee74 Model loading speed optimization (#5635)
Move unchanging operation out of loop for speed benefit.
2023-11-03 13:48:13 +01:00
Sayak Paul
60c5eb5877 [Easy] clean up the LCM docstrings. (#5637)
* clean up the LCM docstrings.

* clean up

* fix: examples

* Apply suggestions from code review
2023-11-03 12:14:48 +01:00
YiYi Xu
d122206466 fix a bug in AutoPipeline.from_pipe() when creating a controlnet pipeline from an existing controlnet (#5638)
fix

Co-authored-by: yiyixuxu <yixu310@gmail,com>
2023-11-03 12:14:19 +01:00
Sayak Paul
c84982a804 [Easy] Minor AnimateDiff Doc nits (#5640)
minor
2023-11-03 16:27:54 +05:30
Dhruv Nair
84e7bb875d Update animatediff docs to include section on Motion LoRAs (#5639)
update animatediff docs
2023-11-03 15:53:59 +05:30
Patrick von Platen
072e00897a [LCM] Make sure img2img works (#5632)
* [LCM] Clean up implementations

* Add all

* correct more

* correct more

* finish

* up
2023-11-02 19:50:47 +01:00
M. Tolga Cangöz
b91d5ddd1a [Docs] Fix typos, improve, update at Using Diffusers' Loading & Hub page (#5584)
* Fix typos, improve, update

* Change to trending and apply some Grammarly fixes

* Grammarly fixes

* Update loading_adapters.md

* Update loading_adapters.md

* Update other-formats.md

* Update push_to_hub.md

* Update loading_adapters.md

* Update loading.md

* Update docs/source/en/using-diffusers/push_to_hub.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update schedulers.md

* Update docs/source/en/using-diffusers/loading.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/using-diffusers/loading_adapters.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update A1111 LoRA files part

* Update other-formats.md

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-11-02 11:05:43 -07:00
Dhruv Nair
2a8cf8e39f Animatediff Proposal (#5413)
* draft design

* clean up

* clean up

* clean up

* clean up

* clean up

* clean  up

* clean up

* clean up

* clean up

* update pipeline

* clean up

* clean up

* clean up

* add tests

* change motion block

* clean up

* clean up

* clean up

* update

* update

* update

* update

* update

* update

* update

* update

* clean up

* update

* update

* update model test

* update

* update

* update

* update

* make style

* update

* fix embeddings

* update

* merge upstream

* max fix copies

* fix bug

* fix mistake

* add docs

* update

* clean up

* update

* clean up

* clean up

* fix docstrings

* fix docstrings

* update

* update

* clean  up

* update
2023-11-02 15:04:03 +01:00
M. Tolga Cangöz
9ced7844da [Docs] Fix typos, improve, update at Conceptual Guides page (#5585)
* Fix typos, improve, update

* Update docs/source/en/conceptual/contribution.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/conceptual/contribution.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/conceptual/philosophy.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update philosophy.md

* Update philosophy.md

* Update docs/source/en/conceptual/philosophy.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/using-diffusers/controlling_generation.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/using-diffusers/controlling_generation.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Remove e.g.; some Grammarly fixes

* Update docs/source/en/conceptual/philosophy.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update contribution.md

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-11-02 12:55:23 +01:00
Patrick von Platen
9723f8a557 [Tests] Fix cpu offload test (#5626)
* fix more

* fix more
2023-11-02 12:49:58 +01:00
Sayak Paul
b81f709fb6 [remote code] document trust remote code. (#5620)
document trust remote code.
2023-11-02 12:02:31 +01:00
Steven Liu
75ea54a151 [docs] Kandinsky guide (#4555)
* kandinsky 2.1 first draft

* add kandinsky 2.2

* fix identical section headers

* try hfoptions syntax

* add img2img

* add inpaint

* add interpolate

* fix tag

* more cleanups

* typo

* update hfoptions id

* align hfoptions tags
2023-11-01 15:36:22 -07:00
Patrick von Platen
c0f0582651 [SDXL Adapter] Revert load lora (#5615)
* fix

* fix
2023-11-01 22:18:58 +01:00
M. Tolga Cangöz
b81c69e489 [Docs] Fix typos, improve, update at Get Started page (#5587)
* Fix typos, improve, update

* Update _toctree.yml

* Update docs/README.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/README.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Apply Grammarly fixes

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-11-01 22:11:57 +01:00
Younes Belkada
02ba50c610 [PEFT / LoRA] Fix civitai bug when network alpha is an empty dict (#5608)
* fix civitai bug

* add test

* up

* fix test

* added slow test.

* style

* Update src/diffusers/utils/peft_utils.py

Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>

* Update src/diffusers/utils/peft_utils.py

---------

Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>
2023-11-01 22:08:22 +01:00
Patrick von Platen
4f2bf67355 Revert "Fix the order of width and height of original size in SDXL training script" (#5614)
Revert "Fix the order of width and height of original size in SDXL training script (#5382)"

This reverts commit 45db049973.
2023-11-01 22:04:47 +01:00
Chi
29cf163b95 Remove Redundant Variables from Encoder and Decoder (#5569)
* I added a new doc string to the class. This is more flexible to understanding other developers what are doing and where it's using.

* Update src/diffusers/models/unet_2d_blocks.py

This changes suggest by maintener.

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update src/diffusers/models/unet_2d_blocks.py

Add suggested text

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update unet_2d_blocks.py

I changed the Parameter to Args text.

* Update unet_2d_blocks.py

proper indentation set in this file.

* Update unet_2d_blocks.py

a little bit of change in the act_fun argument line.

* I run the black command to reformat style in the code

* Update unet_2d_blocks.py

similar doc-string add to have in the original diffusion repository.

* I removed the dummy variable defined in both the encoder and decoder.

* Now, I run black package to reformat my file

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2023-11-01 21:50:33 +01:00
Patrick von Platen
839c2a5ece fix 2023-11-01 21:39:30 +01:00
ilisparrow
5712c3d2ef [Core] enable lora for sdxl adapters too and add slow tests. (#5555)
* Enable lora for sdxl adapters too.

Issue #5516

* fix: assertion values.

* Use numpy_cosine_similarity_distance on the arrays

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* Use numpy_cosine_similarity_distance on the arrays

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* Changed imports orders to pass tests

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

---------

Co-authored-by: Ilias A <iliasamri00@gmail.com>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-11-01 21:25:38 +01:00
clarencechen
151998e1c2 Update final CPU offloading code for more diffusion pipelines (#5589)
* Update final model offload for more pipelines

Add test to ensure all pipeline components are returned to CPU after
execution with model offloading

* Add comment to explain early UNet offload in Text-to-Video pipeline

* Style
2023-11-01 21:22:56 +01:00
Steven Liu
d1eb14bc35 [docs] Lu lambdas (#5602)
lu lambdas
2023-11-01 11:47:11 -07:00
M. Tolga Cangöz
5c75a5fbc4 [Docs] Fix typos, improve, update at Tutorials page (#5586)
* Fix typos, improve, update

* Update autopipeline.md

* Update docs/source/en/tutorials/using_peft_for_inference.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/tutorials/using_peft_for_inference.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/tutorials/using_peft_for_inference.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-11-01 10:40:47 -07:00
M. Tolga Cangöz
442017ccc8 [Docs] Fix typos (#5583)
* Add Copyright info

* Fix typos, improve, update

* Update deepfloyd_if.md

* Update ldm3d_diffusion.md

* Update opt_overview.md
2023-10-31 10:04:08 -07:00
Dhruv Nair
f1d052c5b8 Update docker image for xformers (#5597)
update docker image for xformers
2023-10-31 15:02:10 +05:30
YiYi Xu
ce9484b139 fix a mistake in text2image training script for kandinsky2.2 (#5244)
fix

Co-authored-by: yiyixuxu <yixu@Yis-MacBook-Pro.local>
2023-10-30 23:06:16 -10:00
Jincheng Miao
ed00ead345 [Community Pipelines] add textual inversion support for stable_diffusion_ipex (#5571) 2023-10-31 11:54:16 +05:30
TimothyAlexisVass
f0b2f6ce05 Fix divide by zero RuntimeWarning (#5543) 2023-10-31 11:39:08 +05:30
Younes Belkada
32fea1cc9b [core / PEFT ]Bump transformers min version for PEFT integration (#5579)
Update constants.py
2023-10-30 19:35:46 +01:00
Aryan V S
bb46be2f18 Fix incorrect loading of custom pipeline (#5568)
* update

* update

* update

* update
2023-10-30 19:32:11 +01:00
Cheng Lu
ac7b1716b7 Stabilize DPM++, especially for SDXL and SDE-DPM++ (#5541)
* stabilize dpmpp for sdxl by using euler at the final step

* add lu's uniform logsnr time steps

* add test

* fix check_copies

* fix tests

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-10-30 06:36:53 -10:00
Peter @sHTiF Stefcek
3fc10ded00 add fix to be able use StableDiffusionXLAdapterPipeline.from_single_file (#5547) 2023-10-30 16:46:44 +01:00
Thuan H. Nguyen
5b087e82d1 Add realfill (#5456)
* Add realfill

* Move realfill folder

* Fix some format issues
2023-10-30 15:21:40 +01:00
Younes Belkada
8f3100db9f [PEFT / Tests] Add peft slow tests on push (#5419)
* add peft slow tests workflow

* Update .github/workflows/push_tests.yml

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-10-30 14:27:00 +01:00
Patrick von Platen
3ec828d6dd Fix moved _expand_mask function (#5581)
* finish

* finish
2023-10-30 14:25:31 +01:00
Gabriel de Souza
9135e54e76 docs: initial pt translation (#5549)
* docs: initial pt translation

* docs: add pt build to github workflow and fix some missing translations
2023-10-27 10:51:35 -07:00
jiaqiw09
e140c0562e fix error reported 'find_unused_parameters' running in mutiple GPUs (#5355)
* fix error reported 'find_unused_parameters' running in mutiple GPUs or NPUs

* fix code check of importing module by its alphabetic order

---------

Co-authored-by: jiaqiw <wangjiaqi50@huawei.com>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2023-10-27 22:49:14 +05:30
Steven Liu
595ba6f786 [docs] Internal classes API (#5513)
* internal classes api

* add internal class overview

* fix toctree
2023-10-27 09:48:41 -07:00
Sayak Paul
798591346d [Core] fix FreeU disable method (#5552)
* disable freeu debug

* debug

* potentially fix.

* finish

* manually remove the spaces

* remove tab
2023-10-27 21:29:11 +05:30
YiYi Xu
f912f39b50 correct checkpoint in kandinsky2.2 doc page (#5550)
update checkpoint

Co-authored-by: yiyixuxu <yixu310@gmail,com>
2023-10-27 08:49:15 +05:30
nickkolok
0d4b459be6 Update train_dreambooth.py - fix typos (#5539) 2023-10-26 13:35:05 -07:00
Patrick von Platen
cee1cd6e9c [Remote code] Add functionality to run remote models, schedulers, pipelines (#5472)
* upload custom remote poc

* up

* make style

* finish

* better name

* Apply suggestions from code review

* Update tests/pipelines/test_pipelines.py

* more fixes

* remove ipdb

* more fixes

* fix more

* finish tests

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-10-26 17:11:49 +02:00
p1kit
5b448a5e5d [Tests] Optimize test configurations for faster execution (#5535)
Optimize test configurations for faster execution
2023-10-26 16:02:34 +05:30
Patrick von Platen
a69ebe5527 [Tests] Speed up expert of mixture tests (#5533)
* [Tests] Speed up expert of mixture tests

* make style
2023-10-26 09:42:27 +02:00
Chi
ce7f334472 Remove multiple if-else statement in the get_activation function. (#5446)
* I added a new doc string to the class. This is more flexible to understanding other developers what are doing and where it's using.

* Update src/diffusers/models/unet_2d_blocks.py

This changes suggest by maintener.

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update src/diffusers/models/unet_2d_blocks.py

Add suggested text

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update unet_2d_blocks.py

I changed the Parameter to Args text.

* Update unet_2d_blocks.py

proper indentation set in this file.

* Update unet_2d_blocks.py

a little bit of change in the act_fun argument line.

* I run the black command to reformat style in the code

* Update unet_2d_blocks.py

similar doc-string add to have in the original diffusion repository.

* I use a lower method in the activation function.

* Replace multiple if-else statements with a dictionary of activation functions, and call one if statement to retrieve the appropriate function.

* I am using black package to reforamted my file

* I defined the ACTIVATION_FUNCTIONS variable outside of the function

* activation function variable convert to lower case

* First, I resolved the conflict issue. Then, I ran the Black package to reformat my file.

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-10-26 09:36:30 +05:30
Ran Ran
8959c5b9de Add from_pt flag to enable model from PT (#5501)
* Add from_pt flag to enable model from PT

* Format the file

* Reformat the file
2023-10-25 23:07:34 +02:00
Steven Liu
bc8a08f67c [docs] Loader docs (#5473)
* first draft

* make fix-copies

* add peft section

* manual fix

* make fix-copies again

* manually revert changes to other files
2023-10-25 09:45:05 -07:00
Yi-Xuan XU
dbce14da56 fix a bug on torch_dtype argument in from_single_file of ControlNetModel (#5528)
fix wrong parameter
2023-10-25 17:29:56 +02:00
RampagingSloth
71ad02607d Fix missing punctuation in PHILOSOPHY.md (#5530)
Fix missing punctuation.
2023-10-25 17:29:34 +02:00
Patrick von Platen
dd981256ad make fix-copies 2023-10-25 17:19:38 +02:00
Aryan V S
0c9f174d59 Improve typehints and docs in diffusers/models (#5391)
* improvement: add typehints and docs to src/diffusers/models/attention_processor.py

* improvement: add typehints and docs to src/diffusers/models/vae.py

* improvement: add missing docs in src/diffusers/models/vq_model.py

* improvement: add typehints and docs to src/diffusers/models/transformer_temporal.py

* improvement: add typehints and docs to src/diffusers/models/t5_film_transformer.py

* improvement: add type hints to src/diffusers/models/unet_1d_blocks.py

* improvement: add missing type hints to src/diffusers/models/unet_2d_blocks.py

* fix: CI error (make fix-copies required)

* fix: CI error (make fix-copies required again)

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2023-10-25 17:19:15 +02:00
Patrick von Platen
d420d71398 make style 2023-10-25 16:12:14 +02:00
Logan
a1fad8286f Add a new community pipeline (#5477)
* Add a new community pipeline

examples/community/latent_consistency_img2img.py

which can be called like this

import torch
from diffusers import DiffusionPipeline

pipe = DiffusionPipeline.from_pretrained(
                "SimianLuo/LCM_Dreamshaper_v7", custom_pipeline="latent_consistency_txt2img", custom_revision="main")

            # To save GPU memory, torch.float16 can be used, but it may compromise image quality.
pipe.to(torch_device="cuda", torch_dtype=torch.float32)

img2img=LatentConsistencyModelPipeline_img2img(
    vae=pipe.vae,
    text_encoder=pipe.text_encoder,
    tokenizer=pipe.tokenizer,
    unet=pipe.unet,
    #scheduler=pipe.scheduler,
    scheduler=None,
    safety_checker=None,
    feature_extractor=pipe.feature_extractor,
    requires_safety_checker=False,
)

img = Image.open("thisismyimage.png")

result = img2img(prompt,img,strength,num_inference_steps=4)

* Apply suggestions from code review

Fix name formatting for scheduler

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* update readme (and run formatter on latent_consistency_img2img.py)

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-10-25 16:11:56 +02:00
Patrick von Platen
dc943eb99d [Schedulers] Fix 2nd order other than heun (#5526)
* [Schedulers] Fix 2nd order other than heun

* Apply suggestions from code review
2023-10-25 14:39:56 +02:00
YiYi Xu
0fc25715a1 fix a bug in 2nd order schedulers when using in ensemble of experts config (#5511)
* fix

* fix copies

* remove heun from tests

* add back heun and fix the tests to include 2nd order

* fix the other test too

* Apply suggestions from code review

* Apply suggestions from code review

* Apply suggestions from code review

* make style

* add more comments

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-10-25 12:34:05 +02:00
AnyISalIn
de71fa59f5 fix error of peft lora when xformers enabled (#5506)
Signed-off-by: AnyISalIn <anyisalin@gmail.com>
2023-10-25 10:58:15 +05:30
Chengxi Guo
dcbfe662ef fix typo (#5505)
Signed-off-by: mymusise <mymusise1@gmail.com>
2023-10-24 17:14:05 -07:00
dg845
958e17dada Add Latent Consistency Models Pipeline (#5448)
* initial commit for LatentConsistencyModelPipeline and LCMScheduler based on the community pipeline

* Add callback and freeu support.

* apply suggestions from review

* Clean up LCMScheduler

* Remove timeindex argument to LCMScheduler.step.

* Add support for clipping or thresholding the predicted original sample.

* Remove unused methods and arguments in LCMScheduler.

* Improve comment about (lack of) negative prompt support.

* Change input guidance_scale to match the StableDiffusionPipeline (Imagen) CFG formulation.

* Move lcm_origin_steps from pipeline __call__ to LCMScheduler.__init__/config (as origin_steps).

* Fix typo when clipping/thresholding in LCMScheduler.

* Add some initial LCMScheduler tests.

* add type annotations from review

* Fix type annotation bug.

* Override test_add_noise_device in LCMSchedulerTest since hardcoded timesteps doesn't work under default settings.

* Add generator argument pipeline prepare_latents call.

* Cast LCMScheduler.timesteps to long in set_timesteps.

* Add onestep and multistep full loop scheduler tests.

* Set default height/width to None and don't hardcode guidance scale embedding dim.

* Add initial LatentConsistencyPipeline fast and slow tests.

* Add initial documentation for LatentConsistencyModelPipeline and LCMScheduler.

* Make remaining failing fast tests pass.

* make style

* Make original_inference_steps configurable from pipeline __call__ again.

* make style

* Remove guidance_rescale arg from pipeline __call__ since LCM currently doesn't support CFG.

* Make LCMScheduler defaults match config of LCM_Dreamshaper_v7 checkpoint.

* Fix LatentConsistencyPipeline slow tests and add dummy expected slices.

* Add checks for original_steps in LCMScheduler.set_timesteps.

* make fix-copies

* Improve LatentConsistencyModelPipeline docs.

* Apply suggestions from code review

Co-authored-by: Aryan V S <avs050602@gmail.com>

* Apply suggestions from code review

Co-authored-by: Aryan V S <avs050602@gmail.com>

* Apply suggestions from code review

Co-authored-by: Aryan V S <avs050602@gmail.com>

* Update src/diffusers/schedulers/scheduling_lcm.py

* Apply suggestions from code review

Co-authored-by: Aryan V S <avs050602@gmail.com>

* finish

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Aryan V S <avs050602@gmail.com>
2023-10-24 21:06:02 +02:00
Steven Liu
7c3a75a1ce [docs] General updates (#5378)
* first draft

* feedback

* feedback
2023-10-24 11:51:55 -07:00
Isamu Isozaki
b8896a154a Japanese docs (#5478)
* Finished _toctree.yml and index.md

* Finished installation.md

* Properly finished installation.md and almost finished quicktour

* Finished quicktour

* Finished stable diffusion doc

* Fixed _toctree.yml

* Fixed requests

* Fix country code

* Properly push
2023-10-24 11:30:04 -07:00
Bowen Bao
c7617e482a Register BaseOutput subclasses as supported torch.utils._pytree nodes (#5459)
* Register BaseOutput subclasses as supported torch.utils._pytree nodes

* lint

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2023-10-24 15:01:47 +05:30
Sayak Paul
77241c48af [Core] Refactor activation and normalization layers (#5493)
* move out the activations.

* move normalization layers.

* add doc.

* add doc.

* fix: paths

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* style

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-10-24 08:49:43 +05:30
Abhishar Sinha
096f84b05f Fixed autoencoder typo (#5500) 2023-10-23 13:59:00 -07:00
YiYi Xu
9e1edfc1ad fix a few issues in controlnet inpaint pipelines (#5470)
* add

* Update docs/source/en/api/pipelines/controlnet_sdxl.md

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-10-23 09:24:51 -10:00
Steven Liu
6b06c30a65 [docs] Fix links (#5499)
fix links
2023-10-23 20:39:29 +02:00
zideliu
188d864fa3 [BUG] in transformer_temporal Fix Bugs (#5496)
Fix Bugs
2023-10-23 20:38:41 +02:00
Kyunghwan Kim
6e608d8a35 Fix typo in controlnet docs (#5486) 2023-10-23 20:36:35 +02:00
Dhruv Nair
33293ed504 Fix Slow Tests (#5469)
fix tests
2023-10-23 20:24:31 +02:00
Sayak Paul
48ce118d1c [torch.compile] fix graph break problems partially (#5453)
* fix: controlnet graph?

* fix: sample

* fix:

* remove print

* styling

* fix-copies

* prevent more graph breaks?

* prevent more graph breaks?

* see?

* revert.

* compilation.

* rpopagate changes to controlnet sdxl pipeline too.

* add: clean version checking.
2023-10-23 23:41:52 +05:30
Patrick von Platen
1ade42f729 make style 2023-10-23 19:43:54 +02:00
Shyam Marjit
677df5ac12 fixed SDXL text encoder training bug #5016 (#5078)
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-10-23 19:43:43 +02:00
Andrei Filatov
16851efa0f Update README.md (#5497)
Right now, only "main" branch has this community pipeline code. So, adding it manually into pipeline
2023-10-23 18:57:43 +02:00
Ryan Dick
0eac9cd04e Make T2I-Adapter downscale padding match the UNet (#5435)
* Update get_dummy_inputs(...) in T2I-Adapter tests to take image height and width as params.

* Update the T2I-Adapter unit tests to run with the standard number of UNet down blocks so that all T2I-Adapter down blocks get exercised.

* Update the T2I-Adapter down blocks to better match the padding behavior of the UNet.

* Revert "Update the T2I-Adapter unit tests to run with the standard number of UNet down blocks so that all T2I-Adapter down blocks get exercised."

This reverts commit 6d4a060a34.

* Create  utility functions for testing the T2I-Adapter downscaling bahevior.

* (minor) Improve readability with an intermediate named variable.

* Statically parameterize  T2I-Adapter test dimensions rather than generating them dynamically.

* Fix static checks.

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-10-23 18:52:31 +02:00
Younes Belkada
bc7a4d4917 [PEFT] Fix scale unscale with LoRA adapters (#5417)
* fix scale unscale v1

* final fixes + CI

* fix slow trst

* oops

* fix copies

* oops

* oops

* fix

* style

* fix copies

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-10-21 22:17:18 +05:30
471 changed files with 38995 additions and 10934 deletions

View File

@@ -1,5 +1,5 @@
name: "\U0001F41B Bug Report"
description: Report a bug on diffusers
description: Report a bug on Diffusers
labels: [ "bug" ]
body:
- type: markdown
@@ -10,7 +10,7 @@ body:
Thus, issues are of the same importance as pull requests when contributing to this library ❤️.
In order to make your issue as **useful for the community as possible**, let's try to stick to some simple guidelines:
- 1. Please try to be as precise and concise as possible.
*Give your issue a fitting title. Assume that someone which very limited knowledge of diffusers can understand your issue. Add links to the source code, documentation other issues, pull requests etc...*
*Give your issue a fitting title. Assume that someone which very limited knowledge of Diffusers can understand your issue. Add links to the source code, documentation other issues, pull requests etc...*
- 2. If your issue is about something not working, **always** provide a reproducible code snippet. The reader should be able to reproduce your issue by **only copy-pasting your code snippet into a Python shell**.
*The community cannot solve your issue if it cannot reproduce it. If your bug is related to training, add your training script and make everything needed to train public. Otherwise, just add a simple Python code snippet.*
- 3. Add the **minimum** amount of code / context that is needed to understand, reproduce your issue.
@@ -19,7 +19,7 @@ body:
- type: markdown
attributes:
value: |
For more in-detail information on how to write good issues you can have a look [here](https://huggingface.co/course/chapter8/5?fw=pt)
For more in-detail information on how to write good issues you can have a look [here](https://huggingface.co/course/chapter8/5?fw=pt).
- type: textarea
id: bug-description
attributes:
@@ -47,7 +47,7 @@ body:
attributes:
label: System Info
description: Please share your system info with us. You can run the command `diffusers-cli env` and copy-paste its output below.
placeholder: diffusers version, platform, python version, ...
placeholder: Diffusers version, platform, Python version, ...
validations:
required: true
- type: textarea
@@ -55,7 +55,7 @@ body:
attributes:
label: Who can help?
description: |
Your issue will be replied to more quickly if you can figure out the right person to tag with @
Your issue will be replied to more quickly if you can figure out the right person to tag with @.
If you know how to use git blame, that is the easiest way, otherwise, here is a rough guide of **who to tag**.
All issues are read by one of the core maintainers, so if you don't know who to tag, just leave this blank and
@@ -66,7 +66,7 @@ body:
Questions on DiffusionPipeline (Saving, Loading, From pretrained, ...):
Questions on pipelines:
- Stable Diffusion @yiyixuxu @DN6 @patrickvonplaten @sayakpaul @patrickvonplaten
- Stable Diffusion @yiyixuxu @DN6 @sayakpaul @patrickvonplaten
- Stable Diffusion XL @yiyixuxu @sayakpaul @DN6 @patrickvonplaten
- Kandinsky @yiyixuxu @patrickvonplaten
- ControlNet @sayakpaul @yiyixuxu @DN6 @patrickvonplaten

View File

@@ -1,7 +1,4 @@
contact_links:
- name: Blank issue
url: https://github.com/huggingface/diffusers/issues/new
about: Other
- name: Forum
url: https://discuss.huggingface.co/
about: General usage questions and community discussions
url: https://discuss.huggingface.co/c/discussion-related-to-httpsgithubcomhuggingfacediffusers/63
about: General usage questions and community discussions

View File

@@ -1,5 +1,5 @@
---
name: "\U0001F680 Feature request"
name: "\U0001F680 Feature Request"
about: Suggest an idea for this project
title: ''
labels: ''
@@ -8,13 +8,13 @@ assignees: ''
---
**Is your feature request related to a problem? Please describe.**
A clear and concise description of what the problem is. Ex. I'm always frustrated when [...]
A clear and concise description of what the problem is. Ex. I'm always frustrated when [...].
**Describe the solution you'd like**
**Describe the solution you'd like.**
A clear and concise description of what you want to happen.
**Describe alternatives you've considered**
**Describe alternatives you've considered.**
A clear and concise description of any alternative solutions or features you've considered.
**Additional context**
**Additional context.**
Add any other context or screenshots about the feature request here.

View File

@@ -1,5 +1,5 @@
name: "\U0001F31F New model/pipeline/scheduler addition"
description: Submit a proposal/request to implement a new diffusion model / pipeline / scheduler
name: "\U0001F31F New Model/Pipeline/Scheduler Addition"
description: Submit a proposal/request to implement a new diffusion model/pipeline/scheduler
labels: [ "New model/pipeline/scheduler" ]
body:
@@ -19,7 +19,7 @@ body:
description: |
Please note that if the model implementation isn't available or if the weights aren't open-source, we are less likely to implement it in `diffusers`.
options:
- label: "The model implementation is available"
- label: "The model implementation is available."
- label: "The model weights are available (Only relevant if addition is not a scheduler)."
- type: textarea

29
.github/ISSUE_TEMPLATE/translate.md vendored Normal file
View File

@@ -0,0 +1,29 @@
---
name: 🌐 Translating a New Language?
about: Start a new translation effort in your language
title: '[<languageCode>] Translating docs to <languageName>'
labels: WIP
assignees: ''
---
<!--
Note: Please search to see if an issue already exists for the language you are trying to translate.
-->
Hi!
Let's bring the documentation to all the <languageName>-speaking community 🌐.
Who would want to translate? Please follow the 🤗 [TRANSLATING guide](https://github.com/huggingface/diffusers/blob/main/docs/TRANSLATING.md). Here is a list of the files ready for translation. Let us know in this issue if you'd like to translate any, and we'll add your name to the list.
Some notes:
* Please translate using an informal tone (imagine you are talking with a friend about Diffusers 🤗).
* Please translate in a gender-neutral way.
* Add your translations to the folder called `<languageCode>` inside the [source folder](https://github.com/huggingface/diffusers/tree/main/docs/source).
* Register your translation in `<languageCode>/_toctree.yml`; please follow the order of the [English version](https://github.com/huggingface/diffusers/blob/main/docs/source/en/_toctree.yml).
* Once you're finished, open a pull request and tag this issue by including #issue-number in the description, where issue-number is the number of this issue. Please ping @stevhliu for review.
* 🙋 If you'd like others to help you with the translation, you can also post in the 🤗 [forums](https://discuss.huggingface.co/c/discussion-related-to-httpsgithubcomhuggingfacediffusers/63).
Thank you so much for your help! 🤗

View File

@@ -19,10 +19,10 @@ Fixes # (issue)
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [ ] Did you read the [contributor guideline](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md)?
- [ ] Did you read our [philosophy doc](https://github.com/huggingface/diffusers/blob/main/PHILOSOPHY.md) (important for complex PRs)?
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case.
- [ ] Was this discussed/approved via a GitHub issue or the [forum](https://discuss.huggingface.co/c/discussion-related-to-httpsgithubcomhuggingfacediffusers/63)? Please add a link to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes? Here are the
[documentation guidelines](https://github.com/huggingface/diffusers/tree/main/docs), and
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
[here are tips on formatting docstrings](https://github.com/huggingface/diffusers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
@@ -31,7 +31,7 @@ Fixes # (issue)
Anyone in the community is free to review the PR once the tests have passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @
<!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @.
If you know how to use git blame, that is the easiest way, otherwise, here is a rough guide of **who to tag**.
Please tag fewer than 3 people.

View File

@@ -4,7 +4,7 @@ description: Sets up miniconda in your ${RUNNER_TEMP} environment and gives you
inputs:
python-version:
description: If set to any value, dont use sudo to clean the workspace
description: If set to any value, don't use sudo to clean the workspace
required: false
type: string
default: "3.9"

View File

@@ -16,7 +16,7 @@ jobs:
install_libgl1: true
package: diffusers
notebook_folder: diffusers_doc
languages: en ko zh
languages: en ko zh ja pt
secrets:
token: ${{ secrets.HUGGINGFACE_PUSH }}

View File

@@ -15,4 +15,4 @@ jobs:
pr_number: ${{ github.event.number }}
install_libgl1: true
package: diffusers
languages: en ko zh
languages: en ko zh ja pt

View File

@@ -0,0 +1,34 @@
name: Run Flax dependency tests
on:
pull_request:
branches:
- main
push:
branches:
- main
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
jobs:
check_flax_dependencies:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: "3.8"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install -e .
pip install "jax[cpu]>=0.2.16,!=0.3.2"
pip install "flax>=0.4.1"
pip install "jaxlib>=0.1.65"
pip install pytest
- name: Check for soft dependencies
run: |
pytest tests/others/test_dependencies.py

View File

@@ -50,9 +50,8 @@ jobs:
run: |
apt-get update && apt-get install libsndfile1-dev libgl1 -y
python -m pip install -e .[quality,test]
python -m pip install git+https://github.com/huggingface/accelerate.git
python -m pip install -U git+https://github.com/huggingface/transformers.git
python -m pip install -U git+https://github.com/huggingface/peft.git
python -m pip install accelerate
python -m pip install -U "peft>=0.6"
- name: Environment
run: |

View File

@@ -72,7 +72,7 @@ jobs:
run: |
apt-get update && apt-get install libsndfile1-dev libgl1 -y
python -m pip install -e .[quality,test]
python -m pip install git+https://github.com/huggingface/accelerate.git
python -m pip install accelerate
- name: Environment
run: |
@@ -115,7 +115,7 @@ jobs:
run: |
python -m pytest -n 2 --max-worker-restart=0 --dist=loadfile \
--make-reports=tests_${{ matrix.config.report }} \
examples/test_examples.py
examples/test_examples.py
- name: Failure short reports
if: ${{ failure() }}

View File

@@ -0,0 +1,32 @@
name: Run Torch dependency tests
on:
pull_request:
branches:
- main
push:
branches:
- main
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
jobs:
check_torch_dependencies:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: "3.8"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install -e .
pip install torch torchvision torchaudio
pip install pytest
- name: Check for soft dependencies
run: |
pytest tests/others/test_dependencies.py

View File

@@ -156,6 +156,56 @@ jobs:
name: torch_cuda_test_reports
path: reports
peft_cuda_tests:
name: PEFT CUDA Tests
runs-on: docker-gpu
container:
image: diffusers/diffusers-pytorch-cuda
options: --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/ --gpus 0
defaults:
run:
shell: bash
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Install dependencies
run: |
apt-get update && apt-get install libsndfile1-dev libgl1 -y
python -m pip install -e .[quality,test]
python -m pip install git+https://github.com/huggingface/accelerate.git
python -m pip install git+https://github.com/huggingface/peft.git
- name: Environment
run: |
python utils/print_env.py
- name: Run slow PEFT CUDA tests
env:
HUGGING_FACE_HUB_TOKEN: ${{ secrets.HUGGING_FACE_HUB_TOKEN }}
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
--make-reports=tests_peft_cuda \
tests/lora/
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_peft_cuda_stats.txt
cat reports/tests_peft_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: torch_peft_test_reports
path: reports
flax_tpu_tests:
name: Flax TPU Tests
runs-on: docker-tpu

10
.gitignore vendored
View File

@@ -1,4 +1,4 @@
# Initially taken from Github's Python gitignore file
# Initially taken from GitHub's Python gitignore file
# Byte-compiled / optimized / DLL files
__pycache__/
@@ -34,7 +34,7 @@ wheels/
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# Usually these files are written by a Python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
@@ -153,7 +153,7 @@ debug.env
# vim
.*.swp
#ctags
# ctags
tags
# pre-commit
@@ -164,6 +164,7 @@ tags
# DS_Store (MacOS)
.DS_Store
# RL pipelines may produce mp4 outputs
*.mp4
@@ -173,4 +174,5 @@ tags
# ruff
.ruff_cache
wandb
# wandb
wandb

View File

@@ -31,10 +31,12 @@ keywords:
- deep-learning
- pytorch
- image-generation
- hacktoberfest
- diffusion
- text2image
- image2image
- score-based-generative-modeling
- stable-diffusion
- stable-diffusion-diffusers
license: Apache-2.0
version: 0.12.1

View File

@@ -7,7 +7,7 @@ We as members, contributors, and leaders pledge to make participation in our
community a harassment-free experience for everyone, regardless of age, body
size, visible or invisible disability, ethnicity, sex characteristics, gender
identity and expression, level of experience, education, socio-economic status,
nationality, personal appearance, race, religion, or sexual identity
nationality, personal appearance, race, caste, color, religion, or sexual identity
and orientation.
We pledge to act and interact in ways that contribute to an open, welcoming,
@@ -24,7 +24,7 @@ community include:
* Accepting responsibility and apologizing to those affected by our mistakes,
and learning from the experience
* Focusing on what is best not just for us as individuals, but for the
overall diffusers community
overall Diffusers community
Examples of unacceptable behavior include:
@@ -117,8 +117,8 @@ the community.
## Attribution
This Code of Conduct is adapted from the [Contributor Covenant][homepage],
version 2.0, available at
https://www.contributor-covenant.org/version/2/0/code_of_conduct.html.
version 2.1, available at
https://www.contributor-covenant.org/version/2/1/code_of_conduct.html.
Community Impact Guidelines were inspired by [Mozilla's code of conduct
enforcement ladder](https://github.com/mozilla/diversity).

View File

@@ -14,7 +14,7 @@ specific language governing permissions and limitations under the License.
We ❤️ contributions from the open-source community! Everyone is welcome, and all types of participation not just code are valued and appreciated. Answering questions, helping others, reaching out, and improving the documentation are all immensely valuable to the community, so don't be afraid and get involved if you're up for it!
Everyone is encouraged to start by saying 👋 in our public Discord channel. We discuss the latest trends in diffusion models, ask questions, show off personal projects, help each other with contributions, or just hang out ☕. <a href="https://Discord.gg/G7tWnz98XR"><img alt="Join us on Discord" src="https://img.shields.io/Discord/823813159592001537?color=5865F2&logo=Discord&logoColor=white"></a>
Everyone is encouraged to start by saying 👋 in our public Discord channel. We discuss the latest trends in diffusion models, ask questions, show off personal projects, help each other with contributions, or just hang out ☕. <a href="https://discord.gg/G7tWnz98XR"><img alt="Join us on Discord" src="https://img.shields.io/discord/823813159592001537?color=5865F2&logo=Discord&logoColor=white"></a>
Whichever way you choose to contribute, we strive to be part of an open, welcoming, and kind community. Please, read our [code of conduct](https://github.com/huggingface/diffusers/blob/main/CODE_OF_CONDUCT.md) and be mindful to respect it during your interactions. We also recommend you become familiar with the [ethical guidelines](https://huggingface.co/docs/diffusers/conceptual/ethical_guidelines) that guide our project and ask you to adhere to the same principles of transparency and responsibility.
@@ -28,11 +28,11 @@ the core library.
In the following, we give an overview of different ways to contribute, ranked by difficulty in ascending order. All of them are valuable to the community.
* 1. Asking and answering questions on [the Diffusers discussion forum](https://discuss.huggingface.co/c/discussion-related-to-httpsgithubcomhuggingfacediffusers) or on [Discord](https://discord.gg/G7tWnz98XR).
* 2. Opening new issues on [the GitHub Issues tab](https://github.com/huggingface/diffusers/issues/new/choose)
* 3. Answering issues on [the GitHub Issues tab](https://github.com/huggingface/diffusers/issues)
* 2. Opening new issues on [the GitHub Issues tab](https://github.com/huggingface/diffusers/issues/new/choose).
* 3. Answering issues on [the GitHub Issues tab](https://github.com/huggingface/diffusers/issues).
* 4. Fix a simple issue, marked by the "Good first issue" label, see [here](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22).
* 5. Contribute to the [documentation](https://github.com/huggingface/diffusers/tree/main/docs/source).
* 6. Contribute a [Community Pipeline](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3Acommunity-examples)
* 6. Contribute a [Community Pipeline](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3Acommunity-examples).
* 7. Contribute to the [examples](https://github.com/huggingface/diffusers/tree/main/examples).
* 8. Fix a more difficult issue, marked by the "Good second issue" label, see [here](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22Good+second+issue%22).
* 9. Add a new pipeline, model, or scheduler, see ["New Pipeline/Model"](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+pipeline%2Fmodel%22) and ["New scheduler"](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+scheduler%22) issues. For this contribution, please have a look at [Design Philosophy](https://github.com/huggingface/diffusers/blob/main/PHILOSOPHY.md).
@@ -40,7 +40,7 @@ In the following, we give an overview of different ways to contribute, ranked by
As said before, **all contributions are valuable to the community**.
In the following, we will explain each contribution a bit more in detail.
For all contributions 4.-9. you will need to open a PR. It is explained in detail how to do so in [Opening a pull request](#how-to-open-a-pr)
For all contributions 4-9, you will need to open a PR. It is explained in detail how to do so in [Opening a pull request](#how-to-open-a-pr).
### 1. Asking and answering questions on the Diffusers discussion forum or on the Diffusers Discord
@@ -91,12 +91,12 @@ open a new issue nevertheless and link to the related issue.
New issues usually include the following.
#### 2.1. Reproducible, minimal bug reports.
#### 2.1. Reproducible, minimal bug reports
A bug report should always have a reproducible code snippet and be as minimal and concise as possible.
This means in more detail:
- Narrow the bug down as much as you can, **do not just dump your whole code file**
- Format your code
- Narrow the bug down as much as you can, **do not just dump your whole code file**.
- Format your code.
- Do not include any external libraries except for Diffusers depending on them.
- **Always** provide all necessary information about your environment; for this, you can run: `diffusers-cli env` in your shell and copy-paste the displayed information to the issue.
- Explain the issue. If the reader doesn't know what the issue is and why it is an issue, she cannot solve it.
@@ -105,9 +105,9 @@ This means in more detail:
For more information, please have a look through the [How to write a good issue](#how-to-write-a-good-issue) section.
You can open a bug report [here](https://github.com/huggingface/diffusers/issues/new/choose).
You can open a bug report [here](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=bug&projects=&template=bug-report.yml).
#### 2.2. Feature requests.
#### 2.2. Feature requests
A world-class feature request addresses the following points:
@@ -125,21 +125,21 @@ Awesome! Tell us what problem it solved for you.
You can open a feature request [here](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=&template=feature_request.md&title=).
#### 2.3 Feedback.
#### 2.3 Feedback
Feedback about the library design and why it is good or not good helps the core maintainers immensely to build a user-friendly library. To understand the philosophy behind the current design philosophy, please have a look [here](https://huggingface.co/docs/diffusers/conceptual/philosophy). If you feel like a certain design choice does not fit with the current design philosophy, please explain why and how it should be changed. If a certain design choice follows the design philosophy too much, hence restricting use cases, explain why and how it should be changed.
If a certain design choice is very useful for you, please also leave a note as this is great feedback for future design decisions.
You can open an issue about feedback [here](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=&template=feedback.md&title=).
#### 2.4 Technical questions.
#### 2.4 Technical questions
Technical questions are mainly about why certain code of the library was written in a certain way, or what a certain part of the code does. Please make sure to link to the code in question and please provide detail on
why this part of the code is difficult to understand.
You can open an issue about a technical question [here](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=bug&template=bug-report.yml).
#### 2.5 Proposal to add a new model, scheduler, or pipeline.
#### 2.5 Proposal to add a new model, scheduler, or pipeline
If the diffusion model community released a new model, pipeline, or scheduler that you would like to see in the Diffusers library, please provide the following information:
@@ -156,14 +156,14 @@ You can open a request for a model/pipeline/scheduler [here](https://github.com/
Answering issues on GitHub might require some technical knowledge of Diffusers, but we encourage everybody to give it a try even if you are not 100% certain that your answer is correct.
Some tips to give a high-quality answer to an issue:
- Be as concise and minimal as possible
- Be as concise and minimal as possible.
- Stay on topic. An answer to the issue should concern the issue and only the issue.
- Provide links to code, papers, or other sources that prove or encourage your point.
- Answer in code. If a simple code snippet is the answer to the issue or shows how the issue can be solved, please provide a fully reproducible code snippet.
Also, many issues tend to be simply off-topic, duplicates of other issues, or irrelevant. It is of great
help to the maintainers if you can answer such issues, encouraging the author of the issue to be
more precise, provide the link to a duplicated issue or redirect them to [the forum](https://discuss.huggingface.co/c/discussion-related-to-httpsgithubcomhuggingfacediffusers/63) or [Discord](https://discord.gg/G7tWnz98XR)
more precise, provide the link to a duplicated issue or redirect them to [the forum](https://discuss.huggingface.co/c/discussion-related-to-httpsgithubcomhuggingfacediffusers/63) or [Discord](https://discord.gg/G7tWnz98XR).
If you have verified that the issued bug report is correct and requires a correction in the source code,
please have a look at the next sections.
@@ -202,7 +202,7 @@ Please have a look at [this page](https://github.com/huggingface/diffusers/tree/
### 6. Contribute a community pipeline
[Pipelines](https://huggingface.co/docs/diffusers/api/pipelines/overview) are usually the first point of contact between the Diffusers library and the user.
Pipelines are examples of how to use Diffusers [models](https://huggingface.co/docs/diffusers/api/models) and [schedulers](https://huggingface.co/docs/diffusers/api/schedulers/overview).
Pipelines are examples of how to use Diffusers [models](https://huggingface.co/docs/diffusers/api/models/overview) and [schedulers](https://huggingface.co/docs/diffusers/api/schedulers/overview).
We support two types of pipelines:
- Official Pipelines
@@ -242,27 +242,27 @@ We support two types of training examples:
Research training examples are located in [examples/research_projects](https://github.com/huggingface/diffusers/tree/main/examples/research_projects) whereas official training examples include all folders under [examples](https://github.com/huggingface/diffusers/tree/main/examples) except the `research_projects` and `community` folders.
The official training examples are maintained by the Diffusers' core maintainers whereas the research training examples are maintained by the community.
This is because of the same reasons put forward in [6. Contribute a community pipeline](#contribute-a-community-pipeline) for official pipelines vs. community pipelines: It is not feasible for the core maintainers to maintain all possible training methods for diffusion models.
This is because of the same reasons put forward in [6. Contribute a community pipeline](#6-contribute-a-community-pipeline) for official pipelines vs. community pipelines: It is not feasible for the core maintainers to maintain all possible training methods for diffusion models.
If the Diffusers core maintainers and the community consider a certain training paradigm to be too experimental or not popular enough, the corresponding training code should be put in the `research_projects` folder and maintained by the author.
Both official training and research examples consist of a directory that contains one or more training scripts, a requirements.txt file, and a README.md file. In order for the user to make use of the
training examples, it is required to clone the repository:
```
```bash
git clone https://github.com/huggingface/diffusers
```
as well as to install all additional dependencies required for training:
```
```bash
pip install -r /examples/<your-example-folder>/requirements.txt
```
Therefore when adding an example, the `requirements.txt` file shall define all pip dependencies required for your training example so that once all those are installed, the user can run the example's training script. See, for example, the [DreamBooth `requirements.txt` file](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/requirements.txt).
Training examples of the Diffusers library should adhere to the following philosophy:
- All the code necessary to run the examples should be found in a single Python file
- One should be able to run the example from the command line with `python <your-example>.py --args`
- All the code necessary to run the examples should be found in a single Python file.
- One should be able to run the example from the command line with `python <your-example>.py --args`.
- Examples should be kept simple and serve as **an example** on how to use Diffusers for training. The purpose of example scripts is **not** to create state-of-the-art diffusion models, but rather to reproduce known training schemes without adding too much custom logic. As a byproduct of this point, our examples also strive to serve as good educational materials.
To contribute an example, it is highly recommended to look at already existing examples such as [dreambooth](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/train_dreambooth.py) to get an idea of how they should look like.
@@ -281,7 +281,7 @@ If you are contributing to the official training examples, please also make sure
usually more complicated to solve than [Good first issues](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22).
The issue description usually gives less guidance on how to fix the issue and requires
a decent understanding of the library by the interested contributor.
If you are interested in tackling a second good issue, feel free to open a PR to fix it and link the PR to the issue. If you see that a PR has already been opened for this issue but did not get merged, have a look to understand why it wasn't merged and try to open an improved PR.
If you are interested in tackling a good second issue, feel free to open a PR to fix it and link the PR to the issue. If you see that a PR has already been opened for this issue but did not get merged, have a look to understand why it wasn't merged and try to open an improved PR.
Good second issues are usually more difficult to get merged compared to good first issues, so don't hesitate to ask for help from the core maintainers. If your PR is almost finished the core maintainers can also jump into your PR and commit to it in order to get it merged.
### 9. Adding pipelines, models, schedulers
@@ -337,8 +337,8 @@ to be merged;
9. Add high-coverage tests. No quality testing = no merge.
- If you are adding new `@slow` tests, make sure they pass using
`RUN_SLOW=1 python -m pytest tests/test_my_new_model.py`.
CircleCI does not run the slow tests, but GitHub actions does every night!
10. All public methods must have informative docstrings that work nicely with markdown. See `[pipeline_latent_diffusion.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py)` for an example.
CircleCI does not run the slow tests, but GitHub Actions does every night!
10. All public methods must have informative docstrings that work nicely with markdown. See [`pipeline_latent_diffusion.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py) for an example.
11. Due to the rapidly growing repository, it is important to make sure that no files that would significantly weigh down the repository are added. This includes images, videos, and other non-text files. We prefer to leverage a hf.co hosted `dataset` like
[`hf-internal-testing`](https://huggingface.co/hf-internal-testing) or [huggingface/documentation-images](https://huggingface.co/datasets/huggingface/documentation-images) to place these files.
If an external contribution, feel free to add the images to your PR and ask a Hugging Face member to migrate your images
@@ -364,7 +364,7 @@ under your GitHub user account.
2. Clone your fork to your local disk, and add the base repository as a remote:
```bash
$ git clone git@github.com:<your Github handle>/diffusers.git
$ git clone git@github.com:<your GitHub handle>/diffusers.git
$ cd diffusers
$ git remote add upstream https://github.com/huggingface/diffusers.git
```
@@ -402,7 +402,7 @@ with this command:
$ pip install -e ".[test]"
```
You can run the full test suite with the following command, but it takes
You can also run the full test suite with the following command, but it takes
a beefy machine to produce a result in a decent amount of time now that
Diffusers has grown a lot. Here is the command for it:
@@ -430,7 +430,7 @@ make a commit with `git commit` to record your changes locally:
```bash
$ git add modified_file.py
$ git commit
$ git commit -m "A descriptive message about your changes."
```
It is a good idea to sync your copy of the code with the original
@@ -493,7 +493,7 @@ To avoid pinging the upstream repository which adds reference notes to each upst
when syncing the main branch of a forked repository, please, follow these steps:
1. When possible, avoid syncing with the upstream using a branch and PR on the forked repository. Instead, merge directly into the forked main.
2. If a PR is absolutely necessary, use the following steps after checking out your branch:
```
```bash
$ git checkout -b your-branch-for-syncing
$ git pull --squash --no-commit upstream main
$ git commit -m '<your message without GitHub references>'
@@ -502,4 +502,4 @@ $ git push --set-upstream origin your-branch-for-syncing
### Style guide
For documentation strings, 🧨 Diffusers follows the [google style](https://google.github.io/styleguide/pyguide.html).
For documentation strings, 🧨 Diffusers follows the [Google style](https://google.github.io/styleguide/pyguide.html).

View File

@@ -22,7 +22,7 @@ In a nutshell, Diffusers is built to be a natural extension of PyTorch. Therefor
## Usability over Performance
- While Diffusers has many built-in performance-enhancing features (see [Memory and Speed](https://huggingface.co/docs/diffusers/optimization/fp16)), models are always loaded with the highest precision and lowest optimization. Therefore, by default diffusion pipelines are always instantiated on CPU with float32 precision if not otherwise defined by the user. This ensures usability across different platforms and accelerators and means that no complex installations are required to run the library.
- Diffusers aim at being a **light-weight** package and therefore has very few required dependencies, but many soft dependencies that can improve performance (such as `accelerate`, `safetensors`, `onnx`, etc...). We strive to keep the library as lightweight as possible so that it can be added without much concern as a dependency on other packages.
- Diffusers aims to be a **light-weight** package and therefore has very few required dependencies, but many soft dependencies that can improve performance (such as `accelerate`, `safetensors`, `onnx`, etc...). We strive to keep the library as lightweight as possible so that it can be added without much concern as a dependency on other packages.
- Diffusers prefers simple, self-explainable code over condensed, magic code. This means that short-hand code syntaxes such as lambda functions, and advanced PyTorch operators are often not desired.
## Simple over easy
@@ -31,13 +31,13 @@ As PyTorch states, **explicit is better than implicit** and **simple is better t
- We follow PyTorch's API with methods like [`DiffusionPipeline.to`](https://huggingface.co/docs/diffusers/main/en/api/diffusion_pipeline#diffusers.DiffusionPipeline.to) to let the user handle device management.
- Raising concise error messages is preferred to silently correct erroneous input. Diffusers aims at teaching the user, rather than making the library as easy to use as possible.
- Complex model vs. scheduler logic is exposed instead of magically handled inside. Schedulers/Samplers are separated from diffusion models with minimal dependencies on each other. This forces the user to write the unrolled denoising loop. However, the separation allows for easier debugging and gives the user more control over adapting the denoising process or switching out diffusion models or schedulers.
- Separately trained components of the diffusion pipeline, *e.g.* the text encoder, the unet, and the variational autoencoder, each have their own model class. This forces the user to handle the interaction between the different model components, and the serialization format separates the model components into different files. However, this allows for easier debugging and customization. Dreambooth or textual inversion training
is very simple thanks to diffusers' ability to separate single components of the diffusion pipeline.
- Separately trained components of the diffusion pipeline, *e.g.* the text encoder, the UNet, and the variational autoencoder, each has their own model class. This forces the user to handle the interaction between the different model components, and the serialization format separates the model components into different files. However, this allows for easier debugging and customization. DreamBooth or Textual Inversion training
is very simple thanks to Diffusers' ability to separate single components of the diffusion pipeline.
## Tweakable, contributor-friendly over abstraction
For large parts of the library, Diffusers adopts an important design principle of the [Transformers library](https://github.com/huggingface/transformers), which is to prefer copy-pasted code over hasty abstractions. This design principle is very opinionated and stands in stark contrast to popular design principles such as [Don't repeat yourself (DRY)](https://en.wikipedia.org/wiki/Don%27t_repeat_yourself).
In short, just like Transformers does for modeling files, diffusers prefers to keep an extremely low level of abstraction and very self-contained code for pipelines and schedulers.
In short, just like Transformers does for modeling files, Diffusers prefers to keep an extremely low level of abstraction and very self-contained code for pipelines and schedulers.
Functions, long code blocks, and even classes can be copied across multiple files which at first can look like a bad, sloppy design choice that makes the library unmaintainable.
**However**, this design has proven to be extremely successful for Transformers and makes a lot of sense for community-driven, open-source machine learning libraries because:
- Machine Learning is an extremely fast-moving field in which paradigms, model architectures, and algorithms are changing rapidly, which therefore makes it very difficult to define long-lasting code abstractions.
@@ -47,30 +47,30 @@ Functions, long code blocks, and even classes can be copied across multiple file
At Hugging Face, we call this design the **single-file policy** which means that almost all of the code of a certain class should be written in a single, self-contained file. To read more about the philosophy, you can have a look
at [this blog post](https://huggingface.co/blog/transformers-design-philosophy).
In diffusers, we follow this philosophy for both pipelines and schedulers, but only partly for diffusion models. The reason we don't follow this design fully for diffusion models is because almost all diffusion pipelines, such
as [DDPM](https://huggingface.co/docs/diffusers/v0.12.0/en/api/pipelines/ddpm), [Stable Diffusion](https://huggingface.co/docs/diffusers/v0.12.0/en/api/pipelines/stable_diffusion/overview#stable-diffusion-pipelines), [UnCLIP (Dalle-2)](https://huggingface.co/docs/diffusers/v0.12.0/en/api/pipelines/unclip#overview) and [Imagen](https://imagen.research.google/) all rely on the same diffusion model, the [UNet](https://huggingface.co/docs/diffusers/api/models#diffusers.UNet2DConditionModel).
In Diffusers, we follow this philosophy for both pipelines and schedulers, but only partly for diffusion models. The reason we don't follow this design fully for diffusion models is because almost all diffusion pipelines, such
as [DDPM](https://huggingface.co/docs/diffusers/api/pipelines/ddpm), [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/overview#stable-diffusion-pipelines), [unCLIP (DALL·E 2)](https://huggingface.co/docs/diffusers/api/pipelines/unclip) and [Imagen](https://imagen.research.google/) all rely on the same diffusion model, the [UNet](https://huggingface.co/docs/diffusers/api/models/unet2d-cond).
Great, now you should have generally understood why 🧨 Diffusers is designed the way it is 🤗.
We try to apply these design principles consistently across the library. Nevertheless, there are some minor exceptions to the philosophy or some unlucky design choices. If you have feedback regarding the design, we would ❤️ to hear it [directly on GitHub](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=&template=feedback.md&title=).
## Design Philosophy in Details
Now, let's look a bit into the nitty-gritty details of the design philosophy. Diffusers essentially consist of three major classes, [pipelines](https://github.com/huggingface/diffusers/tree/main/src/diffusers/pipelines), [models](https://github.com/huggingface/diffusers/tree/main/src/diffusers/models), and [schedulers](https://github.com/huggingface/diffusers/tree/main/src/diffusers/schedulers).
Let's walk through more in-detail design decisions for each class.
Now, let's look a bit into the nitty-gritty details of the design philosophy. Diffusers essentially consists of three major classes: [pipelines](https://github.com/huggingface/diffusers/tree/main/src/diffusers/pipelines), [models](https://github.com/huggingface/diffusers/tree/main/src/diffusers/models), and [schedulers](https://github.com/huggingface/diffusers/tree/main/src/diffusers/schedulers).
Let's walk through more detailed design decisions for each class.
### Pipelines
Pipelines are designed to be easy to use (therefore do not follow [*Simple over easy*](#simple-over-easy) 100%)), are not feature complete, and should loosely be seen as examples of how to use [models](#models) and [schedulers](#schedulers) for inference.
Pipelines are designed to be easy to use (therefore do not follow [*Simple over easy*](#simple-over-easy) 100%), are not feature complete, and should loosely be seen as examples of how to use [models](#models) and [schedulers](#schedulers) for inference.
The following design principles are followed:
- Pipelines follow the single-file policy. All pipelines can be found in individual directories under src/diffusers/pipelines. One pipeline folder corresponds to one diffusion paper/project/release. Multiple pipeline files can be gathered in one pipeline folder, as its done for [`src/diffusers/pipelines/stable-diffusion`](https://github.com/huggingface/diffusers/tree/main/src/diffusers/pipelines/stable_diffusion). If pipelines share similar functionality, one can make use of the [#Copied from mechanism](https://github.com/huggingface/diffusers/blob/125d783076e5bd9785beb05367a2d2566843a271/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py#L251).
- Pipelines all inherit from [`DiffusionPipeline`]
- Pipelines all inherit from [`DiffusionPipeline`].
- Every pipeline consists of different model and scheduler components, that are documented in the [`model_index.json` file](https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/model_index.json), are accessible under the same name as attributes of the pipeline and can be shared between pipelines with [`DiffusionPipeline.components`](https://huggingface.co/docs/diffusers/main/en/api/diffusion_pipeline#diffusers.DiffusionPipeline.components) function.
- Every pipeline should be loadable via the [`DiffusionPipeline.from_pretrained`](https://huggingface.co/docs/diffusers/main/en/api/diffusion_pipeline#diffusers.DiffusionPipeline.from_pretrained) function.
- Pipelines should be used **only** for inference.
- Pipelines should be very readable, self-explanatory, and easy to tweak.
- Pipelines should be designed to build on top of each other and be easy to integrate into higher-level APIs.
- Pipelines are **not** intended to be feature-complete user interfaces. For future complete user interfaces one should rather have a look at [InvokeAI](https://github.com/invoke-ai/InvokeAI), [Diffuzers](https://github.com/abhishekkrthakur/diffuzers), and [lama-cleaner](https://github.com/Sanster/lama-cleaner)
- Pipelines are **not** intended to be feature-complete user interfaces. For future complete user interfaces one should rather have a look at [InvokeAI](https://github.com/invoke-ai/InvokeAI), [Diffuzers](https://github.com/abhishekkrthakur/diffuzers), and [lama-cleaner](https://github.com/Sanster/lama-cleaner).
- Every pipeline should have one and only one way to run it via a `__call__` method. The naming of the `__call__` arguments should be shared across all pipelines.
- Pipelines should be named after the task they are intended to solve.
- In almost all cases, novel diffusion pipelines shall be implemented in a new pipeline folder/file.
@@ -82,15 +82,15 @@ Models are designed as configurable toolboxes that are natural extensions of [Py
The following design principles are followed:
- Models correspond to **a type of model architecture**. *E.g.* the [`UNet2DConditionModel`] class is used for all UNet variations that expect 2D image inputs and are conditioned on some context.
- All models can be found in [`src/diffusers/models`](https://github.com/huggingface/diffusers/tree/main/src/diffusers/models) and every model architecture shall be defined in its file, e.g. [`unet_2d_condition.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_condition.py), [`transformer_2d.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/transformer_2d.py), etc...
- Models **do not** follow the single-file policy and should make use of smaller model building blocks, such as [`attention.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention.py), [`resnet.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/resnet.py), [`embeddings.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/embeddings.py), etc... **Note**: This is in stark contrast to Transformers' modeling files and shows that models do not really follow the single-file policy.
- Models intend to expose complexity, just like PyTorch's module does, and give clear error messages.
- Models **do not** follow the single-file policy and should make use of smaller model building blocks, such as [`attention.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention.py), [`resnet.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/resnet.py), [`embeddings.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/embeddings.py), etc... **Note**: This is in stark contrast to Transformers' modelling files and shows that models do not really follow the single-file policy.
- Models intend to expose complexity, just like PyTorch's `Module` class, and give clear error messages.
- Models all inherit from `ModelMixin` and `ConfigMixin`.
- Models can be optimized for performance when it doesnt demand major code changes, keeps backward compatibility, and gives significant memory or compute gain.
- Models can be optimized for performance when it doesnt demand major code changes, keep backward compatibility, and give significant memory or compute gain.
- Models should by default have the highest precision and lowest performance setting.
- To integrate new model checkpoints whose general architecture can be classified as an architecture that already exists in Diffusers, the existing model architecture shall be adapted to make it work with the new checkpoint. One should only create a new file if the model architecture is fundamentally different.
- Models should be designed to be easily extendable to future changes. This can be achieved by limiting public function arguments, configuration arguments, and "foreseeing" future changes, *e.g.* it is usually better to add `string` "...type" arguments that can easily be extended to new future types instead of boolean `is_..._type` arguments. Only the minimum amount of changes shall be made to existing architectures to make a new model checkpoint work.
- The model design is a difficult trade-off between keeping code readable and concise and supporting many model checkpoints. For most parts of the modeling code, classes shall be adapted for new model checkpoints, while there are some exceptions where it is preferred to add new classes to make sure the code is kept concise and
readable longterm, such as [UNet blocks](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_blocks.py) and [Attention processors](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
readable long-term, such as [UNet blocks](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_blocks.py) and [Attention processors](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
### Schedulers
@@ -99,12 +99,12 @@ Schedulers are responsible to guide the denoising process for inference as well
The following design principles are followed:
- All schedulers are found in [`src/diffusers/schedulers`](https://github.com/huggingface/diffusers/tree/main/src/diffusers/schedulers).
- Schedulers are **not** allowed to import from large utils files and shall be kept very self-contained.
- One scheduler python file corresponds to one scheduler algorithm (as might be defined in a paper).
- One scheduler Python file corresponds to one scheduler algorithm (as might be defined in a paper).
- If schedulers share similar functionalities, we can make use of the `#Copied from` mechanism.
- Schedulers all inherit from `SchedulerMixin` and `ConfigMixin`.
- Schedulers can be easily swapped out with the [`ConfigMixin.from_config`](https://huggingface.co/docs/diffusers/main/en/api/configuration#diffusers.ConfigMixin.from_config) method as explained in detail [here](./using-diffusers/schedulers.md).
- Schedulers can be easily swapped out with the [`ConfigMixin.from_config`](https://huggingface.co/docs/diffusers/main/en/api/configuration#diffusers.ConfigMixin.from_config) method as explained in detail [here](./docs/source/en/using-diffusers/schedulers.md).
- Every scheduler has to have a `set_num_inference_steps`, and a `step` function. `set_num_inference_steps(...)` has to be called before every denoising process, *i.e.* before `step(...)` is called.
- Every scheduler exposes the timesteps to be "looped over" via a `timesteps` attribute, which is an array of timesteps the model will be called upon
- Every scheduler exposes the timesteps to be "looped over" via a `timesteps` attribute, which is an array of timesteps the model will be called upon.
- The `step(...)` function takes a predicted model output and the "current" sample (x_t) and returns the "previous", slightly more denoised sample (x_t-1).
- Given the complexity of diffusion schedulers, the `step` function does not expose all the complexity and can be a bit of a "black box".
- In almost all cases, novel schedulers shall be implemented in a new scheduling file.

View File

@@ -1,3 +1,19 @@
<!---
Copyright 2022 - The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<p align="center">
<br>
<img src="https://raw.githubusercontent.com/huggingface/diffusers/main/docs/source/en/imgs/diffusers_library.jpg" width="400"/>
@@ -14,7 +30,10 @@
<img alt="GitHub release" src="https://static.pepy.tech/badge/diffusers/month">
</a>
<a href="CODE_OF_CONDUCT.md">
<img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-2.0-4baaaa.svg">
<img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-2.1-4baaaa.svg">
</a>
<a href="https://twitter.com/diffuserslib">
<img alt="X account" src="https://img.shields.io/twitter/url/https/twitter.com/diffuserslib.svg?style=social&label=Follow%20%40diffuserslib">
</a>
</p>
@@ -24,11 +43,11 @@
- State-of-the-art [diffusion pipelines](https://huggingface.co/docs/diffusers/api/pipelines/overview) that can be run in inference with just a few lines of code.
- Interchangeable noise [schedulers](https://huggingface.co/docs/diffusers/api/schedulers/overview) for different diffusion speeds and output quality.
- Pretrained [models](https://huggingface.co/docs/diffusers/api/models) that can be used as building blocks, and combined with schedulers, for creating your own end-to-end diffusion systems.
- Pretrained [models](https://huggingface.co/docs/diffusers/api/models/overview) that can be used as building blocks, and combined with schedulers, for creating your own end-to-end diffusion systems.
## Installation
We recommend installing 🤗 Diffusers in a virtual environment from PyPi or Conda. For more details about installing [PyTorch](https://pytorch.org/get-started/locally/) and [Flax](https://flax.readthedocs.io/en/latest/#installation), please refer to their official documentation.
We recommend installing 🤗 Diffusers in a virtual environment from PyPI or Conda. For more details about installing [PyTorch](https://pytorch.org/get-started/locally/) and [Flax](https://flax.readthedocs.io/en/latest/#installation), please refer to their official documentation.
### PyTorch
@@ -58,7 +77,7 @@ Please refer to the [How to use Stable Diffusion in Apple Silicon](https://huggi
## Quickstart
Generating outputs is super easy with 🤗 Diffusers. To generate an image from text, use the `from_pretrained` method to load any pretrained diffusion model (browse the [Hub](https://huggingface.co/models?library=diffusers&sort=downloads) for 4000+ checkpoints):
Generating outputs is super easy with 🤗 Diffusers. To generate an image from text, use the `from_pretrained` method to load any pretrained diffusion model (browse the [Hub](https://huggingface.co/models?library=diffusers&sort=downloads) for 15000+ checkpoints):
```python
from diffusers import DiffusionPipeline
@@ -75,14 +94,13 @@ You can also dig into the models and schedulers toolbox to build your own diffus
from diffusers import DDPMScheduler, UNet2DModel
from PIL import Image
import torch
import numpy as np
scheduler = DDPMScheduler.from_pretrained("google/ddpm-cat-256")
model = UNet2DModel.from_pretrained("google/ddpm-cat-256").to("cuda")
scheduler.set_timesteps(50)
sample_size = model.config.sample_size
noise = torch.randn((1, 3, sample_size, sample_size)).to("cuda")
noise = torch.randn((1, 3, sample_size, sample_size), device="cuda")
input = noise
for t in scheduler.timesteps:
@@ -117,8 +135,7 @@ You can look out for [issues](https://github.com/huggingface/diffusers/issues) y
- See [New model/pipeline](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+pipeline%2Fmodel%22) to contribute exciting new diffusion models / diffusion pipelines
- See [New scheduler](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+scheduler%22)
Also, say 👋 in our public Discord channel <a href="https://discord.gg/G7tWnz98XR"><img alt="Join us on Discord" src="https://img.shields.io/discord/823813159592001537?color=5865F2&logo=discord&logoColor=white"></a>. We discuss the hottest trends about diffusion models, help each other with contributions, personal projects or
just hang out ☕.
Also, say 👋 in our public Discord channel <a href="https://discord.gg/G7tWnz98XR"><img alt="Join us on Discord" src="https://img.shields.io/discord/823813159592001537?color=5865F2&logo=discord&logoColor=white"></a>. We discuss the hottest trends about diffusion models, help each other with contributions, personal projects or just hang out ☕.
## Popular Tasks & Pipelines
@@ -141,12 +158,12 @@ just hang out ☕.
</tr>
<tr>
<td>Text-to-Image</td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/unclip">unclip</a></td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/unclip">unCLIP</a></td>
<td><a href="https://huggingface.co/kakaobrain/karlo-v1-alpha"> kakaobrain/karlo-v1-alpha </a></td>
</tr>
<tr>
<td>Text-to-Image</td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/if">DeepFloyd IF</a></td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/deepfloyd_if">DeepFloyd IF</a></td>
<td><a href="https://huggingface.co/DeepFloyd/IF-I-XL-v1.0"> DeepFloyd/IF-I-XL-v1.0 </a></td>
</tr>
<tr>
@@ -156,12 +173,12 @@ just hang out ☕.
</tr>
<tr style="border-top: 2px solid black">
<td>Text-guided Image-to-Image</td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/controlnet">Controlnet</a></td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/controlnet">ControlNet</a></td>
<td><a href="https://huggingface.co/lllyasviel/sd-controlnet-canny"> lllyasviel/sd-controlnet-canny </a></td>
</tr>
<tr>
<td>Text-guided Image-to-Image</td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/pix2pix">Instruct Pix2Pix</a></td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/pix2pix">InstructPix2Pix</a></td>
<td><a href="https://huggingface.co/timbrooks/instruct-pix2pix"> timbrooks/instruct-pix2pix </a></td>
</tr>
<tr>
@@ -171,7 +188,7 @@ just hang out ☕.
</tr>
<tr style="border-top: 2px solid black">
<td>Text-guided Image Inpainting</td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/inpaint">Stable Diffusion Inpaint</a></td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/inpaint">Stable Diffusion Inpainting</a></td>
<td><a href="https://huggingface.co/runwayml/stable-diffusion-inpainting"> runwayml/stable-diffusion-inpainting </a></td>
</tr>
<tr style="border-top: 2px solid black">
@@ -202,9 +219,9 @@ just hang out ☕.
- https://github.com/deep-floyd/IF
- https://github.com/bentoml/BentoML
- https://github.com/bmaltais/kohya_ss
- +3000 other amazing GitHub repositories 💪
- +6000 other amazing GitHub repositories 💪
Thank you for using us ❤️
Thank you for using us ❤️.
## Credits

View File

@@ -40,6 +40,7 @@ RUN python3 -m pip install --no-cache-dir --upgrade pip && \
scipy \
tensorboard \
transformers \
omegaconf
omegaconf \
pytorch-lightning
CMD ["/bin/bash"]

View File

@@ -1,4 +1,4 @@
FROM nvidia/cuda:11.7.1-cudnn8-runtime-ubuntu20.04
FROM nvidia/cuda:12.1.0-runtime-ubuntu20.04
LABEL maintainer="Hugging Face"
LABEL repository="diffusers"
@@ -25,8 +25,8 @@ ENV PATH="/opt/venv/bin:$PATH"
# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
RUN python3 -m pip install --no-cache-dir --upgrade pip && \
python3 -m pip install --no-cache-dir \
torch==2.0.1 \
torchvision==0.15.2 \
torch \
torchvision \
torchaudio \
invisible_watermark && \
python3 -m pip install --no-cache-dir \

View File

@@ -16,7 +16,7 @@ limitations under the License.
# Generating the documentation
To generate the documentation, you first have to build it. Several packages are necessary to build the doc,
To generate the documentation, you first have to build it. Several packages are necessary to build the doc,
you can install them with the following command, at the root of the code repository:
```bash
@@ -71,7 +71,7 @@ The `preview` command only works with existing doc files. When you add a complet
Accepted files are Markdown (.md).
Create a file with its extension and put it in the source directory. You can then link it to the toc-tree by putting
the filename without the extension in the [`_toctree.yml`](https://github.com/huggingface/diffusers/blob/main/docs/source/_toctree.yml) file.
the filename without the extension in the [`_toctree.yml`](https://github.com/huggingface/diffusers/blob/main/docs/source/en/_toctree.yml) file.
## Renaming section headers and moving sections
@@ -81,14 +81,14 @@ Therefore, we simply keep a little map of moved sections at the end of the docum
So if you renamed a section from: "Section A" to "Section B", then you can add at the end of the file:
```
```md
Sections that were moved:
[ <a href="#section-b">Section A</a><a id="section-a"></a> ]
```
and of course, if you moved it to another file, then:
```
```md
Sections that were moved:
[ <a href="../new-file#section-b">Section A</a><a id="section-a"></a> ]
@@ -109,8 +109,8 @@ although we can write them directly in Markdown.
Adding a new tutorial or section is done in two steps:
- Add a new file under `docs/source`. This file can either be ReStructuredText (.rst) or Markdown (.md).
- Link that file in `docs/source/_toctree.yml` on the correct toc-tree.
- Add a new Markdown (.md) file under `docs/source/<languageCode>`.
- Link that file in `docs/source/<languageCode>/_toctree.yml` on the correct toc-tree.
Make sure to put your new file under the proper section. It's unlikely to go in the first section (*Get Started*), so
depending on the intended targets (beginners, more advanced users, or researchers) it should go in sections two, three, or four.
@@ -119,7 +119,7 @@ depending on the intended targets (beginners, more advanced users, or researcher
When adding a new pipeline:
- create a file `xxx.md` under `docs/source/api/pipelines` (don't hesitate to copy an existing file as template).
- Create a file `xxx.md` under `docs/source/<languageCode>/api/pipelines` (don't hesitate to copy an existing file as template).
- Link that file in (*Diffusers Summary*) section in `docs/source/api/pipelines/overview.md`, along with the link to the paper, and a colab notebook (if available).
- Write a short overview of the diffusion model:
- Overview with paper & authors
@@ -128,9 +128,7 @@ When adding a new pipeline:
- Possible an end-to-end example of how to use it
- Add all the pipeline classes that should be linked in the diffusion model. These classes should be added using our Markdown syntax. By default as follows:
```py
## XXXPipeline
```
[[autodoc]] XXXPipeline
- all
- __call__
@@ -138,17 +136,17 @@ When adding a new pipeline:
This will include every public method of the pipeline that is documented, as well as the `__call__` method that is not documented by default. If you just want to add additional methods that are not documented, you can put the list of all methods to add in a list that contains `all`.
```py
```
[[autodoc]] XXXPipeline
- all
- __call__
- enable_attention_slicing
- disable_attention_slicing
- enable_xformers_memory_efficient_attention
- enable_xformers_memory_efficient_attention
- disable_xformers_memory_efficient_attention
```
You can follow the same process to create a new scheduler under the `docs/source/api/schedulers` folder
You can follow the same process to create a new scheduler under the `docs/source/<languageCode>/api/schedulers` folder.
### Writing source documentation
@@ -156,7 +154,7 @@ Values that should be put in `code` should either be surrounded by backticks: \`
and objects like True, None, or any strings should usually be put in `code`.
When mentioning a class, function, or method, it is recommended to use our syntax for internal links so that our tool
adds a link to its documentation with this syntax: \[\`XXXClass\`\] or \[\`function\`\]. This requires the class or
adds a link to its documentation with this syntax: \[\`XXXClass\`\] or \[\`function\`\]. This requires the class or
function to be in the main package.
If you want to create a link to some internal class or function, you need to
@@ -164,7 +162,7 @@ provide its path. For instance: \[\`pipelines.ImagePipelineOutput\`\]. This will
`pipelines.ImagePipelineOutput` in the description. To get rid of the path and only keep the name of the object you are
linking to in the description, add a ~: \[\`~pipelines.ImagePipelineOutput\`\] will generate a link with `ImagePipelineOutput` in the description.
The same works for methods so you can either use \[\`XXXClass.method\`\] or \[~\`XXXClass.method\`\].
The same works for methods so you can either use \[\`XXXClass.method\`\] or \[\`~XXXClass.method\`\].
#### Defining arguments in a method
@@ -172,7 +170,7 @@ Arguments should be defined with the `Args:` (or `Arguments:` or `Parameters:`)
an indentation. The argument should be followed by its type, with its shape if it is a tensor, a colon, and its
description:
```py
```
Args:
n_layers (`int`): The number of layers of the model.
```
@@ -182,7 +180,7 @@ after the argument.
Here's an example showcasing everything so far:
```py
```
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
@@ -197,16 +195,16 @@ For optional arguments or arguments with defaults we follow the following syntax
following signature:
```py
def my_function(x: str = None, a: float = 1):
def my_function(x: str=None, a: float=3.14):
```
then its documentation should look like this:
```py
```
Args:
x (`str`, *optional*):
This argument controls ...
a (`float`, *optional*, defaults to 1):
a (`float`, *optional*, defaults to `3.14`):
This argument is used to ...
```
@@ -235,14 +233,14 @@ building the return.
Here's an example of a single value return:
```py
```
Returns:
`List[int]`: A list of integers in the range [0, 1] --- 1 for a special token, 0 for a sequence token.
```
Here's an example of a tuple return, comprising several objects:
```py
```
Returns:
`tuple(torch.FloatTensor)` comprising various elements depending on the configuration ([`BertConfig`]) and inputs:
- ** loss** (*optional*, returned when `masked_lm_labels` is provided) `torch.FloatTensor` of shape `(1,)` --
@@ -268,4 +266,3 @@ We have an automatic script running with the `make style` command that will make
This script may have some weird failures if you made a syntax mistake or if you uncover a bug. Therefore, it's
recommended to commit your changes before running `make style`, so you can revert the changes done by that script
easily.

View File

@@ -1,10 +1,22 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
### Translating the Diffusers documentation into your language
As part of our mission to democratize machine learning, we'd love to make the Diffusers library available in many more languages! Follow the steps below if you want to help translate the documentation into your language 🙏.
**🗞️ Open an issue**
To get started, navigate to the [Issues](https://github.com/huggingface/diffusers/issues) page of this repo and check if anyone else has opened an issue for your language. If not, open a new issue by selecting the "Translation template" from the "New issue" button.
To get started, navigate to the [Issues](https://github.com/huggingface/diffusers/issues) page of this repo and check if anyone else has opened an issue for your language. If not, open a new issue by selecting the "🌐 Translating a New Language?" from the "New issue" button.
Once an issue exists, post a comment to indicate which chapters you'd like to work on, and we'll add your name to the list.
@@ -16,7 +28,7 @@ First, you'll need to [fork the Diffusers repo](https://docs.github.com/en/get-s
Once you've forked the repo, you'll want to get the files on your local machine for editing. You can do that by cloning the fork with Git as follows:
```bash
git clone https://github.com/YOUR-USERNAME/diffusers.git
git clone https://github.com/<YOUR-USERNAME>/diffusers.git
```
**📋 Copy-paste the English version with a new language code**
@@ -29,18 +41,18 @@ You'll only need to copy the files in the [`docs/source/en`](https://github.com/
```bash
cd ~/path/to/diffusers/docs
cp -r source/en source/LANG-ID
cp -r source/en source/<LANG-ID>
```
Here, `LANG-ID` should be one of the ISO 639-1 or ISO 639-2 language codes -- see [here](https://www.loc.gov/standards/iso639-2/php/code_list.php) for a handy table.
Here, `<LANG-ID>` should be one of the ISO 639-1 or ISO 639-2 language codes -- see [here](https://www.loc.gov/standards/iso639-2/php/code_list.php) for a handy table.
**✍️ Start translating**
The fun part comes - translating the text!
The first thing we recommend is translating the part of the `_toctree.yml` file that corresponds to your doc chapter. This file is used to render the table of contents on the website.
The first thing we recommend is translating the part of the `_toctree.yml` file that corresponds to your doc chapter. This file is used to render the table of contents on the website.
> 🙋 If the `_toctree.yml` file doesn't yet exist for your language, you can create one by copy-pasting from the English version and deleting the sections unrelated to your chapter. Just make sure it exists in the `docs/source/LANG-ID/` directory!
> 🙋 If the `_toctree.yml` file doesn't yet exist for your language, you can create one by copy-pasting from the English version and deleting the sections unrelated to your chapter. Just make sure it exists in the `docs/source/<LANG-ID>/` directory!
The fields you should add are `local` (with the name of the file containing the translation; e.g. `autoclass_tutorial`), and `title` (with the title of the doc in your language; e.g. `Load pretrained instances with an AutoClass`) -- as a reference, here is the `_toctree.yml` for [English](https://github.com/huggingface/diffusers/blob/main/docs/source/en/_toctree.yml):

View File

@@ -12,7 +12,7 @@
- local: tutorials/tutorial_overview
title: Overview
- local: using-diffusers/write_own_pipeline
title: Understanding models and schedulers
title: Understanding pipelines, models and schedulers
- local: tutorials/autopipeline
title: AutoPipeline
- local: tutorials/basic_training
@@ -29,15 +29,19 @@
- local: using-diffusers/schedulers
title: Load and compare different schedulers
- local: using-diffusers/custom_pipeline_overview
title: Load community pipelines
title: Load community pipelines and components
- local: using-diffusers/using_safetensors
title: Load safetensors
- local: using-diffusers/other-formats
title: Load different Stable Diffusion formats
- local: using-diffusers/loading_adapters
title: Load adapters
- local: using-diffusers/push_to_hub
title: Push files to the Hub
title: Loading & Hub
- sections:
- local: using-diffusers/pipeline_overview
title: Overview
- local: using-diffusers/unconditional_image_generation
title: Unconditional image generation
- local: using-diffusers/conditional_image_generation
@@ -68,6 +72,8 @@
title: Overview
- local: using-diffusers/sdxl
title: Stable Diffusion XL
- local: using-diffusers/kandinsky
title: Kandinsky
- local: using-diffusers/controlnet
title: ControlNet
- local: using-diffusers/shap-e
@@ -76,13 +82,19 @@
title: DiffEdit
- local: using-diffusers/distilled_sd
title: Distilled Stable Diffusion inference
- local: using-diffusers/callback
title: Pipeline callbacks
- local: using-diffusers/reproducibility
title: Create reproducible pipelines
- local: using-diffusers/custom_pipeline_examples
title: Community pipelines
- local: using-diffusers/contribute_pipeline
title: How to contribute a community pipeline
title: Pipelines for Inference
title: Contribute a community pipeline
- local: using-diffusers/inference_with_lcm_lora
title: Latent Consistency Model-LoRA
- local: using-diffusers/inference_with_lcm
title: Latent Consistency Model
title: Specific pipeline examples
- sections:
- local: training/overview
title: Overview
@@ -90,26 +102,36 @@
title: Create a dataset for training
- local: training/adapt_a_model
title: Adapt a model to a new task
- local: training/unconditional_training
title: Unconditional image generation
- local: training/text_inversion
title: Textual Inversion
- local: training/dreambooth
title: DreamBooth
- local: training/text2image
title: Text-to-image
- local: training/lora
title: Low-Rank Adaptation of Large Language Models (LoRA)
- local: training/controlnet
title: ControlNet
- local: training/instructpix2pix
title: InstructPix2Pix Training
- local: training/custom_diffusion
title: Custom Diffusion
- local: training/t2i_adapters
title: T2I-Adapters
- local: training/ddpo
title: Reinforcement learning training with DDPO
- sections:
- local: training/unconditional_training
title: Unconditional image generation
- local: training/text2image
title: Text-to-image
- local: training/sdxl
title: Stable Diffusion XL
- local: training/kandinsky
title: Kandinsky 2.2
- local: training/wuerstchen
title: Wuerstchen
- local: training/controlnet
title: ControlNet
- local: training/t2i_adapters
title: T2I-Adapters
- local: training/instructpix2pix
title: InstructPix2Pix
title: Models
- sections:
- local: training/text_inversion
title: Textual Inversion
- local: training/dreambooth
title: DreamBooth
- local: training/lora
title: LoRA
- local: training/custom_diffusion
title: Custom Diffusion
- local: training/ddpo
title: Reinforcement learning training with DDPO
title: Methods
title: Training
- sections:
- local: using-diffusers/other-modalities
@@ -125,7 +147,7 @@
- local: optimization/memory
title: Reduce memory usage
- local: optimization/torch2.0
title: Torch 2.0
title: PyTorch 2.0
- local: optimization/xformers
title: xFormers
- local: optimization/tome
@@ -162,22 +184,14 @@
title: Conceptual Guides
- sections:
- sections:
- local: api/attnprocessor
title: Attention Processor
- local: api/diffusion_pipeline
title: Diffusion Pipeline
- local: api/logging
title: Logging
- local: api/configuration
title: Configuration
- local: api/outputs
title: Outputs
- local: api/loaders
title: Loaders
- local: api/utilities
title: Utilities
- local: api/image_processor
title: VAE Image Processor
- local: api/logging
title: Logging
- local: api/outputs
title: Outputs
title: Main Classes
- sections:
- local: api/models/overview
@@ -190,6 +204,8 @@
title: UNet2DConditionModel
- local: api/models/unet3d-cond
title: UNet3DConditionModel
- local: api/models/unet-motion
title: UNetMotionModel
- local: api/models/vq
title: VQModel
- local: api/models/autoencoderkl
@@ -198,6 +214,8 @@
title: AsymmetricAutoencoderKL
- local: api/models/autoencoder_tiny
title: Tiny AutoEncoder
- local: api/models/consistency_decoder_vae
title: ConsistencyDecoderVAE
- local: api/models/transformer2d
title: Transformer2D
- local: api/models/transformer_temporal
@@ -212,6 +230,8 @@
title: Overview
- local: api/pipelines/alt_diffusion
title: AltDiffusion
- local: api/pipelines/animatediff
title: AnimateDiff
- local: api/pipelines/attend_and_excite
title: Attend-and-Excite
- local: api/pipelines/audio_diffusion
@@ -223,7 +243,7 @@
- local: api/pipelines/auto_pipeline
title: AutoPipeline
- local: api/pipelines/blip_diffusion
title: BLIP Diffusion
title: BLIP-Diffusion
- local: api/pipelines/consistency_models
title: Consistency Models
- local: api/pipelines/controlnet
@@ -247,9 +267,11 @@
- local: api/pipelines/pix2pix
title: InstructPix2Pix
- local: api/pipelines/kandinsky
title: Kandinsky
title: Kandinsky 2.1
- local: api/pipelines/kandinsky_v22
title: Kandinsky 2.2
- local: api/pipelines/latent_consistency_models
title: Latent Consistency Models
- local: api/pipelines/latent_diffusion
title: Latent Diffusion
- local: api/pipelines/panorama
@@ -257,11 +279,13 @@
- local: api/pipelines/musicldm
title: MusicLDM
- local: api/pipelines/paint_by_example
title: PaintByExample
title: Paint by Example
- local: api/pipelines/paradigms
title: Parallel Sampling of Diffusion Models
- local: api/pipelines/pix2pix_zero
title: Pix2Pix Zero
- local: api/pipelines/pixart
title: PixArt-α
- local: api/pipelines/pndm
title: PNDM
- local: api/pipelines/repaint
@@ -302,7 +326,7 @@
- local: api/pipelines/stable_diffusion/ldm3d_diffusion
title: LDM3D Text-to-(RGB, Depth)
- local: api/pipelines/stable_diffusion/adapter
title: Stable Diffusion T2I-adapter
title: Stable Diffusion T2I-Adapter
- local: api/pipelines/stable_diffusion/gligen
title: GLIGEN (Grounded Language-to-Image Generation)
title: Stable Diffusion
@@ -317,7 +341,7 @@
- local: api/pipelines/text_to_video_zero
title: Text2Video-Zero
- local: api/pipelines/unclip
title: UnCLIP
title: unCLIP
- local: api/pipelines/latent_diffusion_uncond
title: Unconditional Latent Diffusion
- local: api/pipelines/unidiffuser
@@ -336,6 +360,8 @@
title: Overview
- local: api/schedulers/cm_stochastic_iterative
title: CMStochasticIterativeScheduler
- local: api/schedulers/consistency_decoder
title: ConsistencyDecoderScheduler
- local: api/schedulers/ddim_inverse
title: DDIMInverseScheduler
- local: api/schedulers/ddim
@@ -366,6 +392,8 @@
title: KDPM2AncestralDiscreteScheduler
- local: api/schedulers/dpm_discrete
title: KDPM2DiscreteScheduler
- local: api/schedulers/lcm
title: LCMScheduler
- local: api/schedulers/lms_discrete
title: LMSDiscreteScheduler
- local: api/schedulers/pndm
@@ -381,4 +409,18 @@
- local: api/schedulers/vq_diffusion
title: VQDiffusionScheduler
title: Schedulers
- sections:
- local: api/internal_classes_overview
title: Overview
- local: api/attnprocessor
title: Attention Processor
- local: api/activations
title: Custom activation functions
- local: api/normalization
title: Custom normalization layers
- local: api/utilities
title: Utilities
- local: api/image_processor
title: VAE Image Processor
title: Internal classes
title: API

View File

@@ -0,0 +1,27 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Activation functions
Customized activation functions for supporting various models in 🤗 Diffusers.
## GELU
[[autodoc]] models.activations.GELU
## GEGLU
[[autodoc]] models.activations.GEGLU
## ApproximateGELU
[[autodoc]] models.activations.ApproximateGELU

View File

@@ -1,3 +1,15 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Attention Processor
An attention processor is a class for applying different types of attention mechanisms.

View File

@@ -1,36 +0,0 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Pipelines
The [`DiffusionPipeline`] is the quickest way to load any pretrained diffusion pipeline from the [Hub](https://huggingface.co/models?library=diffusers) for inference.
<Tip>
You shouldn't use the [`DiffusionPipeline`] class for training or finetuning a diffusion model. Individual
components (for example, [`UNet2DModel`] and [`UNet2DConditionModel`]) of diffusion pipelines are usually trained individually, so we suggest directly working with them instead.
</Tip>
The pipeline type (for example [`StableDiffusionPipeline`]) of any diffusion pipeline loaded with [`~DiffusionPipeline.from_pretrained`] is automatically
detected and pipeline components are loaded and passed to the `__init__` function of the pipeline.
Any pipeline object can be saved locally with [`~DiffusionPipeline.save_pretrained`].
## DiffusionPipeline
[[autodoc]] DiffusionPipeline
- all
- __call__
- device
- to
- components

View File

@@ -12,9 +12,9 @@ specific language governing permissions and limitations under the License.
# VAE Image Processor
The [`VaeImageProcessor`] provides a unified API for [`StableDiffusionPipeline`]'s to prepare image inputs for VAE encoding and post-processing outputs once they're decoded. This includes transformations such as resizing, normalization, and conversion between PIL Image, PyTorch, and NumPy arrays.
The [`VaeImageProcessor`] provides a unified API for [`StableDiffusionPipeline`]s to prepare image inputs for VAE encoding and post-processing outputs once they're decoded. This includes transformations such as resizing, normalization, and conversion between PIL Image, PyTorch, and NumPy arrays.
All pipelines with [`VaeImageProcessor`] accepts PIL Image, PyTorch tensor, or NumPy arrays as image inputs and returns outputs based on the `output_type` argument by the user. You can pass encoded image latents directly to the pipeline and return latents from the pipeline as a specific output with the `output_type` argument (for example `output_type="pt"`). This allows you to take the generated latents from one pipeline and pass it to another pipeline as input without leaving the latent space. It also makes it much easier to use multiple pipelines together by passing PyTorch tensors directly between different pipelines.
All pipelines with [`VaeImageProcessor`] accept PIL Image, PyTorch tensor, or NumPy arrays as image inputs and return outputs based on the `output_type` argument by the user. You can pass encoded image latents directly to the pipeline and return latents from the pipeline as a specific output with the `output_type` argument (for example `output_type="latent"`). This allows you to take the generated latents from one pipeline and pass it to another pipeline as input without leaving the latent space. It also makes it much easier to use multiple pipelines together by passing PyTorch tensors directly between different pipelines.
## VaeImageProcessor
@@ -24,4 +24,4 @@ All pipelines with [`VaeImageProcessor`] accepts PIL Image, PyTorch tensor, or N
The [`VaeImageProcessorLDM3D`] accepts RGB and depth inputs and returns RGB and depth outputs.
[[autodoc]] image_processor.VaeImageProcessorLDM3D
[[autodoc]] image_processor.VaeImageProcessorLDM3D

View File

@@ -0,0 +1,15 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Overview
The APIs in this section are more experimental and prone to breaking changes. Most of them are used internally for development, but they may also be useful to you if you're interested in building a diffusion model with some custom parts or if you're interested in some of our helper utilities for working with 🤗 Diffusers.

View File

@@ -12,11 +12,11 @@ specific language governing permissions and limitations under the License.
# Loaders
Adapters (textual inversion, LoRA, hypernetworks) allow you to modify a diffusion model to generate images in a specific style without training or finetuning the entire model. The adapter weights are typically only a tiny fraction of the pretrained model's which making them very portable. 🤗 Diffusers provides an easy-to-use `LoaderMixin` API to load adapter weights.
Adapters (textual inversion, LoRA, hypernetworks) allow you to modify a diffusion model to generate images in a specific style without training or finetuning the entire model. The adapter weights are very portable because they're typically only a tiny fraction of the pretrained model weights. 🤗 Diffusers provides an easy-to-use `LoaderMixin` API to load adapter weights.
<Tip warning={true}>
🧪 The `LoaderMixins` are highly experimental and prone to future changes. To use private or [gated](https://huggingface.co/docs/hub/models-gated#gated-models) models, log-in with `huggingface-cli login`.
🧪 The `LoaderMixin`s are highly experimental and prone to future changes. To use private or [gated](https://huggingface.co/docs/hub/models-gated#gated-models) models, log-in with `huggingface-cli login`.
</Tip>

View File

@@ -51,7 +51,7 @@ logger.warning("WARN")
All methods of the logging module are documented below. The main methods are
[`logging.get_verbosity`] to get the current level of verbosity in the logger and
[`logging.set_verbosity`] to set the verbosity to the level of your choice.
[`logging.set_verbosity`] to set the verbosity to the level of your choice.
In order from the least verbose to the most verbose:

View File

@@ -1,3 +1,15 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# AsymmetricAutoencoderKL
Improved larger variational autoencoder (VAE) model with KL loss for inpainting task: [Designing a Better Asymmetric VQGAN for StableDiffusion](https://arxiv.org/abs/2306.04632) by Zixin Zhu, Xuelu Feng, Dongdong Chen, Jianmin Bao, Le Wang, Yinpeng Chen, Lu Yuan, Gang Hua.
@@ -6,7 +18,7 @@ The abstract from the paper is:
*StableDiffusion is a revolutionary text-to-image generator that is causing a stir in the world of image generation and editing. Unlike traditional methods that learn a diffusion model in pixel space, StableDiffusion learns a diffusion model in the latent space via a VQGAN, ensuring both efficiency and quality. It not only supports image generation tasks, but also enables image editing for real images, such as image inpainting and local editing. However, we have observed that the vanilla VQGAN used in StableDiffusion leads to significant information loss, causing distortion artifacts even in non-edited image regions. To this end, we propose a new asymmetric VQGAN with two simple designs. Firstly, in addition to the input from the encoder, the decoder contains a conditional branch that incorporates information from task-specific priors, such as the unmasked image region in inpainting. Secondly, the decoder is much heavier than the encoder, allowing for more detailed recovery while only slightly increasing the total inference cost. The training cost of our asymmetric VQGAN is cheap, and we only need to retrain a new asymmetric decoder while keeping the vanilla VQGAN encoder and StableDiffusion unchanged. Our asymmetric VQGAN can be widely used in StableDiffusion-based inpainting and local editing methods. Extensive experiments demonstrate that it can significantly improve the inpainting and editing performance, while maintaining the original text-to-image capability. The code is available at https://github.com/buxiangzhiren/Asymmetric_VQGAN*
Evaluation results can be found in section 4.1 of the original paper.
Evaluation results can be found in section 4.1 of the original paper.
## Available checkpoints
@@ -16,30 +28,23 @@ Evaluation results can be found in section 4.1 of the original paper.
## Example Usage
```python
from io import BytesIO
from PIL import Image
import requests
from diffusers import AsymmetricAutoencoderKL, StableDiffusionInpaintPipeline
from diffusers.utils import load_image, make_image_grid
def download_image(url: str) -> Image.Image:
response = requests.get(url)
return Image.open(BytesIO(response.content)).convert("RGB")
prompt = "a photo of a person"
prompt = "a photo of a person with beard"
img_url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/repaint/celeba_hq_256.png"
mask_url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/repaint/mask_256.png"
image = download_image(img_url).resize((256, 256))
mask_image = download_image(mask_url).resize((256, 256))
original_image = load_image(img_url).resize((512, 512))
mask_image = load_image(mask_url).resize((512, 512))
pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
pipe.vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5")
pipe.to("cuda")
image = pipe(prompt=prompt, image=image, mask_image=mask_image).images[0]
image.save("image.jpeg")
image = pipe(prompt=prompt, image=original_image, mask_image=mask_image).images[0]
make_image_grid([original_image, mask_image, image], rows=1, cols=3)
```
## AsymmetricAutoencoderKL

View File

@@ -1,6 +1,18 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Tiny AutoEncoder
Tiny AutoEncoder for Stable Diffusion (TAESD) was introduced in [madebyollin/taesd](https://github.com/madebyollin/taesd) by Ollin Boer Bohan. It is a tiny distilled version of Stable Diffusion's VAE that can quickly decode the latents in a [`StableDiffusionPipeline`] or [`StableDiffusionXLPipeline`] almost instantly.
Tiny AutoEncoder for Stable Diffusion (TAESD) was introduced in [madebyollin/taesd](https://github.com/madebyollin/taesd) by Ollin Boer Bohan. It is a tiny distilled version of Stable Diffusion's VAE that can quickly decode the latents in a [`StableDiffusionPipeline`] or [`StableDiffusionXLPipeline`] almost instantly.
To use with Stable Diffusion v-2.1:
@@ -16,7 +28,7 @@ pipe = pipe.to("cuda")
prompt = "slice of delicious New York-style berry cheesecake"
image = pipe(prompt, num_inference_steps=25).images[0]
image.save("cheesecake.png")
image
```
To use with Stable Diffusion XL 1.0
@@ -33,7 +45,7 @@ pipe = pipe.to("cuda")
prompt = "slice of delicious New York-style berry cheesecake"
image = pipe(prompt, num_inference_steps=25).images[0]
image.save("cheesecake_sdxl.png")
image
```
## AutoencoderTiny
@@ -42,4 +54,4 @@ image.save("cheesecake_sdxl.png")
## AutoencoderTinyOutput
[[autodoc]] models.autoencoder_tiny.AutoencoderTinyOutput
[[autodoc]] models.autoencoder_tiny.AutoencoderTinyOutput

View File

@@ -1,3 +1,15 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# AutoencoderKL
The variational autoencoder (VAE) model with KL loss was introduced in [Auto-Encoding Variational Bayes](https://arxiv.org/abs/1312.6114v11) by Diederik P. Kingma and Max Welling. The model is used in 🤗 Diffusers to encode images into latents and to decode latent representations into images.
@@ -14,7 +26,7 @@ from the original format using [`FromOriginalVAEMixin.from_single_file`] as foll
```py
from diffusers import AutoencoderKL
url = "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.safetensors" # can also be local file
url = "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.safetensors" # can also be a local file
model = AutoencoderKL.from_single_file(url)
```

View File

@@ -0,0 +1,18 @@
# Consistency Decoder
Consistency decoder can be used to decode the latents from the denoising UNet in the [`StableDiffusionPipeline`]. This decoder was introduced in the [DALL-E 3 technical report](https://openai.com/dall-e-3).
The original codebase can be found at [openai/consistencydecoder](https://github.com/openai/consistencydecoder).
<Tip warning={true}>
Inference is only supported for 2 iterations as of now.
</Tip>
The pipeline could not have been contributed without the help of [madebyollin](https://github.com/madebyollin) and [mrsteyk](https://github.com/mrsteyk) from [this issue](https://github.com/openai/consistencydecoder/issues/1).
## ConsistencyDecoderVAE
[[autodoc]] ConsistencyDecoderVAE
- all
- decode

View File

@@ -1,10 +1,22 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# ControlNet
The ControlNet model was introduced in [Adding Conditional Control to Text-to-Image Diffusion Models](https://huggingface.co/papers/2302.05543) by Lvmin Zhang and Maneesh Agrawala. It provides a greater degree of control over text-to-image generation by conditioning the model on additional inputs such as edge maps, depth maps, segmentation maps, and keypoints for pose detection.
The ControlNet model was introduced in [Adding Conditional Control to Text-to-Image Diffusion Models](https://huggingface.co/papers/2302.05543) by Lvmin Zhang, Anyi Rao, Maneesh Agrawala. It provides a greater degree of control over text-to-image generation by conditioning the model on additional inputs such as edge maps, depth maps, segmentation maps, and keypoints for pose detection.
The abstract from the paper is:
*We present a neural network structure, ControlNet, to control pretrained large diffusion models to support additional input conditions. The ControlNet learns task-specific conditions in an end-to-end way, and the learning is robust even when the training dataset is small (< 50k). Moreover, training a ControlNet is as fast as fine-tuning a diffusion model, and the model can be trained on a personal devices. Alternatively, if powerful computation clusters are available, the model can scale to large amounts (millions to billions) of data. We report that large diffusion models like Stable Diffusion can be augmented with ControlNets to enable conditional inputs like edge maps, segmentation maps, keypoints, etc. This may enrich the methods to control large diffusion models and further facilitate related applications.*
*We present ControlNet, a neural network architecture to add spatial conditioning controls to large, pretrained text-to-image diffusion models. ControlNet locks the production-ready large diffusion models, and reuses their deep and robust encoding layers pretrained with billions of images as a strong backbone to learn a diverse set of conditional controls. The neural architecture is connected with "zero convolutions" (zero-initialized convolution layers) that progressively grow the parameters from zero and ensure that no harmful noise could affect the finetuning. We test various conditioning controls, eg, edges, depth, segmentation, human pose, etc, with Stable Diffusion, using single or multiple conditions, with or without prompts. We show that the training of ControlNets is robust with small (<50k) and large (>1m) datasets. Extensive results show that ControlNet may facilitate wider applications to control image diffusion models.*
## Loading from the original format
@@ -12,13 +24,13 @@ By default the [`ControlNetModel`] should be loaded with [`~ModelMixin.from_pret
from the original format using [`FromOriginalControlnetMixin.from_single_file`] as follows:
```py
from diffusers import StableDiffusionControlnetPipeline, ControlNetModel
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
url = "https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_canny.pth" # can also be a local path
controlnet = ControlNetModel.from_single_file(url)
url = "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned.safetensors" # can also be a local path
pipe = StableDiffusionControlnetPipeline.from_single_file(url, controlnet=controlnet)
pipe = StableDiffusionControlNetPipeline.from_single_file(url, controlnet=controlnet)
```
## ControlNetModel

View File

@@ -1,8 +1,20 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Models
🤗 Diffusers provides pretrained models for popular algorithms and modules to create custom diffusion systems. The primary function of models is to denoise an input sample as modeled by the distribution \\(p_{\theta}(x_{t-1}|x_{t})\\).
🤗 Diffusers provides pretrained models for popular algorithms and modules to create custom diffusion systems. The primary function of models is to denoise an input sample as modeled by the distribution \\(p_{\theta}(x_{t-1}|x_{t})\\).
All models are built from the base [`ModelMixin`] class which is a [`torch.nn.module`](https://pytorch.org/docs/stable/generated/torch.nn.Module.html) providing basic functionality for saving and loading models, locally and from the Hugging Face Hub.
All models are built from the base [`ModelMixin`] class which is a [`torch.nn.Module`](https://pytorch.org/docs/stable/generated/torch.nn.Module.html) providing basic functionality for saving and loading models, locally and from the Hugging Face Hub.
## ModelMixin
[[autodoc]] ModelMixin
@@ -13,4 +25,4 @@ All models are built from the base [`ModelMixin`] class which is a [`torch.nn.mo
## PushToHubMixin
[[autodoc]] utils.PushToHubMixin
[[autodoc]] utils.PushToHubMixin

View File

@@ -1,7 +1,18 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Prior Transformer
The Prior Transformer was originally introduced in [Hierarchical Text-Conditional Image Generation with CLIP Latents
](https://huggingface.co/papers/2204.06125) by Ramesh et al. It is used to predict CLIP image embeddings from CLIP text embeddings; image embeddings are predicted through a denoising diffusion process.
The Prior Transformer was originally introduced in [Hierarchical Text-Conditional Image Generation with CLIP Latents](https://huggingface.co/papers/2204.06125) by Ramesh et al. It is used to predict CLIP image embeddings from CLIP text embeddings; image embeddings are predicted through a denoising diffusion process.
The abstract from the paper is:
@@ -13,4 +24,4 @@ The abstract from the paper is:
## PriorTransformerOutput
[[autodoc]] models.prior_transformer.PriorTransformerOutput
[[autodoc]] models.prior_transformer.PriorTransformerOutput

View File

@@ -1,3 +1,15 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Transformer2D
A Transformer model for image-like data from [CompVis](https://huggingface.co/CompVis) that is based on the [Vision Transformer](https://huggingface.co/papers/2010.11929) introduced by Dosovitskiy et al. The [`Transformer2DModel`] accepts discrete (classes of vector embeddings) or continuous (actual embeddings) inputs.

View File

@@ -1,3 +1,15 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Transformer Temporal
A Transformer model for video-like data.
@@ -8,4 +20,4 @@ A Transformer model for video-like data.
## TransformerTemporalModelOutput
[[autodoc]] models.transformer_temporal.TransformerTemporalModelOutput
[[autodoc]] models.transformer_temporal.TransformerTemporalModelOutput

View File

@@ -0,0 +1,25 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# UNetMotionModel
The [UNet](https://huggingface.co/papers/1505.04597) model was originally introduced by Ronneberger et al for biomedical image segmentation, but it is also commonly used in 🤗 Diffusers because it outputs images that are the same size as the input. It is one of the most important components of a diffusion system because it facilitates the actual diffusion process. There are several variants of the UNet model in 🤗 Diffusers, depending on it's number of dimensions and whether it is a conditional model or not. This is a 2D UNet model.
The abstract from the paper is:
*There is large consent that successful training of deep networks requires many thousand annotated training samples. In this paper, we present a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently. The architecture consists of a contracting path to capture context and a symmetric expanding path that enables precise localization. We show that such a network can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks. Using the same network trained on transmitted light microscopy images (phase contrast and DIC) we won the ISBI cell tracking challenge 2015 in these categories by a large margin. Moreover, the network is fast. Segmentation of a 512x512 image takes less than a second on a recent GPU. The full implementation (based on Caffe) and the trained networks are available at http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net.*
## UNetMotionModel
[[autodoc]] UNetMotionModel
## UNet3DConditionOutput
[[autodoc]] models.unet_3d_condition.UNet3DConditionOutput

View File

@@ -1,6 +1,18 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# UNet1DModel
The [UNet](https://huggingface.co/papers/1505.04597) model was originally introduced by Ronneberger et al for biomedical image segmentation, but it is also commonly used in 🤗 Diffusers because it outputs images that are the same size as the input. It is one of the most important components of a diffusion system because it facilitates the actual diffusion process. There are several variants of the UNet model in 🤗 Diffusers, depending on it's number of dimensions and whether it is a conditional model or not. This is a 1D UNet model.
The [UNet](https://huggingface.co/papers/1505.04597) model was originally introduced by Ronneberger et al. for biomedical image segmentation, but it is also commonly used in 🤗 Diffusers because it outputs images that are the same size as the input. It is one of the most important components of a diffusion system because it facilitates the actual diffusion process. There are several variants of the UNet model in 🤗 Diffusers, depending on it's number of dimensions and whether it is a conditional model or not. This is a 1D UNet model.
The abstract from the paper is:
@@ -10,4 +22,4 @@ The abstract from the paper is:
[[autodoc]] UNet1DModel
## UNet1DOutput
[[autodoc]] models.unet_1d.UNet1DOutput
[[autodoc]] models.unet_1d.UNet1DOutput

View File

@@ -1,6 +1,18 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# UNet2DConditionModel
The [UNet](https://huggingface.co/papers/1505.04597) model was originally introduced by Ronneberger et al for biomedical image segmentation, but it is also commonly used in 🤗 Diffusers because it outputs images that are the same size as the input. It is one of the most important components of a diffusion system because it facilitates the actual diffusion process. There are several variants of the UNet model in 🤗 Diffusers, depending on it's number of dimensions and whether it is a conditional model or not. This is a 2D UNet conditional model.
The [UNet](https://huggingface.co/papers/1505.04597) model was originally introduced by Ronneberger et al. for biomedical image segmentation, but it is also commonly used in 🤗 Diffusers because it outputs images that are the same size as the input. It is one of the most important components of a diffusion system because it facilitates the actual diffusion process. There are several variants of the UNet model in 🤗 Diffusers, depending on it's number of dimensions and whether it is a conditional model or not. This is a 2D UNet conditional model.
The abstract from the paper is:
@@ -16,4 +28,4 @@ The abstract from the paper is:
[[autodoc]] models.unet_2d_condition_flax.FlaxUNet2DConditionModel
## FlaxUNet2DConditionOutput
[[autodoc]] models.unet_2d_condition_flax.FlaxUNet2DConditionOutput
[[autodoc]] models.unet_2d_condition_flax.FlaxUNet2DConditionOutput

View File

@@ -1,6 +1,18 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# UNet2DModel
The [UNet](https://huggingface.co/papers/1505.04597) model was originally introduced by Ronneberger et al for biomedical image segmentation, but it is also commonly used in 🤗 Diffusers because it outputs images that are the same size as the input. It is one of the most important components of a diffusion system because it facilitates the actual diffusion process. There are several variants of the UNet model in 🤗 Diffusers, depending on it's number of dimensions and whether it is a conditional model or not. This is a 2D UNet model.
The [UNet](https://huggingface.co/papers/1505.04597) model was originally introduced by Ronneberger et al. for biomedical image segmentation, but it is also commonly used in 🤗 Diffusers because it outputs images that are the same size as the input. It is one of the most important components of a diffusion system because it facilitates the actual diffusion process. There are several variants of the UNet model in 🤗 Diffusers, depending on it's number of dimensions and whether it is a conditional model or not. This is a 2D UNet model.
The abstract from the paper is:
@@ -10,4 +22,4 @@ The abstract from the paper is:
[[autodoc]] UNet2DModel
## UNet2DOutput
[[autodoc]] models.unet_2d.UNet2DOutput
[[autodoc]] models.unet_2d.UNet2DOutput

View File

@@ -1,6 +1,18 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# UNet3DConditionModel
The [UNet](https://huggingface.co/papers/1505.04597) model was originally introduced by Ronneberger et al for biomedical image segmentation, but it is also commonly used in 🤗 Diffusers because it outputs images that are the same size as the input. It is one of the most important components of a diffusion system because it facilitates the actual diffusion process. There are several variants of the UNet model in 🤗 Diffusers, depending on it's number of dimensions and whether it is a conditional model or not. This is a 3D UNet conditional model.
The [UNet](https://huggingface.co/papers/1505.04597) model was originally introduced by Ronneberger et al. for biomedical image segmentation, but it is also commonly used in 🤗 Diffusers because it outputs images that are the same size as the input. It is one of the most important components of a diffusion system because it facilitates the actual diffusion process. There are several variants of the UNet model in 🤗 Diffusers, depending on it's number of dimensions and whether it is a conditional model or not. This is a 3D UNet conditional model.
The abstract from the paper is:
@@ -10,4 +22,4 @@ The abstract from the paper is:
[[autodoc]] UNet3DConditionModel
## UNet3DConditionOutput
[[autodoc]] models.unet_3d_condition.UNet3DConditionOutput
[[autodoc]] models.unet_3d_condition.UNet3DConditionOutput

View File

@@ -1,3 +1,15 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# VQModel
The VQ-VAE model was introduced in [Neural Discrete Representation Learning](https://huggingface.co/papers/1711.00937) by Aaron van den Oord, Oriol Vinyals and Koray Kavukcuoglu. The model is used in 🤗 Diffusers to decode latent representations into images. Unlike [`AutoencoderKL`], the [`VQModel`] works in a quantized latent space.
@@ -12,4 +24,4 @@ The abstract from the paper is:
## VQEncoderOutput
[[autodoc]] models.vq_model.VQEncoderOutput
[[autodoc]] models.vq_model.VQEncoderOutput

View File

@@ -0,0 +1,31 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Normalization layers
Customized normalization layers for supporting various models in 🤗 Diffusers.
## AdaLayerNorm
[[autodoc]] models.normalization.AdaLayerNorm
## AdaLayerNormZero
[[autodoc]] models.normalization.AdaLayerNormZero
## AdaLayerNormSingle
[[autodoc]] models.normalization.AdaLayerNormSingle
## AdaGroupNorm
[[autodoc]] models.normalization.AdaGroupNorm

View File

@@ -12,7 +12,7 @@ specific language governing permissions and limitations under the License.
# Outputs
All models outputs are subclasses of [`~utils.BaseOutput`], data structures containing all the information returned by the model. The outputs can also be used as tuples or dictionaries.
All model outputs are subclasses of [`~utils.BaseOutput`], data structures containing all the information returned by the model. The outputs can also be used as tuples or dictionaries.
For example:
@@ -64,4 +64,4 @@ To check a specific pipeline or model output, refer to its corresponding API doc
## ImageTextPipelineOutput
[[autodoc]] ImageTextPipelineOutput
[[autodoc]] ImageTextPipelineOutput

View File

@@ -16,7 +16,7 @@ AltDiffusion was proposed in [AltCLIP: Altering the Language Encoder in CLIP for
The abstract from the paper is:
*In this work, we present a conceptually simple and effective method to train a strong bilingual multimodal representation model. Starting from the pretrained multimodal representation model CLIP released by OpenAI, we switched its text encoder with a pretrained multilingual text encoder XLM-R, and aligned both languages and image representations by a two-stage training schema consisting of teacher learning and contrastive learning. We validate our method through evaluations of a wide range of tasks. We set new state-of-the-art performances on a bunch of tasks including ImageNet-CN, Flicker30k- CN, and COCO-CN. Further, we obtain very close performances with CLIP on almost all tasks, suggesting that one can simply alter the text encoder in CLIP for extended capabilities such as multilingual understanding.*
*In this work, we present a conceptually simple and effective method to train a strong bilingual/multilingual multimodal representation model. Starting from the pre-trained multimodal representation model CLIP released by OpenAI, we altered its text encoder with a pre-trained multilingual text encoder XLM-R, and aligned both languages and image representations by a two-stage training schema consisting of teacher learning and contrastive learning. We validate our method through evaluations of a wide range of tasks. We set new state-of-the-art performances on a bunch of tasks including ImageNet-CN, Flicker30k-CN, COCO-CN and XTD. Further, we obtain very close performances with CLIP on almost all tasks, suggesting that one can simply alter the text encoder in CLIP for extended capabilities such as multilingual understanding. Our models and code are available at [this https URL](https://github.com/FlagAI-Open/FlagAI).*
## Tips
@@ -24,7 +24,7 @@ The abstract from the paper is:
<Tip>
Make sure to check out the Schedulers [guide](/using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](/using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
@@ -44,4 +44,4 @@ Make sure to check out the Schedulers [guide](/using-diffusers/schedulers) to le
[[autodoc]] pipelines.alt_diffusion.AltDiffusionPipelineOutput
- all
- __call__
- __call__

View File

@@ -0,0 +1,234 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Text-to-Video Generation with AnimateDiff
## Overview
[AnimateDiff: Animate Your Personalized Text-to-Image Diffusion Models without Specific Tuning](https://arxiv.org/abs/2307.04725) by Yuwei Guo, Ceyuan Yang, Anyi Rao, Yaohui Wang, Yu Qiao, Dahua Lin, Bo Dai.
The abstract of the paper is the following:
*With the advance of text-to-image models (e.g., Stable Diffusion) and corresponding personalization techniques such as DreamBooth and LoRA, everyone can manifest their imagination into high-quality images at an affordable cost. Subsequently, there is a great demand for image animation techniques to further combine generated static images with motion dynamics. In this report, we propose a practical framework to animate most of the existing personalized text-to-image models once and for all, saving efforts in model-specific tuning. At the core of the proposed framework is to insert a newly initialized motion modeling module into the frozen text-to-image model and train it on video clips to distill reasonable motion priors. Once trained, by simply injecting this motion modeling module, all personalized versions derived from the same base T2I readily become text-driven models that produce diverse and personalized animated images. We conduct our evaluation on several public representative personalized text-to-image models across anime pictures and realistic photographs, and demonstrate that our proposed framework helps these models generate temporally smooth animation clips while preserving the domain and diversity of their outputs. Code and pre-trained weights will be publicly available at [this https URL](https://animatediff.github.io/).*
## Available Pipelines
| Pipeline | Tasks | Demo
|---|---|:---:|
| [AnimateDiffPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/animatediff/pipeline_animatediff.py) | *Text-to-Video Generation with AnimateDiff* |
## Available checkpoints
Motion Adapter checkpoints can be found under [guoyww](https://huggingface.co/guoyww/). These checkpoints are meant to work with any model based on Stable Diffusion 1.4/1.5.
## Usage example
AnimateDiff works with a MotionAdapter checkpoint and a Stable Diffusion model checkpoint. The MotionAdapter is a collection of Motion Modules that are responsible for adding coherent motion across image frames. These modules are applied after the Resnet and Attention blocks in Stable Diffusion UNet.
The following example demonstrates how to use a *MotionAdapter* checkpoint with Diffusers for inference based on StableDiffusion-1.4/1.5.
```python
import torch
from diffusers import MotionAdapter, AnimateDiffPipeline, DDIMScheduler
from diffusers.utils import export_to_gif
# Load the motion adapter
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2")
# load SD 1.5 based finetuned model
model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
pipe = AnimateDiffPipeline.from_pretrained(model_id, motion_adapter=adapter)
scheduler = DDIMScheduler.from_pretrained(
model_id, subfolder="scheduler", clip_sample=False, timestep_spacing="linspace", steps_offset=1
)
pipe.scheduler = scheduler
# enable memory savings
pipe.enable_vae_slicing()
pipe.enable_model_cpu_offload()
output = pipe(
prompt=(
"masterpiece, bestquality, highlydetailed, ultradetailed, sunset, "
"orange sky, warm lighting, fishing boats, ocean waves seagulls, "
"rippling water, wharf, silhouette, serene atmosphere, dusk, evening glow, "
"golden hour, coastal landscape, seaside scenery"
),
negative_prompt="bad quality, worse quality",
num_frames=16,
guidance_scale=7.5,
num_inference_steps=25,
generator=torch.Generator("cpu").manual_seed(42),
)
frames = output.frames[0]
export_to_gif(frames, "animation.gif")
```
Here are some sample outputs:
<table>
<tr>
<td><center>
masterpiece, bestquality, sunset.
<br>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-realistic-doc.gif"
alt="masterpiece, bestquality, sunset"
style="width: 300px;" />
</center></td>
</tr>
</table>
<Tip>
AnimateDiff tends to work better with finetuned Stable Diffusion models. If you plan on using a scheduler that can clip samples, make sure to disable it by setting `clip_sample=False` in the scheduler as this can also have an adverse effect on generated samples.
</Tip>
## Using Motion LoRAs
Motion LoRAs are a collection of LoRAs that work with the `guoyww/animatediff-motion-adapter-v1-5-2` checkpoint. These LoRAs are responsible for adding specific types of motion to the animations.
```python
import torch
from diffusers import MotionAdapter, AnimateDiffPipeline, DDIMScheduler
from diffusers.utils import export_to_gif
# Load the motion adapter
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2")
# load SD 1.5 based finetuned model
model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
pipe = AnimateDiffPipeline.from_pretrained(model_id, motion_adapter=adapter)
pipe.load_lora_weights("guoyww/animatediff-motion-lora-zoom-out", adapter_name="zoom-out")
scheduler = DDIMScheduler.from_pretrained(
model_id, subfolder="scheduler", clip_sample=False, timestep_spacing="linspace", steps_offset=1
)
pipe.scheduler = scheduler
# enable memory savings
pipe.enable_vae_slicing()
pipe.enable_model_cpu_offload()
output = pipe(
prompt=(
"masterpiece, bestquality, highlydetailed, ultradetailed, sunset, "
"orange sky, warm lighting, fishing boats, ocean waves seagulls, "
"rippling water, wharf, silhouette, serene atmosphere, dusk, evening glow, "
"golden hour, coastal landscape, seaside scenery"
),
negative_prompt="bad quality, worse quality",
num_frames=16,
guidance_scale=7.5,
num_inference_steps=25,
generator=torch.Generator("cpu").manual_seed(42),
)
frames = output.frames[0]
export_to_gif(frames, "animation.gif")
```
<table>
<tr>
<td><center>
masterpiece, bestquality, sunset.
<br>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-zoom-out-lora.gif"
alt="masterpiece, bestquality, sunset"
style="width: 300px;" />
</center></td>
</tr>
</table>
## Using Motion LoRAs with PEFT
You can also leverage the [PEFT](https://github.com/huggingface/peft) backend to combine Motion LoRA's and create more complex animations.
First install PEFT with
```shell
pip install peft
```
Then you can use the following code to combine Motion LoRAs.
```python
import torch
from diffusers import MotionAdapter, AnimateDiffPipeline, DDIMScheduler
from diffusers.utils import export_to_gif
# Load the motion adapter
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2")
# load SD 1.5 based finetuned model
model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
pipe = AnimateDiffPipeline.from_pretrained(model_id, motion_adapter=adapter)
pipe.load_lora_weights("diffusers/animatediff-motion-lora-zoom-out", adapter_name="zoom-out")
pipe.load_lora_weights("diffusers/animatediff-motion-lora-pan-left", adapter_name="pan-left")
pipe.set_adapters(["zoom-out", "pan-left"], adapter_weights=[1.0, 1.0])
scheduler = DDIMScheduler.from_pretrained(
model_id, subfolder="scheduler", clip_sample=False, timestep_spacing="linspace", steps_offset=1
)
pipe.scheduler = scheduler
# enable memory savings
pipe.enable_vae_slicing()
pipe.enable_model_cpu_offload()
output = pipe(
prompt=(
"masterpiece, bestquality, highlydetailed, ultradetailed, sunset, "
"orange sky, warm lighting, fishing boats, ocean waves seagulls, "
"rippling water, wharf, silhouette, serene atmosphere, dusk, evening glow, "
"golden hour, coastal landscape, seaside scenery"
),
negative_prompt="bad quality, worse quality",
num_frames=16,
guidance_scale=7.5,
num_inference_steps=25,
generator=torch.Generator("cpu").manual_seed(42),
)
frames = output.frames[0]
export_to_gif(frames, "animation.gif")
```
<table>
<tr>
<td><center>
masterpiece, bestquality, sunset.
<br>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-zoom-out-pan-left-lora.gif"
alt="masterpiece, bestquality, sunset"
style="width: 300px;" />
</center></td>
</tr>
</table>
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
## AnimateDiffPipeline
[[autodoc]] AnimateDiffPipeline
- all
- __call__
- enable_freeu
- disable_freeu
- enable_vae_slicing
- disable_vae_slicing
- enable_vae_tiling
- disable_vae_tiling
## AnimateDiffPipelineOutput
[[autodoc]] pipelines.animatediff.AnimateDiffPipelineOutput

View File

@@ -16,13 +16,13 @@ Attend-and-Excite for Stable Diffusion was proposed in [Attend-and-Excite: Atten
The abstract from the paper is:
*Text-to-image diffusion models have recently received a lot of interest for their astonishing ability to produce high-fidelity images from text only. However, achieving one-shot generation that aligns with the user's intent is nearly impossible, yet small changes to the input prompt often result in very different images. This leaves the user with little semantic control. To put the user in control, we show how to interact with the diffusion process to flexibly steer it along semantic directions. This semantic guidance (SEGA) allows for subtle and extensive edits, changes in composition and style, as well as optimizing the overall artistic conception. We demonstrate SEGA's effectiveness on a variety of tasks and provide evidence for its versatility and flexibility.*
*Recent text-to-image generative models have demonstrated an unparalleled ability to generate diverse and creative imagery guided by a target text prompt. While revolutionary, current state-of-the-art diffusion models may still fail in generating images that fully convey the semantics in the given text prompt. We analyze the publicly available Stable Diffusion model and assess the existence of catastrophic neglect, where the model fails to generate one or more of the subjects from the input prompt. Moreover, we find that in some cases the model also fails to correctly bind attributes (e.g., colors) to their corresponding subjects. To help mitigate these failure cases, we introduce the concept of Generative Semantic Nursing (GSN), where we seek to intervene in the generative process on the fly during inference time to improve the faithfulness of the generated images. Using an attention-based formulation of GSN, dubbed Attend-and-Excite, we guide the model to refine the cross-attention units to attend to all subject tokens in the text prompt and strengthen - or excite - their activations, encouraging the model to generate all subjects described in the text prompt. We compare our approach to alternative approaches and demonstrate that it conveys the desired concepts more faithfully across a range of text prompts.*
You can find additional information about Attend-and-Excite on the [project page](https://attendandexcite.github.io/Attend-and-Excite/), the [original codebase](https://github.com/AttendAndExcite/Attend-and-Excite), or try it out in a [demo](https://huggingface.co/spaces/AttendAndExcite/Attend-and-Excite).
<Tip>
Make sure to check out the Schedulers [guide](/using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](/using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
@@ -34,4 +34,4 @@ Make sure to check out the Schedulers [guide](/using-diffusers/schedulers) to le
## StableDiffusionPipelineOutput
[[autodoc]] pipelines.stable_diffusion.StableDiffusionPipelineOutput
[[autodoc]] pipelines.stable_diffusion.StableDiffusionPipelineOutput

View File

@@ -14,11 +14,9 @@ specific language governing permissions and limitations under the License.
[Audio Diffusion](https://github.com/teticio/audio-diffusion) is by Robert Dargavel Smith, and it leverages the recent advances in image generation from diffusion models by converting audio samples to and from Mel spectrogram images.
The original codebase, training scripts and example notebooks can be found at [teticio/audio-diffusion](https://github.com/teticio/audio-diffusion).
<Tip>
Make sure to check out the Schedulers [guide](/using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](/using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -19,9 +19,9 @@ sound effects, human speech and music.
The abstract from the paper is:
*Text-to-audio (TTA) system has recently gained attention for its ability to synthesize general audio based on text descriptions. However, previous studies in TTA have limited generation quality with high computational costs. In this study, we propose AudioLDM, a TTA system that is built on a latent space to learn the continuous audio representations from contrastive language-audio pretraining (CLAP) latents. The pretrained CLAP models enable us to train LDMs with audio embedding while providing text embedding as a condition during sampling. By learning the latent representations of audio signals and their compositions without modeling the cross-modal relationship, AudioLDM is advantageous in both generation quality and computational efficiency. Trained on AudioCaps with a single GPU, AudioLDM achieves state-of-the-art TTA performance measured by both objective and subjective metrics (e.g., frechet distance). Moreover, AudioLDM is the first TTA system that enables various text-guided audio manipulations (e.g., style transfer) in a zero-shot fashion. Our implementation and demos are available at https://audioldm.github.io.*
*Text-to-audio (TTA) system has recently gained attention for its ability to synthesize general audio based on text descriptions. However, previous studies in TTA have limited generation quality with high computational costs. In this study, we propose AudioLDM, a TTA system that is built on a latent space to learn the continuous audio representations from contrastive language-audio pretraining (CLAP) latents. The pretrained CLAP models enable us to train LDMs with audio embedding while providing text embedding as a condition during sampling. By learning the latent representations of audio signals and their compositions without modeling the cross-modal relationship, AudioLDM is advantageous in both generation quality and computational efficiency. Trained on AudioCaps with a single GPU, AudioLDM achieves state-of-the-art TTA performance measured by both objective and subjective metrics (e.g., frechet distance). Moreover, AudioLDM is the first TTA system that enables various text-guided audio manipulations (e.g., style transfer) in a zero-shot fashion. Our implementation and demos are available at [this https URL](https://audioldm.github.io/).*
The original codebase can be found at [haoheliu/AudioLDM](https://github.com/haoheliu/AudioLDM).
The original codebase can be found at [haoheliu/AudioLDM](https://github.com/haoheliu/AudioLDM).
## Tips
@@ -37,7 +37,7 @@ During inference:
<Tip>
Make sure to check out the Schedulers [guide](/using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](/using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
@@ -47,4 +47,4 @@ Make sure to check out the Schedulers [guide](/using-diffusers/schedulers) to le
- __call__
## AudioPipelineOutput
[[autodoc]] pipelines.AudioPipelineOutput
[[autodoc]] pipelines.AudioPipelineOutput

View File

@@ -12,36 +12,23 @@ specific language governing permissions and limitations under the License.
# AudioLDM 2
AudioLDM 2 was proposed in [AudioLDM 2: Learning Holistic Audio Generation with Self-supervised Pretraining](https://arxiv.org/abs/2308.05734)
by Haohe Liu et al. AudioLDM 2 takes a text prompt as input and predicts the corresponding audio. It can generate
text-conditional sound effects, human speech and music.
AudioLDM 2 was proposed in [AudioLDM 2: Learning Holistic Audio Generation with Self-supervised Pretraining](https://arxiv.org/abs/2308.05734) by Haohe Liu et al. AudioLDM 2 takes a text prompt as input and predicts the corresponding audio. It can generate text-conditional sound effects, human speech and music.
Inspired by [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/overview), AudioLDM 2
is a text-to-audio _latent diffusion model (LDM)_ that learns continuous audio representations from text embeddings. Two
text encoder models are used to compute the text embeddings from a prompt input: the text-branch of [CLAP](https://huggingface.co/docs/transformers/main/en/model_doc/clap)
and the encoder of [Flan-T5](https://huggingface.co/docs/transformers/main/en/model_doc/flan-t5). These text embeddings
are then projected to a shared embedding space by an [AudioLDM2ProjectionModel](https://huggingface.co/docs/diffusers/main/api/pipelines/audioldm2#diffusers.AudioLDM2ProjectionModel).
A [GPT2](https://huggingface.co/docs/transformers/main/en/model_doc/gpt2) _language model (LM)_ is used to auto-regressively
predict eight new embedding vectors, conditional on the projected CLAP and Flan-T5 embeddings. The generated embedding
vectors and Flan-T5 text embeddings are used as cross-attention conditioning in the LDM. The [UNet](https://huggingface.co/docs/diffusers/main/en/api/pipelines/audioldm2#diffusers.AudioLDM2UNet2DConditionModel)
of AudioLDM 2 is unique in the sense that it takes **two** cross-attention embeddings, as opposed to one cross-attention
conditioning, as in most other LDMs.
Inspired by [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/overview), AudioLDM 2 is a text-to-audio _latent diffusion model (LDM)_ that learns continuous audio representations from text embeddings. Two text encoder models are used to compute the text embeddings from a prompt input: the text-branch of [CLAP](https://huggingface.co/docs/transformers/main/en/model_doc/clap) and the encoder of [Flan-T5](https://huggingface.co/docs/transformers/main/en/model_doc/flan-t5). These text embeddings are then projected to a shared embedding space by an [AudioLDM2ProjectionModel](https://huggingface.co/docs/diffusers/main/api/pipelines/audioldm2#diffusers.AudioLDM2ProjectionModel). A [GPT2](https://huggingface.co/docs/transformers/main/en/model_doc/gpt2) _language model (LM)_ is used to auto-regressively predict eight new embedding vectors, conditional on the projected CLAP and Flan-T5 embeddings. The generated embedding vectors and Flan-T5 text embeddings are used as cross-attention conditioning in the LDM. The [UNet](https://huggingface.co/docs/diffusers/main/en/api/pipelines/audioldm2#diffusers.AudioLDM2UNet2DConditionModel) of AudioLDM 2 is unique in the sense that it takes **two** cross-attention embeddings, as opposed to one cross-attention conditioning, as in most other LDMs.
The abstract of the paper is the following:
*Although audio generation shares commonalities across different types of audio, such as speech, music, and sound effects, designing models for each type requires careful consideration of specific objectives and biases that can significantly differ from those of other types. To bring us closer to a unified perspective of audio generation, this paper proposes a framework that utilizes the same learning method for speech, music, and sound effect generation. Our framework introduces a general representation of audio, called language of audio (LOA). Any audio can be translated into LOA based on AudioMAE, a self-supervised pre-trained representation learning model. In the generation process, we translate any modalities into LOA by using a GPT-2 model, and we perform self-supervised audio generation learning with a latent diffusion model conditioned on LOA. The proposed framework naturally brings advantages such as in-context learning abilities and reusable self-supervised pretrained AudioMAE and latent diffusion models. Experiments on the major benchmarks of text-to-audio, text-to-music, and text-to-speech demonstrate new state-of-the-art or competitive performance to previous approaches.*
*Although audio generation shares commonalities across different types of audio, such as speech, music, and sound effects, designing models for each type requires careful consideration of specific objectives and biases that can significantly differ from those of other types. To bring us closer to a unified perspective of audio generation, this paper proposes a framework that utilizes the same learning method for speech, music, and sound effect generation. Our framework introduces a general representation of audio, called "language of audio" (LOA). Any audio can be translated into LOA based on AudioMAE, a self-supervised pre-trained representation learning model. In the generation process, we translate any modalities into LOA by using a GPT-2 model, and we perform self-supervised audio generation learning with a latent diffusion model conditioned on LOA. The proposed framework naturally brings advantages such as in-context learning abilities and reusable self-supervised pretrained AudioMAE and latent diffusion models. Experiments on the major benchmarks of text-to-audio, text-to-music, and text-to-speech demonstrate state-of-the-art or competitive performance against previous approaches. Our code, pretrained model, and demo are available at [this https URL](https://audioldm.github.io/audioldm2).*
This pipeline was contributed by [sanchit-gandhi](https://huggingface.co/sanchit-gandhi). The original codebase can be
found at [haoheliu/audioldm2](https://github.com/haoheliu/audioldm2).
This pipeline was contributed by [sanchit-gandhi](https://huggingface.co/sanchit-gandhi). The original codebase can be found at [haoheliu/audioldm2](https://github.com/haoheliu/audioldm2).
## Tips
### Choosing a checkpoint
AudioLDM2 comes in three variants. Two of these checkpoints are applicable to the general task of text-to-audio
generation. The third checkpoint is trained exclusively on text-to-music generation.
AudioLDM2 comes in three variants. Two of these checkpoints are applicable to the general task of text-to-audio generation. The third checkpoint is trained exclusively on text-to-music generation.
All checkpoints share the same model size for the text encoders and VAE. They differ in the size and depth of the UNet.
All checkpoints share the same model size for the text encoders and VAE. They differ in the size and depth of the UNet.
See table below for details on the three checkpoints:
| Checkpoint | Task | UNet Model Size | Total Model Size | Training Data / h |
@@ -54,7 +41,7 @@ See table below for details on the three checkpoints:
* Descriptive prompt inputs work best: use adjectives to describe the sound (e.g. "high quality" or "clear") and make the prompt context specific (e.g. "water stream in a forest" instead of "stream").
* It's best to use general terms like "cat" or "dog" instead of specific names or abstract objects the model may not be familiar with.
* Using a **negative prompt** can significantly improve the quality of the generated waveform, by guiding the generation away from terms that correspond to poor quality audio. Try using a negative prompt of "Low quality."
* Using a **negative prompt** can significantly improve the quality of the generated waveform, by guiding the generation away from terms that correspond to poor quality audio. Try using a negative prompt of "Low quality."
### Controlling inference
@@ -63,16 +50,14 @@ See table below for details on the three checkpoints:
### Evaluating generated waveforms:
* The quality of the generated waveforms can vary significantly based on the seed. Try generating with different seeds until you find a satisfactory generation
* The quality of the generated waveforms can vary significantly based on the seed. Try generating with different seeds until you find a satisfactory generation.
* Multiple waveforms can be generated in one go: set `num_waveforms_per_prompt` to a value greater than 1. Automatic scoring will be performed between the generated waveforms and prompt text, and the audios ranked from best to worst accordingly.
The following example demonstrates how to construct good music generation using the aforementioned tips: [example](https://huggingface.co/docs/diffusers/main/en/api/pipelines/audioldm2#diffusers.AudioLDM2Pipeline.__call__.example).
<Tip>
Make sure to check out the Schedulers [guide](/using-diffusers/schedulers) to learn how to explore the tradeoff between
scheduler speed and quality, and see the [reuse components across pipelines](/using-diffusers/loading#reuse-components-across-pipelines)
section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
@@ -90,4 +75,4 @@ section to learn how to efficiently load the same components into multiple pipel
- forward
## AudioPipelineOutput
[[autodoc]] pipelines.AudioPipelineOutput
[[autodoc]] pipelines.AudioPipelineOutput

View File

@@ -35,18 +35,18 @@ image = pipeline(prompt, num_inference_steps=25).images[0]
<Tip>
Check out the [AutoPipeline](/tutorials/autopipeline) tutorial to learn how to use this API!
Check out the [AutoPipeline](../../tutorials/autopipeline) tutorial to learn how to use this API!
</Tip>
`AutoPipeline` supports text-to-image, image-to-image, and inpainting for the following diffusion models:
- [Stable Diffusion](./stable_diffusion)
- [Stable Diffusion](./stable_diffusion/overview)
- [ControlNet](./controlnet)
- [Stable Diffusion XL (SDXL)](./stable_diffusion/stable_diffusion_xl)
- [DeepFloyd IF](./if)
- [Kandinsky](./kandinsky)
- [Kandinsky 2.2](./kandinsky#kandinsky-22)
- [DeepFloyd IF](./deepfloyd_if)
- [Kandinsky 2.1](./kandinsky)
- [Kandinsky 2.2](./kandinsky_v22)
## AutoPipelineForText2Image
@@ -56,7 +56,6 @@ Check out the [AutoPipeline](/tutorials/autopipeline) tutorial to learn how to u
- from_pretrained
- from_pipe
## AutoPipelineForImage2Image
[[autodoc]] AutoPipelineForImage2Image
@@ -70,5 +69,3 @@ Check out the [AutoPipeline](/tutorials/autopipeline) tutorial to learn how to u
- all
- from_pretrained
- from_pipe

View File

@@ -1,19 +1,31 @@
# Blip Diffusion
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Blip Diffusion was proposed in [BLIP-Diffusion: Pre-trained Subject Representation for Controllable Text-to-Image Generation and Editing](https://arxiv.org/abs/2305.14720). It enables zero-shot subject-driven generation and control-guided zero-shot generation.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# BLIP-Diffusion
BLIP-Diffusion was proposed in [BLIP-Diffusion: Pre-trained Subject Representation for Controllable Text-to-Image Generation and Editing](https://arxiv.org/abs/2305.14720). It enables zero-shot subject-driven generation and control-guided zero-shot generation.
The abstract from the paper is:
*Subject-driven text-to-image generation models create novel renditions of an input subject based on text prompts. Existing models suffer from lengthy fine-tuning and difficulties preserving the subject fidelity. To overcome these limitations, we introduce BLIP-Diffusion, a new subject-driven image generation model that supports multimodal control which consumes inputs of subject images and text prompts. Unlike other subject-driven generation models, BLIP-Diffusion introduces a new multimodal encoder which is pre-trained to provide subject representation. We first pre-train the multimodal encoder following BLIP-2 to produce visual representation aligned with the text. Then we design a subject representation learning task which enables a diffusion model to leverage such visual representation and generates new subject renditions. Compared with previous methods such as DreamBooth, our model enables zero-shot subject-driven generation, and efficient fine-tuning for customized subject with up to 20x speedup. We also demonstrate that BLIP-Diffusion can be flexibly combined with existing techniques such as ControlNet and prompt-to-prompt to enable novel subject-driven generation and editing applications.*
*Subject-driven text-to-image generation models create novel renditions of an input subject based on text prompts. Existing models suffer from lengthy fine-tuning and difficulties preserving the subject fidelity. To overcome these limitations, we introduce BLIP-Diffusion, a new subject-driven image generation model that supports multimodal control which consumes inputs of subject images and text prompts. Unlike other subject-driven generation models, BLIP-Diffusion introduces a new multimodal encoder which is pre-trained to provide subject representation. We first pre-train the multimodal encoder following BLIP-2 to produce visual representation aligned with the text. Then we design a subject representation learning task which enables a diffusion model to leverage such visual representation and generates new subject renditions. Compared with previous methods such as DreamBooth, our model enables zero-shot subject-driven generation, and efficient fine-tuning for customized subject with up to 20x speedup. We also demonstrate that BLIP-Diffusion can be flexibly combined with existing techniques such as ControlNet and prompt-to-prompt to enable novel subject-driven generation and editing applications. Project page at [this https URL](https://dxli94.github.io/BLIP-Diffusion-website/).*
The original codebase can be found at [salesforce/LAVIS](https://github.com/salesforce/LAVIS/tree/main/projects/blip-diffusion). You can find the official BLIP Diffusion checkpoints under the [hf.co/SalesForce](https://hf.co/SalesForce) organization.
The original codebase can be found at [salesforce/LAVIS](https://github.com/salesforce/LAVIS/tree/main/projects/blip-diffusion). You can find the official BLIP-Diffusion checkpoints under the [hf.co/SalesForce](https://hf.co/SalesForce) organization.
`BlipDiffusionPipeline` and `BlipDiffusionControlNetPipeline` were contributed by [`ayushtues`](https://github.com/ayushtues/).
<Tip>
Make sure to check out the Schedulers [guide](/using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](/using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -1,10 +1,22 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Consistency Models
Consistency Models were proposed in [Consistency Models](https://huggingface.co/papers/2303.01469) by Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever.
The abstract from the paper is:
*Diffusion models have significantly advanced the fields of image, audio, and video generation, but they depend on an iterative sampling process that causes slow generation. To overcome this limitation, we propose consistency models, a new family of models that generate high quality samples by directly mapping noise to data. They support fast one-step generation by design, while still allowing multistep sampling to trade compute for sample quality. They also support zero-shot data editing, such as image inpainting, colorization, and super-resolution, without requiring explicit training on these tasks. Consistency models can be trained either by distilling pre-trained diffusion models, or as standalone generative models altogether. Through extensive experiments, we demonstrate that they outperform existing distillation techniques for diffusion models in one- and few-step sampling, achieving the new state-of-the-art FID of 3.55 on CIFAR-10 and 6.20 on ImageNet 64x64 for one-step generation. When trained in isolation, consistency models become a new family of generative models that can outperform existing one-step, non-adversarial generative models on standard benchmarks such as CIFAR-10, ImageNet 64x64 and LSUN 256x256. *
*Diffusion models have significantly advanced the fields of image, audio, and video generation, but they depend on an iterative sampling process that causes slow generation. To overcome this limitation, we propose consistency models, a new family of models that generate high quality samples by directly mapping noise to data. They support fast one-step generation by design, while still allowing multistep sampling to trade compute for sample quality. They also support zero-shot data editing, such as image inpainting, colorization, and super-resolution, without requiring explicit training on these tasks. Consistency models can be trained either by distilling pre-trained diffusion models, or as standalone generative models altogether. Through extensive experiments, we demonstrate that they outperform existing distillation techniques for diffusion models in one- and few-step sampling, achieving the new state-of-the-art FID of 3.55 on CIFAR-10 and 6.20 on ImageNet 64x64 for one-step generation. When trained in isolation, consistency models become a new family of generative models that can outperform existing one-step, non-adversarial generative models on standard benchmarks such as CIFAR-10, ImageNet 64x64 and LSUN 256x256.*
The original codebase can be found at [openai/consistency_models](https://github.com/openai/consistency_models), and additional checkpoints are available at [openai](https://huggingface.co/openai).
@@ -27,17 +39,18 @@ For an additional speed-up, use `torch.compile` to generate multiple images in <
+ pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
# Multistep sampling
# Timesteps can be explicitly specified; the particular timesteps below are from the original Github repo:
# Timesteps can be explicitly specified; the particular timesteps below are from the original GitHub repo:
# https://github.com/openai/consistency_models/blob/main/scripts/launch.sh#L83
for _ in range(10):
image = pipe(timesteps=[17, 0]).images[0]
image.show()
```
## ConsistencyModelPipeline
[[autodoc]] ConsistencyModelPipeline
- all
- __call__
## ImagePipelineOutput
[[autodoc]] pipelines.ImagePipelineOutput
[[autodoc]] pipelines.ImagePipelineOutput

View File

@@ -12,13 +12,13 @@ specific language governing permissions and limitations under the License.
# ControlNet
ControlNet was introduced in [Adding Conditional Control to Text-to-Image Diffusion Models](https://huggingface.co/papers/2302.05543) by Lvmin Zhang and Maneesh Agrawala.
ControlNet was introduced in [Adding Conditional Control to Text-to-Image Diffusion Models](https://huggingface.co/papers/2302.05543) by Lvmin Zhang, Anyi Rao, and Maneesh Agrawala.
With a ControlNet model, you can provide an additional control image to condition and control Stable Diffusion generation. For example, if you provide a depth map, the ControlNet model generates an image that'll preserve the spatial information from the depth map. It is a more flexible and accurate way to control the image generation process.
The abstract from the paper is:
*We present a neural network structure, ControlNet, to control pretrained large diffusion models to support additional input conditions. The ControlNet learns task-specific conditions in an end-to-end way, and the learning is robust even when the training dataset is small (< 50k). Moreover, training a ControlNet is as fast as fine-tuning a diffusion model, and the model can be trained on a personal devices. Alternatively, if powerful computation clusters are available, the model can scale to large amounts (millions to billions) of data. We report that large diffusion models like Stable Diffusion can be augmented with ControlNets to enable conditional inputs like edge maps, segmentation maps, keypoints, etc. This may enrich the methods to control large diffusion models and further facilitate related applications.*
*We present ControlNet, a neural network architecture to add spatial conditioning controls to large, pretrained text-to-image diffusion models. ControlNet locks the production-ready large diffusion models, and reuses their deep and robust encoding layers pretrained with billions of images as a strong backbone to learn a diverse set of conditional controls. The neural architecture is connected with "zero convolutions" (zero-initialized convolution layers) that progressively grow the parameters from zero and ensure that no harmful noise could affect the finetuning. We test various conditioning controls, eg, edges, depth, segmentation, human pose, etc, with Stable Diffusion, using single or multiple conditions, with or without prompts. We show that the training of ControlNets is robust with small (<50k) and large (>1m) datasets. Extensive results show that ControlNet may facilitate wider applications to control image diffusion models.*
This model was contributed by [takuma104](https://huggingface.co/takuma104). ❤️
@@ -26,7 +26,7 @@ The original codebase can be found at [lllyasviel/ControlNet](https://github.com
<Tip>
Make sure to check out the Schedulers [guide](/using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](/using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
@@ -67,7 +67,6 @@ Make sure to check out the Schedulers [guide](/using-diffusers/schedulers) to le
- load_textual_inversion
## StableDiffusionPipelineOutput
[[autodoc]] pipelines.stable_diffusion.StableDiffusionPipelineOutput
## FlaxStableDiffusionControlNetPipeline
@@ -76,5 +75,4 @@ Make sure to check out the Schedulers [guide](/using-diffusers/schedulers) to le
- __call__
## FlaxStableDiffusionControlNetPipelineOutput
[[autodoc]] pipelines.stable_diffusion.FlaxStableDiffusionPipelineOutput
[[autodoc]] pipelines.stable_diffusion.FlaxStableDiffusionPipelineOutput

View File

@@ -12,13 +12,13 @@ specific language governing permissions and limitations under the License.
# ControlNet with Stable Diffusion XL
ControlNet was introduced in [Adding Conditional Control to Text-to-Image Diffusion Models](https://huggingface.co/papers/2302.05543) by Lvmin Zhang and Maneesh Agrawala.
ControlNet was introduced in [Adding Conditional Control to Text-to-Image Diffusion Models](https://huggingface.co/papers/2302.05543) by Lvmin Zhang, Anyi Rao, and Maneesh Agrawala.
With a ControlNet model, you can provide an additional control image to condition and control Stable Diffusion generation. For example, if you provide a depth map, the ControlNet model generates an image that'll preserve the spatial information from the depth map. It is a more flexible and accurate way to control the image generation process.
The abstract from the paper is:
*We present a neural network structure, ControlNet, to control pretrained large diffusion models to support additional input conditions. The ControlNet learns task-specific conditions in an end-to-end way, and the learning is robust even when the training dataset is small (< 50k). Moreover, training a ControlNet is as fast as fine-tuning a diffusion model, and the model can be trained on a personal devices. Alternatively, if powerful computation clusters are available, the model can scale to large amounts (millions to billions) of data. We report that large diffusion models like Stable Diffusion can be augmented with ControlNets to enable conditional inputs like edge maps, segmentation maps, keypoints, etc. This may enrich the methods to control large diffusion models and further facilitate related applications.*
*We present ControlNet, a neural network architecture to add spatial conditioning controls to large, pretrained text-to-image diffusion models. ControlNet locks the production-ready large diffusion models, and reuses their deep and robust encoding layers pretrained with billions of images as a strong backbone to learn a diverse set of conditional controls. The neural architecture is connected with "zero convolutions" (zero-initialized convolution layers) that progressively grow the parameters from zero and ensure that no harmful noise could affect the finetuning. We test various conditioning controls, eg, edges, depth, segmentation, human pose, etc, with Stable Diffusion, using single or multiple conditions, with or without prompts. We show that the training of ControlNets is robust with small (<50k) and large (>1m) datasets. Extensive results show that ControlNet may facilitate wider applications to control image diffusion models.*
You can find additional smaller Stable Diffusion XL (SDXL) ControlNet checkpoints from the 🤗 [Diffusers](https://huggingface.co/diffusers) Hub organization, and browse [community-trained](https://huggingface.co/models?other=stable-diffusion-xl&other=controlnet) checkpoints on the Hub.
@@ -28,11 +28,11 @@ You can find additional smaller Stable Diffusion XL (SDXL) ControlNet checkpoint
</Tip>
If you don't see a checkpoint you're interested in, you can train your own SDXL ControlNet with our [training script](https://github.com/huggingface/diffusers/blob/main/examples/controlnet/README_sdxl.md).
If you don't see a checkpoint you're interested in, you can train your own SDXL ControlNet with our [training script](../../../../../examples/controlnet/README_sdxl).
<Tip>
Make sure to check out the Schedulers [guide](/using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](/using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
@@ -41,6 +41,15 @@ Make sure to check out the Schedulers [guide](/using-diffusers/schedulers) to le
- all
- __call__
## StableDiffusionPipelineOutput
## StableDiffusionXLControlNetImg2ImgPipeline
[[autodoc]] StableDiffusionXLControlNetImg2ImgPipeline
- all
- __call__
[[autodoc]] pipelines.stable_diffusion.StableDiffusionPipelineOutput
## StableDiffusionXLControlNetInpaintPipeline
[[autodoc]] StableDiffusionXLControlNetInpaintPipeline
- all
- __call__
## StableDiffusionPipelineOutput
[[autodoc]] pipelines.stable_diffusion.StableDiffusionPipelineOutput

View File

@@ -16,11 +16,11 @@ Cycle Diffusion is a text guided image-to-image generation model proposed in [Un
The abstract from the paper is:
*Diffusion models have achieved unprecedented performance in generative modeling. The commonly-adopted formulation of the latent code of diffusion models is a sequence of gradually denoised samples, as opposed to the simpler (e.g., Gaussian) latent space of GANs, VAEs, and normalizing flows. This paper provides an alternative, Gaussian formulation of the latent space of various diffusion models, as well as an invertible DPM-Encoder that maps images into the latent space. While our formulation is purely based on the definition of diffusion models, we demonstrate several intriguing consequences. (1) Empirically, we observe that a common latent space emerges from two diffusion models trained independently on related domains. In light of this finding, we propose CycleDiffusion, which uses DPM-Encoder for unpaired image-to-image translation. Furthermore, applying CycleDiffusion to text-to-image diffusion models, we show that large-scale text-to-image diffusion models can be used as zero-shot image-to-image editors. (2) One can guide pre-trained diffusion models and GANs by controlling the latent codes in a unified, plug-and-play formulation based on energy-based models. Using the CLIP model and a face recognition model as guidance, we demonstrate that diffusion models have better coverage of low-density sub-populations and individuals than GANs.*
*Diffusion models have achieved unprecedented performance in generative modeling. The commonly-adopted formulation of the latent code of diffusion models is a sequence of gradually denoised samples, as opposed to the simpler (e.g., Gaussian) latent space of GANs, VAEs, and normalizing flows. This paper provides an alternative, Gaussian formulation of the latent space of various diffusion models, as well as an invertible DPM-Encoder that maps images into the latent space. While our formulation is purely based on the definition of diffusion models, we demonstrate several intriguing consequences. (1) Empirically, we observe that a common latent space emerges from two diffusion models trained independently on related domains. In light of this finding, we propose CycleDiffusion, which uses DPM-Encoder for unpaired image-to-image translation. Furthermore, applying CycleDiffusion to text-to-image diffusion models, we show that large-scale text-to-image diffusion models can be used as zero-shot image-to-image editors. (2) One can guide pre-trained diffusion models and GANs by controlling the latent codes in a unified, plug-and-play formulation based on energy-based models. Using the CLIP model and a face recognition model as guidance, we demonstrate that diffusion models have better coverage of low-density sub-populations and individuals than GANs. The code is publicly available at [this https URL](https://github.com/ChenWu98/cycle-diffusion).*
<Tip>
Make sure to check out the Schedulers [guide](/using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](/using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
@@ -30,4 +30,4 @@ Make sure to check out the Schedulers [guide](/using-diffusers/schedulers) to le
- __call__
## StableDiffusionPiplineOutput
[[autodoc]] pipelines.stable_diffusion.StableDiffusionPipelineOutput
[[autodoc]] pipelines.stable_diffusion.StableDiffusionPipelineOutput

View File

@@ -16,11 +16,10 @@ specific language governing permissions and limitations under the License.
Dance Diffusion is the first in a suite of generative audio tools for producers and musicians released by [Harmonai](https://github.com/Harmonai-org).
The original codebase of this implementation can be found at [Harmonai-org](https://github.com/Harmonai-org/sample-generator).
<Tip>
Make sure to check out the Schedulers [guide](/using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](/using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
@@ -30,4 +29,4 @@ Make sure to check out the Schedulers [guide](/using-diffusers/schedulers) to le
- __call__
## AudioPipelineOutput
[[autodoc]] pipelines.AudioPipelineOutput
[[autodoc]] pipelines.AudioPipelineOutput

View File

@@ -26,4 +26,4 @@ The original codebase can be found at [ermongroup/ddim](https://github.com/ermon
- __call__
## ImagePipelineOutput
[[autodoc]] pipelines.ImagePipelineOutput
[[autodoc]] pipelines.ImagePipelineOutput

View File

@@ -22,7 +22,7 @@ The original codebase can be found at [hohonathanho/diffusion](https://github.co
<Tip>
Make sure to check out the Schedulers [guide](/using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](/using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -10,32 +10,31 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# DeepFloyd IF
# DeepFloyd IF
## Overview
DeepFloyd IF is a novel state-of-the-art open-source text-to-image model with a high degree of photorealism and language understanding.
The model is a modular composed of a frozen text encoder and three cascaded pixel diffusion modules:
DeepFloyd IF is a novel state-of-the-art open-source text-to-image model with a high degree of photorealism and language understanding.
The model is a modular composed of a frozen text encoder and three cascaded pixel diffusion modules:
- Stage 1: a base model that generates 64x64 px image based on text prompt,
- Stage 2: a 64x64 px => 256x256 px super-resolution model, and a
- Stage 2: a 64x64 px => 256x256 px super-resolution model, and
- Stage 3: a 256x256 px => 1024x1024 px super-resolution model
Stage 1 and Stage 2 utilize a frozen text encoder based on the T5 transformer to extract text embeddings,
which are then fed into a UNet architecture enhanced with cross-attention and attention pooling.
Stage 3 is [Stability's x4 Upscaling model](https://huggingface.co/stabilityai/stable-diffusion-x4-upscaler).
The result is a highly efficient model that outperforms current state-of-the-art models, achieving a zero-shot FID score of 6.66 on the COCO dataset.
Stage 1 and Stage 2 utilize a frozen text encoder based on the T5 transformer to extract text embeddings, which are then fed into a UNet architecture enhanced with cross-attention and attention pooling.
Stage 3 is [Stability AI's x4 Upscaling model](https://huggingface.co/stabilityai/stable-diffusion-x4-upscaler).
The result is a highly efficient model that outperforms current state-of-the-art models, achieving a zero-shot FID score of 6.66 on the COCO dataset.
Our work underscores the potential of larger UNet architectures in the first stage of cascaded diffusion models and depicts a promising future for text-to-image synthesis.
## Usage
Before you can use IF, you need to accept its usage conditions. To do so:
1. Make sure to have a [Hugging Face account](https://huggingface.co/join) and be logged in
1. Make sure to have a [Hugging Face account](https://huggingface.co/join) and be logged in.
2. Accept the license on the model card of [DeepFloyd/IF-I-XL-v1.0](https://huggingface.co/DeepFloyd/IF-I-XL-v1.0). Accepting the license on the stage I model card will auto accept for the other IF models.
3. Make sure to login locally. Install `huggingface_hub`
3. Make sure to login locally. Install `huggingface_hub`:
```sh
pip install huggingface_hub --upgrade
```
run the login function in a Python shell
run the login function in a Python shell:
```py
from huggingface_hub import login
@@ -48,7 +47,7 @@ and enter your [Hugging Face Hub access token](https://huggingface.co/docs/hub/s
Next we install `diffusers` and dependencies:
```sh
pip install diffusers accelerate transformers safetensors
pip install -q diffusers accelerate transformers
```
The following sections give more in-detail examples of how to use IF. Specifically:
@@ -73,20 +72,17 @@ The following sections give more in-detail examples of how to use IF. Specifical
- *Stage-3*
- [stabilityai/stable-diffusion-x4-upscaler](https://huggingface.co/stabilityai/stable-diffusion-x4-upscaler)
**Demo**
[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/DeepFloyd/IF)
**Google Colab**
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/deepfloyd_if_free_tier_google_colab.ipynb)
### Text-to-Image Generation
By default diffusers makes use of [model cpu offloading](https://huggingface.co/docs/diffusers/optimization/fp16#model-offloading-for-fast-inference-and-memory-savings)
to run the whole IF pipeline with as little as 14 GB of VRAM.
By default diffusers makes use of [model cpu offloading](../../optimization/memory#model-offloading) to run the whole IF pipeline with as little as 14 GB of VRAM.
```python
from diffusers import DiffusionPipeline
from diffusers.utils import pt_to_pil
from diffusers.utils import pt_to_pil, make_image_grid
import torch
# stage 1
@@ -117,48 +113,43 @@ generator = torch.manual_seed(1)
prompt_embeds, negative_embeds = stage_1.encode_prompt(prompt)
# stage 1
image = stage_1(
stage_1_output = stage_1(
prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_embeds, generator=generator, output_type="pt"
).images
pt_to_pil(image)[0].save("./if_stage_I.png")
#pt_to_pil(stage_1_output)[0].save("./if_stage_I.png")
# stage 2
image = stage_2(
image=image,
stage_2_output = stage_2(
image=stage_1_output,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_embeds,
generator=generator,
output_type="pt",
).images
pt_to_pil(image)[0].save("./if_stage_II.png")
#pt_to_pil(stage_2_output)[0].save("./if_stage_II.png")
# stage 3
image = stage_3(prompt=prompt, image=image, noise_level=100, generator=generator).images
image[0].save("./if_stage_III.png")
stage_3_output = stage_3(prompt=prompt, image=stage_2_output, noise_level=100, generator=generator).images
#stage_3_output[0].save("./if_stage_III.png")
make_image_grid([pt_to_pil(stage_1_output)[0], pt_to_pil(stage_2_output)[0], stage_3_output[0]], rows=1, rows=3)
```
### Text Guided Image-to-Image Generation
The same IF model weights can be used for text-guided image-to-image translation or image variation.
In this case just make sure to load the weights using the [`IFInpaintingPipeline`] and [`IFInpaintingSuperResolutionPipeline`] pipelines.
In this case just make sure to load the weights using the [`IFImg2ImgPipeline`] and [`IFImg2ImgSuperResolutionPipeline`] pipelines.
**Note**: You can also directly move the weights of the text-to-image pipelines to the image-to-image pipelines
without loading them twice by making use of the [`~DiffusionPipeline.components()`] function as explained [here](#converting-between-different-pipelines).
without loading them twice by making use of the [`~DiffusionPipeline.components`] argument as explained [here](#converting-between-different-pipelines).
```python
from diffusers import IFImg2ImgPipeline, IFImg2ImgSuperResolutionPipeline, DiffusionPipeline
from diffusers.utils import pt_to_pil
from diffusers.utils import pt_to_pil, load_image, make_image_grid
import torch
from PIL import Image
import requests
from io import BytesIO
# download image
url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
response = requests.get(url)
original_image = Image.open(BytesIO(response.content)).convert("RGB")
original_image = load_image(url)
original_image = original_image.resize((768, 512))
# stage 1
@@ -189,29 +180,30 @@ generator = torch.manual_seed(1)
prompt_embeds, negative_embeds = stage_1.encode_prompt(prompt)
# stage 1
image = stage_1(
stage_1_output = stage_1(
image=original_image,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_embeds,
generator=generator,
output_type="pt",
).images
pt_to_pil(image)[0].save("./if_stage_I.png")
#pt_to_pil(stage_1_output)[0].save("./if_stage_I.png")
# stage 2
image = stage_2(
image=image,
stage_2_output = stage_2(
image=stage_1_output,
original_image=original_image,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_embeds,
generator=generator,
output_type="pt",
).images
pt_to_pil(image)[0].save("./if_stage_II.png")
#pt_to_pil(stage_2_output)[0].save("./if_stage_II.png")
# stage 3
image = stage_3(prompt=prompt, image=image, generator=generator, noise_level=100).images
image[0].save("./if_stage_III.png")
stage_3_output = stage_3(prompt=prompt, image=stage_2_output, generator=generator, noise_level=100).images
#stage_3_output[0].save("./if_stage_III.png")
make_image_grid([original_image, pt_to_pil(stage_1_output)[0], pt_to_pil(stage_2_output)[0], stage_3_output[0]], rows=1, rows=4)
```
### Text Guided Inpainting Generation
@@ -224,24 +216,16 @@ without loading them twice by making use of the [`~DiffusionPipeline.components(
```python
from diffusers import IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, DiffusionPipeline
from diffusers.utils import pt_to_pil
from diffusers.utils import pt_to_pil, load_image, make_image_grid
import torch
from PIL import Image
import requests
from io import BytesIO
# download image
url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/if/person.png"
response = requests.get(url)
original_image = Image.open(BytesIO(response.content)).convert("RGB")
original_image = original_image
original_image = load_image(url)
# download mask
url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/if/glasses_mask.png"
response = requests.get(url)
mask_image = Image.open(BytesIO(response.content))
mask_image = mask_image
mask_image = load_image(url)
# stage 1
stage_1 = IFInpaintingPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
@@ -271,7 +255,7 @@ generator = torch.manual_seed(1)
prompt_embeds, negative_embeds = stage_1.encode_prompt(prompt)
# stage 1
image = stage_1(
stage_1_output = stage_1(
image=original_image,
mask_image=mask_image,
prompt_embeds=prompt_embeds,
@@ -279,11 +263,11 @@ image = stage_1(
generator=generator,
output_type="pt",
).images
pt_to_pil(image)[0].save("./if_stage_I.png")
#pt_to_pil(stage_1_output)[0].save("./if_stage_I.png")
# stage 2
image = stage_2(
image=image,
stage_2_output = stage_2(
image=stage_1_output,
original_image=original_image,
mask_image=mask_image,
prompt_embeds=prompt_embeds,
@@ -291,11 +275,12 @@ image = stage_2(
generator=generator,
output_type="pt",
).images
pt_to_pil(image)[0].save("./if_stage_II.png")
#pt_to_pil(stage_1_output)[0].save("./if_stage_II.png")
# stage 3
image = stage_3(prompt=prompt, image=image, generator=generator, noise_level=100).images
image[0].save("./if_stage_III.png")
stage_3_output = stage_3(prompt=prompt, image=stage_2_output, generator=generator, noise_level=100).images
#stage_3_output[0].save("./if_stage_III.png")
make_image_grid([original_image, mask_image, pt_to_pil(stage_1_output)[0], pt_to_pil(stage_2_output)[0], stage_3_output[0]], rows=1, rows=5)
```
### Converting between different pipelines
@@ -332,13 +317,13 @@ pipe.to("cuda")
You can also run the diffusion process for a shorter number of timesteps.
This can either be done with the `num_inference_steps` argument
This can either be done with the `num_inference_steps` argument:
```py
pipe("<prompt>", num_inference_steps=30)
```
Or with the `timesteps` argument
Or with the `timesteps` argument:
```py
from diffusers.pipelines.deepfloyd_if import fast27_timesteps
@@ -347,8 +332,7 @@ pipe("<prompt>", timesteps=fast27_timesteps)
```
When doing image variation or inpainting, you can also decrease the number of timesteps
with the strength argument. The strength argument is the amount of noise to add to
the input image which also determines how many steps to run in the denoising process.
with the strength argument. The strength argument is the amount of noise to add to the input image which also determines how many steps to run in the denoising process.
A smaller number will vary the image less but run faster.
```py
@@ -362,18 +346,19 @@ You can also use [`torch.compile`](../../optimization/torch2.0). Note that we ha
with IF and it might not give expected results.
```py
from diffusers import DiffusionPipeline
import torch
pipe = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
pipe.to("cuda")
pipe.text_encoder = torch.compile(pipe.text_encoder)
pipe.unet = torch.compile(pipe.unet)
pipe.text_encoder = torch.compile(pipe.text_encoder, mode="reduce-overhead", fullgraph=True)
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
```
### Optimizing for memory
When optimizing for GPU memory, we can use the standard diffusers cpu offloading APIs.
When optimizing for GPU memory, we can use the standard diffusers CPU offloading APIs.
Either the model based CPU offloading,
@@ -410,23 +395,21 @@ pipe = DiffusionPipeline.from_pretrained(
prompt_embeds, negative_embeds = pipe.encode_prompt("<prompt>")
```
For CPU RAM constrained machines like google colab free tier where we can't load all
model components to the CPU at once, we can manually only load the pipeline with
the text encoder or unet when the respective model components are needed.
For CPU RAM constrained machines like Google Colab free tier where we can't load all model components to the CPU at once, we can manually only load the pipeline with
the text encoder or UNet when the respective model components are needed.
```py
from diffusers import IFPipeline, IFSuperResolutionPipeline
import torch
import gc
from transformers import T5EncoderModel
from diffusers.utils import pt_to_pil
from diffusers.utils import pt_to_pil, make_image_grid
text_encoder = T5EncoderModel.from_pretrained(
"DeepFloyd/IF-I-XL-v1.0", subfolder="text_encoder", device_map="auto", load_in_8bit=True, variant="8bit"
)
# text to image
pipe = DiffusionPipeline.from_pretrained(
"DeepFloyd/IF-I-XL-v1.0",
text_encoder=text_encoder, # pass the previously instantiated 8bit text encoder
@@ -448,14 +431,14 @@ pipe = IFPipeline.from_pretrained(
)
generator = torch.Generator().manual_seed(0)
image = pipe(
stage_1_output = pipe(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_embeds,
output_type="pt",
generator=generator,
).images
pt_to_pil(image)[0].save("./if_stage_I.png")
#pt_to_pil(stage_1_output)[0].save("./if_stage_I.png")
# Remove the pipeline so we can load the super-resolution pipeline
del pipe
@@ -469,24 +452,24 @@ pipe = IFSuperResolutionPipeline.from_pretrained(
)
generator = torch.Generator().manual_seed(0)
image = pipe(
image=image,
stage_2_output = pipe(
image=stage_1_output,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_embeds,
output_type="pt",
generator=generator,
).images
pt_to_pil(image)[0].save("./if_stage_II.png")
#pt_to_pil(stage_2_output)[0].save("./if_stage_II.png")
make_image_grid([pt_to_pil(stage_1_output)[0], pt_to_pil(stage_2_output)[0]], rows=1, rows=2)
```
## Available Pipelines:
| Pipeline | Tasks | Colab
|---|---|:---:|
| [pipeline_if.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/deepfloyd_if/pipeline_if.py) | *Text-to-Image Generation* | - |
| [pipeline_if_superresolution.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/deepfloyd_if/pipeline_if.py) | *Text-to-Image Generation* | - |
| [pipeline_if_superresolution.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py) | *Text-to-Image Generation* | - |
| [pipeline_if_img2img.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py) | *Image-to-Image Generation* | - |
| [pipeline_if_img2img_superresolution.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py) | *Image-to-Image Generation* | - |
| [pipeline_if_inpainting.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py) | *Image-to-Image Generation* | - |

View File

@@ -22,7 +22,7 @@ The original codebase can be found at [Xiang-cd/DiffEdit-stable-diffusion](https
This pipeline was contributed by [clarencechen](https://github.com/clarencechen). ❤️
## Tips
## Tips
* The pipeline can generate masks that can be fed into other inpainting pipelines.
* In order to generate an image using this pipeline, both an image mask (source and target prompts can be manually specified or generated, and passed to [`~StableDiffusionDiffEditPipeline.generate_mask`])
@@ -42,7 +42,7 @@ the phrases including "cat" to `negative_prompt` and "dog" to `prompt`.
* Swap the `source_prompt` and `target_prompt` in the arguments to `generate_mask`.
* Change the input prompt in [`~StableDiffusionDiffEditPipeline.invert`] to include "dog".
* Swap the `prompt` and `negative_prompt` in the arguments to call the pipeline to generate the final edited image.
* The source and target prompts, or their corresponding embeddings, can also be automatically generated. Please refer to the [DiffEdit](/using-diffusers/diffedit) guide for more details.
* The source and target prompts, or their corresponding embeddings, can also be automatically generated. Please refer to the [DiffEdit](../../using-diffusers/diffedit) guide for more details.
## StableDiffusionDiffEditPipeline
[[autodoc]] StableDiffusionDiffEditPipeline
@@ -52,4 +52,4 @@ the phrases including "cat" to `negative_prompt` and "dog" to `prompt`.
- __call__
## StableDiffusionPipelineOutput
[[autodoc]] pipelines.stable_diffusion.StableDiffusionPipelineOutput
[[autodoc]] pipelines.stable_diffusion.StableDiffusionPipelineOutput

View File

@@ -22,7 +22,7 @@ The original codebase can be found at [facebookresearch/dit](https://github.com/
<Tip>
Make sure to check out the Schedulers [guide](/using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](/using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
@@ -32,4 +32,4 @@ Make sure to check out the Schedulers [guide](/using-diffusers/schedulers) to le
- __call__
## ImagePipelineOutput
[[autodoc]] pipelines.ImagePipelineOutput
[[autodoc]] pipelines.ImagePipelineOutput

View File

@@ -7,462 +7,66 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# Kandinsky
# Kandinsky 2.1
## Overview
Kandinsky 2.1 is created by [Arseniy Shakhmatov](https://github.com/cene555), [Anton Razzhigaev](https://github.com/razzant), [Aleksandr Nikolich](https://github.com/AlexWortega), [Vladimir Arkhipkin](https://github.com/oriBetelgeuse), [Igor Pavlov](https://github.com/boomb0om), [Andrey Kuznetsov](https://github.com/kuznetsoffandrey), and [Denis Dimitrov](https://github.com/denndimitrov).
Kandinsky inherits best practices from [DALL-E 2](https://huggingface.co/papers/2204.06125) and [Latent Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/latent_diffusion), while introducing some new ideas.
The description from it's GitHub page is:
It uses [CLIP](https://huggingface.co/docs/transformers/model_doc/clip) for encoding images and text, and a diffusion image prior (mapping) between latent spaces of CLIP modalities. This approach enhances the visual performance of the model and unveils new horizons in blending images and text-guided image manipulation.
*Kandinsky 2.1 inherits best practicies from Dall-E 2 and Latent diffusion, while introducing some new ideas. As text and image encoder it uses CLIP model and diffusion image prior (mapping) between latent spaces of CLIP modalities. This approach increases the visual performance of the model and unveils new horizons in blending images and text-guided image manipulation.*
The Kandinsky model is created by [Arseniy Shakhmatov](https://github.com/cene555), [Anton Razzhigaev](https://github.com/razzant), [Aleksandr Nikolich](https://github.com/AlexWortega), [Igor Pavlov](https://github.com/boomb0om), [Andrey Kuznetsov](https://github.com/kuznetsoffandrey) and [Denis Dimitrov](https://github.com/denndimitrov). The original codebase can be found [here](https://github.com/ai-forever/Kandinsky-2)
## Usage example
In the following, we will walk you through some examples of how to use the Kandinsky pipelines to create some visually aesthetic artwork.
### Text-to-Image Generation
For text-to-image generation, we need to use both [`KandinskyPriorPipeline`] and [`KandinskyPipeline`].
The first step is to encode text prompts with CLIP and then diffuse the CLIP text embeddings to CLIP image embeddings,
as first proposed in [DALL-E 2](https://cdn.openai.com/papers/dall-e-2.pdf).
Let's throw a fun prompt at Kandinsky to see what it comes up with.
```py
prompt = "A alien cheeseburger creature eating itself, claymation, cinematic, moody lighting"
```
First, let's instantiate the prior pipeline and the text-to-image pipeline. Both
pipelines are diffusion models.
```py
from diffusers import DiffusionPipeline
import torch
pipe_prior = DiffusionPipeline.from_pretrained("kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16)
pipe_prior.to("cuda")
t2i_pipe = DiffusionPipeline.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16)
t2i_pipe.to("cuda")
```
<Tip warning={true}>
By default, the text-to-image pipeline use [`DDIMScheduler`], you can change the scheduler to [`DDPMScheduler`]
```py
scheduler = DDPMScheduler.from_pretrained("kandinsky-community/kandinsky-2-1", subfolder="ddpm_scheduler")
t2i_pipe = DiffusionPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-1", scheduler=scheduler, torch_dtype=torch.float16
)
t2i_pipe.to("cuda")
```
</Tip>
Now we pass the prompt through the prior to generate image embeddings. The prior
returns both the image embeddings corresponding to the prompt and negative/unconditional image
embeddings corresponding to an empty string.
```py
image_embeds, negative_image_embeds = pipe_prior(prompt, guidance_scale=1.0).to_tuple()
```
<Tip warning={true}>
The text-to-image pipeline expects both `image_embeds`, `negative_image_embeds` and the original
`prompt` as the text-to-image pipeline uses another text encoder to better guide the second diffusion
process of `t2i_pipe`.
By default, the prior returns unconditioned negative image embeddings corresponding to the negative prompt of `""`.
For better results, you can also pass a `negative_prompt` to the prior. This will increase the effective batch size
of the prior by a factor of 2.
```py
prompt = "A alien cheeseburger creature eating itself, claymation, cinematic, moody lighting"
negative_prompt = "low quality, bad quality"
image_embeds, negative_image_embeds = pipe_prior(prompt, negative_prompt, guidance_scale=1.0).to_tuple()
```
</Tip>
Next, we can pass the embeddings as well as the prompt to the text-to-image pipeline. Remember that
in case you are using a customized negative prompt, that you should pass this one also to the text-to-image pipelines
with `negative_prompt=negative_prompt`:
```py
image = t2i_pipe(
prompt, image_embeds=image_embeds, negative_image_embeds=negative_image_embeds, height=768, width=768
).images[0]
image.save("cheeseburger_monster.png")
```
One cheeseburger monster coming up! Enjoy!
![img](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/kandinsky-docs/cheeseburger.png)
The original codebase can be found at [ai-forever/Kandinsky-2](https://github.com/ai-forever/Kandinsky-2).
<Tip>
We also provide an end-to-end Kandinsky pipeline [`KandinskyCombinedPipeline`], which combines both the prior pipeline and text-to-image pipeline, and lets you perform inference in a single step. You can create the combined pipeline with the [`~AutoPipelineForText2Image.from_pretrained`] method
Check out the [Kandinsky Community](https://huggingface.co/kandinsky-community) organization on the Hub for the official model checkpoints for tasks like text-to-image, image-to-image, and inpainting.
```python
from diffusers import AutoPipelineForText2Image
import torch
pipe = AutoPipelineForText2Image.from_pretrained(
"kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16
)
pipe.enable_model_cpu_offload()
```
Under the hood, it will automatically load both [`KandinskyPriorPipeline`] and [`KandinskyPipeline`]. To generate images, you no longer need to call both pipelines and pass the outputs from one to another. You only need to call the combined pipeline once. You can set different `guidance_scale` and `num_inference_steps` for the prior pipeline with the `prior_guidance_scale` and `prior_num_inference_steps` arguments.
```python
prompt = "A alien cheeseburger creature eating itself, claymation, cinematic, moody lighting"
negative_prompt = "low quality, bad quality"
image = pipe(prompt=prompt, negative_prompt=negative_prompt, prior_guidance_scale =1.0, guidance_scacle = 4.0, height=768, width=768).images[0]
```
</Tip>
The Kandinsky model works extremely well with creative prompts. Here is some of the amazing art that can be created using the exact same process but with different prompts.
```python
prompt = "bird eye view shot of a full body woman with cyan light orange magenta makeup, digital art, long braided hair her face separated by makeup in the style of yin Yang surrealism, symmetrical face, real image, contrasting tone, pastel gradient background"
```
![img](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/kandinsky-docs/hair.png)
```python
prompt = "A car exploding into colorful dust"
```
![img](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/kandinsky-docs/dusts.png)
```python
prompt = "editorial photography of an organic, almost liquid smoke style armchair"
```
![img](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/kandinsky-docs/smokechair.png)
```python
prompt = "birds eye view of a quilted paper style alien planet landscape, vibrant colours, Cinematic lighting"
```
![img](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/kandinsky-docs/alienplanet.png)
### Text Guided Image-to-Image Generation
The same Kandinsky model weights can be used for text-guided image-to-image translation. In this case, just make sure to load the weights using the [`KandinskyImg2ImgPipeline`] pipeline.
**Note**: You can also directly move the weights of the text-to-image pipelines to the image-to-image pipelines
without loading them twice by making use of the [`~DiffusionPipeline.components`] function as explained [here](#converting-between-different-pipelines).
Let's download an image.
```python
from PIL import Image
import requests
from io import BytesIO
# download image
url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
response = requests.get(url)
original_image = Image.open(BytesIO(response.content)).convert("RGB")
original_image = original_image.resize((768, 512))
```
![img](https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg)
```python
import torch
from diffusers import KandinskyImg2ImgPipeline, KandinskyPriorPipeline
# create prior
pipe_prior = KandinskyPriorPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16
)
pipe_prior.to("cuda")
# create img2img pipeline
pipe = KandinskyImg2ImgPipeline.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16)
pipe.to("cuda")
prompt = "A fantasy landscape, Cinematic lighting"
negative_prompt = "low quality, bad quality"
image_embeds, negative_image_embeds = pipe_prior(prompt, negative_prompt).to_tuple()
out = pipe(
prompt,
image=original_image,
image_embeds=image_embeds,
negative_image_embeds=negative_image_embeds,
height=768,
width=768,
strength=0.3,
)
out.images[0].save("fantasy_land.png")
```
![img](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/kandinsky-docs/img2img_fantasyland.png)
<Tip>
You can also use the [`KandinskyImg2ImgCombinedPipeline`] for end-to-end image-to-image generation with Kandinsky 2.1
```python
from diffusers import AutoPipelineForImage2Image
import torch
import requests
from io import BytesIO
from PIL import Image
import os
pipe = AutoPipelineForImage2Image.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16)
pipe.enable_model_cpu_offload()
prompt = "A fantasy landscape, Cinematic lighting"
negative_prompt = "low quality, bad quality"
url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
response = requests.get(url)
original_image = Image.open(BytesIO(response.content)).convert("RGB")
original_image.thumbnail((768, 768))
image = pipe(prompt=prompt, image=original_image, strength=0.3).images[0]
```
</Tip>
### Text Guided Inpainting Generation
You can use [`KandinskyInpaintPipeline`] to edit images. In this example, we will add a hat to the portrait of a cat.
```py
from diffusers import KandinskyInpaintPipeline, KandinskyPriorPipeline
from diffusers.utils import load_image
import torch
import numpy as np
pipe_prior = KandinskyPriorPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16
)
pipe_prior.to("cuda")
prompt = "a hat"
prior_output = pipe_prior(prompt)
pipe = KandinskyInpaintPipeline.from_pretrained("kandinsky-community/kandinsky-2-1-inpaint", torch_dtype=torch.float16)
pipe.to("cuda")
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png"
)
mask = np.zeros((768, 768), dtype=np.float32)
# Let's mask out an area above the cat's head
mask[:250, 250:-250] = 1
out = pipe(
prompt,
image=init_image,
mask_image=mask,
**prior_output,
height=768,
width=768,
num_inference_steps=150,
)
image = out.images[0]
image.save("cat_with_hat.png")
```
![img](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/kandinsky-docs/inpaint_cat_hat.png)
<Tip>
To use the [`KandinskyInpaintCombinedPipeline`] to perform end-to-end image inpainting generation, you can run below code instead
```python
from diffusers import AutoPipelineForInpainting
pipe = AutoPipelineForInpainting.from_pretrained("kandinsky-community/kandinsky-2-1-inpaint", torch_dtype=torch.float16)
pipe.enable_model_cpu_offload()
image = pipe(prompt=prompt, image=original_image, mask_image=mask).images[0]
```
</Tip>
🚨🚨🚨 __Breaking change for Kandinsky Mask Inpainting__ 🚨🚨🚨
We introduced a breaking change for Kandinsky inpainting pipeline in the following pull request: https://github.com/huggingface/diffusers/pull/4207. Previously we accepted a mask format where black pixels represent the masked-out area. This is inconsistent with all other pipelines in diffusers. We have changed the mask format in Knaindsky and now using white pixels instead.
Please upgrade your inpainting code to follow the above. If you are using Kandinsky Inpaint in production. You now need to change the mask to:
```python
# For PIL input
import PIL.ImageOps
mask = PIL.ImageOps.invert(mask)
# For PyTorch and Numpy input
mask = 1 - mask
```
### Interpolate
The [`KandinskyPriorPipeline`] also comes with a cool utility function that will allow you to interpolate the latent space of different images and texts super easily. Here is an example of how you can create an Impressionist-style portrait for your pet based on "The Starry Night".
Note that you can interpolate between texts and images - in the below example, we passed a text prompt "a cat" and two images to the `interplate` function, along with a `weights` variable containing the corresponding weights for each condition we interplate.
```python
from diffusers import KandinskyPriorPipeline, KandinskyPipeline
from diffusers.utils import load_image
import PIL
import torch
pipe_prior = KandinskyPriorPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16
)
pipe_prior.to("cuda")
img1 = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png"
)
img2 = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/starry_night.jpeg"
)
# add all the conditions we want to interpolate, can be either text or image
images_texts = ["a cat", img1, img2]
# specify the weights for each condition in images_texts
weights = [0.3, 0.3, 0.4]
# We can leave the prompt empty
prompt = ""
prior_out = pipe_prior.interpolate(images_texts, weights)
pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16)
pipe.to("cuda")
image = pipe(prompt, **prior_out, height=768, width=768).images[0]
image.save("starry_cat.png")
```
![img](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/kandinsky-docs/starry_cat.png)
## Optimization
Running Kandinsky in inference requires running both a first prior pipeline: [`KandinskyPriorPipeline`]
and a second image decoding pipeline which is one of [`KandinskyPipeline`], [`KandinskyImg2ImgPipeline`], or [`KandinskyInpaintPipeline`].
The bulk of the computation time will always be the second image decoding pipeline, so when looking
into optimizing the model, one should look into the second image decoding pipeline.
When running with PyTorch < 2.0, we strongly recommend making use of [`xformers`](https://github.com/facebookresearch/xformers)
to speed-up the optimization. This can be done by simply running:
```py
from diffusers import DiffusionPipeline
import torch
t2i_pipe = DiffusionPipeline.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16)
t2i_pipe.enable_xformers_memory_efficient_attention()
```
When running on PyTorch >= 2.0, PyTorch's SDPA attention will automatically be used. For more information on
PyTorch's SDPA, feel free to have a look at [this blog post](https://pytorch.org/blog/accelerated-diffusers-pt-20/).
To have explicit control , you can also manually set the pipeline to use PyTorch's 2.0 efficient attention:
```py
from diffusers.models.attention_processor import AttnAddedKVProcessor2_0
t2i_pipe.unet.set_attn_processor(AttnAddedKVProcessor2_0())
```
The slowest and most memory intense attention processor is the default `AttnAddedKVProcessor` processor.
We do **not** recommend using it except for testing purposes or cases where very high determistic behaviour is desired.
You can set it with:
```py
from diffusers.models.attention_processor import AttnAddedKVProcessor
t2i_pipe.unet.set_attn_processor(AttnAddedKVProcessor())
```
With PyTorch >= 2.0, you can also use Kandinsky with `torch.compile` which depending
on your hardware can significantly speed-up your inference time once the model is compiled.
To use Kandinsksy with `torch.compile`, you can do:
```py
t2i_pipe.unet.to(memory_format=torch.channels_last)
t2i_pipe.unet = torch.compile(t2i_pipe.unet, mode="reduce-overhead", fullgraph=True)
```
After compilation you should see a very fast inference time. For more information,
feel free to have a look at [Our PyTorch 2.0 benchmark](https://huggingface.co/docs/diffusers/main/en/optimization/torch2.0).
<Tip>
To generate images directly from a single pipeline, you can use [`KandinskyCombinedPipeline`], [`KandinskyImg2ImgCombinedPipeline`], [`KandinskyInpaintCombinedPipeline`].
These combined pipelines wrap the [`KandinskyPriorPipeline`] and [`KandinskyPipeline`], [`KandinskyImg2ImgPipeline`], [`KandinskyInpaintPipeline`] respectively into a single
pipeline for a simpler user experience
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
## Available Pipelines:
| Pipeline | Tasks |
|---|---|
| [pipeline_kandinsky.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/kandinsky/pipeline_kandinsky.py) | *Text-to-Image Generation* |
| [pipeline_kandinsky_combined.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky_combined.py) | *End-to-end Text-to-Image, image-to-image, Inpainting Generation* |
| [pipeline_kandinsky_inpaint.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py) | *Image-Guided Image Generation* |
| [pipeline_kandinsky_img2img.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py) | *Image-Guided Image Generation* |
### KandinskyPriorPipeline
## KandinskyPriorPipeline
[[autodoc]] KandinskyPriorPipeline
- all
- __call__
- interpolate
### KandinskyPipeline
## KandinskyPipeline
[[autodoc]] KandinskyPipeline
- all
- __call__
### KandinskyImg2ImgPipeline
[[autodoc]] KandinskyImg2ImgPipeline
- all
- __call__
### KandinskyInpaintPipeline
[[autodoc]] KandinskyInpaintPipeline
- all
- __call__
### KandinskyCombinedPipeline
## KandinskyCombinedPipeline
[[autodoc]] KandinskyCombinedPipeline
- all
- __call__
### KandinskyImg2ImgCombinedPipeline
## KandinskyImg2ImgPipeline
[[autodoc]] KandinskyImg2ImgPipeline
- all
- __call__
## KandinskyImg2ImgCombinedPipeline
[[autodoc]] KandinskyImg2ImgCombinedPipeline
- all
- __call__
### KandinskyInpaintCombinedPipeline
## KandinskyInpaintPipeline
[[autodoc]] KandinskyInpaintPipeline
- all
- __call__
## KandinskyInpaintCombinedPipeline
[[autodoc]] KandinskyInpaintCombinedPipeline
- all

View File

@@ -9,348 +9,83 @@ specific language governing permissions and limitations under the License.
# Kandinsky 2.2
The Kandinsky 2.2 release includes robust new text-to-image models that support text-to-image generation, image-to-image generation, image interpolation, and text-guided image inpainting. The general workflow to perform these tasks using Kandinsky 2.2 is the same as in Kandinsky 2.1. First, you will need to use a prior pipeline to generate image embeddings based on your text prompt, and then use one of the image decoding pipelines to generate the output image. The only difference is that in Kandinsky 2.2, all of the decoding pipelines no longer accept the `prompt` input, and the image generation process is conditioned with only `image_embeds` and `negative_image_embeds`.
Kandinsky 2.2 is created by [Arseniy Shakhmatov](https://github.com/cene555), [Anton Razzhigaev](https://github.com/razzant), [Aleksandr Nikolich](https://github.com/AlexWortega), [Vladimir Arkhipkin](https://github.com/oriBetelgeuse), [Igor Pavlov](https://github.com/boomb0om), [Andrey Kuznetsov](https://github.com/kuznetsoffandrey), and [Denis Dimitrov](https://github.com/denndimitrov).
Same as with Kandinsky 2.1, the easiest way to perform text-to-image generation is to use the combined Kandinsky pipeline. This process is exactly the same as Kandinsky 2.1. All you need to do is to replace the Kandinsky 2.1 checkpoint with 2.2.
The description from it's GitHub page is:
```python
from diffusers import AutoPipelineForText2Image
import torch
*Kandinsky 2.2 brings substantial improvements upon its predecessor, Kandinsky 2.1, by introducing a new, more powerful image encoder - CLIP-ViT-G and the ControlNet support. The switch to CLIP-ViT-G as the image encoder significantly increases the model's capability to generate more aesthetic pictures and better understand text, thus enhancing the model's overall performance. The addition of the ControlNet mechanism allows the model to effectively control the process of generating images. This leads to more accurate and visually appealing outputs and opens new possibilities for text-guided image manipulation.*
pipe = AutoPipelineForText2Image.from_pretrained("kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16)
pipe.enable_model_cpu_offload()
prompt = "A alien cheeseburger creature eating itself, claymation, cinematic, moody lighting"
negative_prompt = "low quality, bad quality"
image = pipe(prompt=prompt, negative_prompt=negative_prompt, prior_guidance_scale =1.0, height=768, width=768).images[0]
```
Now, let's look at an example where we take separate steps to run the prior pipeline and text-to-image pipeline. This way, we can understand what's happening under the hood and how Kandinsky 2.2 differs from Kandinsky 2.1.
First, let's create the prior pipeline and text-to-image pipeline with Kandinsky 2.2 checkpoints.
```python
from diffusers import DiffusionPipeline
import torch
pipe_prior = DiffusionPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16)
pipe_prior.to("cuda")
t2i_pipe = DiffusionPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16)
t2i_pipe.to("cuda")
```
You can then use `pipe_prior` to generate image embeddings.
```python
prompt = "portrait of a women, blue eyes, cinematic"
negative_prompt = "low quality, bad quality"
image_embeds, negative_image_embeds = pipe_prior(prompt, guidance_scale=1.0).to_tuple()
```
Now you can pass these embeddings to the text-to-image pipeline. When using Kandinsky 2.2 you don't need to pass the `prompt` (but you do with the previous version, Kandinsky 2.1).
```
image = t2i_pipe(image_embeds=image_embeds, negative_image_embeds=negative_image_embeds, height=768, width=768).images[
0
]
image.save("portrait.png")
```
![img](https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinskyv22/%20blue%20eyes.png)
We used the text-to-image pipeline as an example, but the same process applies to all decoding pipelines in Kandinsky 2.2. For more information, please refer to our API section for each pipeline.
### Text-to-Image Generation with ControlNet Conditioning
In the following, we give a simple example of how to use [`KandinskyV22ControlnetPipeline`] to add control to the text-to-image generation with a depth image.
First, let's take an image and extract its depth map.
```python
from diffusers.utils import load_image
img = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinskyv22/cat.png"
).resize((768, 768))
```
![img](https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinskyv22/cat.png)
We can use the `depth-estimation` pipeline from transformers to process the image and retrieve its depth map.
```python
import torch
import numpy as np
from transformers import pipeline
from diffusers.utils import load_image
def make_hint(image, depth_estimator):
image = depth_estimator(image)["depth"]
image = np.array(image)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
detected_map = torch.from_numpy(image).float() / 255.0
hint = detected_map.permute(2, 0, 1)
return hint
depth_estimator = pipeline("depth-estimation")
hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")
```
Now, we load the prior pipeline and the text-to-image controlnet pipeline
```python
from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline
pipe_prior = KandinskyV22PriorPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16
)
pipe_prior = pipe_prior.to("cuda")
pipe = KandinskyV22ControlnetPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16
)
pipe = pipe.to("cuda")
```
We pass the prompt and negative prompt through the prior to generate image embeddings
```python
prompt = "A robot, 4k photo"
negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"
generator = torch.Generator(device="cuda").manual_seed(43)
image_emb, zero_image_emb = pipe_prior(
prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator
).to_tuple()
```
Now we can pass the image embeddings and the depth image we extracted to the controlnet pipeline. With Kandinsky 2.2, only prior pipelines accept `prompt` input. You do not need to pass the prompt to the controlnet pipeline.
```python
images = pipe(
image_embeds=image_emb,
negative_image_embeds=zero_image_emb,
hint=hint,
num_inference_steps=50,
generator=generator,
height=768,
width=768,
).images
images[0].save("robot_cat.png")
```
The output image looks as follow:
![img](https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinskyv22/robot_cat_text2img.png)
### Image-to-Image Generation with ControlNet Conditioning
Kandinsky 2.2 also includes a [`KandinskyV22ControlnetImg2ImgPipeline`] that will allow you to add control to the image generation process with both the image and its depth map. This pipeline works really well with [`KandinskyV22PriorEmb2EmbPipeline`], which generates image embeddings based on both a text prompt and an image.
For our robot cat example, we will pass the prompt and cat image together to the prior pipeline to generate an image embedding. We will then use that image embedding and the depth map of the cat to further control the image generation process.
We can use the same cat image and its depth map from the last example.
```python
import torch
import numpy as np
from diffusers import KandinskyV22PriorEmb2EmbPipeline, KandinskyV22ControlnetImg2ImgPipeline
from diffusers.utils import load_image
from transformers import pipeline
img = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/cat.png"
).resize((768, 768))
def make_hint(image, depth_estimator):
image = depth_estimator(image)["depth"]
image = np.array(image)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
detected_map = torch.from_numpy(image).float() / 255.0
hint = detected_map.permute(2, 0, 1)
return hint
depth_estimator = pipeline("depth-estimation")
hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")
pipe_prior = KandinskyV22PriorEmb2EmbPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16
)
pipe_prior = pipe_prior.to("cuda")
pipe = KandinskyV22ControlnetImg2ImgPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16
)
pipe = pipe.to("cuda")
prompt = "A robot, 4k photo"
negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"
generator = torch.Generator(device="cuda").manual_seed(43)
# run prior pipeline
img_emb = pipe_prior(prompt=prompt, image=img, strength=0.85, generator=generator)
negative_emb = pipe_prior(prompt=negative_prior_prompt, image=img, strength=1, generator=generator)
# run controlnet img2img pipeline
images = pipe(
image=img,
strength=0.5,
image_embeds=img_emb.image_embeds,
negative_image_embeds=negative_emb.image_embeds,
hint=hint,
num_inference_steps=50,
generator=generator,
height=768,
width=768,
).images
images[0].save("robot_cat.png")
```
Here is the output. Compared with the output from our text-to-image controlnet example, it kept a lot more cat facial details from the original image and worked into the robot style we asked for.
![img](https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinskyv22/robot_cat.png)
## Optimization
Running Kandinsky in inference requires running both a first prior pipeline: [`KandinskyPriorPipeline`]
and a second image decoding pipeline which is one of [`KandinskyPipeline`], [`KandinskyImg2ImgPipeline`], or [`KandinskyInpaintPipeline`].
The bulk of the computation time will always be the second image decoding pipeline, so when looking
into optimizing the model, one should look into the second image decoding pipeline.
When running with PyTorch < 2.0, we strongly recommend making use of [`xformers`](https://github.com/facebookresearch/xformers)
to speed-up the optimization. This can be done by simply running:
```py
from diffusers import DiffusionPipeline
import torch
t2i_pipe = DiffusionPipeline.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16)
t2i_pipe.enable_xformers_memory_efficient_attention()
```
When running on PyTorch >= 2.0, PyTorch's SDPA attention will automatically be used. For more information on
PyTorch's SDPA, feel free to have a look at [this blog post](https://pytorch.org/blog/accelerated-diffusers-pt-20/).
To have explicit control , you can also manually set the pipeline to use PyTorch's 2.0 efficient attention:
```py
from diffusers.models.attention_processor import AttnAddedKVProcessor2_0
t2i_pipe.unet.set_attn_processor(AttnAddedKVProcessor2_0())
```
The slowest and most memory intense attention processor is the default `AttnAddedKVProcessor` processor.
We do **not** recommend using it except for testing purposes or cases where very high determistic behaviour is desired.
You can set it with:
```py
from diffusers.models.attention_processor import AttnAddedKVProcessor
t2i_pipe.unet.set_attn_processor(AttnAddedKVProcessor())
```
With PyTorch >= 2.0, you can also use Kandinsky with `torch.compile` which depending
on your hardware can significantly speed-up your inference time once the model is compiled.
To use Kandinsksy with `torch.compile`, you can do:
```py
t2i_pipe.unet.to(memory_format=torch.channels_last)
t2i_pipe.unet = torch.compile(t2i_pipe.unet, mode="reduce-overhead", fullgraph=True)
```
After compilation you should see a very fast inference time. For more information,
feel free to have a look at [Our PyTorch 2.0 benchmark](https://huggingface.co/docs/diffusers/main/en/optimization/torch2.0).
The original codebase can be found at [ai-forever/Kandinsky-2](https://github.com/ai-forever/Kandinsky-2).
<Tip>
To generate images directly from a single pipeline, you can use [`KandinskyV22CombinedPipeline`], [`KandinskyV22Img2ImgCombinedPipeline`], [`KandinskyV22InpaintCombinedPipeline`].
These combined pipelines wrap the [`KandinskyV22PriorPipeline`] and [`KandinskyV22Pipeline`], [`KandinskyV22Img2ImgPipeline`], [`KandinskyV22InpaintPipeline`] respectively into a single
pipeline for a simpler user experience
Check out the [Kandinsky Community](https://huggingface.co/kandinsky-community) organization on the Hub for the official model checkpoints for tasks like text-to-image, image-to-image, and inpainting.
</Tip>
## Available Pipelines:
<Tip>
| Pipeline | Tasks |
|---|---|
| [pipeline_kandinsky2_2.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py) | *Text-to-Image Generation* |
| [pipeline_kandinsky2_2_combined.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py) | *End-to-end Text-to-Image, image-to-image, Inpainting Generation* |
| [pipeline_kandinsky2_2_inpaint.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpaint.py) | *Image-Guided Image Generation* |
| [pipeline_kandinsky2_2_img2img.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py) | *Image-Guided Image Generation* |
| [pipeline_kandinsky2_2_controlnet.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py) | *Image-Guided Image Generation* |
| [pipeline_kandinsky2_2_controlnet_img2img.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py) | *Image-Guided Image Generation* |
Make sure to check out the schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
### KandinskyV22Pipeline
[[autodoc]] KandinskyV22Pipeline
- all
- __call__
### KandinskyV22ControlnetPipeline
[[autodoc]] KandinskyV22ControlnetPipeline
- all
- __call__
### KandinskyV22ControlnetImg2ImgPipeline
[[autodoc]] KandinskyV22ControlnetImg2ImgPipeline
- all
- __call__
### KandinskyV22Img2ImgPipeline
[[autodoc]] KandinskyV22Img2ImgPipeline
- all
- __call__
### KandinskyV22InpaintPipeline
[[autodoc]] KandinskyV22InpaintPipeline
- all
- __call__
### KandinskyV22PriorPipeline
## KandinskyV22PriorPipeline
[[autodoc]] KandinskyV22PriorPipeline
- all
- __call__
- interpolate
### KandinskyV22PriorEmb2EmbPipeline
## KandinskyV22Pipeline
[[autodoc]] KandinskyV22Pipeline
- all
- __call__
## KandinskyV22CombinedPipeline
[[autodoc]] KandinskyV22CombinedPipeline
- all
- __call__
## KandinskyV22ControlnetPipeline
[[autodoc]] KandinskyV22ControlnetPipeline
- all
- __call__
## KandinskyV22PriorEmb2EmbPipeline
[[autodoc]] KandinskyV22PriorEmb2EmbPipeline
- all
- __call__
- interpolate
### KandinskyV22CombinedPipeline
## KandinskyV22Img2ImgPipeline
[[autodoc]] KandinskyV22CombinedPipeline
[[autodoc]] KandinskyV22Img2ImgPipeline
- all
- __call__
### KandinskyV22Img2ImgCombinedPipeline
## KandinskyV22Img2ImgCombinedPipeline
[[autodoc]] KandinskyV22Img2ImgCombinedPipeline
- all
- __call__
### KandinskyV22InpaintCombinedPipeline
## KandinskyV22ControlnetImg2ImgPipeline
[[autodoc]] KandinskyV22ControlnetImg2ImgPipeline
- all
- __call__
## KandinskyV22InpaintPipeline
[[autodoc]] KandinskyV22InpaintPipeline
- all
- __call__
## KandinskyV22InpaintCombinedPipeline
[[autodoc]] KandinskyV22InpaintCombinedPipeline
- all

View File

@@ -0,0 +1,52 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Latent Consistency Models
Latent Consistency Models (LCMs) were proposed in [Latent Consistency Models: Synthesizing High-Resolution Images with Few-Step Inference](https://huggingface.co/papers/2310.04378) by Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang Zhao.
The abstract of the paper is as follows:
*Latent Diffusion models (LDMs) have achieved remarkable results in synthesizing high-resolution images. However, the iterative sampling process is computationally intensive and leads to slow generation. Inspired by Consistency Models (song et al.), we propose Latent Consistency Models (LCMs), enabling swift inference with minimal steps on any pre-trained LDMs, including Stable Diffusion (rombach et al). Viewing the guided reverse diffusion process as solving an augmented probability flow ODE (PF-ODE), LCMs are designed to directly predict the solution of such ODE in latent space, mitigating the need for numerous iterations and allowing rapid, high-fidelity sampling. Efficiently distilled from pre-trained classifier-free guided diffusion models, a high-quality 768 x 768 2~4-step LCM takes only 32 A100 GPU hours for training. Furthermore, we introduce Latent Consistency Fine-tuning (LCF), a novel method that is tailored for fine-tuning LCMs on customized image datasets. Evaluation on the LAION-5B-Aesthetics dataset demonstrates that LCMs achieve state-of-the-art text-to-image generation performance with few-step inference. Project Page: [this https URL](https://latent-consistency-models.github.io/).*
A demo for the [SimianLuo/LCM_Dreamshaper_v7](https://huggingface.co/SimianLuo/LCM_Dreamshaper_v7) checkpoint can be found [here](https://huggingface.co/spaces/SimianLuo/Latent_Consistency_Model).
The pipelines were contributed by [luosiallen](https://luosiallen.github.io/), [nagolinc](https://github.com/nagolinc), and [dg845](https://github.com/dg845).
## LatentConsistencyModelPipeline
[[autodoc]] LatentConsistencyModelPipeline
- all
- __call__
- enable_freeu
- disable_freeu
- enable_vae_slicing
- disable_vae_slicing
- enable_vae_tiling
- disable_vae_tiling
## LatentConsistencyModelImg2ImgPipeline
[[autodoc]] LatentConsistencyModelImg2ImgPipeline
- all
- __call__
- enable_freeu
- disable_freeu
- enable_vae_slicing
- disable_vae_slicing
- enable_vae_tiling
- disable_vae_tiling
## StableDiffusionPipelineOutput
[[autodoc]] pipelines.stable_diffusion.StableDiffusionPipelineOutput

View File

@@ -18,11 +18,11 @@ The abstract from the paper is:
*By decomposing the image formation process into a sequential application of denoising autoencoders, diffusion models (DMs) achieve state-of-the-art synthesis results on image data and beyond. Additionally, their formulation allows for a guiding mechanism to control the image generation process without retraining. However, since these models typically operate directly in pixel space, optimization of powerful DMs often consumes hundreds of GPU days and inference is expensive due to sequential evaluations. To enable DM training on limited computational resources while retaining their quality and flexibility, we apply them in the latent space of powerful pretrained autoencoders. In contrast to previous work, training diffusion models on such a representation allows for the first time to reach a near-optimal point between complexity reduction and detail preservation, greatly boosting visual fidelity. By introducing cross-attention layers into the model architecture, we turn diffusion models into powerful and flexible generators for general conditioning inputs such as text or bounding boxes and high-resolution synthesis becomes possible in a convolutional manner. Our latent diffusion models (LDMs) achieve a new state of the art for image inpainting and highly competitive performance on various tasks, including unconditional image generation, semantic scene synthesis, and super-resolution, while significantly reducing computational requirements compared to pixel-based DMs.*
The original codebase can be found at [Compvis/latent-diffusion](https://github.com/CompVis/latent-diffusion).
The original codebase can be found at [CompVis/latent-diffusion](https://github.com/CompVis/latent-diffusion).
<Tip>
Make sure to check out the Schedulers [guide](/using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](/using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
@@ -37,4 +37,4 @@ Make sure to check out the Schedulers [guide](/using-diffusers/schedulers) to le
- __call__
## ImagePipelineOutput
[[autodoc]] pipelines.ImagePipelineOutput
[[autodoc]] pipelines.ImagePipelineOutput

View File

@@ -22,7 +22,7 @@ The original codebase can be found at [CompVis/latent-diffusion](https://github.
<Tip>
Make sure to check out the Schedulers [guide](/using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](/using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -22,7 +22,7 @@ You can find additional information about model editing on the [project page](ht
<Tip>
Make sure to check out the Schedulers [guide](/using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](/using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
@@ -32,4 +32,4 @@ Make sure to check out the Schedulers [guide](/using-diffusers/schedulers) to le
- all
## StableDiffusionPipelineOutput
[[autodoc]] pipelines.stable_diffusion.StableDiffusionPipelineOutput
[[autodoc]] pipelines.stable_diffusion.StableDiffusionPipelineOutput

View File

@@ -13,20 +13,17 @@ specific language governing permissions and limitations under the License.
# MusicLDM
MusicLDM was proposed in [MusicLDM: Enhancing Novelty in Text-to-Music Generation Using Beat-Synchronous Mixup Strategies](https://huggingface.co/papers/2308.01546) by Ke Chen, Yusong Wu, Haohe Liu, Marianna Nezhurina, Taylor Berg-Kirkpatrick, Shlomo Dubnov.
MusicLDM takes a text prompt as input and predicts the corresponding music sample.
MusicLDM takes a text prompt as input and predicts the corresponding music sample.
Inspired by [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/overview) and [AudioLDM](https://huggingface.co/docs/diffusers/api/pipelines/audioldm/overview),
Inspired by [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/overview) and [AudioLDM](https://huggingface.co/docs/diffusers/api/pipelines/audioldm),
MusicLDM is a text-to-music _latent diffusion model (LDM)_ that learns continuous audio representations from [CLAP](https://huggingface.co/docs/transformers/main/model_doc/clap)
latents.
MusicLDM is trained on a corpus of 466 hours of music data. Beat-synchronous data augmentation strategies are applied to
the music samples, both in the time domain and in the latent space. Using beat-synchronous data augmentation strategies
encourages the model to interpolate between the training samples, but stay within the domain of the training data. The
result is generated music that is more diverse while staying faithful to the corresponding style.
MusicLDM is trained on a corpus of 466 hours of music data. Beat-synchronous data augmentation strategies are applied to the music samples, both in the time domain and in the latent space. Using beat-synchronous data augmentation strategies encourages the model to interpolate between the training samples, but stay within the domain of the training data. The result is generated music that is more diverse while staying faithful to the corresponding style.
The abstract of the paper is the following:
*In this paper, we present MusicLDM, a state-of-the-art text-to-music model that adapts Stable Diffusion and AudioLDM architectures to the music domain. We achieve this by retraining the contrastive language-audio pretraining model (CLAP) and the Hifi-GAN vocoder, as components of MusicLDM, on a collection of music data samples. Then, we leverage a beat tracking model and propose two different mixup strategies for data augmentation: beat-synchronous audio mixup and beat-synchronous latent mixup, to encourage the model to generate music more diverse while still staying faithful to the corresponding style.*
*Diffusion models have shown promising results in cross-modal generation tasks, including text-to-image and text-to-audio generation. However, generating music, as a special type of audio, presents unique challenges due to limited availability of music data and sensitive issues related to copyright and plagiarism. In this paper, to tackle these challenges, we first construct a state-of-the-art text-to-music model, MusicLDM, that adapts Stable Diffusion and AudioLDM architectures to the music domain. We achieve this by retraining the contrastive language-audio pretraining model (CLAP) and the Hifi-GAN vocoder, as components of MusicLDM, on a collection of music data samples. Then, to address the limitations of training data and to avoid plagiarism, we leverage a beat tracking model and propose two different mixup strategies for data augmentation: beat-synchronous audio mixup and beat-synchronous latent mixup, which recombine training audio directly or via a latent embeddings space, respectively. Such mixup strategies encourage the model to interpolate between musical training samples and generate new music within the convex hull of the training data, making the generated music more diverse while still staying faithful to the corresponding style. In addition to popular evaluation metrics, we design several new evaluation metrics based on CLAP score to demonstrate that our proposed MusicLDM and beat-synchronous mixup strategies improve both the quality and novelty of generated music, as well as the correspondence between input text and generated music.*
This pipeline was contributed by [sanchit-gandhi](https://huggingface.co/sanchit-gandhi).
@@ -45,13 +42,11 @@ During inference:
<Tip>
Make sure to check out the Schedulers [guide](/using-diffusers/schedulers) to learn how to explore the tradeoff between
scheduler speed and quality, and see the [reuse components across pipelines](/using-diffusers/loading#reuse-components-across-pipelines)
section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
## MusicLDMPipeline
[[autodoc]] MusicLDMPipeline
- all
- __call__
- __call__

View File

@@ -12,16 +12,77 @@ specific language governing permissions and limitations under the License.
# Pipelines
Pipelines provide a simple way to run state-of-the-art diffusion models in inference by bundling all of the necessary components (multiple independently-trained models, schedulers, and processors) into a single end-to-end class. Pipelines are flexible and they can be adapted to use different scheduler or even model components.
Pipelines provide a simple way to run state-of-the-art diffusion models in inference by bundling all of the necessary components (multiple independently-trained models, schedulers, and processors) into a single end-to-end class. Pipelines are flexible and they can be adapted to use different schedulers or even model components.
All pipelines are built from the base [`DiffusionPipeline`] class which provides basic functionality for loading, downloading, and saving all the components.
All pipelines are built from the base [`DiffusionPipeline`] class which provides basic functionality for loading, downloading, and saving all the components. Specific pipeline types (for example [`StableDiffusionPipeline`]) loaded with [`~DiffusionPipeline.from_pretrained`] are automatically detected and the pipeline components are loaded and passed to the `__init__` function of the pipeline.
<Tip warning={true}>
Pipelines do not offer any training functionality. You'll notice PyTorch's autograd is disabled by decorating the [`~DiffusionPipeline.__call__`] method with a [`torch.no_grad`](https://pytorch.org/docs/stable/generated/torch.no_grad.html) decorator because pipelines should not be used for training. If you're interested in training, please take a look at the [Training](../traininig/overview) guides instead!
You shouldn't use the [`DiffusionPipeline`] class for training. Individual components (for example, [`UNet2DModel`] and [`UNet2DConditionModel`]) of diffusion pipelines are usually trained individually, so we suggest directly working with them instead.
<br>
Pipelines do not offer any training functionality. You'll notice PyTorch's autograd is disabled by decorating the [`~DiffusionPipeline.__call__`] method with a [`torch.no_grad`](https://pytorch.org/docs/stable/generated/torch.no_grad.html) decorator because pipelines should not be used for training. If you're interested in training, please take a look at the [Training](../../training/overview) guides instead!
</Tip>
The table below lists all the pipelines currently available in 🤗 Diffusers and the tasks they support. Click on a pipeline to view its abstract and published paper.
| Pipeline | Tasks |
|---|---|
| [AltDiffusion](alt_diffusion) | image2image |
| [AnimateDiff](animatediff) | text2video |
| [Attend-and-Excite](attend_and_excite) | text2image |
| [Audio Diffusion](audio_diffusion) | image2audio |
| [AudioLDM](audioldm) | text2audio |
| [AudioLDM2](audioldm2) | text2audio |
| [BLIP Diffusion](blip_diffusion) | text2image |
| [Consistency Models](consistency_models) | unconditional image generation |
| [ControlNet](controlnet) | text2image, image2image, inpainting |
| [ControlNet with Stable Diffusion XL](controlnet_sdxl) | text2image |
| [Cycle Diffusion](cycle_diffusion) | image2image |
| [Dance Diffusion](dance_diffusion) | unconditional audio generation |
| [DDIM](ddim) | unconditional image generation |
| [DDPM](ddpm) | unconditional image generation |
| [DeepFloyd IF](deepfloyd_if) | text2image, image2image, inpainting, super-resolution |
| [DiffEdit](diffedit) | inpainting |
| [DiT](dit) | text2image |
| [GLIGEN](stable_diffusion/gligen) | text2image |
| [InstructPix2Pix](pix2pix) | image editing |
| [Kandinsky 2.1](kandinsky) | text2image, image2image, inpainting, interpolation |
| [Kandinsky 2.2](kandinsky_v22) | text2image, image2image, inpainting |
| [Latent Consistency Models](latent_consistency_models) | text2image |
| [Latent Diffusion](latent_diffusion) | text2image, super-resolution |
| [LDM3D](stable_diffusion/ldm3d_diffusion) | text2image, text-to-3D |
| [MultiDiffusion](panorama) | text2image |
| [MusicLDM](musicldm) | text2audio |
| [Paint by Example](paint_by_example) | inpainting |
| [ParaDiGMS](paradigms) | text2image |
| [Pix2Pix Zero](pix2pix_zero) | image editing |
| [PixArt-α](pixart) | text2image |
| [PNDM](pndm) | unconditional image generation |
| [RePaint](repaint) | inpainting |
| [Score SDE VE](score_sde_ve) | unconditional image generation |
| [Self-Attention Guidance](self_attention_guidance) | text2image |
| [Semantic Guidance](semantic_stable_diffusion) | text2image |
| [Shap-E](shap_e) | text-to-3D, image-to-3D |
| [Spectrogram Diffusion](spectrogram_diffusion) | |
| [Stable Diffusion](stable_diffusion/overview) | text2image, image2image, depth2image, inpainting, image variation, latent upscaler, super-resolution |
| [Stable Diffusion Model Editing](model_editing) | model editing |
| [Stable Diffusion XL](stable_diffusion/stable_diffusion_xl) | text2image, image2image, inpainting |
| [Stable unCLIP](stable_unclip) | text2image, image variation |
| [Stochastic Karras VE](stochastic_karras_ve) | unconditional image generation |
| [T2I-Adapter](stable_diffusion/adapter) | text2image |
| [Text2Video](text_to_video) | text2video, video2video |
| [Text2Video-Zero](text_to_video_zero) | text2video |
| [unCLIP](unclip) | text2image, image variation |
| [Unconditional Latent Diffusion](latent_diffusion_uncond) | unconditional image generation |
| [UniDiffuser](unidiffuser) | text2image, image2text, image variation, text variation, unconditional image generation, unconditional audio generation |
| [Value-guided planning](value_guided_sampling) | value guided sampling |
| [Versatile Diffusion](versatile_diffusion) | text2image, image variation |
| [VQ Diffusion](vq_diffusion) | text2image |
| [Wuerstchen](wuerstchen) | text2image |
## DiffusionPipeline
[[autodoc]] DiffusionPipeline

View File

@@ -10,7 +10,7 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# PaintByExample
# Paint by Example
[Paint by Example: Exemplar-based Image Editing with Diffusion Models](https://huggingface.co/papers/2211.13227) is by Binxin Yang, Shuyang Gu, Bo Zhang, Ting Zhang, Xuejin Chen, Xiaoyan Sun, Dong Chen, Fang Wen.
@@ -22,11 +22,11 @@ The original codebase can be found at [Fantasy-Studio/Paint-by-Example](https://
## Tips
PaintByExample is supported by the official [Fantasy-Studio/Paint-by-Example](https://huggingface.co/Fantasy-Studio/Paint-by-Example) checkpoint. The checkpoint is warm-started from [CompVis/stable-diffusion-v1-4](https://huggingface.co/CompVis/stable-diffusion-v1-4) to inpaint partly masked images conditioned on example and reference images.
Paint by Example is supported by the official [Fantasy-Studio/Paint-by-Example](https://huggingface.co/Fantasy-Studio/Paint-by-Example) checkpoint. The checkpoint is warm-started from [CompVis/stable-diffusion-v1-4](https://huggingface.co/CompVis/stable-diffusion-v1-4) to inpaint partly masked images conditioned on example and reference images.
<Tip>
Make sure to check out the Schedulers [guide](/using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](/using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
@@ -36,4 +36,4 @@ Make sure to check out the Schedulers [guide](/using-diffusers/schedulers) to le
- __call__
## StableDiffusionPipelineOutput
[[autodoc]] pipelines.stable_diffusion.StableDiffusionPipelineOutput
[[autodoc]] pipelines.stable_diffusion.StableDiffusionPipelineOutput

View File

@@ -22,19 +22,12 @@ You can find additional information about MultiDiffusion on the [project page](h
## Tips
While calling [`StableDiffusionPanoramaPipeline`], it's possible to specify the `view_batch_size` parameter to be > 1.
While calling [`StableDiffusionPanoramaPipeline`], it's possible to specify the `view_batch_size` parameter to be > 1.
For some GPUs with high performance, this can speedup the generation process and increase VRAM usage.
To generate panorama-like images make sure you pass the width parameter accordingly. We recommend a width value of 2048 which is the default.
Circular padding is applied to ensure there are no stitching artifacts when working with
panoramas to ensure a seamless transition from the rightmost part to the leftmost part.
By enabling circular padding (set `circular_padding=True`), the operation applies additional
crops after the rightmost point of the image, allowing the model to "see” the transition
from the rightmost part to the leftmost part. This helps maintain visual consistency in
a 360-degree sense and creates a proper “panorama” that can be viewed using 360-degree
panorama viewers. When decoding latents in Stable Diffusion, circular padding is applied
to ensure that the decoded latents match in the RGB space.
Circular padding is applied to ensure there are no stitching artifacts when working with panoramas to ensure a seamless transition from the rightmost part to the leftmost part. By enabling circular padding (set `circular_padding=True`), the operation applies additional crops after the rightmost point of the image, allowing the model to "see” the transition from the rightmost part to the leftmost part. This helps maintain visual consistency in a 360-degree sense and creates a proper “panorama” that can be viewed using 360-degree panorama viewers. When decoding latents in Stable Diffusion, circular padding is applied to ensure that the decoded latents match in the RGB space.
For example, without circular padding, there is a stitching artifact (default):
![img](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/indoor_%20no_circular_padding.png)
@@ -44,7 +37,7 @@ But with circular padding, the right and the left parts are matching (`circular_
<Tip>
Make sure to check out the Schedulers [guide](/using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](/using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
@@ -54,4 +47,4 @@ Make sure to check out the Schedulers [guide](/using-diffusers/schedulers) to le
- all
## StableDiffusionPipelineOutput
[[autodoc]] pipelines.stable_diffusion.StableDiffusionPipelineOutput
[[autodoc]] pipelines.stable_diffusion.StableDiffusionPipelineOutput

View File

@@ -16,7 +16,7 @@ specific language governing permissions and limitations under the License.
The abstract from the paper is:
*Diffusion models are powerful generative models but suffer from slow sampling, often taking 1000 sequential denoising steps for one sample. As a result, considerable efforts have been directed toward reducing the number of denoising steps, but these methods hurt sample quality. Instead of reducing the number of denoising steps (trading quality for speed), in this paper we explore an orthogonal approach: can we run the denoising steps in parallel (trading compute for speed)? In spite of the sequential nature of the denoising steps, we show that surprisingly it is possible to parallelize sampling via Picard iterations, by guessing the solution of future denoising steps and iteratively refining until convergence. With this insight, we present ParaDiGMS, a novel method to accelerate the sampling of pretrained diffusion models by denoising multiple steps in parallel. ParaDiGMS is the first diffusion sampling method that enables trading compute for speed and is even compatible with existing fast sampling techniques such as DDIM and DPMSolver. Using ParaDiGMS, we improve sampling speed by 2-4x across a range of robotics and image generation models, giving state-of-the-art sampling speeds of 0.2s on 100-step DiffusionPolicy and 16s on 1000-step StableDiffusion-v2 with no measurable degradation of task reward, FID score, or CLIP score.*
*Diffusion models are powerful generative models but suffer from slow sampling, often taking 1000 sequential denoising steps for one sample. As a result, considerable efforts have been directed toward reducing the number of denoising steps, but these methods hurt sample quality. Instead of reducing the number of denoising steps (trading quality for speed), in this paper we explore an orthogonal approach: can we run the denoising steps in parallel (trading compute for speed)? In spite of the sequential nature of the denoising steps, we show that surprisingly it is possible to parallelize sampling via Picard iterations, by guessing the solution of future denoising steps and iteratively refining until convergence. With this insight, we present ParaDiGMS, a novel method to accelerate the sampling of pretrained diffusion models by denoising multiple steps in parallel. ParaDiGMS is the first diffusion sampling method that enables trading compute for speed and is even compatible with existing fast sampling techniques such as DDIM and DPMSolver. Using ParaDiGMS, we improve sampling speed by 2-4x across a range of robotics and image generation models, giving state-of-the-art sampling speeds of 0.2s on 100-step DiffusionPolicy and 14.6s on 1000-step StableDiffusion-v2 with no measurable degradation of task reward, FID score, or CLIP score.*
The original codebase can be found at [AndyShih12/paradigms](https://github.com/AndyShih12/paradigms), and the pipeline was contributed by [AndyShih12](https://github.com/AndyShih12). ❤️
@@ -26,22 +26,19 @@ This pipeline improves sampling speed by running denoising steps in parallel, at
Therefore, it is better to call this pipeline when running on multiple GPUs. Otherwise, without enough GPU bandwidth
sampling may be even slower than sequential sampling.
The two parameters to play with are `parallel` (batch size) and `tolerance`.
- If it fits in memory, for a 1000-step DDPM you can aim for a batch size of around 100
(for example, 8 GPUs and `batch_per_device=12` to get `parallel=96`). A higher batch size
may not fit in memory, and lower batch size gives less parallelism.
- For tolerance, using a higher tolerance may get better speedups but can risk sample quality degradation.
If there is quality degradation with the default tolerance, then use a lower tolerance like `0.001`.
The two parameters to play with are `parallel` (batch size) and `tolerance`.
- If it fits in memory, for a 1000-step DDPM you can aim for a batch size of around 100 (for example, 8 GPUs and `batch_per_device=12` to get `parallel=96`). A higher batch size may not fit in memory, and lower batch size gives less parallelism.
- For tolerance, using a higher tolerance may get better speedups but can risk sample quality degradation. If there is quality degradation with the default tolerance, then use a lower tolerance like `0.001`.
For a 1000-step DDPM on 8 A100 GPUs, you can expect around a 3x speedup from [`StableDiffusionParadigmsPipeline`] compared to the [`StableDiffusionPipeline`]
by setting `parallel=80` and `tolerance=0.1`.
🤗 Diffusers offers [distributed inference support](../training/distributed_inference) for generating multiple prompts
🤗 Diffusers offers [distributed inference support](../../training/distributed_inference) for generating multiple prompts
in parallel on multiple GPUs. But [`StableDiffusionParadigmsPipeline`] is designed for speeding up sampling of a single prompt by using multiple GPUs.
<Tip>
Make sure to check out the Schedulers [guide](/using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](/using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -22,7 +22,7 @@ You can find additional information about InstructPix2Pix on the [project page](
<Tip>
Make sure to check out the Schedulers [guide](/using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](/using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -20,7 +20,7 @@ The abstract from the paper is:
You can find additional information about Pix2Pix Zero on the [project page](https://pix2pixzero.github.io/), [original codebase](https://github.com/pix2pixzero/pix2pix-zero), and try it out in a [demo](https://huggingface.co/spaces/pix2pix-zero-library/pix2pix-zero-demo).
## Tips
## Tips
* The pipeline can be conditioned on real input images. Check out the code examples below to know more.
* The pipeline exposes two arguments namely `source_embeds` and `target_embeds`
@@ -29,12 +29,11 @@ you wanted to translate from "cat" to "dog". In this case, the edit direction wi
this in the pipeline, you simply have to set the embeddings related to the phrases including "cat" to
`source_embeds` and "dog" to `target_embeds`. Refer to the code example below for more details.
* When you're using this pipeline from a prompt, specify the _source_ concept in the prompt. Taking
the above example, a valid input prompt would be: "a high resolution painting of a **cat** in the style of van gough".
the above example, a valid input prompt would be: "a high resolution painting of a **cat** in the style of van gogh".
* If you wanted to reverse the direction in the example above, i.e., "dog -> cat", then it's recommended to:
* Swap the `source_embeds` and `target_embeds`.
* Change the input prompt to include "dog".
* To learn more about how the source and target embeddings are generated, refer to the [original
paper](https://arxiv.org/abs/2302.03027). Below, we also provide some directions on how to generate the embeddings.
* Change the input prompt to include "dog".
* To learn more about how the source and target embeddings are generated, refer to the [original paper](https://arxiv.org/abs/2302.03027). Below, we also provide some directions on how to generate the embeddings.
* Note that the quality of the outputs generated with this pipeline is dependent on how good the `source_embeds` and `target_embeds` are. Please, refer to [this discussion](#generating-source-and-target-embeddings) for some suggestions on the topic.
## Available Pipelines:
@@ -79,23 +78,22 @@ for url in [src_embs_url, target_embs_url]:
src_embeds = torch.load(src_embs_url.split("/")[-1])
target_embeds = torch.load(target_embs_url.split("/")[-1])
images = pipeline(
image = pipeline(
prompt,
source_embeds=src_embeds,
target_embeds=target_embeds,
num_inference_steps=50,
cross_attention_guidance_amount=0.15,
).images
images[0].save("edited_image_dog.png")
).images[0]
image
```
### Based on an input image
When the pipeline is conditioned on an input image, we first obtain an inverted
noise from it using a `DDIMInverseScheduler` with the help of a generated caption. Then
the inverted noise is used to start the generation process.
noise from it using a `DDIMInverseScheduler` with the help of a generated caption. Then the inverted noise is used to start the generation process.
First, let's load our pipeline:
First, let's load our pipeline:
```py
import torch
@@ -119,25 +117,25 @@ pipeline.inverse_scheduler = DDIMInverseScheduler.from_config(pipeline.scheduler
pipeline.enable_model_cpu_offload()
```
Then, we load an input image for conditioning and obtain a suitable caption for it:
Then, we load an input image for conditioning and obtain a suitable caption for it:
```py
import requests
from PIL import Image
from diffusers.utils import load_image
img_url = "https://github.com/pix2pixzero/pix2pix-zero/raw/main/assets/test_images/cats/cat_6.png"
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB").resize((512, 512))
raw_image = load_image(url).resize((512, 512))
caption = pipeline.generate_caption(raw_image)
caption
```
Then we employ the generated caption and the input image to get the inverted noise:
Then we employ the generated caption and the input image to get the inverted noise:
```py
```py
generator = torch.manual_seed(0)
inv_latents = pipeline.invert(caption, image=raw_image, generator=generator).latents
```
Now, generate the image with edit directions:
Now, generate the image with edit directions:
```py
# See the "Generating source and target embeddings" section below to
@@ -159,16 +157,16 @@ image = pipeline(
latents=inv_latents,
negative_prompt=caption,
).images[0]
image.save("edited_image.png")
image
```
## Generating source and target embeddings
## Generating source and target embeddings
The authors originally used the [GPT-3 API](https://openai.com/api/) to generate the source and target captions for discovering
edit directions. However, we can also leverage open source and public models for the same purpose.
Below, we provide an end-to-end example with the [Flan-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5) model
for generating captions and [CLIP](https://huggingface.co/docs/transformers/model_doc/clip) for
computing embeddings on the generated captions.
computing embeddings on the generated captions.
**1. Load the generation model**:
@@ -180,7 +178,7 @@ tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-xl")
model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-xl", device_map="auto", torch_dtype=torch.float16)
```
**2. Construct a starting prompt**:
**2. Construct a starting prompt**:
```py
source_concept = "cat"
@@ -193,11 +191,11 @@ target_text = f"Provide a caption for images containing a {target_concept}. "
"The captions should be in English and should be no longer than 150 characters."
```
Here, we're interested in the "cat -> dog" direction.
Here, we're interested in the "cat -> dog" direction.
**3. Generate captions**:
We can use a utility like so for this purpose.
We can use a utility like so for this purpose.
```py
def generate_captions(input_prompt):
@@ -214,17 +212,18 @@ And then we just call it to generate our captions:
```py
source_captions = generate_captions(source_text)
target_captions = generate_captions(target_concept)
print(source_captions, target_captions, sep='\n')
```
We encourage you to play around with the different parameters supported by the
`generate()` method ([documentation](https://huggingface.co/docs/transformers/main/en/main_classes/text_generation#transformers.generation_tf_utils.TFGenerationMixin.generate)) for the generation quality you are looking for.
**4. Load the embedding model**:
**4. Load the embedding model**:
Here, we need to use the same text encoder model used by the subsequent Stable Diffusion model.
```py
from diffusers import StableDiffusionPix2PixZeroPipeline
```py
from diffusers import StableDiffusionPix2PixZeroPipeline
pipeline = StableDiffusionPix2PixZeroPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16
@@ -236,8 +235,8 @@ text_encoder = pipeline.text_encoder
**5. Compute embeddings**:
```py
import torch
```py
import torch
def embed_captions(sentences, tokenizer, text_encoder, device="cuda"):
with torch.no_grad():
@@ -261,23 +260,29 @@ target_embeddings = embed_captions(target_captions, tokenizer, text_encoder)
And you're done! [Here](https://colab.research.google.com/drive/1tz2C1EdfZYAPlzXXbTnf-5PRBiR8_R1F?usp=sharing) is a Colab Notebook that you can use to interact with the entire process.
Now, you can use these embeddings directly while calling the pipeline:
Now, you can use these embeddings directly while calling the pipeline:
```py
from diffusers import DDIMScheduler
pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)
images = pipeline(
image = pipeline(
prompt,
source_embeds=source_embeddings,
target_embeds=target_embeddings,
num_inference_steps=50,
cross_attention_guidance_amount=0.15,
).images
images[0].save("edited_image_dog.png")
).images[0]
image
```
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
## StableDiffusionPix2PixZeroPipeline
[[autodoc]] StableDiffusionPix2PixZeroPipeline
- __call__

View File

@@ -0,0 +1,43 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# PixArt-α
![](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/pixart/header_collage.png)
[PixArt-α: Fast Training of Diffusion Transformer for Photorealistic Text-to-Image Synthesis](https://huggingface.co/papers/2310.00426) is Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James Kwok, Ping Luo, Huchuan Lu, and Zhenguo Li.
The abstract from the paper is:
*The most advanced text-to-image (T2I) models require significant training costs (e.g., millions of GPU hours), seriously hindering the fundamental innovation for the AIGC community while increasing CO2 emissions. This paper introduces PIXART-α, a Transformer-based T2I diffusion model whose image generation quality is competitive with state-of-the-art image generators (e.g., Imagen, SDXL, and even Midjourney), reaching near-commercial application standards. Additionally, it supports high-resolution image synthesis up to 1024px resolution with low training cost, as shown in Figure 1 and 2. To achieve this goal, three core designs are proposed: (1) Training strategy decomposition: We devise three distinct training steps that separately optimize pixel dependency, text-image alignment, and image aesthetic quality; (2) Efficient T2I Transformer: We incorporate cross-attention modules into Diffusion Transformer (DiT) to inject text conditions and streamline the computation-intensive class-condition branch; (3) High-informative data: We emphasize the significance of concept density in text-image pairs and leverage a large Vision-Language model to auto-label dense pseudo-captions to assist text-image alignment learning. As a result, PIXART-α's training speed markedly surpasses existing large-scale T2I models, e.g., PIXART-α only takes 10.8% of Stable Diffusion v1.5's training time (675 vs. 6,250 A100 GPU days), saving nearly $300,000 ($26,000 vs. $320,000) and reducing 90% CO2 emissions. Moreover, compared with a larger SOTA model, RAPHAEL, our training cost is merely 1%. Extensive experiments demonstrate that PIXART-α excels in image quality, artistry, and semantic control. We hope PIXART-α will provide new insights to the AIGC community and startups to accelerate building their own high-quality yet low-cost generative models from scratch.*
You can find the original codebase at [PixArt-alpha/PixArt-alpha](https://github.com/PixArt-alpha/PixArt-alpha) and all the available checkpoints at [PixArt-alpha](https://huggingface.co/PixArt-alpha).
Some notes about this pipeline:
* It uses a Transformer backbone (instead of a UNet) for denoising. As such it has a similar architecture as [DiT](./dit).
* It was trained using text conditions computed from T5. This aspect makes the pipeline better at following complex text prompts with intricate details.
* It is good at producing high-resolution images at different aspect ratios. To get the best results, the authors recommend some size brackets which can be found [here](https://github.com/PixArt-alpha/PixArt-alpha/blob/08fbbd281ec96866109bdd2cdb75f2f58fb17610/diffusion/data/datasets/utils.py).
* It rivals the quality of state-of-the-art text-to-image generation systems (as of this writing) such as Stable Diffusion XL, Imagen, and DALL-E 2, while being more efficient than them.
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
## PixArtAlphaPipeline
[[autodoc]] PixArtAlphaPipeline
- all
- __call__

View File

@@ -12,7 +12,7 @@ specific language governing permissions and limitations under the License.
# PNDM
[Pseudo Numerical methods for Diffusion Models on manifolds](https://huggingface.co/papers/2202.09778) (PNDM) is by Luping Liu, Yi Ren, Zhijie Lin and Zhou Zhao.
[Pseudo Numerical Methods for Diffusion Models on Manifolds](https://huggingface.co/papers/2202.09778) (PNDM) is by Luping Liu, Yi Ren, Zhijie Lin and Zhou Zhao.
The abstract from the paper is:
@@ -22,7 +22,7 @@ The original codebase can be found at [luping-liu/PNDM](https://github.com/lupin
<Tip>
Make sure to check out the Schedulers [guide](/using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](/using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
@@ -32,4 +32,4 @@ Make sure to check out the Schedulers [guide](/using-diffusers/schedulers) to le
- __call__
## ImagePipelineOutput
[[autodoc]] pipelines.ImagePipelineOutput
[[autodoc]] pipelines.ImagePipelineOutput

View File

@@ -23,7 +23,7 @@ The original codebase can be found at [andreas128/RePaint](https://github.com/an
<Tip>
Make sure to check out the Schedulers [guide](/using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](/using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -22,7 +22,7 @@ The original codebase can be found at [yang-song/score_sde_pytorch](https://gith
<Tip>
Make sure to check out the Schedulers [guide](/using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](/using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
@@ -32,4 +32,4 @@ Make sure to check out the Schedulers [guide](/using-diffusers/schedulers) to le
- __call__
## ImagePipelineOutput
[[autodoc]] pipelines.ImagePipelineOutput
[[autodoc]] pipelines.ImagePipelineOutput

View File

@@ -22,7 +22,7 @@ You can find additional information about Self-Attention Guidance on the [projec
<Tip>
Make sure to check out the Schedulers [guide](/using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](/using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
@@ -32,4 +32,4 @@ Make sure to check out the Schedulers [guide](/using-diffusers/schedulers) to le
- all
## StableDiffusionOutput
[[autodoc]] pipelines.stable_diffusion.StableDiffusionPipelineOutput
[[autodoc]] pipelines.stable_diffusion.StableDiffusionPipelineOutput

View File

@@ -12,16 +12,16 @@ specific language governing permissions and limitations under the License.
# Semantic Guidance
Semantic Guidance for Diffusion Models was proposed in [SEGA: Instructing Diffusion using Semantic Dimensions](https://huggingface.co/papers/2301.12247) and provides strong semantic control over image generation.
Semantic Guidance for Diffusion Models was proposed in [SEGA: Instructing Text-to-Image Models using Semantic Guidance](https://huggingface.co/papers/2301.12247) and provides strong semantic control over image generation.
Small changes to the text prompt usually result in entirely different output images. However, with SEGA a variety of changes to the image are enabled that can be controlled easily and intuitively, while staying true to the original image composition.
The abstract from the paper is:
*Text-to-image diffusion models have recently received a lot of interest for their astonishing ability to produce high-fidelity images from text only. However, achieving one-shot generation that aligns with the user's intent is nearly impossible, yet small changes to the input prompt often result in very different images. This leaves the user with little semantic control. To put the user in control, we show how to interact with the diffusion process to flexibly steer it along semantic directions. This semantic guidance (SEGA) allows for subtle and extensive edits, changes in composition and style, as well as optimizing the overall artistic conception. We demonstrate SEGA's effectiveness on a variety of tasks and provide evidence for its versatility and flexibility.*
*Text-to-image diffusion models have recently received a lot of interest for their astonishing ability to produce high-fidelity images from text only. However, achieving one-shot generation that aligns with the user's intent is nearly impossible, yet small changes to the input prompt often result in very different images. This leaves the user with little semantic control. To put the user in control, we show how to interact with the diffusion process to flexibly steer it along semantic directions. This semantic guidance (SEGA) generalizes to any generative architecture using classifier-free guidance. More importantly, it allows for subtle and extensive edits, changes in composition and style, as well as optimizing the overall artistic conception. We demonstrate SEGA's effectiveness on both latent and pixel-based diffusion models such as Stable Diffusion, Paella, and DeepFloyd-IF using a variety of tasks, thus providing strong evidence for its versatility, flexibility, and improvements over existing methods.*
<Tip>
Make sure to check out the Schedulers [guide](/using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](/using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -9,7 +9,7 @@ specific language governing permissions and limitations under the License.
# Shap-E
The Shap-E model was proposed in [Shap-E: Generating Conditional 3D Implicit Functions](https://huggingface.co/papers/2305.02463) by Alex Nichol and Heewon Jun from [OpenAI](https://github.com/openai).
The Shap-E model was proposed in [Shap-E: Generating Conditional 3D Implicit Functions](https://huggingface.co/papers/2305.02463) by Alex Nichol and Heewoo Jun from [OpenAI](https://github.com/openai).
The abstract from the paper is:
@@ -19,7 +19,7 @@ The original codebase can be found at [openai/shap-e](https://github.com/openai/
<Tip>
See the [reuse components across pipelines](/using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
See the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
@@ -34,4 +34,4 @@ See the [reuse components across pipelines](/using-diffusers/loading#reuse-compo
- __call__
## ShapEPipelineOutput
[[autodoc]] pipelines.shap_e.pipeline_shap_e.ShapEPipelineOutput
[[autodoc]] pipelines.shap_e.pipeline_shap_e.ShapEPipelineOutput

View File

@@ -24,7 +24,7 @@ As depicted above the model takes as input a MIDI file and tokenizes it into a s
<Tip>
Make sure to check out the Schedulers [guide](/using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](/using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
@@ -34,4 +34,4 @@ Make sure to check out the Schedulers [guide](/using-diffusers/schedulers) to le
- __call__
## AudioPipelineOutput
[[autodoc]] pipelines.AudioPipelineOutput
[[autodoc]] pipelines.AudioPipelineOutput

View File

@@ -20,7 +20,7 @@ Using the pretrained models we can provide control images (for example, a depth
The abstract of the paper is the following:
*The incredible generative ability of large-scale text-to-image (T2I) models has demonstrated strong power of learning complex structures and meaningful semantics. However, relying solely on text prompts cannot fully take advantage of the knowledge learned by the model, especially when flexible and accurate structure control is needed. In this paper, we aim to ``dig out" the capabilities that T2I models have implicitly learned, and then explicitly use them to control the generation more granularly. Specifically, we propose to learn simple and small T2I-Adapters to align internal knowledge in T2I models with external control signals, while freezing the original large T2I models. In this way, we can train various adapters according to different conditions, and achieve rich control and editing effects. Further, the proposed T2I-Adapters have attractive properties of practical value, such as composability and generalization ability. Extensive experiments demonstrate that our T2I-Adapter has promising generation quality and a wide range of applications.*
*The incredible generative ability of large-scale text-to-image (T2I) models has demonstrated strong power of learning complex structures and meaningful semantics. However, relying solely on text prompts cannot fully take advantage of the knowledge learned by the model, especially when flexible and accurate controlling (e.g., color and structure) is needed. In this paper, we aim to ``dig out" the capabilities that T2I models have implicitly learned, and then explicitly use them to control the generation more granularly. Specifically, we propose to learn simple and lightweight T2I-Adapters to align internal knowledge in T2I models with external control signals, while freezing the original large T2I models. In this way, we can train various adapters according to different conditions, achieving rich control and editing effects in the color and structure of the generation results. Further, the proposed T2I-Adapters have attractive properties of practical value, such as composability and generalization ability. Extensive experiments demonstrate that our T2I-Adapter has promising generation quality and a wide range of applications.*
This model was contributed by the community contributor [HimariO](https://github.com/HimariO) ❤️ .
@@ -33,7 +33,7 @@ This model was contributed by the community contributor [HimariO](https://github
## Usage example with the base model of StableDiffusion-1.4/1.5
In the following we give a simple example of how to use a *T2IAdapter* checkpoint with Diffusers for inference based on StableDiffusion-1.4/1.5.
In the following we give a simple example of how to use a *T2I-Adapter* checkpoint with Diffusers for inference based on StableDiffusion-1.4/1.5.
All adapters use the same pipeline.
1. Images are first converted into the appropriate *control image* format.
@@ -42,7 +42,7 @@ All adapters use the same pipeline.
Let's have a look at a simple example using the [Color Adapter](https://huggingface.co/TencentARC/t2iadapter_color_sd14v1).
```python
from diffusers.utils import load_image
from diffusers.utils import load_image, make_image_grid
image = load_image("https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/color_ref.png")
```
@@ -83,20 +83,21 @@ Finally, pass the prompt and control image to the pipeline
```py
# fix the random seed, so you will get the same result as the example
generator = torch.manual_seed(7)
generator = torch.Generator("cuda").manual_seed(7)
out_image = pipe(
"At night, glowing cubes in front of the beach",
image=color_palette,
generator=generator,
).images[0]
make_image_grid([image, color_palette, out_image], rows=1, cols=3)
```
![img](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/color_output.png)
## Usage example with the base model of StableDiffusion-XL
In the following we give a simple example of how to use a *T2IAdapter* checkpoint with Diffusers for inference based on StableDiffusion-XL.
In the following we give a simple example of how to use a *T2I-Adapter* checkpoint with Diffusers for inference based on StableDiffusion-XL.
All adapters use the same pipeline.
1. Images are first downloaded into the appropriate *control image* format.
@@ -105,7 +106,7 @@ All adapters use the same pipeline.
Let's have a look at a simple example using the [Sketch Adapter](https://huggingface.co/Adapter/t2iadapter/tree/main/sketch_sdxl_1.0).
```python
from diffusers.utils import load_image
from diffusers.utils import load_image, make_image_grid
sketch_image = load_image("https://huggingface.co/Adapter/t2iadapter/resolve/main/sketch.png").convert("L")
```
@@ -121,10 +122,9 @@ from diffusers import (
StableDiffusionXLAdapterPipeline,
DDPMScheduler
)
from diffusers.models.unet_2d_condition import UNet2DConditionModel
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
adapter = T2IAdapter.from_pretrained("Adapter/t2iadapter", subfolder="sketch_sdxl_1.0",torch_dtype=torch.float16, adapter_type="full_adapter_xl")
adapter = T2IAdapter.from_pretrained("Adapter/t2iadapter", subfolder="sketch_sdxl_1.0", torch_dtype=torch.float16, adapter_type="full_adapter_xl")
scheduler = DDPMScheduler.from_pretrained(model_id, subfolder="scheduler")
pipe = StableDiffusionXLAdapterPipeline.from_pretrained(
@@ -141,12 +141,13 @@ Finally, pass the prompt and control image to the pipeline
generator = torch.Generator().manual_seed(42)
sketch_image_out = pipe(
prompt="a photo of a dog in real world, high quality",
negative_prompt="extra digit, fewer digits, cropped, worst quality, low quality",
image=sketch_image,
generator=generator,
prompt="a photo of a dog in real world, high quality",
negative_prompt="extra digit, fewer digits, cropped, worst quality, low quality",
image=sketch_image,
generator=generator,
guidance_scale=7.5
).images[0]
make_image_grid([sketch_image, sketch_image_out], rows=1, cols=2)
```
![img](https://huggingface.co/Adapter/t2iadapter/resolve/main/sketch_output.png)
@@ -159,7 +160,7 @@ Non-diffusers checkpoints can be found under [TencentARC/T2I-Adapter](https://hu
| Model Name | Control Image Overview| Control Image Example | Generated Image Example |
|---|---|---|---|
|[TencentARC/t2iadapter_color_sd14v1](https://huggingface.co/TencentARC/t2iadapter_color_sd14v1)<br/> *Trained with spatial color palette* | A image with 8x8 color palette.|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/color_sample_input.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/color_sample_input.png"/></a>|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/color_sample_output.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/color_sample_output.png"/></a>|
|[TencentARC/t2iadapter_color_sd14v1](https://huggingface.co/TencentARC/t2iadapter_color_sd14v1)<br/> *Trained with spatial color palette* | An image with 8x8 color palette.|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/color_sample_input.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/color_sample_input.png"/></a>|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/color_sample_output.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/color_sample_output.png"/></a>|
|[TencentARC/t2iadapter_canny_sd14v1](https://huggingface.co/TencentARC/t2iadapter_canny_sd14v1)<br/> *Trained with canny edge detection* | A monochrome image with white edges on a black background.|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/canny_sample_input.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/canny_sample_input.png"/></a>|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/canny_sample_output.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/canny_sample_output.png"/></a>|
|[TencentARC/t2iadapter_sketch_sd14v1](https://huggingface.co/TencentARC/t2iadapter_sketch_sd14v1)<br/> *Trained with [PidiNet](https://github.com/zhuoinoulu/pidinet) edge detection* | A hand-drawn monochrome image with white outlines on a black background.|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/sketch_sample_input.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/sketch_sample_input.png"/></a>|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/sketch_sample_output.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/sketch_sample_output.png"/></a>|
|[TencentARC/t2iadapter_depth_sd14v1](https://huggingface.co/TencentARC/t2iadapter_depth_sd14v1)<br/> *Trained with Midas depth estimation* | A grayscale image with black representing deep areas and white representing shallow areas.|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/depth_sample_input.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/depth_sample_input.png"/></a>|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/depth_sample_output.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/depth_sample_output.png"/></a>|
@@ -181,9 +182,7 @@ Non-diffusers checkpoints can be found under [TencentARC/T2I-Adapter](https://hu
Here we use the keypose adapter for the character posture and the depth adapter for creating the scene.
```py
import torch
from PIL import Image
from diffusers.utils import load_image
from diffusers.utils import load_image, make_image_grid
cond_keypose = load_image(
"https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/keypose_sample_input.png"
@@ -191,7 +190,7 @@ cond_keypose = load_image(
cond_depth = load_image(
"https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/depth_sample_input.png"
)
cond = [[cond_keypose, cond_depth]]
cond = [cond_keypose, cond_depth]
prompt = ["A man walking in an office room with a nice view"]
```
@@ -202,12 +201,13 @@ The two control images look as such:
![img](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/depth_sample_input.png)
`MultiAdapter` combines keypose and depth adapters.
`MultiAdapter` combines keypose and depth adapters.
`adapter_conditioning_scale` balances the relative influence of the different adapters.
```py
from diffusers import StableDiffusionAdapterPipeline, MultiAdapter
import torch
from diffusers import StableDiffusionAdapterPipeline, MultiAdapter, T2IAdapter
adapters = MultiAdapter(
[
@@ -221,19 +221,20 @@ pipe = StableDiffusionAdapterPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
torch_dtype=torch.float16,
adapter=adapters,
)
).to("cuda")
images = pipe(prompt, cond, adapter_conditioning_scale=[0.8, 0.8])
image = pipe(prompt, cond, adapter_conditioning_scale=[0.8, 0.8]).images[0]
make_image_grid([cond_keypose, cond_depth, image], rows=1, cols=3)
```
![img](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/keypose_depth_sample_output.png)
## T2I Adapter vs ControlNet
## T2I-Adapter vs ControlNet
T2I-Adapter is similar to [ControlNet](https://huggingface.co/docs/diffusers/main/en/api/pipelines/controlnet).
T2i-Adapter uses a smaller auxiliary network which is only run once for the entire diffusion process.
However, T2I-Adapter performs slightly worse than ControlNet.
T2I-Adapter is similar to [ControlNet](https://huggingface.co/docs/diffusers/main/en/api/pipelines/controlnet).
T2I-Adapter uses a smaller auxiliary network which is only run once for the entire diffusion process.
However, T2I-Adapter performs slightly worse than ControlNet.
## StableDiffusionAdapterPipeline
[[autodoc]] StableDiffusionAdapterPipeline

View File

@@ -12,11 +12,11 @@ specific language governing permissions and limitations under the License.
# Depth-to-image
The Stable Diffusion model can also infer depth based on an image using [MiDas](https://github.com/isl-org/MiDaS). This allows you to pass a text prompt and an initial image to condition the generation of new images as well as a `depth_map` to preserve the image structure.
The Stable Diffusion model can also infer depth based on an image using [MiDaS](https://github.com/isl-org/MiDaS). This allows you to pass a text prompt and an initial image to condition the generation of new images as well as a `depth_map` to preserve the image structure.
<Tip>
Make sure to check out the Stable Diffusion [Tips](overview#tips) section to learn how to explore the tradeoff between scheduler speed and quality, and how to reuse pipeline components efficiently!
Make sure to check out the Stable Diffusion [Tips](overview#tips) section to learn how to explore the tradeoff between scheduler speed and quality, and how to reuse pipeline components efficiently!
If you're interested in using one of the official checkpoints for a task, explore the [CompVis](https://huggingface.co/CompVis), [Runway](https://huggingface.co/runwayml), and [Stability AI](https://huggingface.co/stabilityai) Hub organizations!
@@ -37,4 +37,4 @@ If you're interested in using one of the official checkpoints for a task, explor
## StableDiffusionPipelineOutput
[[autodoc]] pipelines.stable_diffusion.StableDiffusionPipelineOutput
[[autodoc]] pipelines.stable_diffusion.StableDiffusionPipelineOutput

View File

@@ -23,7 +23,7 @@ text-to-image Stable Diffusion checkpoints, such as
<Tip>
Make sure to check out the Stable Diffusion [Tips](overview#tips) section to learn how to explore the tradeoff between scheduler speed and quality, and how to reuse pipeline components efficiently!
Make sure to check out the Stable Diffusion [Tips](overview#tips) section to learn how to explore the tradeoff between scheduler speed and quality, and how to reuse pipeline components efficiently!
If you're interested in using one of the official checkpoints for a task, explore the [CompVis](https://huggingface.co/CompVis), [Runway](https://huggingface.co/runwayml), and [Stability AI](https://huggingface.co/stabilityai) Hub organizations!
@@ -54,4 +54,4 @@ If you're interested in using one of the official checkpoints for a task, explor
## FlaxStableDiffusionPipelineOutput
[[autodoc]] pipelines.stable_diffusion.FlaxStableDiffusionPipelineOutput
[[autodoc]] pipelines.stable_diffusion.FlaxStableDiffusionPipelineOutput

View File

@@ -16,7 +16,7 @@ The Stable Diffusion latent upscaler model was created by [Katherine Crowson](ht
<Tip>
Make sure to check out the Stable Diffusion [Tips](overview#tips) section to learn how to explore the tradeoff between scheduler speed and quality, and how to reuse pipeline components efficiently!
Make sure to check out the Stable Diffusion [Tips](overview#tips) section to learn how to explore the tradeoff between scheduler speed and quality, and how to reuse pipeline components efficiently!
If you're interested in using one of the official checkpoints for a task, explore the [CompVis](https://huggingface.co/CompVis), [Runway](https://huggingface.co/runwayml), and [Stability AI](https://huggingface.co/stabilityai) Hub organizations!
@@ -35,4 +35,4 @@ If you're interested in using one of the official checkpoints for a task, explor
## StableDiffusionPipelineOutput
[[autodoc]] pipelines.stable_diffusion.StableDiffusionPipelineOutput
[[autodoc]] pipelines.stable_diffusion.StableDiffusionPipelineOutput

View File

@@ -12,7 +12,7 @@ specific language governing permissions and limitations under the License.
# Text-to-(RGB, depth)
LDM3D was proposed in [LDM3D: Latent Diffusion Model for 3D](https://huggingface.co/papers/2305.10853) by Gabriela Ben Melech Stan, Diana Wofk, Scottie Fox, Alex Redden, Will Saxton, Jean Yu, Estelle Aflalo, Shao-Yen Tseng, Fabio Nonato, Matthias Muller, and Vasudev Lal. LDM3D generates an image and a depth map from a given text prompt unlike the existing text-to-image diffusion models such as [Stable Diffusion](./stable_diffusion/overview) which only generates an image. With almost the same number of parameters, LDM3D achieves to create a latent space that can compress both the RGB images and the depth maps.
LDM3D was proposed in [LDM3D: Latent Diffusion Model for 3D](https://huggingface.co/papers/2305.10853) by Gabriela Ben Melech Stan, Diana Wofk, Scottie Fox, Alex Redden, Will Saxton, Jean Yu, Estelle Aflalo, Shao-Yen Tseng, Fabio Nonato, Matthias Muller, and Vasudev Lal. LDM3D generates an image and a depth map from a given text prompt unlike the existing text-to-image diffusion models such as [Stable Diffusion](./overview) which only generates an image. With almost the same number of parameters, LDM3D achieves to create a latent space that can compress both the RGB images and the depth maps.
The abstract from the paper is:

View File

@@ -34,12 +34,10 @@ The table below summarizes the available Stable Diffusion pipelines, their suppo
Supported tasks
</th>
<th class="px-4 py-2 font-medium text-gray-900 text-left">
Space
🤗 Space
</th>
</tr>
</thead>
<tbody class="divide-y divide-gray-200">
<tr>
<td class="px-4 py-2 text-gray-700">
@@ -49,7 +47,6 @@ The table below summarizes the available Stable Diffusion pipelines, their suppo
<td class="px-4 py-2"><a href="https://huggingface.co/spaces/stabilityai/stable-diffusion"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue"/></a>
</td>
</tr>
<tr>
<td class="px-4 py-2 text-gray-700">
<a href="./img2img">StableDiffusionImg2Img</a>
@@ -58,7 +55,6 @@ The table below summarizes the available Stable Diffusion pipelines, their suppo
<td class="px-4 py-2"><a href="https://huggingface.co/spaces/huggingface/diffuse-the-rest"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue"/></a>
</td>
</tr>
<tr>
<td class="px-4 py-2 text-gray-700">
<a href="./inpaint">StableDiffusionInpaint</a>
@@ -67,7 +63,6 @@ The table below summarizes the available Stable Diffusion pipelines, their suppo
<td class="px-4 py-2"><a href="https://huggingface.co/spaces/runwayml/stable-diffusion-inpainting"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue"/></a>
</td>
</tr>
<tr>
<td class="px-4 py-2 text-gray-700">
<a href="./depth2img">StableDiffusionDepth2Img</a>
@@ -76,7 +71,6 @@ The table below summarizes the available Stable Diffusion pipelines, their suppo
<td class="px-4 py-2"><a href="https://huggingface.co/spaces/radames/stable-diffusion-depth2img"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue"/></a>
</td>
</tr>
<tr>
<td class="px-4 py-2 text-gray-700">
<a href="./image_variation">StableDiffusionImageVariation</a>
@@ -85,7 +79,6 @@ The table below summarizes the available Stable Diffusion pipelines, their suppo
<td class="px-4 py-2"><a href="https://huggingface.co/spaces/lambdalabs/stable-diffusion-image-variations"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue"/></a>
</td>
</tr>
<tr>
<td class="px-4 py-2 text-gray-700">
<a href="./stable_diffusion_safe">StableDiffusionPipelineSafe</a>
@@ -94,7 +87,6 @@ The table below summarizes the available Stable Diffusion pipelines, their suppo
<td class="px-4 py-2"><a href="https://huggingface.co/spaces/AIML-TUDA/unsafe-vs-safe-stable-diffusion"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue"/></a>
</td>
</tr>
<tr>
<td class="px-4 py-2 text-gray-700">
<a href="./stable_diffusion_2">StableDiffusion2</a>
@@ -103,7 +95,6 @@ The table below summarizes the available Stable Diffusion pipelines, their suppo
<td class="px-4 py-2"><a href="https://huggingface.co/spaces/stabilityai/stable-diffusion"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue"/></a>
</td>
</tr>
<tr>
<td class="px-4 py-2 text-gray-700">
<a href="./stable_diffusion_xl">StableDiffusionXL</a>
@@ -112,7 +103,6 @@ The table below summarizes the available Stable Diffusion pipelines, their suppo
<td class="px-4 py-2"><a href="https://huggingface.co/spaces/RamAnanth1/stable-diffusion-xl"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue"/></a>
</td>
</tr>
<tr>
<td class="px-4 py-2 text-gray-700">
<a href="./latent_upscale">StableDiffusionLatentUpscale</a>
@@ -121,14 +111,12 @@ The table below summarizes the available Stable Diffusion pipelines, their suppo
<td class="px-4 py-2"><a href="https://huggingface.co/spaces/huggingface-projects/stable-diffusion-latent-upscaler"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue"/></a>
</td>
</tr>
<tr>
<td class="px-4 py-2 text-gray-700">
<a href="./upscale">StableDiffusionUpscale</a>
</td>
<td class="px-4 py-2 text-gray-700">super-resolution</td>
</tr>
<tr>
<td class="px-4 py-2 text-gray-700">
<a href="./ldm3d_diffusion">StableDiffusionLDM3D</a>
@@ -177,4 +165,4 @@ img2img = StableDiffusionImg2ImgPipeline(**text2img.components)
inpaint = StableDiffusionInpaintPipeline(**text2img.components)
# now you can use text2img(...), img2img(...), inpaint(...) just like the call methods of each respective pipeline
```
```

View File

@@ -14,12 +14,12 @@ specific language governing permissions and limitations under the License.
Stable Diffusion 2 is a text-to-image _latent diffusion_ model built upon the work of the original [Stable Diffusion](https://stability.ai/blog/stable-diffusion-public-release), and it was led by Robin Rombach and Katherine Crowson from [Stability AI](https://stability.ai/) and [LAION](https://laion.ai/).
*The Stable Diffusion 2.0 release includes robust text-to-image models trained using a brand new text encoder (OpenCLIP), developed by LAION with support from Stability AI, which greatly improves the quality of the generated images compared to earlier V1 releases. The text-to-image models in this release can generate images with default resolutions of both 512x512 pixels and 768x768 pixels.
*The Stable Diffusion 2.0 release includes robust text-to-image models trained using a brand new text encoder (OpenCLIP), developed by LAION with support from Stability AI, which greatly improves the quality of the generated images compared to earlier V1 releases. The text-to-image models in this release can generate images with default resolutions of both 512x512 pixels and 768x768 pixels.
These models are trained on an aesthetic subset of the [LAION-5B dataset](https://laion.ai/blog/laion-5b/) created by the DeepFloyd team at Stability AI, which is then further filtered to remove adult content using [LAIONs NSFW filter](https://openreview.net/forum?id=M3Y74vmsMcY).*
For more details about how Stable Diffusion 2 works and how it differs from the original Stable Diffusion, please refer to the official [announcement post](https://stability.ai/blog/stable-diffusion-v2-release).
The architecture of Stable Diffusion 2 is more or less identical to the original [Stable Diffusion model](./text2img) so check out it's API documentation for how to use Stable Diffusion 2. We recommend using the [`DPMSolverMultistepScheduler`] as it's currently the fastest scheduler.
The architecture of Stable Diffusion 2 is more or less identical to the original [Stable Diffusion model](./text2img) so check out it's API documentation for how to use Stable Diffusion 2. We recommend using the [`DPMSolverMultistepScheduler`] as it gives a reasonable speed/quality trade-off and can be run with as little as 20 steps.
Stable Diffusion 2 is available for tasks like text-to-image, inpainting, super-resolution, and depth-to-image:
@@ -35,7 +35,7 @@ Here are some examples for how to use Stable Diffusion 2 for each task:
<Tip>
Make sure to check out the Stable Diffusion [Tips](overview#tips) section to learn how to explore the tradeoff between scheduler speed and quality, and how to reuse pipeline components efficiently!
Make sure to check out the Stable Diffusion [Tips](overview#tips) section to learn how to explore the tradeoff between scheduler speed and quality, and how to reuse pipeline components efficiently!
If you're interested in using one of the official checkpoints for a task, explore the [CompVis](https://huggingface.co/CompVis), [Runway](https://huggingface.co/runwayml), and [Stability AI](https://huggingface.co/stabilityai) Hub organizations!
@@ -55,30 +55,21 @@ pipe = pipe.to("cuda")
prompt = "High quality photo of an astronaut riding a horse in space"
image = pipe(prompt, num_inference_steps=25).images[0]
image.save("astronaut.png")
image
```
## Inpainting
```py
import PIL
import requests
import torch
from io import BytesIO
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
def download_image(url):
response = requests.get(url)
return PIL.Image.open(BytesIO(response.content)).convert("RGB")
from diffusers.utils import load_image, make_image_grid
img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
init_image = download_image(img_url).resize((512, 512))
mask_image = download_image(mask_url).resize((512, 512))
init_image = load_image(img_url).resize((512, 512))
mask_image = load_image(mask_url).resize((512, 512))
repo_id = "stabilityai/stable-diffusion-2-inpainting"
pipe = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.float16, revision="fp16")
@@ -88,17 +79,14 @@ pipe = pipe.to("cuda")
prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
image = pipe(prompt=prompt, image=init_image, mask_image=mask_image, num_inference_steps=25).images[0]
image.save("yellow_cat.png")
make_image_grid([init_image, mask_image, image], rows=1, cols=3)
```
## Super-resolution
```py
import requests
from PIL import Image
from io import BytesIO
from diffusers import StableDiffusionUpscalePipeline
from diffusers.utils import load_image, make_image_grid
import torch
# load model and scheduler
@@ -108,22 +96,19 @@ pipeline = pipeline.to("cuda")
# let's download an image
url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale/low_res_cat.png"
response = requests.get(url)
low_res_img = Image.open(BytesIO(response.content)).convert("RGB")
low_res_img = load_image(url)
low_res_img = low_res_img.resize((128, 128))
prompt = "a white cat"
upscaled_image = pipeline(prompt=prompt, image=low_res_img).images[0]
upscaled_image.save("upsampled_cat.png")
make_image_grid([low_res_img.resize((512, 512)), upscaled_image.resize((512, 512))], rows=1, cols=2)
```
## Depth-to-image
```py
import torch
import requests
from PIL import Image
from diffusers import StableDiffusionDepth2ImgPipeline
from diffusers.utils import load_image, make_image_grid
pipe = StableDiffusionDepth2ImgPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-depth",
@@ -132,8 +117,9 @@ pipe = StableDiffusionDepth2ImgPipeline.from_pretrained(
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
init_image = Image.open(requests.get(url, stream=True).raw)
init_image = load_image(url)
prompt = "two tigers"
n_propmt = "bad, deformed, ugly, bad anotomy"
image = pipe(prompt=prompt, image=init_image, negative_prompt=n_propmt, strength=0.7).images[0]
```
negative_prompt = "bad, deformed, ugly, bad anotomy"
image = pipe(prompt=prompt, image=init_image, negative_prompt=negative_prompt, strength=0.7).images[0]
make_image_grid([init_image, image], rows=1, cols=2)
```

View File

@@ -20,7 +20,10 @@ The abstract from the paper is:
## Tips
- Most SDXL checkpoints work best with an image size of 1024x1024. Image sizes of 768x768 and 512x512 are also supported, but the results aren't as good. Anything below 512x512 is not recommended and likely won't for for default checkpoints like [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0).
- Using SDXL with a DPM++ scheduler for less than 50 steps is known to produce [visual artifacts](https://github.com/huggingface/diffusers/issues/5433) because the solver becomes numerically unstable. To fix this issue, take a look at this [PR](https://github.com/huggingface/diffusers/pull/5541) which recommends for ODE/SDE solvers:
- set `use_karras_sigmas=True` or `lu_lambdas=True` to improve image quality
- set `euler_at_final=True` if you're using a solver with uniform step sizes (DPM++2M or DPM++2M SDE)
- Most SDXL checkpoints work best with an image size of 1024x1024. Image sizes of 768x768 and 512x512 are also supported, but the results aren't as good. Anything below 512x512 is not recommended and likely won't be for default checkpoints like [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0).
- SDXL can pass a different prompt for each of the text encoders it was trained on. We can even pass different parts of the same prompt to the text encoders.
- SDXL output images can be improved by making use of a refiner model in an image-to-image setting.
- SDXL offers `negative_original_size`, `negative_crops_coords_top_left`, and `negative_target_size` to negatively condition the model on image resolution and cropping parameters.
@@ -29,7 +32,7 @@ The abstract from the paper is:
To learn how to use SDXL for various tasks, how to optimize performance, and other usage examples, take a look at the [Stable Diffusion XL](../../../using-diffusers/sdxl) guide.
Check out the [Stability AI](https://huggingface.co/stabilityai) Hub organization for the official base and refiner model checkpoints!
Check out the [Stability AI](https://huggingface.co/stabilityai) Hub organization for the official base and refiner model checkpoints!
</Tip>

View File

@@ -20,7 +20,7 @@ The abstract from the paper is:
<Tip>
Make sure to check out the Stable Diffusion [Tips](overview#tips) section to learn how to explore the tradeoff between scheduler speed and quality, and how to reuse pipeline components efficiently!
Make sure to check out the Stable Diffusion [Tips](overview#tips) section to learn how to explore the tradeoff between scheduler speed and quality, and how to reuse pipeline components efficiently!
If you're interested in using one of the official checkpoints for a task, explore the [CompVis](https://huggingface.co/CompVis), [Runway](https://huggingface.co/runwayml), and [Stability AI](https://huggingface.co/stabilityai) Hub organizations!
@@ -56,4 +56,4 @@ If you're interested in using one of the official checkpoints for a task, explor
## FlaxStableDiffusionPipelineOutput
[[autodoc]] pipelines.stable_diffusion.FlaxStableDiffusionPipelineOutput
[[autodoc]] pipelines.stable_diffusion.FlaxStableDiffusionPipelineOutput

View File

@@ -16,7 +16,7 @@ The Stable Diffusion upscaler diffusion model was created by the researchers and
<Tip>
Make sure to check out the Stable Diffusion [Tips](overview#tips) section to learn how to explore the tradeoff between scheduler speed and quality, and how to reuse pipeline components efficiently!
Make sure to check out the Stable Diffusion [Tips](overview#tips) section to learn how to explore the tradeoff between scheduler speed and quality, and how to reuse pipeline components efficiently!
If you're interested in using one of the official checkpoints for a task, explore the [CompVis](https://huggingface.co/CompVis), [Runway](https://huggingface.co/runwayml), and [Stability AI](https://huggingface.co/stabilityai) Hub organizations!
@@ -34,4 +34,4 @@ If you're interested in using one of the official checkpoints for a task, explor
## StableDiffusionPipelineOutput
[[autodoc]] pipelines.stable_diffusion.StableDiffusionPipelineOutput
[[autodoc]] pipelines.stable_diffusion.StableDiffusionPipelineOutput

View File

@@ -22,12 +22,10 @@ The abstract from the paper is:
## Tips
Stable unCLIP takes `noise_level` as input during inference which determines how much noise is added
to the image embeddings. A higher `noise_level` increases variation in the final un-noised images. By default,
we do not add any additional noise to the image embeddings (`noise_level = 0`).
Stable unCLIP takes `noise_level` as input during inference which determines how much noise is added to the image embeddings. A higher `noise_level` increases variation in the final un-noised images. By default, we do not add any additional noise to the image embeddings (`noise_level = 0`).
### Text-to-Image Generation
Stable unCLIP can be leveraged for text-to-image generation by pipelining it with the prior model of KakaoBrain's open source DALL-E 2 replication [Karlo](https://huggingface.co/kakaobrain/karlo-v1-alpha)
Stable unCLIP can be leveraged for text-to-image generation by pipelining it with the prior model of KakaoBrain's open source DALL-E 2 replication [Karlo](https://huggingface.co/kakaobrain/karlo-v1-alpha):
```python
import torch
@@ -60,12 +58,12 @@ pipe = StableUnCLIPPipeline.from_pretrained(
pipe = pipe.to("cuda")
wave_prompt = "dramatic wave, the Oceans roar, Strong wave spiral across the oceans as the waves unfurl into roaring crests; perfect wave form; perfect wave shape; dramatic wave shape; wave shape unbelievable; wave; wave shape spectacular"
images = pipe(prompt=wave_prompt).images
images[0].save("waves.png")
image = pipe(prompt=wave_prompt).images[0]
image
```
<Tip warning={true}>
For text-to-image we use `stabilityai/stable-diffusion-2-1-unclip-small` as it was trained on CLIP ViT-L/14 embedding, the same as the Karlo model prior. [stabilityai/stable-diffusion-2-1-unclip](https://hf.co/stabilityai/stable-diffusion-2-1-unclip) was trained on OpenCLIP ViT-H, so we don't recommend its use.
For text-to-image we use `stabilityai/stable-diffusion-2-1-unclip-small` as it was trained on CLIP ViT-L/14 embedding, the same as the Karlo model prior. [stabilityai/stable-diffusion-2-1-unclip](https://hf.co/stabilityai/stable-diffusion-2-1-unclip) was trained on OpenCLIP ViT-H, so we don't recommend its use.
</Tip>
@@ -90,12 +88,19 @@ images[0].save("variation_image.png")
Optionally, you can also pass a prompt to `pipe` such as:
```python
```python
prompt = "A fantasy landscape, trending on artstation"
images = pipe(init_image, prompt=prompt).images
images[0].save("variation_image_two.png")
image = pipe(init_image, prompt=prompt).images[0]
image
```
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
## StableUnCLIPPipeline
[[autodoc]] StableUnCLIPPipeline
@@ -108,7 +113,6 @@ images[0].save("variation_image_two.png")
- enable_xformers_memory_efficient_attention
- disable_xformers_memory_efficient_attention
## StableUnCLIPImg2ImgPipeline
[[autodoc]] StableUnCLIPImg2ImgPipeline
@@ -120,6 +124,6 @@ images[0].save("variation_image_two.png")
- disable_vae_slicing
- enable_xformers_memory_efficient_attention
- disable_xformers_memory_efficient_attention
## ImagePipelineOutput
[[autodoc]] pipelines.ImagePipelineOutput
[[autodoc]] pipelines.ImagePipelineOutput

View File

@@ -16,11 +16,11 @@ specific language governing permissions and limitations under the License.
The abstract from the paper:
*We argue that the theory and practice of diffusion-based generative models are currently unnecessarily convoluted and seek to remedy the situation by presenting a design space that clearly separates the concrete design choices. This lets us identify several changes to both the sampling and training processes, as well as preconditioning of the score networks. Together, our improvements yield new state-of-the-art FID of 1.79 for CIFAR-10 in a class-conditional setting and 1.97 in an unconditional setting, with much faster sampling (35 network evaluations per image) than prior designs. To further demonstrate their modular nature, we show that our design changes dramatically improve both the efficiency and quality obtainable with pre-trained score networks from previous work, including improving the FID of an existing ImageNet-64 model from 2.07 to near-SOTA 1.55.*
*We argue that the theory and practice of diffusion-based generative models are currently unnecessarily convoluted and seek to remedy the situation by presenting a design space that clearly separates the concrete design choices. This lets us identify several changes to both the sampling and training processes, as well as preconditioning of the score networks. Together, our improvements yield new state-of-the-art FID of 1.79 for CIFAR-10 in a class-conditional setting and 1.97 in an unconditional setting, with much faster sampling (35 network evaluations per image) than prior designs. To further demonstrate their modular nature, we show that our design changes dramatically improve both the efficiency and quality obtainable with pre-trained score networks from previous work, including improving the FID of a previously trained ImageNet-64 model from 2.07 to near-SOTA 1.55, and after re-training with our proposed improvements to a new SOTA of 1.36.*
<Tip>
Make sure to check out the Schedulers [guide](/using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](/using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
@@ -30,4 +30,4 @@ Make sure to check out the Schedulers [guide](/using-diffusers/schedulers) to le
- __call__
## ImagePipelineOutput
[[autodoc]] pipelines.ImagePipelineOutput
[[autodoc]] pipelines.ImagePipelineOutput

Some files were not shown because too many files have changed in this diff Show More