mirror of
https://github.com/huggingface/diffusers.git
synced 2025-12-07 04:54:47 +08:00
Compare commits
3 Commits
custom-cod
...
harmonize-
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
be139feda5 | ||
|
|
6b7716d358 | ||
|
|
c1b2289529 |
@@ -174,10 +174,4 @@ Set `private=True` in the [`~diffusers.utils.PushToHubMixin.push_to_hub`] functi
|
||||
controlnet.push_to_hub("my-controlnet-model-private", private=True)
|
||||
```
|
||||
|
||||
Private repositories are only visible to you, and other users won't be able to clone the repository and your repository won't appear in search results. Even if a user has the URL to your private repository, they'll receive a `404 - Sorry, we can't find the page you are looking for.`
|
||||
|
||||
To load a model, scheduler, or pipeline from private or gated repositories, set `use_auth_token=True`:
|
||||
|
||||
```py
|
||||
model = ControlNetModel.from_pretrained("your-namespace/my-controlnet-model-private", use_auth_token=True)
|
||||
```
|
||||
Private repositories are only visible to you, and other users won't be able to clone the repository and your repository won't appear in search results. Even if a user has the URL to your private repository, they'll receive a `404 - Sorry, we can't find the page you are looking for`. You must be [logged in](https://huggingface.co/docs/huggingface_hub/quick-start#login) to load a model from a private repository.
|
||||
@@ -512,7 +512,6 @@ device = torch.device('cpu' if not has_cuda else 'cuda')
|
||||
pipe = DiffusionPipeline.from_pretrained(
|
||||
"CompVis/stable-diffusion-v1-4",
|
||||
safety_checker=None,
|
||||
use_auth_token=True,
|
||||
custom_pipeline="imagic_stable_diffusion",
|
||||
scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False)
|
||||
).to(device)
|
||||
@@ -552,7 +551,6 @@ device = th.device('cpu' if not has_cuda else 'cuda')
|
||||
|
||||
pipe = DiffusionPipeline.from_pretrained(
|
||||
"CompVis/stable-diffusion-v1-4",
|
||||
use_auth_token=True,
|
||||
custom_pipeline="seed_resize_stable_diffusion"
|
||||
).to(device)
|
||||
|
||||
@@ -588,7 +586,6 @@ generator = th.Generator("cuda").manual_seed(0)
|
||||
|
||||
pipe = DiffusionPipeline.from_pretrained(
|
||||
"CompVis/stable-diffusion-v1-4",
|
||||
use_auth_token=True,
|
||||
custom_pipeline="/home/mark/open_source/diffusers/examples/community/"
|
||||
).to(device)
|
||||
|
||||
@@ -607,7 +604,6 @@ image.save('./seed_resize/seed_resize_{w}_{h}_image.png'.format(w=width, h=heigh
|
||||
|
||||
pipe_compare = DiffusionPipeline.from_pretrained(
|
||||
"CompVis/stable-diffusion-v1-4",
|
||||
use_auth_token=True,
|
||||
custom_pipeline="/home/mark/open_source/diffusers/examples/community/"
|
||||
).to(device)
|
||||
|
||||
|
||||
@@ -5,10 +5,11 @@ from typing import Dict, List, Union
|
||||
import safetensors.torch
|
||||
import torch
|
||||
from huggingface_hub import snapshot_download
|
||||
from huggingface_hub.utils import validate_hf_hub_args
|
||||
|
||||
from diffusers import DiffusionPipeline, __version__
|
||||
from diffusers.schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
|
||||
from diffusers.utils import CONFIG_NAME, DIFFUSERS_CACHE, ONNX_WEIGHTS_NAME, WEIGHTS_NAME
|
||||
from diffusers.utils import CONFIG_NAME, ONNX_WEIGHTS_NAME, WEIGHTS_NAME
|
||||
|
||||
|
||||
class CheckpointMergerPipeline(DiffusionPipeline):
|
||||
@@ -57,6 +58,7 @@ class CheckpointMergerPipeline(DiffusionPipeline):
|
||||
return (temp_dict, meta_keys)
|
||||
|
||||
@torch.no_grad()
|
||||
@validate_hf_hub_args
|
||||
def merge(self, pretrained_model_name_or_path_list: List[Union[str, os.PathLike]], **kwargs):
|
||||
"""
|
||||
Returns a new pipeline object of the class 'DiffusionPipeline' with the merged checkpoints(weights) of the models passed
|
||||
@@ -69,7 +71,7 @@ class CheckpointMergerPipeline(DiffusionPipeline):
|
||||
**kwargs:
|
||||
Supports all the default DiffusionPipeline.get_config_dict kwargs viz..
|
||||
|
||||
cache_dir, resume_download, force_download, proxies, local_files_only, use_auth_token, revision, torch_dtype, device_map.
|
||||
cache_dir, resume_download, force_download, proxies, local_files_only, token, revision, torch_dtype, device_map.
|
||||
|
||||
alpha - The interpolation parameter. Ranges from 0 to 1. It affects the ratio in which the checkpoints are merged. A 0.8 alpha
|
||||
would mean that the first model checkpoints would affect the final result far less than an alpha of 0.2
|
||||
@@ -81,12 +83,12 @@ class CheckpointMergerPipeline(DiffusionPipeline):
|
||||
|
||||
"""
|
||||
# Default kwargs from DiffusionPipeline
|
||||
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
|
||||
cache_dir = kwargs.pop("cache_dir", None)
|
||||
resume_download = kwargs.pop("resume_download", False)
|
||||
force_download = kwargs.pop("force_download", False)
|
||||
proxies = kwargs.pop("proxies", None)
|
||||
local_files_only = kwargs.pop("local_files_only", False)
|
||||
use_auth_token = kwargs.pop("use_auth_token", None)
|
||||
token = kwargs.pop("token", None)
|
||||
revision = kwargs.pop("revision", None)
|
||||
torch_dtype = kwargs.pop("torch_dtype", None)
|
||||
device_map = kwargs.pop("device_map", None)
|
||||
@@ -123,7 +125,7 @@ class CheckpointMergerPipeline(DiffusionPipeline):
|
||||
force_download=force_download,
|
||||
proxies=proxies,
|
||||
local_files_only=local_files_only,
|
||||
use_auth_token=use_auth_token,
|
||||
token=token,
|
||||
revision=revision,
|
||||
)
|
||||
config_dicts.append(config_dict)
|
||||
@@ -159,7 +161,7 @@ class CheckpointMergerPipeline(DiffusionPipeline):
|
||||
resume_download=resume_download,
|
||||
proxies=proxies,
|
||||
local_files_only=local_files_only,
|
||||
use_auth_token=use_auth_token,
|
||||
token=token,
|
||||
revision=revision,
|
||||
allow_patterns=allow_patterns,
|
||||
user_agent=user_agent,
|
||||
|
||||
@@ -28,6 +28,7 @@ import PIL.Image
|
||||
import tensorrt as trt
|
||||
import torch
|
||||
from huggingface_hub import snapshot_download
|
||||
from huggingface_hub.utils import validate_hf_hub_args
|
||||
from onnx import shape_inference
|
||||
from polygraphy import cuda
|
||||
from polygraphy.backend.common import bytes_from_path
|
||||
@@ -50,7 +51,7 @@ from diffusers.pipelines.stable_diffusion import (
|
||||
StableDiffusionSafetyChecker,
|
||||
)
|
||||
from diffusers.schedulers import DDIMScheduler
|
||||
from diffusers.utils import DIFFUSERS_CACHE, logging
|
||||
from diffusers.utils import logging
|
||||
|
||||
|
||||
"""
|
||||
@@ -778,12 +779,13 @@ class TensorRTStableDiffusionImg2ImgPipeline(StableDiffusionImg2ImgPipeline):
|
||||
self.models["vae_encoder"] = make_VAEEncoder(self.vae, **models_args)
|
||||
|
||||
@classmethod
|
||||
@validate_hf_hub_args
|
||||
def set_cached_folder(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
|
||||
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
|
||||
cache_dir = kwargs.pop("cache_dir", None)
|
||||
resume_download = kwargs.pop("resume_download", False)
|
||||
proxies = kwargs.pop("proxies", None)
|
||||
local_files_only = kwargs.pop("local_files_only", False)
|
||||
use_auth_token = kwargs.pop("use_auth_token", None)
|
||||
token = kwargs.pop("token", None)
|
||||
revision = kwargs.pop("revision", None)
|
||||
|
||||
cls.cached_folder = (
|
||||
@@ -795,7 +797,7 @@ class TensorRTStableDiffusionImg2ImgPipeline(StableDiffusionImg2ImgPipeline):
|
||||
resume_download=resume_download,
|
||||
proxies=proxies,
|
||||
local_files_only=local_files_only,
|
||||
use_auth_token=use_auth_token,
|
||||
token=token,
|
||||
revision=revision,
|
||||
)
|
||||
)
|
||||
|
||||
@@ -28,6 +28,7 @@ import PIL.Image
|
||||
import tensorrt as trt
|
||||
import torch
|
||||
from huggingface_hub import snapshot_download
|
||||
from huggingface_hub.utils import validate_hf_hub_args
|
||||
from onnx import shape_inference
|
||||
from polygraphy import cuda
|
||||
from polygraphy.backend.common import bytes_from_path
|
||||
@@ -51,7 +52,7 @@ from diffusers.pipelines.stable_diffusion import (
|
||||
)
|
||||
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint import prepare_mask_and_masked_image
|
||||
from diffusers.schedulers import DDIMScheduler
|
||||
from diffusers.utils import DIFFUSERS_CACHE, logging
|
||||
from diffusers.utils import logging
|
||||
|
||||
|
||||
"""
|
||||
@@ -779,12 +780,13 @@ class TensorRTStableDiffusionInpaintPipeline(StableDiffusionInpaintPipeline):
|
||||
self.models["vae_encoder"] = make_VAEEncoder(self.vae, **models_args)
|
||||
|
||||
@classmethod
|
||||
@validate_hf_hub_args
|
||||
def set_cached_folder(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
|
||||
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
|
||||
cache_dir = kwargs.pop("cache_dir", None)
|
||||
resume_download = kwargs.pop("resume_download", False)
|
||||
proxies = kwargs.pop("proxies", None)
|
||||
local_files_only = kwargs.pop("local_files_only", False)
|
||||
use_auth_token = kwargs.pop("use_auth_token", None)
|
||||
token = kwargs.pop("token", None)
|
||||
revision = kwargs.pop("revision", None)
|
||||
|
||||
cls.cached_folder = (
|
||||
@@ -796,7 +798,7 @@ class TensorRTStableDiffusionInpaintPipeline(StableDiffusionInpaintPipeline):
|
||||
resume_download=resume_download,
|
||||
proxies=proxies,
|
||||
local_files_only=local_files_only,
|
||||
use_auth_token=use_auth_token,
|
||||
token=token,
|
||||
revision=revision,
|
||||
)
|
||||
)
|
||||
|
||||
@@ -27,6 +27,7 @@ import onnx_graphsurgeon as gs
|
||||
import tensorrt as trt
|
||||
import torch
|
||||
from huggingface_hub import snapshot_download
|
||||
from huggingface_hub.utils import validate_hf_hub_args
|
||||
from onnx import shape_inference
|
||||
from polygraphy import cuda
|
||||
from polygraphy.backend.common import bytes_from_path
|
||||
@@ -49,7 +50,7 @@ from diffusers.pipelines.stable_diffusion import (
|
||||
StableDiffusionSafetyChecker,
|
||||
)
|
||||
from diffusers.schedulers import DDIMScheduler
|
||||
from diffusers.utils import DIFFUSERS_CACHE, logging
|
||||
from diffusers.utils import logging
|
||||
|
||||
|
||||
"""
|
||||
@@ -691,12 +692,13 @@ class TensorRTStableDiffusionPipeline(StableDiffusionPipeline):
|
||||
self.models["vae"] = make_VAE(self.vae, **models_args)
|
||||
|
||||
@classmethod
|
||||
@validate_hf_hub_args
|
||||
def set_cached_folder(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
|
||||
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
|
||||
cache_dir = kwargs.pop("cache_dir", None)
|
||||
resume_download = kwargs.pop("resume_download", False)
|
||||
proxies = kwargs.pop("proxies", None)
|
||||
local_files_only = kwargs.pop("local_files_only", False)
|
||||
use_auth_token = kwargs.pop("use_auth_token", None)
|
||||
token = kwargs.pop("token", None)
|
||||
revision = kwargs.pop("revision", None)
|
||||
|
||||
cls.cached_folder = (
|
||||
@@ -708,7 +710,7 @@ class TensorRTStableDiffusionPipeline(StableDiffusionPipeline):
|
||||
resume_download=resume_download,
|
||||
proxies=proxies,
|
||||
local_files_only=local_files_only,
|
||||
use_auth_token=use_auth_token,
|
||||
token=token,
|
||||
revision=revision,
|
||||
)
|
||||
)
|
||||
|
||||
@@ -423,7 +423,7 @@ def import_model_class_from_model_name_or_path(
|
||||
pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder"
|
||||
):
|
||||
text_encoder_config = PretrainedConfig.from_pretrained(
|
||||
pretrained_model_name_or_path, subfolder=subfolder, revision=revision, use_auth_token=True
|
||||
pretrained_model_name_or_path, subfolder=subfolder, revision=revision
|
||||
)
|
||||
model_class = text_encoder_config.architectures[0]
|
||||
|
||||
|
||||
@@ -392,7 +392,7 @@ def import_model_class_from_model_name_or_path(
|
||||
pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder"
|
||||
):
|
||||
text_encoder_config = PretrainedConfig.from_pretrained(
|
||||
pretrained_model_name_or_path, subfolder=subfolder, revision=revision, use_auth_token=True
|
||||
pretrained_model_name_or_path, subfolder=subfolder, revision=revision
|
||||
)
|
||||
model_class = text_encoder_config.architectures[0]
|
||||
|
||||
|
||||
@@ -400,7 +400,7 @@ def import_model_class_from_model_name_or_path(
|
||||
pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder"
|
||||
):
|
||||
text_encoder_config = PretrainedConfig.from_pretrained(
|
||||
pretrained_model_name_or_path, subfolder=subfolder, revision=revision, use_auth_token=True
|
||||
pretrained_model_name_or_path, subfolder=subfolder, revision=revision
|
||||
)
|
||||
model_class = text_encoder_config.architectures[0]
|
||||
|
||||
|
||||
@@ -414,7 +414,7 @@ def import_model_class_from_model_name_or_path(
|
||||
pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder"
|
||||
):
|
||||
text_encoder_config = PretrainedConfig.from_pretrained(
|
||||
pretrained_model_name_or_path, subfolder=subfolder, revision=revision, use_auth_token=True
|
||||
pretrained_model_name_or_path, subfolder=subfolder, revision=revision
|
||||
)
|
||||
model_class = text_encoder_config.architectures[0]
|
||||
|
||||
|
||||
@@ -420,7 +420,7 @@ def import_model_class_from_model_name_or_path(
|
||||
pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder"
|
||||
):
|
||||
text_encoder_config = PretrainedConfig.from_pretrained(
|
||||
pretrained_model_name_or_path, subfolder=subfolder, revision=revision, use_auth_token=True
|
||||
pretrained_model_name_or_path, subfolder=subfolder, revision=revision
|
||||
)
|
||||
model_class = text_encoder_config.architectures[0]
|
||||
|
||||
@@ -975,7 +975,7 @@ def main(args):
|
||||
revision=args.revision,
|
||||
)
|
||||
unet = UNet2DConditionModel.from_pretrained(
|
||||
args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, use_auth_token=True
|
||||
args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision
|
||||
)
|
||||
|
||||
if args.controlnet_model_name_or_path:
|
||||
|
||||
@@ -19,6 +19,7 @@ Usage example:
|
||||
|
||||
import glob
|
||||
import json
|
||||
import warnings
|
||||
from argparse import ArgumentParser, Namespace
|
||||
from importlib import import_module
|
||||
|
||||
@@ -32,12 +33,12 @@ from . import BaseDiffusersCLICommand
|
||||
|
||||
|
||||
def conversion_command_factory(args: Namespace):
|
||||
return FP16SafetensorsCommand(
|
||||
args.ckpt_id,
|
||||
args.fp16,
|
||||
args.use_safetensors,
|
||||
args.use_auth_token,
|
||||
)
|
||||
if args.use_auth_token:
|
||||
warnings.warn(
|
||||
"The `--use_auth_token` flag is deprecated and will be removed in a future version. Authentication is now"
|
||||
" handled automatically if user is logged in."
|
||||
)
|
||||
return FP16SafetensorsCommand(args.ckpt_id, args.fp16, args.use_safetensors)
|
||||
|
||||
|
||||
class FP16SafetensorsCommand(BaseDiffusersCLICommand):
|
||||
@@ -62,7 +63,7 @@ class FP16SafetensorsCommand(BaseDiffusersCLICommand):
|
||||
)
|
||||
conversion_parser.set_defaults(func=conversion_command_factory)
|
||||
|
||||
def __init__(self, ckpt_id: str, fp16: bool, use_safetensors: bool, use_auth_token: bool):
|
||||
def __init__(self, ckpt_id: str, fp16: bool, use_safetensors: bool):
|
||||
self.logger = logging.get_logger("diffusers-cli/fp16_safetensors")
|
||||
self.ckpt_id = ckpt_id
|
||||
self.local_ckpt_dir = f"/tmp/{ckpt_id}"
|
||||
@@ -75,8 +76,6 @@ class FP16SafetensorsCommand(BaseDiffusersCLICommand):
|
||||
"When `use_safetensors` and `fp16` both are False, then this command is of no use."
|
||||
)
|
||||
|
||||
self.use_auth_token = use_auth_token
|
||||
|
||||
def run(self):
|
||||
if version.parse(huggingface_hub.__version__) < version.parse("0.9.0"):
|
||||
raise ImportError(
|
||||
@@ -87,7 +86,7 @@ class FP16SafetensorsCommand(BaseDiffusersCLICommand):
|
||||
from huggingface_hub import create_commit
|
||||
from huggingface_hub._commit_api import CommitOperationAdd
|
||||
|
||||
model_index = hf_hub_download(repo_id=self.ckpt_id, filename="model_index.json", token=self.use_auth_token)
|
||||
model_index = hf_hub_download(repo_id=self.ckpt_id, filename="model_index.json")
|
||||
with open(model_index, "r") as f:
|
||||
pipeline_class_name = json.load(f)["_class_name"]
|
||||
pipeline_class = getattr(import_module("diffusers"), pipeline_class_name)
|
||||
@@ -96,7 +95,7 @@ class FP16SafetensorsCommand(BaseDiffusersCLICommand):
|
||||
# Load the appropriate pipeline. We could have use `DiffusionPipeline`
|
||||
# here, but just to avoid any rough edge cases.
|
||||
pipeline = pipeline_class.from_pretrained(
|
||||
self.ckpt_id, torch_dtype=torch.float16 if self.fp16 else torch.float32, use_auth_token=self.use_auth_token
|
||||
self.ckpt_id, torch_dtype=torch.float16 if self.fp16 else torch.float32
|
||||
)
|
||||
pipeline.save_pretrained(
|
||||
self.local_ckpt_dir,
|
||||
|
||||
@@ -27,12 +27,16 @@ from typing import Any, Dict, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
from huggingface_hub import create_repo, hf_hub_download
|
||||
from huggingface_hub.utils import EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError
|
||||
from huggingface_hub.utils import (
|
||||
EntryNotFoundError,
|
||||
RepositoryNotFoundError,
|
||||
RevisionNotFoundError,
|
||||
validate_hf_hub_args,
|
||||
)
|
||||
from requests import HTTPError
|
||||
|
||||
from . import __version__
|
||||
from .utils import (
|
||||
DIFFUSERS_CACHE,
|
||||
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
|
||||
DummyObject,
|
||||
deprecate,
|
||||
@@ -275,6 +279,7 @@ class ConfigMixin:
|
||||
return cls.load_config(*args, **kwargs)
|
||||
|
||||
@classmethod
|
||||
@validate_hf_hub_args
|
||||
def load_config(
|
||||
cls,
|
||||
pretrained_model_name_or_path: Union[str, os.PathLike],
|
||||
@@ -311,7 +316,7 @@ class ConfigMixin:
|
||||
local_files_only (`bool`, *optional*, defaults to `False`):
|
||||
Whether to only load local model weights and configuration files or not. If set to `True`, the model
|
||||
won't be downloaded from the Hub.
|
||||
use_auth_token (`str` or *bool*, *optional*):
|
||||
token (`str` or *bool*, *optional*):
|
||||
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
|
||||
`diffusers-cli login` (stored in `~/.huggingface`) is used.
|
||||
revision (`str`, *optional*, defaults to `"main"`):
|
||||
@@ -329,11 +334,11 @@ class ConfigMixin:
|
||||
A dictionary of all the parameters stored in a JSON configuration file.
|
||||
|
||||
"""
|
||||
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
|
||||
cache_dir = kwargs.pop("cache_dir", None)
|
||||
force_download = kwargs.pop("force_download", False)
|
||||
resume_download = kwargs.pop("resume_download", False)
|
||||
proxies = kwargs.pop("proxies", None)
|
||||
use_auth_token = kwargs.pop("use_auth_token", None)
|
||||
token = kwargs.pop("token", None)
|
||||
local_files_only = kwargs.pop("local_files_only", False)
|
||||
revision = kwargs.pop("revision", None)
|
||||
_ = kwargs.pop("mirror", None)
|
||||
@@ -376,7 +381,7 @@ class ConfigMixin:
|
||||
proxies=proxies,
|
||||
resume_download=resume_download,
|
||||
local_files_only=local_files_only,
|
||||
use_auth_token=use_auth_token,
|
||||
token=token,
|
||||
user_agent=user_agent,
|
||||
subfolder=subfolder,
|
||||
revision=revision,
|
||||
@@ -385,8 +390,7 @@ class ConfigMixin:
|
||||
raise EnvironmentError(
|
||||
f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier"
|
||||
" listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a"
|
||||
" token having permission to this repo with `use_auth_token` or log in with `huggingface-cli"
|
||||
" login`."
|
||||
" token having permission to this repo with `token` or log in with `huggingface-cli login`."
|
||||
)
|
||||
except RevisionNotFoundError:
|
||||
raise EnvironmentError(
|
||||
|
||||
@@ -15,11 +15,10 @@ import os
|
||||
from typing import Dict, Union
|
||||
|
||||
import torch
|
||||
from huggingface_hub.utils import validate_hf_hub_args
|
||||
from safetensors import safe_open
|
||||
|
||||
from ..utils import (
|
||||
DIFFUSERS_CACHE,
|
||||
HF_HUB_OFFLINE,
|
||||
_get_model_file,
|
||||
is_transformers_available,
|
||||
logging,
|
||||
@@ -43,6 +42,7 @@ logger = logging.get_logger(__name__)
|
||||
class IPAdapterMixin:
|
||||
"""Mixin for handling IP Adapters."""
|
||||
|
||||
@validate_hf_hub_args
|
||||
def load_ip_adapter(
|
||||
self,
|
||||
pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
|
||||
@@ -77,7 +77,7 @@ class IPAdapterMixin:
|
||||
local_files_only (`bool`, *optional*, defaults to `False`):
|
||||
Whether to only load local model weights and configuration files or not. If set to `True`, the model
|
||||
won't be downloaded from the Hub.
|
||||
use_auth_token (`str` or *bool*, *optional*):
|
||||
token (`str` or *bool*, *optional*):
|
||||
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
|
||||
`diffusers-cli login` (stored in `~/.huggingface`) is used.
|
||||
revision (`str`, *optional*, defaults to `"main"`):
|
||||
@@ -88,12 +88,12 @@ class IPAdapterMixin:
|
||||
"""
|
||||
|
||||
# Load the main state dict first.
|
||||
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
|
||||
cache_dir = kwargs.pop("cache_dir", None)
|
||||
force_download = kwargs.pop("force_download", False)
|
||||
resume_download = kwargs.pop("resume_download", False)
|
||||
proxies = kwargs.pop("proxies", None)
|
||||
local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
|
||||
use_auth_token = kwargs.pop("use_auth_token", None)
|
||||
local_files_only = kwargs.pop("local_files_only", None)
|
||||
token = kwargs.pop("token", None)
|
||||
revision = kwargs.pop("revision", None)
|
||||
|
||||
user_agent = {
|
||||
@@ -110,7 +110,7 @@ class IPAdapterMixin:
|
||||
resume_download=resume_download,
|
||||
proxies=proxies,
|
||||
local_files_only=local_files_only,
|
||||
use_auth_token=use_auth_token,
|
||||
token=token,
|
||||
revision=revision,
|
||||
subfolder=subfolder,
|
||||
user_agent=user_agent,
|
||||
|
||||
@@ -18,14 +18,13 @@ from typing import Callable, Dict, List, Optional, Union
|
||||
import safetensors
|
||||
import torch
|
||||
from huggingface_hub import model_info
|
||||
from huggingface_hub.utils import validate_hf_hub_args
|
||||
from packaging import version
|
||||
from torch import nn
|
||||
|
||||
from .. import __version__
|
||||
from ..models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT, load_model_dict_into_meta
|
||||
from ..utils import (
|
||||
DIFFUSERS_CACHE,
|
||||
HF_HUB_OFFLINE,
|
||||
USE_PEFT_BACKEND,
|
||||
_get_model_file,
|
||||
convert_state_dict_to_diffusers,
|
||||
@@ -132,6 +131,7 @@ class LoraLoaderMixin:
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@validate_hf_hub_args
|
||||
def lora_state_dict(
|
||||
cls,
|
||||
pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
|
||||
@@ -174,7 +174,7 @@ class LoraLoaderMixin:
|
||||
local_files_only (`bool`, *optional*, defaults to `False`):
|
||||
Whether to only load local model weights and configuration files or not. If set to `True`, the model
|
||||
won't be downloaded from the Hub.
|
||||
use_auth_token (`str` or *bool*, *optional*):
|
||||
token (`str` or *bool*, *optional*):
|
||||
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
|
||||
`diffusers-cli login` (stored in `~/.huggingface`) is used.
|
||||
revision (`str`, *optional*, defaults to `"main"`):
|
||||
@@ -195,12 +195,12 @@ class LoraLoaderMixin:
|
||||
"""
|
||||
# Load the main state dict first which has the LoRA layers for either of
|
||||
# UNet and text encoder or both.
|
||||
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
|
||||
cache_dir = kwargs.pop("cache_dir", None)
|
||||
force_download = kwargs.pop("force_download", False)
|
||||
resume_download = kwargs.pop("resume_download", False)
|
||||
proxies = kwargs.pop("proxies", None)
|
||||
local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
|
||||
use_auth_token = kwargs.pop("use_auth_token", None)
|
||||
local_files_only = kwargs.pop("local_files_only", None)
|
||||
token = kwargs.pop("token", None)
|
||||
revision = kwargs.pop("revision", None)
|
||||
subfolder = kwargs.pop("subfolder", None)
|
||||
weight_name = kwargs.pop("weight_name", None)
|
||||
@@ -239,7 +239,7 @@ class LoraLoaderMixin:
|
||||
resume_download=resume_download,
|
||||
proxies=proxies,
|
||||
local_files_only=local_files_only,
|
||||
use_auth_token=use_auth_token,
|
||||
token=token,
|
||||
revision=revision,
|
||||
subfolder=subfolder,
|
||||
user_agent=user_agent,
|
||||
@@ -265,7 +265,7 @@ class LoraLoaderMixin:
|
||||
resume_download=resume_download,
|
||||
proxies=proxies,
|
||||
local_files_only=local_files_only,
|
||||
use_auth_token=use_auth_token,
|
||||
token=token,
|
||||
revision=revision,
|
||||
subfolder=subfolder,
|
||||
user_agent=user_agent,
|
||||
|
||||
@@ -18,10 +18,9 @@ from pathlib import Path
|
||||
import requests
|
||||
import torch
|
||||
from huggingface_hub import hf_hub_download
|
||||
from huggingface_hub.utils import validate_hf_hub_args
|
||||
|
||||
from ..utils import (
|
||||
DIFFUSERS_CACHE,
|
||||
HF_HUB_OFFLINE,
|
||||
deprecate,
|
||||
is_accelerate_available,
|
||||
is_omegaconf_available,
|
||||
@@ -52,6 +51,7 @@ class FromSingleFileMixin:
|
||||
return cls.from_single_file(*args, **kwargs)
|
||||
|
||||
@classmethod
|
||||
@validate_hf_hub_args
|
||||
def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
|
||||
r"""
|
||||
Instantiate a [`DiffusionPipeline`] from pretrained pipeline weights saved in the `.ckpt` or `.safetensors`
|
||||
@@ -81,7 +81,7 @@ class FromSingleFileMixin:
|
||||
local_files_only (`bool`, *optional*, defaults to `False`):
|
||||
Whether to only load local model weights and configuration files or not. If set to `True`, the model
|
||||
won't be downloaded from the Hub.
|
||||
use_auth_token (`str` or *bool*, *optional*):
|
||||
token (`str` or *bool*, *optional*):
|
||||
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
|
||||
`diffusers-cli login` (stored in `~/.huggingface`) is used.
|
||||
revision (`str`, *optional*, defaults to `"main"`):
|
||||
@@ -154,12 +154,12 @@ class FromSingleFileMixin:
|
||||
|
||||
original_config_file = kwargs.pop("original_config_file", None)
|
||||
config_files = kwargs.pop("config_files", None)
|
||||
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
|
||||
cache_dir = kwargs.pop("cache_dir", None)
|
||||
resume_download = kwargs.pop("resume_download", False)
|
||||
force_download = kwargs.pop("force_download", False)
|
||||
proxies = kwargs.pop("proxies", None)
|
||||
local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
|
||||
use_auth_token = kwargs.pop("use_auth_token", None)
|
||||
local_files_only = kwargs.pop("local_files_only", None)
|
||||
token = kwargs.pop("token", None)
|
||||
revision = kwargs.pop("revision", None)
|
||||
extract_ema = kwargs.pop("extract_ema", False)
|
||||
image_size = kwargs.pop("image_size", None)
|
||||
@@ -253,7 +253,7 @@ class FromSingleFileMixin:
|
||||
resume_download=resume_download,
|
||||
proxies=proxies,
|
||||
local_files_only=local_files_only,
|
||||
use_auth_token=use_auth_token,
|
||||
token=token,
|
||||
revision=revision,
|
||||
force_download=force_download,
|
||||
)
|
||||
@@ -293,6 +293,7 @@ class FromOriginalVAEMixin:
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
@validate_hf_hub_args
|
||||
def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
|
||||
r"""
|
||||
Instantiate a [`AutoencoderKL`] from pretrained ControlNet weights saved in the original `.ckpt` or
|
||||
@@ -322,7 +323,7 @@ class FromOriginalVAEMixin:
|
||||
local_files_only (`bool`, *optional*, defaults to `False`):
|
||||
Whether to only load local model weights and configuration files or not. If set to True, the model
|
||||
won't be downloaded from the Hub.
|
||||
use_auth_token (`str` or *bool*, *optional*):
|
||||
token (`str` or *bool*, *optional*):
|
||||
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
|
||||
`diffusers-cli login` (stored in `~/.huggingface`) is used.
|
||||
revision (`str`, *optional*, defaults to `"main"`):
|
||||
@@ -379,12 +380,12 @@ class FromOriginalVAEMixin:
|
||||
)
|
||||
|
||||
config_file = kwargs.pop("config_file", None)
|
||||
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
|
||||
cache_dir = kwargs.pop("cache_dir", None)
|
||||
resume_download = kwargs.pop("resume_download", False)
|
||||
force_download = kwargs.pop("force_download", False)
|
||||
proxies = kwargs.pop("proxies", None)
|
||||
local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
|
||||
use_auth_token = kwargs.pop("use_auth_token", None)
|
||||
local_files_only = kwargs.pop("local_files_only", None)
|
||||
token = kwargs.pop("token", None)
|
||||
revision = kwargs.pop("revision", None)
|
||||
image_size = kwargs.pop("image_size", None)
|
||||
scaling_factor = kwargs.pop("scaling_factor", None)
|
||||
@@ -425,7 +426,7 @@ class FromOriginalVAEMixin:
|
||||
resume_download=resume_download,
|
||||
proxies=proxies,
|
||||
local_files_only=local_files_only,
|
||||
use_auth_token=use_auth_token,
|
||||
token=token,
|
||||
revision=revision,
|
||||
force_download=force_download,
|
||||
)
|
||||
@@ -490,6 +491,7 @@ class FromOriginalControlnetMixin:
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
@validate_hf_hub_args
|
||||
def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
|
||||
r"""
|
||||
Instantiate a [`ControlNetModel`] from pretrained ControlNet weights saved in the original `.ckpt` or
|
||||
@@ -519,7 +521,7 @@ class FromOriginalControlnetMixin:
|
||||
local_files_only (`bool`, *optional*, defaults to `False`):
|
||||
Whether to only load local model weights and configuration files or not. If set to True, the model
|
||||
won't be downloaded from the Hub.
|
||||
use_auth_token (`str` or *bool*, *optional*):
|
||||
token (`str` or *bool*, *optional*):
|
||||
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
|
||||
`diffusers-cli login` (stored in `~/.huggingface`) is used.
|
||||
revision (`str`, *optional*, defaults to `"main"`):
|
||||
@@ -555,12 +557,12 @@ class FromOriginalControlnetMixin:
|
||||
from ..pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt
|
||||
|
||||
config_file = kwargs.pop("config_file", None)
|
||||
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
|
||||
cache_dir = kwargs.pop("cache_dir", None)
|
||||
resume_download = kwargs.pop("resume_download", False)
|
||||
force_download = kwargs.pop("force_download", False)
|
||||
proxies = kwargs.pop("proxies", None)
|
||||
local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
|
||||
use_auth_token = kwargs.pop("use_auth_token", None)
|
||||
local_files_only = kwargs.pop("local_files_only", None)
|
||||
token = kwargs.pop("token", None)
|
||||
num_in_channels = kwargs.pop("num_in_channels", None)
|
||||
use_linear_projection = kwargs.pop("use_linear_projection", None)
|
||||
revision = kwargs.pop("revision", None)
|
||||
@@ -603,7 +605,7 @@ class FromOriginalControlnetMixin:
|
||||
resume_download=resume_download,
|
||||
proxies=proxies,
|
||||
local_files_only=local_files_only,
|
||||
use_auth_token=use_auth_token,
|
||||
token=token,
|
||||
revision=revision,
|
||||
force_download=force_download,
|
||||
)
|
||||
|
||||
@@ -15,16 +15,10 @@ from typing import Dict, List, Optional, Union
|
||||
|
||||
import safetensors
|
||||
import torch
|
||||
from huggingface_hub.utils import validate_hf_hub_args
|
||||
from torch import nn
|
||||
|
||||
from ..utils import (
|
||||
DIFFUSERS_CACHE,
|
||||
HF_HUB_OFFLINE,
|
||||
_get_model_file,
|
||||
is_accelerate_available,
|
||||
is_transformers_available,
|
||||
logging,
|
||||
)
|
||||
from ..utils import _get_model_file, is_accelerate_available, is_transformers_available, logging
|
||||
|
||||
|
||||
if is_transformers_available():
|
||||
@@ -39,13 +33,14 @@ TEXT_INVERSION_NAME = "learned_embeds.bin"
|
||||
TEXT_INVERSION_NAME_SAFE = "learned_embeds.safetensors"
|
||||
|
||||
|
||||
@validate_hf_hub_args
|
||||
def load_textual_inversion_state_dicts(pretrained_model_name_or_paths, **kwargs):
|
||||
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
|
||||
cache_dir = kwargs.pop("cache_dir", None)
|
||||
force_download = kwargs.pop("force_download", False)
|
||||
resume_download = kwargs.pop("resume_download", False)
|
||||
proxies = kwargs.pop("proxies", None)
|
||||
local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
|
||||
use_auth_token = kwargs.pop("use_auth_token", None)
|
||||
local_files_only = kwargs.pop("local_files_only", None)
|
||||
token = kwargs.pop("token", None)
|
||||
revision = kwargs.pop("revision", None)
|
||||
subfolder = kwargs.pop("subfolder", None)
|
||||
weight_name = kwargs.pop("weight_name", None)
|
||||
@@ -79,7 +74,7 @@ def load_textual_inversion_state_dicts(pretrained_model_name_or_paths, **kwargs)
|
||||
resume_download=resume_download,
|
||||
proxies=proxies,
|
||||
local_files_only=local_files_only,
|
||||
use_auth_token=use_auth_token,
|
||||
token=token,
|
||||
revision=revision,
|
||||
subfolder=subfolder,
|
||||
user_agent=user_agent,
|
||||
@@ -100,7 +95,7 @@ def load_textual_inversion_state_dicts(pretrained_model_name_or_paths, **kwargs)
|
||||
resume_download=resume_download,
|
||||
proxies=proxies,
|
||||
local_files_only=local_files_only,
|
||||
use_auth_token=use_auth_token,
|
||||
token=token,
|
||||
revision=revision,
|
||||
subfolder=subfolder,
|
||||
user_agent=user_agent,
|
||||
@@ -267,6 +262,7 @@ class TextualInversionLoaderMixin:
|
||||
|
||||
return all_tokens, all_embeddings
|
||||
|
||||
@validate_hf_hub_args
|
||||
def load_textual_inversion(
|
||||
self,
|
||||
pretrained_model_name_or_path: Union[str, List[str], Dict[str, torch.Tensor], List[Dict[str, torch.Tensor]]],
|
||||
@@ -320,7 +316,7 @@ class TextualInversionLoaderMixin:
|
||||
local_files_only (`bool`, *optional*, defaults to `False`):
|
||||
Whether to only load local model weights and configuration files or not. If set to `True`, the model
|
||||
won't be downloaded from the Hub.
|
||||
use_auth_token (`str` or *bool*, *optional*):
|
||||
token (`str` or *bool*, *optional*):
|
||||
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
|
||||
`diffusers-cli login` (stored in `~/.huggingface`) is used.
|
||||
revision (`str`, *optional*, defaults to `"main"`):
|
||||
|
||||
@@ -19,13 +19,12 @@ from typing import Callable, Dict, List, Optional, Union
|
||||
import safetensors
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from huggingface_hub.utils import validate_hf_hub_args
|
||||
from torch import nn
|
||||
|
||||
from ..models.embeddings import ImageProjection, Resampler
|
||||
from ..models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT, load_model_dict_into_meta
|
||||
from ..utils import (
|
||||
DIFFUSERS_CACHE,
|
||||
HF_HUB_OFFLINE,
|
||||
USE_PEFT_BACKEND,
|
||||
_get_model_file,
|
||||
delete_adapter_layers,
|
||||
@@ -62,6 +61,7 @@ class UNet2DConditionLoadersMixin:
|
||||
text_encoder_name = TEXT_ENCODER_NAME
|
||||
unet_name = UNET_NAME
|
||||
|
||||
@validate_hf_hub_args
|
||||
def load_attn_procs(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs):
|
||||
r"""
|
||||
Load pretrained attention processor layers into [`UNet2DConditionModel`]. Attention processor layers have to be
|
||||
@@ -95,7 +95,7 @@ class UNet2DConditionLoadersMixin:
|
||||
local_files_only (`bool`, *optional*, defaults to `False`):
|
||||
Whether to only load local model weights and configuration files or not. If set to `True`, the model
|
||||
won't be downloaded from the Hub.
|
||||
use_auth_token (`str` or *bool*, *optional*):
|
||||
token (`str` or *bool*, *optional*):
|
||||
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
|
||||
`diffusers-cli login` (stored in `~/.huggingface`) is used.
|
||||
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
|
||||
@@ -130,12 +130,12 @@ class UNet2DConditionLoadersMixin:
|
||||
from ..models.attention_processor import CustomDiffusionAttnProcessor
|
||||
from ..models.lora import LoRACompatibleConv, LoRACompatibleLinear, LoRAConv2dLayer, LoRALinearLayer
|
||||
|
||||
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
|
||||
cache_dir = kwargs.pop("cache_dir", None)
|
||||
force_download = kwargs.pop("force_download", False)
|
||||
resume_download = kwargs.pop("resume_download", False)
|
||||
proxies = kwargs.pop("proxies", None)
|
||||
local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
|
||||
use_auth_token = kwargs.pop("use_auth_token", None)
|
||||
local_files_only = kwargs.pop("local_files_only", None)
|
||||
token = kwargs.pop("token", None)
|
||||
revision = kwargs.pop("revision", None)
|
||||
subfolder = kwargs.pop("subfolder", None)
|
||||
weight_name = kwargs.pop("weight_name", None)
|
||||
@@ -184,7 +184,7 @@ class UNet2DConditionLoadersMixin:
|
||||
resume_download=resume_download,
|
||||
proxies=proxies,
|
||||
local_files_only=local_files_only,
|
||||
use_auth_token=use_auth_token,
|
||||
token=token,
|
||||
revision=revision,
|
||||
subfolder=subfolder,
|
||||
user_agent=user_agent,
|
||||
@@ -204,7 +204,7 @@ class UNet2DConditionLoadersMixin:
|
||||
resume_download=resume_download,
|
||||
proxies=proxies,
|
||||
local_files_only=local_files_only,
|
||||
use_auth_token=use_auth_token,
|
||||
token=token,
|
||||
revision=revision,
|
||||
subfolder=subfolder,
|
||||
user_agent=user_agent,
|
||||
|
||||
@@ -33,8 +33,8 @@ if is_torch_available():
|
||||
_import_structure["consistency_decoder_vae"] = ["ConsistencyDecoderVAE"]
|
||||
_import_structure["controlnet"] = ["ControlNetModel"]
|
||||
_import_structure["dual_transformer_2d"] = ["DualTransformer2DModel"]
|
||||
_import_structure["modeling_utils"] = ["ModelMixin"]
|
||||
_import_structure["embeddings"] = ["ImageProjection"]
|
||||
_import_structure["modeling_utils"] = ["ModelMixin"]
|
||||
_import_structure["prior_transformer"] = ["PriorTransformer"]
|
||||
_import_structure["t5_film_transformer"] = ["T5FilmDecoder"]
|
||||
_import_structure["transformer_2d"] = ["Transformer2DModel"]
|
||||
|
||||
@@ -24,13 +24,17 @@ from flax.core.frozen_dict import FrozenDict, unfreeze
|
||||
from flax.serialization import from_bytes, to_bytes
|
||||
from flax.traverse_util import flatten_dict, unflatten_dict
|
||||
from huggingface_hub import create_repo, hf_hub_download
|
||||
from huggingface_hub.utils import EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError
|
||||
from huggingface_hub.utils import (
|
||||
EntryNotFoundError,
|
||||
RepositoryNotFoundError,
|
||||
RevisionNotFoundError,
|
||||
validate_hf_hub_args,
|
||||
)
|
||||
from requests import HTTPError
|
||||
|
||||
from .. import __version__, is_torch_available
|
||||
from ..utils import (
|
||||
CONFIG_NAME,
|
||||
DIFFUSERS_CACHE,
|
||||
FLAX_WEIGHTS_NAME,
|
||||
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
|
||||
WEIGHTS_NAME,
|
||||
@@ -197,6 +201,7 @@ class FlaxModelMixin(PushToHubMixin):
|
||||
raise NotImplementedError(f"init_weights method has to be implemented for {self}")
|
||||
|
||||
@classmethod
|
||||
@validate_hf_hub_args
|
||||
def from_pretrained(
|
||||
cls,
|
||||
pretrained_model_name_or_path: Union[str, os.PathLike],
|
||||
@@ -288,13 +293,13 @@ class FlaxModelMixin(PushToHubMixin):
|
||||
```
|
||||
"""
|
||||
config = kwargs.pop("config", None)
|
||||
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
|
||||
cache_dir = kwargs.pop("cache_dir", None)
|
||||
force_download = kwargs.pop("force_download", False)
|
||||
from_pt = kwargs.pop("from_pt", False)
|
||||
resume_download = kwargs.pop("resume_download", False)
|
||||
proxies = kwargs.pop("proxies", None)
|
||||
local_files_only = kwargs.pop("local_files_only", False)
|
||||
use_auth_token = kwargs.pop("use_auth_token", None)
|
||||
token = kwargs.pop("token", None)
|
||||
revision = kwargs.pop("revision", None)
|
||||
subfolder = kwargs.pop("subfolder", None)
|
||||
|
||||
@@ -314,7 +319,7 @@ class FlaxModelMixin(PushToHubMixin):
|
||||
resume_download=resume_download,
|
||||
proxies=proxies,
|
||||
local_files_only=local_files_only,
|
||||
use_auth_token=use_auth_token,
|
||||
token=token,
|
||||
revision=revision,
|
||||
subfolder=subfolder,
|
||||
**kwargs,
|
||||
@@ -359,7 +364,7 @@ class FlaxModelMixin(PushToHubMixin):
|
||||
proxies=proxies,
|
||||
resume_download=resume_download,
|
||||
local_files_only=local_files_only,
|
||||
use_auth_token=use_auth_token,
|
||||
token=token,
|
||||
user_agent=user_agent,
|
||||
subfolder=subfolder,
|
||||
revision=revision,
|
||||
@@ -369,7 +374,7 @@ class FlaxModelMixin(PushToHubMixin):
|
||||
raise EnvironmentError(
|
||||
f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier "
|
||||
"listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a "
|
||||
"token having permission to this repo with `use_auth_token` or log in with `huggingface-cli "
|
||||
"token having permission to this repo with `token` or log in with `huggingface-cli "
|
||||
"login`."
|
||||
)
|
||||
except RevisionNotFoundError:
|
||||
|
||||
@@ -25,14 +25,13 @@ from typing import Any, Callable, List, Optional, Tuple, Union
|
||||
import safetensors
|
||||
import torch
|
||||
from huggingface_hub import create_repo
|
||||
from huggingface_hub.utils import validate_hf_hub_args
|
||||
from torch import Tensor, nn
|
||||
|
||||
from .. import __version__
|
||||
from ..utils import (
|
||||
CONFIG_NAME,
|
||||
DIFFUSERS_CACHE,
|
||||
FLAX_WEIGHTS_NAME,
|
||||
HF_HUB_OFFLINE,
|
||||
MIN_PEFT_VERSION,
|
||||
SAFETENSORS_WEIGHTS_NAME,
|
||||
WEIGHTS_NAME,
|
||||
@@ -535,6 +534,7 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@validate_hf_hub_args
|
||||
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
|
||||
r"""
|
||||
Instantiate a pretrained PyTorch model from a pretrained model configuration.
|
||||
@@ -571,7 +571,7 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
|
||||
local_files_only(`bool`, *optional*, defaults to `False`):
|
||||
Whether to only load local model weights and configuration files or not. If set to `True`, the model
|
||||
won't be downloaded from the Hub.
|
||||
use_auth_token (`str` or *bool*, *optional*):
|
||||
token (`str` or *bool*, *optional*):
|
||||
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
|
||||
`diffusers-cli login` (stored in `~/.huggingface`) is used.
|
||||
revision (`str`, *optional*, defaults to `"main"`):
|
||||
@@ -640,15 +640,15 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
|
||||
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
|
||||
```
|
||||
"""
|
||||
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
|
||||
cache_dir = kwargs.pop("cache_dir", None)
|
||||
ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False)
|
||||
force_download = kwargs.pop("force_download", False)
|
||||
from_flax = kwargs.pop("from_flax", False)
|
||||
resume_download = kwargs.pop("resume_download", False)
|
||||
proxies = kwargs.pop("proxies", None)
|
||||
output_loading_info = kwargs.pop("output_loading_info", False)
|
||||
local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
|
||||
use_auth_token = kwargs.pop("use_auth_token", None)
|
||||
local_files_only = kwargs.pop("local_files_only", None)
|
||||
token = kwargs.pop("token", None)
|
||||
revision = kwargs.pop("revision", None)
|
||||
torch_dtype = kwargs.pop("torch_dtype", None)
|
||||
subfolder = kwargs.pop("subfolder", None)
|
||||
@@ -718,7 +718,7 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
|
||||
resume_download=resume_download,
|
||||
proxies=proxies,
|
||||
local_files_only=local_files_only,
|
||||
use_auth_token=use_auth_token,
|
||||
token=token,
|
||||
revision=revision,
|
||||
subfolder=subfolder,
|
||||
device_map=device_map,
|
||||
@@ -740,7 +740,7 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
|
||||
resume_download=resume_download,
|
||||
proxies=proxies,
|
||||
local_files_only=local_files_only,
|
||||
use_auth_token=use_auth_token,
|
||||
token=token,
|
||||
revision=revision,
|
||||
subfolder=subfolder,
|
||||
user_agent=user_agent,
|
||||
@@ -763,7 +763,7 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
|
||||
resume_download=resume_download,
|
||||
proxies=proxies,
|
||||
local_files_only=local_files_only,
|
||||
use_auth_token=use_auth_token,
|
||||
token=token,
|
||||
revision=revision,
|
||||
subfolder=subfolder,
|
||||
user_agent=user_agent,
|
||||
@@ -782,7 +782,7 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
|
||||
resume_download=resume_download,
|
||||
proxies=proxies,
|
||||
local_files_only=local_files_only,
|
||||
use_auth_token=use_auth_token,
|
||||
token=token,
|
||||
revision=revision,
|
||||
subfolder=subfolder,
|
||||
user_agent=user_agent,
|
||||
|
||||
@@ -16,8 +16,9 @@
|
||||
import inspect
|
||||
from collections import OrderedDict
|
||||
|
||||
from huggingface_hub.utils import validate_hf_hub_args
|
||||
|
||||
from ..configuration_utils import ConfigMixin
|
||||
from ..utils import DIFFUSERS_CACHE
|
||||
from .controlnet import (
|
||||
StableDiffusionControlNetImg2ImgPipeline,
|
||||
StableDiffusionControlNetInpaintPipeline,
|
||||
@@ -195,6 +196,7 @@ class AutoPipelineForText2Image(ConfigMixin):
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@validate_hf_hub_args
|
||||
def from_pretrained(cls, pretrained_model_or_path, **kwargs):
|
||||
r"""
|
||||
Instantiates a text-to-image Pytorch diffusion pipeline from pretrained pipeline weight.
|
||||
@@ -246,7 +248,7 @@ class AutoPipelineForText2Image(ConfigMixin):
|
||||
local_files_only (`bool`, *optional*, defaults to `False`):
|
||||
Whether to only load local model weights and configuration files or not. If set to `True`, the model
|
||||
won't be downloaded from the Hub.
|
||||
use_auth_token (`str` or *bool*, *optional*):
|
||||
token (`str` or *bool*, *optional*):
|
||||
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
|
||||
`diffusers-cli login` (stored in `~/.huggingface`) is used.
|
||||
revision (`str`, *optional*, defaults to `"main"`):
|
||||
@@ -310,11 +312,11 @@ class AutoPipelineForText2Image(ConfigMixin):
|
||||
>>> image = pipeline(prompt).images[0]
|
||||
```
|
||||
"""
|
||||
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
|
||||
cache_dir = kwargs.pop("cache_dir", None)
|
||||
force_download = kwargs.pop("force_download", False)
|
||||
resume_download = kwargs.pop("resume_download", False)
|
||||
proxies = kwargs.pop("proxies", None)
|
||||
use_auth_token = kwargs.pop("use_auth_token", None)
|
||||
token = kwargs.pop("token", None)
|
||||
local_files_only = kwargs.pop("local_files_only", False)
|
||||
revision = kwargs.pop("revision", None)
|
||||
|
||||
@@ -323,7 +325,7 @@ class AutoPipelineForText2Image(ConfigMixin):
|
||||
"force_download": force_download,
|
||||
"resume_download": resume_download,
|
||||
"proxies": proxies,
|
||||
"use_auth_token": use_auth_token,
|
||||
"token": token,
|
||||
"local_files_only": local_files_only,
|
||||
"revision": revision,
|
||||
}
|
||||
@@ -466,6 +468,7 @@ class AutoPipelineForImage2Image(ConfigMixin):
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@validate_hf_hub_args
|
||||
def from_pretrained(cls, pretrained_model_or_path, **kwargs):
|
||||
r"""
|
||||
Instantiates a image-to-image Pytorch diffusion pipeline from pretrained pipeline weight.
|
||||
@@ -518,7 +521,7 @@ class AutoPipelineForImage2Image(ConfigMixin):
|
||||
local_files_only (`bool`, *optional*, defaults to `False`):
|
||||
Whether to only load local model weights and configuration files or not. If set to `True`, the model
|
||||
won't be downloaded from the Hub.
|
||||
use_auth_token (`str` or *bool*, *optional*):
|
||||
token (`str` or *bool*, *optional*):
|
||||
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
|
||||
`diffusers-cli login` (stored in `~/.huggingface`) is used.
|
||||
revision (`str`, *optional*, defaults to `"main"`):
|
||||
@@ -582,11 +585,11 @@ class AutoPipelineForImage2Image(ConfigMixin):
|
||||
>>> image = pipeline(prompt, image).images[0]
|
||||
```
|
||||
"""
|
||||
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
|
||||
cache_dir = kwargs.pop("cache_dir", None)
|
||||
force_download = kwargs.pop("force_download", False)
|
||||
resume_download = kwargs.pop("resume_download", False)
|
||||
proxies = kwargs.pop("proxies", None)
|
||||
use_auth_token = kwargs.pop("use_auth_token", None)
|
||||
token = kwargs.pop("token", None)
|
||||
local_files_only = kwargs.pop("local_files_only", False)
|
||||
revision = kwargs.pop("revision", None)
|
||||
|
||||
@@ -595,7 +598,7 @@ class AutoPipelineForImage2Image(ConfigMixin):
|
||||
"force_download": force_download,
|
||||
"resume_download": resume_download,
|
||||
"proxies": proxies,
|
||||
"use_auth_token": use_auth_token,
|
||||
"token": token,
|
||||
"local_files_only": local_files_only,
|
||||
"revision": revision,
|
||||
}
|
||||
@@ -742,6 +745,7 @@ class AutoPipelineForInpainting(ConfigMixin):
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@validate_hf_hub_args
|
||||
def from_pretrained(cls, pretrained_model_or_path, **kwargs):
|
||||
r"""
|
||||
Instantiates a inpainting Pytorch diffusion pipeline from pretrained pipeline weight.
|
||||
@@ -793,7 +797,7 @@ class AutoPipelineForInpainting(ConfigMixin):
|
||||
local_files_only (`bool`, *optional*, defaults to `False`):
|
||||
Whether to only load local model weights and configuration files or not. If set to `True`, the model
|
||||
won't be downloaded from the Hub.
|
||||
use_auth_token (`str` or *bool*, *optional*):
|
||||
token (`str` or *bool*, *optional*):
|
||||
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
|
||||
`diffusers-cli login` (stored in `~/.huggingface`) is used.
|
||||
revision (`str`, *optional*, defaults to `"main"`):
|
||||
@@ -857,11 +861,11 @@ class AutoPipelineForInpainting(ConfigMixin):
|
||||
>>> image = pipeline(prompt, image=init_image, mask_image=mask_image).images[0]
|
||||
```
|
||||
"""
|
||||
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
|
||||
cache_dir = kwargs.pop("cache_dir", None)
|
||||
force_download = kwargs.pop("force_download", False)
|
||||
resume_download = kwargs.pop("resume_download", False)
|
||||
proxies = kwargs.pop("proxies", None)
|
||||
use_auth_token = kwargs.pop("use_auth_token", None)
|
||||
token = kwargs.pop("token", None)
|
||||
local_files_only = kwargs.pop("local_files_only", False)
|
||||
revision = kwargs.pop("revision", None)
|
||||
|
||||
@@ -870,7 +874,7 @@ class AutoPipelineForInpainting(ConfigMixin):
|
||||
"force_download": force_download,
|
||||
"resume_download": resume_download,
|
||||
"proxies": proxies,
|
||||
"use_auth_token": use_auth_token,
|
||||
"token": token,
|
||||
"local_files_only": local_files_only,
|
||||
"revision": revision,
|
||||
}
|
||||
|
||||
@@ -22,6 +22,7 @@ from typing import Optional, Union
|
||||
|
||||
import numpy as np
|
||||
from huggingface_hub import hf_hub_download
|
||||
from huggingface_hub.utils import validate_hf_hub_args
|
||||
|
||||
from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging
|
||||
|
||||
@@ -130,10 +131,11 @@ class OnnxRuntimeModel:
|
||||
self._save_pretrained(save_directory, **kwargs)
|
||||
|
||||
@classmethod
|
||||
@validate_hf_hub_args
|
||||
def _from_pretrained(
|
||||
cls,
|
||||
model_id: Union[str, Path],
|
||||
use_auth_token: Optional[Union[bool, str, None]] = None,
|
||||
token: Optional[Union[bool, str, None]] = None,
|
||||
revision: Optional[Union[str, None]] = None,
|
||||
force_download: bool = False,
|
||||
cache_dir: Optional[str] = None,
|
||||
@@ -148,7 +150,7 @@ class OnnxRuntimeModel:
|
||||
Arguments:
|
||||
model_id (`str` or `Path`):
|
||||
Directory from which to load
|
||||
use_auth_token (`str` or `bool`):
|
||||
token (`str` or `bool`):
|
||||
Is needed to load models from a private or gated repository
|
||||
revision (`str`):
|
||||
Revision is the specific model version to use. It can be a branch name, a tag name, or a commit id
|
||||
@@ -179,7 +181,7 @@ class OnnxRuntimeModel:
|
||||
model_cache_path = hf_hub_download(
|
||||
repo_id=model_id,
|
||||
filename=model_file_name,
|
||||
use_auth_token=use_auth_token,
|
||||
token=token,
|
||||
revision=revision,
|
||||
cache_dir=cache_dir,
|
||||
force_download=force_download,
|
||||
@@ -190,11 +192,12 @@ class OnnxRuntimeModel:
|
||||
return cls(model=model, **kwargs)
|
||||
|
||||
@classmethod
|
||||
@validate_hf_hub_args
|
||||
def from_pretrained(
|
||||
cls,
|
||||
model_id: Union[str, Path],
|
||||
force_download: bool = True,
|
||||
use_auth_token: Optional[str] = None,
|
||||
token: Optional[str] = None,
|
||||
cache_dir: Optional[str] = None,
|
||||
**model_kwargs,
|
||||
):
|
||||
@@ -207,6 +210,6 @@ class OnnxRuntimeModel:
|
||||
revision=revision,
|
||||
cache_dir=cache_dir,
|
||||
force_download=force_download,
|
||||
use_auth_token=use_auth_token,
|
||||
token=token,
|
||||
**model_kwargs,
|
||||
)
|
||||
|
||||
@@ -24,6 +24,7 @@ import numpy as np
|
||||
import PIL.Image
|
||||
from flax.core.frozen_dict import FrozenDict
|
||||
from huggingface_hub import create_repo, snapshot_download
|
||||
from huggingface_hub.utils import validate_hf_hub_args
|
||||
from PIL import Image
|
||||
from tqdm.auto import tqdm
|
||||
|
||||
@@ -32,7 +33,6 @@ from ..models.modeling_flax_utils import FLAX_WEIGHTS_NAME, FlaxModelMixin
|
||||
from ..schedulers.scheduling_utils_flax import SCHEDULER_CONFIG_NAME, FlaxSchedulerMixin
|
||||
from ..utils import (
|
||||
CONFIG_NAME,
|
||||
DIFFUSERS_CACHE,
|
||||
BaseOutput,
|
||||
PushToHubMixin,
|
||||
http_user_agent,
|
||||
@@ -227,6 +227,7 @@ class FlaxDiffusionPipeline(ConfigMixin, PushToHubMixin):
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@validate_hf_hub_args
|
||||
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
|
||||
r"""
|
||||
Instantiate a Flax-based diffusion pipeline from pretrained pipeline weights.
|
||||
@@ -264,7 +265,7 @@ class FlaxDiffusionPipeline(ConfigMixin, PushToHubMixin):
|
||||
local_files_only (`bool`, *optional*, defaults to `False`):
|
||||
Whether to only load local model weights and configuration files or not. If set to `True`, the model
|
||||
won't be downloaded from the Hub.
|
||||
use_auth_token (`str` or *bool*, *optional*):
|
||||
token (`str` or *bool*, *optional*):
|
||||
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
|
||||
`diffusers-cli login` (stored in `~/.huggingface`) is used.
|
||||
revision (`str`, *optional*, defaults to `"main"`):
|
||||
@@ -314,11 +315,11 @@ class FlaxDiffusionPipeline(ConfigMixin, PushToHubMixin):
|
||||
>>> dpm_params["scheduler"] = dpmpp_state
|
||||
```
|
||||
"""
|
||||
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
|
||||
cache_dir = kwargs.pop("cache_dir", None)
|
||||
resume_download = kwargs.pop("resume_download", False)
|
||||
proxies = kwargs.pop("proxies", None)
|
||||
local_files_only = kwargs.pop("local_files_only", False)
|
||||
use_auth_token = kwargs.pop("use_auth_token", None)
|
||||
token = kwargs.pop("token", None)
|
||||
revision = kwargs.pop("revision", None)
|
||||
from_pt = kwargs.pop("from_pt", False)
|
||||
use_memory_efficient_attention = kwargs.pop("use_memory_efficient_attention", False)
|
||||
@@ -334,7 +335,7 @@ class FlaxDiffusionPipeline(ConfigMixin, PushToHubMixin):
|
||||
resume_download=resume_download,
|
||||
proxies=proxies,
|
||||
local_files_only=local_files_only,
|
||||
use_auth_token=use_auth_token,
|
||||
token=token,
|
||||
revision=revision,
|
||||
)
|
||||
# make sure we only download sub-folders and `diffusers` filenames
|
||||
@@ -365,7 +366,7 @@ class FlaxDiffusionPipeline(ConfigMixin, PushToHubMixin):
|
||||
resume_download=resume_download,
|
||||
proxies=proxies,
|
||||
local_files_only=local_files_only,
|
||||
use_auth_token=use_auth_token,
|
||||
token=token,
|
||||
revision=revision,
|
||||
allow_patterns=allow_patterns,
|
||||
ignore_patterns=ignore_patterns,
|
||||
|
||||
@@ -28,7 +28,14 @@ from typing import Any, Callable, Dict, List, Optional, Union
|
||||
import numpy as np
|
||||
import PIL.Image
|
||||
import torch
|
||||
from huggingface_hub import ModelCard, create_repo, hf_hub_download, model_info, snapshot_download
|
||||
from huggingface_hub import (
|
||||
ModelCard,
|
||||
create_repo,
|
||||
hf_hub_download,
|
||||
model_info,
|
||||
snapshot_download,
|
||||
)
|
||||
from huggingface_hub.utils import validate_hf_hub_args
|
||||
from packaging import version
|
||||
from requests.exceptions import HTTPError
|
||||
from tqdm.auto import tqdm
|
||||
@@ -40,8 +47,6 @@ from ..schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
|
||||
from ..utils import (
|
||||
CONFIG_NAME,
|
||||
DEPRECATED_REVISION_ARGS,
|
||||
DIFFUSERS_CACHE,
|
||||
HF_HUB_OFFLINE,
|
||||
SAFETENSORS_WEIGHTS_NAME,
|
||||
WEIGHTS_NAME,
|
||||
BaseOutput,
|
||||
@@ -249,10 +254,11 @@ def variant_compatible_siblings(filenames, variant=None) -> Union[List[os.PathLi
|
||||
return usable_filenames, variant_filenames
|
||||
|
||||
|
||||
def warn_deprecated_model_variant(pretrained_model_name_or_path, use_auth_token, variant, revision, model_filenames):
|
||||
@validate_hf_hub_args
|
||||
def warn_deprecated_model_variant(pretrained_model_name_or_path, token, variant, revision, model_filenames):
|
||||
info = model_info(
|
||||
pretrained_model_name_or_path,
|
||||
use_auth_token=use_auth_token,
|
||||
token=token,
|
||||
revision=None,
|
||||
)
|
||||
filenames = {sibling.rfilename for sibling in info.siblings}
|
||||
@@ -375,7 +381,6 @@ def _get_pipeline_class(
|
||||
custom_pipeline,
|
||||
module_file=file_name,
|
||||
class_name=class_name,
|
||||
repo_id=repo_id,
|
||||
cache_dir=cache_dir,
|
||||
revision=revision,
|
||||
)
|
||||
@@ -909,6 +914,7 @@ class DiffusionPipeline(ConfigMixin, PushToHubMixin):
|
||||
return torch.float32
|
||||
|
||||
@classmethod
|
||||
@validate_hf_hub_args
|
||||
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
|
||||
r"""
|
||||
Instantiate a PyTorch diffusion pipeline from pretrained pipeline weights.
|
||||
@@ -976,7 +982,7 @@ class DiffusionPipeline(ConfigMixin, PushToHubMixin):
|
||||
local_files_only (`bool`, *optional*, defaults to `False`):
|
||||
Whether to only load local model weights and configuration files or not. If set to `True`, the model
|
||||
won't be downloaded from the Hub.
|
||||
use_auth_token (`str` or *bool*, *optional*):
|
||||
token (`str` or *bool*, *optional*):
|
||||
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
|
||||
`diffusers-cli login` (stored in `~/.huggingface`) is used.
|
||||
revision (`str`, *optional*, defaults to `"main"`):
|
||||
@@ -1056,12 +1062,12 @@ class DiffusionPipeline(ConfigMixin, PushToHubMixin):
|
||||
>>> pipeline.scheduler = scheduler
|
||||
```
|
||||
"""
|
||||
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
|
||||
cache_dir = kwargs.pop("cache_dir", None)
|
||||
resume_download = kwargs.pop("resume_download", False)
|
||||
force_download = kwargs.pop("force_download", False)
|
||||
proxies = kwargs.pop("proxies", None)
|
||||
local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
|
||||
use_auth_token = kwargs.pop("use_auth_token", None)
|
||||
local_files_only = kwargs.pop("local_files_only", None)
|
||||
token = kwargs.pop("token", None)
|
||||
revision = kwargs.pop("revision", None)
|
||||
from_flax = kwargs.pop("from_flax", False)
|
||||
torch_dtype = kwargs.pop("torch_dtype", None)
|
||||
@@ -1094,7 +1100,7 @@ class DiffusionPipeline(ConfigMixin, PushToHubMixin):
|
||||
force_download=force_download,
|
||||
proxies=proxies,
|
||||
local_files_only=local_files_only,
|
||||
use_auth_token=use_auth_token,
|
||||
token=token,
|
||||
revision=revision,
|
||||
from_flax=from_flax,
|
||||
use_safetensors=use_safetensors,
|
||||
@@ -1299,7 +1305,7 @@ class DiffusionPipeline(ConfigMixin, PushToHubMixin):
|
||||
"force_download": force_download,
|
||||
"proxies": proxies,
|
||||
"local_files_only": local_files_only,
|
||||
"use_auth_token": use_auth_token,
|
||||
"token": token,
|
||||
"revision": revision,
|
||||
"torch_dtype": torch_dtype,
|
||||
"custom_pipeline": custom_pipeline,
|
||||
@@ -1529,6 +1535,7 @@ class DiffusionPipeline(ConfigMixin, PushToHubMixin):
|
||||
cpu_offload(model, device, offload_buffers=offload_buffers)
|
||||
|
||||
@classmethod
|
||||
@validate_hf_hub_args
|
||||
def download(cls, pretrained_model_name, **kwargs) -> Union[str, os.PathLike]:
|
||||
r"""
|
||||
Download and cache a PyTorch diffusion pipeline from pretrained pipeline weights.
|
||||
@@ -1576,7 +1583,7 @@ class DiffusionPipeline(ConfigMixin, PushToHubMixin):
|
||||
local_files_only (`bool`, *optional*, defaults to `False`):
|
||||
Whether to only load local model weights and configuration files or not. If set to `True`, the model
|
||||
won't be downloaded from the Hub.
|
||||
use_auth_token (`str` or *bool*, *optional*):
|
||||
token (`str` or *bool*, *optional*):
|
||||
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
|
||||
`diffusers-cli login` (stored in `~/.huggingface`) is used.
|
||||
revision (`str`, *optional*, defaults to `"main"`):
|
||||
@@ -1619,12 +1626,12 @@ class DiffusionPipeline(ConfigMixin, PushToHubMixin):
|
||||
</Tip>
|
||||
|
||||
"""
|
||||
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
|
||||
cache_dir = kwargs.pop("cache_dir", None)
|
||||
resume_download = kwargs.pop("resume_download", False)
|
||||
force_download = kwargs.pop("force_download", False)
|
||||
proxies = kwargs.pop("proxies", None)
|
||||
local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
|
||||
use_auth_token = kwargs.pop("use_auth_token", None)
|
||||
local_files_only = kwargs.pop("local_files_only", None)
|
||||
token = kwargs.pop("token", None)
|
||||
revision = kwargs.pop("revision", None)
|
||||
from_flax = kwargs.pop("from_flax", False)
|
||||
custom_pipeline = kwargs.pop("custom_pipeline", None)
|
||||
@@ -1646,11 +1653,7 @@ class DiffusionPipeline(ConfigMixin, PushToHubMixin):
|
||||
model_info_call_error: Optional[Exception] = None
|
||||
if not local_files_only:
|
||||
try:
|
||||
info = model_info(
|
||||
pretrained_model_name,
|
||||
use_auth_token=use_auth_token,
|
||||
revision=revision,
|
||||
)
|
||||
info = model_info(pretrained_model_name, token=token, revision=revision)
|
||||
except HTTPError as e:
|
||||
logger.warn(f"Couldn't connect to the Hub: {e}.\nWill try to load from local cache.")
|
||||
local_files_only = True
|
||||
@@ -1665,7 +1668,7 @@ class DiffusionPipeline(ConfigMixin, PushToHubMixin):
|
||||
proxies=proxies,
|
||||
force_download=force_download,
|
||||
resume_download=resume_download,
|
||||
use_auth_token=use_auth_token,
|
||||
token=token,
|
||||
)
|
||||
|
||||
config_dict = cls._dict_from_json_file(config_file)
|
||||
@@ -1715,9 +1718,7 @@ class DiffusionPipeline(ConfigMixin, PushToHubMixin):
|
||||
if revision in DEPRECATED_REVISION_ARGS and version.parse(
|
||||
version.parse(__version__).base_version
|
||||
) >= version.parse("0.22.0"):
|
||||
warn_deprecated_model_variant(
|
||||
pretrained_model_name, use_auth_token, variant, revision, model_filenames
|
||||
)
|
||||
warn_deprecated_model_variant(pretrained_model_name, token, variant, revision, model_filenames)
|
||||
|
||||
model_folder_names = {os.path.split(f)[0] for f in model_filenames if os.path.split(f)[0] in folder_names}
|
||||
|
||||
@@ -1859,7 +1860,7 @@ class DiffusionPipeline(ConfigMixin, PushToHubMixin):
|
||||
resume_download=resume_download,
|
||||
proxies=proxies,
|
||||
local_files_only=local_files_only,
|
||||
use_auth_token=use_auth_token,
|
||||
token=token,
|
||||
revision=revision,
|
||||
allow_patterns=allow_patterns,
|
||||
ignore_patterns=ignore_patterns,
|
||||
@@ -1883,7 +1884,7 @@ class DiffusionPipeline(ConfigMixin, PushToHubMixin):
|
||||
"force_download": force_download,
|
||||
"proxies": proxies,
|
||||
"local_files_only": local_files_only,
|
||||
"use_auth_token": use_auth_token,
|
||||
"token": token,
|
||||
"variant": variant,
|
||||
"use_safetensors": use_safetensors,
|
||||
}
|
||||
|
||||
@@ -18,6 +18,7 @@ from enum import Enum
|
||||
from typing import Optional, Union
|
||||
|
||||
import torch
|
||||
from huggingface_hub.utils import validate_hf_hub_args
|
||||
|
||||
from ..utils import BaseOutput, PushToHubMixin
|
||||
|
||||
@@ -81,6 +82,7 @@ class SchedulerMixin(PushToHubMixin):
|
||||
has_compatibles = True
|
||||
|
||||
@classmethod
|
||||
@validate_hf_hub_args
|
||||
def from_pretrained(
|
||||
cls,
|
||||
pretrained_model_name_or_path: Optional[Union[str, os.PathLike]] = None,
|
||||
@@ -120,7 +122,7 @@ class SchedulerMixin(PushToHubMixin):
|
||||
local_files_only(`bool`, *optional*, defaults to `False`):
|
||||
Whether to only load local model weights and configuration files or not. If set to `True`, the model
|
||||
won't be downloaded from the Hub.
|
||||
use_auth_token (`str` or *bool*, *optional*):
|
||||
token (`str` or *bool*, *optional*):
|
||||
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
|
||||
`diffusers-cli login` (stored in `~/.huggingface`) is used.
|
||||
revision (`str`, *optional*, defaults to `"main"`):
|
||||
|
||||
@@ -20,6 +20,7 @@ from typing import Optional, Tuple, Union
|
||||
|
||||
import flax
|
||||
import jax.numpy as jnp
|
||||
from huggingface_hub.utils import validate_hf_hub_args
|
||||
|
||||
from ..utils import BaseOutput, PushToHubMixin
|
||||
|
||||
@@ -70,6 +71,7 @@ class FlaxSchedulerMixin(PushToHubMixin):
|
||||
has_compatibles = True
|
||||
|
||||
@classmethod
|
||||
@validate_hf_hub_args
|
||||
def from_pretrained(
|
||||
cls,
|
||||
pretrained_model_name_or_path: Optional[Union[str, os.PathLike]] = None,
|
||||
@@ -110,7 +112,7 @@ class FlaxSchedulerMixin(PushToHubMixin):
|
||||
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
|
||||
local_files_only(`bool`, *optional*, defaults to `False`):
|
||||
Whether or not to only look at local files (i.e., do not try to download the model).
|
||||
use_auth_token (`str` or *bool*, *optional*):
|
||||
token (`str` or *bool*, *optional*):
|
||||
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
|
||||
when running `transformers-cli login` (stored in `~/.huggingface`).
|
||||
revision (`str`, *optional*, defaults to `"main"`):
|
||||
|
||||
@@ -21,7 +21,6 @@ from .. import __version__
|
||||
from .constants import (
|
||||
CONFIG_NAME,
|
||||
DEPRECATED_REVISION_ARGS,
|
||||
DIFFUSERS_CACHE,
|
||||
DIFFUSERS_DYNAMIC_MODULE_NAME,
|
||||
FLAX_WEIGHTS_NAME,
|
||||
HF_MODULES_CACHE,
|
||||
@@ -38,7 +37,6 @@ from .doc_utils import replace_example_docstring
|
||||
from .dynamic_modules_utils import get_class_from_dynamic_module
|
||||
from .export_utils import export_to_gif, export_to_obj, export_to_ply, export_to_video
|
||||
from .hub_utils import (
|
||||
HF_HUB_OFFLINE,
|
||||
PushToHubMixin,
|
||||
_add_variant,
|
||||
_get_model_file,
|
||||
|
||||
@@ -14,15 +14,13 @@
|
||||
import importlib
|
||||
import os
|
||||
|
||||
from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home
|
||||
from huggingface_hub.constants import HF_HOME
|
||||
from packaging import version
|
||||
|
||||
from ..dependency_versions_check import dep_version_check
|
||||
from .import_utils import ENV_VARS_TRUE_VALUES, is_peft_available, is_transformers_available
|
||||
|
||||
|
||||
default_cache_path = HUGGINGFACE_HUB_CACHE
|
||||
|
||||
MIN_PEFT_VERSION = "0.6.0"
|
||||
MIN_TRANSFORMERS_VERSION = "4.34.0"
|
||||
_CHECK_PEFT = os.environ.get("_CHECK_PEFT", "1") in ENV_VARS_TRUE_VALUES
|
||||
@@ -35,9 +33,8 @@ ONNX_WEIGHTS_NAME = "model.onnx"
|
||||
SAFETENSORS_WEIGHTS_NAME = "diffusion_pytorch_model.safetensors"
|
||||
ONNX_EXTERNAL_WEIGHTS_NAME = "weights.pb"
|
||||
HUGGINGFACE_CO_RESOLVE_ENDPOINT = os.environ.get("HF_ENDPOINT", "https://huggingface.co")
|
||||
DIFFUSERS_CACHE = default_cache_path
|
||||
DIFFUSERS_DYNAMIC_MODULE_NAME = "diffusers_modules"
|
||||
HF_MODULES_CACHE = os.getenv("HF_MODULES_CACHE", os.path.join(hf_cache_home, "modules"))
|
||||
HF_MODULES_CACHE = os.getenv("HF_MODULES_CACHE", os.path.join(HF_HOME, "modules"))
|
||||
DEPRECATED_REVISION_ARGS = ["fp16", "non-ema"]
|
||||
|
||||
# Below should be `True` if the current version of `peft` and `transformers` are compatible with
|
||||
|
||||
@@ -25,7 +25,8 @@ from pathlib import Path
|
||||
from typing import Dict, Optional, Union
|
||||
from urllib import request
|
||||
|
||||
from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info
|
||||
from huggingface_hub import cached_download, hf_hub_download, model_info
|
||||
from huggingface_hub.utils import validate_hf_hub_args
|
||||
from packaging import version
|
||||
|
||||
from .. import __version__
|
||||
@@ -194,6 +195,7 @@ def find_pipeline_class(loaded_module):
|
||||
return pipeline_class
|
||||
|
||||
|
||||
@validate_hf_hub_args
|
||||
def get_cached_module_file(
|
||||
pretrained_model_name_or_path: Union[str, os.PathLike],
|
||||
module_file: str,
|
||||
@@ -201,7 +203,7 @@ def get_cached_module_file(
|
||||
force_download: bool = False,
|
||||
resume_download: bool = False,
|
||||
proxies: Optional[Dict[str, str]] = None,
|
||||
use_auth_token: Optional[Union[bool, str]] = None,
|
||||
token: Optional[Union[bool, str]] = None,
|
||||
revision: Optional[str] = None,
|
||||
local_files_only: bool = False,
|
||||
):
|
||||
@@ -232,7 +234,7 @@ def get_cached_module_file(
|
||||
proxies (`Dict[str, str]`, *optional*):
|
||||
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
|
||||
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
|
||||
use_auth_token (`str` or *bool*, *optional*):
|
||||
token (`str` or *bool*, *optional*):
|
||||
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
|
||||
when running `transformers-cli login` (stored in `~/.huggingface`).
|
||||
revision (`str`, *optional*, defaults to `"main"`):
|
||||
@@ -244,7 +246,7 @@ def get_cached_module_file(
|
||||
|
||||
<Tip>
|
||||
|
||||
You may pass a token in `use_auth_token` if you are not logged in (`huggingface-cli long`) and want to use private
|
||||
You may pass a token in `token` if you are not logged in (`huggingface-cli login`) and want to use private
|
||||
or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models).
|
||||
|
||||
</Tip>
|
||||
@@ -289,7 +291,7 @@ def get_cached_module_file(
|
||||
proxies=proxies,
|
||||
resume_download=resume_download,
|
||||
local_files_only=local_files_only,
|
||||
use_auth_token=False,
|
||||
token=False,
|
||||
)
|
||||
submodule = "git"
|
||||
module_file = pretrained_model_name_or_path + ".py"
|
||||
@@ -307,7 +309,7 @@ def get_cached_module_file(
|
||||
proxies=proxies,
|
||||
resume_download=resume_download,
|
||||
local_files_only=local_files_only,
|
||||
use_auth_token=use_auth_token,
|
||||
token=token,
|
||||
)
|
||||
submodule = os.path.join("local", "--".join(pretrained_model_name_or_path.split("/")))
|
||||
except EnvironmentError:
|
||||
@@ -332,13 +334,6 @@ def get_cached_module_file(
|
||||
else:
|
||||
# Get the commit hash
|
||||
# TODO: we will get this info in the etag soon, so retrieve it from there and not here.
|
||||
if isinstance(use_auth_token, str):
|
||||
token = use_auth_token
|
||||
elif use_auth_token is True:
|
||||
token = HfFolder.get_token()
|
||||
else:
|
||||
token = None
|
||||
|
||||
commit_hash = model_info(pretrained_model_name_or_path, revision=revision, token=token).sha
|
||||
|
||||
# The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the
|
||||
@@ -359,13 +354,14 @@ def get_cached_module_file(
|
||||
force_download=force_download,
|
||||
resume_download=resume_download,
|
||||
proxies=proxies,
|
||||
use_auth_token=use_auth_token,
|
||||
token=token,
|
||||
revision=revision,
|
||||
local_files_only=local_files_only,
|
||||
)
|
||||
return os.path.join(full_submodule, module_file)
|
||||
|
||||
|
||||
@validate_hf_hub_args
|
||||
def get_class_from_dynamic_module(
|
||||
pretrained_model_name_or_path: Union[str, os.PathLike],
|
||||
module_file: str,
|
||||
@@ -374,7 +370,7 @@ def get_class_from_dynamic_module(
|
||||
force_download: bool = False,
|
||||
resume_download: bool = False,
|
||||
proxies: Optional[Dict[str, str]] = None,
|
||||
use_auth_token: Optional[Union[bool, str]] = None,
|
||||
token: Optional[Union[bool, str]] = None,
|
||||
revision: Optional[str] = None,
|
||||
local_files_only: bool = False,
|
||||
**kwargs,
|
||||
@@ -414,7 +410,7 @@ def get_class_from_dynamic_module(
|
||||
proxies (`Dict[str, str]`, *optional*):
|
||||
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
|
||||
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
|
||||
use_auth_token (`str` or `bool`, *optional*):
|
||||
token (`str` or `bool`, *optional*):
|
||||
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
|
||||
when running `transformers-cli login` (stored in `~/.huggingface`).
|
||||
revision (`str`, *optional*, defaults to `"main"`):
|
||||
@@ -426,7 +422,7 @@ def get_class_from_dynamic_module(
|
||||
|
||||
<Tip>
|
||||
|
||||
You may pass a token in `use_auth_token` if you are not logged in (`huggingface-cli long`) and want to use private
|
||||
You may pass a token in `token` if you are not logged in (`huggingface-cli login`) and want to use private
|
||||
or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models).
|
||||
|
||||
</Tip>
|
||||
@@ -449,7 +445,7 @@ def get_class_from_dynamic_module(
|
||||
force_download=force_download,
|
||||
resume_download=resume_download,
|
||||
proxies=proxies,
|
||||
use_auth_token=use_auth_token,
|
||||
token=token,
|
||||
revision=revision,
|
||||
local_files_only=local_files_only,
|
||||
)
|
||||
|
||||
@@ -25,20 +25,21 @@ from typing import Dict, Optional, Union
|
||||
from uuid import uuid4
|
||||
|
||||
from huggingface_hub import (
|
||||
HfFolder,
|
||||
ModelCard,
|
||||
ModelCardData,
|
||||
create_repo,
|
||||
get_full_repo_name,
|
||||
hf_hub_download,
|
||||
upload_folder,
|
||||
whoami,
|
||||
)
|
||||
from huggingface_hub.constants import HF_HUB_CACHE, HF_HUB_DISABLE_TELEMETRY, HF_HUB_OFFLINE
|
||||
from huggingface_hub.file_download import REGEX_COMMIT_HASH
|
||||
from huggingface_hub.utils import (
|
||||
EntryNotFoundError,
|
||||
RepositoryNotFoundError,
|
||||
RevisionNotFoundError,
|
||||
is_jinja_available,
|
||||
validate_hf_hub_args,
|
||||
)
|
||||
from packaging import version
|
||||
from requests import HTTPError
|
||||
@@ -46,7 +47,6 @@ from requests import HTTPError
|
||||
from .. import __version__
|
||||
from .constants import (
|
||||
DEPRECATED_REVISION_ARGS,
|
||||
DIFFUSERS_CACHE,
|
||||
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
|
||||
SAFETENSORS_WEIGHTS_NAME,
|
||||
WEIGHTS_NAME,
|
||||
@@ -69,9 +69,6 @@ logger = get_logger(__name__)
|
||||
|
||||
MODEL_CARD_TEMPLATE_PATH = Path(__file__).parent / "model_card_template.md"
|
||||
SESSION_ID = uuid4().hex
|
||||
HF_HUB_OFFLINE = os.getenv("HF_HUB_OFFLINE", "").upper() in ENV_VARS_TRUE_VALUES
|
||||
DISABLE_TELEMETRY = os.getenv("DISABLE_TELEMETRY", "").upper() in ENV_VARS_TRUE_VALUES
|
||||
HUGGINGFACE_CO_TELEMETRY = HUGGINGFACE_CO_RESOLVE_ENDPOINT + "/api/telemetry/"
|
||||
|
||||
|
||||
def http_user_agent(user_agent: Union[Dict, str, None] = None) -> str:
|
||||
@@ -79,7 +76,7 @@ def http_user_agent(user_agent: Union[Dict, str, None] = None) -> str:
|
||||
Formats a user-agent string with basic info about a request.
|
||||
"""
|
||||
ua = f"diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}"
|
||||
if DISABLE_TELEMETRY or HF_HUB_OFFLINE:
|
||||
if HF_HUB_DISABLE_TELEMETRY or HF_HUB_OFFLINE:
|
||||
return ua + "; telemetry/off"
|
||||
if is_torch_available():
|
||||
ua += f"; torch/{_torch_version}"
|
||||
@@ -98,16 +95,6 @@ def http_user_agent(user_agent: Union[Dict, str, None] = None) -> str:
|
||||
return ua
|
||||
|
||||
|
||||
def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
|
||||
if token is None:
|
||||
token = HfFolder.get_token()
|
||||
if organization is None:
|
||||
username = whoami(token)["name"]
|
||||
return f"{username}/{model_id}"
|
||||
else:
|
||||
return f"{organization}/{model_id}"
|
||||
|
||||
|
||||
def create_model_card(args, model_name):
|
||||
if not is_jinja_available():
|
||||
raise ValueError(
|
||||
@@ -183,7 +170,7 @@ old_diffusers_cache = os.path.join(hf_cache_home, "diffusers")
|
||||
|
||||
def move_cache(old_cache_dir: Optional[str] = None, new_cache_dir: Optional[str] = None) -> None:
|
||||
if new_cache_dir is None:
|
||||
new_cache_dir = DIFFUSERS_CACHE
|
||||
new_cache_dir = HF_HUB_CACHE
|
||||
if old_cache_dir is None:
|
||||
old_cache_dir = old_diffusers_cache
|
||||
|
||||
@@ -203,7 +190,7 @@ def move_cache(old_cache_dir: Optional[str] = None, new_cache_dir: Optional[str]
|
||||
# At this point, old_cache_dir contains symlinks to the new cache (it can still be used).
|
||||
|
||||
|
||||
cache_version_file = os.path.join(DIFFUSERS_CACHE, "version_diffusers_cache.txt")
|
||||
cache_version_file = os.path.join(HF_HUB_CACHE, "version_diffusers_cache.txt")
|
||||
if not os.path.isfile(cache_version_file):
|
||||
cache_version = 0
|
||||
else:
|
||||
@@ -233,12 +220,12 @@ if cache_version < 1:
|
||||
|
||||
if cache_version < 1:
|
||||
try:
|
||||
os.makedirs(DIFFUSERS_CACHE, exist_ok=True)
|
||||
os.makedirs(HF_HUB_CACHE, exist_ok=True)
|
||||
with open(cache_version_file, "w") as f:
|
||||
f.write("1")
|
||||
except Exception:
|
||||
logger.warning(
|
||||
f"There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure "
|
||||
f"There was a problem when trying to write in your cache folder ({HF_HUB_CACHE}). Please, ensure "
|
||||
"the directory exists and can be written to."
|
||||
)
|
||||
|
||||
@@ -252,20 +239,21 @@ def _add_variant(weights_name: str, variant: Optional[str] = None) -> str:
|
||||
return weights_name
|
||||
|
||||
|
||||
@validate_hf_hub_args
|
||||
def _get_model_file(
|
||||
pretrained_model_name_or_path,
|
||||
pretrained_model_name_or_path: Union[str, Path],
|
||||
*,
|
||||
weights_name,
|
||||
subfolder,
|
||||
cache_dir,
|
||||
force_download,
|
||||
proxies,
|
||||
resume_download,
|
||||
local_files_only,
|
||||
use_auth_token,
|
||||
user_agent,
|
||||
revision,
|
||||
commit_hash=None,
|
||||
weights_name: str,
|
||||
subfolder: Optional[str],
|
||||
cache_dir: Optional[str],
|
||||
force_download: bool,
|
||||
proxies: Optional[Dict],
|
||||
resume_download: bool,
|
||||
local_files_only: bool,
|
||||
token: Optional[str],
|
||||
user_agent: Union[Dict, str, None],
|
||||
revision: Optional[str],
|
||||
commit_hash: Optional[str] = None,
|
||||
):
|
||||
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
|
||||
if os.path.isfile(pretrained_model_name_or_path):
|
||||
@@ -300,7 +288,7 @@ def _get_model_file(
|
||||
proxies=proxies,
|
||||
resume_download=resume_download,
|
||||
local_files_only=local_files_only,
|
||||
use_auth_token=use_auth_token,
|
||||
token=token,
|
||||
user_agent=user_agent,
|
||||
subfolder=subfolder,
|
||||
revision=revision or commit_hash,
|
||||
@@ -325,7 +313,7 @@ def _get_model_file(
|
||||
proxies=proxies,
|
||||
resume_download=resume_download,
|
||||
local_files_only=local_files_only,
|
||||
use_auth_token=use_auth_token,
|
||||
token=token,
|
||||
user_agent=user_agent,
|
||||
subfolder=subfolder,
|
||||
revision=revision or commit_hash,
|
||||
@@ -336,7 +324,7 @@ def _get_model_file(
|
||||
raise EnvironmentError(
|
||||
f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier "
|
||||
"listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a "
|
||||
"token having permission to this repo with `use_auth_token` or log in with `huggingface-cli "
|
||||
"token having permission to this repo with `token` or log in with `huggingface-cli "
|
||||
"login`."
|
||||
)
|
||||
except RevisionNotFoundError:
|
||||
|
||||
Reference in New Issue
Block a user