Compare commits

..

97 Commits

Author SHA1 Message Date
yiyixuxu
78c125f76f up 2024-08-06 07:20:35 +02:00
yiyixuxu
9e3b0fe107 add dynamic cfg 2024-08-06 03:59:06 +02:00
Aryan
878f609aa5 remove dynamic guidance scale 2024-08-05 17:52:13 +02:00
zR
32da2e7673 Update lora_conversion_utils.py 2024-08-05 22:20:06 +08:00
zR
9a0b906518 restore 2024-08-05 22:08:50 +08:00
Aryan
b3428ad5f5 Merge branch 'main' into cogvideox-2b 2024-08-05 18:09:09 +05:30
Aryan
70a54a8230 use num_frames instead of num_seconds 2024-08-05 14:38:42 +02:00
yiyixuxu
6f4e60b58b Merge branch 'cogvideox-2b' of github.com:zRzRzRzRzRzRzR/diffusers into cogvideo-dpm 2024-08-05 14:06:15 +02:00
yiyixuxu
e4d65ccdd7 update 2024-08-05 13:57:42 +02:00
zR
22dcceb858 messages 2024-08-05 19:17:16 +08:00
zR
9c6b8894ff rename unsample and add some docs 2024-08-05 17:57:54 +08:00
zR
cf7369d418 fix some error 2024-08-05 16:45:41 +08:00
Aryan
123ecef2b9 Merge branch 'main' into cogvideox-2b 2024-08-05 12:35:10 +05:30
zR
511c9ef560 merge remote branch 2024-08-05 14:02:36 +08:00
zR
fb6130fe90 Merge branch 'cogvideox-common-draft-2' of github.com:huggingface/diffusers-new-model-addition-thudm into cogvideox-2b 2024-08-05 14:01:49 +08:00
zR
2d9602cc96 add CogVideoX team, Tsinghua University & ZhipuAI 2024-08-05 13:55:25 +08:00
zR
1b1b737acb cogvideox branch 2024-08-05 11:28:31 +08:00
Aryan
311845fc77 update docs 2024-08-04 23:46:50 +02:00
Aryan
01c2dff338 update docs 2024-08-04 23:45:56 +02:00
Aryan
03580c07b9 remove cogvideox-specific attention processor 2024-08-04 23:37:31 +02:00
Aryan
fd11c0fbee Merge branch 'main' into cogvideox-common-draft-2 2024-08-04 23:29:18 +02:00
Aryan
92c8c00756 make fix-copies 2024-08-04 23:29:11 +02:00
Aryan
5781e017dd Merge branch 'huggingface:main' into main 2024-08-05 02:22:36 +05:30
sayakpaul
90aa8be534 add workflow for rebasing with upstream automatically. 2024-08-04 22:50:51 +02:00
Sayak Paul
2f1b7870e2 Revert "add workflow to rebase with upstream main nightly." 2024-08-04 22:50:51 +02:00
sayakpaul
7360ea1d03 add upstream 2024-08-04 22:50:51 +02:00
sayakpaul
ba1855c07e add workflow to rebase with upstream main nightly. 2024-08-04 22:50:51 +02:00
Aryan
1b1b26b65c make style 2024-08-04 16:29:57 +02:00
Aryan
312f7dc4fd apply suggestions from review 2024-08-04 16:29:35 +02:00
zR
ba4223ac3b remove attenstion mask 2024-08-04 15:52:37 +08:00
zR
6988cc3a86 new schedule with dpm 2024-08-04 14:26:00 +08:00
Aryan
fa7fa9cced make inference 2-3x faster (by fixing the bug i introduced) 🚀😎 2024-08-03 18:48:54 +02:00
Aryan
61c6da076a remove chunked ff code; reuse and refactor to support temb directly in adalayernorm 2024-08-03 17:43:09 +02:00
zR
c7ee165c4f Update downsampling.py 2024-08-03 22:22:28 +08:00
zR
d99528be94 Restore the timesteps parameter 2024-08-03 16:04:46 +08:00
zR
fd0831c52c timestep fix 2024-08-03 15:11:12 +08:00
zR
477e12b235 fix 2024-08-03 15:08:07 +08:00
zR
b42b079213 fix some comment 2024-08-03 13:46:57 +08:00
zR
21509aa7f5 fp16 problem 2024-08-03 00:34:55 +08:00
Aryan
65f6211f1f Merge pull request #4 from huggingface/cogvideox-refactor-to-diffusers
CogVideoX pipeline, refactor modeling to diffusers format, bug fixes
2024-08-02 21:20:34 +05:30
Aryan
3def90523d update 2024-08-02 17:40:36 +02:00
Aryan
551c884acd remove debug prints 2024-08-02 17:40:23 +02:00
zR
ec53a30a0e schedule 2024-08-02 22:38:58 +08:00
zR
71e7c82ae8 vae problem fix 2024-08-02 16:23:24 +08:00
Aryan
c33dd0213b remove incorrect copied from 2024-08-02 01:04:35 +02:00
Aryan
e12458e16c make style 2024-08-02 01:03:37 +02:00
Aryan
77558f31bf add pipeline docs 2024-08-02 01:03:02 +02:00
Aryan
41da084fbe remove debug prints 2024-08-02 00:53:09 +02:00
Aryan
4c2e8870e6 add cogvideo specific attn processor 2024-08-02 00:51:15 +02:00
Aryan
fe6f5d6419 ensure tokenizer config correctly uses 226 as text length 2024-08-01 22:06:08 +02:00
Aryan
d0b8db2b11 update 2024-08-01 21:12:49 +02:00
zR
351d1f009e remove 0.transformer_blocks.encoder.embed_tokens.weight 2024-08-01 23:31:03 +08:00
zR
a31db5f952 using with 226 instead of 225 of final weight 2024-08-01 22:58:27 +08:00
Aryan
03ee7cd109 add pipeline implementation 2024-08-01 13:52:58 +02:00
Aryan
712ddbeac6 make style 2024-08-01 12:18:18 +02:00
Aryan
03c28eef5b modeling fixes 2024-08-01 12:18:01 +02:00
Aryan
e05f83479c refactor vae 2024-08-01 06:05:49 +02:00
zR
bb4740ce29 add clear_fake_cp_cache 2024-08-01 00:26:59 +08:00
zR
2956866ef4 Merge branch 'cogvideox-common-draft-2' of https://github.com/huggingface/diffusers-new-model-addition-thudm into cogvideox-common-draft-2 2024-07-31 21:41:16 +08:00
zR
4498cfc98c add doc draft 2024-07-31 21:41:09 +08:00
Aryan
a449ceb3ef update conversion script 2024-07-31 14:40:16 +02:00
Aryan
45f7127ade fix bug in handling long prompts 2024-07-31 14:28:46 +02:00
Aryan
73469f9562 make fix-copies 2024-07-31 14:13:56 +02:00
Aryan
d45d199b99 make style 2024-07-31 14:13:38 +02:00
Aryan
e67cc5ae47 implement encode prompt 2024-07-31 14:12:22 +02:00
Aryan
470815cefa minor refactor 2024-07-31 13:38:23 +02:00
Aryan
5f183bfe27 reorder upsampling/downsampling blocks in order of invocation 2024-07-31 13:33:57 +02:00
Aryan
c43a8f5b2b minor factor and repositioning of code in order of invocation 2024-07-31 13:27:15 +02:00
Aryan
9f9d0cbb83 verify CogVideoXSpatialNorm3D implementation 2024-07-31 13:14:39 +02:00
Aryan
2be7469821 groups->norm_num_groups 2024-07-31 12:44:18 +02:00
Aryan
3ae9413966 undo unnecessary changes added on cogvideo-vae by mistake 2024-07-31 12:42:03 +02:00
Aryan
ec9508c83b Merge branch 'main' into cogvideox-common-draft-2 2024-07-31 12:40:26 +02:00
Aryan
6bcafcbaa6 make fix-copies 2024-07-31 12:02:58 +02:00
Aryan
b3052807e5 add skeleton for pipeline 2024-07-31 12:02:38 +02:00
Aryan
73b041e7a9 Merge branch 'cogvideox' into cogvideox-common-draft-1 2024-07-31 11:41:28 +02:00
zR
1c661ce3d4 remove deriving and using nn.module 2024-07-31 17:19:22 +08:00
zR
8fe54bcd26 add 2024-07-31 16:42:47 +08:00
zR
ee40f0e1ca follow review guide 2024-07-31 14:31:21 +08:00
sayakpaul
0980f4dcd2 add workflow for rebasing with upstream automatically. 2024-07-31 08:35:22 +05:30
Sayak Paul
71bcb1e1c5 Revert "add workflow to rebase with upstream main nightly." 2024-07-31 08:35:22 +05:30
sayakpaul
dfeb32975d add upstream 2024-07-31 08:35:22 +05:30
sayakpaul
d83c1f8447 add workflow to rebase with upstream main nightly. 2024-07-31 08:35:22 +05:30
Aryan
21a0fc1b0d make style 2024-07-31 02:55:08 +02:00
Aryan
16967589d8 remove debug prints 2024-07-31 02:54:41 +02:00
Aryan
d963b1aaa4 update conversion script for latest modeling changes 2024-07-31 02:54:32 +02:00
Aryan
e982881716 refactor 2024-07-31 02:52:53 +02:00
Aryan
cb5348a0c2 fix nasty bug in 3d sincos pos embeds 2024-07-31 01:26:32 +02:00
zR
aff72ec5dc Update autoencoder_kl3d.py 2024-07-30 22:43:09 +08:00
zR
dc7e6e814f fix error 2024-07-30 22:33:34 +08:00
zR
a3d827fb8d rename 2024-07-30 22:00:53 +08:00
zR
84ff56eb90 fix with some review guide 2024-07-30 21:05:04 +08:00
Aryan
45cb1f92d3 fix layernorms 2024-07-30 14:57:57 +02:00
Aryan
59e6669f6d fix attention mask 2024-07-30 11:44:42 +02:00
Aryan
bb917755ee add imports 2024-07-30 09:04:45 +02:00
Aryan
bd6efd5fe4 initial draft of cogvideo transformer 2024-07-30 09:02:06 +02:00
zR
c341786f3e vae draft 2024-07-30 13:25:08 +08:00
zR
c8e5491be0 Create autoencoder_kl3d.py 2024-07-30 13:15:58 +08:00
1508 changed files with 26515 additions and 262479 deletions

View File

@@ -1,38 +0,0 @@
name: "\U0001F31F Remote VAE"
description: Feedback for remote VAE pilot
labels: [ "Remote VAE" ]
body:
- type: textarea
id: positive
validations:
required: true
attributes:
label: Did you like the remote VAE solution?
description: |
If you liked it, we would appreciate it if you could elaborate what you liked.
- type: textarea
id: feedback
validations:
required: true
attributes:
label: What can be improved about the current solution?
description: |
Let us know the things you would like to see improved. Note that we will work optimizing the solution once the pilot is over and we have usage.
- type: textarea
id: others
validations:
required: true
attributes:
label: What other VAEs you would like to see if the pilot goes well?
description: |
Provide a list of the VAEs you would like to see in the future if the pilot goes well.
- type: textarea
id: additional-info
attributes:
label: Notify the members of the team
description: |
Tag the following folks when submitting this feedback: @hlky @sayakpaul

View File

@@ -7,7 +7,6 @@ on:
env:
DIFFUSERS_IS_CI: yes
HF_HUB_ENABLE_HF_TRANSFER: 1
HF_HOME: /mnt/cache
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
@@ -23,7 +22,7 @@ jobs:
runs-on:
group: aws-g6-4xlarge-plus
container:
image: diffusers/diffusers-pytorch-cuda
image: diffusers/diffusers-pytorch-compile-cuda
options: --shm-size "16gb" --ipc host --gpus 0
steps:
- name: Checkout diffusers
@@ -38,7 +37,6 @@ jobs:
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install pandas peft
python -m uv pip uninstall transformers && python -m uv pip install transformers==4.48.0
- name: Environment
run: |
python utils/print_env.py
@@ -52,7 +50,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v2
with:
name: benchmark_test_reports
path: benchmarks/benchmark_outputs

View File

@@ -34,20 +34,13 @@ jobs:
id: file_changes
uses: jitterbit/get-changed-files@v1
with:
format: "space-delimited"
format: 'space-delimited'
token: ${{ secrets.GITHUB_TOKEN }}
- name: Build Changed Docker Images
env:
CHANGED_FILES: "${{ steps.file_changes.outputs.all }}"
run: |
CHANGED_FILES="${{ steps.file_changes.outputs.all }}"
for FILE in $CHANGED_FILES; do
# skip anything that isnt still on disk
if [[ ! -f "$FILE" ]]; then
echo "Skipping removed file $FILE"
continue
fi
if [[ "$FILE" == docker/*Dockerfile ]]; then
DOCKER_PATH="${FILE%/Dockerfile}"
DOCKER_TAG=$(basename "$DOCKER_PATH")
@@ -72,9 +65,8 @@ jobs:
image-name:
- diffusers-pytorch-cpu
- diffusers-pytorch-cuda
- diffusers-pytorch-cuda
- diffusers-pytorch-compile-cuda
- diffusers-pytorch-xformers-cuda
- diffusers-pytorch-minimum-cuda
- diffusers-flax-cpu
- diffusers-flax-tpu
- diffusers-onnxruntime-cpu

View File

@@ -25,7 +25,7 @@ jobs:
env:
SLACK_WEBHOOK_URL: ${{ secrets.SLACK_WEBHOOK_URL_COMMUNITY_MIRROR }}
runs-on: ubuntu-22.04
runs-on: ubuntu-latest
steps:
# Checkout to correct ref
# If workflow dispatch

View File

@@ -43,7 +43,7 @@ jobs:
- name: Pipeline Tests Artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v2
with:
name: test-pipelines.json
path: reports
@@ -72,14 +72,14 @@ jobs:
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate.git
python -m uv pip install pytest-reportlog
- name: Environment
run: |
python utils/print_env.py
- name: Pipeline CUDA Test
env:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
HF_TOKEN: ${{ secrets.HF_TOKEN }}
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
@@ -95,7 +95,7 @@ jobs:
cat reports/tests_pipeline_${{ matrix.module }}_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v2
with:
name: pipeline_${{ matrix.module }}_test_reports
path: reports
@@ -116,7 +116,6 @@ jobs:
run:
shell: bash
strategy:
fail-fast: false
max-parallel: 2
matrix:
module: [models, schedulers, lora, others, single_file, examples]
@@ -130,8 +129,8 @@ jobs:
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate.git
python -m uv pip install peft@git+https://github.com/huggingface/peft.git
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
python -m uv pip install pytest-reportlog
- name: Environment
run: python utils/print_env.py
@@ -139,10 +138,9 @@ jobs:
- name: Run nightly PyTorch CUDA tests for non-pipeline modules
if: ${{ matrix.module != 'examples'}}
env:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
HF_TOKEN: ${{ secrets.HF_TOKEN }}
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
RUN_COMPILE: yes
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
@@ -153,7 +151,7 @@ jobs:
- name: Run nightly example tests with Torch
if: ${{ matrix.module == 'examples' }}
env:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
HF_TOKEN: ${{ secrets.HF_TOKEN }}
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
@@ -170,7 +168,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v2
with:
name: torch_${{ matrix.module }}_cuda_test_reports
path: reports
@@ -181,177 +179,14 @@ jobs:
pip install slack_sdk tabulate
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
run_torch_compile_tests:
name: PyTorch Compile CUDA tests
runs-on:
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-pytorch-cuda
options: --gpus 0 --shm-size "16gb" --ipc host
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test,training]
- name: Environment
run: |
python utils/print_env.py
- name: Run torch compile tests on GPU
env:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
RUN_COMPILE: yes
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v -k "compile" --make-reports=tests_torch_compile_cuda tests/
- name: Failure short reports
if: ${{ failure() }}
run: cat reports/tests_torch_compile_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: torch_compile_test_reports
path: reports
- name: Generate Report and Notify Channel
if: always()
run: |
pip install slack_sdk tabulate
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
run_big_gpu_torch_tests:
name: Torch tests on big GPU
strategy:
fail-fast: false
max-parallel: 2
runs-on:
group: aws-g6e-xlarge-plus
container:
image: diffusers/diffusers-pytorch-cuda
options: --shm-size "16gb" --ipc host --gpus 0
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: NVIDIA-SMI
run: nvidia-smi
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install peft@git+https://github.com/huggingface/peft.git
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
python -m uv pip install pytest-reportlog
- name: Environment
run: |
python utils/print_env.py
- name: Selected Torch CUDA Test on big GPU
env:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
BIG_GPU_MEMORY: 40
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-m "big_gpu_with_torch_cuda" \
--make-reports=tests_big_gpu_torch_cuda \
--report-log=tests_big_gpu_torch_cuda.log \
tests/
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_big_gpu_torch_cuda_stats.txt
cat reports/tests_big_gpu_torch_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: torch_cuda_big_gpu_test_reports
path: reports
- name: Generate Report and Notify Channel
if: always()
run: |
pip install slack_sdk tabulate
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
torch_minimum_version_cuda_tests:
name: Torch Minimum Version CUDA Tests
runs-on:
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-pytorch-minimum-cuda
options: --shm-size "16gb" --ipc host --gpus 0
defaults:
run:
shell: bash
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install peft@git+https://github.com/huggingface/peft.git
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
- name: Environment
run: |
python utils/print_env.py
- name: Run PyTorch CUDA tests
env:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
--make-reports=tests_torch_minimum_version_cuda \
tests/models/test_modeling_common.py \
tests/pipelines/test_pipelines_common.py \
tests/pipelines/test_pipeline_utils.py \
tests/pipelines/test_pipelines.py \
tests/pipelines/test_pipelines_auto.py \
tests/schedulers/test_schedulers.py \
tests/others
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_torch_minimum_version_cuda_stats.txt
cat reports/tests_torch_minimum_version_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: torch_minimum_version_cuda_test_reports
path: reports
run_flax_tpu_tests:
name: Nightly Flax TPU Tests
runs-on:
group: gcp-ct5lp-hightpu-8t
runs-on: docker-tpu
if: github.event_name == 'schedule'
container:
image: diffusers/diffusers-flax-tpu
options: --shm-size "16gb" --ipc host --privileged ${{ vars.V5_LITEPOD_8_ENV}} -v /mnt/hf_cache:/mnt/hf_cache
options: --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/ --privileged
defaults:
run:
shell: bash
@@ -365,7 +200,7 @@ jobs:
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate.git
python -m uv pip install pytest-reportlog
- name: Environment
@@ -373,7 +208,7 @@ jobs:
- name: Run nightly Flax TPU tests
env:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
HF_TOKEN: ${{ secrets.HF_TOKEN }}
run: |
python -m pytest -n 0 \
-s -v -k "Flax" \
@@ -389,7 +224,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v2
with:
name: flax_tpu_test_reports
path: reports
@@ -421,14 +256,14 @@ jobs:
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate.git
python -m uv pip install pytest-reportlog
- name: Environment
run: python utils/print_env.py
- name: Run Nightly ONNXRuntime CUDA tests
env:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
HF_TOKEN: ${{ secrets.HF_TOKEN }}
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "Onnx" \
@@ -444,9 +279,9 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v2
with:
name: tests_onnx_cuda_reports
name: ${{ matrix.config.report }}_test_reports
path: reports
- name: Generate Report and Notify Channel
@@ -455,243 +290,64 @@ jobs:
pip install slack_sdk tabulate
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
run_nightly_quantization_tests:
name: Torch quantization nightly tests
strategy:
fail-fast: false
max-parallel: 2
matrix:
config:
- backend: "bitsandbytes"
test_location: "bnb"
additional_deps: ["peft"]
- backend: "gguf"
test_location: "gguf"
additional_deps: ["peft"]
- backend: "torchao"
test_location: "torchao"
additional_deps: []
- backend: "optimum_quanto"
test_location: "quanto"
additional_deps: []
runs-on:
group: aws-g6e-xlarge-plus
container:
image: diffusers/diffusers-pytorch-cuda
options: --shm-size "20gb" --ipc host --gpus 0
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: NVIDIA-SMI
run: nvidia-smi
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install -U ${{ matrix.config.backend }}
if [ "${{ join(matrix.config.additional_deps, ' ') }}" != "" ]; then
python -m uv pip install ${{ join(matrix.config.additional_deps, ' ') }}
fi
python -m uv pip install pytest-reportlog
- name: Environment
run: |
python utils/print_env.py
- name: ${{ matrix.config.backend }} quantization tests on GPU
env:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
BIG_GPU_MEMORY: 40
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
--make-reports=tests_${{ matrix.config.backend }}_torch_cuda \
--report-log=tests_${{ matrix.config.backend }}_torch_cuda.log \
tests/quantization/${{ matrix.config.test_location }}
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_${{ matrix.config.backend }}_torch_cuda_stats.txt
cat reports/tests_${{ matrix.config.backend }}_torch_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: torch_cuda_${{ matrix.config.backend }}_reports
path: reports
- name: Generate Report and Notify Channel
if: always()
run: |
pip install slack_sdk tabulate
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
run_nightly_tests_apple_m1:
name: Nightly PyTorch MPS tests on MacOS
runs-on: [ self-hosted, apple-m1 ]
if: github.event_name == 'schedule'
run_nightly_pipeline_level_quantization_tests:
name: Torch quantization nightly tests
strategy:
fail-fast: false
max-parallel: 2
runs-on:
group: aws-g6e-xlarge-plus
container:
image: diffusers/diffusers-pytorch-cuda
options: --shm-size "20gb" --ipc host --gpus 0
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: NVIDIA-SMI
run: nvidia-smi
- name: Clean checkout
shell: arch -arch arm64 bash {0}
run: |
git clean -fxd
- name: Setup miniconda
uses: ./.github/actions/setup-miniconda
with:
python-version: 3.9
- name: Install dependencies
shell: arch -arch arm64 bash {0}
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install -U bitsandbytes optimum_quanto
python -m uv pip install pytest-reportlog
${CONDA_RUN} python -m pip install --upgrade pip uv
${CONDA_RUN} python -m uv pip install -e [quality,test]
${CONDA_RUN} python -m uv pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu
${CONDA_RUN} python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate
${CONDA_RUN} python -m uv pip install pytest-reportlog
- name: Environment
shell: arch -arch arm64 bash {0}
run: |
python utils/print_env.py
- name: Pipeline-level quantization tests on GPU
${CONDA_RUN} python utils/print_env.py
- name: Run nightly PyTorch tests on M1 (MPS)
shell: arch -arch arm64 bash {0}
env:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
BIG_GPU_MEMORY: 40
HF_HOME: /System/Volumes/Data/mnt/cache
HF_TOKEN: ${{ secrets.HF_TOKEN }}
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
--make-reports=tests_pipeline_level_quant_torch_cuda \
--report-log=tests_pipeline_level_quant_torch_cuda.log \
tests/quantization/test_pipeline_level_quantization.py
${CONDA_RUN} python -m pytest -n 1 -s -v --make-reports=tests_torch_mps \
--report-log=tests_torch_mps.log \
tests/
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_pipeline_level_quant_torch_cuda_stats.txt
cat reports/tests_pipeline_level_quant_torch_cuda_failures_short.txt
run: cat reports/tests_torch_mps_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v2
with:
name: torch_cuda_pipeline_level_quant_reports
name: torch_mps_test_reports
path: reports
- name: Generate Report and Notify Channel
if: always()
run: |
pip install slack_sdk tabulate
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
# M1 runner currently not well supported
# TODO: (Dhruv) add these back when we setup better testing for Apple Silicon
# run_nightly_tests_apple_m1:
# name: Nightly PyTorch MPS tests on MacOS
# runs-on: [ self-hosted, apple-m1 ]
# if: github.event_name == 'schedule'
#
# steps:
# - name: Checkout diffusers
# uses: actions/checkout@v3
# with:
# fetch-depth: 2
#
# - name: Clean checkout
# shell: arch -arch arm64 bash {0}
# run: |
# git clean -fxd
# - name: Setup miniconda
# uses: ./.github/actions/setup-miniconda
# with:
# python-version: 3.9
#
# - name: Install dependencies
# shell: arch -arch arm64 bash {0}
# run: |
# ${CONDA_RUN} python -m pip install --upgrade pip uv
# ${CONDA_RUN} python -m uv pip install -e [quality,test]
# ${CONDA_RUN} python -m uv pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu
# ${CONDA_RUN} python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate
# ${CONDA_RUN} python -m uv pip install pytest-reportlog
# - name: Environment
# shell: arch -arch arm64 bash {0}
# run: |
# ${CONDA_RUN} python utils/print_env.py
# - name: Run nightly PyTorch tests on M1 (MPS)
# shell: arch -arch arm64 bash {0}
# env:
# HF_HOME: /System/Volumes/Data/mnt/cache
# HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
# run: |
# ${CONDA_RUN} python -m pytest -n 1 -s -v --make-reports=tests_torch_mps \
# --report-log=tests_torch_mps.log \
# tests/
# - name: Failure short reports
# if: ${{ failure() }}
# run: cat reports/tests_torch_mps_failures_short.txt
#
# - name: Test suite reports artifacts
# if: ${{ always() }}
# uses: actions/upload-artifact@v4
# with:
# name: torch_mps_test_reports
# path: reports
#
# - name: Generate Report and Notify Channel
# if: always()
# run: |
# pip install slack_sdk tabulate
# python utils/log_reports.py >> $GITHUB_STEP_SUMMARY run_nightly_tests_apple_m1:
# name: Nightly PyTorch MPS tests on MacOS
# runs-on: [ self-hosted, apple-m1 ]
# if: github.event_name == 'schedule'
#
# steps:
# - name: Checkout diffusers
# uses: actions/checkout@v3
# with:
# fetch-depth: 2
#
# - name: Clean checkout
# shell: arch -arch arm64 bash {0}
# run: |
# git clean -fxd
# - name: Setup miniconda
# uses: ./.github/actions/setup-miniconda
# with:
# python-version: 3.9
#
# - name: Install dependencies
# shell: arch -arch arm64 bash {0}
# run: |
# ${CONDA_RUN} python -m pip install --upgrade pip uv
# ${CONDA_RUN} python -m uv pip install -e [quality,test]
# ${CONDA_RUN} python -m uv pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu
# ${CONDA_RUN} python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate
# ${CONDA_RUN} python -m uv pip install pytest-reportlog
# - name: Environment
# shell: arch -arch arm64 bash {0}
# run: |
# ${CONDA_RUN} python utils/print_env.py
# - name: Run nightly PyTorch tests on M1 (MPS)
# shell: arch -arch arm64 bash {0}
# env:
# HF_HOME: /System/Volumes/Data/mnt/cache
# HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
# run: |
# ${CONDA_RUN} python -m pytest -n 1 -s -v --make-reports=tests_torch_mps \
# --report-log=tests_torch_mps.log \
# tests/
# - name: Failure short reports
# if: ${{ failure() }}
# run: cat reports/tests_torch_mps_failures_short.txt
#
# - name: Test suite reports artifacts
# if: ${{ always() }}
# uses: actions/upload-artifact@v4
# with:
# name: torch_mps_test_reports
# path: reports
#
# - name: Generate Report and Notify Channel
# if: always()
# run: |
# pip install slack_sdk tabulate
# python utils/log_reports.py >> $GITHUB_STEP_SUMMARY

View File

@@ -7,7 +7,7 @@ on:
jobs:
build:
runs-on: ubuntu-22.04
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3

View File

@@ -16,7 +16,7 @@ concurrency:
jobs:
check_dependencies:
runs-on: ubuntu-22.04
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Set up Python

View File

@@ -16,7 +16,7 @@ concurrency:
jobs:
check_flax_dependencies:
runs-on: ubuntu-22.04
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Set up Python

View File

@@ -1,17 +0,0 @@
name: PR Style Bot
on:
issue_comment:
types: [created]
permissions:
contents: write
pull-requests: write
jobs:
style:
uses: huggingface/huggingface_hub/.github/workflows/style-bot-action.yml@main
with:
python_quality_dependencies: "[quality]"
secrets:
bot_token: ${{ secrets.GITHUB_TOKEN }}

View File

@@ -171,7 +171,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v2
with:
name: pr_${{ matrix.config.report }}_test_reports
path: reports

View File

@@ -0,0 +1,132 @@
name: Fast tests for PRs - PEFT backend
on:
pull_request:
branches:
- main
paths:
- "src/diffusers/**.py"
- "tests/**.py"
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
env:
DIFFUSERS_IS_CI: yes
OMP_NUM_THREADS: 4
MKL_NUM_THREADS: 4
PYTEST_TIMEOUT: 60
jobs:
check_code_quality:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: "3.8"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install .[quality]
- name: Check quality
run: make quality
- name: Check if failure
if: ${{ failure() }}
run: |
echo "Quality check failed. Please ensure the right dependency versions are installed with 'pip install -e .[quality]' and run 'make style && make quality'" >> $GITHUB_STEP_SUMMARY
check_repository_consistency:
needs: check_code_quality
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: "3.8"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install .[quality]
- name: Check repo consistency
run: |
python utils/check_copies.py
python utils/check_dummies.py
make deps_table_check_updated
- name: Check if failure
if: ${{ failure() }}
run: |
echo "Repo consistency check failed. Please ensure the right dependency versions are installed with 'pip install -e .[quality]' and run 'make fix-copies'" >> $GITHUB_STEP_SUMMARY
run_fast_tests:
needs: [check_code_quality, check_repository_consistency]
strategy:
fail-fast: false
matrix:
lib-versions: ["main", "latest"]
name: LoRA - ${{ matrix.lib-versions }}
runs-on:
group: aws-general-8-plus
container:
image: diffusers/diffusers-pytorch-cpu
options: --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/
defaults:
run:
shell: bash
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
if [ "${{ matrix.lib-versions }}" == "main" ]; then
python -m pip install -U peft@git+https://github.com/huggingface/peft.git
python -m uv pip install -U transformers@git+https://github.com/huggingface/transformers.git
python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
else
python -m uv pip install -U peft transformers accelerate
fi
- name: Environment
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python utils/print_env.py
- name: Run fast PyTorch LoRA CPU tests with PEFT backend
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m pytest -n 4 --max-worker-restart=0 --dist=loadfile \
-s -v \
--make-reports=tests_${{ matrix.config.report }} \
tests/lora/
python -m pytest -n 4 --max-worker-restart=0 --dist=loadfile \
-s -v \
--make-reports=tests_models_lora_${{ matrix.config.report }} \
tests/models/ -k "lora"
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_${{ matrix.config.report }}_failures_short.txt
cat reports/tests_models_lora_${{ matrix.config.report }}_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: pr_${{ matrix.config.report }}_test_reports
path: reports

View File

@@ -2,7 +2,8 @@ name: Fast tests for PRs
on:
pull_request:
branches: [main]
branches:
- main
paths:
- "src/diffusers/**.py"
- "benchmarks/**.py"
@@ -11,7 +12,6 @@ on:
- "tests/**.py"
- ".github/**.yml"
- "utils/**.py"
- "setup.py"
push:
branches:
- ci-*
@@ -22,14 +22,13 @@ concurrency:
env:
DIFFUSERS_IS_CI: yes
HF_HUB_ENABLE_HF_TRANSFER: 1
OMP_NUM_THREADS: 4
MKL_NUM_THREADS: 4
PYTEST_TIMEOUT: 60
jobs:
check_code_quality:
runs-on: ubuntu-22.04
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Set up Python
@@ -49,7 +48,7 @@ jobs:
check_repository_consistency:
needs: check_code_quality
runs-on: ubuntu-22.04
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Set up Python
@@ -64,7 +63,6 @@ jobs:
run: |
python utils/check_copies.py
python utils/check_dummies.py
python utils/check_support_list.py
make deps_table_check_updated
- name: Check if failure
if: ${{ failure() }}
@@ -121,8 +119,7 @@ jobs:
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
pip uninstall transformers -y && python -m uv pip install -U transformers@git+https://github.com/huggingface/transformers.git --no-deps
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git --no-deps
python -m uv pip install accelerate
- name: Environment
run: |
@@ -171,9 +168,9 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v2
with:
name: pr_${{ matrix.config.framework }}_${{ matrix.config.report }}_test_reports
name: pr_${{ matrix.config.report }}_test_reports
path: reports
run_staging_tests:
@@ -232,72 +229,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v2
with:
name: pr_${{ matrix.config.report }}_test_reports
path: reports
run_lora_tests:
needs: [check_code_quality, check_repository_consistency]
strategy:
fail-fast: false
name: LoRA tests with PEFT main
runs-on:
group: aws-general-8-plus
container:
image: diffusers/diffusers-pytorch-cpu
options: --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/
defaults:
run:
shell: bash
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
# TODO (sayakpaul, DN6): revisit `--no-deps`
python -m pip install -U peft@git+https://github.com/huggingface/peft.git --no-deps
python -m uv pip install -U transformers@git+https://github.com/huggingface/transformers.git --no-deps
python -m uv pip install -U tokenizers
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git --no-deps
- name: Environment
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python utils/print_env.py
- name: Run fast PyTorch LoRA tests with PEFT
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m pytest -n 4 --max-worker-restart=0 --dist=loadfile \
-s -v \
--make-reports=tests_peft_main \
tests/lora/
python -m pytest -n 4 --max-worker-restart=0 --dist=loadfile \
-s -v \
--make-reports=tests_models_lora_peft_main \
tests/models/ -k "lora"
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_lora_failures_short.txt
cat reports/tests_models_lora_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: pr_main_test_reports
path: reports

View File

@@ -1,296 +0,0 @@
name: Fast GPU Tests on PR
on:
pull_request:
branches: main
paths:
- "src/diffusers/models/modeling_utils.py"
- "src/diffusers/models/model_loading_utils.py"
- "src/diffusers/pipelines/pipeline_utils.py"
- "src/diffusers/pipeline_loading_utils.py"
- "src/diffusers/loaders/lora_base.py"
- "src/diffusers/loaders/lora_pipeline.py"
- "src/diffusers/loaders/peft.py"
- "tests/pipelines/test_pipelines_common.py"
- "tests/models/test_modeling_common.py"
workflow_dispatch:
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
env:
DIFFUSERS_IS_CI: yes
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
HF_HUB_ENABLE_HF_TRANSFER: 1
PYTEST_TIMEOUT: 600
PIPELINE_USAGE_CUTOFF: 1000000000 # set high cutoff so that only always-test pipelines run
jobs:
check_code_quality:
runs-on: ubuntu-22.04
steps:
- uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: "3.8"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install .[quality]
- name: Check quality
run: make quality
- name: Check if failure
if: ${{ failure() }}
run: |
echo "Quality check failed. Please ensure the right dependency versions are installed with 'pip install -e .[quality]' and run 'make style && make quality'" >> $GITHUB_STEP_SUMMARY
check_repository_consistency:
needs: check_code_quality
runs-on: ubuntu-22.04
steps:
- uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: "3.8"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install .[quality]
- name: Check repo consistency
run: |
python utils/check_copies.py
python utils/check_dummies.py
python utils/check_support_list.py
make deps_table_check_updated
- name: Check if failure
if: ${{ failure() }}
run: |
echo "Repo consistency check failed. Please ensure the right dependency versions are installed with 'pip install -e .[quality]' and run 'make fix-copies'" >> $GITHUB_STEP_SUMMARY
setup_torch_cuda_pipeline_matrix:
needs: [check_code_quality, check_repository_consistency]
name: Setup Torch Pipelines CUDA Slow Tests Matrix
runs-on:
group: aws-general-8-plus
container:
image: diffusers/diffusers-pytorch-cpu
outputs:
pipeline_test_matrix: ${{ steps.fetch_pipeline_matrix.outputs.pipeline_test_matrix }}
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
- name: Environment
run: |
python utils/print_env.py
- name: Fetch Pipeline Matrix
id: fetch_pipeline_matrix
run: |
matrix=$(python utils/fetch_torch_cuda_pipeline_test_matrix.py)
echo $matrix
echo "pipeline_test_matrix=$matrix" >> $GITHUB_OUTPUT
- name: Pipeline Tests Artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: test-pipelines.json
path: reports
torch_pipelines_cuda_tests:
name: Torch Pipelines CUDA Tests
needs: setup_torch_cuda_pipeline_matrix
strategy:
fail-fast: false
max-parallel: 8
matrix:
module: ${{ fromJson(needs.setup_torch_cuda_pipeline_matrix.outputs.pipeline_test_matrix) }}
runs-on:
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-pytorch-cuda
options: --shm-size "16gb" --ipc host --gpus 0
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
pip uninstall transformers -y && python -m uv pip install -U transformers@git+https://github.com/huggingface/transformers.git --no-deps
- name: Environment
run: |
python utils/print_env.py
- name: Extract tests
id: extract_tests
run: |
pattern=$(python utils/extract_tests_from_mixin.py --type pipeline)
echo "$pattern" > /tmp/test_pattern.txt
echo "pattern_file=/tmp/test_pattern.txt" >> $GITHUB_OUTPUT
- name: PyTorch CUDA checkpoint tests on Ubuntu
env:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
if [ "${{ matrix.module }}" = "ip_adapters" ]; then
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
--make-reports=tests_pipeline_${{ matrix.module }}_cuda \
tests/pipelines/${{ matrix.module }}
else
pattern=$(cat ${{ steps.extract_tests.outputs.pattern_file }})
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx and $pattern" \
--make-reports=tests_pipeline_${{ matrix.module }}_cuda \
tests/pipelines/${{ matrix.module }}
fi
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_pipeline_${{ matrix.module }}_cuda_stats.txt
cat reports/tests_pipeline_${{ matrix.module }}_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: pipeline_${{ matrix.module }}_test_reports
path: reports
torch_cuda_tests:
name: Torch CUDA Tests
needs: [check_code_quality, check_repository_consistency]
runs-on:
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-pytorch-cuda
options: --shm-size "16gb" --ipc host --gpus 0
defaults:
run:
shell: bash
strategy:
fail-fast: false
max-parallel: 2
matrix:
module: [models, schedulers, lora, others]
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install peft@git+https://github.com/huggingface/peft.git
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
pip uninstall transformers -y && python -m uv pip install -U transformers@git+https://github.com/huggingface/transformers.git --no-deps
- name: Environment
run: |
python utils/print_env.py
- name: Extract tests
id: extract_tests
run: |
pattern=$(python utils/extract_tests_from_mixin.py --type ${{ matrix.module }})
echo "$pattern" > /tmp/test_pattern.txt
echo "pattern_file=/tmp/test_pattern.txt" >> $GITHUB_OUTPUT
- name: Run PyTorch CUDA tests
env:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
pattern=$(cat ${{ steps.extract_tests.outputs.pattern_file }})
if [ -z "$pattern" ]; then
python -m pytest -n 1 -sv --max-worker-restart=0 --dist=loadfile -k "not Flax and not Onnx" tests/${{ matrix.module }} \
--make-reports=tests_torch_cuda_${{ matrix.module }}
else
python -m pytest -n 1 -sv --max-worker-restart=0 --dist=loadfile -k "not Flax and not Onnx and $pattern" tests/${{ matrix.module }} \
--make-reports=tests_torch_cuda_${{ matrix.module }}
fi
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_torch_cuda_${{ matrix.module }}_stats.txt
cat reports/tests_torch_cuda_${{ matrix.module }}_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: torch_cuda_test_reports_${{ matrix.module }}
path: reports
run_examples_tests:
name: Examples PyTorch CUDA tests on Ubuntu
needs: [check_code_quality, check_repository_consistency]
runs-on:
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-pytorch-cuda
options: --gpus 0 --shm-size "16gb" --ipc host
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
pip uninstall transformers -y && python -m uv pip install -U transformers@git+https://github.com/huggingface/transformers.git --no-deps
python -m uv pip install -e [quality,test,training]
- name: Environment
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python utils/print_env.py
- name: Run example tests on GPU
env:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install timm
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v --make-reports=examples_torch_cuda examples/
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/examples_torch_cuda_stats.txt
cat reports/examples_torch_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: examples_test_reports
path: reports

View File

@@ -16,7 +16,7 @@ concurrency:
jobs:
check_torch_dependencies:
runs-on: ubuntu-22.04
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Set up Python

View File

@@ -1,7 +1,6 @@
name: Fast GPU Tests on main
name: Slow Tests on main
on:
workflow_dispatch:
push:
branches:
- main
@@ -14,7 +13,6 @@ env:
DIFFUSERS_IS_CI: yes
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
HF_HUB_ENABLE_HF_TRANSFER: 1
PYTEST_TIMEOUT: 600
PIPELINE_USAGE_CUTOFF: 50000
@@ -47,7 +45,7 @@ jobs:
echo "pipeline_test_matrix=$matrix" >> $GITHUB_OUTPUT
- name: Pipeline Tests Artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v2
with:
name: test-pipelines.json
path: reports
@@ -77,13 +75,13 @@ jobs:
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate.git
- name: Environment
run: |
python utils/print_env.py
- name: PyTorch CUDA checkpoint tests on Ubuntu
- name: Slow PyTorch CUDA checkpoint tests on Ubuntu
env:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
HF_TOKEN: ${{ secrets.HF_TOKEN }}
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
@@ -98,7 +96,7 @@ jobs:
cat reports/tests_pipeline_${{ matrix.module }}_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v2
with:
name: pipeline_${{ matrix.module }}_test_reports
path: reports
@@ -114,8 +112,6 @@ jobs:
run:
shell: bash
strategy:
fail-fast: false
max-parallel: 2
matrix:
module: [models, schedulers, lora, others, single_file]
steps:
@@ -128,8 +124,8 @@ jobs:
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate.git
python -m uv pip install peft@git+https://github.com/huggingface/peft.git
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
- name: Environment
run: |
@@ -137,35 +133,34 @@ jobs:
- name: Run PyTorch CUDA tests
env:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
HF_TOKEN: ${{ secrets.HF_TOKEN }}
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
--make-reports=tests_torch_cuda_${{ matrix.module }} \
--make-reports=tests_torch_cuda \
tests/${{ matrix.module }}
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_torch_cuda_${{ matrix.module }}_stats.txt
cat reports/tests_torch_cuda_${{ matrix.module }}_failures_short.txt
cat reports/tests_torch_cuda_stats.txt
cat reports/tests_torch_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v2
with:
name: torch_cuda_test_reports_${{ matrix.module }}
name: torch_cuda_test_reports
path: reports
flax_tpu_tests:
name: Flax TPU Tests
runs-on:
group: gcp-ct5lp-hightpu-8t
runs-on: docker-tpu
container:
image: diffusers/diffusers-flax-tpu
options: --shm-size "16gb" --ipc host --privileged ${{ vars.V5_LITEPOD_8_ENV}} -v /mnt/hf_cache:/mnt/hf_cache
options: --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/ --privileged
defaults:
run:
shell: bash
@@ -179,15 +174,15 @@ jobs:
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate.git
- name: Environment
run: |
python utils/print_env.py
- name: Run Flax TPU tests
- name: Run slow Flax TPU tests
env:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
HF_TOKEN: ${{ secrets.HF_TOKEN }}
run: |
python -m pytest -n 0 \
-s -v -k "Flax" \
@@ -202,7 +197,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v2
with:
name: flax_tpu_test_reports
path: reports
@@ -227,15 +222,15 @@ jobs:
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate.git
- name: Environment
run: |
python utils/print_env.py
- name: Run ONNXRuntime CUDA tests
- name: Run slow ONNXRuntime CUDA tests
env:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
HF_TOKEN: ${{ secrets.HF_TOKEN }}
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "Onnx" \
@@ -250,7 +245,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v2
with:
name: onnx_cuda_test_reports
path: reports
@@ -262,7 +257,7 @@ jobs:
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-pytorch-cuda
image: diffusers/diffusers-pytorch-compile-cuda
options: --gpus 0 --shm-size "16gb" --ipc host
steps:
@@ -283,7 +278,7 @@ jobs:
python utils/print_env.py
- name: Run example tests on GPU
env:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
HF_TOKEN: ${{ secrets.HF_TOKEN }}
RUN_COMPILE: yes
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v -k "compile" --make-reports=tests_torch_compile_cuda tests/
@@ -293,7 +288,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v2
with:
name: torch_compile_test_reports
path: reports
@@ -326,7 +321,7 @@ jobs:
python utils/print_env.py
- name: Run example tests on GPU
env:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
HF_TOKEN: ${{ secrets.HF_TOKEN }}
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v -k "xformers" --make-reports=tests_torch_xformers_cuda tests/
- name: Failure short reports
@@ -335,7 +330,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v2
with:
name: torch_xformers_test_reports
path: reports
@@ -349,6 +344,7 @@ jobs:
container:
image: diffusers/diffusers-pytorch-cuda
options: --gpus 0 --shm-size "16gb" --ipc host
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
@@ -358,6 +354,7 @@ jobs:
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
@@ -370,7 +367,7 @@ jobs:
- name: Run example tests on GPU
env:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
HF_TOKEN: ${{ secrets.HF_TOKEN }}
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install timm
@@ -384,7 +381,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v2
with:
name: examples_test_reports
path: reports

View File

@@ -18,7 +18,6 @@ env:
HF_HOME: /mnt/cache
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
HF_HUB_ENABLE_HF_TRANSFER: 1
PYTEST_TIMEOUT: 600
RUN_SLOW: no
@@ -120,7 +119,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v2
with:
name: pr_${{ matrix.config.report }}_test_reports
path: reports

View File

@@ -13,7 +13,6 @@ env:
HF_HOME: /mnt/cache
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
HF_HUB_ENABLE_HF_TRANSFER: 1
PYTEST_TIMEOUT: 600
RUN_SLOW: no
@@ -46,7 +45,7 @@ jobs:
shell: arch -arch arm64 bash {0}
run: |
${CONDA_RUN} python -m pip install --upgrade pip uv
${CONDA_RUN} python -m uv pip install -e ".[quality,test]"
${CONDA_RUN} python -m uv pip install -e [quality,test]
${CONDA_RUN} python -m uv pip install torch torchvision torchaudio
${CONDA_RUN} python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate.git
${CONDA_RUN} python -m uv pip install transformers --upgrade
@@ -70,7 +69,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v2
with:
name: pr_torch_mps_test_reports
path: reports

View File

@@ -10,7 +10,7 @@ on:
jobs:
find-and-checkout-latest-branch:
runs-on: ubuntu-22.04
runs-on: ubuntu-latest
outputs:
latest_branch: ${{ steps.set_latest_branch.outputs.latest_branch }}
steps:
@@ -36,7 +36,7 @@ jobs:
release:
needs: find-and-checkout-latest-branch
runs-on: ubuntu-22.04
runs-on: ubuntu-latest
steps:
- name: Checkout Repo
@@ -68,7 +68,7 @@ jobs:
- name: Test installing diffusers and importing
run: |
pip install diffusers && pip uninstall diffusers -y
pip install -i https://test.pypi.org/simple/ diffusers
pip install -i https://testpypi.python.org/pypi diffusers
python -c "from diffusers import __version__; print(__version__)"
python -c "from diffusers import DiffusionPipeline; pipe = DiffusionPipeline.from_pretrained('fusing/unet-ldm-dummy-update'); pipe()"
python -c "from diffusers import DiffusionPipeline; pipe = DiffusionPipeline.from_pretrained('hf-internal-testing/tiny-stable-diffusion-pipe', safety_checker=None); pipe('ah suh du')"

View File

@@ -1,446 +0,0 @@
# Duplicate workflow to push_tests.yml that is meant to run on release/patch branches as a final check
# Creating a duplicate workflow here is simpler than adding complex path/branch parsing logic to push_tests.yml
# Needs to be updated if push_tests.yml updated
name: (Release) Fast GPU Tests on main
on:
push:
branches:
- "v*.*.*-release"
- "v*.*.*-patch"
env:
DIFFUSERS_IS_CI: yes
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
PYTEST_TIMEOUT: 600
PIPELINE_USAGE_CUTOFF: 50000
jobs:
setup_torch_cuda_pipeline_matrix:
name: Setup Torch Pipelines CUDA Slow Tests Matrix
runs-on:
group: aws-general-8-plus
container:
image: diffusers/diffusers-pytorch-cpu
outputs:
pipeline_test_matrix: ${{ steps.fetch_pipeline_matrix.outputs.pipeline_test_matrix }}
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
- name: Environment
run: |
python utils/print_env.py
- name: Fetch Pipeline Matrix
id: fetch_pipeline_matrix
run: |
matrix=$(python utils/fetch_torch_cuda_pipeline_test_matrix.py)
echo $matrix
echo "pipeline_test_matrix=$matrix" >> $GITHUB_OUTPUT
- name: Pipeline Tests Artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: test-pipelines.json
path: reports
torch_pipelines_cuda_tests:
name: Torch Pipelines CUDA Tests
needs: setup_torch_cuda_pipeline_matrix
strategy:
fail-fast: false
max-parallel: 8
matrix:
module: ${{ fromJson(needs.setup_torch_cuda_pipeline_matrix.outputs.pipeline_test_matrix) }}
runs-on:
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-pytorch-cuda
options: --shm-size "16gb" --ipc host --gpus 0
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
- name: Environment
run: |
python utils/print_env.py
- name: Slow PyTorch CUDA checkpoint tests on Ubuntu
env:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
--make-reports=tests_pipeline_${{ matrix.module }}_cuda \
tests/pipelines/${{ matrix.module }}
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_pipeline_${{ matrix.module }}_cuda_stats.txt
cat reports/tests_pipeline_${{ matrix.module }}_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: pipeline_${{ matrix.module }}_test_reports
path: reports
torch_cuda_tests:
name: Torch CUDA Tests
runs-on:
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-pytorch-cuda
options: --shm-size "16gb" --ipc host --gpus 0
defaults:
run:
shell: bash
strategy:
fail-fast: false
max-parallel: 2
matrix:
module: [models, schedulers, lora, others, single_file]
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install peft@git+https://github.com/huggingface/peft.git
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
- name: Environment
run: |
python utils/print_env.py
- name: Run PyTorch CUDA tests
env:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
--make-reports=tests_torch_${{ matrix.module }}_cuda \
tests/${{ matrix.module }}
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_torch_${{ matrix.module }}_cuda_stats.txt
cat reports/tests_torch_${{ matrix.module }}_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: torch_cuda_${{ matrix.module }}_test_reports
path: reports
torch_minimum_version_cuda_tests:
name: Torch Minimum Version CUDA Tests
runs-on:
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-pytorch-minimum-cuda
options: --shm-size "16gb" --ipc host --gpus 0
defaults:
run:
shell: bash
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install peft@git+https://github.com/huggingface/peft.git
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
- name: Environment
run: |
python utils/print_env.py
- name: Run PyTorch CUDA tests
env:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
--make-reports=tests_torch_minimum_cuda \
tests/models/test_modeling_common.py \
tests/pipelines/test_pipelines_common.py \
tests/pipelines/test_pipeline_utils.py \
tests/pipelines/test_pipelines.py \
tests/pipelines/test_pipelines_auto.py \
tests/schedulers/test_schedulers.py \
tests/others
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_torch_minimum_version_cuda_stats.txt
cat reports/tests_torch_minimum_version_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: torch_minimum_version_cuda_test_reports
path: reports
flax_tpu_tests:
name: Flax TPU Tests
runs-on: docker-tpu
container:
image: diffusers/diffusers-flax-tpu
options: --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/ --privileged
defaults:
run:
shell: bash
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
- name: Environment
run: |
python utils/print_env.py
- name: Run slow Flax TPU tests
env:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
run: |
python -m pytest -n 0 \
-s -v -k "Flax" \
--make-reports=tests_flax_tpu \
tests/
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_flax_tpu_stats.txt
cat reports/tests_flax_tpu_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: flax_tpu_test_reports
path: reports
onnx_cuda_tests:
name: ONNX CUDA Tests
runs-on:
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-onnxruntime-cuda
options: --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/ --gpus 0
defaults:
run:
shell: bash
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
- name: Environment
run: |
python utils/print_env.py
- name: Run slow ONNXRuntime CUDA tests
env:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "Onnx" \
--make-reports=tests_onnx_cuda \
tests/
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_onnx_cuda_stats.txt
cat reports/tests_onnx_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: onnx_cuda_test_reports
path: reports
run_torch_compile_tests:
name: PyTorch Compile CUDA tests
runs-on:
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-pytorch-cuda
options: --gpus 0 --shm-size "16gb" --ipc host
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test,training]
- name: Environment
run: |
python utils/print_env.py
- name: Run torch compile tests on GPU
env:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
RUN_COMPILE: yes
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v -k "compile" --make-reports=tests_torch_compile_cuda tests/
- name: Failure short reports
if: ${{ failure() }}
run: cat reports/tests_torch_compile_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: torch_compile_test_reports
path: reports
run_xformers_tests:
name: PyTorch xformers CUDA tests
runs-on:
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-pytorch-xformers-cuda
options: --gpus 0 --shm-size "16gb" --ipc host
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test,training]
- name: Environment
run: |
python utils/print_env.py
- name: Run example tests on GPU
env:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v -k "xformers" --make-reports=tests_torch_xformers_cuda tests/
- name: Failure short reports
if: ${{ failure() }}
run: cat reports/tests_torch_xformers_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: torch_xformers_test_reports
path: reports
run_examples_tests:
name: Examples PyTorch CUDA tests on Ubuntu
runs-on:
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-pytorch-cuda
options: --gpus 0 --shm-size "16gb" --ipc host
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test,training]
- name: Environment
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python utils/print_env.py
- name: Run example tests on GPU
env:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install timm
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v --make-reports=examples_torch_cuda examples/
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/examples_torch_cuda_stats.txt
cat reports/examples_torch_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: examples_test_reports
path: reports

View File

@@ -7,8 +7,8 @@ on:
default: 'diffusers/diffusers-pytorch-cuda'
description: 'Name of the Docker image'
required: true
pr_number:
description: 'PR number to test on'
branch:
description: 'PR Branch to test on'
required: true
test:
description: 'Tests to run (e.g.: `tests/models`).'
@@ -43,8 +43,8 @@ jobs:
exit 1
fi
if [[ ! "$PY_TEST" =~ ^tests/(models|pipelines|lora) ]]; then
echo "Error: The input string must contain either 'models', 'pipelines', or 'lora' after 'tests/'."
if [[ ! "$PY_TEST" =~ ^tests/(models|pipelines) ]]; then
echo "Error: The input string must contain either 'models' or 'pipelines' after 'tests/'."
exit 1
fi
@@ -53,13 +53,13 @@ jobs:
exit 1
fi
echo "$PY_TEST"
shell: bash -e {0}
- name: Checkout PR branch
uses: actions/checkout@v4
with:
ref: refs/pull/${{ inputs.pr_number }}/head
ref: ${{ github.event.inputs.branch }}
repository: ${{ github.event.pull_request.head.repo.full_name }}
- name: Install pytest
run: |

View File

@@ -4,13 +4,8 @@ on:
workflow_dispatch:
inputs:
runner_type:
description: 'Type of runner to test (aws-g6-4xlarge-plus: a10, aws-g4dn-2xlarge: t4, aws-g6e-xlarge-plus: L40)'
type: choice
description: 'Type of runner to test (a10 or t4)'
required: true
options:
- aws-g6-4xlarge-plus
- aws-g4dn-2xlarge
- aws-g6e-xlarge-plus
docker_image:
description: 'Name of the Docker image'
required: true

View File

@@ -8,10 +8,7 @@ jobs:
close_stale_issues:
name: Close Stale Issues
if: github.repository == 'huggingface/diffusers'
runs-on: ubuntu-22.04
permissions:
issues: write
pull-requests: write
runs-on: ubuntu-latest
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
steps:

View File

@@ -5,7 +5,7 @@ name: Secret Leaks
jobs:
trufflehog:
runs-on: ubuntu-22.04
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v4
@@ -13,6 +13,3 @@ jobs:
fetch-depth: 0
- name: Secret Scanning
uses: trufflesecurity/trufflehog@main
with:
extra_args: --results=verified,unknown

View File

@@ -5,7 +5,7 @@ on:
jobs:
build:
runs-on: ubuntu-22.04
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3

View File

@@ -57,7 +57,7 @@ Any question or comment related to the Diffusers library can be asked on the [di
- ...
Every question that is asked on the forum or on Discord actively encourages the community to publicly
share knowledge and might very well help a beginner in the future who has the same question you're
share knowledge and might very well help a beginner in the future that has the same question you're
having. Please do pose any questions you might have.
In the same spirit, you are of immense help to the community by answering such questions because this way you are publicly documenting knowledge for everybody to learn from.
@@ -503,4 +503,4 @@ $ git push --set-upstream origin your-branch-for-syncing
### Style guide
For documentation strings, 🧨 Diffusers follows the [Google style](https://google.github.io/styleguide/pyguide.html).
For documentation strings, 🧨 Diffusers follows the [Google style](https://google.github.io/styleguide/pyguide.html).

View File

@@ -15,7 +15,7 @@ specific language governing permissions and limitations under the License.
🧨 Diffusers provides **state-of-the-art** pretrained diffusion models across multiple modalities.
Its purpose is to serve as a **modular toolbox** for both inference and training.
We aim to build a library that stands the test of time and therefore take API design very seriously.
We aim at building a library that stands the test of time and therefore take API design very seriously.
In a nutshell, Diffusers is built to be a natural extension of PyTorch. Therefore, most of our design choices are based on [PyTorch's Design Principles](https://pytorch.org/docs/stable/community/design.html#pytorch-design-philosophy). Let's go over the most important ones:
@@ -65,7 +65,7 @@ Pipelines are designed to be easy to use (therefore do not follow [*Simple over
The following design principles are followed:
- Pipelines follow the single-file policy. All pipelines can be found in individual directories under src/diffusers/pipelines. One pipeline folder corresponds to one diffusion paper/project/release. Multiple pipeline files can be gathered in one pipeline folder, as its done for [`src/diffusers/pipelines/stable-diffusion`](https://github.com/huggingface/diffusers/tree/main/src/diffusers/pipelines/stable_diffusion). If pipelines share similar functionality, one can make use of the [# Copied from mechanism](https://github.com/huggingface/diffusers/blob/125d783076e5bd9785beb05367a2d2566843a271/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py#L251).
- Pipelines all inherit from [`DiffusionPipeline`].
- Every pipeline consists of different model and scheduler components, that are documented in the [`model_index.json` file](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5/blob/main/model_index.json), are accessible under the same name as attributes of the pipeline and can be shared between pipelines with [`DiffusionPipeline.components`](https://huggingface.co/docs/diffusers/main/en/api/diffusion_pipeline#diffusers.DiffusionPipeline.components) function.
- Every pipeline consists of different model and scheduler components, that are documented in the [`model_index.json` file](https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/model_index.json), are accessible under the same name as attributes of the pipeline and can be shared between pipelines with [`DiffusionPipeline.components`](https://huggingface.co/docs/diffusers/main/en/api/diffusion_pipeline#diffusers.DiffusionPipeline.components) function.
- Every pipeline should be loadable via the [`DiffusionPipeline.from_pretrained`](https://huggingface.co/docs/diffusers/main/en/api/diffusion_pipeline#diffusers.DiffusionPipeline.from_pretrained) function.
- Pipelines should be used **only** for inference.
- Pipelines should be very readable, self-explanatory, and easy to tweak.
@@ -107,4 +107,4 @@ The following design principles are followed:
- Every scheduler exposes the timesteps to be "looped over" via a `timesteps` attribute, which is an array of timesteps the model will be called upon.
- The `step(...)` function takes a predicted model output and the "current" sample (x_t) and returns the "previous", slightly more denoised sample (x_t-1).
- Given the complexity of diffusion schedulers, the `step` function does not expose all the complexity and can be a bit of a "black box".
- In almost all cases, novel schedulers shall be implemented in a new scheduling file.
- In almost all cases, novel schedulers shall be implemented in a new scheduling file.

View File

@@ -73,7 +73,7 @@ Generating outputs is super easy with 🤗 Diffusers. To generate an image from
from diffusers import DiffusionPipeline
import torch
pipeline = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16)
pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
pipeline.to("cuda")
pipeline("An image of a squirrel in Picasso style").images[0]
```
@@ -112,9 +112,9 @@ Check out the [Quickstart](https://huggingface.co/docs/diffusers/quicktour) to l
| **Documentation** | **What can I learn?** |
|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [Tutorial](https://huggingface.co/docs/diffusers/tutorials/tutorial_overview) | A basic crash course for learning how to use the library's most important features like using models and schedulers to build your own diffusion system, and training your own diffusion model. |
| [Loading](https://huggingface.co/docs/diffusers/using-diffusers/loading) | Guides for how to load and configure all the components (pipelines, models, and schedulers) of the library, as well as how to use different schedulers. |
| [Pipelines for inference](https://huggingface.co/docs/diffusers/using-diffusers/overview_techniques) | Guides for how to use pipelines for different inference tasks, batched generation, controlling generated outputs and randomness, and how to contribute a pipeline to the library. |
| [Optimization](https://huggingface.co/docs/diffusers/optimization/fp16) | Guides for how to optimize your diffusion model to run faster and consume less memory. |
| [Loading](https://huggingface.co/docs/diffusers/using-diffusers/loading_overview) | Guides for how to load and configure all the components (pipelines, models, and schedulers) of the library, as well as how to use different schedulers. |
| [Pipelines for inference](https://huggingface.co/docs/diffusers/using-diffusers/pipeline_overview) | Guides for how to use pipelines for different inference tasks, batched generation, controlling generated outputs and randomness, and how to contribute a pipeline to the library. |
| [Optimization](https://huggingface.co/docs/diffusers/optimization/opt_overview) | Guides for how to optimize your diffusion model to run faster and consume less memory. |
| [Training](https://huggingface.co/docs/diffusers/training/overview) | Guides for how to train a diffusion model for different tasks with different training techniques. |
## Contribution
@@ -144,7 +144,7 @@ Also, say 👋 in our public Discord channel <a href="https://discord.gg/G7tWnz9
<tr style="border-top: 2px solid black">
<td>Text-to-Image</td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/text2img">Stable Diffusion Text-to-Image</a></td>
<td><a href="https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5"> stable-diffusion-v1-5/stable-diffusion-v1-5 </a></td>
<td><a href="https://huggingface.co/runwayml/stable-diffusion-v1-5"> runwayml/stable-diffusion-v1-5 </a></td>
</tr>
<tr>
<td>Text-to-Image</td>
@@ -174,7 +174,7 @@ Also, say 👋 in our public Discord channel <a href="https://discord.gg/G7tWnz9
<tr>
<td>Text-guided Image-to-Image</td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/img2img">Stable Diffusion Image-to-Image</a></td>
<td><a href="https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5"> stable-diffusion-v1-5/stable-diffusion-v1-5 </a></td>
<td><a href="https://huggingface.co/runwayml/stable-diffusion-v1-5"> runwayml/stable-diffusion-v1-5 </a></td>
</tr>
<tr style="border-top: 2px solid black">
<td>Text-guided Image Inpainting</td>
@@ -202,7 +202,6 @@ Also, say 👋 in our public Discord channel <a href="https://discord.gg/G7tWnz9
- https://github.com/microsoft/TaskMatrix
- https://github.com/invoke-ai/InvokeAI
- https://github.com/InstantID/InstantID
- https://github.com/apple/ml-stable-diffusion
- https://github.com/Sanster/lama-cleaner
- https://github.com/IDEA-Research/Grounded-Segment-Anything

View File

@@ -34,7 +34,7 @@ from utils import ( # noqa: E402
RESOLUTION_MAPPING = {
"Lykon/DreamShaper": (512, 512),
"runwayml/stable-diffusion-v1-5": (512, 512),
"lllyasviel/sd-controlnet-canny": (512, 512),
"diffusers/controlnet-canny-sdxl-1.0": (1024, 1024),
"TencentARC/t2iadapter_canny_sd14v1": (512, 512),
@@ -268,7 +268,7 @@ class IPAdapterTextToImageBenchmark(TextToImageBenchmark):
class ControlNetBenchmark(TextToImageBenchmark):
pipeline_class = StableDiffusionControlNetPipeline
aux_network_class = ControlNetModel
root_ckpt = "Lykon/DreamShaper"
root_ckpt = "runwayml/stable-diffusion-v1-5"
url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/benchmarking/canny_image_condition.png"
image = load_image(url).convert("RGB")
@@ -311,7 +311,7 @@ class ControlNetSDXLBenchmark(ControlNetBenchmark):
class T2IAdapterBenchmark(ControlNetBenchmark):
pipeline_class = StableDiffusionAdapterPipeline
aux_network_class = T2IAdapter
root_ckpt = "Lykon/DreamShaper"
root_ckpt = "CompVis/stable-diffusion-v1-4"
url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/benchmarking/canny_for_adapter.png"
image = load_image(url).convert("L")

View File

@@ -7,8 +7,7 @@ from base_classes import IPAdapterTextToImageBenchmark # noqa: E402
IP_ADAPTER_CKPTS = {
# because original SD v1.5 has been taken down.
"Lykon/DreamShaper": ("h94/IP-Adapter", "ip-adapter_sd15.bin"),
"runwayml/stable-diffusion-v1-5": ("h94/IP-Adapter", "ip-adapter_sd15.bin"),
"stabilityai/stable-diffusion-xl-base-1.0": ("h94/IP-Adapter", "ip-adapter_sdxl.bin"),
}
@@ -18,7 +17,7 @@ if __name__ == "__main__":
parser.add_argument(
"--ckpt",
type=str,
default="rstabilityai/stable-diffusion-xl-base-1.0",
default="runwayml/stable-diffusion-v1-5",
choices=list(IP_ADAPTER_CKPTS.keys()),
)
parser.add_argument("--batch_size", type=int, default=1)

View File

@@ -11,9 +11,9 @@ if __name__ == "__main__":
parser.add_argument(
"--ckpt",
type=str,
default="Lykon/DreamShaper",
default="runwayml/stable-diffusion-v1-5",
choices=[
"Lykon/DreamShaper",
"runwayml/stable-diffusion-v1-5",
"stabilityai/stable-diffusion-2-1",
"stabilityai/stable-diffusion-xl-refiner-1.0",
"stabilityai/sdxl-turbo",

View File

@@ -11,9 +11,9 @@ if __name__ == "__main__":
parser.add_argument(
"--ckpt",
type=str,
default="Lykon/DreamShaper",
default="runwayml/stable-diffusion-v1-5",
choices=[
"Lykon/DreamShaper",
"runwayml/stable-diffusion-v1-5",
"stabilityai/stable-diffusion-2-1",
"stabilityai/stable-diffusion-xl-base-1.0",
],

View File

@@ -7,7 +7,7 @@ from base_classes import TextToImageBenchmark, TurboTextToImageBenchmark # noqa
ALL_T2I_CKPTS = [
"Lykon/DreamShaper",
"runwayml/stable-diffusion-v1-5",
"segmind/SSD-1B",
"stabilityai/stable-diffusion-xl-base-1.0",
"kandinsky-community/kandinsky-2-2-decoder",
@@ -21,7 +21,7 @@ if __name__ == "__main__":
parser.add_argument(
"--ckpt",
type=str,
default="Lykon/DreamShaper",
default="runwayml/stable-diffusion-v1-5",
choices=ALL_T2I_CKPTS,
)
parser.add_argument("--batch_size", type=int, default=1)

View File

@@ -3,7 +3,7 @@ import sys
import pandas as pd
from huggingface_hub import hf_hub_download, upload_file
from huggingface_hub.utils import EntryNotFoundError
from huggingface_hub.utils._errors import EntryNotFoundError
sys.path.append(".")

View File

@@ -43,7 +43,6 @@ RUN python3 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
numpy==1.26.4 \
scipy \
tensorboard \
transformers \
hf_transfer
transformers
CMD ["/bin/bash"]

View File

@@ -45,7 +45,6 @@ RUN python3 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
numpy==1.26.4 \
scipy \
tensorboard \
transformers \
hf_transfer
transformers
CMD ["/bin/bash"]

View File

@@ -28,9 +28,9 @@ ENV PATH="/opt/venv/bin:$PATH"
# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
RUN python3 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
python3 -m uv pip install --no-cache-dir \
torch \
torchvision \
torchaudio\
torch==2.1.2 \
torchvision==0.16.2 \
torchaudio==2.1.2 \
onnxruntime \
--extra-index-url https://download.pytorch.org/whl/cpu && \
python3 -m uv pip install --no-cache-dir \
@@ -43,7 +43,6 @@ RUN python3 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
numpy==1.26.4 \
scipy \
tensorboard \
transformers \
hf_transfer
transformers
CMD ["/bin/bash"]

View File

@@ -44,7 +44,6 @@ RUN python3.10 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
numpy==1.26.4 \
scipy \
tensorboard \
transformers \
hf_transfer
transformers
CMD ["/bin/bash"]

View File

@@ -3,9 +3,6 @@ LABEL maintainer="Hugging Face"
LABEL repository="diffusers"
ENV DEBIAN_FRONTEND=noninteractive
ENV MINIMUM_SUPPORTED_TORCH_VERSION="2.1.0"
ENV MINIMUM_SUPPORTED_TORCHVISION_VERSION="0.16.0"
ENV MINIMUM_SUPPORTED_TORCHAUDIO_VERSION="2.1.0"
RUN apt-get -y update \
&& apt-get install -y software-properties-common \
@@ -32,9 +29,9 @@ ENV PATH="/opt/venv/bin:$PATH"
# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
RUN python3.10 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
python3.10 -m uv pip install --no-cache-dir \
torch==$MINIMUM_SUPPORTED_TORCH_VERSION \
torchvision==$MINIMUM_SUPPORTED_TORCHVISION_VERSION \
torchaudio==$MINIMUM_SUPPORTED_TORCHAUDIO_VERSION \
torch \
torchvision \
torchaudio \
invisible_watermark && \
python3.10 -m pip install --no-cache-dir \
accelerate \
@@ -47,7 +44,6 @@ RUN python3.10 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
numpy==1.26.4 \
scipy \
tensorboard \
transformers \
hf_transfer
transformers
CMD ["/bin/bash"]

View File

@@ -44,7 +44,6 @@ RUN python3.10 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
numpy==1.26.4 \
scipy \
tensorboard \
transformers matplotlib \
hf_transfer
transformers matplotlib
CMD ["/bin/bash"]

View File

@@ -45,7 +45,6 @@ RUN python3.10 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
scipy \
tensorboard \
transformers \
pytorch-lightning \
hf_transfer
pytorch-lightning
CMD ["/bin/bash"]

View File

@@ -45,7 +45,6 @@ RUN python3.10 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
scipy \
tensorboard \
transformers \
xformers \
hf_transfer
xformers
CMD ["/bin/bash"]

View File

@@ -17,6 +17,12 @@
title: AutoPipeline
- local: tutorials/basic_training
title: Train a diffusion model
- local: tutorials/using_peft_for_inference
title: Load LoRAs for inference
- local: tutorials/fast_diffusion
title: Accelerate inference of text-to-image diffusion models
- local: tutorials/inference_with_big_models
title: Working with big models
title: Tutorials
- sections:
- local: using-diffusers/loading
@@ -27,24 +33,11 @@
title: Load schedulers and models
- local: using-diffusers/other-formats
title: Model files and layouts
- local: using-diffusers/loading_adapters
title: Load adapters
- local: using-diffusers/push_to_hub
title: Push files to the Hub
title: Load pipelines and adapters
- sections:
- local: tutorials/using_peft_for_inference
title: LoRA
- local: using-diffusers/ip_adapter
title: IP-Adapter
- local: using-diffusers/controlnet
title: ControlNet
- local: using-diffusers/t2i_adapter
title: T2I-Adapter
- local: using-diffusers/dreambooth
title: DreamBooth
- local: using-diffusers/textual_inversion_inference
title: Textual inversion
title: Adapters
isExpanded: false
- sections:
- local: using-diffusers/unconditional_image_generation
title: Unconditional image generation
@@ -55,17 +48,17 @@
- local: using-diffusers/inpaint
title: Inpainting
- local: using-diffusers/text-img2vid
title: Video generation
title: Text or image-to-video
- local: using-diffusers/depth2img
title: Depth-to-image
title: Generative tasks
- sections:
- local: using-diffusers/overview_techniques
title: Overview
- local: using-diffusers/create_a_server
title: Create a server
- local: training/distributed_inference
title: Distributed inference
title: Distributed inference with multiple GPUs
- local: using-diffusers/merge_loras
title: Merge LoRAs
- local: using-diffusers/scheduler_features
title: Scheduler features
- local: using-diffusers/callback
@@ -82,32 +75,24 @@
title: Outpainting
title: Advanced inference
- sections:
- local: hybrid_inference/overview
title: Overview
- local: hybrid_inference/vae_decode
title: VAE Decode
- local: hybrid_inference/vae_encode
title: VAE Encode
- local: hybrid_inference/api_reference
title: API Reference
title: Hybrid Inference
- sections:
- local: using-diffusers/cogvideox
title: CogVideoX
- local: using-diffusers/consisid
title: ConsisID
- local: using-diffusers/sdxl
title: Stable Diffusion XL
- local: using-diffusers/sdxl_turbo
title: SDXL Turbo
- local: using-diffusers/kandinsky
title: Kandinsky
- local: using-diffusers/omnigen
title: OmniGen
- local: using-diffusers/ip_adapter
title: IP-Adapter
- local: using-diffusers/pag
title: PAG
- local: using-diffusers/controlnet
title: ControlNet
- local: using-diffusers/t2i_adapter
title: T2I-Adapter
- local: using-diffusers/inference_with_lcm
title: Latent Consistency Model
- local: using-diffusers/textual_inversion_inference
title: Textual inversion
- local: using-diffusers/shap-e
title: Shap-E
- local: using-diffusers/diffedit
@@ -144,8 +129,6 @@
title: T2I-Adapters
- local: training/instructpix2pix
title: InstructPix2Pix
- local: training/cogvideox
title: CogVideoX
title: Models
- isExpanded: false
sections:
@@ -163,21 +146,9 @@
title: Reinforcement learning training with DDPO
title: Methods
title: Training
- sections:
- local: quantization/overview
title: Getting Started
- local: quantization/bitsandbytes
title: bitsandbytes
- local: quantization/gguf
title: gguf
- local: quantization/torchao
title: torchao
- local: quantization/quanto
title: quanto
title: Quantization Methods
- sections:
- local: optimization/fp16
title: Accelerate inference
title: Speed up inference
- local: optimization/memory
title: Reduce memory usage
- local: optimization/torch2.0
@@ -190,10 +161,6 @@
title: DeepCache
- local: optimization/tgate
title: TGATE
- local: optimization/xdit
title: xDiT
- local: optimization/para_attn
title: ParaAttention
- sections:
- local: using-diffusers/stable_diffusion_jax_how_to
title: JAX/Flax
@@ -208,9 +175,7 @@
- local: optimization/mps
title: Metal Performance Shaders (MPS)
- local: optimization/habana
title: Intel Gaudi
- local: optimization/neuron
title: AWS Neuron
title: Habana Gaudi
title: Optimized hardware
title: Accelerate inference and reduce memory
- sections:
@@ -225,10 +190,6 @@
- local: conceptual/evaluation
title: Evaluating Diffusion Models
title: Conceptual Guides
- sections:
- local: community_projects
title: Projects built with Diffusers
title: Community Projects
- sections:
- isExpanded: false
sections:
@@ -238,8 +199,6 @@
title: Logging
- local: api/outputs
title: Outputs
- local: api/quantization
title: Quantization
title: Main Classes
- isExpanded: false
sections:
@@ -253,8 +212,6 @@
title: Textual Inversion
- local: api/loaders/unet
title: UNet
- local: api/loaders/transformer_sd3
title: SD3Transformer2D
- local: api/loaders/peft
title: PEFT
title: Loaders
@@ -262,135 +219,67 @@
sections:
- local: api/models/overview
title: Overview
- local: api/models/auto_model
title: AutoModel
- sections:
- local: api/models/controlnet
title: ControlNetModel
- local: api/models/controlnet_union
title: ControlNetUnionModel
- local: api/models/controlnet_flux
title: FluxControlNetModel
- local: api/models/controlnet_hunyuandit
title: HunyuanDiT2DControlNetModel
- local: api/models/controlnet_sana
title: SanaControlNetModel
- local: api/models/controlnet_sd3
title: SD3ControlNetModel
- local: api/models/controlnet_sparsectrl
title: SparseControlNetModel
title: ControlNets
- sections:
- local: api/models/allegro_transformer3d
title: AllegroTransformer3DModel
- local: api/models/aura_flow_transformer2d
title: AuraFlowTransformer2DModel
- local: api/models/cogvideox_transformer3d
title: CogVideoXTransformer3DModel
- local: api/models/cogview3plus_transformer2d
title: CogView3PlusTransformer2DModel
- local: api/models/cogview4_transformer2d
title: CogView4Transformer2DModel
- local: api/models/consisid_transformer3d
title: ConsisIDTransformer3DModel
- local: api/models/cosmos_transformer3d
title: CosmosTransformer3DModel
- local: api/models/dit_transformer2d
title: DiTTransformer2DModel
- local: api/models/easyanimate_transformer3d
title: EasyAnimateTransformer3DModel
- local: api/models/flux_transformer
title: FluxTransformer2DModel
- local: api/models/hidream_image_transformer
title: HiDreamImageTransformer2DModel
- local: api/models/hunyuan_transformer2d
title: HunyuanDiT2DModel
- local: api/models/hunyuan_video_transformer_3d
title: HunyuanVideoTransformer3DModel
- local: api/models/latte_transformer3d
title: LatteTransformer3DModel
- local: api/models/ltx_video_transformer3d
title: LTXVideoTransformer3DModel
- local: api/models/lumina2_transformer2d
title: Lumina2Transformer2DModel
- local: api/models/lumina_nextdit2d
title: LuminaNextDiT2DModel
- local: api/models/mochi_transformer3d
title: MochiTransformer3DModel
- local: api/models/omnigen_transformer
title: OmniGenTransformer2DModel
- local: api/models/pixart_transformer2d
title: PixArtTransformer2DModel
- local: api/models/prior_transformer
title: PriorTransformer
- local: api/models/sana_transformer2d
title: SanaTransformer2DModel
- local: api/models/sd3_transformer2d
title: SD3Transformer2DModel
- local: api/models/stable_audio_transformer
title: StableAudioDiTModel
- local: api/models/transformer2d
title: Transformer2DModel
- local: api/models/transformer_temporal
title: TransformerTemporalModel
- local: api/models/wan_transformer_3d
title: WanTransformer3DModel
title: Transformers
- sections:
- local: api/models/stable_cascade_unet
title: StableCascadeUNet
- local: api/models/unet
title: UNet1DModel
- local: api/models/unet2d-cond
title: UNet2DConditionModel
- local: api/models/unet2d
title: UNet2DModel
- local: api/models/unet3d-cond
title: UNet3DConditionModel
- local: api/models/unet-motion
title: UNetMotionModel
- local: api/models/uvit2d
title: UViT2DModel
title: UNets
- sections:
- local: api/models/asymmetricautoencoderkl
title: AsymmetricAutoencoderKL
- local: api/models/autoencoder_dc
title: AutoencoderDC
- local: api/models/autoencoderkl
title: AutoencoderKL
- local: api/models/autoencoderkl_allegro
title: AutoencoderKLAllegro
- local: api/models/autoencoderkl_cogvideox
title: AutoencoderKLCogVideoX
- local: api/models/autoencoderkl_cosmos
title: AutoencoderKLCosmos
- local: api/models/autoencoder_kl_hunyuan_video
title: AutoencoderKLHunyuanVideo
- local: api/models/autoencoderkl_ltx_video
title: AutoencoderKLLTXVideo
- local: api/models/autoencoderkl_magvit
title: AutoencoderKLMagvit
- local: api/models/autoencoderkl_mochi
title: AutoencoderKLMochi
- local: api/models/autoencoder_kl_wan
title: AutoencoderKLWan
- local: api/models/consistency_decoder_vae
title: ConsistencyDecoderVAE
- local: api/models/autoencoder_oobleck
title: Oobleck AutoEncoder
- local: api/models/autoencoder_tiny
title: Tiny AutoEncoder
- local: api/models/vq
title: VQModel
title: VAEs
- local: api/models/unet
title: UNet1DModel
- local: api/models/unet2d
title: UNet2DModel
- local: api/models/unet2d-cond
title: UNet2DConditionModel
- local: api/models/unet3d-cond
title: UNet3DConditionModel
- local: api/models/unet-motion
title: UNetMotionModel
- local: api/models/uvit2d
title: UViT2DModel
- local: api/models/vq
title: VQModel
- local: api/models/autoencoderkl
title: AutoencoderKL
- local: api/models/asymmetricautoencoderkl
title: AsymmetricAutoencoderKL
- local: api/models/autoencoder_tiny
title: Tiny AutoEncoder
- local: api/models/autoencoder_oobleck
title: Oobleck AutoEncoder
- local: api/models/consistency_decoder_vae
title: ConsistencyDecoderVAE
- local: api/models/transformer2d
title: Transformer2DModel
- local: api/models/pixart_transformer2d
title: PixArtTransformer2DModel
- local: api/models/dit_transformer2d
title: DiTTransformer2DModel
- local: api/models/hunyuan_transformer2d
title: HunyuanDiT2DModel
- local: api/models/aura_flow_transformer2d
title: AuraFlowTransformer2DModel
- local: api/models/flux_transformer
title: FluxTransformer2DModel
- local: api/models/latte_transformer3d
title: LatteTransformer3DModel
- local: api/models/lumina_nextdit2d
title: LuminaNextDiT2DModel
- local: api/models/transformer_temporal
title: TransformerTemporalModel
- local: api/models/sd3_transformer2d
title: SD3Transformer2DModel
- local: api/models/stable_audio_transformer
title: StableAudioDiTModel
- local: api/models/prior_transformer
title: PriorTransformer
- local: api/models/controlnet
title: ControlNetModel
- local: api/models/controlnet_hunyuandit
title: HunyuanDiT2DControlNetModel
- local: api/models/controlnet_sd3
title: SD3ControlNetModel
- local: api/models/controlnet_sparsectrl
title: SparseControlNetModel
title: Models
- isExpanded: false
sections:
- local: api/pipelines/overview
title: Overview
- local: api/pipelines/allegro
title: Allegro
- local: api/pipelines/amused
title: aMUSEd
- local: api/pipelines/animatediff
@@ -407,36 +296,20 @@
title: AutoPipeline
- local: api/pipelines/blip_diffusion
title: BLIP-Diffusion
- local: api/pipelines/cogvideox
title: CogVideoX
- local: api/pipelines/cogview3
title: CogView3
- local: api/pipelines/cogview4
title: CogView4
- local: api/pipelines/consisid
title: ConsisID
- local: api/pipelines/consistency_models
title: Consistency Models
- local: api/pipelines/controlnet
title: ControlNet
- local: api/pipelines/controlnet_flux
title: ControlNet with Flux.1
- local: api/pipelines/controlnet_hunyuandit
title: ControlNet with Hunyuan-DiT
- local: api/pipelines/controlnet_sd3
title: ControlNet with Stable Diffusion 3
- local: api/pipelines/controlnet_sdxl
title: ControlNet with Stable Diffusion XL
- local: api/pipelines/controlnet_sana
title: ControlNet-Sana
- local: api/pipelines/controlnetxs
title: ControlNet-XS
- local: api/pipelines/controlnetxs_sdxl
title: ControlNet-XS with Stable Diffusion XL
- local: api/pipelines/controlnet_union
title: ControlNetUnion
- local: api/pipelines/cosmos
title: Cosmos
- local: api/pipelines/dance_diffusion
title: Dance Diffusion
- local: api/pipelines/ddim
@@ -449,20 +322,10 @@
title: DiffEdit
- local: api/pipelines/dit
title: DiT
- local: api/pipelines/easyanimate
title: EasyAnimate
- local: api/pipelines/flux
title: Flux
- local: api/pipelines/control_flux_inpaint
title: FluxControlInpaint
- local: api/pipelines/framepack
title: Framepack
- local: api/pipelines/hidream
title: HiDream-I1
- local: api/pipelines/hunyuandit
title: Hunyuan-DiT
- local: api/pipelines/hunyuan_video
title: HunyuanVideo
- local: api/pipelines/i2vgenxl
title: I2VGen-XL
- local: api/pipelines/pix2pix
@@ -483,22 +346,14 @@
title: Latte
- local: api/pipelines/ledits_pp
title: LEDITS++
- local: api/pipelines/ltx_video
title: LTXVideo
- local: api/pipelines/lumina2
title: Lumina 2.0
- local: api/pipelines/lumina
title: Lumina-T2X
- local: api/pipelines/marigold
title: Marigold
- local: api/pipelines/mochi
title: Mochi
- local: api/pipelines/panorama
title: MultiDiffusion
- local: api/pipelines/musicldm
title: MusicLDM
- local: api/pipelines/omnigen
title: OmniGen
- local: api/pipelines/pag
title: PAG
- local: api/pipelines/paint_by_example
@@ -509,10 +364,6 @@
title: PixArt-α
- local: api/pipelines/pixart_sigma
title: PixArt-Σ
- local: api/pipelines/sana
title: Sana
- local: api/pipelines/sana_sprint
title: Sana Sprint
- local: api/pipelines/self_attention_guidance
title: Self-Attention Guidance
- local: api/pipelines/semantic_stable_diffusion
@@ -526,40 +377,40 @@
- sections:
- local: api/pipelines/stable_diffusion/overview
title: Overview
- local: api/pipelines/stable_diffusion/depth2img
title: Depth-to-image
- local: api/pipelines/stable_diffusion/gligen
title: GLIGEN (Grounded Language-to-Image Generation)
- local: api/pipelines/stable_diffusion/image_variation
title: Image variation
- local: api/pipelines/stable_diffusion/text2img
title: Text-to-image
- local: api/pipelines/stable_diffusion/img2img
title: Image-to-image
- local: api/pipelines/stable_diffusion/svd
title: Image-to-video
- local: api/pipelines/stable_diffusion/inpaint
title: Inpainting
- local: api/pipelines/stable_diffusion/k_diffusion
title: K-Diffusion
- local: api/pipelines/stable_diffusion/latent_upscale
title: Latent upscaler
- local: api/pipelines/stable_diffusion/ldm3d_diffusion
title: LDM3D Text-to-(RGB, Depth), Text-to-(RGB-pano, Depth-pano), LDM3D Upscaler
- local: api/pipelines/stable_diffusion/depth2img
title: Depth-to-image
- local: api/pipelines/stable_diffusion/image_variation
title: Image variation
- local: api/pipelines/stable_diffusion/stable_diffusion_safe
title: Safe Stable Diffusion
- local: api/pipelines/stable_diffusion/sdxl_turbo
title: SDXL Turbo
- local: api/pipelines/stable_diffusion/stable_diffusion_2
title: Stable Diffusion 2
- local: api/pipelines/stable_diffusion/stable_diffusion_3
title: Stable Diffusion 3
- local: api/pipelines/stable_diffusion/stable_diffusion_xl
title: Stable Diffusion XL
- local: api/pipelines/stable_diffusion/sdxl_turbo
title: SDXL Turbo
- local: api/pipelines/stable_diffusion/latent_upscale
title: Latent upscaler
- local: api/pipelines/stable_diffusion/upscale
title: Super-resolution
- local: api/pipelines/stable_diffusion/k_diffusion
title: K-Diffusion
- local: api/pipelines/stable_diffusion/ldm3d_diffusion
title: LDM3D Text-to-(RGB, Depth), Text-to-(RGB-pano, Depth-pano), LDM3D Upscaler
- local: api/pipelines/stable_diffusion/adapter
title: T2I-Adapter
- local: api/pipelines/stable_diffusion/text2img
title: Text-to-image
- local: api/pipelines/stable_diffusion/gligen
title: GLIGEN (Grounded Language-to-Image Generation)
title: Stable Diffusion
- local: api/pipelines/stable_unclip
title: Stable unCLIP
@@ -573,10 +424,6 @@
title: UniDiffuser
- local: api/pipelines/value_guided_sampling
title: Value-guided sampling
- local: api/pipelines/visualcloze
title: VisualCloze
- local: api/pipelines/wan
title: Wan
- local: api/pipelines/wuerstchen
title: Wuerstchen
title: Pipelines
@@ -586,10 +433,6 @@
title: Overview
- local: api/schedulers/cm_stochastic_iterative
title: CMStochasticIterativeScheduler
- local: api/schedulers/ddim_cogvideox
title: CogVideoXDDIMScheduler
- local: api/schedulers/multistep_dpm_solver_cogvideox
title: CogVideoXDPMScheduler
- local: api/schedulers/consistency_decoder
title: ConsistencyDecoderScheduler
- local: api/schedulers/cosine_dpm
@@ -659,8 +502,6 @@
title: Attention Processor
- local: api/activations
title: Custom activation functions
- local: api/cache
title: Caching methods
- local: api/normalization
title: Custom normalization layers
- local: api/utilities

View File

@@ -25,16 +25,3 @@ Customized activation functions for supporting various models in 🤗 Diffusers.
## ApproximateGELU
[[autodoc]] models.activations.ApproximateGELU
## SwiGLU
[[autodoc]] models.activations.SwiGLU
## FP32SiLU
[[autodoc]] models.activations.FP32SiLU
## LinearActivation
[[autodoc]] models.activations.LinearActivation

View File

@@ -15,152 +15,40 @@ specific language governing permissions and limitations under the License.
An attention processor is a class for applying different types of attention mechanisms.
## AttnProcessor
[[autodoc]] models.attention_processor.AttnProcessor
## AttnProcessor2_0
[[autodoc]] models.attention_processor.AttnProcessor2_0
## AttnAddedKVProcessor
[[autodoc]] models.attention_processor.AttnAddedKVProcessor
## AttnAddedKVProcessor2_0
[[autodoc]] models.attention_processor.AttnAddedKVProcessor2_0
[[autodoc]] models.attention_processor.AttnProcessorNPU
[[autodoc]] models.attention_processor.FusedAttnProcessor2_0
## Allegro
[[autodoc]] models.attention_processor.AllegroAttnProcessor2_0
## AuraFlow
[[autodoc]] models.attention_processor.AuraFlowAttnProcessor2_0
[[autodoc]] models.attention_processor.FusedAuraFlowAttnProcessor2_0
## CogVideoX
[[autodoc]] models.attention_processor.CogVideoXAttnProcessor2_0
[[autodoc]] models.attention_processor.FusedCogVideoXAttnProcessor2_0
## CrossFrameAttnProcessor
[[autodoc]] pipelines.text_to_video_synthesis.pipeline_text_to_video_zero.CrossFrameAttnProcessor
## Custom Diffusion
## CustomDiffusionAttnProcessor
[[autodoc]] models.attention_processor.CustomDiffusionAttnProcessor
## CustomDiffusionAttnProcessor2_0
[[autodoc]] models.attention_processor.CustomDiffusionAttnProcessor2_0
## CustomDiffusionXFormersAttnProcessor
[[autodoc]] models.attention_processor.CustomDiffusionXFormersAttnProcessor
## Flux
[[autodoc]] models.attention_processor.FluxAttnProcessor2_0
[[autodoc]] models.attention_processor.FusedFluxAttnProcessor2_0
[[autodoc]] models.attention_processor.FluxSingleAttnProcessor2_0
## Hunyuan
[[autodoc]] models.attention_processor.HunyuanAttnProcessor2_0
[[autodoc]] models.attention_processor.FusedHunyuanAttnProcessor2_0
[[autodoc]] models.attention_processor.PAGHunyuanAttnProcessor2_0
[[autodoc]] models.attention_processor.PAGCFGHunyuanAttnProcessor2_0
## IdentitySelfAttnProcessor2_0
[[autodoc]] models.attention_processor.PAGIdentitySelfAttnProcessor2_0
[[autodoc]] models.attention_processor.PAGCFGIdentitySelfAttnProcessor2_0
## IP-Adapter
[[autodoc]] models.attention_processor.IPAdapterAttnProcessor
[[autodoc]] models.attention_processor.IPAdapterAttnProcessor2_0
[[autodoc]] models.attention_processor.SD3IPAdapterJointAttnProcessor2_0
## JointAttnProcessor2_0
[[autodoc]] models.attention_processor.JointAttnProcessor2_0
[[autodoc]] models.attention_processor.PAGJointAttnProcessor2_0
[[autodoc]] models.attention_processor.PAGCFGJointAttnProcessor2_0
[[autodoc]] models.attention_processor.FusedJointAttnProcessor2_0
## LoRA
[[autodoc]] models.attention_processor.LoRAAttnProcessor
[[autodoc]] models.attention_processor.LoRAAttnProcessor2_0
[[autodoc]] models.attention_processor.LoRAAttnAddedKVProcessor
[[autodoc]] models.attention_processor.LoRAXFormersAttnProcessor
## Lumina-T2X
[[autodoc]] models.attention_processor.LuminaAttnProcessor2_0
## Mochi
[[autodoc]] models.attention_processor.MochiAttnProcessor2_0
[[autodoc]] models.attention_processor.MochiVaeAttnProcessor2_0
## Sana
[[autodoc]] models.attention_processor.SanaLinearAttnProcessor2_0
[[autodoc]] models.attention_processor.SanaMultiscaleAttnProcessor2_0
[[autodoc]] models.attention_processor.PAGCFGSanaLinearAttnProcessor2_0
[[autodoc]] models.attention_processor.PAGIdentitySanaLinearAttnProcessor2_0
## Stable Audio
[[autodoc]] models.attention_processor.StableAudioAttnProcessor2_0
## FusedAttnProcessor2_0
[[autodoc]] models.attention_processor.FusedAttnProcessor2_0
## SlicedAttnProcessor
[[autodoc]] models.attention_processor.SlicedAttnProcessor
## SlicedAttnAddedKVProcessor
[[autodoc]] models.attention_processor.SlicedAttnAddedKVProcessor
## XFormersAttnProcessor
[[autodoc]] models.attention_processor.XFormersAttnProcessor
[[autodoc]] models.attention_processor.XFormersAttnAddedKVProcessor
## XLAFlashAttnProcessor2_0
[[autodoc]] models.attention_processor.XLAFlashAttnProcessor2_0
## XFormersJointAttnProcessor
[[autodoc]] models.attention_processor.XFormersJointAttnProcessor
## IPAdapterXFormersAttnProcessor
[[autodoc]] models.attention_processor.IPAdapterXFormersAttnProcessor
## FluxIPAdapterJointAttnProcessor2_0
[[autodoc]] models.attention_processor.FluxIPAdapterJointAttnProcessor2_0
## XLAFluxFlashAttnProcessor2_0
[[autodoc]] models.attention_processor.XLAFluxFlashAttnProcessor2_0
## AttnProcessorNPU
[[autodoc]] models.attention_processor.AttnProcessorNPU

View File

@@ -1,82 +0,0 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# Caching methods
## Pyramid Attention Broadcast
[Pyramid Attention Broadcast](https://huggingface.co/papers/2408.12588) from Xuanlei Zhao, Xiaolong Jin, Kai Wang, Yang You.
Pyramid Attention Broadcast (PAB) is a method that speeds up inference in diffusion models by systematically skipping attention computations between successive inference steps and reusing cached attention states. The attention states are not very different between successive inference steps. The most prominent difference is in the spatial attention blocks, not as much in the temporal attention blocks, and finally the least in the cross attention blocks. Therefore, many cross attention computation blocks can be skipped, followed by the temporal and spatial attention blocks. By combining other techniques like sequence parallelism and classifier-free guidance parallelism, PAB achieves near real-time video generation.
Enable PAB with [`~PyramidAttentionBroadcastConfig`] on any pipeline. For some benchmarks, refer to [this](https://github.com/huggingface/diffusers/pull/9562) pull request.
```python
import torch
from diffusers import CogVideoXPipeline, PyramidAttentionBroadcastConfig
pipe = CogVideoXPipeline.from_pretrained("THUDM/CogVideoX-5b", torch_dtype=torch.bfloat16)
pipe.to("cuda")
# Increasing the value of `spatial_attention_timestep_skip_range[0]` or decreasing the value of
# `spatial_attention_timestep_skip_range[1]` will decrease the interval in which pyramid attention
# broadcast is active, leader to slower inference speeds. However, large intervals can lead to
# poorer quality of generated videos.
config = PyramidAttentionBroadcastConfig(
spatial_attention_block_skip_range=2,
spatial_attention_timestep_skip_range=(100, 800),
current_timestep_callback=lambda: pipe.current_timestep,
)
pipe.transformer.enable_cache(config)
```
## Faster Cache
[FasterCache](https://huggingface.co/papers/2410.19355) from Zhengyao Lv, Chenyang Si, Junhao Song, Zhenyu Yang, Yu Qiao, Ziwei Liu, Kwan-Yee K. Wong.
FasterCache is a method that speeds up inference in diffusion transformers by:
- Reusing attention states between successive inference steps, due to high similarity between them
- Skipping unconditional branch prediction used in classifier-free guidance by revealing redundancies between unconditional and conditional branch outputs for the same timestep, and therefore approximating the unconditional branch output using the conditional branch output
```python
import torch
from diffusers import CogVideoXPipeline, FasterCacheConfig
pipe = CogVideoXPipeline.from_pretrained("THUDM/CogVideoX-5b", torch_dtype=torch.bfloat16)
pipe.to("cuda")
config = FasterCacheConfig(
spatial_attention_block_skip_range=2,
spatial_attention_timestep_skip_range=(-1, 681),
current_timestep_callback=lambda: pipe.current_timestep,
attention_weight_callback=lambda _: 0.3,
unconditional_batch_skip_range=5,
unconditional_batch_timestep_skip_range=(-1, 781),
tensor_format="BFCHW",
)
pipe.transformer.enable_cache(config)
```
### CacheMixin
[[autodoc]] CacheMixin
### PyramidAttentionBroadcastConfig
[[autodoc]] PyramidAttentionBroadcastConfig
[[autodoc]] apply_pyramid_attention_broadcast
### FasterCacheConfig
[[autodoc]] FasterCacheConfig
[[autodoc]] apply_faster_cache

View File

@@ -24,12 +24,6 @@ Learn how to load an IP-Adapter checkpoint and image in the IP-Adapter [loading]
[[autodoc]] loaders.ip_adapter.IPAdapterMixin
## SD3IPAdapterMixin
[[autodoc]] loaders.ip_adapter.SD3IPAdapterMixin
- all
- is_ip_adapter_active
## IPAdapterMaskProcessor
[[autodoc]] image_processor.IPAdapterMaskProcessor

View File

@@ -17,18 +17,7 @@ LoRA is a fast and lightweight training method that inserts and trains a signifi
- [`StableDiffusionLoraLoaderMixin`] provides functions for loading and unloading, fusing and unfusing, enabling and disabling, and more functions for managing LoRA weights. This class can be used with any model.
- [`StableDiffusionXLLoraLoaderMixin`] is a [Stable Diffusion (SDXL)](../../api/pipelines/stable_diffusion/stable_diffusion_xl) version of the [`StableDiffusionLoraLoaderMixin`] class for loading and saving LoRA weights. It can only be used with the SDXL model.
- [`SD3LoraLoaderMixin`] provides similar functions for [Stable Diffusion 3](https://huggingface.co/blog/sd3).
- [`FluxLoraLoaderMixin`] provides similar functions for [Flux](https://huggingface.co/docs/diffusers/main/en/api/pipelines/flux).
- [`CogVideoXLoraLoaderMixin`] provides similar functions for [CogVideoX](https://huggingface.co/docs/diffusers/main/en/api/pipelines/cogvideox).
- [`Mochi1LoraLoaderMixin`] provides similar functions for [Mochi](https://huggingface.co/docs/diffusers/main/en/api/pipelines/mochi).
- [`AuraFlowLoraLoaderMixin`] provides similar functions for [AuraFlow](https://huggingface.co/fal/AuraFlow).
- [`LTXVideoLoraLoaderMixin`] provides similar functions for [LTX-Video](https://huggingface.co/docs/diffusers/main/en/api/pipelines/ltx_video).
- [`SanaLoraLoaderMixin`] provides similar functions for [Sana](https://huggingface.co/docs/diffusers/main/en/api/pipelines/sana).
- [`HunyuanVideoLoraLoaderMixin`] provides similar functions for [HunyuanVideo](https://huggingface.co/docs/diffusers/main/en/api/pipelines/hunyuan_video).
- [`Lumina2LoraLoaderMixin`] provides similar functions for [Lumina2](https://huggingface.co/docs/diffusers/main/en/api/pipelines/lumina2).
- [`WanLoraLoaderMixin`] provides similar functions for [Wan](https://huggingface.co/docs/diffusers/main/en/api/pipelines/wan).
- [`CogView4LoraLoaderMixin`] provides similar functions for [CogView4](https://huggingface.co/docs/diffusers/main/en/api/pipelines/cogview4).
- [`AmusedLoraLoaderMixin`] is for the [`AmusedPipeline`].
- [`HiDreamImageLoraLoaderMixin`] provides similar functions for [HiDream Image](https://huggingface.co/docs/diffusers/main/en/api/pipelines/hidream)
- [`LoraBaseMixin`] provides a base class with several utility methods to fuse, unfuse, unload, LoRAs and more.
<Tip>
@@ -49,53 +38,10 @@ To learn more about how to load LoRA weights, see the [LoRA](../../using-diffuse
[[autodoc]] loaders.lora_pipeline.SD3LoraLoaderMixin
## FluxLoraLoaderMixin
[[autodoc]] loaders.lora_pipeline.FluxLoraLoaderMixin
## CogVideoXLoraLoaderMixin
[[autodoc]] loaders.lora_pipeline.CogVideoXLoraLoaderMixin
## Mochi1LoraLoaderMixin
[[autodoc]] loaders.lora_pipeline.Mochi1LoraLoaderMixin
## AuraFlowLoraLoaderMixin
[[autodoc]] loaders.lora_pipeline.AuraFlowLoraLoaderMixin
## LTXVideoLoraLoaderMixin
[[autodoc]] loaders.lora_pipeline.LTXVideoLoraLoaderMixin
## SanaLoraLoaderMixin
[[autodoc]] loaders.lora_pipeline.SanaLoraLoaderMixin
## HunyuanVideoLoraLoaderMixin
[[autodoc]] loaders.lora_pipeline.HunyuanVideoLoraLoaderMixin
## Lumina2LoraLoaderMixin
[[autodoc]] loaders.lora_pipeline.Lumina2LoraLoaderMixin
## CogView4LoraLoaderMixin
[[autodoc]] loaders.lora_pipeline.CogView4LoraLoaderMixin
## WanLoraLoaderMixin
[[autodoc]] loaders.lora_pipeline.WanLoraLoaderMixin
## AmusedLoraLoaderMixin
[[autodoc]] loaders.lora_pipeline.AmusedLoraLoaderMixin
## HiDreamImageLoraLoaderMixin
[[autodoc]] loaders.lora_pipeline.HiDreamImageLoraLoaderMixin
## LoraBaseMixin
[[autodoc]] loaders.lora_base.LoraBaseMixin

View File

@@ -22,6 +22,7 @@ The [`~loaders.FromSingleFileMixin.from_single_file`] method allows you to load:
## Supported pipelines
- [`CogVideoXPipeline`]
- [`StableDiffusionPipeline`]
- [`StableDiffusionImg2ImgPipeline`]
- [`StableDiffusionInpaintPipeline`]
@@ -49,9 +50,9 @@ The [`~loaders.FromSingleFileMixin.from_single_file`] method allows you to load:
- [`UNet2DConditionModel`]
- [`StableCascadeUNet`]
- [`AutoencoderKL`]
- [`AutoencoderKLCogVideoX`]
- [`ControlNetModel`]
- [`SD3Transformer2DModel`]
- [`FluxTransformer2DModel`]
## FromSingleFileMixin

View File

@@ -1,29 +0,0 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# SD3Transformer2D
This class is useful when *only* loading weights into a [`SD3Transformer2DModel`]. If you need to load weights into the text encoder or a text encoder and SD3Transformer2DModel, check [`SD3LoraLoaderMixin`](lora#diffusers.loaders.SD3LoraLoaderMixin) class instead.
The [`SD3Transformer2DLoadersMixin`] class currently only loads IP-Adapter weights, but will be used in the future to save weights and load LoRAs.
<Tip>
To learn more about how to load LoRA weights, see the [LoRA](../../using-diffusers/loading_adapters#lora) loading guide.
</Tip>
## SD3Transformer2DLoadersMixin
[[autodoc]] loaders.transformer_sd3.SD3Transformer2DLoadersMixin
- all
- _load_ip_adapter_weights

View File

@@ -1,30 +0,0 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# AllegroTransformer3DModel
A Diffusion Transformer model for 3D data from [Allegro](https://github.com/rhymes-ai/Allegro) was introduced in [Allegro: Open the Black Box of Commercial-Level Video Generation Model](https://huggingface.co/papers/2410.15458) by RhymesAI.
The model can be loaded with the following code snippet.
```python
from diffusers import AllegroTransformer3DModel
transformer = AllegroTransformer3DModel.from_pretrained("rhymes-ai/Allegro", subfolder="transformer", torch_dtype=torch.bfloat16).to("cuda")
```
## AllegroTransformer3DModel
[[autodoc]] AllegroTransformer3DModel
## Transformer2DModelOutput
[[autodoc]] models.modeling_outputs.Transformer2DModelOutput

View File

@@ -12,7 +12,7 @@ specific language governing permissions and limitations under the License.
# AsymmetricAutoencoderKL
Improved larger variational autoencoder (VAE) model with KL loss for inpainting task: [Designing a Better Asymmetric VQGAN for StableDiffusion](https://huggingface.co/papers/2306.04632) by Zixin Zhu, Xuelu Feng, Dongdong Chen, Jianmin Bao, Le Wang, Yinpeng Chen, Lu Yuan, Gang Hua.
Improved larger variational autoencoder (VAE) model with KL loss for inpainting task: [Designing a Better Asymmetric VQGAN for StableDiffusion](https://arxiv.org/abs/2306.04632) by Zixin Zhu, Xuelu Feng, Dongdong Chen, Jianmin Bao, Le Wang, Yinpeng Chen, Lu Yuan, Gang Hua.
The abstract from the paper is:

View File

@@ -1,29 +0,0 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# AutoModel
The `AutoModel` is designed to make it easy to load a checkpoint without needing to know the specific model class. `AutoModel` automatically retrieves the correct model class from the checkpoint `config.json` file.
```python
from diffusers import AutoModel, AutoPipelineForText2Image
unet = AutoModel.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", subfolder="unet")
pipe = AutoPipelineForText2Image.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", unet=unet)
```
## AutoModel
[[autodoc]] AutoModel
- all
- from_pretrained

View File

@@ -1,72 +0,0 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# AutoencoderDC
The 2D Autoencoder model used in [SANA](https://huggingface.co/papers/2410.10629) and introduced in [DCAE](https://huggingface.co/papers/2410.10733) by authors Junyu Chen\*, Han Cai\*, Junsong Chen, Enze Xie, Shang Yang, Haotian Tang, Muyang Li, Yao Lu, Song Han from MIT HAN Lab.
The abstract from the paper is:
*We present Deep Compression Autoencoder (DC-AE), a new family of autoencoder models for accelerating high-resolution diffusion models. Existing autoencoder models have demonstrated impressive results at a moderate spatial compression ratio (e.g., 8x), but fail to maintain satisfactory reconstruction accuracy for high spatial compression ratios (e.g., 64x). We address this challenge by introducing two key techniques: (1) Residual Autoencoding, where we design our models to learn residuals based on the space-to-channel transformed features to alleviate the optimization difficulty of high spatial-compression autoencoders; (2) Decoupled High-Resolution Adaptation, an efficient decoupled three-phases training strategy for mitigating the generalization penalty of high spatial-compression autoencoders. With these designs, we improve the autoencoder's spatial compression ratio up to 128 while maintaining the reconstruction quality. Applying our DC-AE to latent diffusion models, we achieve significant speedup without accuracy drop. For example, on ImageNet 512x512, our DC-AE provides 19.1x inference speedup and 17.9x training speedup on H100 GPU for UViT-H while achieving a better FID, compared with the widely used SD-VAE-f8 autoencoder. Our code is available at [this https URL](https://github.com/mit-han-lab/efficientvit).*
The following DCAE models are released and supported in Diffusers.
| Diffusers format | Original format |
|:----------------:|:---------------:|
| [`mit-han-lab/dc-ae-f32c32-sana-1.0-diffusers`](https://huggingface.co/mit-han-lab/dc-ae-f32c32-sana-1.0-diffusers) | [`mit-han-lab/dc-ae-f32c32-sana-1.0`](https://huggingface.co/mit-han-lab/dc-ae-f32c32-sana-1.0)
| [`mit-han-lab/dc-ae-f32c32-in-1.0-diffusers`](https://huggingface.co/mit-han-lab/dc-ae-f32c32-in-1.0-diffusers) | [`mit-han-lab/dc-ae-f32c32-in-1.0`](https://huggingface.co/mit-han-lab/dc-ae-f32c32-in-1.0)
| [`mit-han-lab/dc-ae-f32c32-mix-1.0-diffusers`](https://huggingface.co/mit-han-lab/dc-ae-f32c32-mix-1.0-diffusers) | [`mit-han-lab/dc-ae-f32c32-mix-1.0`](https://huggingface.co/mit-han-lab/dc-ae-f32c32-mix-1.0)
| [`mit-han-lab/dc-ae-f64c128-in-1.0-diffusers`](https://huggingface.co/mit-han-lab/dc-ae-f64c128-in-1.0-diffusers) | [`mit-han-lab/dc-ae-f64c128-in-1.0`](https://huggingface.co/mit-han-lab/dc-ae-f64c128-in-1.0)
| [`mit-han-lab/dc-ae-f64c128-mix-1.0-diffusers`](https://huggingface.co/mit-han-lab/dc-ae-f64c128-mix-1.0-diffusers) | [`mit-han-lab/dc-ae-f64c128-mix-1.0`](https://huggingface.co/mit-han-lab/dc-ae-f64c128-mix-1.0)
| [`mit-han-lab/dc-ae-f128c512-in-1.0-diffusers`](https://huggingface.co/mit-han-lab/dc-ae-f128c512-in-1.0-diffusers) | [`mit-han-lab/dc-ae-f128c512-in-1.0`](https://huggingface.co/mit-han-lab/dc-ae-f128c512-in-1.0)
| [`mit-han-lab/dc-ae-f128c512-mix-1.0-diffusers`](https://huggingface.co/mit-han-lab/dc-ae-f128c512-mix-1.0-diffusers) | [`mit-han-lab/dc-ae-f128c512-mix-1.0`](https://huggingface.co/mit-han-lab/dc-ae-f128c512-mix-1.0)
This model was contributed by [lawrence-cj](https://github.com/lawrence-cj).
Load a model in Diffusers format with [`~ModelMixin.from_pretrained`].
```python
from diffusers import AutoencoderDC
ae = AutoencoderDC.from_pretrained("mit-han-lab/dc-ae-f32c32-sana-1.0-diffusers", torch_dtype=torch.float32).to("cuda")
```
## Load a model in Diffusers via `from_single_file`
```python
from difusers import AutoencoderDC
ckpt_path = "https://huggingface.co/mit-han-lab/dc-ae-f32c32-sana-1.0/blob/main/model.safetensors"
model = AutoencoderDC.from_single_file(ckpt_path)
```
The `AutoencoderDC` model has `in` and `mix` single file checkpoint variants that have matching checkpoint keys, but use different scaling factors. It is not possible for Diffusers to automatically infer the correct config file to use with the model based on just the checkpoint and will default to configuring the model using the `mix` variant config file. To override the automatically determined config, please use the `config` argument when using single file loading with `in` variant checkpoints.
```python
from diffusers import AutoencoderDC
ckpt_path = "https://huggingface.co/mit-han-lab/dc-ae-f128c512-in-1.0/blob/main/model.safetensors"
model = AutoencoderDC.from_single_file(ckpt_path, config="mit-han-lab/dc-ae-f128c512-in-1.0-diffusers")
```
## AutoencoderDC
[[autodoc]] AutoencoderDC
- encode
- decode
- all
## DecoderOutput
[[autodoc]] models.autoencoders.vae.DecoderOutput

View File

@@ -1,32 +0,0 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# AutoencoderKLHunyuanVideo
The 3D variational autoencoder (VAE) model with KL loss used in [HunyuanVideo](https://github.com/Tencent/HunyuanVideo/), which was introduced in [HunyuanVideo: A Systematic Framework For Large Video Generative Models](https://huggingface.co/papers/2412.03603) by Tencent.
The model can be loaded with the following code snippet.
```python
from diffusers import AutoencoderKLHunyuanVideo
vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder="vae", torch_dtype=torch.float16)
```
## AutoencoderKLHunyuanVideo
[[autodoc]] AutoencoderKLHunyuanVideo
- decode
- all
## DecoderOutput
[[autodoc]] models.autoencoders.vae.DecoderOutput

View File

@@ -1,32 +0,0 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# AutoencoderKLWan
The 3D variational autoencoder (VAE) model with KL loss used in [Wan 2.1](https://github.com/Wan-Video/Wan2.1) by the Alibaba Wan Team.
The model can be loaded with the following code snippet.
```python
from diffusers import AutoencoderKLWan
vae = AutoencoderKLWan.from_pretrained("Wan-AI/Wan2.1-T2V-1.3B-Diffusers", subfolder="vae", torch_dtype=torch.float32)
```
## AutoencoderKLWan
[[autodoc]] AutoencoderKLWan
- decode
- all
## DecoderOutput
[[autodoc]] models.autoencoders.vae.DecoderOutput

View File

@@ -12,7 +12,7 @@ specific language governing permissions and limitations under the License.
# AutoencoderKL
The variational autoencoder (VAE) model with KL loss was introduced in [Auto-Encoding Variational Bayes](https://huggingface.co/papers/1312.6114v11) by Diederik P. Kingma and Max Welling. The model is used in 🤗 Diffusers to encode images into latents and to decode latent representations into images.
The variational autoencoder (VAE) model with KL loss was introduced in [Auto-Encoding Variational Bayes](https://arxiv.org/abs/1312.6114v11) by Diederik P. Kingma and Max Welling. The model is used in 🤗 Diffusers to encode images into latents and to decode latent representations into images.
The abstract from the paper is:

View File

@@ -1,37 +0,0 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# AutoencoderKLAllegro
The 3D variational autoencoder (VAE) model with KL loss used in [Allegro](https://github.com/rhymes-ai/Allegro) was introduced in [Allegro: Open the Black Box of Commercial-Level Video Generation Model](https://huggingface.co/papers/2410.15458) by RhymesAI.
The model can be loaded with the following code snippet.
```python
from diffusers import AutoencoderKLAllegro
vae = AutoencoderKLAllegro.from_pretrained("rhymes-ai/Allegro", subfolder="vae", torch_dtype=torch.float32).to("cuda")
```
## AutoencoderKLAllegro
[[autodoc]] AutoencoderKLAllegro
- decode
- encode
- all
## AutoencoderKLOutput
[[autodoc]] models.autoencoders.autoencoder_kl.AutoencoderKLOutput
## DecoderOutput
[[autodoc]] models.autoencoders.vae.DecoderOutput

View File

@@ -11,14 +11,18 @@ specific language governing permissions and limitations under the License. -->
# AutoencoderKLCogVideoX
The 3D variational autoencoder (VAE) model with KL loss used in [CogVideoX](https://github.com/THUDM/CogVideo) was introduced in [CogVideoX: Text-to-Video Diffusion Models with An Expert Transformer](https://github.com/THUDM/CogVideo/blob/main/resources/CogVideoX.pdf) by Tsinghua University & ZhipuAI.
The 3D variational autoencoder (VAE) model with KL loss using CogVideoX.
The model can be loaded with the following code snippet.
## Loading from the original format
```python
By default, the [`AutoencoderKLCogVideoX`] should be loaded with [`~ModelMixin.from_pretrained`], but it can also be loaded from the original format using [`FromOriginalModelMixin.from_single_file`] as follows:
```py
from diffusers import AutoencoderKLCogVideoX
vae = AutoencoderKLCogVideoX.from_pretrained("THUDM/CogVideoX-2b", subfolder="vae", torch_dtype=torch.float16).to("cuda")
url = "THUDM/CogVideoX-2b" # can also be a local file
model = AutoencoderKLCogVideoX.from_single_file(url)
```
## AutoencoderKLCogVideoX
@@ -28,10 +32,38 @@ vae = AutoencoderKLCogVideoX.from_pretrained("THUDM/CogVideoX-2b", subfolder="va
- encode
- all
## AutoencoderKLOutput
## CogVideoXSafeConv3d
[[autodoc]] models.autoencoders.autoencoder_kl.AutoencoderKLOutput
[[autodoc]] CogVideoXSafeConv3d
## DecoderOutput
## CogVideoXCausalConv3d
[[autodoc]] models.autoencoders.vae.DecoderOutput
[[autodoc]] CogVideoXCausalConv3d
## CogVideoXSpatialNorm3D
[[autodoc]] CogVideoXSpatialNorm3D
## CogVideoXResnetBlock3D
[[autodoc]] CogVideoXResnetBlock3D
## CogVideoXDownBlock3D
[[autodoc]] CogVideoXDownBlock3D
## CogVideoXMidBlock3D
[[autodoc]] CogVideoXMidBlock3D
## CogVideoXUpBlock3D
[[autodoc]] CogVideoXUpBlock3D
## CogVideoXEncoder3D
[[autodoc]] CogVideoXEncoder3D
## CogVideoXDecoder3D
[[autodoc]] CogVideoXDecoder3D

View File

@@ -1,40 +0,0 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# AutoencoderKLCosmos
[Cosmos Tokenizers](https://github.com/NVIDIA/Cosmos-Tokenizer).
Supported models:
- [nvidia/Cosmos-1.0-Tokenizer-CV8x8x8](https://huggingface.co/nvidia/Cosmos-1.0-Tokenizer-CV8x8x8)
The model can be loaded with the following code snippet.
```python
from diffusers import AutoencoderKLCosmos
vae = AutoencoderKLCosmos.from_pretrained("nvidia/Cosmos-1.0-Tokenizer-CV8x8x8", subfolder="vae")
```
## AutoencoderKLCosmos
[[autodoc]] AutoencoderKLCosmos
- decode
- encode
- all
## AutoencoderKLOutput
[[autodoc]] models.autoencoders.autoencoder_kl.AutoencoderKLOutput
## DecoderOutput
[[autodoc]] models.autoencoders.vae.DecoderOutput

View File

@@ -1,37 +0,0 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# AutoencoderKLLTXVideo
The 3D variational autoencoder (VAE) model with KL loss used in [LTX](https://huggingface.co/Lightricks/LTX-Video) was introduced by Lightricks.
The model can be loaded with the following code snippet.
```python
from diffusers import AutoencoderKLLTXVideo
vae = AutoencoderKLLTXVideo.from_pretrained("Lightricks/LTX-Video", subfolder="vae", torch_dtype=torch.float32).to("cuda")
```
## AutoencoderKLLTXVideo
[[autodoc]] AutoencoderKLLTXVideo
- decode
- encode
- all
## AutoencoderKLOutput
[[autodoc]] models.autoencoders.autoencoder_kl.AutoencoderKLOutput
## DecoderOutput
[[autodoc]] models.autoencoders.vae.DecoderOutput

View File

@@ -1,37 +0,0 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# AutoencoderKLMagvit
The 3D variational autoencoder (VAE) model with KL loss used in [EasyAnimate](https://github.com/aigc-apps/EasyAnimate) was introduced by Alibaba PAI.
The model can be loaded with the following code snippet.
```python
from diffusers import AutoencoderKLMagvit
vae = AutoencoderKLMagvit.from_pretrained("alibaba-pai/EasyAnimateV5.1-12b-zh", subfolder="vae", torch_dtype=torch.float16).to("cuda")
```
## AutoencoderKLMagvit
[[autodoc]] AutoencoderKLMagvit
- decode
- encode
- all
## AutoencoderKLOutput
[[autodoc]] models.autoencoders.autoencoder_kl.AutoencoderKLOutput
## DecoderOutput
[[autodoc]] models.autoencoders.vae.DecoderOutput

View File

@@ -1,32 +0,0 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# AutoencoderKLMochi
The 3D variational autoencoder (VAE) model with KL loss used in [Mochi](https://github.com/genmoai/models) was introduced in [Mochi 1 Preview](https://huggingface.co/genmo/mochi-1-preview) by Tsinghua University & ZhipuAI.
The model can be loaded with the following code snippet.
```python
from diffusers import AutoencoderKLMochi
vae = AutoencoderKLMochi.from_pretrained("genmo/mochi-1-preview", subfolder="vae", torch_dtype=torch.float32).to("cuda")
```
## AutoencoderKLMochi
[[autodoc]] AutoencoderKLMochi
- decode
- all
## DecoderOutput
[[autodoc]] models.autoencoders.vae.DecoderOutput

View File

@@ -9,22 +9,10 @@ Unless required by applicable law or agreed to in writing, software distributed
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# CogVideoXTransformer3DModel
## CogVideoXTransformer3DModel
A Diffusion Transformer model for 3D data from [CogVideoX](https://github.com/THUDM/CogVideo) was introduced in [CogVideoX: Text-to-Video Diffusion Models with An Expert Transformer](https://github.com/THUDM/CogVideo/blob/main/resources/CogVideoX.pdf) by Tsinghua University & ZhipuAI.
The model can be loaded with the following code snippet.
```python
from diffusers import CogVideoXTransformer3DModel
transformer = CogVideoXTransformer3DModel.from_pretrained("THUDM/CogVideoX-2b", subfolder="transformer", torch_dtype=torch.float16).to("cuda")
```
A Diffusion Transformer model for 3D data from [CogVideoX](https://github.com/THUDM/CogVideoX).
## CogVideoXTransformer3DModel
[[autodoc]] CogVideoXTransformer3DModel
## Transformer2DModelOutput
[[autodoc]] models.modeling_outputs.Transformer2DModelOutput

View File

@@ -1,30 +0,0 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# CogView3PlusTransformer2DModel
A Diffusion Transformer model for 2D data from [CogView3Plus](https://github.com/THUDM/CogView3) was introduced in [CogView3: Finer and Faster Text-to-Image Generation via Relay Diffusion](https://huggingface.co/papers/2403.05121) by Tsinghua University & ZhipuAI.
The model can be loaded with the following code snippet.
```python
from diffusers import CogView3PlusTransformer2DModel
transformer = CogView3PlusTransformer2DModel.from_pretrained("THUDM/CogView3Plus-3b", subfolder="transformer", torch_dtype=torch.bfloat16).to("cuda")
```
## CogView3PlusTransformer2DModel
[[autodoc]] CogView3PlusTransformer2DModel
## Transformer2DModelOutput
[[autodoc]] models.modeling_outputs.Transformer2DModelOutput

View File

@@ -1,30 +0,0 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# CogView4Transformer2DModel
A Diffusion Transformer model for 2D data from [CogView4]()
The model can be loaded with the following code snippet.
```python
from diffusers import CogView4Transformer2DModel
transformer = CogView4Transformer2DModel.from_pretrained("THUDM/CogView4-6B", subfolder="transformer", torch_dtype=torch.bfloat16).to("cuda")
```
## CogView4Transformer2DModel
[[autodoc]] CogView4Transformer2DModel
## Transformer2DModelOutput
[[autodoc]] models.modeling_outputs.Transformer2DModelOutput

View File

@@ -1,30 +0,0 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# ConsisIDTransformer3DModel
A Diffusion Transformer model for 3D data from [ConsisID](https://github.com/PKU-YuanGroup/ConsisID) was introduced in [Identity-Preserving Text-to-Video Generation by Frequency Decomposition](https://huggingface.co/papers/2411.17440) by Peking University & University of Rochester & etc.
The model can be loaded with the following code snippet.
```python
from diffusers import ConsisIDTransformer3DModel
transformer = ConsisIDTransformer3DModel.from_pretrained("BestWishYsh/ConsisID-preview", subfolder="transformer", torch_dtype=torch.bfloat16).to("cuda")
```
## ConsisIDTransformer3DModel
[[autodoc]] ConsisIDTransformer3DModel
## Transformer2DModelOutput
[[autodoc]] models.modeling_outputs.Transformer2DModelOutput

View File

@@ -29,7 +29,7 @@ from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
url = "https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_canny.pth" # can also be a local path
controlnet = ControlNetModel.from_single_file(url)
url = "https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5/blob/main/v1-5-pruned.safetensors" # can also be a local path
url = "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned.safetensors" # can also be a local path
pipe = StableDiffusionControlNetPipeline.from_single_file(url, controlnet=controlnet)
```
@@ -39,7 +39,7 @@ pipe = StableDiffusionControlNetPipeline.from_single_file(url, controlnet=contro
## ControlNetOutput
[[autodoc]] models.controlnets.controlnet.ControlNetOutput
[[autodoc]] models.controlnet.ControlNetOutput
## FlaxControlNetModel
@@ -47,4 +47,4 @@ pipe = StableDiffusionControlNetPipeline.from_single_file(url, controlnet=contro
## FlaxControlNetOutput
[[autodoc]] models.controlnets.controlnet_flax.FlaxControlNetOutput
[[autodoc]] models.controlnet_flax.FlaxControlNetOutput

View File

@@ -1,45 +0,0 @@
<!--Copyright 2024 The HuggingFace Team and The InstantX Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# FluxControlNetModel
FluxControlNetModel is an implementation of ControlNet for Flux.1.
The ControlNet model was introduced in [Adding Conditional Control to Text-to-Image Diffusion Models](https://huggingface.co/papers/2302.05543) by Lvmin Zhang, Anyi Rao, Maneesh Agrawala. It provides a greater degree of control over text-to-image generation by conditioning the model on additional inputs such as edge maps, depth maps, segmentation maps, and keypoints for pose detection.
The abstract from the paper is:
*We present ControlNet, a neural network architecture to add spatial conditioning controls to large, pretrained text-to-image diffusion models. ControlNet locks the production-ready large diffusion models, and reuses their deep and robust encoding layers pretrained with billions of images as a strong backbone to learn a diverse set of conditional controls. The neural architecture is connected with "zero convolutions" (zero-initialized convolution layers) that progressively grow the parameters from zero and ensure that no harmful noise could affect the finetuning. We test various conditioning controls, eg, edges, depth, segmentation, human pose, etc, with Stable Diffusion, using single or multiple conditions, with or without prompts. We show that the training of ControlNets is robust with small (<50k) and large (>1m) datasets. Extensive results show that ControlNet may facilitate wider applications to control image diffusion models.*
## Loading from the original format
By default the [`FluxControlNetModel`] should be loaded with [`~ModelMixin.from_pretrained`].
```py
from diffusers import FluxControlNetPipeline
from diffusers.models import FluxControlNetModel, FluxMultiControlNetModel
controlnet = FluxControlNetModel.from_pretrained("InstantX/FLUX.1-dev-Controlnet-Canny")
pipe = FluxControlNetPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", controlnet=controlnet)
controlnet = FluxControlNetModel.from_pretrained("InstantX/FLUX.1-dev-Controlnet-Canny")
controlnet = FluxMultiControlNetModel([controlnet])
pipe = FluxControlNetPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", controlnet=controlnet)
```
## FluxControlNetModel
[[autodoc]] FluxControlNetModel
## FluxControlNetOutput
[[autodoc]] models.controlnet_flux.FluxControlNetOutput

View File

@@ -12,7 +12,7 @@ specific language governing permissions and limitations under the License.
# HunyuanDiT2DControlNetModel
HunyuanDiT2DControlNetModel is an implementation of ControlNet for [Hunyuan-DiT](https://huggingface.co/papers/2405.08748).
HunyuanDiT2DControlNetModel is an implementation of ControlNet for [Hunyuan-DiT](https://arxiv.org/abs/2405.08748).
ControlNet was introduced in [Adding Conditional Control to Text-to-Image Diffusion Models](https://huggingface.co/papers/2302.05543) by Lvmin Zhang, Anyi Rao, and Maneesh Agrawala.

View File

@@ -1,29 +0,0 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# SanaControlNetModel
The ControlNet model was introduced in [Adding Conditional Control to Text-to-Image Diffusion Models](https://huggingface.co/papers/2302.05543) by Lvmin Zhang, Anyi Rao, Maneesh Agrawala. It provides a greater degree of control over text-to-image generation by conditioning the model on additional inputs such as edge maps, depth maps, segmentation maps, and keypoints for pose detection.
The abstract from the paper is:
*We present ControlNet, a neural network architecture to add spatial conditioning controls to large, pretrained text-to-image diffusion models. ControlNet locks the production-ready large diffusion models, and reuses their deep and robust encoding layers pretrained with billions of images as a strong backbone to learn a diverse set of conditional controls. The neural architecture is connected with "zero convolutions" (zero-initialized convolution layers) that progressively grow the parameters from zero and ensure that no harmful noise could affect the finetuning. We test various conditioning controls, eg, edges, depth, segmentation, human pose, etc, with Stable Diffusion, using single or multiple conditions, with or without prompts. We show that the training of ControlNets is robust with small (<50k) and large (>1m) datasets. Extensive results show that ControlNet may facilitate wider applications to control image diffusion models.*
This model was contributed by [ishan24](https://huggingface.co/ishan24). ❤️
The original codebase can be found at [NVlabs/Sana](https://github.com/NVlabs/Sana), and you can find official ControlNet checkpoints on [Efficient-Large-Model's](https://huggingface.co/Efficient-Large-Model) Hub profile.
## SanaControlNetModel
[[autodoc]] SanaControlNetModel
## SanaControlNetOutput
[[autodoc]] models.controlnets.controlnet_sana.SanaControlNetOutput

View File

@@ -38,5 +38,5 @@ pipe = StableDiffusion3ControlNetPipeline.from_pretrained("stabilityai/stable-di
## SD3ControlNetOutput
[[autodoc]] models.controlnets.controlnet_sd3.SD3ControlNetOutput
[[autodoc]] models.controlnet_sd3.SD3ControlNetOutput

View File

@@ -11,11 +11,11 @@ specific language governing permissions and limitations under the License. -->
# SparseControlNetModel
SparseControlNetModel is an implementation of ControlNet for [AnimateDiff](https://huggingface.co/papers/2307.04725).
SparseControlNetModel is an implementation of ControlNet for [AnimateDiff](https://arxiv.org/abs/2307.04725).
ControlNet was introduced in [Adding Conditional Control to Text-to-Image Diffusion Models](https://huggingface.co/papers/2302.05543) by Lvmin Zhang, Anyi Rao, and Maneesh Agrawala.
The SparseCtrl version of ControlNet was introduced in [SparseCtrl: Adding Sparse Controls to Text-to-Video Diffusion Models](https://huggingface.co/papers/2311.16933) for achieving controlled generation in text-to-video diffusion models by Yuwei Guo, Ceyuan Yang, Anyi Rao, Maneesh Agrawala, Dahua Lin, and Bo Dai.
The SparseCtrl version of ControlNet was introduced in [SparseCtrl: Adding Sparse Controls to Text-to-Video Diffusion Models](https://arxiv.org/abs/2311.16933) for achieving controlled generation in text-to-video diffusion models by Yuwei Guo, Ceyuan Yang, Anyi Rao, Maneesh Agrawala, Dahua Lin, and Bo Dai.
The abstract from the paper is:

View File

@@ -1,35 +0,0 @@
<!--Copyright 2024 The HuggingFace Team and The InstantX Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# ControlNetUnionModel
ControlNetUnionModel is an implementation of ControlNet for Stable Diffusion XL.
The ControlNet model was introduced in [ControlNetPlus](https://github.com/xinsir6/ControlNetPlus) by xinsir6. It supports multiple conditioning inputs without increasing computation.
*We design a new architecture that can support 10+ control types in condition text-to-image generation and can generate high resolution images visually comparable with midjourney. The network is based on the original ControlNet architecture, we propose two new modules to: 1 Extend the original ControlNet to support different image conditions using the same network parameter. 2 Support multiple conditions input without increasing computation offload, which is especially important for designers who want to edit image in detail, different conditions use the same condition encoder, without adding extra computations or parameters.*
## Loading
By default the [`ControlNetUnionModel`] should be loaded with [`~ModelMixin.from_pretrained`].
```py
from diffusers import StableDiffusionXLControlNetUnionPipeline, ControlNetUnionModel
controlnet = ControlNetUnionModel.from_pretrained("xinsir/controlnet-union-sdxl-1.0")
pipe = StableDiffusionXLControlNetUnionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet)
```
## ControlNetUnionModel
[[autodoc]] ControlNetUnionModel

View File

@@ -1,30 +0,0 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# CosmosTransformer3DModel
A Diffusion Transformer model for 3D video-like data was introduced in [Cosmos World Foundation Model Platform for Physical AI](https://huggingface.co/papers/2501.03575) by NVIDIA.
The model can be loaded with the following code snippet.
```python
from diffusers import CosmosTransformer3DModel
transformer = CosmosTransformer3DModel.from_pretrained("nvidia/Cosmos-1.0-Diffusion-7B-Text2World", subfolder="transformer", torch_dtype=torch.bfloat16)
```
## CosmosTransformer3DModel
[[autodoc]] CosmosTransformer3DModel
## Transformer2DModelOutput
[[autodoc]] models.modeling_outputs.Transformer2DModelOutput

View File

@@ -1,30 +0,0 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# EasyAnimateTransformer3DModel
A Diffusion Transformer model for 3D data from [EasyAnimate](https://github.com/aigc-apps/EasyAnimate) was introduced by Alibaba PAI.
The model can be loaded with the following code snippet.
```python
from diffusers import EasyAnimateTransformer3DModel
transformer = EasyAnimateTransformer3DModel.from_pretrained("alibaba-pai/EasyAnimateV5.1-12b-zh", subfolder="transformer", torch_dtype=torch.float16).to("cuda")
```
## EasyAnimateTransformer3DModel
[[autodoc]] EasyAnimateTransformer3DModel
## Transformer2DModelOutput
[[autodoc]] models.modeling_outputs.Transformer2DModelOutput

View File

@@ -1,46 +0,0 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# HiDreamImageTransformer2DModel
A Transformer model for image-like data from [HiDream-I1](https://huggingface.co/HiDream-ai).
The model can be loaded with the following code snippet.
```python
from diffusers import HiDreamImageTransformer2DModel
transformer = HiDreamImageTransformer2DModel.from_pretrained("HiDream-ai/HiDream-I1-Full", subfolder="transformer", torch_dtype=torch.bfloat16)
```
## Loading GGUF quantized checkpoints for HiDream-I1
GGUF checkpoints for the `HiDreamImageTransformer2DModel` can be loaded using `~FromOriginalModelMixin.from_single_file`
```python
import torch
from diffusers import GGUFQuantizationConfig, HiDreamImageTransformer2DModel
ckpt_path = "https://huggingface.co/city96/HiDream-I1-Dev-gguf/blob/main/hidream-i1-dev-Q2_K.gguf"
transformer = HiDreamImageTransformer2DModel.from_single_file(
ckpt_path,
quantization_config=GGUFQuantizationConfig(compute_dtype=torch.bfloat16),
torch_dtype=torch.bfloat16
)
```
## HiDreamImageTransformer2DModel
[[autodoc]] HiDreamImageTransformer2DModel
## Transformer2DModelOutput
[[autodoc]] models.modeling_outputs.Transformer2DModelOutput

View File

@@ -1,30 +0,0 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# HunyuanVideoTransformer3DModel
A Diffusion Transformer model for 3D video-like data was introduced in [HunyuanVideo: A Systematic Framework For Large Video Generative Models](https://huggingface.co/papers/2412.03603) by Tencent.
The model can be loaded with the following code snippet.
```python
from diffusers import HunyuanVideoTransformer3DModel
transformer = HunyuanVideoTransformer3DModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder="transformer", torch_dtype=torch.bfloat16)
```
## HunyuanVideoTransformer3DModel
[[autodoc]] HunyuanVideoTransformer3DModel
## Transformer2DModelOutput
[[autodoc]] models.modeling_outputs.Transformer2DModelOutput

View File

@@ -1,30 +0,0 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# LTXVideoTransformer3DModel
A Diffusion Transformer model for 3D data from [LTX](https://huggingface.co/Lightricks/LTX-Video) was introduced by Lightricks.
The model can be loaded with the following code snippet.
```python
from diffusers import LTXVideoTransformer3DModel
transformer = LTXVideoTransformer3DModel.from_pretrained("Lightricks/LTX-Video", subfolder="transformer", torch_dtype=torch.bfloat16).to("cuda")
```
## LTXVideoTransformer3DModel
[[autodoc]] LTXVideoTransformer3DModel
## Transformer2DModelOutput
[[autodoc]] models.modeling_outputs.Transformer2DModelOutput

View File

@@ -1,30 +0,0 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# Lumina2Transformer2DModel
A Diffusion Transformer model for 3D video-like data was introduced in [Lumina Image 2.0](https://huggingface.co/Alpha-VLLM/Lumina-Image-2.0) by Alpha-VLLM.
The model can be loaded with the following code snippet.
```python
from diffusers import Lumina2Transformer2DModel
transformer = Lumina2Transformer2DModel.from_pretrained("Alpha-VLLM/Lumina-Image-2.0", subfolder="transformer", torch_dtype=torch.bfloat16)
```
## Lumina2Transformer2DModel
[[autodoc]] Lumina2Transformer2DModel
## Transformer2DModelOutput
[[autodoc]] models.modeling_outputs.Transformer2DModelOutput

View File

@@ -1,30 +0,0 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# MochiTransformer3DModel
A Diffusion Transformer model for 3D video-like data was introduced in [Mochi-1 Preview](https://huggingface.co/genmo/mochi-1-preview) by Genmo.
The model can be loaded with the following code snippet.
```python
from diffusers import MochiTransformer3DModel
transformer = MochiTransformer3DModel.from_pretrained("genmo/mochi-1-preview", subfolder="transformer", torch_dtype=torch.float16).to("cuda")
```
## MochiTransformer3DModel
[[autodoc]] MochiTransformer3DModel
## Transformer2DModelOutput
[[autodoc]] models.modeling_outputs.Transformer2DModelOutput

View File

@@ -1,30 +0,0 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# OmniGenTransformer2DModel
A Transformer model that accepts multimodal instructions to generate images for [OmniGen](https://github.com/VectorSpaceLab/OmniGen/).
The abstract from the paper is:
*The emergence of Large Language Models (LLMs) has unified language generation tasks and revolutionized human-machine interaction. However, in the realm of image generation, a unified model capable of handling various tasks within a single framework remains largely unexplored. In this work, we introduce OmniGen, a new diffusion model for unified image generation. OmniGen is characterized by the following features: 1) Unification: OmniGen not only demonstrates text-to-image generation capabilities but also inherently supports various downstream tasks, such as image editing, subject-driven generation, and visual conditional generation. 2) Simplicity: The architecture of OmniGen is highly simplified, eliminating the need for additional plugins. Moreover, compared to existing diffusion models, it is more user-friendly and can complete complex tasks end-to-end through instructions without the need for extra intermediate steps, greatly simplifying the image generation workflow. 3) Knowledge Transfer: Benefit from learning in a unified format, OmniGen effectively transfers knowledge across different tasks, manages unseen tasks and domains, and exhibits novel capabilities. We also explore the models reasoning capabilities and potential applications of the chain-of-thought mechanism. This work represents the first attempt at a general-purpose image generation model, and we will release our resources at https://github.com/VectorSpaceLab/OmniGen to foster future advancements.*
```python
import torch
from diffusers import OmniGenTransformer2DModel
transformer = OmniGenTransformer2DModel.from_pretrained("Shitao/OmniGen-v1-diffusers", subfolder="transformer", torch_dtype=torch.bfloat16)
```
## OmniGenTransformer2DModel
[[autodoc]] OmniGenTransformer2DModel

View File

@@ -1,34 +0,0 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# SanaTransformer2DModel
A Diffusion Transformer model for 2D data from [SANA: Efficient High-Resolution Image Synthesis with Linear Diffusion Transformers](https://huggingface.co/papers/2410.10629) was introduced from NVIDIA and MIT HAN Lab, by Enze Xie, Junsong Chen, Junyu Chen, Han Cai, Haotian Tang, Yujun Lin, Zhekai Zhang, Muyang Li, Ligeng Zhu, Yao Lu, Song Han.
The abstract from the paper is:
*We introduce Sana, a text-to-image framework that can efficiently generate images up to 4096×4096 resolution. Sana can synthesize high-resolution, high-quality images with strong text-image alignment at a remarkably fast speed, deployable on laptop GPU. Core designs include: (1) Deep compression autoencoder: unlike traditional AEs, which compress images only 8×, we trained an AE that can compress images 32×, effectively reducing the number of latent tokens. (2) Linear DiT: we replace all vanilla attention in DiT with linear attention, which is more efficient at high resolutions without sacrificing quality. (3) Decoder-only text encoder: we replaced T5 with modern decoder-only small LLM as the text encoder and designed complex human instruction with in-context learning to enhance the image-text alignment. (4) Efficient training and sampling: we propose Flow-DPM-Solver to reduce sampling steps, with efficient caption labeling and selection to accelerate convergence. As a result, Sana-0.6B is very competitive with modern giant diffusion model (e.g. Flux-12B), being 20 times smaller and 100+ times faster in measured throughput. Moreover, Sana-0.6B can be deployed on a 16GB laptop GPU, taking less than 1 second to generate a 1024×1024 resolution image. Sana enables content creation at low cost. Code and model will be publicly released.*
The model can be loaded with the following code snippet.
```python
from diffusers import SanaTransformer2DModel
transformer = SanaTransformer2DModel.from_pretrained("Efficient-Large-Model/Sana_1600M_1024px_BF16_diffusers", subfolder="transformer", torch_dtype=torch.bfloat16)
```
## SanaTransformer2DModel
[[autodoc]] SanaTransformer2DModel
## Transformer2DModelOutput
[[autodoc]] models.modeling_outputs.Transformer2DModelOutput

View File

@@ -1,19 +0,0 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# StableCascadeUNet
A UNet model from the [Stable Cascade pipeline](../pipelines/stable_cascade.md).
## StableCascadeUNet
[[autodoc]] models.unets.unet_stable_cascade.StableCascadeUNet

View File

@@ -1,30 +0,0 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# WanTransformer3DModel
A Diffusion Transformer model for 3D video-like data was introduced in [Wan 2.1](https://github.com/Wan-Video/Wan2.1) by the Alibaba Wan Team.
The model can be loaded with the following code snippet.
```python
from diffusers import WanTransformer3DModel
transformer = WanTransformer3DModel.from_pretrained("Wan-AI/Wan2.1-T2V-1.3B-Diffusers", subfolder="transformer", torch_dtype=torch.bfloat16)
```
## WanTransformer3DModel
[[autodoc]] WanTransformer3DModel
## Transformer2DModelOutput
[[autodoc]] models.modeling_outputs.Transformer2DModelOutput

View File

@@ -29,43 +29,3 @@ Customized normalization layers for supporting various models in 🤗 Diffusers.
## AdaGroupNorm
[[autodoc]] models.normalization.AdaGroupNorm
## AdaLayerNormContinuous
[[autodoc]] models.normalization.AdaLayerNormContinuous
## RMSNorm
[[autodoc]] models.normalization.RMSNorm
## GlobalResponseNorm
[[autodoc]] models.normalization.GlobalResponseNorm
## LuminaLayerNormContinuous
[[autodoc]] models.normalization.LuminaLayerNormContinuous
## SD35AdaLayerNormZeroX
[[autodoc]] models.normalization.SD35AdaLayerNormZeroX
## AdaLayerNormZeroSingle
[[autodoc]] models.normalization.AdaLayerNormZeroSingle
## LuminaRMSNormZero
[[autodoc]] models.normalization.LuminaRMSNormZero
## LpNorm
[[autodoc]] models.normalization.LpNorm
## CogView3PlusAdaLayerNormZeroTextImage
[[autodoc]] models.normalization.CogView3PlusAdaLayerNormZeroTextImage
## CogVideoXLayerNormZero
[[autodoc]] models.normalization.CogVideoXLayerNormZero
## MochiRMSNormZero
[[autodoc]] models.transformers.transformer_mochi.MochiRMSNormZero
## MochiRMSNorm
[[autodoc]] models.normalization.MochiRMSNorm

View File

@@ -1,79 +0,0 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# Allegro
[Allegro: Open the Black Box of Commercial-Level Video Generation Model](https://huggingface.co/papers/2410.15458) from RhymesAI, by Yuan Zhou, Qiuyue Wang, Yuxuan Cai, Huan Yang.
The abstract from the paper is:
*Significant advancements have been made in the field of video generation, with the open-source community contributing a wealth of research papers and tools for training high-quality models. However, despite these efforts, the available information and resources remain insufficient for achieving commercial-level performance. In this report, we open the black box and introduce Allegro, an advanced video generation model that excels in both quality and temporal consistency. We also highlight the current limitations in the field and present a comprehensive methodology for training high-performance, commercial-level video generation models, addressing key aspects such as data, model architecture, training pipeline, and evaluation. Our user study shows that Allegro surpasses existing open-source models and most commercial models, ranking just behind Hailuo and Kling. Code: https://github.com/rhymes-ai/Allegro , Model: https://huggingface.co/rhymes-ai/Allegro , Gallery: https://rhymes.ai/allegro_gallery .*
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
## Quantization
Quantization helps reduce the memory requirements of very large models by storing model weights in a lower precision data type. However, quantization may have varying impact on video quality depending on the video model.
Refer to the [Quantization](../../quantization/overview) overview to learn more about supported quantization backends and selecting a quantization backend that supports your use case. The example below demonstrates how to load a quantized [`AllegroPipeline`] for inference with bitsandbytes.
```py
import torch
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig, AllegroTransformer3DModel, AllegroPipeline
from diffusers.utils import export_to_video
from transformers import BitsAndBytesConfig as BitsAndBytesConfig, T5EncoderModel
quant_config = BitsAndBytesConfig(load_in_8bit=True)
text_encoder_8bit = T5EncoderModel.from_pretrained(
"rhymes-ai/Allegro",
subfolder="text_encoder",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
quant_config = DiffusersBitsAndBytesConfig(load_in_8bit=True)
transformer_8bit = AllegroTransformer3DModel.from_pretrained(
"rhymes-ai/Allegro",
subfolder="transformer",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
pipeline = AllegroPipeline.from_pretrained(
"rhymes-ai/Allegro",
text_encoder=text_encoder_8bit,
transformer=transformer_8bit,
torch_dtype=torch.float16,
device_map="balanced",
)
prompt = (
"A seaside harbor with bright sunlight and sparkling seawater, with many boats in the water. From an aerial view, "
"the boats vary in size and color, some moving and some stationary. Fishing boats in the water suggest that this "
"location might be a popular spot for docking fishing boats."
)
video = pipeline(prompt, guidance_scale=7.5, max_sequence_length=512).frames[0]
export_to_video(video, "harbor.mp4", fps=15)
```
## AllegroPipeline
[[autodoc]] AllegroPipeline
- all
- __call__
## AllegroPipelineOutput
[[autodoc]] pipelines.allegro.pipeline_output.AllegroPipelineOutput

View File

@@ -14,7 +14,7 @@ specific language governing permissions and limitations under the License.
aMUSEd was introduced in [aMUSEd: An Open MUSE Reproduction](https://huggingface.co/papers/2401.01808) by Suraj Patil, William Berman, Robin Rombach, and Patrick von Platen.
Amused is a lightweight text to image model based off of the [MUSE](https://huggingface.co/papers/2301.00704) architecture. Amused is particularly useful in applications that require a lightweight and fast model such as generating many images quickly at once.
Amused is a lightweight text to image model based off of the [MUSE](https://arxiv.org/abs/2301.00704) architecture. Amused is particularly useful in applications that require a lightweight and fast model such as generating many images quickly at once.
Amused is a vqvae token based transformer that can generate an image in fewer forward passes than many diffusion models. In contrast with muse, it uses the smaller text encoder CLIP-L/14 instead of t5-xxl. Due to its small parameter count and few forward pass generation process, amused can generate many images quickly. This benefit is seen particularly at larger batch sizes.

View File

@@ -12,13 +12,9 @@ specific language governing permissions and limitations under the License.
# Text-to-Video Generation with AnimateDiff
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</div>
## Overview
[AnimateDiff: Animate Your Personalized Text-to-Image Diffusion Models without Specific Tuning](https://huggingface.co/papers/2307.04725) by Yuwei Guo, Ceyuan Yang, Anyi Rao, Yaohui Wang, Yu Qiao, Dahua Lin, Bo Dai.
[AnimateDiff: Animate Your Personalized Text-to-Image Diffusion Models without Specific Tuning](https://arxiv.org/abs/2307.04725) by Yuwei Guo, Ceyuan Yang, Anyi Rao, Yaohui Wang, Yu Qiao, Dahua Lin, Bo Dai.
The abstract of the paper is the following:
@@ -33,7 +29,6 @@ The abstract of the paper is the following:
| [AnimateDiffSparseControlNetPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py) | *Controlled Video-to-Video Generation with AnimateDiff using SparseCtrl* |
| [AnimateDiffSDXLPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py) | *Video-to-Video Generation with AnimateDiff* |
| [AnimateDiffVideoToVideoPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py) | *Video-to-Video Generation with AnimateDiff* |
| [AnimateDiffVideoToVideoControlNetPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py) | *Video-to-Video Generation with AnimateDiff using ControlNet* |
## Available checkpoints
@@ -187,7 +182,7 @@ Here are some sample outputs:
### AnimateDiffSparseControlNetPipeline
[SparseCtrl: Adding Sparse Controls to Text-to-Video Diffusion Models](https://huggingface.co/papers/2311.16933) for achieving controlled generation in text-to-video diffusion models by Yuwei Guo, Ceyuan Yang, Anyi Rao, Maneesh Agrawala, Dahua Lin, and Bo Dai.
[SparseCtrl: Adding Sparse Controls to Text-to-Video Diffusion Models](https://arxiv.org/abs/2311.16933) for achieving controlled generation in text-to-video diffusion models by Yuwei Guo, Ceyuan Yang, Anyi Rao, Maneesh Agrawala, Dahua Lin, and Bo Dai.
The abstract from the paper is:
@@ -523,97 +518,6 @@ Here are some sample outputs:
</tr>
</table>
### AnimateDiffVideoToVideoControlNetPipeline
AnimateDiff can be used together with ControlNets to enhance video-to-video generation by allowing for precise control over the output. ControlNet was introduced in [Adding Conditional Control to Text-to-Image Diffusion Models](https://huggingface.co/papers/2302.05543) by Lvmin Zhang, Anyi Rao, and Maneesh Agrawala, and allows you to condition Stable Diffusion with an additional control image to ensure that the spatial information is preserved throughout the video.
This pipeline allows you to condition your generation both on the original video and on a sequence of control images.
```python
import torch
from PIL import Image
from tqdm.auto import tqdm
from controlnet_aux.processor import OpenposeDetector
from diffusers import AnimateDiffVideoToVideoControlNetPipeline
from diffusers.utils import export_to_gif, load_video
from diffusers import AutoencoderKL, ControlNetModel, MotionAdapter, LCMScheduler
# Load the ControlNet
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose", torch_dtype=torch.float16)
# Load the motion adapter
motion_adapter = MotionAdapter.from_pretrained("wangfuyun/AnimateLCM")
# Load SD 1.5 based finetuned model
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16)
pipe = AnimateDiffVideoToVideoControlNetPipeline.from_pretrained(
"SG161222/Realistic_Vision_V5.1_noVAE",
motion_adapter=motion_adapter,
controlnet=controlnet,
vae=vae,
).to(device="cuda", dtype=torch.float16)
# Enable LCM to speed up inference
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config, beta_schedule="linear")
pipe.load_lora_weights("wangfuyun/AnimateLCM", weight_name="AnimateLCM_sd15_t2v_lora.safetensors", adapter_name="lcm-lora")
pipe.set_adapters(["lcm-lora"], [0.8])
video = load_video("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/dance.gif")
video = [frame.convert("RGB") for frame in video]
prompt = "astronaut in space, dancing"
negative_prompt = "bad quality, worst quality, jpeg artifacts, ugly"
# Create controlnet preprocessor
open_pose = OpenposeDetector.from_pretrained("lllyasviel/Annotators").to("cuda")
# Preprocess controlnet images
conditioning_frames = []
for frame in tqdm(video):
conditioning_frames.append(open_pose(frame))
strength = 0.8
with torch.inference_mode():
video = pipe(
video=video,
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=10,
guidance_scale=2.0,
controlnet_conditioning_scale=0.75,
conditioning_frames=conditioning_frames,
strength=strength,
generator=torch.Generator().manual_seed(42),
).frames[0]
video = [frame.resize(conditioning_frames[0].size) for frame in video]
export_to_gif(video, f"animatediff_vid2vid_controlnet.gif", fps=8)
```
Here are some sample outputs:
<table align="center">
<tr>
<th align="center">Source Video</th>
<th align="center">Output Video</th>
</tr>
<tr>
<td align="center">
anime girl, dancing
<br />
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/dance.gif" alt="anime girl, dancing" />
</td>
<td align="center">
astronaut in space, dancing
<br/>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff_vid2vid_controlnet.gif" alt="astronaut in space, dancing" />
</td>
</tr>
</table>
**The lights and composition were transferred from the Source Video.**
## Using Motion LoRAs
Motion LoRAs are a collection of LoRAs that work with the `guoyww/animatediff-motion-adapter-v1-5-2` checkpoint. These LoRAs are responsible for adding specific types of motion to the animations.
@@ -751,7 +655,7 @@ export_to_gif(frames, "animation.gif")
## Using FreeInit
[FreeInit: Bridging Initialization Gap in Video Diffusion Models](https://huggingface.co/papers/2312.07537) by Tianxing Wu, Chenyang Si, Yuming Jiang, Ziqi Huang, Ziwei Liu.
[FreeInit: Bridging Initialization Gap in Video Diffusion Models](https://arxiv.org/abs/2312.07537) by Tianxing Wu, Chenyang Si, Yuming Jiang, Ziqi Huang, Ziwei Liu.
FreeInit is an effective method that improves temporal consistency and overall quality of videos generated using video-diffusion-models without any addition training. It can be applied to AnimateDiff, ModelScope, VideoCrafter and various other video generation models seamlessly at inference time, and works by iteratively refining the latent-initialization noise. More details can be found it the paper.
@@ -807,7 +711,7 @@ FreeInit is not really free - the improved quality comes at the cost of extra co
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
@@ -918,89 +822,6 @@ export_to_gif(frames, "animatelcm-motion-lora.gif")
</tr>
</table>
## Using FreeNoise
[FreeNoise: Tuning-Free Longer Video Diffusion via Noise Rescheduling](https://huggingface.co/papers/2310.15169) by Haonan Qiu, Menghan Xia, Yong Zhang, Yingqing He, Xintao Wang, Ying Shan, Ziwei Liu.
FreeNoise is a sampling mechanism that can generate longer videos with short-video generation models by employing noise-rescheduling, temporal attention over sliding windows, and weighted averaging of latent frames. It also can be used with multiple prompts to allow for interpolated video generations. More details are available in the paper.
The currently supported AnimateDiff pipelines that can be used with FreeNoise are:
- [`AnimateDiffPipeline`]
- [`AnimateDiffControlNetPipeline`]
- [`AnimateDiffVideoToVideoPipeline`]
- [`AnimateDiffVideoToVideoControlNetPipeline`]
In order to use FreeNoise, a single line needs to be added to the inference code after loading your pipelines.
```diff
+ pipe.enable_free_noise()
```
After this, either a single prompt could be used, or multiple prompts can be passed as a dictionary of integer-string pairs. The integer keys of the dictionary correspond to the frame index at which the influence of that prompt would be maximum. Each frame index should map to a single string prompt. The prompts for intermediate frame indices, that are not passed in the dictionary, are created by interpolating between the frame prompts that are passed. By default, simple linear interpolation is used. However, you can customize this behaviour with a callback to the `prompt_interpolation_callback` parameter when enabling FreeNoise.
Full example:
```python
import torch
from diffusers import AutoencoderKL, AnimateDiffPipeline, LCMScheduler, MotionAdapter
from diffusers.utils import export_to_video, load_image
# Load pipeline
dtype = torch.float16
motion_adapter = MotionAdapter.from_pretrained("wangfuyun/AnimateLCM", torch_dtype=dtype)
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=dtype)
pipe = AnimateDiffPipeline.from_pretrained("emilianJR/epiCRealism", motion_adapter=motion_adapter, vae=vae, torch_dtype=dtype)
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config, beta_schedule="linear")
pipe.load_lora_weights(
"wangfuyun/AnimateLCM", weight_name="AnimateLCM_sd15_t2v_lora.safetensors", adapter_name="lcm_lora"
)
pipe.set_adapters(["lcm_lora"], [0.8])
# Enable FreeNoise for long prompt generation
pipe.enable_free_noise(context_length=16, context_stride=4)
pipe.to("cuda")
# Can be a single prompt, or a dictionary with frame timesteps
prompt = {
0: "A caterpillar on a leaf, high quality, photorealistic",
40: "A caterpillar transforming into a cocoon, on a leaf, near flowers, photorealistic",
80: "A cocoon on a leaf, flowers in the background, photorealistic",
120: "A cocoon maturing and a butterfly being born, flowers and leaves visible in the background, photorealistic",
160: "A beautiful butterfly, vibrant colors, sitting on a leaf, flowers in the background, photorealistic",
200: "A beautiful butterfly, flying away in a forest, photorealistic",
240: "A cyberpunk butterfly, neon lights, glowing",
}
negative_prompt = "bad quality, worst quality, jpeg artifacts"
# Run inference
output = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
num_frames=256,
guidance_scale=2.5,
num_inference_steps=10,
generator=torch.Generator("cpu").manual_seed(0),
)
# Save video
frames = output.frames[0]
export_to_video(frames, "output.mp4", fps=16)
```
### FreeNoise memory savings
Since FreeNoise processes multiple frames together, there are parts in the modeling where the memory required exceeds that available on normal consumer GPUs. The main memory bottlenecks that we identified are spatial and temporal attention blocks, upsampling and downsampling blocks, resnet blocks and feed-forward layers. Since most of these blocks operate effectively only on the channel/embedding dimension, one can perform chunked inference across the batch dimensions. The batch dimension in AnimateDiff are either spatial (`[B x F, H x W, C]`) or temporal (`B x H x W, F, C`) in nature (note that it may seem counter-intuitive, but the batch dimension here are correct, because spatial blocks process across the `B x F` dimension while the temporal blocks process across the `B x H x W` dimension). We introduce a `SplitInferenceModule` that makes it easier to chunk across any dimension and perform inference. This saves a lot of memory but comes at the cost of requiring more time for inference.
```diff
# Load pipeline and adapters
# ...
+ pipe.enable_free_noise_split_inference()
+ pipe.unet.enable_forward_chunking(16)
```
The call to `pipe.enable_free_noise_split_inference` method accepts two parameters: `spatial_split_size` (defaults to `256`) and `temporal_split_size` (defaults to `16`). These can be configured based on how much VRAM you have available. A lower split size results in lower memory usage but slower inference, whereas a larger split size results in faster inference at the cost of more memory.
## Using `from_single_file` with the MotionAdapter
@@ -1045,12 +866,6 @@ pipe = AnimateDiffPipeline.from_pretrained("emilianJR/epiCRealism", motion_adapt
- all
- __call__
## AnimateDiffVideoToVideoControlNetPipeline
[[autodoc]] AnimateDiffVideoToVideoControlNetPipeline
- all
- __call__
## AnimateDiffPipelineOutput
[[autodoc]] pipelines.animatediff.AnimateDiffPipelineOutput

View File

@@ -22,7 +22,7 @@ You can find additional information about Attend-and-Excite on the [project page
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -37,7 +37,7 @@ During inference:
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -12,7 +12,7 @@ specific language governing permissions and limitations under the License.
# AudioLDM 2
AudioLDM 2 was proposed in [AudioLDM 2: Learning Holistic Audio Generation with Self-supervised Pretraining](https://huggingface.co/papers/2308.05734) by Haohe Liu et al. AudioLDM 2 takes a text prompt as input and predicts the corresponding audio. It can generate text-conditional sound effects, human speech and music.
AudioLDM 2 was proposed in [AudioLDM 2: Learning Holistic Audio Generation with Self-supervised Pretraining](https://arxiv.org/abs/2308.05734) by Haohe Liu et al. AudioLDM 2 takes a text prompt as input and predicts the corresponding audio. It can generate text-conditional sound effects, human speech and music.
Inspired by [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/overview), AudioLDM 2 is a text-to-audio _latent diffusion model (LDM)_ that learns continuous audio representations from text embeddings. Two text encoder models are used to compute the text embeddings from a prompt input: the text-branch of [CLAP](https://huggingface.co/docs/transformers/main/en/model_doc/clap) and the encoder of [Flan-T5](https://huggingface.co/docs/transformers/main/en/model_doc/flan-t5). These text embeddings are then projected to a shared embedding space by an [AudioLDM2ProjectionModel](https://huggingface.co/docs/diffusers/main/api/pipelines/audioldm2#diffusers.AudioLDM2ProjectionModel). A [GPT2](https://huggingface.co/docs/transformers/main/en/model_doc/gpt2) _language model (LM)_ is used to auto-regressively predict eight new embedding vectors, conditional on the projected CLAP and Flan-T5 embeddings. The generated embedding vectors and Flan-T5 text embeddings are used as cross-attention conditioning in the LDM. The [UNet](https://huggingface.co/docs/diffusers/main/en/api/pipelines/audioldm2#diffusers.AudioLDM2UNet2DConditionModel) of AudioLDM 2 is unique in the sense that it takes **two** cross-attention embeddings, as opposed to one cross-attention conditioning, as in most other LDMs.
@@ -60,7 +60,7 @@ The following example demonstrates how to construct good music and speech genera
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -12,7 +12,7 @@ specific language governing permissions and limitations under the License.
# AuraFlow
AuraFlow is inspired by [Stable Diffusion 3](../pipelines/stable_diffusion/stable_diffusion_3) and is by far the largest text-to-image generation model that comes with an Apache 2.0 license. This model achieves state-of-the-art results on the [GenEval](https://github.com/djghosh13/geneval) benchmark.
AuraFlow is inspired by [Stable Diffusion 3](../pipelines/stable_diffusion/stable_diffusion_3.md) and is by far the largest text-to-image generation model that comes with an Apache 2.0 license. This model achieves state-of-the-art results on the [GenEval](https://github.com/djghosh13/geneval) benchmark.
It was developed by the Fal team and more details about it can be found in [this blog post](https://blog.fal.ai/auraflow/).
@@ -22,90 +22,6 @@ AuraFlow can be quite expensive to run on consumer hardware devices. However, yo
</Tip>
## Quantization
Quantization helps reduce the memory requirements of very large models by storing model weights in a lower precision data type. However, quantization may have varying impact on video quality depending on the video model.
Refer to the [Quantization](../../quantization/overview) overview to learn more about supported quantization backends and selecting a quantization backend that supports your use case. The example below demonstrates how to load a quantized [`AuraFlowPipeline`] for inference with bitsandbytes.
```py
import torch
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig, AuraFlowTransformer2DModel, AuraFlowPipeline
from transformers import BitsAndBytesConfig as BitsAndBytesConfig, T5EncoderModel
quant_config = BitsAndBytesConfig(load_in_8bit=True)
text_encoder_8bit = T5EncoderModel.from_pretrained(
"fal/AuraFlow",
subfolder="text_encoder",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
quant_config = DiffusersBitsAndBytesConfig(load_in_8bit=True)
transformer_8bit = AuraFlowTransformer2DModel.from_pretrained(
"fal/AuraFlow",
subfolder="transformer",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
pipeline = AuraFlowPipeline.from_pretrained(
"fal/AuraFlow",
text_encoder=text_encoder_8bit,
transformer=transformer_8bit,
torch_dtype=torch.float16,
device_map="balanced",
)
prompt = "a tiny astronaut hatching from an egg on the moon"
image = pipeline(prompt).images[0]
image.save("auraflow.png")
```
Loading [GGUF checkpoints](https://huggingface.co/docs/diffusers/quantization/gguf) are also supported:
```py
import torch
from diffusers import (
AuraFlowPipeline,
GGUFQuantizationConfig,
AuraFlowTransformer2DModel,
)
transformer = AuraFlowTransformer2DModel.from_single_file(
"https://huggingface.co/city96/AuraFlow-v0.3-gguf/blob/main/aura_flow_0.3-Q2_K.gguf",
quantization_config=GGUFQuantizationConfig(compute_dtype=torch.bfloat16),
torch_dtype=torch.bfloat16,
)
pipeline = AuraFlowPipeline.from_pretrained(
"fal/AuraFlow-v0.3",
transformer=transformer,
torch_dtype=torch.bfloat16,
)
prompt = "a cute pony in a field of flowers"
image = pipeline(prompt).images[0]
image.save("auraflow.png")
```
## Support for `torch.compile()`
AuraFlow can be compiled with `torch.compile()` to speed up inference latency even for different resolutions. First, install PyTorch nightly following the instructions from [here](https://pytorch.org/). The snippet below shows the changes needed to enable this:
```diff
+ torch.fx.experimental._config.use_duck_shape = False
+ pipeline.transformer = torch.compile(
pipeline.transformer, fullgraph=True, dynamic=True
)
```
Specifying `use_duck_shape` to be `False` instructs the compiler if it should use the same symbolic variable to represent input sizes that are the same. For more details, check out [this comment](https://github.com/huggingface/diffusers/pull/11327#discussion_r2047659790).
This enables from 100% (on low resolutions) to a 30% (on 1536x1536 resolution) speed improvements.
Thanks to [AstraliteHeart](https://github.com/huggingface/diffusers/pull/11297/) who helped us rewrite the [`AuraFlowTransformer2DModel`] class so that the above works for different resolutions ([PR](https://github.com/huggingface/diffusers/pull/11297/)).
## AuraFlowPipeline
[[autodoc]] AuraFlowPipeline

View File

@@ -12,7 +12,7 @@ specific language governing permissions and limitations under the License.
# BLIP-Diffusion
BLIP-Diffusion was proposed in [BLIP-Diffusion: Pre-trained Subject Representation for Controllable Text-to-Image Generation and Editing](https://huggingface.co/papers/2305.14720). It enables zero-shot subject-driven generation and control-guided zero-shot generation.
BLIP-Diffusion was proposed in [BLIP-Diffusion: Pre-trained Subject Representation for Controllable Text-to-Image Generation and Editing](https://arxiv.org/abs/2305.14720). It enables zero-shot subject-driven generation and control-guided zero-shot generation.
The abstract from the paper is:
@@ -25,7 +25,7 @@ The original codebase can be found at [salesforce/LAVIS](https://github.com/sale
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -10,57 +10,26 @@
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
## TODO: The paper is still being written.
-->
# CogVideoX
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</div>
[CogVideoX: Text-to-Video Diffusion Models with An Expert Transformer](https://huggingface.co/papers/2408.06072) from Tsinghua University & ZhipuAI, by Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang, Wenyi Hong, Xiaohan Zhang, Guanyu Feng, Da Yin, Xiaotao Gu, Yuxuan Zhang, Weihan Wang, Yean Cheng, Ting Liu, Bin Xu, Yuxiao Dong, Jie Tang.
[TODO]() from Tsinghua University & ZhipuAI.
The abstract from the paper is:
*We introduce CogVideoX, a large-scale diffusion transformer model designed for generating videos based on text prompts. To efficently model video data, we propose to levearge a 3D Variational Autoencoder (VAE) to compresses videos along both spatial and temporal dimensions. To improve the text-video alignment, we propose an expert transformer with the expert adaptive LayerNorm to facilitate the deep fusion between the two modalities. By employing a progressive training technique, CogVideoX is adept at producing coherent, long-duration videos characterized by significant motion. In addition, we develop an effectively text-video data processing pipeline that includes various data preprocessing strategies and a video captioning method. It significantly helps enhance the performance of CogVideoX, improving both generation quality and semantic alignment. Results show that CogVideoX demonstrates state-of-the-art performance across both multiple machine metrics and human evaluations. The model weight of CogVideoX-2B is publicly available at https://github.com/THUDM/CogVideo.*
The paper is still being written.
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers.md) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading.md#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
This pipeline was contributed by [zRzRzRzRzRzRzR](https://github.com/zRzRzRzRzRzRzR). The original codebase can be found [here](https://huggingface.co/THUDM). The original weights can be found under [hf.co/THUDM](https://huggingface.co/THUDM).
There are three official CogVideoX checkpoints for text-to-video and video-to-video.
| checkpoints | recommended inference dtype |
|:---:|:---:|
| [`THUDM/CogVideoX-2b`](https://huggingface.co/THUDM/CogVideoX-2b) | torch.float16 |
| [`THUDM/CogVideoX-5b`](https://huggingface.co/THUDM/CogVideoX-5b) | torch.bfloat16 |
| [`THUDM/CogVideoX1.5-5b`](https://huggingface.co/THUDM/CogVideoX1.5-5b) | torch.bfloat16 |
There are two official CogVideoX checkpoints available for image-to-video.
| checkpoints | recommended inference dtype |
|:---:|:---:|
| [`THUDM/CogVideoX-5b-I2V`](https://huggingface.co/THUDM/CogVideoX-5b-I2V) | torch.bfloat16 |
| [`THUDM/CogVideoX-1.5-5b-I2V`](https://huggingface.co/THUDM/CogVideoX-1.5-5b-I2V) | torch.bfloat16 |
For the CogVideoX 1.5 series:
- Text-to-video (T2V) works best at a resolution of 1360x768 because it was trained with that specific resolution.
- Image-to-video (I2V) works for multiple resolutions. The width can vary from 768 to 1360, but the height must be 768. The height/width must be divisible by 16.
- Both T2V and I2V models support generation with 81 and 161 frames and work best at this value. Exporting videos at 16 FPS is recommended.
There are two official CogVideoX checkpoints that support pose controllable generation (by the [Alibaba-PAI](https://huggingface.co/alibaba-pai) team).
| checkpoints | recommended inference dtype |
|:---:|:---:|
| [`alibaba-pai/CogVideoX-Fun-V1.1-2b-Pose`](https://huggingface.co/alibaba-pai/CogVideoX-Fun-V1.1-2b-Pose) | torch.bfloat16 |
| [`alibaba-pai/CogVideoX-Fun-V1.1-5b-Pose`](https://huggingface.co/alibaba-pai/CogVideoX-Fun-V1.1-5b-Pose) | torch.bfloat16 |
## Inference
### Inference
Use [`torch.compile`](https://huggingface.co/docs/diffusers/main/en/tutorials/fast_diffusion#torchcompile) to reduce the inference latency.
@@ -68,93 +37,36 @@ First, load the pipeline:
```python
import torch
from diffusers import CogVideoXPipeline, CogVideoXImageToVideoPipeline
from diffusers.utils import export_to_video,load_image
pipe = CogVideoXPipeline.from_pretrained("THUDM/CogVideoX-5b").to("cuda") # or "THUDM/CogVideoX-2b"
from diffusers import LattePipeline
pipeline = LattePipeline.from_pretrained(
"THUDM/CogVideoX-2b", torch_dtype=torch.float16
).to("cuda")
```
If you are using the image-to-video pipeline, load it as follows:
Then change the memory layout of the pipelines `transformer` and `vae` components to `torch.channels-last`:
```python
pipe = CogVideoXImageToVideoPipeline.from_pretrained("THUDM/CogVideoX-5b-I2V").to("cuda")
pipeline.transformer.to(memory_format=torch.channels_last)
pipeline.vae.to(memory_format=torch.channels_last)
```
Then change the memory layout of the pipelines `transformer` component to `torch.channels_last`:
Finally, compile the components and run inference:
```python
pipe.transformer.to(memory_format=torch.channels_last)
```
pipeline.transformer = torch.compile(pipeline.transformer)
pipeline.vae.decode = torch.compile(pipeline.vae.decode)
Compile the components and run inference:
```python
pipe.transformer = torch.compile(pipeline.transformer, mode="max-autotune", fullgraph=True)
# CogVideoX works well with long and well-described prompts
# CogVideoX works very well with long and well-described prompts
prompt = "A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, casting a gentle glow on the scene. The panda's face is expressive, showing concentration and joy as it plays. The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical atmosphere of this unique musical performance."
video = pipe(prompt=prompt, guidance_scale=6, num_inference_steps=50).frames[0]
```
The [T2V benchmark](https://gist.github.com/a-r-r-o-w/5183d75e452a368fd17448fcc810bd3f) results on an 80GB A100 machine are:
```
Without torch.compile(): Average inference time: 96.89 seconds.
With torch.compile(): Average inference time: 76.27 seconds.
```
### Memory optimization
CogVideoX-2b requires about 19 GB of GPU memory to decode 49 frames (6 seconds of video at 8 FPS) with output resolution 720x480 (W x H), which makes it not possible to run on consumer GPUs or free-tier T4 Colab. The following memory optimizations could be used to reduce the memory footprint. For replication, you can refer to [this](https://gist.github.com/a-r-r-o-w/3959a03f15be5c9bd1fe545b09dfcc93) script.
- `pipe.enable_model_cpu_offload()`:
- Without enabling cpu offloading, memory usage is `33 GB`
- With enabling cpu offloading, memory usage is `19 GB`
- `pipe.enable_sequential_cpu_offload()`:
- Similar to `enable_model_cpu_offload` but can significantly reduce memory usage at the cost of slow inference
- When enabled, memory usage is under `4 GB`
- `pipe.vae.enable_tiling()`:
- With enabling cpu offloading and tiling, memory usage is `11 GB`
- `pipe.vae.enable_slicing()`
## Quantization
Quantization helps reduce the memory requirements of very large models by storing model weights in a lower precision data type. However, quantization may have varying impact on video quality depending on the video model.
Refer to the [Quantization](../../quantization/overview) overview to learn more about supported quantization backends and selecting a quantization backend that supports your use case. The example below demonstrates how to load a quantized [`CogVideoXPipeline`] for inference with bitsandbytes.
```py
import torch
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig, CogVideoXTransformer3DModel, CogVideoXPipeline
from diffusers.utils import export_to_video
from transformers import BitsAndBytesConfig as BitsAndBytesConfig, T5EncoderModel
quant_config = BitsAndBytesConfig(load_in_8bit=True)
text_encoder_8bit = T5EncoderModel.from_pretrained(
"THUDM/CogVideoX-2b",
subfolder="text_encoder",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
quant_config = DiffusersBitsAndBytesConfig(load_in_8bit=True)
transformer_8bit = CogVideoXTransformer3DModel.from_pretrained(
"THUDM/CogVideoX-2b",
subfolder="transformer",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
pipeline = CogVideoXPipeline.from_pretrained(
"THUDM/CogVideoX-2b",
text_encoder=text_encoder_8bit,
transformer=transformer_8bit,
torch_dtype=torch.float16,
device_map="balanced",
)
prompt = "A detailed wooden toy ship with intricately carved masts and sails is seen gliding smoothly over a plush, blue carpet that mimics the waves of the sea. The ship's hull is painted a rich brown, with tiny windows. The carpet, soft and textured, provides a perfect backdrop, resembling an oceanic expanse. Surrounding the ship are various other toys and children's items, hinting at a playful environment. The scene captures the innocence and imagination of childhood, with the toy ship's journey symbolizing endless adventures in a whimsical, indoor setting."
video = pipeline(prompt=prompt, guidance_scale=6, num_inference_steps=50).frames[0]
export_to_video(video, "ship.mp4", fps=8)
```
The [benchmark](TODO: link) results on an 80GB A100 machine are:
```
Without torch.compile(): Average inference time: TODO seconds.
With torch.compile(): Average inference time: TODO seconds.
```
## CogVideoXPipeline
@@ -163,24 +75,5 @@ export_to_video(video, "ship.mp4", fps=8)
- all
- __call__
## CogVideoXImageToVideoPipeline
[[autodoc]] CogVideoXImageToVideoPipeline
- all
- __call__
## CogVideoXVideoToVideoPipeline
[[autodoc]] CogVideoXVideoToVideoPipeline
- all
- __call__
## CogVideoXFunControlPipeline
[[autodoc]] CogVideoXFunControlPipeline
- all
- __call__
## CogVideoXPipelineOutput
[[autodoc]] pipelines.cogvideo.pipeline_output.CogVideoXPipelineOutput
[[autodoc]] pipelines.pipline_cogvideo.pipeline_output.CogVideoXPipelineOutput

View File

@@ -1,40 +0,0 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
-->
# CogView3Plus
[CogView3: Finer and Faster Text-to-Image Generation via Relay Diffusion](https://huggingface.co/papers/2403.05121) from Tsinghua University & ZhipuAI, by Wendi Zheng, Jiayan Teng, Zhuoyi Yang, Weihan Wang, Jidong Chen, Xiaotao Gu, Yuxiao Dong, Ming Ding, Jie Tang.
The abstract from the paper is:
*Recent advancements in text-to-image generative systems have been largely driven by diffusion models. However, single-stage text-to-image diffusion models still face challenges, in terms of computational efficiency and the refinement of image details. To tackle the issue, we propose CogView3, an innovative cascaded framework that enhances the performance of text-to-image diffusion. CogView3 is the first model implementing relay diffusion in the realm of text-to-image generation, executing the task by first creating low-resolution images and subsequently applying relay-based super-resolution. This methodology not only results in competitive text-to-image outputs but also greatly reduces both training and inference costs. Our experimental results demonstrate that CogView3 outperforms SDXL, the current state-of-the-art open-source text-to-image diffusion model, by 77.0% in human evaluations, all while requiring only about 1/2 of the inference time. The distilled variant of CogView3 achieves comparable performance while only utilizing 1/10 of the inference time by SDXL.*
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
This pipeline was contributed by [zRzRzRzRzRzRzR](https://github.com/zRzRzRzRzRzRzR). The original codebase can be found [here](https://huggingface.co/THUDM). The original weights can be found under [hf.co/THUDM](https://huggingface.co/THUDM).
## CogView3PlusPipeline
[[autodoc]] CogView3PlusPipeline
- all
- __call__
## CogView3PipelineOutput
[[autodoc]] pipelines.cogview3.pipeline_output.CogView3PipelineOutput

View File

@@ -1,34 +0,0 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
-->
# CogView4
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
This pipeline was contributed by [zRzRzRzRzRzRzR](https://github.com/zRzRzRzRzRzRzR). The original codebase can be found [here](https://huggingface.co/THUDM). The original weights can be found under [hf.co/THUDM](https://huggingface.co/THUDM).
## CogView4Pipeline
[[autodoc]] CogView4Pipeline
- all
- __call__
## CogView4PipelineOutput
[[autodoc]] pipelines.cogview4.pipeline_output.CogView4PipelineOutput

View File

@@ -1,64 +0,0 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
-->
# ConsisID
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</div>
[Identity-Preserving Text-to-Video Generation by Frequency Decomposition](https://huggingface.co/papers/2411.17440) from Peking University & University of Rochester & etc, by Shenghai Yuan, Jinfa Huang, Xianyi He, Yunyang Ge, Yujun Shi, Liuhan Chen, Jiebo Luo, Li Yuan.
The abstract from the paper is:
*Identity-preserving text-to-video (IPT2V) generation aims to create high-fidelity videos with consistent human identity. It is an important task in video generation but remains an open problem for generative models. This paper pushes the technical frontier of IPT2V in two directions that have not been resolved in the literature: (1) A tuning-free pipeline without tedious case-by-case finetuning, and (2) A frequency-aware heuristic identity-preserving Diffusion Transformer (DiT)-based control scheme. To achieve these goals, we propose **ConsisID**, a tuning-free DiT-based controllable IPT2V model to keep human-**id**entity **consis**tent in the generated video. Inspired by prior findings in frequency analysis of vision/diffusion transformers, it employs identity-control signals in the frequency domain, where facial features can be decomposed into low-frequency global features (e.g., profile, proportions) and high-frequency intrinsic features (e.g., identity markers that remain unaffected by pose changes). First, from a low-frequency perspective, we introduce a global facial extractor, which encodes the reference image and facial key points into a latent space, generating features enriched with low-frequency information. These features are then integrated into the shallow layers of the network to alleviate training challenges associated with DiT. Second, from a high-frequency perspective, we design a local facial extractor to capture high-frequency details and inject them into the transformer blocks, enhancing the model's ability to preserve fine-grained features. To leverage the frequency information for identity preservation, we propose a hierarchical training strategy, transforming a vanilla pre-trained video generation model into an IPT2V model. Extensive experiments demonstrate that our frequency-aware heuristic scheme provides an optimal control solution for DiT-based models. Thanks to this scheme, our **ConsisID** achieves excellent results in generating high-quality, identity-preserving videos, making strides towards more effective IPT2V. The model weight of ConsID is publicly available at https://github.com/PKU-YuanGroup/ConsisID.*
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers.md) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading.md#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
This pipeline was contributed by [SHYuanBest](https://github.com/SHYuanBest). The original codebase can be found [here](https://github.com/PKU-YuanGroup/ConsisID). The original weights can be found under [hf.co/BestWishYsh](https://huggingface.co/BestWishYsh).
There are two official ConsisID checkpoints for identity-preserving text-to-video.
| checkpoints | recommended inference dtype |
|:---:|:---:|
| [`BestWishYsh/ConsisID-preview`](https://huggingface.co/BestWishYsh/ConsisID-preview) | torch.bfloat16 |
| [`BestWishYsh/ConsisID-1.5`](https://huggingface.co/BestWishYsh/ConsisID-preview) | torch.bfloat16 |
### Memory optimization
ConsisID requires about 44 GB of GPU memory to decode 49 frames (6 seconds of video at 8 FPS) with output resolution 720x480 (W x H), which makes it not possible to run on consumer GPUs or free-tier T4 Colab. The following memory optimizations could be used to reduce the memory footprint. For replication, you can refer to [this](https://gist.github.com/SHYuanBest/bc4207c36f454f9e969adbb50eaf8258) script.
| Feature (overlay the previous) | Max Memory Allocated | Max Memory Reserved |
| :----------------------------- | :------------------- | :------------------ |
| - | 37 GB | 44 GB |
| enable_model_cpu_offload | 22 GB | 25 GB |
| enable_sequential_cpu_offload | 16 GB | 22 GB |
| vae.enable_slicing | 16 GB | 22 GB |
| vae.enable_tiling | 5 GB | 7 GB |
## ConsisIDPipeline
[[autodoc]] ConsisIDPipeline
- all
- __call__
## ConsisIDPipelineOutput
[[autodoc]] pipelines.consisid.pipeline_output.ConsisIDPipelineOutput

View File

@@ -1,93 +0,0 @@
<!--Copyright 2024 The HuggingFace Team, The Black Forest Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# FluxControlInpaint
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</div>
FluxControlInpaintPipeline is an implementation of Inpainting for Flux.1 Depth/Canny models. It is a pipeline that allows you to inpaint images using the Flux.1 Depth/Canny models. The pipeline takes an image and a mask as input and returns the inpainted image.
FLUX.1 Depth and Canny [dev] is a 12 billion parameter rectified flow transformer capable of generating an image based on a text description while following the structure of a given input image. **This is not a ControlNet model**.
| Control type | Developer | Link |
| -------- | ---------- | ---- |
| Depth | [Black Forest Labs](https://huggingface.co/black-forest-labs) | [Link](https://huggingface.co/black-forest-labs/FLUX.1-Depth-dev) |
| Canny | [Black Forest Labs](https://huggingface.co/black-forest-labs) | [Link](https://huggingface.co/black-forest-labs/FLUX.1-Canny-dev) |
<Tip>
Flux can be quite expensive to run on consumer hardware devices. However, you can perform a suite of optimizations to run it faster and in a more memory-friendly manner. Check out [this section](https://huggingface.co/blog/sd3#memory-optimizations-for-sd3) for more details. Additionally, Flux can benefit from quantization for memory efficiency with a trade-off in inference latency. Refer to [this blog post](https://huggingface.co/blog/quanto-diffusers) to learn more. For an exhaustive list of resources, check out [this gist](https://gist.github.com/sayakpaul/b664605caf0aa3bf8585ab109dd5ac9c).
</Tip>
```python
import torch
from diffusers import FluxControlInpaintPipeline
from diffusers.models.transformers import FluxTransformer2DModel
from transformers import T5EncoderModel
from diffusers.utils import load_image, make_image_grid
from image_gen_aux import DepthPreprocessor # https://github.com/huggingface/image_gen_aux
from PIL import Image
import numpy as np
pipe = FluxControlInpaintPipeline.from_pretrained(
"black-forest-labs/FLUX.1-Depth-dev",
torch_dtype=torch.bfloat16,
)
# use following lines if you have GPU constraints
# ---------------------------------------------------------------
transformer = FluxTransformer2DModel.from_pretrained(
"sayakpaul/FLUX.1-Depth-dev-nf4", subfolder="transformer", torch_dtype=torch.bfloat16
)
text_encoder_2 = T5EncoderModel.from_pretrained(
"sayakpaul/FLUX.1-Depth-dev-nf4", subfolder="text_encoder_2", torch_dtype=torch.bfloat16
)
pipe.transformer = transformer
pipe.text_encoder_2 = text_encoder_2
pipe.enable_model_cpu_offload()
# ---------------------------------------------------------------
pipe.to("cuda")
prompt = "a blue robot singing opera with human-like expressions"
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/robot.png")
head_mask = np.zeros_like(image)
head_mask[65:580,300:642] = 255
mask_image = Image.fromarray(head_mask)
processor = DepthPreprocessor.from_pretrained("LiheYoung/depth-anything-large-hf")
control_image = processor(image)[0].convert("RGB")
output = pipe(
prompt=prompt,
image=image,
control_image=control_image,
mask_image=mask_image,
num_inference_steps=30,
strength=0.9,
guidance_scale=10.0,
generator=torch.Generator().manual_seed(42),
).images[0]
make_image_grid([image, control_image, mask_image, output.resize(image.size)], rows=1, cols=4).save("output.png")
```
## FluxControlInpaintPipeline
[[autodoc]] FluxControlInpaintPipeline
- all
- __call__
## FluxPipelineOutput
[[autodoc]] pipelines.flux.pipeline_output.FluxPipelineOutput

View File

@@ -12,10 +12,6 @@ specific language governing permissions and limitations under the License.
# ControlNet
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</div>
ControlNet was introduced in [Adding Conditional Control to Text-to-Image Diffusion Models](https://huggingface.co/papers/2302.05543) by Lvmin Zhang, Anyi Rao, and Maneesh Agrawala.
With a ControlNet model, you can provide an additional control image to condition and control Stable Diffusion generation. For example, if you provide a depth map, the ControlNet model generates an image that'll preserve the spatial information from the depth map. It is a more flexible and accurate way to control the image generation process.
@@ -30,7 +26,7 @@ The original codebase can be found at [lllyasviel/ControlNet](https://github.com
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -1,60 +0,0 @@
<!--Copyright 2024 The HuggingFace Team, The InstantX Team, and the XLabs Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# ControlNet with Flux.1
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</div>
FluxControlNetPipeline is an implementation of ControlNet for Flux.1.
ControlNet was introduced in [Adding Conditional Control to Text-to-Image Diffusion Models](https://huggingface.co/papers/2302.05543) by Lvmin Zhang, Anyi Rao, and Maneesh Agrawala.
With a ControlNet model, you can provide an additional control image to condition and control Stable Diffusion generation. For example, if you provide a depth map, the ControlNet model generates an image that'll preserve the spatial information from the depth map. It is a more flexible and accurate way to control the image generation process.
The abstract from the paper is:
*We present ControlNet, a neural network architecture to add spatial conditioning controls to large, pretrained text-to-image diffusion models. ControlNet locks the production-ready large diffusion models, and reuses their deep and robust encoding layers pretrained with billions of images as a strong backbone to learn a diverse set of conditional controls. The neural architecture is connected with "zero convolutions" (zero-initialized convolution layers) that progressively grow the parameters from zero and ensure that no harmful noise could affect the finetuning. We test various conditioning controls, eg, edges, depth, segmentation, human pose, etc, with Stable Diffusion, using single or multiple conditions, with or without prompts. We show that the training of ControlNets is robust with small (<50k) and large (>1m) datasets. Extensive results show that ControlNet may facilitate wider applications to control image diffusion models.*
This controlnet code is implemented by [The InstantX Team](https://huggingface.co/InstantX). You can find pre-trained checkpoints for Flux-ControlNet in the table below:
| ControlNet type | Developer | Link |
| -------- | ---------- | ---- |
| Canny | [The InstantX Team](https://huggingface.co/InstantX) | [Link](https://huggingface.co/InstantX/FLUX.1-dev-Controlnet-Canny) |
| Depth | [The InstantX Team](https://huggingface.co/InstantX) | [Link](https://huggingface.co/Shakker-Labs/FLUX.1-dev-ControlNet-Depth) |
| Union | [The InstantX Team](https://huggingface.co/InstantX) | [Link](https://huggingface.co/InstantX/FLUX.1-dev-Controlnet-Union) |
XLabs ControlNets are also supported, which was contributed by the [XLabs team](https://huggingface.co/XLabs-AI).
| ControlNet type | Developer | Link |
| -------- | ---------- | ---- |
| Canny | [The XLabs Team](https://huggingface.co/XLabs-AI) | [Link](https://huggingface.co/XLabs-AI/flux-controlnet-canny-diffusers) |
| Depth | [The XLabs Team](https://huggingface.co/XLabs-AI) | [Link](https://huggingface.co/XLabs-AI/flux-controlnet-depth-diffusers) |
| HED | [The XLabs Team](https://huggingface.co/XLabs-AI) | [Link](https://huggingface.co/XLabs-AI/flux-controlnet-hed-diffusers) |
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
## FluxControlNetPipeline
[[autodoc]] FluxControlNetPipeline
- all
- __call__
## FluxPipelineOutput
[[autodoc]] pipelines.flux.pipeline_output.FluxPipelineOutput

Some files were not shown because too many files have changed in this diff Show More