[Core] Rename PassConfig flags as per RFC #27995 (#29646)

Signed-off-by: arpitkh101 <arpit5khandelwal@gmail.com>
Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
(cherry picked from commit d7284a2604)
This commit is contained in:
Arpit Khandelwal
2025-12-02 22:38:55 -05:00
committed by Kevin H. Luu
parent a1d627e40f
commit 4fd9d6a85c
22 changed files with 318 additions and 123 deletions

View File

@@ -326,7 +326,7 @@ def async_tp_pass_on_test_model(
vllm_config = VllmConfig()
vllm_config.compilation_config = CompilationConfig(
pass_config=PassConfig(
enable_async_tp=True,
fuse_gemm_comms=True,
),
)
vllm_config.device_config = DeviceConfig(device=torch.device("cuda"))
@@ -413,7 +413,7 @@ def test_async_tp_pass_correctness(
"mode": CompilationMode.VLLM_COMPILE,
"compile_sizes": [2, 4, 8],
"splitting_ops": [],
"pass_config": {"enable_async_tp": async_tp_enabled},
"pass_config": {"fuse_gemm_comms": async_tp_enabled},
}
async_tp_args = [

View File

@@ -295,7 +295,7 @@ def all_reduce_fusion_pass_on_test_model(
)
)
vllm_config.compilation_config.pass_config = PassConfig(
enable_fi_allreduce_fusion=True, enable_noop=True
fuse_allreduce_rms=True, eliminate_noops=True
)
vllm_config.device_config = DeviceConfig(device=torch.device("cuda"))
vllm_config.parallel_config.rank = local_rank # Setup rank for debug path

View File

@@ -192,7 +192,7 @@ def test_attn_quant(
splitting_ops=splitting_ops,
# Common
mode=CompilationMode.VLLM_COMPILE,
pass_config=PassConfig(enable_attn_fusion=True, enable_noop=True),
pass_config=PassConfig(fuse_attn_quant=True, eliminate_noops=True),
# Inductor caches custom passes by default as well via uuid
inductor_compile_config={"force_disable_caches": True},
)
@@ -282,9 +282,9 @@ def test_tp2_attn_quant_allreduce_rmsnorm(
# Common
mode=CompilationMode.VLLM_COMPILE,
pass_config=PassConfig(
enable_attn_fusion=True,
enable_noop=True,
enable_fi_allreduce_fusion=True,
fuse_attn_quant=True,
eliminate_noops=True,
fuse_allreduce_rms=True,
),
# Inductor caches custom passes by default as well via uuid
inductor_compile_config={"force_disable_caches": True},
@@ -384,10 +384,10 @@ def test_tp2_attn_quant_async_tp(
# Common
level=CompilationMode.VLLM_COMPILE,
pass_config=PassConfig(
enable_attn_fusion=True,
enable_noop=True,
enable_sequence_parallelism=True,
enable_async_tp=True,
fuse_attn_quant=True,
eliminate_noops=True,
enable_sp=True,
fuse_gemm_comms=True,
),
# Inductor caches custom passes by default as well via uuid
inductor_compile_config={"force_disable_caches": True},

View File

@@ -153,7 +153,7 @@ class TestAllReduceRMSNormStaticQuantFP8Model(torch.nn.Module):
]
def ops_in_model(self):
if self.vllm_config.compilation_config.pass_config.enable_fusion:
if self.vllm_config.compilation_config.pass_config.fuse_norm_quant:
return [torch.ops._C.fused_add_rms_norm_static_fp8_quant.default]
elif RMSNorm.enabled():
return [
@@ -183,7 +183,7 @@ class TestAllReduceRMSNormStaticQuantFP8Model(torch.nn.Module):
@pytest.mark.parametrize("seq_len", [16])
@pytest.mark.parametrize("hidden_size", [16])
@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16])
@pytest.mark.parametrize("enable_fusion", [True, False])
@pytest.mark.parametrize("fuse_norm_quant", [True, False])
@pytest.mark.parametrize("dynamic", [False, True])
@pytest.mark.skipif(envs.VLLM_TARGET_DEVICE not in ["cuda"], reason="Only test on CUDA")
def test_sequence_parallelism_pass(
@@ -193,7 +193,7 @@ def test_sequence_parallelism_pass(
seq_len: int,
hidden_size: int,
dtype: torch.dtype,
enable_fusion: bool,
fuse_norm_quant: bool,
dynamic: bool,
):
num_processes = 2
@@ -211,7 +211,7 @@ def test_sequence_parallelism_pass(
seq_len,
hidden_size,
dtype,
enable_fusion,
fuse_norm_quant,
dynamic,
),
nprocs=nprocs,
@@ -229,7 +229,7 @@ def sequence_parallelism_pass_on_test_model(
seq_len: int,
hidden_size: int,
dtype: torch.dtype,
enable_fusion: bool,
fuse_norm_quant: bool,
dynamic: bool,
):
current_platform.seed_everything(0)
@@ -260,9 +260,9 @@ def sequence_parallelism_pass_on_test_model(
cudagraph_mode=CUDAGraphMode.NONE, # avoid piecewise warnings
custom_ops=custom_ops_list,
pass_config=PassConfig(
enable_sequence_parallelism=True,
enable_fusion=enable_fusion,
enable_noop=True,
enable_sp=True,
fuse_norm_quant=fuse_norm_quant,
eliminate_noops=True,
),
) # NoOp needed for fusion
device_config = DeviceConfig(device=torch.device("cuda"))
@@ -297,7 +297,7 @@ def sequence_parallelism_pass_on_test_model(
sequence_parallelism_pass,
]
if enable_fusion:
if fuse_norm_quant:
fusion_pass = RMSNormQuantFusionPass(vllm_config)
passes_for_backend.append(fusion_pass)

View File

@@ -122,7 +122,9 @@ def test_full_graph(
CompilationConfig(
mode=CompilationMode.VLLM_COMPILE,
custom_ops=["+rms_norm"],
pass_config=PassConfig(enable_fusion=True, enable_noop=True),
pass_config=PassConfig(
fuse_norm_quant=True, fuse_act_quant=True, eliminate_noops=True
),
),
*model_info,
)

View File

@@ -1,6 +1,7 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import copy
import logging
from contextlib import nullcontext
from unittest.mock import patch
@@ -10,8 +11,9 @@ from pydantic import ValidationError
from vllm.compilation.counter import compilation_counter
from vllm.compilation.fix_functionalization import FixFunctionalizationPass
from vllm.config import CompilationConfig, CUDAGraphMode, VllmConfig
from vllm.config.compilation import CompilationMode
from vllm.config.compilation import CompilationMode, PassConfig
from vllm.engine.arg_utils import EngineArgs
from vllm.logger import _print_warning_once
from vllm.platforms import current_platform
from vllm.utils.torch_utils import _is_torch_equal_or_newer
@@ -191,7 +193,7 @@ def test_splitting_ops_dynamic():
config = VllmConfig(
compilation_config=CompilationConfig(
mode=CompilationMode.VLLM_COMPILE,
pass_config={"enable_attn_fusion": True, "enable_noop": True},
pass_config=PassConfig(fuse_attn_quant=True, eliminate_noops=True),
custom_ops=["+quant_fp8"],
cudagraph_mode=CUDAGraphMode.PIECEWISE,
)
@@ -206,7 +208,7 @@ def test_splitting_ops_dynamic():
config = VllmConfig(
compilation_config=CompilationConfig(
mode=CompilationMode.VLLM_COMPILE,
pass_config={"enable_attn_fusion": True, "enable_noop": True},
pass_config=PassConfig(fuse_attn_quant=True, eliminate_noops=True),
custom_ops=["+quant_fp8"],
cudagraph_mode=CUDAGraphMode.PIECEWISE,
# work around for accessing all attntion ops
@@ -219,7 +221,7 @@ def test_splitting_ops_dynamic():
compilation_config=CompilationConfig(
mode=CompilationMode.VLLM_COMPILE,
use_inductor_graph_partition=True,
pass_config={"enable_attn_fusion": True, "enable_noop": True},
pass_config=PassConfig(fuse_attn_quant=True, eliminate_noops=True),
custom_ops=["+quant_fp8"],
cudagraph_mode=CUDAGraphMode.PIECEWISE,
)
@@ -227,7 +229,7 @@ def test_splitting_ops_dynamic():
# With inductor graph partition, attn_fusion and splitting_ops
# work together. Default splitting_ops include attention ops.
assert config.compilation_config.splitting_ops_contain_attention()
# enable_attn_fusion is directly supported under
# fuse_attn_quant is directly supported under
# use_inductor_graph_partition=True, and cudagraph_mode
# is unchanged.
assert config.compilation_config.cudagraph_mode == CUDAGraphMode.PIECEWISE
@@ -301,7 +303,7 @@ def test_should_split():
"cudagraph_capture_sizes",
"max_cudagraph_capture_size",
"tp_size",
"enable_sequence_parallelism",
"enable_sp",
"max_num_batched_tokens",
"cudagraph_mode",
"expected_max_size",
@@ -339,7 +341,7 @@ def test_cudagraph_sizes_post_init(
cudagraph_capture_sizes,
max_cudagraph_capture_size,
tp_size,
enable_sequence_parallelism,
enable_sp,
max_num_batched_tokens,
cudagraph_mode,
expected_max_size,
@@ -355,11 +357,12 @@ def test_cudagraph_sizes_post_init(
compilation_config = CompilationConfig(
cudagraph_capture_sizes=cudagraph_capture_sizes,
max_cudagraph_capture_size=max_cudagraph_capture_size,
pass_config={
"enable_sequence_parallelism": enable_sequence_parallelism,
"enable_fusion": True,
"enable_noop": True,
},
pass_config=PassConfig(
enable_sp=enable_sp,
fuse_norm_quant=True,
fuse_act_quant=True,
eliminate_noops=True,
),
cudagraph_mode=cudagraph_mode,
)
engine_args = EngineArgs(
@@ -375,3 +378,53 @@ def test_cudagraph_sizes_post_init(
vllm_config.compilation_config.max_cudagraph_capture_size
== expected_max_size
)
def test_pass_config_deprecation(caplog_vllm):
caplog_vllm.set_level(logging.WARNING)
# Clear cache to ensure warnings are re-issued
_print_warning_once.cache_clear()
# Test enable_fusion -> fuse_norm_quant, fuse_act_quant
caplog_vllm.clear()
config = PassConfig(enable_fusion=True)
assert "enable_fusion is deprecated" in caplog_vllm.text
assert config.fuse_norm_quant is True
assert config.fuse_act_quant is True
assert config.enable_fusion is None
# Test enable_attn_fusion -> fuse_attn_quant
caplog_vllm.clear()
config = PassConfig(enable_attn_fusion=True)
assert "enable_attn_fusion is deprecated" in caplog_vllm.text
assert config.fuse_attn_quant is True
assert config.enable_attn_fusion is None
# Test enable_noop -> eliminate_noops
caplog_vllm.clear()
config = PassConfig(enable_noop=True)
assert "enable_noop is deprecated" in caplog_vllm.text
assert config.eliminate_noops is True
assert config.enable_noop is None
# Test enable_sequence_parallelism -> enable_sp
caplog_vllm.clear()
config = PassConfig(enable_sequence_parallelism=True)
assert "enable_sequence_parallelism is deprecated" in caplog_vllm.text
assert config.enable_sp is True
assert config.enable_sequence_parallelism is None
# Test enable_async_tp -> fuse_gemm_comms
caplog_vllm.clear()
config = PassConfig(enable_async_tp=True)
assert "enable_async_tp is deprecated" in caplog_vllm.text
assert config.fuse_gemm_comms is True
assert config.enable_async_tp is None
# Test enable_fi_allreduce_fusion -> fuse_allreduce_rms
caplog_vllm.clear()
config = PassConfig(enable_fi_allreduce_fusion=True)
assert "enable_fi_allreduce_fusion is deprecated" in caplog_vllm.text
assert config.fuse_allreduce_rms is True
assert config.enable_fi_allreduce_fusion is None

View File

@@ -223,7 +223,11 @@ def test_fix_functionalization(
model_config=ModelConfig(dtype=dtype),
compilation_config=CompilationConfig(
custom_ops=["all"],
pass_config=PassConfig(enable_fusion=do_fusion, enable_noop=True),
pass_config=PassConfig(
fuse_norm_quant=do_fusion,
fuse_act_quant=do_fusion,
eliminate_noops=True,
),
),
)

View File

@@ -159,7 +159,9 @@ def test_fusion_rmsnorm_quant(
compilation_config=CompilationConfig(
mode=CompilationMode.VLLM_COMPILE,
custom_ops=custom_ops,
pass_config=PassConfig(enable_fusion=True, enable_noop=True),
pass_config=PassConfig(
fuse_norm_quant=True, fuse_act_quant=True, eliminate_noops=True
),
),
)
with vllm.config.set_current_vllm_config(vllm_config):

View File

@@ -373,7 +373,7 @@ def test_attention_quant_pattern(
# Run model with attn fusion enabled
vllm_config.compilation_config.pass_config = PassConfig(
enable_attn_fusion=True, enable_noop=True
fuse_attn_quant=True, eliminate_noops=True
)
with (
set_current_vllm_config(vllm_config),

View File

@@ -51,7 +51,7 @@ def test_noop_elimination(dtype, num_tokens, hidden_size, buffer_size):
vllm_config = VllmConfig(
compilation_config=CompilationConfig(
mode=CompilationMode.VLLM_COMPILE,
pass_config=PassConfig(enable_noop=True),
pass_config=PassConfig(eliminate_noops=True),
)
)
with vllm.config.set_current_vllm_config(vllm_config):
@@ -99,7 +99,7 @@ def test_non_noop_slice_preserved():
vllm_config = VllmConfig(
compilation_config=CompilationConfig(
mode=CompilationMode.VLLM_COMPILE,
pass_config=PassConfig(enable_noop=True),
pass_config=PassConfig(eliminate_noops=True),
)
)
with vllm.config.set_current_vllm_config(vllm_config):

View File

@@ -64,8 +64,11 @@ def test_pass_manager_uuid(callable):
# UUID should be different due to config change
config2 = copy.deepcopy(config)
config2.compilation_config.pass_config.enable_fusion = (
not config2.compilation_config.pass_config.enable_fusion
config2.compilation_config.pass_config.fuse_norm_quant = (
not config2.compilation_config.pass_config.fuse_norm_quant
)
config2.compilation_config.pass_config.fuse_act_quant = (
not config2.compilation_config.pass_config.fuse_act_quant
)
pass_manager3 = PostGradPassManager()
pass_manager3.configure(config2)

View File

@@ -140,7 +140,7 @@ def test_qk_norm_rope_fusion(
custom_ops=custom_ops,
pass_config=PassConfig(
enable_qk_norm_rope_fusion=True,
enable_noop=True,
eliminate_noops=True,
),
),
)

View File

@@ -168,7 +168,7 @@ def test_fusion_silu_and_mul_quant(
compilation_config=CompilationConfig(
mode=CompilationMode.VLLM_COMPILE,
custom_ops=custom_ops,
pass_config=PassConfig(enable_fusion=True, enable_noop=True),
pass_config=PassConfig(fuse_act_quant=True, eliminate_noops=True),
),
)

View File

@@ -32,7 +32,8 @@ VLLM_MULTI_NODE = os.getenv("VLLM_MULTI_NODE", "0") == "1"
class ParallelSetup(NamedTuple):
tp_size: int
pp_size: int
enable_fusion: bool
fuse_norm_quant: bool
fuse_act_quant: bool
eager_mode: bool
chunked_prefill: bool
@@ -66,7 +67,8 @@ class SPTestSettings:
ParallelSetup(
tp_size=tp_base,
pp_size=pp_multiplier * pp_base,
enable_fusion=False,
fuse_norm_quant=False,
fuse_act_quant=False,
eager_mode=eager_mode_val,
chunked_prefill=chunked_prefill_val,
)
@@ -97,7 +99,8 @@ class SPTestSettings:
ParallelSetup(
tp_size=tp_base,
pp_size=pp_multiplier * pp_base,
enable_fusion=False,
fuse_norm_quant=False,
fuse_act_quant=False,
eager_mode=eager_mode_val,
chunked_prefill=chunked_prefill_val,
)
@@ -126,7 +129,8 @@ class SPTestSettings:
ParallelSetup(
tp_size=tp_base,
pp_size=pp_base,
enable_fusion=fusion_val,
fuse_norm_quant=fusion_val,
fuse_act_quant=fusion_val,
eager_mode=True,
chunked_prefill=False,
)
@@ -162,7 +166,7 @@ def _compare_sp(
test_options: SPTestOptions,
num_gpus_available: int,
use_inductor_graph_partition: bool,
enable_async_tp: bool,
fuse_gemm_comms: bool,
*,
method: Literal["generate", "encode"],
is_multimodal: bool,
@@ -170,7 +174,8 @@ def _compare_sp(
(
tp_size,
pp_size,
enable_fusion,
fuse_norm_quant,
fuse_act_quant,
eager_mode,
chunked_prefill,
) = parallel_setup
@@ -248,10 +253,11 @@ def _compare_sp(
"mode": CompilationMode.VLLM_COMPILE,
"compile_sizes": [4, 8],
"pass_config": {
"enable_sequence_parallelism": True,
"enable_async_tp": enable_async_tp,
"enable_fusion": enable_fusion,
"enable_noop": True,
"enable_sp": True,
"fuse_gemm_comms": fuse_gemm_comms,
"fuse_norm_quant": fuse_norm_quant,
"fuse_act_quant": fuse_act_quant,
"eliminate_noops": True,
},
"use_inductor_graph_partition": use_inductor_graph_partition,
}
@@ -309,7 +315,7 @@ SP_TEST_MODELS = [
],
)
@pytest.mark.parametrize("use_inductor_graph_partition", [True, False])
@pytest.mark.parametrize("enable_async_tp", [False]) # TODO: enable async TP
@pytest.mark.parametrize("fuse_gemm_comms", [False]) # TODO: enable async TP
@create_new_process_for_each_test()
def test_tp_sp_generation(
model_id: str,
@@ -319,7 +325,7 @@ def test_tp_sp_generation(
test_options: SPTestOptions,
num_gpus_available,
use_inductor_graph_partition: bool,
enable_async_tp: bool,
fuse_gemm_comms: bool,
):
if use_inductor_graph_partition and not is_torch_equal_or_newer("2.9.0.dev"):
pytest.skip("inductor graph partition is only available in PyTorch 2.9+")
@@ -328,7 +334,7 @@ def test_tp_sp_generation(
if (
"fp8" in model_id.lower()
and current_platform.get_device_capability() < (9, 0)
and (not enable_async_tp)
and (not fuse_gemm_comms)
):
pytest.skip("FP8 reduction support begins with sm90 capable devices.")
@@ -340,7 +346,7 @@ def test_tp_sp_generation(
test_options,
num_gpus_available,
use_inductor_graph_partition,
enable_async_tp=enable_async_tp,
fuse_gemm_comms=fuse_gemm_comms,
method="generate",
is_multimodal=False,
)

View File

@@ -1023,17 +1023,17 @@ def test_vllm_config_explicit_overrides():
assert config.compilation_config.cudagraph_mode == CUDAGraphMode.NONE
# Explicit pass config flags to override defaults
pass_config = PassConfig(enable_noop=True, enable_attn_fusion=True)
pass_config = PassConfig(eliminate_noops=True, fuse_attn_quant=True)
compilation_config = CompilationConfig(pass_config=pass_config)
config = VllmConfig(
optimization_level=OptimizationLevel.O0,
compilation_config=compilation_config,
)
assert config.compilation_config.pass_config.enable_noop is True
assert config.compilation_config.pass_config.enable_attn_fusion is True
assert config.compilation_config.pass_config.eliminate_noops is True
assert config.compilation_config.pass_config.fuse_attn_quant is True
# Explicit cudagraph mode override on quantized model at O2
pass_config = PassConfig(enable_async_tp=True)
pass_config = PassConfig(fuse_gemm_comms=True)
compilation_config = CompilationConfig(
cudagraph_mode=CUDAGraphMode.NONE, pass_config=pass_config
)
@@ -1043,7 +1043,7 @@ def test_vllm_config_explicit_overrides():
compilation_config=compilation_config,
)
assert config.compilation_config.cudagraph_mode == CUDAGraphMode.NONE
assert config.compilation_config.pass_config.enable_async_tp is True
assert config.compilation_config.pass_config.fuse_gemm_comms is True
# Mode should still use default for O2
assert config.compilation_config.mode == CompilationMode.VLLM_COMPILE
@@ -1093,7 +1093,7 @@ def test_vllm_config_explicit_overrides():
compilation_config=compilation_config,
)
# Explicit override should be respected
assert config.compilation_config.pass_config.enable_noop is False
assert config.compilation_config.pass_config.eliminate_noops is False
# Other fields should still use defaults
assert config.compilation_config.mode == CompilationMode.VLLM_COMPILE
assert config.compilation_config.cudagraph_mode == CUDAGraphMode.FULL_AND_PIECEWISE

View File

@@ -92,22 +92,23 @@ class PostGradPassManager(CustomGraphPass):
# Set the current vllm config to allow tracing CustomOp instances
with set_current_vllm_config(config, check_compile=False):
if self.pass_config.enable_noop:
if self.pass_config.eliminate_noops:
self.passes += [NoOpEliminationPass(config)]
if self.pass_config.enable_sequence_parallelism:
if self.pass_config.enable_sp:
self.passes += [SequenceParallelismPass(config)]
if self.pass_config.enable_async_tp:
if self.pass_config.fuse_gemm_comms:
self.passes += [AsyncTPPass(config)]
if self.pass_config.enable_fi_allreduce_fusion:
if self.pass_config.fuse_allreduce_rms:
self.passes += [AllReduceFusionPass(config)]
if self.pass_config.enable_fusion:
if self.pass_config.fuse_norm_quant:
self.passes += [RMSNormQuantFusionPass(config)]
if self.pass_config.fuse_act_quant:
self.passes += [ActivationQuantFusionPass(config)]
if self.pass_config.enable_attn_fusion:
if self.pass_config.fuse_attn_quant:
self.passes += [AttnFusionPass(config)]
if self.pass_config.enable_qk_norm_rope_fusion:

View File

@@ -13,7 +13,7 @@ from pydantic.dataclasses import dataclass
import vllm.envs as envs
from vllm.compilation.inductor_pass import CallableInductorPass, InductorPass
from vllm.config.utils import config
from vllm.config.utils import config, handle_deprecated
from vllm.logger import init_logger
from vllm.platforms import current_platform
from vllm.utils.import_utils import resolve_obj_by_qualname
@@ -105,18 +105,43 @@ class PassConfig:
improper state.
"""
# New flags
fuse_norm_quant: bool = Field(default=None)
"""Fuse the custom RMSNorm + quant ops."""
fuse_act_quant: bool = Field(default=None)
"""Fuse the custom SiluMul + quant ops."""
fuse_attn_quant: bool = Field(default=None)
"""Fuse the custom attention + quant ops."""
eliminate_noops: bool = Field(default=None)
"""Eliminate no-op ops."""
enable_sp: bool = Field(default=None)
"""Enable sequence parallelism."""
fuse_gemm_comms: bool = Field(default=None)
"""Enable async TP."""
fuse_allreduce_rms: bool = Field(default=None)
"""Enable flashinfer allreduce fusion."""
# Deprecated flags
enable_fusion: bool = Field(default=None)
"""Whether to enable the custom fusion (RMSNorm/SiluMul+quant) pass."""
"""Deprecated in: v0.12.0. Use fuse_norm_quant and fuse_act_quant
instead. Will be removed in v0.13.0 or v1.0.0, whichever is sooner.
"""
enable_attn_fusion: bool = Field(default=None)
"""Whether to enable the custom attention+quant fusion pass."""
"""Deprecated in: v0.12.0. Use fuse_attn_quant instead.
Will be removed in v0.13.0 or v1.0.0, whichever is sooner."""
enable_noop: bool = Field(default=None)
"""Whether to enable the custom no-op elimination pass."""
"""Deprecated in: v0.12.0. Use eliminate_noops instead.
Will be removed in v0.13.0 or v1.0.0, whichever is sooner."""
enable_sequence_parallelism: bool = Field(default=None)
"""Whether to enable sequence parallelism."""
"""Deprecated in: v0.12.0. Use enable_sp instead.
Will be removed in v0.13.0 or v1.0.0, whichever is sooner."""
enable_async_tp: bool = Field(default=None)
"""Whether to enable async TP."""
"""Deprecated in: v0.12.0. Use fuse_gemm_comms instead.
Will be removed in v0.13.0 or v1.0.0, whichever is sooner."""
enable_fi_allreduce_fusion: bool = Field(default=None)
"""Whether to enable flashinfer allreduce fusion."""
"""Deprecated in: v0.12.0. Use fuse_allreduce_rms instead.
Will be removed in v0.13.0 or v1.0.0, whichever is sooner."""
fi_allreduce_fusion_max_size_mb: float | None = None
"""The threshold of the communicated tensor sizes under which
vllm should use flashinfer fused allreduce. Specified as a
@@ -136,7 +161,7 @@ class PassConfig:
},
}, where key is the device capability"""
enable_qk_norm_rope_fusion: bool = False
"""Whether to enable the fused Q/K RMSNorm + RoPE pass."""
"""Enable fused Q/K RMSNorm + RoPE pass."""
# TODO(luka) better pass enabling system.
@@ -174,6 +199,13 @@ class PassConfig:
return InductorPass.hash_dict(asdict(self))
@field_validator(
"fuse_norm_quant",
"fuse_act_quant",
"fuse_attn_quant",
"eliminate_noops",
"enable_sp",
"fuse_gemm_comms",
"fuse_allreduce_rms",
"enable_fusion",
"enable_attn_fusion",
"enable_noop",
@@ -190,18 +222,71 @@ class PassConfig:
return handler(value)
def __post_init__(self) -> None:
if not self.enable_noop:
if self.enable_fusion:
# Handle deprecation and defaults
# Map old flags to new flags and issue warnings
handle_deprecated(
self,
"enable_fusion",
["fuse_norm_quant", "fuse_act_quant"],
"v0.13.0 or v1.0.0, whichever is sooner",
)
handle_deprecated(
self,
"enable_attn_fusion",
"fuse_attn_quant",
"v0.13.0 or v1.0.0, whichever is sooner",
)
handle_deprecated(
self,
"enable_sequence_parallelism",
"enable_sp",
"v0.13.0 or v1.0.0, whichever is sooner",
)
handle_deprecated(
self,
"enable_async_tp",
"fuse_gemm_comms",
"v0.13.0 or v1.0.0, whichever is sooner",
)
handle_deprecated(
self,
"enable_fi_allreduce_fusion",
"fuse_allreduce_rms",
"v0.13.0 or v1.0.0, whichever is sooner",
)
handle_deprecated(
self,
"enable_noop",
"eliminate_noops",
"v0.13.0 or v1.0.0, whichever is sooner",
)
# Force old flags to None to ensure they are not used
self.enable_fusion = None
self.enable_attn_fusion = None
self.enable_noop = None
self.enable_sequence_parallelism = None
self.enable_async_tp = None
self.enable_fi_allreduce_fusion = None
if not self.eliminate_noops:
if self.fuse_norm_quant or self.fuse_act_quant:
logger.warning_once(
"Fusion enabled but reshape elimination disabled. "
"RMSNorm/SiluMul + quant (fp8) fusion might not work"
)
if self.enable_attn_fusion:
if self.fuse_attn_quant:
logger.warning_once(
"Fusion enabled but reshape elimination disabled. "
"Attention + quant (fp8) fusion might not work"
)
if self.enable_fi_allreduce_fusion:
if self.fuse_allreduce_rms:
logger.warning_once(
"Fusion enabled but reshape elimination disabled. "
"Allreduce + rms norm + quant (fp8) fusion might not work"
@@ -873,7 +958,7 @@ class CompilationConfig:
self.set_splitting_ops_for_inductor_graph_partition()
return
if self.pass_config.enable_attn_fusion:
if self.pass_config.fuse_attn_quant:
# here use_inductor_graph_partition is False
self.set_splitting_ops_for_attn_fusion()
return
@@ -915,12 +1000,12 @@ class CompilationConfig:
self.splitting_ops = list(self._attention_ops)
def set_splitting_ops_for_attn_fusion(self):
assert self.pass_config.enable_attn_fusion
assert self.pass_config.fuse_attn_quant
if self.splitting_ops is None:
self.splitting_ops = []
if self.cudagraph_mode.has_piecewise_cudagraphs():
logger.warning_once(
"enable_attn_fusion is incompatible with piecewise "
"fuse_attn_quant is incompatible with piecewise "
"cudagraph when use_inductor_graph_partition is off. "
"In this case, splitting_ops will be set to empty "
"list, and cudagraph_mode will be set to FULL. "
@@ -931,8 +1016,7 @@ class CompilationConfig:
self.cudagraph_mode = CUDAGraphMode.FULL
assert not self.splitting_ops_contain_attention(), (
"attention ops should not be in splitting_ops "
"when enable_attn_fusion is True"
"attention ops should not be in splitting_ops when fuse_attn_quant is True"
)
def splitting_ops_contain_attention(self) -> bool:
@@ -1008,7 +1092,7 @@ class CompilationConfig:
self, uniform_decode_query_len: int, tensor_parallel_size: int
):
multiple_of = uniform_decode_query_len
if tensor_parallel_size > 1 and self.pass_config.enable_sequence_parallelism:
if tensor_parallel_size > 1 and self.pass_config.enable_sp:
multiple_of = max(uniform_decode_query_len, tensor_parallel_size)
if (
multiple_of % uniform_decode_query_len != 0

View File

@@ -19,6 +19,10 @@ import torch
from pydantic.fields import FieldInfo
from typing_extensions import runtime_checkable
from vllm.logger import init_logger
logger = init_logger(__name__)
if TYPE_CHECKING:
from _typeshed import DataclassInstance
else:
@@ -293,3 +297,28 @@ def get_hash_factors(config: ConfigT, ignored_factors: set[str]) -> dict[str, ob
def hash_factors(items: dict[str, object]) -> str:
"""Return a SHA-256 hex digest of the canonical items structure."""
return hashlib.sha256(json.dumps(items, sort_keys=True).encode()).hexdigest()
def handle_deprecated(
config: ConfigT,
old_name: str,
new_name_or_names: str | list[str],
removal_version: str,
) -> None:
old_val = getattr(config, old_name)
if old_val is None:
return
if isinstance(new_name_or_names, str):
new_names = [new_name_or_names]
else:
new_names = new_name_or_names
msg = (
f"{old_name} is deprecated and will be removed in {removal_version}. "
f"Use {', '.join(new_names)} instead."
)
logger.warning(msg)
for new_name in new_names:
setattr(config, new_name, old_val)

View File

@@ -83,22 +83,33 @@ IS_DENSE = False
# See https://github.com/vllm-project/vllm/issues/25689.
def enable_fusion(cfg: "VllmConfig") -> bool:
"""Returns True if RMS norm or quant FP8 is enabled."""
def enable_norm_fusion(cfg: "VllmConfig") -> bool:
"""Enable if either RMS norm or quant FP8 custom op is active;
otherwise Inductor handles fusion."""
return cfg.compilation_config.is_custom_op_enabled(
"rms_norm"
) or cfg.compilation_config.is_custom_op_enabled("quant_fp8")
def enable_act_fusion(cfg: "VllmConfig") -> bool:
"""Enable if either SiLU+Mul or quant FP8 custom op is active;
otherwise Inductor handles fusion."""
return cfg.compilation_config.is_custom_op_enabled(
"silu_and_mul"
) or cfg.compilation_config.is_custom_op_enabled("quant_fp8")
OPTIMIZATION_LEVEL_00 = {
"compilation_config": {
"pass_config": {
"enable_noop": False,
"enable_fusion": False,
"enable_fi_allreduce_fusion": False,
"enable_attn_fusion": False,
"enable_sequence_parallelism": False,
"enable_async_tp": False,
"eliminate_noops": False,
"fuse_norm_quant": False,
"fuse_act_quant": False,
"fuse_allreduce_rms": False,
"fuse_attn_quant": False,
"enable_sp": False,
"fuse_gemm_comms": False,
},
"cudagraph_mode": CUDAGraphMode.NONE,
"use_inductor_graph_partition": False,
@@ -107,12 +118,13 @@ OPTIMIZATION_LEVEL_00 = {
OPTIMIZATION_LEVEL_01 = {
"compilation_config": {
"pass_config": {
"enable_noop": True,
"enable_fusion": enable_fusion,
"enable_fi_allreduce_fusion": False,
"enable_attn_fusion": False,
"enable_sequence_parallelism": False,
"enable_async_tp": False,
"eliminate_noops": True,
"fuse_norm_quant": enable_norm_fusion,
"fuse_act_quant": enable_act_fusion,
"fuse_allreduce_rms": False,
"fuse_attn_quant": False,
"enable_sp": False,
"fuse_gemm_comms": False,
},
"cudagraph_mode": CUDAGraphMode.PIECEWISE,
"use_inductor_graph_partition": False,
@@ -121,12 +133,13 @@ OPTIMIZATION_LEVEL_01 = {
OPTIMIZATION_LEVEL_02 = {
"compilation_config": {
"pass_config": {
"enable_noop": True,
"enable_fusion": enable_fusion,
"enable_fi_allreduce_fusion": False,
"enable_attn_fusion": IS_QUANTIZED,
"enable_sequence_parallelism": IS_DENSE,
"enable_async_tp": IS_DENSE,
"eliminate_noops": True,
"fuse_norm_quant": enable_norm_fusion,
"fuse_act_quant": enable_act_fusion,
"fuse_allreduce_rms": False,
"fuse_attn_quant": IS_QUANTIZED,
"enable_sp": IS_DENSE,
"fuse_gemm_comms": IS_DENSE,
},
"cudagraph_mode": CUDAGraphMode.FULL_AND_PIECEWISE,
"use_inductor_graph_partition": False,
@@ -135,12 +148,13 @@ OPTIMIZATION_LEVEL_02 = {
OPTIMIZATION_LEVEL_03 = {
"compilation_config": {
"pass_config": {
"enable_noop": True,
"enable_fusion": enable_fusion,
"enable_fi_allreduce_fusion": False,
"enable_attn_fusion": IS_QUANTIZED,
"enable_sequence_parallelism": IS_DENSE,
"enable_async_tp": IS_DENSE,
"eliminate_noops": True,
"fuse_norm_quant": enable_norm_fusion,
"fuse_act_quant": enable_act_fusion,
"fuse_allreduce_rms": False,
"fuse_attn_quant": IS_QUANTIZED,
"enable_sp": IS_DENSE,
"fuse_gemm_comms": IS_DENSE,
},
"cudagraph_mode": CUDAGraphMode.FULL_AND_PIECEWISE,
"use_inductor_graph_partition": False,
@@ -645,9 +659,9 @@ class VllmConfig:
# async tp is built on top of sequence parallelism
# and requires it to be enabled.
if self.compilation_config.pass_config.enable_async_tp:
self.compilation_config.pass_config.enable_sequence_parallelism = True
if self.compilation_config.pass_config.enable_sequence_parallelism:
if self.compilation_config.pass_config.fuse_gemm_comms:
self.compilation_config.pass_config.enable_sp = True
if self.compilation_config.pass_config.enable_sp:
if "-rms_norm" in self.compilation_config.custom_ops:
logger.warning(
"RMS norm force disabled, sequence parallelism might break"
@@ -797,7 +811,7 @@ class VllmConfig:
# Do this after all the updates to compilation_config.mode
self.compilation_config.set_splitting_ops_for_v1()
if self.compilation_config.pass_config.enable_sequence_parallelism:
if self.compilation_config.pass_config.enable_sp:
# With pipeline parallelism or dynamo partitioning,
# native rms norm tracing errors due to incorrect residual shape.
# Use custom rms norm to unblock. In the future,
@@ -1062,7 +1076,7 @@ class VllmConfig:
if (
self.parallel_config.tensor_parallel_size > 1
and self.compilation_config.pass_config.enable_sequence_parallelism
and self.compilation_config.pass_config.enable_sp
):
cudagraph_capture_sizes = self.update_sizes_for_sequence_parallelism(
cudagraph_capture_sizes

View File

@@ -2417,10 +2417,7 @@ class GPUModelRunner(
# Pad tokens to multiple of tensor_parallel_size when
# enabled collective fusion for SP
tp_size = self.vllm_config.parallel_config.tensor_parallel_size
if (
self.compilation_config.pass_config.enable_sequence_parallelism
and tp_size > 1
):
if self.compilation_config.pass_config.enable_sp and tp_size > 1:
return round_up(num_scheduled_tokens, tp_size)
return num_scheduled_tokens

View File

@@ -552,7 +552,7 @@ class Worker(WorkerBase):
if (
parallel_config.pipeline_parallel_size > 1
and compilation_config.pass_config.enable_sequence_parallelism
and compilation_config.pass_config.enable_sp
and forward_pass
):
# currently only supported by V1 GPUModelRunner

View File

@@ -342,7 +342,7 @@ def is_residual_scattered_for_sp(
partition), SP is always applied
- Otherwise, SP is only applied for specific shapes in compile_sizes
"""
if not vllm_config.compilation_config.pass_config.enable_sequence_parallelism:
if not vllm_config.compilation_config.pass_config.enable_sp:
return False
tp = vllm_config.parallel_config.tensor_parallel_size