Signed-off-by: Boyuan Feng <boyuan@meta.com> Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com> Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
210 lines
7.7 KiB
Python
210 lines
7.7 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
import os
|
|
|
|
import torch
|
|
|
|
from vllm.logger import init_logger
|
|
from vllm.utils import is_torch_equal
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
# set some common config/environment variables that should be set
|
|
# for all processes created by vllm and all processes
|
|
# that interact with vllm workers.
|
|
# they are executed whenever `import vllm` is called.
|
|
|
|
# see https://github.com/vllm-project/vllm/pull/15951
|
|
# it avoids unintentional cuda initialization from torch.cuda.is_available()
|
|
os.environ["PYTORCH_NVML_BASED_CUDA_CHECK"] = "1"
|
|
|
|
# see https://github.com/vllm-project/vllm/issues/10480
|
|
os.environ["TORCHINDUCTOR_COMPILE_THREADS"] = "1"
|
|
# see https://github.com/vllm-project/vllm/issues/10619
|
|
torch._inductor.config.compile_threads = 1
|
|
|
|
# ===================================================
|
|
# torch 2.9 Inductor PythonWrapperCodegen monkeypatch
|
|
# ===================================================
|
|
# This change monkeypatches memory_plan_reuse in pytorch 2.9.0 to work around
|
|
# a test failure for test_multi_graph_piecewise_compile_outputs_equal.
|
|
# For more context, see https://github.com/pytorch/pytorch/pull/165514.
|
|
|
|
|
|
def memory_plan_reuse_patched(self):
|
|
import torch._inductor.ir as ir
|
|
from torch._inductor.codegen.wrapper import (
|
|
EnterSubgraphLine,
|
|
ExitSubgraphLine,
|
|
MemoryPlanningLine,
|
|
MemoryPlanningState,
|
|
SubgraphPythonWrapperCodegen,
|
|
)
|
|
from torch._inductor.virtualized import V
|
|
|
|
def get_output_names(graph_outputs) -> list[str]:
|
|
import itertools
|
|
|
|
names = []
|
|
shape_counter = itertools.count(0)
|
|
none_counter = itertools.count(0)
|
|
for node in graph_outputs:
|
|
if isinstance(node, ir.NoneAsConstantBuffer):
|
|
names.append(f"{V.graph.name}_none{next(none_counter)}")
|
|
elif isinstance(node, ir.ShapeAsConstantBuffer):
|
|
names.append(f"{V.graph.name}_shape{next(shape_counter)}")
|
|
else:
|
|
names.append(node.get_name())
|
|
return names
|
|
|
|
if (
|
|
isinstance(V.graph.wrapper_code, SubgraphPythonWrapperCodegen)
|
|
and V.graph.wrapper_code.partition_signatures is not None
|
|
):
|
|
out_names = get_output_names(
|
|
V.graph.wrapper_code.partition_signatures.output_nodes
|
|
)
|
|
else:
|
|
out_names = V.graph.get_output_names()
|
|
|
|
while (
|
|
self.lines
|
|
and isinstance(self.lines[-1], MemoryPlanningLine)
|
|
and self.lines[-1].node.name not in out_names # type: ignore[attr-defined]
|
|
):
|
|
# these lines will be pointless
|
|
self.lines.pop()
|
|
|
|
# codegen allocations in two passes
|
|
planning_states = [MemoryPlanningState()]
|
|
past_planning_states = []
|
|
for i in range(len(self.lines)):
|
|
line = self.lines[i]
|
|
if isinstance(line, MemoryPlanningLine):
|
|
self.lines[i] = line.plan(planning_states[-1])
|
|
elif isinstance(line, EnterSubgraphLine):
|
|
planning_states.append(MemoryPlanningState())
|
|
elif isinstance(line, ExitSubgraphLine):
|
|
past_planning_states.append(planning_states.pop())
|
|
past_planning_states.append(planning_states.pop())
|
|
assert len(planning_states) == 0
|
|
|
|
|
|
# ========================================
|
|
# torch 2.9 Inductor Scheduler monkeypatch
|
|
# ========================================
|
|
# This change monkeypatches a function in Inductor to work around the following
|
|
# bug: https://github.com/vllm-project/vllm/issues/26678
|
|
#
|
|
# The bug occurs when `use_inductor_graph_partition` is turned on and there
|
|
# exists operators inside of `splitting_ops` that have an in-place mutation. In
|
|
# vllm, this specifically occurs on the operator
|
|
# vllm.unified_attention_with_output. In this case, inductor does not populate
|
|
# the inductor IR's `origin_node` field, causing an assertion error when trying
|
|
# to access the node's `origin_node` field.
|
|
#
|
|
# So, we will monkeypatch torch._inductor.scheduler.Scheduler.should_partition
|
|
# so that it does not access the inductor IR node's `origin_node` field and just
|
|
# returns True if a node is registered as having a custom partition function.
|
|
# This is ok for now since vllm's implementation of the custom partition
|
|
# functions just return True.
|
|
# ========================================
|
|
|
|
|
|
def should_partition_patched(self, node, should_log: bool = False) -> bool:
|
|
# This is a patched version of
|
|
# torch._inductor.scheduler.Scheduler.should_partition that modifies
|
|
# the following piece of code so that we always return True:
|
|
# https://github.com/pytorch/pytorch/blob/ecb53078faf86ca1b33277df33b82985675bb011/torch/_inductor/scheduler.py#L4712-L4724
|
|
"""Return True if we should partition the inductor graph on this node"""
|
|
|
|
import torch._inductor.ir as ir
|
|
from torch._inductor.scheduler import (
|
|
BaseSchedulerNode,
|
|
FusedSchedulerNode,
|
|
_custom_should_partition_fns,
|
|
)
|
|
from torch._inductor.utils import (
|
|
_unstable_customized_partition_wrapper,
|
|
is_cudagraph_unsafe_op,
|
|
maybe_log_cudagraph_partition,
|
|
)
|
|
|
|
# Allow users to manually specify if a node should be partitioned
|
|
# Can only do this for FallbackKernels
|
|
ir_node = node.node
|
|
if isinstance(ir_node, ir.FallbackKernel):
|
|
operator = ir_node.op_overload
|
|
if operator is not None and operator in _custom_should_partition_fns:
|
|
return True
|
|
|
|
# When not using cudagraphs, keep all kernels in the `call` function
|
|
# instead of graph partition functions, since graph partition only brings
|
|
# benefit to cudagraph
|
|
if (
|
|
not torch._inductor.config.triton.cudagraphs
|
|
and _unstable_customized_partition_wrapper.wrapper is None
|
|
):
|
|
return True
|
|
|
|
# avoid duplicating logs when should_partition is called multiple times
|
|
# on the same node
|
|
def noop_log(msg: str, node: BaseSchedulerNode | None) -> None:
|
|
return
|
|
|
|
log_partition_reason = maybe_log_cudagraph_partition if should_log else noop_log
|
|
|
|
if isinstance(node, FusedSchedulerNode):
|
|
return any(self.should_partition(snode) for snode in node.snodes)
|
|
|
|
assert node.node is not None
|
|
|
|
if not node.is_gpu():
|
|
log_partition_reason("non gpu ops", node=node)
|
|
|
|
return True
|
|
|
|
if isinstance(node.node, ir.DeviceCopy):
|
|
log_partition_reason("DeviceCopy ops", node=node)
|
|
return True
|
|
|
|
if isinstance(node.node, ir.Conditional):
|
|
log_partition_reason("Conditional ops", node=node)
|
|
return True
|
|
|
|
if getattr(node.node, "unbacked_bindings", None):
|
|
log_partition_reason("unbacked binding ops", node=node)
|
|
return True
|
|
|
|
if is_cudagraph_unsafe_op(node.node):
|
|
log_partition_reason("CUDAGraph-unsafe custom ops", node=node)
|
|
return True
|
|
|
|
return False
|
|
|
|
|
|
def _update_scheduler_patched(self) -> None:
|
|
# Copied from torch._inductor.graph.GrahLowering._update_scheduler. Patches
|
|
# this method so that we can patch Scheduler.should_partition with the
|
|
# function above
|
|
"""
|
|
(Re)initializes the scheduler member. When initializing the scheduler, no CUBIN
|
|
files should be generated (to avoid biasing any benchmarks and pessimizing
|
|
fusion decisions).
|
|
"""
|
|
import torch._inductor.config as config
|
|
from torch._inductor.scheduler import Scheduler
|
|
|
|
Scheduler.should_partition = should_partition_patched
|
|
|
|
with config.patch("triton.store_cubin", False):
|
|
self.scheduler = Scheduler(self.operations)
|
|
|
|
|
|
if is_torch_equal("2.9.0"):
|
|
from torch._inductor.codegen.wrapper import PythonWrapperCodegen
|
|
from torch._inductor.graph import GraphLowering
|
|
|
|
PythonWrapperCodegen.memory_plan_reuse = memory_plan_reuse_patched
|
|
GraphLowering._update_scheduler = _update_scheduler_patched
|