[BugFix] Patch inductor memory plan logic (#26878)

Signed-off-by: Boyuan Feng <boyuan@meta.com>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
This commit is contained in:
Boyuan Feng
2025-10-15 05:51:45 -07:00
committed by GitHub
parent 5d598680e3
commit f57438338d
4 changed files with 108 additions and 6 deletions

View File

@@ -22,6 +22,11 @@ sys.modules["vllm._C"] = MagicMock()
class PydanticMagicMock(MagicMock):
"""`MagicMock` that's able to generate pydantic-core schemas."""
def __init__(self, *args, **kwargs):
name = kwargs.pop("name", None)
super().__init__(*args, **kwargs)
self.__spec__ = importlib.machinery.ModuleSpec(name, None)
def __get_pydantic_core_schema__(self, source_type, handler):
return core_schema.any_schema()
@@ -42,7 +47,9 @@ def auto_mock(module, attr, max_mocks=50):
raise e
except ModuleNotFoundError as e:
logger.info("Mocking %s for argparse doc generation", e.name)
sys.modules[e.name] = PydanticMagicMock()
sys.modules[e.name] = PydanticMagicMock(name=e.name)
except Exception as e:
logger.warning("Failed to import %s.%s: %s", module, attr, e)
raise ImportError(
f"Failed to import {module}.{attr} after mocking {max_mocks} imports"

View File

@@ -20,6 +20,7 @@ from vllm.config import (
set_current_vllm_config,
)
from vllm.forward_context import BatchDescriptor, set_forward_context
from vllm.utils import is_torch_equal_or_newer
# This import automatically registers `torch.ops.silly.attention`
from .. import silly_attention # noqa: F401
@@ -193,9 +194,8 @@ def run_model(
@pytest.mark.parametrize("use_inductor_graph_partition", [False, True])
def test_multi_graph_piecewise_compile(use_inductor_graph_partition: bool):
if use_inductor_graph_partition:
# FIXME(luka/boyuan): this currently fails
pytest.skip("Inductor graph partition not supported with multi-graph")
if use_inductor_graph_partition and not is_torch_equal_or_newer("2.9.0.dev"):
pytest.skip("inductor graph partition is only available in PyTorch 2.9+")
outputs = []

View File

@@ -3,9 +3,9 @@
import os
import torch
from packaging import version
from vllm.logger import init_logger
from vllm.utils import is_torch_equal
logger = init_logger(__name__)
@@ -23,6 +23,72 @@ os.environ["TORCHINDUCTOR_COMPILE_THREADS"] = "1"
# see https://github.com/vllm-project/vllm/issues/10619
torch._inductor.config.compile_threads = 1
# ===================================================
# torch 2.9 Inductor PythonWrapperCodegen monkeypatch
# ===================================================
# This change monkeypatches memory_plan_reuse in pytorch 2.9.0 to work around
# a test failure for test_multi_graph_piecewise_compile_outputs_equal.
# For more context, see https://github.com/pytorch/pytorch/pull/165514.
def memory_plan_reuse_patched(self):
import torch._inductor.ir as ir
from torch._inductor.codegen.wrapper import (
EnterSubgraphLine,
ExitSubgraphLine,
MemoryPlanningLine,
MemoryPlanningState,
SubgraphPythonWrapperCodegen,
)
from torch._inductor.virtualized import V
def get_output_names(graph_outputs) -> list[str]:
import itertools
names = []
shape_counter = itertools.count(0)
none_counter = itertools.count(0)
for node in graph_outputs:
if isinstance(node, ir.NoneAsConstantBuffer):
names.append(f"{V.graph.name}_none{next(none_counter)}")
elif isinstance(node, ir.ShapeAsConstantBuffer):
names.append(f"{V.graph.name}_shape{next(shape_counter)}")
else:
names.append(node.get_name())
return names
if (
isinstance(V.graph.wrapper_code, SubgraphPythonWrapperCodegen)
and V.graph.wrapper_code.partition_signatures is not None
):
out_names = get_output_names(
V.graph.wrapper_code.partition_signatures.output_nodes
)
else:
out_names = V.graph.get_output_names()
while (
self.lines
and isinstance(self.lines[-1], MemoryPlanningLine)
and self.lines[-1].node.name not in out_names # type: ignore[attr-defined]
):
# these lines will be pointless
self.lines.pop()
# codegen allocations in two passes
planning_states = [MemoryPlanningState()]
past_planning_states = []
for i in range(len(self.lines)):
line = self.lines[i]
if isinstance(line, MemoryPlanningLine):
self.lines[i] = line.plan(planning_states[-1])
elif isinstance(line, EnterSubgraphLine):
planning_states.append(MemoryPlanningState())
elif isinstance(line, ExitSubgraphLine):
past_planning_states.append(planning_states.pop())
past_planning_states.append(planning_states.pop())
assert len(planning_states) == 0
# ========================================
# torch 2.9 Inductor Scheduler monkeypatch
@@ -135,7 +201,9 @@ def _update_scheduler_patched(self) -> None:
self.scheduler = Scheduler(self.operations)
if version.parse(str(torch.__version__)) == version.parse("2.9.0"):
if is_torch_equal("2.9.0"):
from torch._inductor.codegen.wrapper import PythonWrapperCodegen
from torch._inductor.graph import GraphLowering
PythonWrapperCodegen.memory_plan_reuse = memory_plan_reuse_patched
GraphLowering._update_scheduler = _update_scheduler_patched

View File

@@ -3263,6 +3263,33 @@ def _is_torch_equal_or_newer(torch_version: str, target: str) -> bool:
return torch_version >= version.parse(target)
def _is_torch_equal(target: str) -> bool:
assert target.count(".") == 2
torch_version = str(torch.__version__)
torch_version = version.parse(torch_version)
# torch version is like "2.6.0.dev20240101" or "2.6.0.dev20240101+cpu"
# or "2.6.0+cu128" but never "2.6.0.1"
return (
torch_version >= version.parse(target)
and version.parse(target + ".1") > torch_version
)
def is_torch_equal(target: str) -> bool:
"""Check if the installed torch version is == the target version.
Args:
target: a version string, like "2.6.0".
Returns:
Whether the condition meets.
"""
try:
return _is_torch_equal(target)
except Exception:
return Version(importlib.metadata.version("torch")) == Version(target)
@cache
def _has_module(module_name: str) -> bool:
"""Return True if *module_name* can be found in the current environment.