fix(responses): Add image generation support for Responses API (#16586)

* fix(responses): Add image generation support for Responses API

Fixes #16227

## Problem
When using Gemini 2.5 Flash Image with /responses endpoint, image generation
outputs were not being returned correctly. The response contained only text
with empty content instead of the generated images.

## Solution
1. Created new `OutputImageGenerationCall` type for image generation outputs
2. Modified `_extract_message_output_items()` to detect images in completion responses
3. Added `_extract_image_generation_output_items()` to transform images from
   completion format (data URL) to responses format (pure base64)
4. Added `_extract_base64_from_data_url()` helper to extract base64 from data URLs
5. Updated `ResponsesAPIResponse.output` type to include `OutputImageGenerationCall`

## Changes
- litellm/types/responses/main.py: Added OutputImageGenerationCall type
- litellm/types/llms/openai.py: Updated ResponsesAPIResponse.output type
- litellm/responses/litellm_completion_transformation/transformation.py:
  Added image detection and extraction logic
- tests/test_litellm/responses/litellm_completion_transformation/test_image_generation_output.py:
  Added comprehensive unit tests (16 tests, all passing)

## Result
/responses endpoint now correctly returns:
```json
{
  "output": [{
    "type": "image_generation_call",
    "id": "..._img_0",
    "status": "completed",
    "result": "iVBORw0KGgo..."  // Pure base64, no data: prefix
  }]
}
```

This matches OpenAI Responses API specification where image generation
outputs have type "image_generation_call" with base64 data in "result" field.

* docs(responses): Add image generation documentation and tests

- Add comprehensive image generation documentation to response_api.md
  - Include examples for Gemini (no tools param) and OpenAI (with tools param)
  - Document response format and base64 handling
  - Add supported models table with provider-specific requirements

- Add unit tests for image generation output transformation
  - Test base64 extraction from data URLs
  - Test image generation output item creation
  - Test status mapping and integration scenarios
  - Verify proper transformation from completions to responses format

Related to #16227

* fix(responses): Correct status type for image generation output

- Add _map_finish_reason_to_image_generation_status() helper function
- Fix MyPy type error: OutputImageGenerationCall.status only accepts
  ['in_progress', 'completed', 'incomplete', 'failed'], not the full
  ResponsesAPIStatus union which includes 'cancelled' and 'queued'

Fixes MyPy error in transformation.py:838
This commit is contained in:
Cesar Garcia
2025-12-05 20:56:26 -03:00
committed by GitHub
parent 829b06f53f
commit 87f94172a9
5 changed files with 383 additions and 19 deletions

View File

@@ -81,6 +81,85 @@ for event in stream:
f.write(image_bytes)
```
#### Image Generation (Non-streaming)
Image generation is supported for models that generate images. Generated images are returned in the `output` array with `type: "image_generation_call"`.
**Gemini (Google AI Studio):**
```python showLineNumbers title="Gemini Image Generation"
import litellm
import base64
# Gemini image generation models don't require tools parameter
response = litellm.responses(
model="gemini/gemini-2.5-flash-image",
input="Generate a cute cat playing with yarn"
)
# Access generated images from output
for item in response.output:
if item.type == "image_generation_call":
# item.result contains pure base64 (no data: prefix)
image_bytes = base64.b64decode(item.result)
# Save the image
with open(f"generated_{item.id}.png", "wb") as f:
f.write(image_bytes)
print(f"Image saved: generated_{response.output[0].id}.png")
```
**OpenAI:**
```python showLineNumbers title="OpenAI Image Generation"
import litellm
import base64
# OpenAI models require tools parameter for image generation
response = litellm.responses(
model="openai/gpt-4o",
input="Generate a futuristic city at sunset",
tools=[{"type": "image_generation"}]
)
# Access generated images from output
for item in response.output:
if item.type == "image_generation_call":
image_bytes = base64.b64decode(item.result)
with open(f"generated_{item.id}.png", "wb") as f:
f.write(image_bytes)
```
**Response Format:**
When image generation is successful, the response contains:
```json
{
"id": "resp_abc123",
"status": "completed",
"output": [
{
"type": "image_generation_call",
"id": "resp_abc123_img_0",
"status": "completed",
"result": "iVBORw0KGgo..." // Pure base64 string (no data: prefix)
}
]
}
```
**Supported Models:**
| Provider | Models | Requires `tools` Parameter |
|----------|--------|---------------------------|
| Google AI Studio | `gemini/gemini-2.5-flash-image` | ❌ No |
| Vertex AI | `vertex_ai/gemini-2.5-flash-image-preview` | ❌ No |
| OpenAI | `gpt-4o`, `gpt-4o-mini`, `gpt-4.1`, `gpt-4.1-mini`, `gpt-4.1-nano`, `o3` | ✅ Yes |
| AWS Bedrock | Stability AI, Amazon Nova Canvas models | Model-specific |
| Fal AI | Various image generation models | Check model docs |
**Note:** The `result` field contains pure base64-encoded image data without the `data:image/png;base64,` prefix. You must decode it with `base64.b64decode()` before saving.
#### GET a Response
```python showLineNumbers title="Get Response by ID"
import litellm

View File

@@ -39,6 +39,7 @@ from litellm.types.responses.main import (
GenericResponseOutputItem,
GenericResponseOutputItemContentAnnotation,
OutputFunctionToolCall,
OutputImageGenerationCall,
OutputText,
)
from litellm.types.utils import (
@@ -830,9 +831,9 @@ class LiteLLMCompletionResponsesConfig:
def _transform_chat_completion_choices_to_responses_output(
chat_completion_response: ModelResponse,
choices: List[Choices],
) -> List[Union[GenericResponseOutputItem, OutputFunctionToolCall]]:
) -> List[Union[GenericResponseOutputItem, OutputFunctionToolCall, OutputImageGenerationCall]]:
responses_output: List[
Union[GenericResponseOutputItem, OutputFunctionToolCall]
Union[GenericResponseOutputItem, OutputFunctionToolCall, OutputImageGenerationCall]
] = []
responses_output.extend(
@@ -881,28 +882,130 @@ class LiteLLMCompletionResponsesConfig:
]
return []
@staticmethod
def _extract_image_generation_output_items(
chat_completion_response: ModelResponse,
choice: Choices,
) -> List[OutputImageGenerationCall]:
"""
Extract image generation outputs from a choice that contains images.
Transforms message.images from chat completion format:
{
'image_url': {'url': '...'},
'type': 'image_url',
'index': 0
}
To Responses API format:
{
'type': 'image_generation_call',
'id': 'img_...',
'status': 'completed',
'result': 'iVBORw0...' # Pure base64 without data: prefix
}
"""
image_generation_items: List[OutputImageGenerationCall] = []
images = getattr(choice.message, 'images', [])
if not images:
return image_generation_items
for idx, image_item in enumerate(images):
# Extract base64 from data URL
image_url = image_item.get('image_url', {}).get('url', '')
base64_data = LiteLLMCompletionResponsesConfig._extract_base64_from_data_url(image_url)
if base64_data:
image_generation_items.append(
OutputImageGenerationCall(
type="image_generation_call",
id=f"{chat_completion_response.id}_img_{idx}",
status=LiteLLMCompletionResponsesConfig._map_finish_reason_to_image_generation_status(
choice.finish_reason
),
result=base64_data,
)
)
return image_generation_items
@staticmethod
def _map_finish_reason_to_image_generation_status(
finish_reason: Optional[str],
) -> Literal["in_progress", "completed", "incomplete", "failed"]:
"""
Map finish_reason to image generation status.
Image generation status only supports: in_progress, completed, incomplete, failed
(does not support: cancelled, queued like general ResponsesAPIStatus)
"""
if finish_reason == "stop":
return "completed"
elif finish_reason == "length":
return "incomplete"
elif finish_reason in ["content_filter", "error"]:
return "failed"
else:
# Default to completed for other cases
return "completed"
@staticmethod
def _extract_base64_from_data_url(data_url: str) -> Optional[str]:
"""
Extract pure base64 string from a data URL.
Input: '...'
Output: 'iVBORw0KGgoAAAANS...'
If input is already pure base64 (no prefix), return as-is.
"""
if not data_url:
return None
# Check if it's a data URL with prefix
if data_url.startswith('data:'):
# Split by comma to separate prefix from base64 data
parts = data_url.split(',', 1)
if len(parts) == 2:
return parts[1] # Return the base64 part
return None
else:
# Already pure base64
return data_url
@staticmethod
def _extract_message_output_items(
chat_completion_response: ModelResponse,
choices: List[Choices],
) -> List[GenericResponseOutputItem]:
message_output_items = []
) -> List[Union[GenericResponseOutputItem, OutputImageGenerationCall]]:
message_output_items: List[Union[GenericResponseOutputItem, OutputImageGenerationCall]] = []
for choice in choices:
message_output_items.append(
GenericResponseOutputItem(
type="message",
id=chat_completion_response.id,
status=LiteLLMCompletionResponsesConfig._map_chat_completion_finish_reason_to_responses_status(
choice.finish_reason
),
role=choice.message.role,
content=[
LiteLLMCompletionResponsesConfig._transform_chat_message_to_response_output_text(
choice.message
)
],
# Check if message has images (image generation)
if hasattr(choice.message, 'images') and choice.message.images:
# Extract image generation output
image_generation_items = LiteLLMCompletionResponsesConfig._extract_image_generation_output_items(
chat_completion_response=chat_completion_response,
choice=choice,
)
message_output_items.extend(image_generation_items)
else:
# Regular message output
message_output_items.append(
GenericResponseOutputItem(
type="message",
id=chat_completion_response.id,
status=LiteLLMCompletionResponsesConfig._map_chat_completion_finish_reason_to_responses_status(
choice.finish_reason
),
role=choice.message.role,
content=[
LiteLLMCompletionResponsesConfig._transform_chat_message_to_response_output_text(
choice.message
)
],
)
)
)
return message_output_items
@staticmethod

View File

@@ -76,6 +76,7 @@ from litellm.types.llms.base import BaseLiteLLMOpenAIResponseObject
from litellm.types.responses.main import (
GenericResponseOutputItem,
OutputFunctionToolCall,
OutputImageGenerationCall,
)
FileContent = Union[IO[bytes], bytes, PathLike]
@@ -1071,7 +1072,7 @@ class ResponsesAPIResponse(BaseLiteLLMOpenAIResponseObject):
object: Optional[str] = None
output: Union[
List[Union[ResponseOutputItem, Dict]],
List[Union[GenericResponseOutputItem, OutputFunctionToolCall]],
List[Union[GenericResponseOutputItem, OutputFunctionToolCall, OutputImageGenerationCall]],
]
parallel_tool_calls: Optional[bool] = None
temperature: Optional[float] = None

View File

@@ -36,6 +36,15 @@ class OutputFunctionToolCall(BaseLiteLLMOpenAIResponseObject):
status: Literal["in_progress", "completed", "incomplete"]
class OutputImageGenerationCall(BaseLiteLLMOpenAIResponseObject):
"""An image generation call output"""
type: Literal["image_generation_call"]
id: str
status: Literal["in_progress", "completed", "incomplete", "failed"]
result: Optional[str] # Base64 encoded image data (without data:image prefix)
class GenericResponseOutputItem(BaseLiteLLMOpenAIResponseObject):
"""
Generic response API output item

View File

@@ -0,0 +1,172 @@
"""
Unit tests for Responses API image generation support
Tests the fix for Issue #16227:
https://github.com/BerriAI/litellm/issues/16227
Verifies that image generation outputs are correctly transformed
from /chat/completions format to /responses API format.
"""
import pytest
from unittest.mock import Mock
from litellm.responses.litellm_completion_transformation.transformation import (
LiteLLMCompletionResponsesConfig,
)
from litellm.types.responses.main import OutputImageGenerationCall
from litellm.types.utils import ModelResponse, Choices, Message
class TestExtractBase64FromDataUrl:
"""Tests for _extract_base64_from_data_url helper function"""
def test_extracts_base64_from_data_url(self):
"""Should extract pure base64 from data URL with prefix"""
data_url = ""
result = LiteLLMCompletionResponsesConfig._extract_base64_from_data_url(
data_url
)
assert result == "iVBORw0KGgoAAAANS"
def test_returns_base64_as_is_if_no_prefix(self):
"""Should return base64 as-is if no data: prefix"""
pure_base64 = "iVBORw0KGgoAAAANS"
result = LiteLLMCompletionResponsesConfig._extract_base64_from_data_url(
pure_base64
)
assert result == pure_base64
def test_handles_invalid_inputs(self):
"""Should return None for empty/None/malformed inputs"""
assert LiteLLMCompletionResponsesConfig._extract_base64_from_data_url("") is None
assert LiteLLMCompletionResponsesConfig._extract_base64_from_data_url(None) is None
assert LiteLLMCompletionResponsesConfig._extract_base64_from_data_url("data:image/png;base64") is None
class TestExtractImageGenerationOutputItems:
"""Tests for _extract_image_generation_output_items function"""
def test_extracts_images_correctly(self):
"""Should extract OutputImageGenerationCall objects from images"""
mock_response = Mock(spec=ModelResponse)
mock_response.id = "test_123"
mock_message = Mock(spec=Message)
mock_message.images = [
{"image_url": {"url": ""}, "type": "image_url", "index": 0},
{"image_url": {"url": ""}, "type": "image_url", "index": 1},
]
mock_choice = Mock(spec=Choices)
mock_choice.message = mock_message
mock_choice.finish_reason = "stop"
result = LiteLLMCompletionResponsesConfig._extract_image_generation_output_items(
chat_completion_response=mock_response,
choice=mock_choice,
)
assert len(result) == 2
assert result[0].type == "image_generation_call"
assert result[0].result == "IMG1"
assert result[1].result == "IMG2"
assert result[0].id == "test_123_img_0"
assert result[1].id == "test_123_img_1"
assert result[0].status == "completed"
def test_returns_empty_for_no_images(self):
"""Should return empty list if no images"""
mock_response = Mock(spec=ModelResponse)
mock_message = Mock(spec=Message)
mock_message.images = []
mock_choice = Mock(spec=Choices)
mock_choice.message = mock_message
mock_choice.finish_reason = "stop"
result = LiteLLMCompletionResponsesConfig._extract_image_generation_output_items(
chat_completion_response=mock_response,
choice=mock_choice,
)
assert result == []
def test_maps_finish_reason_to_status(self):
"""Should correctly map finish_reason to status"""
mock_response = Mock(spec=ModelResponse)
mock_response.id = "test_finish"
mock_message = Mock(spec=Message)
mock_message.images = [
{"image_url": {"url": ""}, "type": "image_url", "index": 0}
]
mock_choice = Mock(spec=Choices)
mock_choice.message = mock_message
mock_choice.finish_reason = "length"
result = LiteLLMCompletionResponsesConfig._extract_image_generation_output_items(
chat_completion_response=mock_response,
choice=mock_choice,
)
assert result[0].status == "incomplete"
class TestExtractMessageOutputItemsIntegration:
"""Integration tests for _extract_message_output_items with images"""
def test_detects_images_and_creates_image_generation_call(self):
"""Should detect images in message and create image_generation_call output"""
mock_response = Mock(spec=ModelResponse)
mock_response.id = "integration_test_123"
mock_message = Mock(spec=Message)
mock_message.images = [
{
"image_url": {"url": "_TEST"},
"type": "image_url",
"index": 0,
}
]
mock_message.role = "assistant"
mock_message.content = "Here's your image!"
mock_choice = Mock(spec=Choices)
mock_choice.message = mock_message
mock_choice.finish_reason = "stop"
result = LiteLLMCompletionResponsesConfig._extract_message_output_items(
chat_completion_response=mock_response,
choices=[mock_choice],
)
# Should return image_generation_call, NOT regular message
assert len(result) == 1
assert isinstance(result[0], OutputImageGenerationCall)
assert result[0].type == "image_generation_call"
assert result[0].result == "INTEGRATION_TEST"
def test_creates_regular_message_when_no_images(self):
"""Should create regular GenericResponseOutputItem when no images"""
from litellm.types.responses.main import GenericResponseOutputItem
mock_response = Mock(spec=ModelResponse)
mock_response.id = "no_images_123"
mock_message = Mock(spec=Message)
# No images attribute or empty
mock_message.role = "assistant"
mock_message.content = "Just text, no images"
mock_choice = Mock(spec=Choices)
mock_choice.message = mock_message
mock_choice.finish_reason = "stop"
result = LiteLLMCompletionResponsesConfig._extract_message_output_items(
chat_completion_response=mock_response,
choices=[mock_choice],
)
assert len(result) == 1
assert isinstance(result[0], GenericResponseOutputItem)
assert result[0].type == "message"