Files
diffusers/docs/source/ko/using-diffusers/control_brightness.md
Seongsu Park 0c775544dd [Docs] Korean translation update (#4684)
* Docs kr update 3

controlnet, reproducibility 업로드

generator 그대로 사용
seamless multi-GPU 그대로 사용

create_dataset 번역 1차

stable_diffusion_jax

new translation

Add coreml, tome

kr docs minor fix

translate training/instructpix2pix

fix training/instructpix2pix.mdx

using-diffusers/weighting_prompts 번역 1차

add SDXL docs

Translate using-diffuers/loading_overview.md

translate using-diffusers/textual_inversion_inference.md

Conditional image generation (#37)

* stable_diffusion_jax

* index_update

* index_update

* condition_image_generation

---------

Co-authored-by: Seongsu Park <tjdtnsu@gmail.com>

jihwan/stable_diffusion.mdx

custom_diffusion 작업 완료

quicktour 작업 완료

distributed inference & control brightness (#40)

* distributed_inference.mdx

* control_brightness

---------

Co-authored-by: idra79haza <idra79haza@github.com>
Co-authored-by: Seongsu Park <tjdtnsu@gmail.com>

using_safetensors (#41)

* distributed_inference.mdx

* control_brightness

* using_safetensors.mdx

---------

Co-authored-by: idra79haza <idra79haza@github.com>
Co-authored-by: Seongsu Park <tjdtnsu@gmail.com>

delete safetensor short

* Repace mdx to md

* toctree update

* Add controlling_generation

* toctree fix

* colab link, minor fix

* docs name typo fix

* frontmatter fix

* translation fix
2023-09-01 09:23:45 -07:00

45 lines
2.3 KiB
Markdown

# 이미지 밝기 조절하기
Stable Diffusion 파이프라인은 [일반적인 디퓨전 노이즈 스케줄과 샘플 단계에 결함이 있음](https://huggingface.co/papers/2305.08891) 논문에서 설명한 것처럼 매우 밝거나 어두운 이미지를 생성하는 데는 성능이 평범합니다. 이 논문에서 제안한 솔루션은 현재 [`DDIMScheduler`]에 구현되어 있으며 이미지의 밝기를 개선하는 데 사용할 수 있습니다.
<Tip>
💡 제안된 솔루션에 대한 자세한 내용은 위에 링크된 논문을 참고하세요!
</Tip>
해결책 중 하나는 *v 예측값*과 *v 로스*로 모델을 훈련하는 것입니다. 다음 flag를 [`train_text_to_image.py`](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py) 또는 [`train_text_to_image_lora.py`](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image_lora.py) 스크립트에 추가하여 `v_prediction`을 활성화합니다:
```bash
--prediction_type="v_prediction"
```
예를 들어, `v_prediction`으로 미세 조정된 [`ptx0/pseudo-journey-v2`](https://huggingface.co/ptx0/pseudo-journey-v2) 체크포인트를 사용해 보겠습니다.
다음으로 [`DDIMScheduler`]에서 다음 파라미터를 설정합니다:
1. rescale_betas_zero_snr=True`, 노이즈 스케줄을 제로 터미널 신호 대 잡음비(SNR)로 재조정합니다.
2. `timestep_spacing="trailing"`, 마지막 타임스텝부터 샘플링 시작
```py
>>> from diffusers import DiffusionPipeline, DDIMScheduler
>>> pipeline = DiffusionPipeline.from_pretrained("ptx0/pseudo-journey-v2")
# switch the scheduler in the pipeline to use the DDIMScheduler
>>> pipeline.scheduler = DDIMScheduler.from_config(
... pipeline.scheduler.config, rescale_betas_zero_snr=True, timestep_spacing="trailing"
... )
>>> pipeline.to("cuda")
```
마지막으로 파이프라인에 대한 호출에서 `guidance_rescale`을 설정하여 과다 노출을 방지합니다:
```py
prompt = "A lion in galaxies, spirals, nebulae, stars, smoke, iridescent, intricate detail, octane render, 8k"
image = pipeline(prompt, guidance_rescale=0.7).images[0]
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/zero_snr.png"/>
</div>