mirror of
https://github.com/huggingface/diffusers.git
synced 2026-02-13 22:35:37 +08:00
4032bedeb7847fb92cd56c8a20173b4835abee4d
Diffusers
Definitions for diffusion models
Library structure:
├── models
│ ├── audio
│ │ └── fastdiff
│ │ ├── modeling_fastdiff.py
│ │ ├── README.md
│ │ └── run_fastdiff.py
│ └── vision
│ ├── dalle2
│ │ ├── modeling_dalle2.py
│ │ ├── README.md
│ │ └── run_dalle2.py
│ ├── ddpm
│ │ ├── modeling_ddpm.py
│ │ ├── README.md
│ │ └── run_ddpm.py
│ ├── glide
│ │ ├── modeling_glide.py
│ │ ├── README.md
│ │ └── run_dalle2.py
│ ├── imagen
│ │ ├── modeling_dalle2.py
│ │ ├── README.md
│ │ └── run_dalle2.py
│ └── latent_diffusion
│ ├── modeling_latent_diffusion.py
│ ├── README.md
│ └── run_latent_diffusion.py
├── src
│ └── diffusers
│ ├── configuration_utils.py
│ ├── __init__.py
│ ├── modeling_utils.py
│ ├── models
│ │ └── unet.py
│ ├── processors
│ └── samplers
│ ├── gaussian.py
├── tests
│ └── test_modeling_utils.py
1. diffusers as a central modular diffusion and sampler library
diffusers should be more modularized than transformers so that parts of it can be easily used in other libraries.
It could become a central place for all kinds of models, samplers, training utils and processors required when using diffusion models in audio, vision, ...
One should be able to save both models and samplers as well as load them from the Hub.
Example:
from diffusers import UNetModel, GaussianDiffusion
import torch
# 1. Load model
unet = UNetModel.from_pretrained("fusing/ddpm_dummy")
# 2. Do one denoising step with model
batch_size, num_channels, height, width = 1, 3, 32, 32
dummy_noise = torch.ones((batch_size, num_channels, height, width))
time_step = torch.tensor([10])
image = unet(dummy_noise, time_step)
# 3. Load sampler
sampler = GaussianDiffusion.from_config("fusing/ddpm_dummy")
# 4. Sample image from sampler passing the model
image = sampler.sample(model, batch_size=1)
print(image)
Description
🤗 Diffusers: State-of-the-art diffusion models for image, video, and audio generation in PyTorch.
🤗 漫射器:PyTorch 中用于图像、视频和音频生成的先进扩散模型。
deep-learningdiffusionfluximage2imageimage2videoimage-generationlatent-diffusion-modelspytorchqwen-imagescore-based-generative-modelingstable-diffusionstable-diffusion-diffuserstext2imagetext2videovideo2video
Readme
Apache-2.0
1 GiB
Languages
Python
100%