Files
diffusers/docs/source/en/using-diffusers/automodel.md
2026-02-10 12:19:44 +05:30

3.8 KiB

AutoModel

The [AutoModel] class automatically detects and loads the correct model class (UNet, transformer, VAE) from a config.json file. You don't need to know the specific model class name ahead of time. It supports data types and device placement, and works across model types and libraries.

The example below loads a transformer from Diffusers and a text encoder from Transformers. Use the subfolder parameter to specify where to load the config.json file from.

import torch
from diffusers import AutoModel, DiffusionPipeline

transformer = AutoModel.from_pretrained(
    "Qwen/Qwen-Image", subfolder="transformer", torch_dtype=torch.bfloat16, device_map="cuda"
)

text_encoder = AutoModel.from_pretrained(
    "Qwen/Qwen-Image", subfolder="text_encoder", torch_dtype=torch.bfloat16, device_map="cuda"
)

Custom models

[AutoModel] also loads models from the Hub that aren't included in Diffusers. Set trust_remote_code=True in [AutoModel.from_pretrained] to load custom models.

A custom model repository needs a Python module with the model class, and a config.json with an auto_map entry that maps "AutoModel" to "module_file.ClassName".

custom/custom-transformer-model/
├── config.json
├── my_model.py
└── diffusion_pytorch_model.safetensors

The config.json includes the auto_map field pointing to the custom class.

{
  "auto_map": {
    "AutoModel": "my_model.MyCustomModel"
  }
}

Then load it with trust_remote_code=True.

import torch
from diffusers import AutoModel

transformer = AutoModel.from_pretrained(
    "custom/custom-transformer-model", trust_remote_code=True, torch_dtype=torch.bfloat16, device_map="cuda"
)

For a real-world example, Overworld/Waypoint-1-Small hosts a custom WorldModel class across several modules in its transformer subfolder.

transformer/
├── config.json          # auto_map: "model.WorldModel"
├── model.py
├── attn.py
├── nn.py
├── cache.py
├── quantize.py
├── __init__.py
└── diffusion_pytorch_model.safetensors
import torch
from diffusers import AutoModel

transformer = AutoModel.from_pretrained(
    "Overworld/Waypoint-1-Small", subfolder="transformer", trust_remote_code=True, torch_dtype=torch.bfloat16, device_map="cuda"
)

If the custom model inherits from the [ModelMixin] class, it gets access to the same features as Diffusers model classes, like regional compilation and group offloading.

Warning

As a precaution with trust_remote_code=True, pass a commit hash to the revision argument in [AutoModel.from_pretrained] to make sure the code hasn't been updated with new malicious code (unless you fully trust the model owners).

transformer = AutoModel.from_pretrained(
    "Overworld/Waypoint-1-Small", subfolder="transformer", trust_remote_code=True, revision="a3d8cb2"
)

Note

Learn more about implementing custom models in the Community components guide.