mirror of
https://github.com/huggingface/diffusers.git
synced 2025-12-06 12:34:13 +08:00
* cogview4 control training --------- Co-authored-by: OleehyO <leehy0357@gmail.com> Co-authored-by: yiyixuxu <yixu310@gmail.com>
255 lines
11 KiB
Python
255 lines
11 KiB
Python
"""
|
|
Convert a CogView4 checkpoint from SAT(https://github.com/THUDM/SwissArmyTransformer) to the Diffusers format.
|
|
(deprecated Since 2025-02-07 and will remove it in later CogView4 version)
|
|
|
|
This script converts a CogView4 checkpoint to the Diffusers format, which can then be used
|
|
with the Diffusers library.
|
|
|
|
Example usage:
|
|
python scripts/convert_cogview4_to_diffusers.py \
|
|
--transformer_checkpoint_path 'your path/cogview4_6b/1/mp_rank_00_model_states.pt' \
|
|
--vae_checkpoint_path 'your path/cogview4_6b/imagekl_ch16.pt' \
|
|
--output_path "THUDM/CogView4-6B" \
|
|
--dtype "bf16"
|
|
|
|
Arguments:
|
|
--transformer_checkpoint_path: Path to Transformer state dict.
|
|
--vae_checkpoint_path: Path to VAE state dict.
|
|
--output_path: The path to save the converted model.
|
|
--push_to_hub: Whether to push the converted checkpoint to the HF Hub or not. Defaults to `False`.
|
|
--text_encoder_cache_dir: Cache directory where text encoder is located. Defaults to None, which means HF_HOME will be used
|
|
--dtype: The dtype to save the model in (default: "bf16", options: "fp16", "bf16", "fp32"). If None, the dtype of the state dict is considered.
|
|
|
|
Default is "bf16" because CogView4 uses bfloat16 for Training.
|
|
|
|
Note: You must provide either --original_state_dict_repo_id or --checkpoint_path.
|
|
"""
|
|
|
|
import argparse
|
|
from contextlib import nullcontext
|
|
|
|
import torch
|
|
from accelerate import init_empty_weights
|
|
from transformers import GlmForCausalLM, PreTrainedTokenizerFast
|
|
|
|
from diffusers import AutoencoderKL, CogView4Pipeline, CogView4Transformer2DModel, FlowMatchEulerDiscreteScheduler
|
|
from diffusers.loaders.single_file_utils import convert_ldm_vae_checkpoint
|
|
from diffusers.utils.import_utils import is_accelerate_available
|
|
|
|
|
|
CTX = init_empty_weights if is_accelerate_available() else nullcontext
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--transformer_checkpoint_path", default=None, type=str)
|
|
parser.add_argument("--vae_checkpoint_path", default=None, type=str)
|
|
parser.add_argument("--output_path", required=True, type=str)
|
|
parser.add_argument("--push_to_hub", action="store_true", default=False, help="Whether to push to HF Hub after saving")
|
|
parser.add_argument("--text_encoder_cache_dir", type=str, default=None, help="Path to text encoder cache directory")
|
|
parser.add_argument("--dtype", type=str, default="bf16")
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
# this is specific to `AdaLayerNormContinuous`:
|
|
# diffusers implementation split the linear projection into the scale, shift while CogView4 split it tino shift, scale
|
|
def swap_scale_shift(weight, dim):
|
|
"""
|
|
Swap the scale and shift components in the weight tensor.
|
|
|
|
Args:
|
|
weight (torch.Tensor): The original weight tensor.
|
|
dim (int): The dimension along which to split.
|
|
|
|
Returns:
|
|
torch.Tensor: The modified weight tensor with scale and shift swapped.
|
|
"""
|
|
shift, scale = weight.chunk(2, dim=dim)
|
|
new_weight = torch.cat([scale, shift], dim=dim)
|
|
return new_weight
|
|
|
|
|
|
def convert_cogview4_transformer_checkpoint_to_diffusers(ckpt_path):
|
|
original_state_dict = torch.load(ckpt_path, map_location="cpu")
|
|
original_state_dict = original_state_dict["module"]
|
|
original_state_dict = {k.replace("model.diffusion_model.", ""): v for k, v in original_state_dict.items()}
|
|
|
|
new_state_dict = {}
|
|
|
|
# Convert patch_embed
|
|
new_state_dict["patch_embed.proj.weight"] = original_state_dict.pop("mixins.patch_embed.proj.weight")
|
|
new_state_dict["patch_embed.proj.bias"] = original_state_dict.pop("mixins.patch_embed.proj.bias")
|
|
new_state_dict["patch_embed.text_proj.weight"] = original_state_dict.pop("mixins.patch_embed.text_proj.weight")
|
|
new_state_dict["patch_embed.text_proj.bias"] = original_state_dict.pop("mixins.patch_embed.text_proj.bias")
|
|
|
|
# Convert time_condition_embed
|
|
new_state_dict["time_condition_embed.timestep_embedder.linear_1.weight"] = original_state_dict.pop(
|
|
"time_embed.0.weight"
|
|
)
|
|
new_state_dict["time_condition_embed.timestep_embedder.linear_1.bias"] = original_state_dict.pop(
|
|
"time_embed.0.bias"
|
|
)
|
|
new_state_dict["time_condition_embed.timestep_embedder.linear_2.weight"] = original_state_dict.pop(
|
|
"time_embed.2.weight"
|
|
)
|
|
new_state_dict["time_condition_embed.timestep_embedder.linear_2.bias"] = original_state_dict.pop(
|
|
"time_embed.2.bias"
|
|
)
|
|
new_state_dict["time_condition_embed.condition_embedder.linear_1.weight"] = original_state_dict.pop(
|
|
"label_emb.0.0.weight"
|
|
)
|
|
new_state_dict["time_condition_embed.condition_embedder.linear_1.bias"] = original_state_dict.pop(
|
|
"label_emb.0.0.bias"
|
|
)
|
|
new_state_dict["time_condition_embed.condition_embedder.linear_2.weight"] = original_state_dict.pop(
|
|
"label_emb.0.2.weight"
|
|
)
|
|
new_state_dict["time_condition_embed.condition_embedder.linear_2.bias"] = original_state_dict.pop(
|
|
"label_emb.0.2.bias"
|
|
)
|
|
|
|
# Convert transformer blocks, for cogview4 is 28 blocks
|
|
for i in range(28):
|
|
block_prefix = f"transformer_blocks.{i}."
|
|
old_prefix = f"transformer.layers.{i}."
|
|
adaln_prefix = f"mixins.adaln.adaln_modules.{i}."
|
|
new_state_dict[block_prefix + "norm1.linear.weight"] = original_state_dict.pop(adaln_prefix + "1.weight")
|
|
new_state_dict[block_prefix + "norm1.linear.bias"] = original_state_dict.pop(adaln_prefix + "1.bias")
|
|
|
|
qkv_weight = original_state_dict.pop(old_prefix + "attention.query_key_value.weight")
|
|
qkv_bias = original_state_dict.pop(old_prefix + "attention.query_key_value.bias")
|
|
q, k, v = qkv_weight.chunk(3, dim=0)
|
|
q_bias, k_bias, v_bias = qkv_bias.chunk(3, dim=0)
|
|
|
|
new_state_dict[block_prefix + "attn1.to_q.weight"] = q
|
|
new_state_dict[block_prefix + "attn1.to_q.bias"] = q_bias
|
|
new_state_dict[block_prefix + "attn1.to_k.weight"] = k
|
|
new_state_dict[block_prefix + "attn1.to_k.bias"] = k_bias
|
|
new_state_dict[block_prefix + "attn1.to_v.weight"] = v
|
|
new_state_dict[block_prefix + "attn1.to_v.bias"] = v_bias
|
|
|
|
new_state_dict[block_prefix + "attn1.to_out.0.weight"] = original_state_dict.pop(
|
|
old_prefix + "attention.dense.weight"
|
|
)
|
|
new_state_dict[block_prefix + "attn1.to_out.0.bias"] = original_state_dict.pop(
|
|
old_prefix + "attention.dense.bias"
|
|
)
|
|
|
|
new_state_dict[block_prefix + "ff.net.0.proj.weight"] = original_state_dict.pop(
|
|
old_prefix + "mlp.dense_h_to_4h.weight"
|
|
)
|
|
new_state_dict[block_prefix + "ff.net.0.proj.bias"] = original_state_dict.pop(
|
|
old_prefix + "mlp.dense_h_to_4h.bias"
|
|
)
|
|
new_state_dict[block_prefix + "ff.net.2.weight"] = original_state_dict.pop(
|
|
old_prefix + "mlp.dense_4h_to_h.weight"
|
|
)
|
|
new_state_dict[block_prefix + "ff.net.2.bias"] = original_state_dict.pop(old_prefix + "mlp.dense_4h_to_h.bias")
|
|
|
|
# Convert final norm and projection
|
|
new_state_dict["norm_out.linear.weight"] = swap_scale_shift(
|
|
original_state_dict.pop("mixins.final_layer.adaln.1.weight"), dim=0
|
|
)
|
|
new_state_dict["norm_out.linear.bias"] = swap_scale_shift(
|
|
original_state_dict.pop("mixins.final_layer.adaln.1.bias"), dim=0
|
|
)
|
|
new_state_dict["proj_out.weight"] = original_state_dict.pop("mixins.final_layer.linear.weight")
|
|
new_state_dict["proj_out.bias"] = original_state_dict.pop("mixins.final_layer.linear.bias")
|
|
|
|
return new_state_dict
|
|
|
|
|
|
def convert_cogview4_vae_checkpoint_to_diffusers(ckpt_path, vae_config):
|
|
original_state_dict = torch.load(ckpt_path, map_location="cpu")["state_dict"]
|
|
return convert_ldm_vae_checkpoint(original_state_dict, vae_config)
|
|
|
|
|
|
def main(args):
|
|
if args.dtype == "fp16":
|
|
dtype = torch.float16
|
|
elif args.dtype == "bf16":
|
|
dtype = torch.bfloat16
|
|
elif args.dtype == "fp32":
|
|
dtype = torch.float32
|
|
else:
|
|
raise ValueError(f"Unsupported dtype: {args.dtype}")
|
|
|
|
transformer = None
|
|
vae = None
|
|
|
|
if args.transformer_checkpoint_path is not None:
|
|
converted_transformer_state_dict = convert_cogview4_transformer_checkpoint_to_diffusers(
|
|
args.transformer_checkpoint_path
|
|
)
|
|
transformer = CogView4Transformer2DModel(
|
|
patch_size=2,
|
|
in_channels=16,
|
|
num_layers=28,
|
|
attention_head_dim=128,
|
|
num_attention_heads=32,
|
|
out_channels=16,
|
|
text_embed_dim=4096,
|
|
time_embed_dim=512,
|
|
condition_dim=256,
|
|
pos_embed_max_size=128,
|
|
)
|
|
transformer.load_state_dict(converted_transformer_state_dict, strict=True)
|
|
if dtype is not None:
|
|
# Original checkpoint data type will be preserved
|
|
transformer = transformer.to(dtype=dtype)
|
|
|
|
if args.vae_checkpoint_path is not None:
|
|
vae_config = {
|
|
"in_channels": 3,
|
|
"out_channels": 3,
|
|
"down_block_types": ("DownEncoderBlock2D",) * 4,
|
|
"up_block_types": ("UpDecoderBlock2D",) * 4,
|
|
"block_out_channels": (128, 512, 1024, 1024),
|
|
"layers_per_block": 3,
|
|
"act_fn": "silu",
|
|
"latent_channels": 16,
|
|
"norm_num_groups": 32,
|
|
"sample_size": 1024,
|
|
"scaling_factor": 1.0,
|
|
"shift_factor": 0.0,
|
|
"force_upcast": True,
|
|
"use_quant_conv": False,
|
|
"use_post_quant_conv": False,
|
|
"mid_block_add_attention": False,
|
|
}
|
|
converted_vae_state_dict = convert_cogview4_vae_checkpoint_to_diffusers(args.vae_checkpoint_path, vae_config)
|
|
vae = AutoencoderKL(**vae_config)
|
|
vae.load_state_dict(converted_vae_state_dict, strict=True)
|
|
if dtype is not None:
|
|
vae = vae.to(dtype=dtype)
|
|
|
|
text_encoder_id = "THUDM/glm-4-9b-hf"
|
|
tokenizer = PreTrainedTokenizerFast.from_pretrained(text_encoder_id)
|
|
text_encoder = GlmForCausalLM.from_pretrained(
|
|
text_encoder_id,
|
|
cache_dir=args.text_encoder_cache_dir,
|
|
torch_dtype=torch.bfloat16 if args.dtype == "bf16" else torch.float32,
|
|
)
|
|
|
|
for param in text_encoder.parameters():
|
|
param.data = param.data.contiguous()
|
|
|
|
scheduler = FlowMatchEulerDiscreteScheduler(
|
|
base_shift=0.25, max_shift=0.75, base_image_seq_len=256, use_dynamic_shifting=True, time_shift_type="linear"
|
|
)
|
|
|
|
pipe = CogView4Pipeline(
|
|
tokenizer=tokenizer,
|
|
text_encoder=text_encoder,
|
|
vae=vae,
|
|
transformer=transformer,
|
|
scheduler=scheduler,
|
|
)
|
|
|
|
# This is necessary for users with insufficient memory, such as those using Colab and notebooks, as it can
|
|
# save some memory used for model loading.
|
|
pipe.save_pretrained(args.output_path, safe_serialization=True, max_shard_size="5GB", push_to_hub=args.push_to_hub)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main(args)
|